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Abstract. We show that on a dense open set of analytic one-frequency complex valued cocycles
in arbitrary dimension Oseledets filtration is either dominated or trivial. The underlying mech-
anism is different from that of the Bochi–Viana Theorem for continuous cocycles, which links
non-domination with discontinuity of the Lyapunov exponent. Indeed, in our setting the Lyapunov
exponents are shown to depend continuously on the cocycle, even if the initial irrational frequency
is allowed to vary. On the other hand, this last property provides a good control of the periodic
approximations of a cocycle, allowing us to show that domination can be characterized, in the pres-
ence of a gap in the Lyapunov spectrum, by additional regularity of the dependence of sums of
Lyapunov exponents.
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1. Introduction

In dynamical systems and ergodic theory, the fundamental notion of hyperbolicity ap-
pears under many guises, which are usually split into two broad categories. Generally
speaking, uniform notions of hyperbolicity play a major role in the description of robust
behavior. For instance, the strongest such notion is called simply uniform hyperbolicity
and is closely associated to structural stability, while a weakening of this concept, partial
hyperbolicity, has been intensively developed in particular for its connection with stable
ergodicity. The weakest form of uniform hyperbolicity, sometimes called projective hy-
perbolicity, demands merely the presence of a continuous dominated decomposition of
the tangent dynamics, and has been linked to robust transitivity as well as robustness of
positive entropy.
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On the other hand, non-uniform notions of hyperbolicity are developed around the
Oseledets Theorem, which provides a decomposition of the tangent dynamics at almost
every point with non-trivial Lyapunov spectrum. Of course, such a decomposition is a pri-
ori only measurable, and it may depend wildly on parameters, but the flexibility afforded
by getting rid of continuity requirements makes for much greater potential applicability.
For instance, while there are manifolds (such as even-dimensional spheres) that do not
support any non-trivial continuous decomposition of the tangent bundle, any manifold
supports ergodic non-uniformly hyperbolic conservative dynamics [DP].

In his address at the 1983 ICM [M], Mañé suggested that the apparent gap between
uniform and non-uniform notions of hyperbolicity can be bridged in the case of generic
conservative dynamical systems in the C1-topology. This program was eventually devel-
oped by Bochi–Viana [BV], who proved that for almost every orbit, either all Lyapunov
exponents are zero or the Oseledets splitting is dominated, and hence either there is no
hyperbolicity at all (even non-uniform), or uniform projective hyperbolicity takes place.
Moreover, those results were also obtained in the setting of continuous cocycles over
measure-preserving transformations.

In full generality, the Bochi–Viana Theorem is certainly dependent on low regularity
considerations: For instance, there are open sets of (sufficiently smooth) ergodic con-
servative diffeomorphisms for which the Oseledets splitting is not dominated. However,
as far as we know, all such examples currently rely on some underlying uniform form
hyperbolicity (see, e.g., [AV], [ASV]).

It would seem that similar considerations apply to the case of cocycles over hyperbolic
transformations: Indeed, non-zero Lyapunov exponents tend to appear robustly already
for Hölder regularity, even in the presence of topological obstructions to domination [V].
But we will show in this paper that Mañé’s picture turns out to hold unexpectedly in very
large regularity in one important setup.

1.1. Bochi–Viana Theorem for analytic one-frequency complex cocycles

Let L(Cd ,Cd) denote the set of linear operators from Cd to Cd , i.e. the set of d × d
complex matrices. A complex one-frequency cocycle is given by a pair (α,A), where
α ∈ R is the frequency and A ∈ C0(R/Z,L(Cd ,Cd)) is a continuous function from R/Z
to L(Cd ,Cd), understood as a map (α,A) : (x,w) 7→ (x + α,A(x) · w). The cocycle
iterates are given by (α,A)n = (nα,An), where the An are given by

An(x) =

0∏
j=n−1

A(x + jα). (1.1)

If we want to emphasize the dependence on the frequency, then we write An(α, x). We
will be mostly interested in the case of irrational frequencies, α ∈ R \ Q. In this case,
the dynamics is ergodic and the Oseledets Theorem provides us with a strictly decreasing
sequence of Lyapunov exponents γj ∈ [−∞,∞) of multiplicity mj ∈ N, 1 ≤ j ≤

k ≤ d , such that
∑k
j=1mj = d and for almost every x ∈ R/Z there exists a filtration

Cd = Ẽ1
x ⊃ · · · ⊃ Ẽkx with dim Ẽ

j
x = mj + · · · + mk , depending measurably on x,
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that is invariant in the sense that A(x) · Ẽjx ⊂ Ẽ
j
x+α, j = 1, . . . , k,1 and for every

w ∈ Ẽ
j
x \ Ẽ

j+1
x we have lim supn→∞

1
n

ln ‖An(x) · w‖ = γj . Such a filtration often
(always, in the invertible case) is associated with an invariant2 continuous decomposition
Cd = E1

x ⊕ · · · ⊕ E
k
x with dimE

j
x = mj and Ẽjx = E

j
x ⊕ · · · ⊕ E

k
x , also depending

measurably on x, with lim supn→∞
1
n

ln ‖An(x) · w‖ = γj for every w ∈ Ejx \ {0} [R].
An invariant continuous decomposition Cd = E1

x ⊕ · · · ⊕ E
k
x is called dominated

if there exists n ≥ 1 such that for any unit vectors wj ∈ E
j
x we have ‖An(x) · wj‖ >

‖An(x) · wj+1‖. It can be shown that such a dominated decomposition is robust, in the
sense that small perturbations of the cocycle will still display a dominated decomposition
which will be a small perturbation of the original one. We will say that a filtration is
dominated if it is associated with a dominated decomposition.

The Bochi–Viana Theorem, specified to this setting, establishes that for each α ∈
R \ Q, there exists a residual subset of A ∈ C0(R/Z,GL(d,C)) such that the Oseledets
splitting is dominated. Our main result shows that even a significantly stronger statement
is true in the analytic category.

Theorem 1.1. Fix α∈R \Q. There exists a dense open subset V⊂Cω(R/Z,L(Cd ,Cd))
such that for everyA ∈ V the Oseledets filtration of (α,A) is either trivial3 or dominated.

Here we endow the space Cω(R/Z,L(Cd ,Cd)) with the usual inductive limit topol-
ogy. We will actually show a somewhat stronger version of this result, namely with
Cω(R/Z,L(Cd ,Cd)) replaced by a Banach spaceCωδ (R/Z,L(Cd ,Cd)) of analytic func-
tions A : R/Z→ L(Cd ,Cd) admitting a holomorphic extension to {|Im z| < δ} which is
continuous up to the boundary.

1.2. Regularity and domination

The proof of the Bochi–Viana Theorem given in [BV] centers around the idea that an
absence of domination in the Oseledets splitting can be exploited to “mix” different Lya-
punov exponents through suitable perturbations, and hence it leads to discontinuity of the
Lyapunov spectrum. On the other hand, a very general Baire category reasoning guaran-
tees that the Lyapunov exponents must be continuous at a generic cocycle.

At a very rough level, something similar is taking place in our setting, in that we
do show that some (verified on an open and dense set) regularity of the dependence of
Lyapunov exponents on parameters implies domination (or triviality) of the Oseledets
splitting. The actual details are however completely different, starting with the fact that
the regularity property which is related to domination is not merely continuity of the Lya-
punov exponent. In fact, it turns out to involve the holomorphic extension of the cocycle

1 If A(x) is invertible, then A(x) · Ẽjx = Ẽ
j
x+α ; if A(x) has a kernel, then kerA(x) ⊂ Ẽkx .

2 In the sense that A(x) · Ejx = E
j
x+α , j = 1, . . . , k − 1, A(x) · Ekx ⊂ E

k
x+α .

