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Abstract. We introduce a notion of “Galois closure” for extensions of rings. We show that the
notion agrees with the usual notion of Galois closure in the case of an Sn degree n extension of
fields. Moreover, we prove a number of properties of this construction; for example, we show that
it is functorial and respects base change. We also investigate the behavior of this Galois closure
construction for various natural classes of ring extensions.
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1. Introduction

Let A be any ring of rank n over a base ring B, i.e., a B-algebra that is free of rank n
as a B-module. In this article, we investigate a natural definition for the “Galois closure”
G(A/B) of the ring A as an extension of B.1

The definition is as follows. For an element a ∈ A, let

Pa(x) = x
n
− s1(a)x

n−1
+ s2(a)x

n−2
+ · · · + (−1)nsn(a) (1)

be the characteristic polynomial of a, i.e., the characteristic polynomial of the B-module
transformation ×a : A → A given by multiplication by a. Furthermore, for an element
a ∈ A, let a(1), a(2), . . . , a(n) denote the elements a ⊗ 1 ⊗ 1 ⊗ · · · ⊗ 1, 1 ⊗ a ⊗ 1 ⊗
· · ·⊗1, . . . , 1⊗1⊗1⊗· · ·⊗a in A⊗n respectively. Let I (A,B) denote the ideal in A⊗n

generated by all expressions of the form

sj (a) −
∑

1≤i1<···<ij≤n

a(i1) · · · a(ij ) (2)

where a ∈ A and j ∈ {1, . . . , n}. Note that the symmetric group Sn naturally acts on A⊗n

by permuting the tensor factors, and the ideal I (A,B) ⊂ A⊗n is preserved under this

M. Bhargava: Department of Mathematics, Fine Hall, Washington Road, Princeton, NJ 08544-1000,
USA; e-mail: bhargava@math.princeton.edu
M. Satriano: Department of Mathematics, University of Michigan, 2074 East Hall, Ann Arbor,
MI 48109-1043, USA; e-mail: msatriano@gmail.com

Mathematics Subject Classification (2010): Primary 11R32; Secondary 13B05
1 All rings are assumed to be commutative with unity.



1882 Manjul Bhargava, Matthew Satriano

Sn-action. We are interested in imposing on A⊗n the relations in I (A,B) defined by (2)
because they are precisely the relations that the conjugates a(i) of a generic element a in
a separable field extension of degree n would satisfy in a normal closure. Alternatively,
they are the general relations that the eigenvalues a(i) of a linear transformation of a vector
space of dimension n would satisfy.

We define

G(A/B) = A⊗n/I (A,B), (3)

and we call G(A/B) the Sn-closure of A over B. Since I (A,B) is Sn-invariant, we see
that the action of Sn onA⊗n also descends to an Sn-action onG(A/B). One easily checks
(or see Theorem 2 below) that if A/B is a degree n extension of fields having associated
Galois group Sn, then G(A/B) is indeed simply the Galois closure of A as a field exten-
sion of B. Thus our definition of Sn-closure in a sense naturally extends the usual notion
of Galois closure to rank n ring extensions.

In fact, our definition above also naturally extends toB-algebrasA that are locally free
of rank n. A B-moduleM is said to be locally free of rank n if there exist b1, . . . , bm ∈ B

such that
∑
Bbi = B and Bbi ⊗B M is free of rank n over the localization Bbi .

2 For
such M , we have a natural isomorphism

M ⊗B HomB(M,B)→ EndB(M), (4)

where for B-modules N,N ′ we use HomB(N,N
′) to denote the set of B-module ho-

momorphisms from N to N ′, and we use EndB(N) to denote HomB(N,N). Indeed, (4)
gives an isomorphism locally on Bbi (since Bbi ⊗B M is free over Bbi ), and hence it is
an isomorphism globally. Next, if f is any B-module endomorphism ofM , then the trace
of f is defined to be the image of f under the canonical map

Tr : EndB(M) ∼= M ⊗B HomB(M,B)→ B.

Finally, if A is a B-algebra which is locally free of rank n, then given an element a ∈ A,
we obtain a B-module endomorphism of A given by ×a : A → A. We let sj (a) be the
trace of the induced B-module endomorphism of

∧j
A. Note that for such A, it makes

sense to speak of the characteristic polynomial Pa of an element a ∈ A, and that the
Cayley–Hamilton Theorem carries over to this setting as Pa(a) is locally zero, hence
globally zero. We can then define I (A,B) and G(A/B) as in (2) and (3).

The notion of Sn-closure has a number of interesting properties, which we consider
in this article. First, we note that the Sn-closure construction is clearly functorial in A for
B-algebra morphisms. The first nontrivial property that should be mentioned is that the
Sn-closure construction commutes with base change:

2 The condition that M is locally free of rank n as a B-module is also equivalent to either of the
following two natural conditions: (a) M is finitely generated and projective of constant rank n as a
B-module; (b) M is finitely presented and Mm is free of rank n as a Bm-module for all maximal
ideals m of B. (See, e.g., [15, Thm. 4.6].)
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Theorem 1. If A is a ring of rank n over B, and C is a B-algebra, then there is a natural
isomorphism

G(A/B)⊗B C ' G((A⊗B C)/C)

of C-algebras.

Next, in the case of an extension of fields, we have

Theorem 2. Let B be a field, and suppose A is a separable field extension of B of de-
gree n. Let Ã be a Galois closure of A over B, and let r = n!/deg(Ã/B). Then

G(A/B) ∼= Ã
r

as B-algebras.

In particular, if deg(Ã/B) = n! (i.e., Gal(Ã/B) = Sn), thenG(A/B) ∼= Ã as B-algebras.
We next consider the case where B is monogenic over A, i.e., A is generated by one

element as a B-algebra. Then we have

Theorem 3. Suppose A is a ring of rank n over B such that A = B[α] for some α ∈ A.
Then G(A/B) is a ring of rank n! over B. More generally, if A is locally free of rank n
over B and is locally generated by one element, then G(A/B) is locally free of rank n!
over B.

Now, if B is any ring, then we may examine the ring A = Bn having rank n over B. More
generally, we may consider those locally free rings A of rank n that are étale over B,
i.e., the determinant of the bilinear form 〈a, a′〉 = Tr(aa′)—called the discriminant
Disc(A/B) of A over B—is a unit in B (equivalently, the map 8 : A → HomB(A,B)

given by a 7→ (a′ 7→ Tr(aa′)) is a B-module isomorphism). We prove:

Theorem 4. For any ring B, we have G(Bn/B) ∼= Bn!. If A is étale and locally free of
rank n over B, then G(A/B) is étale and locally free of rank n! over B.

In fact, if B has no nontrivial idempotents, we may explicitly describe the Galois set
associated to G(A/B) in terms of that associated to A (see Section 5).

Thus for either étale or locally monogenic ring extensions of rank n, the Sn-closure
construction always yields locally free ring extensions of rank n!. For general rings that
are locally free of small rank over a baseB—even those that might not be étale or (locally)
monogenic—the Sn-closure still always yields locally free rings of rank n! over B:

Theorem 5. Suppose A is locally free of rank n ≤ 3 over B. Then G(A/B) is locally
free of rank n! over B.

For example, if one takes an order A in a noncyclic cubic field K , then its S3-closure
yields a canonically associated order Ã = G(A/Z) in the sextic field K̃ . We will prove in
Section 7 that this sextic order satisfies Disc(Ã/Z) = Disc(A/Z)3.

We may ask how the notion of Sn-closure behaves under general products. We prove:

Theorem 6. If A1, . . . , Ak are locally free rings of rank n1, . . . , nk , respectively, over B,
then

G(A1 × · · · × Ak/B) ∼= [G(A1/B)⊗ · · · ⊗G(Ak/B)]
( n
n1;...;nk

)
. (5)
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Theorem 6 implies that if A1, . . . , Ak are locally free rings of rank n1, . . . , nk over B
such that each Aj has Snj -closure over B that is locally free of the expected rank nj !, then
the product A = A1 × · · · ×Ak (which is locally free of rank n = n1 + · · · + nk over B)
also has Sn-closure that is locally free of the expected rank n! over B.

One might imagine that for more complicated ring extensions, however, the analogues
of the rank assertions in Theorems 3–5 might not hold. Indeed, one finds in rank 4 that
there exist algebras over fields for which the S4-closure need not have rank 4! = 24. For
instance, we will show in Section 9 that the S4-closure of the ring K[x, y, z]/(x, y, z)2

has dimension 32 over K for any field K .
This has consequences over Z as well. For example, supposeK is a quartic field andA

is the ring of integers in K . Consider the suborder A′ = Z+pA for some prime p. Since
A′/pA′ ∼= Fp[x, y, z]/(x, y, z)2, we see already that the minimal number of generators
for G(A′/Z) as an abelian group is at least 32 by Theorem 1. Since A′ ⊗Q = K , we see
that the torsion-free rank of A′ is 4! = 24, but one finds that there are also eight dimen-
sions of p-torsion! Although this may seem unsightly at first, for a number of reasons this
additional information contained in the p-torsion is important to retain in studying the
“Galois closure” of the order A′ (the most prominent reason being perhaps the property
of commuting with base change.) We study this example more carefully in Section 10.
The example will illustrate that there is no natural further quotient of G(A′/Z) that has
24 generators as a Z-module and also respects base change (see Theorem 20). This gives
further evidence that allowing the rank to be higher than n!when constructing Sn-closures
can be important when considering somewhat more “degenerate” ring extensions.

Remark 7. It is possible to obtain a natural Galois closure-type object of rank n! for
any order A in a degree n number field K , by constructing G(A/Z) as defined above,
and then quotienting by all torsion. This quotient was used for convenience in, e.g., [2]
and [3]. Although quite convenient in many contexts, such a quotienting procedure will
NOT commute with base change!

It is an interesting question as to what the possible dimensions are for the Sn-closure
of a dimension n algebra over a field K . In Section 11, we show that the largest possible
dimensions occur for the “maximally degenerate” rank n algebra over K , namely Rn =
K[x1, . . . , xn−1]/(x1, . . . , xn−1)

2:

Theorem 8. Let K be a field and Rn = K[x1, . . . , xn−1]/(x1, . . . , xn−1)
2. Then for all

K-algebras A of dimension n, we have dimK G(A/K) ≤ dimK G(Rn/K).

