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Abstract. It is well known that getting an estimate of the number of integral points in right-angled
simplices is equivalent to getting an estimate of the Dickman—de Bruijn function v (x, y) which
is the number of positive integers < x and free of prime factors > y. Motivated by the Yau Geo-
metric Conjecture, the third author formulated a number-theoretic conjecture which gives a sharp
polynomial upper estimate on the number of positive integral points in n-dimensional (n > 3) real
right-angled simplices. In this paper, we prove this conjecture for n = 5. As an application, we give
a sharp estimate of the Dickman—de Bruijn function v (x, y) for 5 <y < 13.
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1. Introduction

Let A(ay, ..., a,) be an n-dimensional simplex described by

X1 Xn

— 4+ —==<1 x,....,x% =0, (1.1

aj an
where a; > --- > a, > 1 are real numbers. Let P, = P(ay,...,a,) and Q, =
Q(ay, ..., a,) be the numbers of positive and of nonnegative integral solutions of (1.1)
respectively. They are related by the formula

Qai,...,an) = Pa(1 +a),...,ax(1 +a)), (1.2)

where a = 1/a; + --- + 1/a,. Estimates of the number of integral points have many
applications in number theory, complex geometry, toric varieties and tropical geometry.
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One of the central topics in computational number theory is to estimate v (x, y), the
Dickman—de Bruijn function (see [4], [5], [6], [10]). Let S(x, y) be the set of positive inte-
gers < x composed only of prime factors < y. The Dickman—de Bruijn function ¥ (x, y)
is the cardinality of this set. It turns out that the computation of ¥ (x, y) is equivalent to
computing the number of integral points in an n-dimensional tetrahedron A(ay, ..., a,)
with real vertices (a1, 0,...,0),...,(0,...,0,a,). Let p; < --- < p, denote all the
primes up to y. It is clear that plll x -pi{l < x ifand only if /1 log p; + - -- + [, log p,, <
log x. Therefore, ¥ (x, y) is precisely the number Q,, of (integer) lattice points inside the
n-dimensional tetrahedron (1.1) with a; = logx/log p;, 1 <i <n.

Counting the number Q,, has been a challenging problem for many years. Much ef-
fort has been put into developing an exact formula when ay, ..., a, are positive integers
(see [2], [1], [7], [14]). Mordell [21] gave a formula for O3, expressed in terms of three
Dedekind sums, in the case that aj, az, a3 are pairwise relatively prime; Pommersheim
[22] extended this formula to arbitrary ay, az, a3 using toric varieties, and so forth. More-
over, the problem of counting the number of integral points in an n-dimensional tetrahe-
dron with real vertices is a classical subject which has attracted a lot of famous mathe-
maticians. Hardy and Littlewood wrote several papers that applied Diophantine approxi-
mation [11]-[13]. A more general approximation of Q, was obtained by D. C. Spencer
[23], [24] via complex function-theoretic methods. Also in the context of estimating the
Dickman—de Bruijn function, a;, 1 <i < n, are not always integers.

According to Granville [9], an upper polynomial estimate of P, is a key topic in
number theory. Such an estimate could be applied to finding large gaps between primes,
to Waring’s problem, to primality testing and factoring algorithms, and to bounds for the
least prime k-th power residues and non-residues modulo n. Granville [9] obtained the
following estimate:

1
P, <—a;---a,. (1.3)
n!
This estimate of P(ay, ..., a,) is interesting, but not strong enough to be useful, particu-

larly when many of the a;’s are small [9].

In geometry and singularity theory, estimating P, for real right-angled simplices is
related to the Durfee Conjecture [27]. Let f : (C",0) — (C, 0) be a germ of a complex
analytic function with an isolated critical point at the origin. Let V = {(z1, ..., z,) € C" :
f(z1, .., zn) = 0}. The Milnor number of the singularity (V, 0) is defined as

w=dmC{zy, ..., z.}/(fzys s f2),
and the geometric genus p, of (V, 0) is defined as
pe = dim H" (M, Q")

where M is a resolution of V and ©"~! is the sheaf of germs of holomorphic n — 1-forms
on M. In 1978, Durfee [8] made the following conjecture:

Durfee Conjecture. n!p, < u, with equality only when p = 0.
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If f(z1,...,2n) is a weighted homogeneous polynomial of type (ay, ..., a,) with
an isolated singularity at the origin, Milnor and Orlik [20] proved that © = (a1 — 1) - - -
(an — 1). On the other hand, Merle and Teissier [19] showed that p, = P,. Finding a
sharp estimate of P, will lead to a resolution of the Durfee Conjecture.