3 We do not know whether the set with trivial Oseledets filtration (all Lyapunov exponents are
equal) contains an open set or not within the set of analytic complex cocycles.
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dynamics, and was first introduced (in the particular case of SL(2,C)-cocycles) by Avila
in [Av1].

Let L1(α,A) ≥ · · · ≥ Ld(α,A) be the Lyapunov exponents of (α,A) repeated ac-
cording to their multiplicity, i.e.,

Lk(α,A) = lim
n→∞

1
n

∫
R/Z

ln(σk(An(α, x))) dx, (1.2)

where for a matrixB ∈ L(Cd ,Cd)we denote by σ1(B) ≥ · · · ≥ σd(B) its singular values
(eigenvalues of

√
B∗B). Since the k-th exterior product3kB ofB satisfies

∏k
j=1 σj (B) =

σ1(3
kB) = ‖3kB‖, Lk(α,A) =

∑k
j=1 Lj (α,A) satisfies

Lk(α,A) = L1(α,3
kA) = lim

n→∞

1
n

∫
R/Z

ln ‖3kAn(α, x)‖ dx. (1.3)

By analyticity, one can extend A(x) to a strip |Im x| < δ in the complex plane. Then,
by subharmonicity and constancy in Re x, Lk(α,A(· + it)) = L1(α,3

kA(· + it)) is a
convex function of t ∈ (−δ, δ)4 unless it is identically5 equal to −∞. We say that (α,A)
is k-regular if t 7→ Lk(α,A(· + it)) is an affine function of t in a neighborhood of 0.

Let us say that (α,A) is k-dominated (for some 1 ≤ k ≤ d − 1) if there exists a
dominated decomposition Cd = E+ ⊕ E− with dimE+ = k. If α ∈ R \ Q, then it
follows from the definitions that the Oseledets splitting is dominated if and only if (α,A)
is k-dominated for each k such that Lk(α,A) > Lk+1(α,A).

The next two results give the basic relation between regularity and domination and
show that regularity is fairly frequent.

Theorem 1.2. Let α ∈ R \ Q and A ∈ Cω(R/Z,L(Cd ,Cd)). If 1 ≤ k ≤ d − 1 is such
that Lk(α,A) > Lk+1(α,A) then (α,A) is k-regular if and only if (α,A) is k-dominated.

Theorem 1.3. Let α ∈ R\Q, A ∈ Cω(R/Z,L(Cd ,Cd)) and Lk(α,A) > −∞. Then for
every t 6= 0 small enough, (α,A(· + it)) is k-regular.

The last result means that the convex functions t 7→ Lk(α,A(·+ it)) are in fact piecewise
affine. As in [Av1], this behavior is connected to a quantization phenomenon which we
now describe. If Lk(α,A) 6= −∞, define the accelerations

ωk = lim
ε→0+

1
2πε

(
Lk(α,A(· + iε))− Lk(α,A)

)
, ωk = ω

k
− ωk−1. (1.4)

It is easy to see that ωk is an integer for k-dominated cocycles (also, ωd is always an
integer if Ld(α,A) 6= −∞). The next result shows that this topological phenomenon
manifests itself also in the general case:

4 This can be viewed as a corollary of Hadamard’s three-circle theorem.
5 Convexity implies that right derivatives exist and the graph lies above the tangent line. Hence,
Lk(α,A(· + it)) is either always or never −∞.
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Theorem 1.4. Let α ∈ R \ Q and A ∈ Cω(R/Z,L(Cd ,Cd)). Then the acceleration
is quantized: there exists 1 ≤ l ≤ d, l ∈ N, such that lωk and lωk are integers.6 If
A ∈ Cω(R/Z,SL(d,C)) then 1 ≤ l ≤ d − 1.

Theorems 1.2–1.4 generalize earlier results of [Av1] (also extended in [JM]) obtained for
d = 2.

At this point, we must note a fundamental distinction between the analytic and the
continuous setups. The Bochi–Viana Theorem (specified to cocycles over irrational trans-
lations) is proved by showing that if Lk > Lk+1 and (α,A) is not k-dominated then A
is not a continuity point of Lk on C0(R/Z,L(Cd ,Cd)). It turns out that for analytic co-
cycles, Lk is continuous everywhere. Moreover, we may even perturb the frequency, and
this indeed plays a fundamental role in our analysis.

Theorem 1.5. The functions R × Cω(R/Z,L(Cd ,Cd)) 3 (α,A) 7→ Lk(α,A) ∈

[−∞,∞) are continuous at any (α′, A′) with α′ ∈ R \Q.

Theorem 1.5 is optimal in that Lk can be discontinuous at rational frequencies7 or in
lower (even C∞) regularity [WY, JM].

This result generalizes earlier results [BJ], [JM] for the case d = 2. Bourgain [B]
also obtained joint continuity for non-singular d = 2 cocycles over rotations of higher-
dimensional tori. The extension to higher d has been open for over a decade.

A somewhat related theme is quantitative continuity results for (mainly non-singular)
analytic cocycles with a fixed Diophantine frequency ([GS] for SL(2,R)), more recently
extended to GL(d,C) in [Sch, DK]).8 Those also hold for the multi-frequency case.

However we are particularly concerned with the dependence on the frequency (and
especially the behavior of the Lyapunov exponents of rational approximations); among
other things it is the key ingredient in the proofs of Theorems 1.1–1.4.

We also note that all the other past and recent continuity results: both [BJ, B, JM]
that provide joint continuity in the cocycle and frequency and [GS, Sch, DK] that are
for a fixed Diophantine frequency, are based on some form of the Avalanche principle
(originally in [GS]) and large deviation theorem (see [BB]). Here we develop a different
strategy which is indeed intimately related to the proof of the connection of regularity
and domination: it focuses on the direct construction of invariant cone fields for certain
complex phases. This allows us to cover all irrational frequencies without the need to
delve into arithmetic considerations.

Our approach of selecting complex phases for which such an analysis can be carried
out is ideologically close to the new proof of the result of [BJ] developed in the appendix
of [B]. On the technical level, our key analytic argument, given in Section 2, borrows
some important ingredients from [Av3].

6 We note that Theorems 1.3, 1.4 do not in general hold for α ∈ Q (see a simple counterexample
in Remark 5 of [Av1]).

7 They are for the almost Mathieu cocycles A(x) =
(
E−λ cos 2πx −1

1 0
)

as follows from [K], or
see an example in Remark 5 of [Av1].

8 It should be noted that the results of the present paper preceded the independent recent work
[Sch, DK] (e.g. [J1]).
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Finally, the extension of various continuity results originally obtained for SL(2,C)
to the singular case has been achieved gradually, by overcoming a significant number of
technical challenges [JKS, T, JM2, JM]. In our current approach singularity of cocycles
does not present an additional difficulty.

2. A Brownian motion argument

A quick motivation for the main theorem of this section (which is of general nature) is
the following. Consider ψ = ln |P(x)| where P is a trigonometric polynomial of de-
gree n. Then, by the Lagrange interpolation trick, that has been used in the proofs of
localization for the almost Mathieu operator, for any ε > 0, ψ(x) cannot be smaller than
supψ(x)− ε at n+ 1 uniformly distributed points, for large n. The same cannot be said
of course about an arbitrary subharmonic function. The tool that has been used in the
proofs of localization for analytic potentials and continuity arguments is Large Deviation
Theorems, showing that “almost invariant” subharmonic functions deviate from the mean
only on sets of small measure. In the present argument the key idea is that complexifying
the argument leads to many values of the imaginary part where the situation is as nice as
for the n-th degree polynomial.