In addition to their interest due to Theorem 8, the algebras Rn are of interest in their own
right as they arise (with K = Fp) as the reductions modulo p of orders R in number
fields that are imprimitive at p, i.e., R = Z + pR′ for some order R′. For these reasons,
we study the Sn-closures of these algebras in more detail in Section 12, and show:

Theorem 9. Let K be a field of characteristic 0 or coprime to n!, and let Rn =
K[x1, . . . , xn−1]/(x1, . . . , xn−1)

2. Then the dimension of G(Rn/K) over K is strictly
greater than n! for n > 3.



On a notion of “Galois closure” for extensions of rings 1885

In particular, we find for n = 1, 2, 3, 4, 5, and 6 that dimK G(Rn/K) = 1, 2, 6, 32,
220, and 1857 respectively. These ranks thus give the maximal possible ranks for the
Sn-closures of rank n rings over K for these values of n. Theorem 9 will in fact follow
from a more general structure theorem for these rings G(Rn/K) (see Theorem 27). The
techniques used to prove Theorem 9 are primarily those of representation theory of Sn.

As we now describe, our notion of Galois closure can also easily be adapted to the
more general situation of a morphismX→ Y of schemes, where A is a locally free sheaf
of OY -algebras of rank n and X = SpecY A. We then say that X/Y is an n-covering.

Recall that if E is a locally free sheaf of rank n on a scheme Y and f is a local section
of End(E), then the trace of f is the image of f under the canonical morphism

End(E) ∼= E ⊗OY
E∨→ OY .

If X/Y is an n-covering and A is as above, then for any a ∈ A(U) we can define the
coefficients sj (a) of the “characteristic polynomial” Pa of a as follows. We obtain an
OU -module endomorphism of A|U given by multiplication by a. We let sj (a) be the trace
of the induced endomorphism of

∧j A|U . We can then define a sheaf of ideals I(A,OY )

of A⊗n generated by the local expressions as in (2) and let

G(A/OY ) = A⊗n/I(A,OY ).

We define
G(X/Y) = SpecY G(A/OY ).

Even in this more general context of n-coverings of schemes, we still have the analogues
of Theorems 1, 3, 4, and 5. More precisely,

Theorem 1′. If X/Y is an n-covering and Z → Y is a morphism of schemes, then there
is a natural isomorphism

G(X/Y)×Y Z ∼= G(X ×Y Z/Z).

Theorem 3′. If X/Y is an n-covering defined by a locally free sheaf A of OY -algebras
which is locally generated as an OY -algebra by one element, then G(X/Y) is an
n!-covering of Y .

Theorem 4′. If X/Y is an n-covering which is étale, then G(X/Y) is an n!-covering
of Y which is étale.

Theorem 5′. If X/Y is an n-covering defined by a locally free sheaf A of OY -algebras
and n ≤ 3, then G(X/Y) is an n!-covering of Y .

Theorems 1′, 3′, 4′, and 5′ follow directly from Theorems 1, 3, 4, and 5, due to the local
nature of our definitions. Hence we will concentrate primarily on the proofs of Theorems
1–9, in cases of locally free ring extensions of rank n.

We note that the notion of Sn-closure considered here arises at least incidentally or in
special cases in other works. For example, it occurs in the monogenic case in Grothen-
dieck [11, Lem. 1] and in Katz–Mazur [14, §1.8.2]. The construction for general rings is
also mentioned in [6, §5.2] (comment of O. Gabber), although no properties are proven
there.
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We end the introduction by noting that the Sn-closure construction can also be char-
acterized by a universal property in terms of a key notion of Katz and Mazur [14, 1.8.2]:
if B is a ring and A is a B-algebra which is locally free of rank n, then B-algebra maps
p1, . . . , pn : A → B form a full set of sections if for every B-algebra C and every
f ∈ A⊗B C,

Pf (x) =

n∏
i=1

(x − (pi ⊗ id)(f )).

Then Theorem 1 implies:

Theorem 10. Let B be any ring and A any B-algebra that is locally free of rank n. Then
G(A/B) is the universal B-algebra over which A admits a full set of n sections.

Indeed, Theorem 1 shows that theG(A/B)-algebra maps pi : A⊗BG(A/B)→ G(A/B)

defined by pi(a⊗γ ) = aiγ form a full set of sections, where ai denotes the image of a(i)

in G(A/B). It is then immediate from the relations (2) defining I (A,B) that this family
is universal.

2. Sn-closure commutes with base change

Let A be any ring of rank n over a base ring B. In this section, we show that the ideal
I (A,B) in A⊗n is generated by the relations (2), where a ranges over a basis of A as a
module over B. As such a basis remains a basis of A ⊗B C as a module over C for any
ring C, Theorem 1 will then follow.

To prove our assertion about I (A,B), we require:

Lemma 11. Let Z〈X, Y 〉 denote the noncommutative polynomial ring over Z generated
by X and Y . Then there exists a unique sequence f0(X, Y ), f1(X, Y ), . . . of polynomials
in Z〈X, Y 〉 such that in Z〈X, Y 〉[[T ]] we have

1− (X + Y )T = (1−XT )(1− YT )
∞∏
k=0

(1− fk(X, Y )XYT k+2). (6)

Furthermore, fm(X, Y ) is a homogeneous polynomial in X and Y of degree m.
Proof. We first prove by induction on m that the value of fm(X, Y ) is completely deter-
mined by (6). Indeed, to see the assertion for m = 0, we take (6) modulo T 3 to obtain

1− (X + Y )T ≡ (1−XT )(1− YT )(1− f0(X, Y )XYT
2) (mod T 3)

implying

1−XT − YT ≡ 1−XT − YT + (1− f0(X, Y ))XYT
2 (mod T 3)

and so we must have f0(X, Y ) = 1.
Similarly, assuming that f0(X, Y ), . . . , fm−1(X, Y ) have been determined from (6),

the polynomial fm(X, Y ) can then also be determined from (6) by taking (6) modulo
T m+3:

1− (X + Y )T ≡ (1−XT )(1− YT )
m∏
k=0

(1− fk(X, Y )XYT k+2) (mod T m+3); (7)
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equating the coefficients of T m+2 in (7) yields

fm(X, Y )XY

=

[
coefficient of T m+2 in (1−XT )(1− YT )

m−1∏
k=0

(1− fk(X, Y )XYT k+2)
]
. (8)

Inspection shows that every term on the right hand side of (8) is right-divisible by XY ;
dividing on the right by XY on both sides of (8) now gives the desired expression for
fm(X, Y ).

We have shown that the sequence {fm(X, Y )} is uniquely determined from (6) via
the recursive formula in (8). Moreover, the equation in (6) is true for this latter sequence
{fm(X, Y )} of polynomials because it is true modulo T i for every i. This concludes the
proof. ut

Remark 12. This beautiful lemma (Lemma 11) was pointed out to us by Bart de Smit.
See also [1], [18] for related results.

Remark 13. The first few polynomials fk(X, Y ) are given as follows:

f0(X, Y ) = 1,
f1(X, Y ) = X + Y,

f2(X, Y ) = X
2
+ YX + Y 2,

f3(X, Y ) = X
3
+XYX +XY 2

+ YX2
+ Y 2X + Y 3,

f4(X, Y ) = X
4
+XYX2

+XY 2X +XY 3
+ YX3

+ Y 2X2
+ Y 3X + Y 4.

(9)

We now return to our assertion about I (A,B). Given a ∈ A, letQa(T ) = det(1−aT )
= 1− s1(a)T + s2(a)T 2

− · · · be the reverse characteristic polynomial of a. Then given
any elements x, y ∈ A, by Lemma 11 we have

1− (x + y)T = (1− xT )(1− yT )
m−2∏
n=0

(1− (fn(x, y)xy)T n+2) (mod T m+1). (10)

Taking determinants of both sides of (10), and equating powers of T m, yields an
expression for sm(x+y) as an integer polynomial in si(x) (0 ≤ i ≤ m), si(y) (0 ≤ i ≤ m),
and si(gj (x, y)) (0 ≤ i ≤ m/2) for various integer polynomials gj . When A = Bn, the
sm(z) (where z = (z1, . . . , zn) ∈ A) become them-th elementary symmetric polynomials
em(z1, . . . , zn) in z1, . . . , zn; thus our identities involving the sm turn into polynomial
identities in the elementary symmetric polynomials em in this case (indeed, since they
hold with x, y ∈ Bn for any ring B, they must hold identically as polynomial identities
over the integers).

Remark 14. For example, we have:

s1(x + y) = s1(x)+ s1(y),

s2(x + y) = s2(x)+ s1(x)s1(y)+ s2(y)− s1(xy),

s3(x + y) = s3(x)+ s2(x)s1(y)+ s1(x)s2(y)+ s3(y)+ s1(xxy)+ s1(xyy)

− (s1(x)+ s1(y))s1(xy).
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Since for any b ∈ B and k ∈ N we have sk(bx) = bksk(x), it follows by induction
on m that the values of all expressions of the form sm(a) (0 ≤ m ≤ n) for a ∈ A are
determined by the values of si (i ≤ m) on a basis for A as a B-module. As the elementary
symmetric polynomials ei also satisfy these same general relations as the si , we conclude
that the ideal I (A,B) in A⊗k is generated by the relations (2), where a ranges over a
B-basis of A. In particular, Theorem 1 follows in the case where we are considering only
ring extensions A that are free of rank n over B.

Of course, the above argument can be modified slightly to handle the case where A
is locally free of rank n over B. Indeed, in this case A is still a finitely-generated B-
module (see Footnote 2). The above argument then shows that I (A,B) is generated by
the relations (2) where a runs through any set of generators for A as a B-module. The
assertion of Theorem 1 then follows in this generality as well.

3. The case A = Bn

3.1. A B-basis for G(Bn/B)

Suppose A is the rank n ring Bn over B. Let

e1 = (1, 0, . . . , 0), e2 = (0, 1, . . . , 0), . . . , en = (0, 0, . . . , 1)

be the standard basis for Bn over B. As in the introduction, for a ∈ A, we let a(i) denote
the element 1⊗ · · · ⊗ a ⊗ · · · ⊗ 1 of A⊗n with a in the i-th tensor factor. Then a natural
B-basis for (Bn)⊗n is given by

{e
(1)
i1
· · · e

(n)
in
} (11)

where i1, . . . , in each range between 1 and n.
We claim that a natural B-basis for G(Bn/B) is also given by (11), but where

(i1, . . . , in) now ranges over all permutations of (1, . . . , n).
To see this, we first note that any general element of the form e

(1)
i1
· · · e

(n)
in
∈ (Bn)⊗n

such that (i1, . . . , in) is not a permutation of (1, . . . , n), is in fact zero in G(Bn/B).
Indeed, let i ∈ {1, . . . , n} be any element such that i /∈ {i1, . . . , in}. Then since

∑n
j=1 e

(j)
i

equals Tr(ei) = 1 in G(Bn/B), we deduce

e
(1)
i1
· · · e

(n)
in
=

n∑
j=1

[e
(j)
i · e

(1)
i1
· · · e

(n)
in
] = 0

in G(Bn/B), as desired.
On the other hand, if (i1, . . . , in) is a permutation of (1, . . . , n), then e(1)i1 · · · e

(n)
in

is
nonzero in G(Bn/B). To prove this, consider the B-algebra homomorphism φ(i1,...,in) :

(Bn)⊗n→ B defined by

φ(i1,...,in)
(
e
(j)
i

)
=

{
1 if i = ij ,
0 otherwise.
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Then it is evident that the kernel of φ(i1,...,in) contains I (Bn, B), so that φ descends to a
map

φ̄(i1,...,in) : G(B
n/B)→ B.