We start with what we call the Big Obstacle Lemma.

Lemma 2.1. There exists c > 0 with the following property. Let B ⊂ R2 be a Borel set
with non-empty intersection with (−1, 1) × {t} for a subset of t ∈ (−1, 1) of Lebesgue
measure at least ρ. Run Brownian motion starting at the origin until it escapes from
(−2, 2)× (−2, 2). Then the probability of hitting B before escape is at least cρ.

Proof. We will first need some notions from potential theory. Let µ be a continuous prob-
ability measure supported on a Borel subset A ⊂ R2. Given a kernel K , i.e. a measurable
function K : R2

× R2
→ [0,∞] such that K(x, y) is a continuous and decreasing func-

tion of |x − y|, one can define the energy of µ with respect to K by

IK(µ) =

∫
A

∫
A

K(x, y) dµ(x) dµ(y). (2.1)

The corresponding capacity CapK(A) is defined as 1/infµ IK(µ). Note that the standard
logarithmic capacity which we denote Cap(A) is defined differently than Cap− ln |x−y|(A),
namely, Cap(A) = e− infµ IK (µ). The inf of (2.1) is achieved at a unique measure. In the
case of the logarithmic kernel it is called the equilibrium measure for A.

We will need two kernels: the Green kernel G(x, y) and the Martin kernel M(x, y).
HereG is the Green’s function of Brownian motion stopped at exit from (−2, 2)×(−2, 2),
namely

G(x, y) = −
1
π
(ln |x − y| − Ex ln |B(T )− y|) (2.2)

where B(T ) is the Brownian motion at the time of first hit of the boundary of (−2, 2) ×
(−2, 2) and Ex stands for the expectation over Brownian motion started at x. Moreover,
M(x, y) is defined as G(x, y)/G(0, y) for x 6= y, and M(x, x) = ∞.
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We will use the fact that for compact sets A ⊂ (−2, 2)× (−2, 2),

P{hitting A before escape from (−2, 2)× (−2, 2)} ≥ 1
2 CapM(A)

(see [MP, Theorem 8.24]). Since G(0, y) > c > 0, this implies that for any probability
measure µ, IM(µ) < cIG(µ). From the explicit form of G given in (2.2) it follows that
for A ⊂ (−1, 1)× (−1, 1), IG(µ) < I−π−1 ln |x−y|(µ)+ 1.

Thus, with µ0 an equilibrium measure of a closed A ⊂ (−1, 1)× (−1, 1),

IM(µ0) ≤ C(I− ln |x−y|(µ0)+ 1) = C(1− ln Cap(A)).

This implies that

P{hitting A before escape from (−2, 2)× (−2, 2)} ≥
c

1− ln Cap(A)
≥ cCap(A).

Since for Borel B ⊂ R2,

Cap(B) = sup
K

Cap(K) (2.3)

where sup runs over compact subsets of B, and the probability of hitting B before escape
is bounded below by the probability of hitting A for A ⊂ B, it is enough to estimate the
logarithmic capacity of B by cρ.

Note that for subspaces V ⊂ R2,

|ProjV A| = sup
K

|ProjV K| (2.4)

where sup runs over compact subsets of B and | · | stands for the Lebesgue measure
in V. To prove the non-trivial inequality in (2.4) observe that by the measurable selection
theorem one can find a measurable function f : ProjV A→ A such that ProjV f (y) = y.
Then by Luzin’s theorem, for any ε > 0, f is continuous on a compact C ⊂ ProjV A
of measure at least |ProjV A| − ε, and thus f (C) ⊂ A is a compact set with the desired
measure of projection.

We now use the fact that for compact sets, capacity coincides with transfinite diameter:

CapK = lim
n→∞

max
z1,...,zn∈K

( ∏
1≤j<k≤n

|zj − zk|
) 2
n(n−1)

. (2.5)

Clearly, for any compact K ⊂ A the RHS of (2.5) is minorized by the same quantity
with K replaced by the ProjV K.

It remains to note that for any Borel D ⊂ [0, 1] of Lebesgue measure ρ and any
b < ρ/n, there exist z1, . . . , zn ∈ D that belong to an arithmetic progression with step b,
or equivalently with |zi − zj | = k/b for some k (see e.g. [J]). Estimating the RHS of (2.5)
for such z1, . . . , zn leads to the claim. ut

We can now move to the main lemma of this section.

Lemma 2.2. Let ε, δ > 0. Let α ∈ R \ Q and let p/q ∈ Q be a continued fraction ap-
proximant, and q ′ the denominator of the previous approximant. Let ψ be a subharmonic
function on |Im z| < ε satisfying ψ(z) ≤ 1 and ψ = inf|t |<ε supx∈R/Z ψ(x + it) ≥ 0,
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and let T be the set of all t ∈ (−ε, ε) such that

inf
x∈R/Z

sup
0≤k≤q+q ′−1

ψ(x + kα + it) ≤ ψ − δ. (2.6)

Then |T | ≤ cq , where cq = cq(ε, δ) > 0 satisfies limq→∞ cq = 0.
Proof. Let M be maximal with M/q + 1/(2q) < ε. We say that some j ∈ [−M,M] is
ρ-bad if |T ∩ (j/q − 1/(2q), j/q + 1/(2q))| > ρ/q.

Let B be the set of all z with |Im z| < ε such that ψ(z) ≤ ψ − δ. Notice that if t ∈ T
then there exists y ∈ R/Z such that y + kα + it ∈ B for 0 ≤ k ≤ q + q ′ − 1. Notice that
{y + kα + it} is 1/q-dense in the circle Im z = t .

Let us consider any point of the form x0 + ij/q where x0 ∈ R/Z and j is ρ-bad. Let
us start Brownian motion at x0 + ij/q, and run it until it escapes |Im z − j/q| < 1/q.
Then the probability that the Brownian motion does not hit B before escaping is at most
e−κ for some κ = κ(ρ) > 0. Indeed, this probability is at most that of escaping the square(
x0 −

1
2q , x0 +

1
2q

)
× (

j
2q −

1
2q ,

j
q
+

1
q
) without hitting B. One easily sees that B is a

big obstacle for the Brownian motion in this rectangle by noticing that the projection of
B ∩

(
x0−

1
2q , x0+

1
2q

)
×
( j
q
−

1
2q ,

j
q
+

1
2q

)
on the second coordinate has measure at least

ρ/q. Therefore, by Lemma 2.1, κ(ρ) ≥ − ln(1− cρ) ≥ cρ.
Assume that the number of ρ-bad j ’s is either 2l or 2l − 1. Let j0 be such that there

are at least l − 1 ρ-bad j ’s greater than j0 and at least l − 1 ρ-bad j ’s smaller than j0.
Fix x0 ∈ R/Z such that ψ(x0 + ij0/q) ≥ ψ . Let us start Brownian motion from

x0 + ij0/q, and run it until it escapes |Im z| < ε. Then

ψ ≤ ψ(x0 + ij0/q) ≤ p0 + (1− p0)(ψ − δ), (2.7)

where p0 is the probability that the Brownian motion escapes without hitting any point
in B. Since ψ ≥ 0, we have

p0/(1− p0) ≥ δ. (2.8)
When the Brownian motion escapes, it has to go at least through l − 1 layers of

ρ-bad j ’s, therefore p0 ≤ e
−(l−1)κ , implying

l − 1 ≤
ln((δ + 1)/δ)

κ
≤
C ln(1+ 1/δ)

ρ
.

Since one has at most 2l ρ-bad j ’s and ε − (M/q + 1/(2q)) < 1/q, one finds that

|T | ≤
2l + 2
q
+ 2ρε ≤ C

− ln δ
ρq
+ 2ερ.

Optimizing for ρ gives |T | ≤ Cε1/2q−1/2(ln(1/δ))1/2. ut

3. A criterion for domination

We will need a few well known properties of dominated cocycles. The discussion below
is parallel to the SL(2,R) case9 carried out in detail in Section 2.1 of [Av2], so we omit
the proofs.

9 In this case, 1-domination is the same as uniform hyperbolicity.



Complex one-frequency cocycles 1923

The set of k-dimensional subspaces of Cd is a compact Grassmannian manifold with
a holomorphic structure (cf. Appendix) and will be denoted by G(k, d). A k-conefield is
an open set U ⊂R/Z×G(k, d) such that for every x ∈R/Z there exist w ∈G(k, d) and
w′∈G(d − k, d) such that (x,w)∈U and (x, w̃) /∈U whenever w̃ is not transverse to w′.
If (α,A) is k-dominated, then it is easy to construct a k-conefield U such that for every
(x,w)∈U , w is transverse to the kernel of A(x) and (x + α,A(x) · w)∈U . Conversely,
k-domination can be detected by a conefield criterion: there exist n≥ 1 and a k-conefield
U such that for every (x,w)∈U , (x+nα,An(x) ·w)∈U . The conefield criterion implies
that k-domination holds through an open set of (α,A)∈R× C0(R/Z,L(Cd ,Cd)).

The dominated splitting for a k-dominated cocycle will be typically denoted by Cd =
u(x)⊕ s(x), u(x) ∈ G(k, d), s(x) ∈ G(d − k, d).

In the particular case where A admits a holomorphic extension through |Im z| < ε0,
we see that there exists 0 < ε < ε0 such that (α,A(· + it)) is k-dominated for |t | < ε

and with invariant sections of the form u(· + it) and s(· + it), with u and s holomorphic
through |Im z| < ε (cf. Theorem 6.1).

Before we can state our criterion we need the following lemma. If for a matrix B,
σk(B) > σk+1(B), then we denote by E+k (B) ∈ G(k, d) the k-dimensional subspace
of Cd associated with the first k singular values. Moreover, PE+k (B) denotes the orthogonal
projection on that subspace.

Lemma 3.1. Let 0 < ρ ≤ 1/4 be such that A,B satisfy σ2(A) ≤ ρ2σ1(A), σ2(B) ≤

ρ2σ1(B) and σ1(BA) ≥ 4ρσ1(B)σ1(A). If w ∈ PCd satisfies ‖PE+1 (A)|w‖ ≥ ρ then
‖PE+1 (B)

|(A · w)‖ ≥ 2ρ.

Proof. Let γ = ‖PE+1 (B)|A · E
+

1 (A)‖. Let v ∈ E+1 (BA) be a unit vector, and let y =
PE+1 (A)

· v and z = v − y. Then σ1(BA) = ‖BA · v‖ ≤ ‖BA · y‖ + ‖BA · z‖. Clearly

‖BA · z‖ ≤ σ1(B)σ2(A) and ‖BA · y‖ ≤ γ σ1(A)σ1(B)+ σ1(A)σ2(B).

It follows that γ ≥ 4ρ − 2ρ2
≥ 3.5ρ, as ρ ≤ 1/4.

Let now w ∈ Cd be a unit vector such that ‖PE+1 (A)w‖ ≥ ρ, write w = u + x with
u = PE+1 (A)

(w). Then ‖u‖ ≥ ρ and hence

‖PE+1 (B)
Aw‖

‖Aw‖
≥
γ ‖Au‖ − ‖Ax‖

‖Au‖ + ‖Ax‖
≥
γ σ1(A)‖u‖ − σ2(A)

σ1(A)‖u‖ + σ2(A)

≥
γ − ρ2/‖u‖

1+ ρ2/‖u‖
≥
γ − ρ

1+ ρ
≥

4
5
·

5
2
ρ = 2ρ.

Thus ‖PE+1 (B)|(A · w)‖ ≥ 2ρ. ut

Now we can formulate a criterion for domination.

Lemma 3.2. Assume that there exist n ∈ N and 0 < ρ ≤ 1/4 such that for every
x ∈ R/Z, σ2(An(x)) ≤ ρ2σ1(An(x)), σ2(An(x + nα)) ≤ ρ2σ1(An(x + nα)) and
σ1(A2n(x)) ≥ 4ρσ1(An(x + nα))σ1(An(x)). Then the cocycle (α,A) is 1-dominated.
Proof. The set U = {(x,w) : ‖PE+1 (An(x))|w‖ > ρ} is a conefield and satisfies the
conefield criterion for domination. ut
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4. Continuity of the Lyapunov exponents

Recall that Lj (α,A) denotes the j -th Lyapunov exponent of the cocycle (α,A) and
Lk =

∑k
j=1 Lj , Lk(α,A) = L1(α,3

kA).
From now on we consider cocycles (α,A) with A analytic.

Lemma 4.1. Let α ∈ R \ Q. Assume that Lk(α,A) > Lk+1(α,A). Then there exists
ε > 0 such that for almost every |t | < ε the cocycle x 7→ A(x + it) is k-dominated.

Proof. Taking exterior products, we reduce to the case k = 1. Let L1 = L1(α,A) and
L2 = max{L2(α,A), L1(α,A)− 1}, L1

= L1, L2
= L1 + L2.

Fix 0 < κ < (L1 − L2)/24. By unique ergodicity,10 there exists n0 ∈ N such that

sup
x∈R/Z

1
n

ln ‖3jAn(x)‖ ≤ Lj + κ, j = 1, 2, (4.1)

holds for n ≥ n0. Fix ε0 > 0 sufficiently small so that

sup
|Im z|<ε

1
n

ln ‖3jAn(z)‖ ≤ Lj + 2κ, j = 1, 2, (4.2)

holds for n0 ≤ n ≤ 2n0 − 1, and hence (by subadditivity) for all n ≥ n0.
The function t 7→ Lj (α,A(·+ it)) is convex, and hence continuous. Take 0 < ε < ε0

such that L1(α,A(· + it)) ≥ L1 − κ for |t | < ε. In particular, for |t | < ε we have

sup
x∈R/Z

1
n

ln ‖An(x + it)‖ ≥ L1 − κ. (4.3)

Fix a continued fraction approximant p/q of α and let q ′ be the denominator of the
previous approximant. For any n ≥ n0, let φn(z) = 1

n
ln ‖An(z)‖, which is subharmonic

in |Im z| < ε. Notice that

sup
0≤k≤q+q ′−1

φn+q+q ′(z− qα + kα) ≤
n

n+ q + q ′
φn(z)+

q + q ′

n+ q + q ′
sup
|Im z|<ε

ln ‖A(z)‖.

(4.4)

Let Tn be the set of all |t | < ε such that there exists x ∈ R/Z with φn(x + it) ≤
L1 − 3κ , and let Tn,q be the set of all |t | < ε such that there exists x ∈ R/Z with
φn(x+ it + kα) ≤ L1− 2κ for all k = 0, . . . , q + q ′− 1. By (4.4), there exists n(q) ∈ N
such that for n ≥ n(q) we have Tn ⊂ Tn+q+q ′,q .

By Lemma 2.2 (applied to the function ψ = φn−(L1−κ)
3κ and δ = 1/3), for n ≥ n0 we

have |Tn,q | ≤ cq , with lim cq = 0. Thus for n ≥ max{n0, n(q)} we have |Tn| ≤ cq as
well. It follows that lim |Tn| = 0.