Moreover, we have φ̄(i1,...,in)(e
(1)
i1
· · · e

(n)
in
) = 1. We conclude that e(1)i1 · · · e

(n)
in

is nonzero
in G(Bn/B).

Finally, note that e(1)i1 · · · e
(n)
in

is an idempotent for any permutation (i1, . . . , in), and
if (j1, . . . , jn) is any other permutation of (1, . . . , n), then

e
(1)
i1
· · · e

(n)
in
· e
(1)
j1
· · · e

(n)
jn
= 0.

Hence the set (11), where (i1, . . . , in) ranges over all permutations of (1, . . . , n), forms a
set of nonzero orthogonal idempotents that spans G(Bn/B) as a B-module. We conclude
that it forms a basis for G(Bn/B), as claimed.

Finally, since this basis for G(Bn/B) has n! elements, and consists entirely of idem-
potents, we conclude that G(Bn/B) ∼= Bn! as B-algebras, as desired.

We have proven the first assertion of Theorem 4.

3.2. The action of Sn on G(Bn/B)

It is interesting to consider the natural action of Sn on (Bn)⊗n, and onG(Bn/B), obtained
by permuting the tensor factors. From this point of view, we see that

G(Bn/B) ∼= B[Sn]

as B[Sn]-modules. The isomorphism is given by e(1)i1 · · · e
(n)
in
7→ σ , where σ ∈ Sn denotes

the permutation j 7→ ij . If we write eσ := e
(1)
i1
· · · e

(n)
in

, then the action of an element
g ∈ Sn on G(Bn/B) is given by

g · eσ = egσ .

Let A = Bn. Under the action of Sn on G(A/B), the ring A(1) ⊂ G(A/B) given by
the image of A ⊗ 1 ⊗ · · · ⊗ 1 is fixed by S(1)n−1, the subgroup of Sn fixing 1. Note that
A(1) ∼= A. Similarly, as in Galois theory, the other “conjugate” copies of A in G(A/B),
namely A(j) = 1 ⊗ · · · ⊗ A ⊗ · · · ⊗ 1 (where the A is in the j -th tensor factor) for
j = 2, . . . , n are fixed by the conjugate subgroups S(j)n−1 ⊂ Sn fixing j for j = 2, . . . , n,
respectively.

In terms of these subgroups S(j)n−1 ⊂ Sn, we may express the idempotents e(j)i in terms
of our orthogonal basis {eσ }σ∈Sn of idempotents for G(A/B) as follows:

e
(j)
i =

∑
σ∈S

(j)

n−1gji

eσ , (12)

where gji denotes any element in Sn taking i to j . That is, e(j)i corresponds to the sum
of eσ over a right coset of S(j)n−1, namely, the one consisting of elements in Sn taking i
to j . For an extension of these results to general products of rings A = A1 × · · · × Ak ,
see Section 8.
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4. The case of fields

Before proving Theorem 2, we begin by recalling the correspondence between finite étale
extensions of a field and Galois sets. Let K be a field and fix a separable closure K̄ of K .
Then, given a finite étale extension L/K , consider the set SL/K of K-algebra homomor-
phisms from L to K̄ . We see that GK := Gal(K̄/K) acts on SL/K by composition: if
τ ∈ GK and ψ ∈ SL/K , then τ ◦ ψ ∈ SL/K . Moreover, this action is continuous when
GK is given the profinite topology and SL/K is given the discrete topology, i.e., the action
of GK factors through a finite quotient of GK . We therefore obtain a functor

(finite étale K-algebras)→ (finite sets with continuous GK -action) (13)

sendingL to SL/K , which is in fact an equivalence of categories (see, e.g., [15, Thm. 2.9]).
Note that if L/K is finite étale of degree n, then K̄ ⊗K L is isomorphic to K̄n as a

K̄-algebra. More canonically, we have an isomorphism

K̄ ⊗K L→ K̄SL/K :=

∏
s∈SL/K

K̄, 1⊗ ` 7→ (s(`))s∈SL/K , (14)

of K̄-algebras. The Galois group GK acts on K̄ ⊗K L through the left tensor factor, and
therefore induces an action on SL/K via (14); this is precisely the GK -action on SL/K
in (13).

We now turn to the problem of describing the Galois set SG(L/K)/K in terms of the
Galois set SL/K , where L/K is a finite étale extension of degree n. By Theorem 1,

K̄ ⊗K G(L/K) ∼= (K̄
SL/K )⊗n/I (K̄SL/K , K̄)

as K̄-algebras. TheGK -action on the left tensor factor of K̄⊗KG(L/K) yields an action
on (K̄SL/K )⊗n/I (K̄SL/K , K̄) defined by

τ(e(i)s ) = e
(i)
τ (s),

where τ ∈ GK , s ∈ SL/K , and es denotes the element (δss′)s′ of KSL/K , where δ is the
Kronecker delta.

Given two sets T and T ′, we let Bij(T , T ′) denote the set of bijections f : T → T ′.
Let [n] denote the set {1, . . . , n}. Then Section 3.2 shows that

K̄[Bij([n], SL/K)]
∼=
→ (K̄SL/K )⊗n/I (K̄SL/K , K̄)

as K̄-algebras, where π ∈ Bij([n], SL/K) is sent to e(1)π(1) . . . e
(n)
π(n). We then see that the

action of GK on K̄ ⊗K G(L/K) induces an action on Bij([n], SL/K) where GK acts on
Bij([n], SL/K) via its action on SL/K ; that is, τ ∈ GK acts on π ∈ Bij([n], SL/K) by

(τ (π))(j) = τ(π(j)).

Hence, the Galois set corresponding to G(L/K) is given by Bij([n], SL/K) with this
action of GK .
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We now prove Theorem 2. Let L be a finite separable field extension of K of de-
gree n, and let M be the Galois closure of L/K in K̄ . Let G denote the Galois group
of M/K; thus G acts faithfully and transitively on SL/K , and so G sits naturally inside
Bij(SL/K , SL/K). Note that Bij(SL/K , SL/K) carries a GK -action via post-composition.
Since M is the Galois closure of L/K , this action of GK restricts to an action on G. The
set G equipped with this action is the Galois set corresponding to M . Since the action
of G on SL/K is faithful and transitive, we see that as Galois sets,

Bij(SL/K , SL/K) =
∐
r

G = SMr/K .

Therefore, choosing a bijection of [n] and SL/K yields an isomorphism SG(L/K)/K ∼=

SMr/K of Galois sets. As a result, G(L/K) and Mr are isomorphic as K-algebras.

5. The étale case

We have already proven the first assertion of Theorem 4. Suppose, more generally, that A
is any ring that is étale and locally free of rank n overB. Then we claim thatG(A/B) is an
étale B-algebra which is locally free of rank n!; this is the second assertion of Theorem 4.

To prove the claim, we first require a definition. An étale B-algebra C is called an
étale cover of B if the induced morphism SpecC → SpecB is surjective. The key fact
we use in proving the second assertion of Theorem 4 is the following well-known lemma:

Lemma 15. Let R be any B-algebra that is finitely generated as a B-module. Then R is
étale and locally free of rank n over B if and only if there exists an étale cover C of B
such that R ⊗B C ∼= Cn as C-algebras.

Proof. First, the proof of [16, Thm. 11.4] shows that R is locally free of rank n over B if
and only if there exists an étale cover C of B such that R ⊗B C ∼= Cn as C-modules.

Now if C is an étale cover of B as in the statement of the lemma, then R ⊗B C
is an étale C-algebra. By étale descent, R is then an étale B-algebra (see, e.g., [21,
Prop. 1.15(x)]), and it is also locally free of rank n over B by the previous paragraph.

Conversely, if R is étale and locally free of rank n over B, then R is an étale cover
of B. There then exists an R-algebra R′ such that we have an isomorphism of R-algebras
R ⊗B R ∼= R × R

′ (see, e.g., [7, Remark after Lemma 1.1.17]). Since R ⊗B R is étale
and locally free of rank n over R, it follows that R′ is étale and locally free of rank n− 1
over R. By induction on n, we conclude that there exists an étale cover C of B such that
R ⊗B C ∼= C

n as C-algebras. ut

Since A is étale and locally free of rank n over B, by Lemma 15 we see that there exists
an étale cover C of B such that A ⊗B C ∼= Cn as C-algebras. By Theorem 1, we then
have

G(A/B)⊗B C ∼= G(C
n/C) ∼= C

n!

as C-algebras. Applying Lemma 15 once again, we conclude that G(A/B) is étale and
locally free of rank n! over B, as desired.
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We can say more in terms of the underlying Galois sets when SpecB is connected.
Recall that there is an equivalence of categories between finite étale extensions of B and
finite sets equipped with a continuous action by a certain profinite group π ét

1 (B) called
the étale fundamental group of B (see, e.g., [15, Thm. 1.11]). When B = K is a field,
π ét

1 (K) is nothing other than GK . By the same argument as in the case of fields, one
shows that if A/B is a finite étale extension of degree n corresponding to a finite set S
with a continuous action by π ét

1 (B), then G(A/B) corresponds to the set Bij([n], S) with
π ét

1 (B)-action induced by the action on S.

6. The monogenic case

In this section, we examine the situation where B is monogenic over A. We prove:

Theorem 16. Let f be a monic polynomial with coefficients inB, and letA = B[x]/f (x)
denote the corresponding monogenic ring of rank n over B. Then G(A/B) is a ring of
rank n! over B, a basis of it being all monomials of the form

n∏
i=1

x
ei
i (15)

where the exponents ei satisfy 0 ≤ ei < i; here x1, . . . , xn denote the images in G(A/B)
of x(1), . . . , x(n) ∈ A⊗n respectively.

Proof. If A = B[x], then I (A,B) is generated by the relations (2) where a = x. This is
because the powers 1, x, x2, . . . , xn−1 of x form a basis for A over B, and the elementary
symmetric functions si(xj ) of powers xj of x are integer polynomials in the elementary
symmetric functions si(x) of x (by the Newton–Girard identities; see, e.g., [20, pp. 99–
101]). Hence the relations (2) for a = xj (j > 1) are implied by those for which a = x.