10 See a more detailed argument in the proof of Lemma 5.1.
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In particular, for almost every |t | < ε, there exist arbitrarily large n with t /∈ Tn∪T2n.
Fix such t and n. Then for every x ∈ R/Z, letting W1 = An(x + it) and W2 = An(x +

it + nα), so that W2W1 = A2n(x + it), we have, by (4.2) and (4.3),

σ1(W2W1) ≥ e
−8κnσ1(W2)σ1(W1), (4.5)

as well as

σ2(Wj ) =
‖32Wj‖

‖Wj‖2
σ1(Wj ) ≤ e

(L2−L1+8κ)nσ1(Wj ), j = 1, 2. (4.6)

For large n (such that e(L2−L1+24κ)n
≤ 1/16), we can apply Lemma 3.2 with ρ = 1

4e
−8κn,

to conclude that (α,A(· + it)) is 1-dominated. Note that the whole argument also works
if A is not invertible and even if L2(α,A) = −∞. By taking exterior products, the case
where Lk(α,A) is finite but Lk+1(α,A) = −∞ is also covered. ut

Now we are ready to prove Theorem 1.5.

Proof of Theorem 1.5. Consider first the case Lk(α′, A′) = −∞. As Lk = Lk + Lk−1,
this means Lk(α′, A′) = −∞. By upper-semicontinuity, Lk is continuous at (α′, A′). As
kLk ≤ Lk we find for (αn, An) → (α′, A′) that Lk(αn, An) → −∞ as well, showing
continuity.

Let Lk(α′, A′) > −∞. By the definition of the inductive topology, it is enough to
consider the restriction to Cωε0

(R/Z,L(Cd ,Cd)) for arbitrary ε0 > 0. Let α′ ∈ R \Q.
If Lk(α′, A′) > Lk+1(α

′, A′), we choose ε > 0 small such that (α′, A′(· + it))
is k-dominated for t = ±ε,±2ε. Then (α,A) 7→ Lk(α,A(· + it)) is continuous in a
neighborhood of (α′, A′) for t = ±ε,±2ε. Let s(α,A)(a, b) = (b−a)−1

[Lk(α,A(·+ ib))

−Lk(α,A(· + ia))] be the slope of the secant of the function t 7→ Lk(α,A(· + it)) from
a to b. By convexity, for |t | < ε one finds

s(α,A)(−ε,−2ε) ≤ s(α,A)(0, t) ≤ s(α,A)(ε, 2ε). (4.7)

Since (α,A) 7→ s(α,A)(±ε,±2ε) is continuous at (α′, A′), we find a neighborhood U of
(α′, A′) and a uniform constant C such that |Lk(α,A(· + it)) − Lk(α,A)| ≤ C|t | for
(α,A) ∈ U and |t | < ε. Considering a sequence tn → 0 for which (α′, A′(· + itn)) is
k-dominated, and hence (α,A) 7→ Lk(α,A(· + it)) is continuous on a neighborhood of
(α′, A′) (possibly decreasing with n), we conclude that Lk is continuous at (α′, A′).

Assume now that Lj (α′, A′) = Lk(α′, A′) > −∞ for j in a maximal interval [a, b]
containing k. Then La−1 and Lb are continuous at (α′, A′).11 Since La and Lb−1 are
upper-semicontinuous, La is upper-semicontinuous at (α′, A′) and Lb is lower-semi-
continuous at (α′, A′). Since La ≥ Lj ≥ Lb for a ≤ j ≤ b and La(α′, A′) = Lb(α′, A′)
by hypothesis, we conclude that Lj is continuous at (α′, A′) for a ≤ j ≤ b. The result
follows. ut

11 If b = d then this follows as well since Ld =
∫

ln |detA| dx, which is continuous on
Cω(R/Z,L(Cd ,Cd )) (see e.g. [JM2]). For a = 1 we just define L0

= 0 so that L1 = L
1
− L0.
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5. Regularity and approximation through rationals

Recall that

ωk = lim
ε→0+

1
2πε

(
Lk(α,A(· + iε))− Lk(α,A)

)
. (5.1)

We let the frequency α be irrational from now on. Furthermore we assume that A extends
to a complex analytic function in a neighborhood of |Im z| ≤ δ.

Recall that (α,A) is k-regular if t 7→ Lk(α,A(·+ it)) is an affine function for |t | < ε.
Let

R \Q 3 α = lim
n→∞

pn

qn
with pn, qn ∈ Z+, (pn, qn) = 1,

and define, for z = x + it and p/q ∈ Q,

Lk(p/q,A, x) := lim
n→∞

1
n

ln ‖3kAn(p/q, x)‖.

Clearly, the limit exists for all x∈T and we have Lk(p/q,A, x)= 1
q

ln ρ(3kAq(p/q, x))
where ρ(A∗) is the spectral radius of A∗ ∈ L(Cd ,Cd). By definition,

Lk(p/q,A) =

∫
R/Z

Lk(p/q,A, x) dx.

We start with the following crucial lemma.

Lemma 5.1. If Lk(α,A) > −∞ then uniformly for small t and all x,

Lk(pn/qn, A(· + it), x) ≤ L
k(α,A(· + it))+ o(1). (5.2)

More precisely, the estimate being uniform means that for some δ > 0,

lim sup
n→∞

sup
x∈R/Z

sup
|t |≤δ

[Lk(pn/qn, A(· + it), x)− L
k(α,A(· + it))] ≤ 0. (5.3)

If Lk(α,A) = −∞ then Lk(pn/qn, A(·+ it), x) converges to−∞ as n→∞, uniformly
for all x.

Proof. By taking exterior products we may just consider the case k = 1. Let 8(t) =
L1(α,A(· + it)). We first assume 8(0) > −∞. By Theorem 1.4, 8(t) is piecewise
affine (note that the proof of Theorem 1.4 depends on Lemmas 4.1 and 6.4 which do not
depend on this lemma). Take δ > 0 such that 8(t) is affine on [−δ, 0] and [0, δ] with
a possible corner at 0. Choose n such that 1

n

∫
R/Z ln ‖An(α, x + it)‖dx < 8(t) + ε for

t ∈ {−δ, 0, δ}. By unique ergodicity we get uniform upper bounds in the ergodic theorem
applied to ln ‖An(α, x + it)‖, so there exists j such that for all x and t ∈ {−δ, 0, δ},

1
jn

j−1∑
k=0

ln ‖An(α, x + knα + it)‖ <
1
n

(∫
R/Z

ln ‖An(α, x + it)‖dx + ε
)
< 8(t)+ 2ε.
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Thus, for m = jn we have, by subadditivity, 1
m

ln ‖Am(α, x + it)‖ − 8(t) < 2ε for
any x and t ∈ {−δ, 0, δ}. By continuity and compactness we find N > 0 such that for
n > N , 1

m
ln ‖Am(pn/qn, x + it)‖ − 8(t) < 3ε for all x and t ∈ {−δ, 0, δ}. The left

hand side is subharmonic for t ∈ (−δ, 0) and t ∈ (0, δ). Therefore, by the maximum
principle, the last estimate holds for all |t | ≤ δ. By subadditivity, for K large enough and
any r = 0, . . . , m− 1 one has uniformly for |t | ≤ δ

1
Km+ r

ln ‖AKm+r(pn/qn, x)‖ ≤
1

Km+ r
(Km(8(t)+ 3ε)+ Cr) < 8(t)+ 4ε .

This proves the claim. If 8(0) = −∞ then by continuity and convexity this happens for
all t where the holomorphic extension A(x + it) is defined and we can change 8(t) to
−1/ε in the estimates. ut

If the cocycle is k-regular, then one can approximate the Lyapunov exponent by using
rational frequencies and any phase x. This is the main result in this section.

Theorem 5.2. Assume that Lk(α,A) > −∞ and (α,A) is k-regular. Then uniformly for
small t and all x ∈ R/Z,

Lk(pn/qn, A(· + it), x) = L
k(α,A(· + it))+ o(1). (5.4)

Proof. Again by using exterior products it is enough to consider k = 1. Assume that A
admits a holomorphic extension to |Im(x)| < δ1 bounded by C > 0 and that 8(t) =
L1(α,A(· + it)) is affine for |t | ≤ δ0 < δ1. Up to multiplying A by a sufficiently large
constant, we may also assume that 8(t) > 1 for |t | ≤ δ0. We are going to show that

1
qn

ln ρ(Aqn(pn/qn, · + it)) ≥ 8(t)+ o(1), |t | ≤ δ0/2, (5.5)

This concludes the proof, since (5.2) can be rewritten as 1
qn

ln ρ(Aqn(pn/qn, ·+it)) ≤
8(t) + o(1), so (5.5) implies 1

qn
ln ρ(Aqn(pn/qn, · + it)) = 8(t) + o(1), which is just

(5.4) for k = 1.
It is easy to see that there exists cd > 0 such that for any A∗ ∈ L(Cd ,Cd) there exists

1 ≤ k ≤ d such that |trAk∗|
1/k
≥ cdρ(A∗).12 Let 1 ≤ kn ≤ d and x ∈ R/Z be such that

|trAqn(pn/qn, x)
kn |

1/kn is maximal. Let

φn(t) = max
x∈R/Z

1
knqn

ln |trAqn(pn/qn, x + it)
kn |.

12 Indeed, by homogeneity and compactness, this inequality holds with the constant cd =
min max1≤k≤d |

∑d
j=1 λ

k
j
|, where the minimum is taken over all sequences λj ∈ D, 1 ≤ j ≤ d ,

such that maxj |λj | = 1, and we just have to check that cd > 0. But if cd = 0 then there exist
λj ∈ C, 1 ≤ j ≤ d , not all zero, such that

∑
j λ

k
j
= 0 for 1 ≤ k ≤ d. Let J ⊂ {1, . . . , d} be the set

of all j such that λj 6= 0. Then letting p(z) =
∏
j∈J (z − λj ) we have p(λj ) = 0 for each j ∈ J ,

while 1
#J
∑
j∈J p(λj ) = p(0) 6= 0 (since the contributions corresponding to each non-constant

monomial add up to zero), a contradiction.
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Then φn(0) ≥ L1(pn/qn, A) +
1
qn

ln cd , and using L1(pn/qn, A) = L1(α,A) + o(1)
(Theorem 1.5), we get φn(0) ≥ 8(0)+ o(1).

On the other hand, by Lemma 5.1 we have φn(t) ≤ 8(t) + o(1) for |t | ≤ δ0. Since
φn(t) is clearly a convex function of t , and 8(t) is affine for |t | ≤ δ0, it follows that
φn(t) = 8(t)+ o(1) for |t | ≤ δ0.

Write trAqn(x)
kn =

∑
j∈Z aj,ne

2πijqnx . Then |aj,n| ≤ dCqne−2π |j |qnδ1 . Thus we can
choose m0 > 0 such that

∑
|j |>m0

|aj,n|e
2π |j | qnδ0 ≤ 1 for every n. It follows that

φn(t) = max
|j |≤m0

(
1
knqn

ln |aj,n| −
2πj
kn
t

)
+ o(1), |t | ≤ δ0,

and since φn(t) = 8(t)+ o(1) with 8 affine, we see that there exist |jn| ≤ m0 such that
the slope of 8 is −2πjn/kn and we have

φn(t) =
1
knqn

ln |ajn,n| −
2πjn
kn

t + o(1),

while for each |t | ≤ δ0/2 and |j | ≤ m0 we have

1
knqn

ln |aj,n| −
2πj
kn
t ≤

1
knqn

ln |ajn,n| −
2πjn
kn

t −
δ0π |j − jn|

kn
+ o(1).

It follows that

trAqn(z, pn/qn)
kn

aj,ne2πijqnz
= 1+ o(1), z = x + it, |t | ≤ δ0/2,

so that
1
knqn

ln |trAqn(z, pn/qn)
kn | ≥ 8(t)+ o(1), |t | ≤ δ0/2.

Thus 1
qn

ln ρ(Aqn(pn/qn, z)) ≥ 8(t)+ o(1) for |t | ≤ δ0/2, as desired. ut

6. Holomorphic dependence and convergence

In this section we will finally prove the main theorems. In order to obtain the equiva-
lence of regularity and domination as stated in Theorem 1.2 we will use approximation
of the unstable and stable directions by rational frequencies and convergence of holomor-
phic functions. As before,G(k, d) denotes the Grassmannian of k-dimensional subspaces
of Cd . As described in the Appendix, this is a holomorphic manifold. An important fact
is the holomorphic dependence of dominated splittings:

Theorem 6.1. Let (α,A(· + it)) be k-dominated for t ∈ (t−, t+) and let u(x + it) ⊕
s(x + it) be the corresponding dominated splitting. Then z 7→ u(z) ∈ G(k, d) and
z 7→ s(z) ∈ G(d − k, d) are holomorphic for z = x + it, t ∈ (t−, t+).

We first consider just the more unstable directions in the dominated splitting and start
with an analogue to Lemma 2.1 in [Av2] showing holomorphic dependence. This means
that in the splitting Cd = u(x)⊕ s(x) considered, we assume that for some n, any x and



Complex one-frequency cocycles 1929

any unit vectors w ∈ u(x), v ∈ s(x) we have ‖An(x)w‖ > ‖An(x)v‖. As a corollary we
will obtain Theorem 6.1 for rational frequencies. The holomorphic dependence of s(z)
for irrational frequencies will be deduced in the proof of Theorem 1.2.13

Lemma 6.2. Let DOk(α,Cd) denote the set of k-dominated analytic cocycles on Cd
with frequency α. For any x ∈ R/Z the map A 7→ uA(x) is a holomorphic function of
A ∈ DOk(α,Cd). Here, uA(x) denotes the corresponding unstable subspace.

In particular, an immediate corollary is

Corollary 6.3. (i) The unstable subspace u(x+it) ∈ G(k, d) depends holomorphically
on x + it .

(ii) If α ∈ Q is rational, then the stable subspace s(x + it) depends holomorphically on
x + it .

Proof. Holomorphic dependence of u1 ∧ · · · ∧ uk ∈ P(3kCd) implies holomorphic
dependence of the subspace spanned by u1, . . . , uk . In fact, G(k, d) can be considered
as a closed submanifold14 of the projective space P(3kCd). Therefore, we may con-
sider 3kA and can assume k = 1. Now let ε0 be the infimum of the distance be-
tween uA(x) and unit vectors in sA(x). Let 0 < ε < ε0/2 and consider the conefield
U = {x,m}, m ∈ PCd , such that m is ε-close to u(x). Here we use the spherical
metric on PCd . Note that A acts on PCd in a natural way. Take n large enough such
that (x + nα,An(x) · m) ∈ U for every (x,m) ∈ U . Let V ⊂ DO1(α,Cd) be the
set of all (α,A′) such that (x + nα,An(x) · m) ∈ U for every (x,m) ∈ U . V is an
open neighborhood of A and for A′ ∈ V we find that uA′(x) is the limit as k → ∞ of
uk
A′
(x) = A′kn(x − knα) · uA(x − knα). For each k ≥ 1 this is a holomorphic function

of A′ taking values in the hemisphere of PCd centered at uA(x). By Montel’s Theorem,
the limiting function A′ 7→ uA′(x) is holomorphic.