Now let the characteristic polynomial of ×x : A → A be given by Px(T ) = T n −
s1(x)T

n−1
+ s2(x)T

n−2
+ · · · + (−1)nsn(x). Then a direct construction ofG(A/B) is as

follows. By the symmetric function theorem, the ring R = Z[X1, . . . , Xn] is a free mod-
ule of rank n! (with basis given as above) over the polynomial ring S = Z[61, . . . , 6n],
where the 6i denote the elementary symmetric polynomials: 61 = X1 + · · · + Xn, etc.
Using the coefficients of Px , we get a map ψ : S → B defined by sending 6i to si(x).
This allows us to construct the B-algebra R ⊗S B, which is then free over B of rank n!.

We claim that the algebra R ⊗S B is isomorphic to G(A/B). Indeed, we may define
a map

φ : A⊗n = B[x(1), . . . , x(n)] → R ⊗S B

by sending x(i) 7→ Xi ⊗ 1. Then, by the definition of R⊗S B, the kernel of φ consists of
all polynomials in B[x(1), . . . , x(n)] that are symmetric in the x(i) (so can be expressed
as polynomials in the elementary symmetric functions ej (x(1), . . . , x(n))) and that evalu-
ate to 0 when ej (x(1), . . . , x(n)) is replaced by sj (x) for every j . But these polynomials
are precisely the elements of the ideal I (A,B), and thus G(A/B) = A⊗n/I (A,B) ∼=

R ⊗S B, as desired. ut
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Remark 17. This construction in the monogenic case is more or less given in Grothen-
dieck [11, Lemme 1 and corollary next page].

In the case where A is monogenic over the base ring B, we may use Theorem 16 to
compute the discriminant Disc(G(A/B)) of the Sn-closure of A in terms of the discrim-
inant Disc(A) of A. The definition of Disc(A) ∈ B as given in the introduction (prior to
Theorem 4) is unique only up to factors in B×2. However, if A is a based ring of rank n
over B—i.e., A comes equipped with a basis of size n over B—then Disc(A/B) is well-
defined as an element of B, namely as the determinant of the trace form Tr(xy) on A
expressed as an n× n matrix over B in terms of this chosen basis. We then find that, for
n ≥ 2, we have

Disc(G(A/B)) = Disc(A)n!/2 (16)

as discriminants of based rings over B; here A is equipped with its power basis and
G(A/B) is given the basis as in Theorem 16.

To see this, note that it suffices again to prove this identity in the case B =

Z[61, . . . , 6n], A = B[X1], and G(A/B) = Z[X1, . . . , Xn]. The identity (16) is triv-
ial for n = 2, while for general n it follows by induction. Indeed, we have the equalities
A = Z[X1][6

′

1, . . . , 6
′

n−1] andG(A/B) = A[X2, . . . , Xn], where6′1, . . . , 6
′

n−1 denote
the elementary symmetric polynomials inX2, . . . , Xn. The proof of Theorem 16 now im-
plies that G(A/B) = G(A[X2]/A), so that G(A/B) is free of rank (n− 1)! over A. The
induction hypothesis then gives

Disc(G(A/B)/A) = Disc(A[X2]/A)
(n−1)!/2.

In the tower of ring extensions G(A/B) /A /B, we then see that

Disc(G(A/B)) = NAB(Disc(G(A/B)/A)) · Disc(A)(n−1)!

= Disc(A)(n−2)·(n−1)!/2
· Disc(A)(n−1)!

= Disc(A)n!/2,

proving (16).

7. Ranks k ≤ 3

The cases k = 1, 2 in Theorem 5 follow from Theorem 3. So we consider the case k = 3
in this section.

Theorem 18. Assume that A is free of rank 3 over B with basis 1, x, y. Let x1, x2, x3
and y1, y2, y3 denote the images in G(A/B) of the elements x(1), x(2), x(3) and y(1),
y(2), y(3) ∈ A⊗3 respectively. Then the ring G(A/B) is free of rank 6 over B with basis
1, x1, y1, x2, y2, x1y2.
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Proof. It is known that, by translating x and y by appropriate B-multiples of 1, the mul-
tiplication table of A as a ring over B can be expressed in the form

xy = ad,

x2
= −ac + bx + ay,

y2
= −bd + dx + cy,

(17)

for some elements a, b, c, d ∈ B (see [9, Prop. 4.2]).
In terms of these elements, the characteristic equations of x, y, and x+y are given by

T 3
− bT 2

+ acT − a2d = 0,

T 3
− cT 2

+ bdT − ad2
= 0,

and

T 3
− (b+c)T 2

+ (ac+bc+bd−3ad)T − (a2d+ac2
+b2d+ad2

−2abd−2acd) = 0

respectively.
Note first that the trace relations x1+x2+x3 = b and y1+y2+y3 = c are equivalent

to

x3 = b − x1 − x2, (18)
y3 = c − y1 − y2. (19)

Hence G(A/B) is generated as a B-module by the nine elements {1, x1, y1} · {1, x2, y2},
and we need to find three additive relations to relate x1x2, x1y2, x2y1, y1y2.

Since all other trace relations are B-linear combinations of the trace relations for x
and y, they do not yield any further new relations. Instead, we now take the quadratic
identities x1x2+ x1x3+ x2x3 = ac, y1y2+ y1y3+ y2y3 = bd, and (x1+ y1)(x2+ y2)+

(x1 + y1)(x3 + y3)+ (x2 + y2)(x3 + y3) = ac + bc + bd − 3ad, which reduce to

x1x2 = a(c − y1 − y2), (20)
y1y2 = d(b − x1 − x2), (21)
y1x2 = bc − ad − b(c − y1 − y2)− c(b − x1 − x2)− x1y2. (22)

These identities show that G(A/B) is spanned over B by the six elements claimed in the
theorem.

It remains to show that these six elements are in fact linearly independent. By Theo-
rem 1, it suffices to consider the case when B = Z[a, b, c, d] is a free polynomial ring
over Z in variables a, b, c, d , and A is free of rank 3 over B with basis 1, x, y, and
multiplication table given by (17).

In that case, let K be the quotient field of B. If the six elements 1, x1, x2, y1, y2, x1y2
satisfy a linear relation over B, then they also satisfy a linear relation over K . We show
that this is not the case. Since Disc((A ⊗B K)/K) is a nonzero polynomial in a, b, c,
and d , it is invertible in K and hence (A⊗B K)/K is étale. In fact, A⊗B K is a field. If
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it were not, then the cubic polynomial f (x) defining the extension (A ⊗B K)/K would
have a root in K . As A/B is the universal based cubic ring extension having first basis
element 1, this would imply that every cubic polynomial over Q has a rational root, which
is not true.

Now, by Theorem 1, the elements 1, x1, x2, y1, y2, x1y2 also spanG((A⊗BK)/K) ∼=
G(A/B) ⊗B K . Since A ⊗B K is a field, Theorem 2 implies that G((A ⊗B K)/K) is a
6-dimensional vector space over K . It follows that 1, x1, x2, y1, y2, and x1y2 are linearly
independent over K , and hence over B, as desired. ut

Thus to any cubic ringA overB with basis 1, x, y, there is naturally associated a canonical
sextic ring Ã over B, given by G(A/B). We show that in fact we have the formula

Disc(Ã) = Disc(A)3 (23)

as discriminants of based rings.
To see this, it again suffices to check this in the case where the base ring B is

Z[a, b, c, d]. In this case, it is clear that the multiplication table for Ã, in terms of our
chosen basis 1, x1, x2, y1, y2, x1y2 for Ã, will involve only polynomials in a, b, c, d
with coefficients in Z. Thus the discriminant Disc(Ã) of Ã will also be an integer poly-
nomial in a, b, c, d. Furthermore, this polynomial Disc(Ã) must remain invariant under
changes of the basis x, y via transformations in GL2(Z), which changes a, b, c, d by the
action of GL2(Z) on the binary cubic form f (x, y) = ax3

+ bx2y + cxy2
+ dy3 (by [9,

Prop. 4.2]). It is known (see, e.g., [12, Lec. XVII]) that the only GL2(Z)-invariant poly-
nomials in a, b, c, d under this action must be polynonomials in Disc(f ) = Disc(A), and
thus Disc(Ã) must be a polynomial in Disc(A).

To determine this polynomial, we may then restrict to the case where a = 1 or d = 1;
that is, we may assume the rank 3 ring A is monogenic over B, in which case Disc(Ã) =
Disc(A)3 by (16). Formula (23) therefore follows for general rank 3 rings A over B that
have a basis of the form 1, x, y.

In particular, if A is a cubic order in a noncyclic cubic fieldK , thenG(A/Z) provides
a canonically associated sextic order Ã in the Galois closure K̃ satisfying Disc(Ã) =
Disc(A)3.

We may now deduce the more general Theorem 5 from Theorem 18. Indeed, let A be
any locally free ring of rank 3 over B. Then it follows from [10, Lemma 1.1] that, for any
maximal ideal M of B, the localization AM is free of rank 3 over BM with a basis of the
form 1, x, y (essentially an application of Nakayama’s Lemma). We then conclude, by
Theorem 18, that the localization G(A/B)M is free of rank 6 over BM , for all maximal
ideals M of B.

Since A is finitely presented as a B-module (being locally free; see Footnote 2 on
p. 1882) and the ideal I (A,B) is finitely generated (a set of generators being the rela-
tions (2), where a ranges over a spanning set for A over B; see Section 2), we conclude
that G(A/B) too is finitely presented as a B-module.

Finally, since G(A/B) is finitely presented as a B-module, and the localization
G(A/B)M is free of rank 6 over BM for all maximal ideals M of B, by Footnote 2
on p. 1882, we conclude that G(A/B) is locally free of rank 6 over B, and Theorem 5
follows.
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8. Behavior under products

Suppose A1, . . . , Ak are locally free rings of rank n1, . . . , nk , respectively, over B. Then
A = A1×· · ·×Ak is locally free of rank n = n1+· · ·+nk over B. To prove Theorem 6,
we wish to understand G(A/B) in terms of G(Aj/B) for j ∈ {1, . . . , k}.

To this end, let [k] denote the set {1, . . . , k}. For each j ∈ [k], we define ej ∈ A by
e1= (1, 0, . . . , 0), e2= (0, 1, 0, . . . , 0), and so on. For an n-tuple i = (i1, . . . , in)∈[k]n,
define Ti ⊂ A⊗n to be the B-subalgebra generated by all pure tensors a(1)1 · · · a

(n)
n ∈ A

⊗n,
where am ∈ Aimeim for all m ∈ {1, . . . , n} (so Ti ∼= Ai1 ⊗ · · · ⊗Ain as B-algebras). Then
we have the decomposition

A⊗n =
∏
i∈[k]n

Ti (24)

as B-algebras, where the Ti factor in (24) corresponds to the idempotent ei := e
(1)
i1
· · · e

(n)
in

in A⊗n. We then also have a corresponding decomposition

I (A,B) =
∏
i∈[k]n

Ii(A,B), (25)

where Ii(A,B) = eiI (A,B) is an ideal of the B-algebra Ti .
Let S denote the subset of all n-tuples i = (i1, . . . , in) ∈ [k]

n such that n1 of the
im’s are equal to 1, n2 of the im’s are equal to 2, etc. (Thus, for any i ∈ S, we have an
isomorphism Ti ∼= A

⊗n1
1 ⊗· · ·⊗A

⊗nk
k asB-algebras, obtained by appropriately permuting

the tensor factors.) For any n-tuple i /∈ S, we claim that Ii(A,B) = Ti . Indeed, for such
an i /∈ S, let j ∈ [k] be an element that appears fewer than nj times as an entry in i. Then
since ej has characteristic polynomial xn−nj (x − 1)nj , we have the relation

1−
∑

1≤r1<···<rnj≤n

e
(r1)
j · · · e

(rnj )

j ∈ I (A/B). (26)

Multiplying (26) by any element of Ti , and noting that any pure tensor in Ti has fewer
than nj tensor factors in Aj ej , yields

Ti ⊆ Ii(A,B) (27)

and so Ti = Ii(A,B) as claimed.
To determine Ii(A,B)when i ∈ S, it suffices by symmetry (via the Sn-action onA⊗n)

to consider the case i = (i1, . . . , in), where i1 = · · · = in1 = 1, in1+1 = · · · = in1+n2

= 2, etc. To obtain generators for Ii(A,B) for this particular i ∈ S, we take generators
of I (A,B) and project them onto Ti by multiplying them by the idempotent ei . A natural
generating set for I (A,B) (by the work of Section 2) is the set of all elements of the form

sm(a)−
∑

1≤r1<···<rm≤n

a(r1) · · · a(rm), (28)
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where a = aj ej for some aj ∈ Aj and j ∈ [k]. If a = aj ej ∈ Aj ej is such an element,
then multiplying the element (28) in I (A,B) by the idempotent ei = e

(1)
i1
· · · e

(n)
in
∈ Ti ,

we obtain 0 unless m ≤ nj , in which case we obtain

sm(aj )−
∑

n1+···+nj−1+1≤r1<···<rm≤n1+···+nj

a(r1) · · · a(rm). (29)

Thus the ideal in Ti generated by all such elements is simply I (A1, B)⊗· · ·⊗I (Ak, B) ⊂

Ti = A
⊗n1
1 ⊗ · · · ⊗A

⊗nk
k . It follows that Ti/Ii(A,B) ∼= G(A1/B)⊗ · · · ⊗G(Ak/B) for

this particular i, and thus for any i ∈ S.
Therefore, if for each i ∈ S we write Ri := Ti/Ii(A,B), then we have shown that

G(A/B) =
∏
i∈S

Ri (30)

as B-algebras, and moreover Ri ∼= G(A1/B) ⊗ · · · ⊗ G(Ak/B) for all i ∈ S, yielding
Theorem 6.

Note that the proof shows that the Sn-action on the B-module G(A1 × · · · × Ak/B)

is induced from the Sn1 × · · · × Snk -action on G(A1/B)⊗ · · · ⊗G(Ak/B); i.e., we have

G(A1 × · · · × Ak/B) ∼= B[Sn] ⊗B[Sn1×···×Snk ]
[G(A1/B)⊗ · · · ⊗G(Ak/B)]

as B[Sn]-modules.

9. An example of a ring of rank 4 whose S4-closure has rank 32 > 4!

In this section, we give an example of a ring A of rank 4 over B—namely A =

B[x, y, z]/(x, y, z)2—such that G(A/B) has rank 32 > 4! over B.

Proposition 19. Let B be a ring, and let A be the ring B[x, y, z]/(x, y, z)2 having rank
4 over B. Then G(A/B) is free of rank 32 over B.

Proof. Motivated by the relations (2) for G(A/B), we give a direct construction of a
ring R over B, which we will then show to be naturally isomorphic toG(A/B). Precisely,
we construct R to have a B-module decomposition of the form

R = B ⊕ [T (x)⊕ T (y)⊕ T (z)] ⊕ [U(x)⊕ U(y)⊕ U(z)]

⊕ [V (x, y)⊕ V (y, z)⊕ V (x, z)] ⊕W(x, y, z), (31)

where T (·), U(·), V (·, ·), and W(x, y, z) are free B-modules having ranks 3, 2, 5, and 1,
respectively. Therefore, R (and thus G(A/B)) will have B-rank 1+ 3 · 3+ 3 · 2+ 3 · 5+
1 = 32. The constructions of these B-modules T (·), U(·), V (·, ·), and W(·, ·, ·) are as
follows.

First, T (x) is the B-module spanned by x1, x2, x3, x4 modulo the relation x1 + x2 +

x3 + x4 = 0; T (y) and T (z) are defined similarly, and hence each is three-dimensional.
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Second, U(x) is defined as the symmetric square of T (x) modulo the relations

x2
1 = x

2
2 = x

2
3 = x

2
4 = x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4 = 0.

Now x1 + x2 + x3 + x4 = 0 in T (x), so multiplying by x1 and x2 respectively shows that

x1x2 + x1x3 + x1x4 = 0 and x1x2 + x2x3 + x2x4 = 0

in U(x); this in turn implies that

x2x3 + x3x4 + x2x4 = 0 and x1x3 + x3x4 + x1x4 = 0

in U(x). Subtracting the first and last of the latter four relations gives x1x2 = x3x4, and
similarly x1x3 = x2x4 and x1x4 = x2x3. We thus find that U(x) is spanned over B by the
images of any two of the three nonzero elements x1x2 (or x3x4), x1x3 (or x2x4), and x1x4
(or x2x3), and any two of these are independent over B. The B-modules U(y) and U(z)
are defined in the analogous manner, and are thus also two-dimensional.

Third, V (x, y) is defined as the product T (x)⊗ T (y) modulo the relations

x1y1 = x2y2 = x3y3 = x4y4 = 0

(where we have suppressed the tensor symbols). As T (x) ⊗ T (y) is a rank 9 module
over B, we see that V (x, y) is five-dimensional. The B-modules V (y, z) and V (x, z) are
defined analogously, and hence are also five-dimensional.

Finally, W(x, y, z) is the space T (x)⊗ T (y)⊗ T (z) modulo the relations

xiyizj = xjyizi = xiyjzi = 0

for all i and j , and the further relations

xiyjzk = sgn(i, j, k)x1y2z3

for all permutations (i, j, k) of (1, 2, 3), We have imposed the latter relations in
W(x, y, z) because we have the relations

0 = (x4y4)z3 = (−x1 − x2 − x3)(−y1 − y2 − y3)z3 = x1y2z3 + x2y1z3

in I (A,B), implying x2y1z3 = −x1y2z3, etc. With these relations, we see that the rank
of W(x, y, z) over B is 1, and it is spanned over B by x1y2z3.

We have not defined any B-module components in R involving quadruple products
of xi, yj , zk (1 ≤ i, j, k ≤ 3) because these we would like to be zero due to the relations
xiyi = xizi = yizi = 0 in A. Similarly, there are no B-module components involving
triple products of only xi and yj (1 ≤ i, j, k ≤ 3), since the analogues of such products
in G(A/B) would be zero:

0 = x1(y1y2 + y2y3 + y1y3) = x1y2y3,

and similarly all such triple products would be zero inG(A/B). Thus we keep only those
components T (·), U(·), V (·, ·), and W(·, ·, ·) appearing in (31).
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The product structure onR is defined simply in terms of the natural maps T (x)⊗T (x)
→ U(x), T (x)⊗T (y)→ V (x, y), T (x)⊗T (y)⊗T (z)→ W(x, y, z), T (x)⊗V (y, z)→
W(x, y, z), and so on. All other products (such as T (x)⊗V (x, y)) are defined to be zero.
With this product structure, it is immediate that R is a ring.

To see that G(A/B) ∼= R, we note that there is a natural surjective map

A⊗ A⊗ A⊗ A→ R,

sending x(i) 7→ xi , y(i) 7→ yi , and z(i) 7→ zi . Furthermore, the kernel of this map is, by
design, contained in I (A,B). To see that it contains I (A,B), one may simply check that
it contains the elements (2) on a basis ofA over B, and so on the basis elements 1 (trivial),
x, y, and z. By symmetry of x, y, and z, we then only need to check that the elements (2)
are in the kernel for a = x and j = 1, 2, 3, and this is again immediate.

We conclude that G(A/B) ∼= R has rank 32 over B. ut

10. Why do we need to allow the rank of Sn-closures to exceed n! ?

It is natural to ask if it is possible to enlarge the ideal I (A,B) defined in (2) to an ideal
I ′(A,B) such that: (i) for any ring A that is locally free of rank n over a ring B, the
quotient G′(A/B) := A⊗n/I ′(A,B) is always locally free of rank n! over B; and (ii) the
constructionG′(A/B) commutes with base change. As the following theorem shows, the
answer is no:

Theorem 20. Let n ≥ 4. As B ranges over all rings and A ranges over all rings that are
locally free of rank n over B, there cannot exist corresponding rings G′(A/B) that are
locally free of rank n! over B and B-algebra maps i1, . . . , in : A→ G′(A/B) such that:

(a) for every A and B, the images of i1, . . . , in generate G′(A/B) as a B-algebra;
(b) G′(A/B) and i1, . . . , in are functorial in A;
(c) G′(A/B) and i1, . . . , in respect base change, i.e., for all B-algebras C, there is a

functorial choice of isomorphism G′(A/B)⊗B C
∼
−→ G′((A⊗B C)/C) which com-

mute with the ij ; and
(d) if A/B is an Sn-extension of fields of degree n, then G′(A/B) is isomorphic to the

usual Galois closure of A over B, and the ij correspond to the n distinct embeddings
of A.

Remark 21. Note that G(A/B) satisfies all the essential properties (a)–(d) of the theo-
rem (the map ij corresponds to a 7→ a(j)) but, as we have already seen, it does not always
have rank n! over B. In the usual Galois closure Ã of an Sn-extension A/B of fields of
degree n, the maps ij correspond to the embeddings A ↪→ Ã whose images generate Ã
as an algebra over B.