Part (i) of the corollary follows by holomorphy in1z for A′1z(z) = A(z+1z). Then
uA′1z

(z) = uA(z+1z).
For part (ii) first note that taking α = 0 shows that the eigenvector corresponding

to the largest modulus of the eigenvalues of a holomorphic matrix valued function B(z)
with a gap between the largest and second largest eigenvalues depends holomorphically
on z. Using tensor products and inverses (3kB(z) + ε1)−1 we find that the direct sums
of generalized eigenspaces15 (corresponding to Jordan blocks) of eigenvalues of modulus
greater or smaller than a constant c also depend holomorphically on z in a neighborhood
where no eigenvalue has modulus c. For rational α = p/q, the subspace s(z) is locally
characterized as such a subspace, where c is between the k-th and k+1-st largest modulus
of eigenvalues of Aq(z). ut

Using the analyticity of u we obtain the following.

13 If A(z) is always invertible, then the holomorphic dependence of s(z) follows directly from
Lemma 6.2 by considering the inverse cocycle, but the singular case requires approximation by
rational frequencies.
14 Being precisely those elements that can be written as v1 ∧ · · · ∧ vk .
15 The generalized eigenspace for a d× d matrix B and an eigenvalue λ is the kernel of (B−λ)d .
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Lemma 6.4. If (α,A) is k-dominated then ωk is a constant integer in a neighborhood of
(α,A). Moreover, if detA(x) 6= 0 for all x, then ωd is a constant integer in a neighbor-
hood of (α,A).

Proof. It is enough to consider the case k = 1. As in Theorem A.1(vi) we lift u(z) ∈ PCd
to a one-periodic, holomorphic function u(z) ∈ Cd \ 0. Then A(z)u(z) = λ(z)u(z + α)
for a one-periodic, holomorphic function λ(z). Note that u(z) and λ(z) also depend
holomorphically on A. Thus, for z = x + it , L1(α,A(· + it)) =

∫ 1
0 ln ‖A(z)u(z)‖ −

ln ‖u(z)‖ dx =
∫ 1

0 ln |λ(z)| dx. A direct computation (see e.g. [JM2]) shows that
ω1(α,A) = d

dε

∣∣
ε=0

∫ 1
0 ln |λ(x + iε)| dx is minus the winding number of λ(x) around 0,

so it is an integer and locally constant. As Ld(α,A) =
∫ 1

0 ln |detA(x)| dx, one obtains
the same result for ωd by the same argument. ut

Before proving the main theorems we need another lemma that will guarantee the con-
vergence of the unstable and stable directions when approaching α by rationals.

Lemma 6.5. Let D = {z ∈ C : t− ≤ Im z ≤ t+} and let u : D → G(k, d), s : D →

G(d − k, d) be holomorphic functions on the interior D̊ and continuous on D. Assume
that u is transverse to s at every point and the angle is minorized by ε at the boundary ∂D.
Then it is minorized by ε in the whole strip. Moreover, for any compact subset K ⊂ D̊ of
the open strip, u and s are C-Lipschitz where C depends only on ε and K .

Proof. Let P be the projection on u along s, i.e. P is the unique matrix with kerP = s
and P |u = id|u. By Theorem A.1(v) we can locally lift the pair (u, s) to a holomorphic
function B ∈ GL(d,C) where the first k vectors represent u and the last d − k column
vectors represent s. Then P = BPkB−1 where Pk projects on the first k coordinates in Ck ,
and hence P is holomorphic. Now, ‖P ‖ = sup‖w‖=1 ‖Pw‖ is a decreasing function16 of
the angle θ between u and s, going to ∞ if the angle goes to zero. However, as P is
holomorphic, ‖P ‖ = max‖w‖=1 ‖Pw‖ is maximized in D on the boundary ∂D.

For the second part, note that by Cauchy’s formula, the partial derivatives of P at
z0 ∈ D̊ are bounded by C/dist(z0, ∂D) for some constant C only depending on ε. Now,
choose an orthonormal basis w1, . . . , wk for u at z0 (they are fixed, independent of z) and
consider the projections Pwj as one varies the base point z. Those are Lipschitz near z0
and the space they generate (which is u) depends in a Lipschitz way on z near z0. Using
the uniform bounds of P and of its derivatives on compact sets K ⊂ D̊ we obtain a
Lipschitz constant C only depending on K and ε. ut

Now we are ready to prove the main theorems.

Proof of Theorem 1.2. It is enough to consider the case k = 1. Let L1(α,A) > L2(α,A)

and let (α,A) be 1-regular. By Lemma 6.4 it is only left to prove that regularity implies
domination.

16 In fact, the maximum of ‖Pw‖ occurs if w lies in the plane with the minimal angle and is
perpendicular to s. Moreover, ‖P ‖ = 1/sin(θ) (see e.g. [GK]).
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We let pn/qn be rational approximants with pn/qn → α. By Lemma 5.1, uni-
formly in x and |t | < ε we have L1(pn/qn, A(· + it), x) = L1(α, (· + it)) + o(1) and
L2(pn/qn, A(·+it), x) ≤ L

2(α,A(·+it))+o(1) ifL2(α,A) > −∞. IfL2(α,A) = −∞

then L2(pn/qn, A(· + it), x) approaches −∞ uniformly in x and |t | < ε. Therefore, ei-
therL2(pn/qn, A(·+it), x) ≤ L2(α,A(·+it))+o(1) or it approaches−∞ and it follows
that for large n, L2(pn/qn, A(· + it), x) < L1(pn/qn, A(· + it), x) for every x ∈ R/Z
and every |t | < ε. Thus, for n large, (pn/qn, A(· + it)) is 1-dominated throughout the
band |Im z| = |t | < ε.

Select t− < 0 < t+ in this band, so that (α,A(· + t±)) is 1-dominated. By robustness
of domination, the cocycles (pn/qn, A(· + t±)) are uniformly 1-dominated.

By Lemma 6.2 the unstable and stable subspaces un(x + it), sn(x + it) depend
holomorphically on z = x + it for t in a neighborhood of {z : t− ≤ Im z ≤ t+}.
By Lemma 6.5 for each n, the smallest angle occurs at some point z at the boundary
Im z = t±. But since the cocycles (pn/qn, A(· + t±)) are uniformly 1-dominated, we
find a uniform, non-zero lower bound for the angle between un(x + it) and sn(x + it).
Again, by Lemma 6.5 the functions un and sn are uniformly Lipschitz on compact sub-
sets of {z : Im z ∈ (t−, t+)}. Therefore, there is a convergent subsequence such that
unk and snk converge (uniformly on compacts) to holomorphic functions u and s, sat-
isfying A(z)s(z) = s(z + α), A(z)u(z) = u(z + α). Since L2 < L1, in the limit
pn/qn → α the one-dimensional bundle u(z) is associated to the top Lyapunov expo-
nent almost everywhere and unique ergodicity implies domination. ut

Note that the limits u(z) and s(z) are holomorphic functions and therefore we have also
proved Theorem 6.1. Next, we show the quantization of acceleration.

Proof of Theorem 1.4. We only need to consider the case k < d and Lk > −∞. Assume
that Lk(α,A(· + it)) − Lk+1(α,A(· + it)) is not identically zero on t ∈ [0, ε] for any
ε > 0. Then using Lemma 4.1 one obtains a sequence tn → 0 where (α,A(· + itn)) is
k-dominated. At any such tn, ωk(α,A(· + itn)) is an integer by Lemma 6.4. By convexity
of Lk in t , ωk must be right-continuous and constant for t ≥ 0 small, hence ωk ∈ Z.