Proof of Theorem 20. We consider first the case n = 4. Let K be an S4-quartic extension
of Q, and let OK denote the ring of integers of K . Fix a prime p ≥ 5, and let R be the
ring Z+ pOK . Then R̄ := R ⊗Z Fp ∼= Fp[x, y, z]/(x, y, z)2.
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We begin by showing that G′(R/Z) is a quotient of G(R/Z). The maps i1, . . . , i4 :
R → G′(R/Z) determine an R-algebra map π ′ : R⊗4

→ G′(R/Z). By property (a), the
images of the ij generate G(R/Z) as a ring, and so π ′ is surjective. Now R⊗4

⊂ K⊗4,
and sinceG′(R/Z) is free of rank 24 over Z, by property (c) it is a full rank Z-submodule
of G′(K/Q). Furthermore, G′(K/Q) is isomorphic to G(K/Q) by Theorem 2 and prop-
erty (d). We thus see that

I (R/Z) ⊂ R⊗4
∩ I (K/Q) = R⊗4

∩ ker(K⊗4
→ G′(K/Q)) ⊂ ker(π ′)

and so the map π ′ factors through R⊗4/I (R,Z) = G(R,Z), as claimed.
By Theorem 1 and Proposition 19, the Fp-algebra G(R/Z) ⊗ Fp is isomorphic to

G(R̄/Fp) and so has rank 32 as an Fp-module. Now, by functoriality of the S4-closure,
the Fp-moduleG(R̄/Fp) is naturally a representation of the group AutFp (R̄) = GL3(Fp),
and also of S4, over Fp, and hence (since these actions commute) of the group 0 =
S4 × GL3(Fp). Thus, by properties (b) and (c), we see that G′(R̄/Fp) ∼= G′(R/Z)⊗ Fp
is a 0-equivariant quotient of G(R̄/Fp) ∼= G(R/Z)⊗ Fp.

We use triv and std to denote the trivial representation and the standard three-dimen-
sional representation of GL3(Fp), respectively. Also, we write triv, sgn, std, std′, and std2
to denote the trivial, sign, standard, standard ⊗ sign, and 2-dimensional S3-standard rep-
resentation of S4, respectively. These representations are irreducible over Fp since p ≥ 5.
From the proof of Proposition 19, we have the following decomposition ofG(R̄/Fp) into
irreducible 0-representations:

G(R̄/Fp) ∼= (triv⊗ triv)⊕ (std⊗ std)⊕ (std2 ⊗ std)⊕ (std′ ⊗ std∨)
⊕ (std2 ⊗ std∨)⊗ (sgn⊗ triv). (32)

The Fp-dimensions of these irreducible summands are 1, 9, 6, 9, 6, and 1 respectively,
giving a total of 32. The first triv ⊗ triv corresponds to the subring Fp ⊂ R̄; we then
observe that no sum of any subset of elements of {9, 6, 9, 6, 1} adds up to 8, and thus
G(R̄/Fp) has no 0-equivariant quotient ring of rank 24 over Fp. This proves the theorem
in the case n = 4.

A similar argument holds also when n > 4. Let K be a degree n field extension of Q
with associated Galois group Sn, and let OK denote the ring of integers ofK . Let p > n be
a prime such that OK/pOK

∼= Fn−4
p ×Q for some quartic Fp-algebraQ (such a prime p

exists in any Sn-number field K of degree n by the Chebotarev density theorem). Then
Fn−3
p is a subring of OK/pOK . Let T be the preimage of the subring Fn−3

p ⊂ OK/pOK

in OK , and letR be the ring T+pOK . Then R̄ := R⊗Fp ∼= Fn−4
p ×Fp[x, y, z]/(x, y, z)2.

By the identical argument as in the case n = 4, we may deduce that G′(R/Z) is a
quotient of G(R/Z). Furthermore, by Theorem 1, the Fp-algebra G(R/Z) ⊗ Fp is iso-
morphic toG(R̄/Fp), and hence it has rank 32(n!/24) as an Fp-module by Proposition 19
and Theorem 6. By the proof of Theorem 6, the action of Sn on G(R̄/Fp) is that induced
from the action of S4 onG(Fp[x, y, z]/(x, y, z)2/Fp). LetG′1, . . . ,G

′

n!/24 denote the im-
ages inG′(R̄/Fp) of the n!/24 copies ofG(Fp[x, y, z]/(x, y, z)2/Fp) inG(R̄/Fp). Then
G′1 yields a 0-equivariant quotient of G(Fp[x, y, z]/(x, y, z)2/Fp) having rank 24. This
is again a contradiction. ut
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11. The maximal rank of Sn-closures

The purpose of this section is to show that the analogues for general n of the maximally
degenerate ring of rank 4 (considered in Section 9) form the rings whose Sn-closures have
maximal rank. Thus we prove Theorem 8.

The idea of our proof is as follows. In a sense which we make precise below, the
ring Rn = K[x1, . . . , xn−1]/(x1, . . . , xn−1)

2 is the “maximally degenerate point” in the
moduli space of all rank n rings over K . Since Theorem 1 shows that the Sn-closures
of rank n rings fit together into a nicely behaved sheaf on the moduli space, an upper
semicontinuity argument allows us to conclude that the rank of the Sn-closure is maximal
at the degenerate ring Rn.

As in [17], let Bn be the functor from Schemesop to Sets which assigns to any
scheme S the set of isomorphism classes of pairs (A, φ), where A is an OS-algebra and
φ : A → On

S is an isomorphism of OS-modules. By [17, Prop. 1.1], the functor Bn is
representable by an affine scheme of finite type over Z.

The base change Bn,K of Bn to SpecK is affine. Write Bn,K = SpecBn. The identity
morphism from Bn,K to itself yields a distinguished isomorphism class of pairs (An, φ)
with An a Bn-algebra and φ : An → Bnn an isomorphism. Let us choose an object
(An, φ) of this isomorphism class. Since we are interested in proving a statement about
dimension, this choice does not matter. Since the Sn-closureG(An/K) of An is a finitely-
generated Bn-module, it defines a coherent sheaf Fn on Bn,K . By Theorem 1, if we
have a morphism f : SpecC → Bn,K corresponding to the pair (R,ψ), then f ∗Fn is
isomorphic to G(R/C).

Note that there is a natural GLn,K -action on Bn,K and that Theorem 1 shows that it
extends to an action on the sheaf Fn. The proof of [17, Prop. 7.1] shows that the K-point
corresponding to Rn is in the Zariski closure of the GLn,K -orbit of any other point. Upper
semicontinuity therefore shows that the dimension of the fiber of Fn is maximal at the
point corresponding to Rn, as desired.

12. The Sn-closures of the degenerate rings Rn

12.1. Preliminaries from Sn-representation theory

In this subsection, we collect several facts from Sn-representation theory that we use in
the proof of Theorem 9 (made more precise in Theorem 27).

For us, given a positive integer n, a partition of n is an n-tuple λ = (λ1, . . . , λn)

satisfying n ≥ λ1 ≥ · · · ≥ λn ≥ 0 and
∑
λi = n. We often drop the λi = 0 in our

notation, so that the partition (3, 1, 0, 0) of 4, for example, is denoted simply as (3, 1).
Partitions of n play a key role in Sn-representation theory due to the following theorem
(see, for example, [13, §2.1.12]).

Theorem 22. If K is a field of characteristic 0 or of characteristic p > n, then there is a
canonical bijection between the set of partitions of n and the set of isomorphism classes
of irreducible Sn-representations over K .
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Given a partition µ, we denote by Vµ the corresponding irreducible Sn-representation.
The Vµ are called Specht modules and can, in fact, be defined over the integers. We
associate to µ a Young diagram, which consists of n rows of boxes with µi boxes on the
i-th row. For example, the Young diagram of µ = (4, 2, 2, 1) is

A generalized Young tableau of shape µ is a function f which assigns a positive
integer to every box of the Young diagram of µ. We depict f by drawing the Young
diagram of µ and filling in each box with the positive integer assigned to it by f . For
example,

1 2 1 2
3 2 4
3 5

is a generalized Young diagram of shape (4, 3, 2). If λ is another partition of n, then
we say f is a Young tableau of shape µ and content λ if f assigns the number i to
exactly λi boxes. Such a Young tableau is called semistandard if the numbers assigned to
the boxes of the Young diagram of µ weakly increase across rows and strongly increase
down columns. For example, both

1 1 1 1 2
2 3 4
3 and

1 1 1 2 3
1 2 4
3

are Young tableaux of shape (5, 3, 1) and content (4, 2, 2, 1), but only the first is semi-
standard. The Kostka number Kµλ is defined to be the number of semistandard Young
tableaux of shape µ and content λ.

Definition 23. If λ and µ are two partitions of n, we say µ dominates λ and write µ F λ
if
∑j

i=1 µi ≥
∑j

i=1 λi for all j .

Note that in order for a Young tableau of shapeµ and content λ to be semistandard, the
λi boxes containing the number i must be in the first i rows. So, if µ does not dominate λ,
thenKµλ = 0. The importance of the Kostka numbers is seen in Young’s Rule below (for
a proof, see [8, Cor. 4.39]).

Theorem 24 (Young’s Rule). If λ is a partition of n, then

IndSnSλ1×···×Sλn
(triv) =

⊕
µFλ

KµλVµ.
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In particular, since
K[Sn] = IndSnS1×···×S1

(triv)

we see that Kµλ = dimVµ, where λ = (1, . . . , 1).
There is a second combinatorial theorem we later make use of. This theorem, known

as the hook formula, gives another way to relate dimVλ to the Young diagram of λ.

Definition 25. The hook number of the j -th box in the i-th row of the Young diagram
of λ is 1+ λi − j + |{k : k > i, λk ≥ λi}|. That is, it is the number boxes in the “hook”
which runs up the j -th column, stops at the box in question, and continues across the i-th
row to the right.

For example, replacing each box in the Young diagram of (4, 2, 2, 1) by its hook
number, we have

7 5 2 1
4 2
3 1
1

Theorem 26 (Hook Formula). Given a partition λ of n, letH be the product of the hook
numbers of the boxes in the Young diagram of λ. Then dimVλ = n!/H .

For a proof, see [19, Thm. 3.10.2].

12.2. A structure theorem for Sn-closures of degenerate rings

Throughout this subsection, K is a field of characteristic 0 or of characteristic p > n,
and Rn denotes the degenerate ring K[x1, . . . , xn−1]/(x1, . . . , xn−1)

2. Then R⊗nn is a K-
vector space of dimension nn with basis xi1 ⊗ · · · ⊗ xin , where ij ∈ {0, . . . , n − 1} and
x0 := 1. For notational convenience, we drop the tensor signs and let I := I (Rn,K). Our
goal in this subsection is to prove

Theorem 27. For each partition λ of n, letmλ be the multinomial coefficient
(

n−1
k0;...;kn−1

)
,

where kj = |{i : i 6= 1, λi = j}|. Then there is an isomorphism

G(Rn/K) ∼=
⊕
µFλ
µ1=λ1

mλKµλVµ

of Sn-representations over K .