Consider the case Lk(α,A(· + it)) = Lk+1(α,A(· + it)) > −∞ for t ≥ 0 small.
Let [a, b] be the maximal interval such that there exists ε > 0 with Lj (α,A(· + it)) =
Lk(α,A(·+ it)) for a ≤ j ≤ b and for every t ∈ [0, ε). Let us define L0

= 0 and ω0
= 0.

Then, by the arguments above or Lemma 6.4 (in case b = d) we find that ωa−1 and ωb

are integers. Moreover, Lk = La−1
+ (Lb − La−1) k−a+1

b−a+1 for every 0 ≤ t < ε. Hence,

ωk = ωa−1
+ (ωb − ωa−1)

k − a + 1
b − a + 1

∈
1

b − a + 1
Z.

As ωk−1
∈

1
b−a+1Z as well,17 one also has ωk = ωk − ωk−1

∈
1

b−a+1Z. If A(z) ∈
SL(d,C) for all z, then lωk, lωk ∈ Z for an integer 1 ≤ l ≤ d − 1.18

ut

17 This is clear for k ≥ a + 1 and if k = a then one even has ωk−1
∈ Z.

18 The case b − a + 1 = d implies a = 1, b = d and hence ωk = (1/d)ωd . But if det(A(z)) = 1
then ωd = 0, and hence all ωk, ωk are zero.
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Proof of Theorem 1.3. As a consequence it follows immediately that Lk(α,A(· + it))
is piecewise affine. Hence, for t 6= 0 small enough, Lk is affine in a neighborhood of t .
By definition, this means that (α,A(· + it)) is k-regular for t 6= 0 small enough, which
proves Theorem 1.3. ut

Now we have everything to prove the main theorem.

Proof of Theorem 1.1. By Theorem 1.5, the continuity of the Lyapunov exponents, there
is an open and dense subset U ⊂ Cω(R/Z,L(Cd ,Cd)) such that for A ∈ U the number
of distinct Lyapunov exponents is locally constant. Within U the set where Oseledets
filtration is dominated or trivial is automatically open. By Theorem 1.3 the set of cocycles
that are k-regular for all k with Lk > −∞ is dense in U , and by Theorem 1.2 all such
cocycles with not all Lyapunov exponents equal have dominated Oseledets splitting. ut

Appendix. Holomorphic quotients, submersions and lifts

In this appendix we want to briefly explain the holomorphic structure of the Grassmanni-
ans G(k, d) and show the existence of local holomorphic lifts to representing matrices.

Let us define the following subgroup of GL(d):

GL(k, d) :=
{(
A C

0 D

)
: A ∈ GL(k), D ∈ GL(d − k), C ∈ Ck×(d−k)

}
. (A.1)

Furthermore, let Mk(d) denote the set of d × k matrices of rank k.

Theorem A.1. (i) The Grassmannian G(k, d) can be considered as the quotient

G(k, d) ∼= GL(d)/GL(k, d) (left cosets GGL(k, d)).

(ii) Let p : GL(d) → G(k, d) be the natural projection. Then G(k, d) has a unique
holomorphic structure such that p is a holomorphic submersion (meaning p′ has
full possible rank everywhere). Moreover, the left action of GL(d) is holomorphic.

(iii) There is a natural projection p̃ :Mk(d) → G(k, d) which is also a holomorphic
submersion.

(iv) Locally, for each G ∈ GL(d) and M ∈ Mk(d) there exist neighborhoods UG
of p(G) and UM of p̃(M) and holomorphic injections iG : UG → GL(d) and
iM : UM →Mk(d) such that p ◦ iG = id|UG and p̃ ◦ iM = id|UM .

(v) A holomorphic function u : D→ G(k, d) can be locally lifted in a small neighbor-
hoodUz of z ∈ D to a holomorphic functionG : Uz → GL(d) orB : Uz →Mk(d)

such that p ◦G = u or p̃ ◦ B = u, respectively.
(vi) An analytic function u ∈ Cω(R/Z,G(k, d)) can be lifted to a one-periodic holo-

morphic function ũ : Dδ → Mk(d) such that p̃ ◦ ũ = u, for some δ > 0. Here
Dδ = {Im z < δ}.

Proof. G(k, d) denotes the set of k-dimensional subspaces of Cd . A k-dimensional sub-
space u ∈ G(k, d) can be represented by a basis, hence by a d × k matrix B(z) of
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full rank k where the k column vectors span u. Hence, we obtain a natural projection
p̃ : Mk(d) → G(k, d). We also have a natural projection p̂ : GL(d) → Mk(d) by
simply selecting the first k column vectors. It is clear that p̂ is holomorphic and we find
local holomorphic injections i from small neighborhoods in Mk(d) to GL(d) such that
p̂ ◦ i = id. Therefore, statement (iii) follows from (ii) and the statement about iM in (iv)
follows from the one about iG in (iv).

Two matrices G1,G2 in GL(d) represent the same element in G(k, d) if and only if
the first k column vectors span the same space. This is equivalent to G1 = G2G where
G ∈ GL(k, d). In other words, the set GL(d)/GL(k, d) of left cosets is equivalent to
G(k, d) and there is a natural, transitive left action of GL(d) on it. We want to make
p a holomorphic submersion. Therefore, consider the exponential chart P 7→ G exp(P )
aroundG ∈ GL(d). If p is a submersion, then the kernel of p′(G)must precisely be given
by the Lie algebra gl(k, d) of GL(k, d). The Killing form Tr(A∗B) defines a natural met-
ric on gl(d) and we can consider the orthogonal complement gl(k, d)⊥. Consider the map
pG(C) = p(G exp(C)) for C ∈ gl(k, d)⊥. For small C, these maps are injective. Now,
if p is a holomorphic submersion, then pG is holomorphic and the derivative at 0 must
have full rank and hence pG is locally invertible, i.e. pG defines a chart for small C. On
the other hand, using small C, the maps pG for G ∈ GL(d) clearly define an atlas giving
G(k, d) a holomorphic structure such that p is a holomorphic submersion. Moreover, the
left action of GL(d) is also clearly holomorphic. This proves (ii).

For (iv) note that using the charts pG, the maps iG defined by iG(pG(C)) = G exp(C)
fulfill the requirement. Clearly, (v) follows from (iv).

To obtain (vi) let us consider first the case k = 1 for simplicity. Then G(1, d) = PCd
and M1(d) = Cd \{0}. It is enough to find v ∈ Cd such that v is never orthogonal to u(x),
i.e. v∗u(x) 6= 0 for all x ∈ [0, 1], because the canonical projection pv : {w ∈ Cd :
v∗w = 1} → PCd defines a chart and the inverse gives the desired 1-periodic lift ũ =
p−1
v ◦ u.

So let W(x) = {w ∈ Cd : w∗u(x) = 0}; then W(x) ∼= Cd−1 ∼= R2d−2 defines a
real, 2d − 2-dimensional fiber bundle over the torus R/Z and M =

⋃
x∈R/Z{x} ×W(x)

can be seen as a real 2d − 1-dimensional submanifold of (R/Z) × Cd . The map f :
M→ Cd , f (x,w) = w, is differentiable. As Cd ∼= R2d is real 2d-dimensional, f is not
surjective. Take v not in the image of f .

For general k one needs to find V ∈ Mk(d) such that det(V ∗u(x)) 6= 019 for all
x ∈ [0, 1]. Then the projection pV : {W ∈ Mk(d) : V

∗W = 1} → G(k, d) is a chart
and ũ = p−1

V ◦ u will be the desired one-periodic lift. The existence of V can be obtained
by similar arguments.20

ut
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