As we will show in Theorem 37, the theorem above implies that the dimension of
G(Rn/K) over K is greater than n! for n ≥ 4; that is, it implies Theorem 9. As a first
step in proving Theorem 27, we begin by crudely decomposing G(Rn/K) into certain
naturally occurring Sn-representations parametrized by partitions of n.

Definition 28. Given an ordered partition a = (a0, a1, . . . , an−1) of n, let Ma be the
subrepresentation of R⊗nn spanned as a K-vector space by the elements xi1 · · · xin with
|{j : ij = k}| = ak .
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For example, writing x and y for x1 and x2, respectively, if a = (1, 2, 1), then Ma

spanned over K by the 12 elements 1xxy, 1xyx, 1yxx, . . . , xx1y, and xxy1. Note that

R⊗nn =
⊕
a

Ma

as Sn-representations.
Let γ (xi, xi1 · · · xin) = γ1(xi, xi1 · · · xin) ∈ R

⊗n
n where, for any j ∈ {1, . . . , n}, we

set
γj (xi, xi1 · · · xin) = xi1 · · · xin ·

∑
1≤i1<···<ij≤n

x
(i1)
i · · · x

(ij )

i . (33)

Note that all such γj (xi, xi1 · · · xin) are in I , because sj (xi) = 0.

Definition 29. Given an ordered partition a of n, let Ia be the K-vector subspace of I
generated by all γ (xi, xi1 · · · xin) ∈ Ma with i > 0.

For example, again writing x and y for x1 and x2, if a = (1, 2, 1) then Ia is generated
by the six elements γ (y, 11xx), γ (y, 1x1x), . . . , γ (y, xx11) as well as the 12 elements
γ (x, 11xy), γ (x, 1x1y), . . . , γ (x, yx11).

Lemma 30. If a is an ordered partition of n, then I ∩Ma = Ia , and so

G(Rn/K) =
⊕
a

Ma/Ia .

Proof. Clearly, Ia is contained in I ∩ Ma . To prove the other containment, let β ∈
I ∩ Ma ⊂ I . By Section 2, I is generated as an ideal by the elements γj (xi, 11 · · · 1)
with i, j > 0, and therefore as a K-vector space by the xi1 · · · xin · γj (xi, 11 · · · 1) =
γj (xi, xi1 · · · xin) with i, j > 0. Since each γj (xi, xi1 · · · xin) is contained inMa′ for some
ordered partition a′ of n, we see that β can be expressed as aK-linear combination of the
various γj (xi, xi1 · · · xin) ∈ Ma .

To prove the lemma, it remains to show that the γj (xi, xi1 · · · xin) ∈ Ia for j ∈
{1, . . . , n} can be expressed as K-linear combinations of the γ (xi, xi1 · · · xin) ∈ Ia . To
see this, it suffices to note that γj (xi, xi1 · · · xin) ∈ Ia , for any j ∈ {1, . . . , n}, can be
expressed as

γj (xi, xi1 · · · xin) =
1
j
· γj−1(xi, xi1 · · · xin) ·

n∑
k=1

x
(k)
i .

It follows by induction on j that any γj (xi, xi1 · · · xin) ∈ Ma (j ∈ {1, . . . , n}) can be
expressed as a K-linear combination of the γ (xi, xi1 · · · xin) ∈ Ia , proving the lemma.

ut

Our next lemma shows that if a0 < ak for some k, then Ma = Ia .

Lemma 31. Let i1, . . . , in ∈ {0, 1, . . . , n− 1}. If there is some k such that

|{j : ij = 0}| < |{j : ij = k}|,

then xi1 · · · xin ∈ I .
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Since the notation in the proof of this lemma is a bit cumbersome, we first illustrate the
proof with a specific example. Denoting x1, x2, and x3 by x, y, and z, respectively, let
us show 1yx1xzyx ∈ I . For a, b, c ∈ S := {1, 3, 4, 5, 8}, let [a, b, c] denote xi1 · · · xi8
with ia = ib = ic = 1, i2 = i7 = 2, i6 = 3, and all other ij = 0. For example,
[1, 3, 4] = xyxx1zy1 and [3, 5, 8] = 1yx1xzyx. By the inclusion-exclusion principle,
we have

1yx1xzyx =
∑
a<b<c
a,b,c∈S

[a, b, c] −
∑
a<b

a,b∈S−{1}

[1, a, b] −
∑
a<b

a,b∈S−{4}

[4, a, b] +
∑

a∈S−{1,4}

[1, 4, a]

= γ3(x, 1y111zy1)− γ2(x, xy111zy1)− γ2(x, 1y1x1zy1)+ γ1(x, xy1x1zy1).

Hence 1yx1xzyx ∈ I .

Proof of Lemma 31. Let S = S0 ∪ Sk , where S0 = {j : ij = 0} and Sk = {j : ij = k}.
Then, by the inclusion-exclusion principle, we have

xi1 · · · xin =
∏
j

x
(j)
ij
=

∑
U⊂S0

(−1)|U |
∑

U⊂T⊂S
|T |=|Sk |

∏
j∈T

x
(j)
k

∏
j /∈S

x
(j)
ij

=

∑
U⊂S0

(−1)|U |γ|Sk |−|U |
(
xk,

∏
j∈U

x
(j)
k

∏
j /∈S

x
(j)
ij

)
. (34)

Hence xi1 · · · xin ∈ I . ut

We see from Lemma 31 that

G(Rn/K) =
⊕
awith

a0≥ak ∀k

Ma/Ia .

If σ is a permutation of {0, 1, . . . , n− 1}, and a = (a0, . . . , an−1) is an ordered partition
of n, then let σ(a) := (aσ−1(0), . . . , aσ−1(n−1)). Note that if σ fixes 0, then it defines an
isomorphism of Sn-representationsMa → Mσ(a) by sending xi1 · · · xin to xσ(i1) · · · xσ(in).
We remark that if σ does not fix 0, it still defines an isomorphism of vector spaces, but
this is in general not an isomorphism of Sn-representations. Now let a = (a0, . . . , an−1)

be an ordered partition of n such that a0 ≥ ak for all k. For all j ∈ {0, . . . , n − 1}, let
kj = |{i : i 6= 0, ai = j}|. Then {σ(a) : σ(0) = 0} has cardinality

(
n−1

k0;...;kn−1

)
= mλ(a),

where λ(a) := (λ1, . . . , λn) is the (unordered) partition of n such that {λi : 1 ≤ i ≤ n} =
{ai : 0 ≤ i ≤ n− 1} as multisets.

Definition 32. For any partition λ of n, let Mλ and Iλ denote the isomorphism classes of
the Sn-representations Ma and Ia , respectively, where a = (a0, . . . , an−1) is any ordered
partition of n such that a0 = λ1 and {λi} = {ai} as multisets. This is well-defined as
λ(a) = λ(σ(a)) for all σ fixing 0.

Since each partition λ corresponds to mλ ordered partitions a in the above definition,
we obtain
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Proposition 33. For all partitions λ of n, let mλ be the multinomial coefficient(
n−1

k0;...;kn−1

)
, where kj = |{i : i 6= 1, λi = j}|. Then there is an isomorphism

G(Rn/K) ∼=
⊕
λ

mλMλ/Iλ

of Sn-representations.

Given a partition λ of n, let ij = k if
∑k−1
m=1 λm < j ≤

∑k
m=1 λm. Then note that

Mλ = IndSnSλ1×···×Sλn
(K · xi1 · · · xin).

Since K · xi1 · · · xin is the trivial representation of Sλ1 × · · · × Sλn , by Young’s Rule we
have

Mλ
∼=

⊕
µFλ

KµλVµ, (35)

where λ runs through the partitions of n. We have therefore reduced Theorem 27 to the
following:

Theorem 34. For all partitions λ of n, we have

Iλ ∼=
⊕
µFλ
µ1>λ1

KµλVµ

as Sn-representations.

To prove Theorem 34, we show that Iλ contains Kµλ copies of Vµ if µ F λ and µ1 > λ1,
and that it contains no copy of Vµ if µ F λ but µ1 = λ1. These two statements are the
content of Propositions 35 and 36, respectively.

Proposition 35. If λ and µ are partitions of n with µ1 > λ1, then the natural morphism
of Sn-representations

Hom(Vµ, Iλ)→ Hom(Vµ,Mλ)

is an isomorphism.

Proof. Given a semistandard Young tableau T of shape µ and content λ, if i = j +∑k−1
m=1 λm <

∑k
m=1 λm for j > 0, then let T (i) be the number assigned to the j -th box

on the k-th row of T . For example, T (λ1+1) is the number assigned to the first box of the
second row. We can associate to T an element α(T ) := xT (1)−1 · · · xT (n)−1 ofMλ. LetAT
be the set of Young tableaux T ′ of shape µ and content λ such that for all i, the multiset
of numbers in the i-th row of T ′ is the same as the multiset of numbers in the i-th row
of T . Then by [19, 2.10.1], the image of any morphism Vµ → Mλ of Sn-representations
is contained in the Sn-subspace of Mλ generated by the elements

∑
T ′∈AT

α(T ′) as T
ranges over the semistandard Young tableaux of shape µ and content λ.

It therefore suffices to show
∑
T ′∈AT

α(T ′) ∈ Iλ for every semistandard Young tab-
leau T of shape µ and content λ. We define an equivalence relation on AT by T ′ ∼ T ′′
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if T ′(i) = T ′′(i) for all i > µ1. This equivalence relation partitions AT into a disjoint
union of sets S1, . . . , S`. For i > µ1, let Sj (i) = T ′(i) for any T ′ ∈ Sj . Since

∑
T ′∈AT

α(T ′) =
∑̀
j=1

∑
T ′∈Sj

α(T ′),

it suffices to show that each
∑
T ′∈Sj

α(T ′) is in Iλ. Note that∑
T ′∈Sj

α(T ′) = δ · (1 · · · 1︸ ︷︷ ︸
µ1

xSj (µ1+1)−1 · · · xSj (n)−1),

where δ is the sum of all elements of the form xi1 · · · xin with

{ik} = {T (k)− 1 : 1 ≤ k ≤ µ1} ∪ {0, . . . , 0︸ ︷︷ ︸
n−µ1

}

as multisets. Letting am = |{k : ik = m}| and noting that there is some m 6= 0 for which
am > 0, we see that

δ =

n−1∏
m=1

γam(xm, 1 · · · 1) ∈ Iλ,

which finishes the proof. ut

Proposition 36. If µ F λ and µ1 = λ1, then Vµ does not occur in Iλ.

Proof. Let 0m be the subrepresentation of Iλ generated by the γ (xm, xi1 · · · xin) ∈ Iλ.
Let ` be the smallest integer greater than or equal to m such that λm = λ` > λ`+1. If
λm = λj for all j ≥ m, then let ` = n. We define

λ′ = (λ′1, . . . , λ
′
n) = (λ1 + 1, λ2, . . . , λ`−1, λ` − 1, λ`+1, . . . , λn).

Let ij = m if
∑m
b=1 λ

′

b < j ≤
∑m+1
b=1 λ

′

b. Then note that

0m = IndSnSλ′1×···×Sλ′n
(K · γ (xm, xi1 · · · xin)).

Since K · γ (xm, xi1 · · · xin) is the trivial representation of Sλ′1 × · · · × Sλ′n , Young’s Rule
tells us that

0m =
⊕
εFλ′

Kελ′Vε .

Since λ′1 = λ1 + 1, any ε which dominates λ′ must have ε1 > λ1. Therefore Vµ does not
occur in any of the 0m, and since Iλ is the K-vector space span of the 0m, we conclude
that Vµ does not occur in Iλ. ut

This concludes the proof of Theorem 34, and hence also of Theorem 27. We now turn to
the following theorem, which implies Theorem 9.



1908 Manjul Bhargava, Matthew Satriano

Theorem 37. The regular representation is a subrepresentation of G(Rn/K). If n ≥ 4,
it is a proper subrepresentation.

As the proof of this theorem shows, as n gets large, the regular representation is only a
small subrepresentation, and so the bound in Theorem 9 is a weak one.

Lemma 38. Let ε and τ be two partitions of n. Suppose τk−1 > τk = 0 and ε =
(τ1, . . . , τi−1, τi − 1, τi+1, . . . , τk−1, 1) for some i > 1. Let E1 and T1 be the products
of the hook numbers of the boxes in the first rows of the Young diagrams of ε and τ ,
respectively. Then T1 ≥ E1.

Proof. Let h1 and h2 be the hook numbers of the first and the τi-th box, respectively, in
the first row of the Young diagram of τ . Then

E1 = T1
(h1 + 1)(h2 − 1)

h1h2
.

Expanding (h1 + 1)(h2 − 1), and noting that h1 > h2, yields the desired inequality. ut

Proof of Theorem 37. We must show that∑
µFλ
µ1=λ1

mλKµλ ≥ dimVµ.

Fix µ and let λ = (µ1, 1, . . . , 1). We in fact prove that mλKµλ ≥ dimVµ.
If µ = (n), then λ = µ and mλKµλ = 1 = dimVµ. Now suppose µ1 < n. Let µ′ =

(µ2, . . . , µn) and λ′ = (λ2, . . . , λn). Since µ1 = λ1, the first row of every semistandard
Young tableau of shape µ and content λ consists entirely of 1’s. Therefore,

Kµλ = Kµ′λ′ = dimVµ′ ,

where the second equality comes from the paragraph following Theorem 24. Let H be
the product of the hook numbers of the Young diagram of µ and let H1 be the product of
the hook numbers of the boxes in the first row. Since

dimVµ =
n!

H
= dimVµ′ ·

n!

H1(n− µ1)!

andmλ =
(
n−1
µ1−1

)
, we need only showH1 ≥ n(µ1−1)!. Note that the product of the hook

numbers of the boxes in the first row of the Young diagram of λ is n(µ1 − 1)!. The first
part of the theorem therefore follows by successively applying Lemma 38.

Note that if n ≥ 4, then letting µ = (n− 2, 2) and λ = (n− 2, 1, 1), we obtain∑
µFλ
µ1=λ1

mλKµλ = mλKµλ +mµKµµ > dimVµ,

which shows that the regular representation is a proper subrepresentation. ut
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12.3. Examples

In this section we illustrate Theorem 27 in the cases n = 3 and n = 4. The following
table collects the relevant information when n = 3.

µ dimVµ λ with λ1 = µ1 and µ F λ mλ Kµλ mλKµλ

1 1 1 1

2 2 1 2

1 1 1 1

We see that for each partition µ of 3, the dimension of Vµ agrees with mµKµµ and so
Theorem 27 shows that G(R3/K) is the regular representation.

The cases n ≤ 3 are rather uninteresting since for such n, whenever µ and λ are
partitions of n with µ dominating λ and λ1 = µ1, we in fact have µ = λ. When n = 4,
however, there exists a single pair (µ, λ) of partitions satisfying the above conditions for
which µ and λ are distinct. As shown in Theorem 37, this forces G(R4/K) to properly
contain a copy of the regular representation. The n = 4 case is summarized in the table
below.

µ dimVµ λ with λ1 = µ1 and µ F λ mλ Kµλ mλKµλ

1 1 1 1

3 3 1 3

2 3 1 3

3 1 3

3 3 1 3

1 1 1 1
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We then see from Theorem 27 that G(R4/K) contains exactly dimVµ copies of Vµ for
every partition µ of 4 other than µ = (2, 2). We see, however, that G(R4/K) contains
six copies of V(2,2). It follows that G(R4/K) is the regular representation direct sum
of four copies of V(2,2). Since V(2,2) is 2-dimensional, we see G(R4/K) has dimension
24+ 8 = 32.

Let us now reconcile the decomposition of G(R4/K) given by Theorem 27 with the
explicit decomposition given in Section 9. We make no assumption here on the charac-
teristic of K . Recall that T (x) has generators xi for 1 ≤ i ≤ 4 satisfying the relation∑
xi = 0 and that σ ∈ S4 acts by σ(xi) = xσ(i). We then see that T (x) is the standard

representation; that is, T (x) ∼= V(3,1). Recall that U(x) is a two-dimensional vector space
generated by the equivalence classes of

x1y2 + x2y1 + x3y4 + x4y3 and x1y3 + x3y1 + x2y4 + x4y2

with S4-action given by σ(xi) = xσ(i) and σ(yi) = yσ(i). LettingH be the subgroup of S4
generated by (12)(34) and (13)(24), we see that U(x) is the S4-representation obtained
from the quotient S4 → S4/H ∼= S3 and the standard representation of S3. Hence, U(x)
is V(2,2). It is clear that W(x, y, z) is the sign representation V(1,1,1,1). Lastly, one easily
checks that the composition factors of V (x, y) and V(2,2) ⊕ V(2,1,1) are the same; this
follows, e.g., from an explicit computation using Brauer characters (see [22, Chpt. 7,
Def. 2.7]). We then see that G(R4/K) has the same composition factors as

V(4) ⊕ V
⊕3
(3,1) ⊕ V

⊕6
(2,2) ⊕ V

⊕3
(2,1,1) ⊕ V(1,1,1,1);

that is, if we weaken Theorem 27 to only require that the two Sn-modules have the same
composition factors, then it holds in arbitrary characteristic for n ≤ 4.

13. Open questions

There are several questions about Sn-closures that have not been treated in this article,
which beg for further investigation. First, we have the natural question:

Question 1. Is there a geometric definition of the Sn-closure?

The definition we have given in the introduction is rather algebraic. A more geometric
definition would perhaps make various properties of the Sn-closure (such as the fact that
it commutes with base change!) more apparent.

Second, we have only proven Theorem 27 in the case where the field K has charac-
teristic prime to n!. However, we saw in Section 9 that even when K has characteristic 2
or 3, the dimension of G(R4/K) remains 32, which is precisely what Theorem 27 would
imply in good characteristic. In Section 12.3, we saw in fact that G(R4/K) possesses the
same composition factors in any characteristic. Does the analogous statement hold for
G(Rn/K) for higher values of n?
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Question 2. Is it true, for a field K of arbitrary characteristic, that

G(Rn/K) and
⊕
µFλ
µ1=λ1

mλKµλVµ

possess the same composition factors?

We have shown that the Sn-closure of an algebra A of rank n over a field K has
dimension n! in many natural cases, and that this dimension in any case is always bounded
above by dimK(G(Rn/K)). What about a lower bound? One would guess that the rank
could never go below n!, although this does not seem trivial to prove.

Question 3. If A is a ring of rank n over a field K , is the rank of G(A/K) at least n! ?

While we do not know the answer to this question in general, we show below that the
answer is “yes” provided that n is small and the characteristic of K is not 2 or 3:

Proposition 39. If n ≤ 7, and A is a ring of rank n over a field K having characteristic
not 2 or 3, then G(A/K) has rank at least n!.

Proof. By [17, Cor. 6.7] and the fact that Bn,K is irreducible ([4, Thm. 1.1], which as-
sumesK does not have characteristic 2 or 3), we see that the étale locus is dense in Bn,K .
Theorem 4 shows that if A is étale over K , then the rank of G(A/K) is n!. Therefore,
an upper semicontinuity argument, similar to the one given in Theorem 8, finishes the
proof. ut

The argument of Proposition 39 does not extend to higher values of n because it is known
that the étale locus is not dense in Bn,K for n ≥ 8; see [17, Prop. 9.6].

Another question stems from the following. In the Galois theory of fields, one often
constructs Galois closures through certain natural intermediate extensions. Namely, sup-
pose L = K[x]/f (x) is a separable field extension of degree n with associated Galois
group Sn, and L̃ is the splitting field of f (and thus the Galois closure of L overK). Then
f has a root α1 in L, and f has n roots α1, . . . , αn in the splitting field L̃. We may thus
construct L̃ through a tower of extensions

L = L(1) ⊂ · · · ⊂ L(n) = L̃

whereL(r) := L(α1, . . . , αr) has degree n(n−1) · · · (n−r+1) overL. The fieldsL(r) are
well-defined up to isomorphism and independent of the ordering of the roots α1, . . . , αr
of f .

Question 4. Let A be a ring of rank n over B. Is there a construction of “intermediate
Sn-closures”

A = G(1)(A/B), G(2)(A/B), . . . , G(n)(A/B) = G(A/B),

which commute with base change and are such that in the case of an Sn-extension of fields
L/K of degree n, we have G(r)(L/K) ∼= L(r)?
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A natural method to proceed would be to construct G(r)(A/B) as a quotient of A⊗r

by an appropriate ideal I (r)(A,B), where I (n)(A,B) coincides with I (A,B) ⊂ A⊗n.
Finally, it is natural to ask whether Galois type closures can be obtained for groups

other than Sn. If G ⊂ Sn is a permutation group on n elements, then there should be an
analogous way to define a “G-closure” for rank n rings with appropriate properties. In the
case of separable field extensions A/B where Gal(Ã/B) ⊂ G, this should then yield a
B-algebra isomorphic to Ã|G|/ deg(A/B) as in Theorem 2.

Question 5. IfG ⊂ Sn is a permutation group, what is the natural class of rings/ schemes
for which functorial G-closures can be defined?
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