Starting from the early 1990’s, the authors of [16], [26] and [28] tried to get sharp
upper estimates of P, where a; are positive real numbers. They were successful for n =
3, 4, and 5:
31P3 < f3 = ajapaz — (ajaz + ajas + azaz) + ay + ay,

APy < fo4 = a1azazay — %(alaz% + a1apa4 + a1azas + azazay)
+ Yaaz + a1a3 + ;paz) — 2(a1 + a2 + a3),
5!'Ps < fs = a1axazaqas
— 2(a1axa3a4 + ayazazas + ajazasas + a1azasas + a2a3a4as)
+ %(alaz% + ajaxas + ajazas + axazas)
- %(alaz + ajaz + aras + azaz + axas + azas) + 6(ay +az +az + aq).
They then proposed a general conjecture:
Conjecture 1.1 (Granville-Lin—Yau (GLY) Conjecture). Let P, be the number of ele-

ments of {(x1,...,x,) € Z : x1/ay + -+ + xp/a, < 1}, where Zy = {1,2,...}. Let
n>3.

(1) Sharp Estimate: If ay > --- > a, > n — 1, then

-2
s(n,n _
Art, (1.4)

l_

s(n,n—1 % —1-1
nPy < fyi= A8+¥A?+ZT)
" = ("7)
where s(n, k) is the Stirling number of the first kind defined by the generating function

n

x@ =D x—n+1) =) s i,
k=0
and A} is defined as

TS D o—

1<ij<--<ix<n

fork =1,...,n — 1. Equality holds if and only ifa; = - - - = a,, = integer.
(2) Weak Estimate: If a; > --- > ap > 1 then
n
P, < g = [ [(@ — 1. (1.5)

i=1
These estimates are all polynomial in a;. They are sharp because equality holds true if
and only if all the a; take the same integer value. The weak estimate in (1.5) has recently
been proven [29]. Before, [15], [16], [26], [28] showed that (1.5) holds for 3 < n < 5.
The sharp estimate conjecture was first formulated in [17]. In a private communication
to the third author, Granville formulated that conjecture independently after reading [15].
Again, the Sharp GLY Conjecture has been proven individually for n = 3,4, 5 in [27],



1940 Ke-Pao Lin et al.

[28], [16] respectively. It has also been proven generally for n < 6 in [25]. However, for
n = 7, a counter-example has been given.
Counter-example to the Sharp GLY Conjecture. Take n = 7. Leta; = -+ = a¢ =
2000 and a7 = 6.09. Consider the following 7-dimensional tetrahedron:

X1 X6

. x7
. (), 1<i< 77 . — <
N =t= 2000 T T 2000 T 6.09

P7 has been computed to be 3.9656226290532420 - 1016, Meanwhile, f7 = 1.99840413 -
1020 when a; = - - - = ag = 2000, a7 = 6.09. Thus,

f7—71P; = —2.69675 - 10'°.

This implies that the sharp estimate of the GLY Conjecture fails in the case n = 7.

The breakthrough in the subject is the following theorem by Yau and Zhang [29]
which states that the Weak GLY Conjecture holds for all n > 3.

Theorem 1.1 (Yau—Zhang [29]). Forn > 3, leta; > --- > a, > 1 be real numbers.
Then

nP, <(ap—1)---(ap — 1),
and equality holds if and only if a, = 1.

Theorem 1.1 implies the Durfee Conjecture for weighted homogeneous singularities.
However, the Yau—Zhang estimate is not sharp. It is not good enough to characterize
the homogeneous polynomial with an isolated singularity. For that, the third author made
the following conjecture in 1995.

Conjecture 1.2 (Yau Geometric Conjecture). Let f : (C*' 0) — (C,0) be a germ
of a weighted homogeneous polynomial with an isolated critical point at the origin. Let
w, Pg and v be respectively the Milnor number, geometric genus and multiplicity of the
singularity V.= {z : f(z) = 0}. Then

©—h) > (n+ )P, (1.6)

where h(v) = (v — D)"T! —v(v — 1) --- (v — n), and equality holds if and only if f is a
homogeneous polynomial.

The Yau Geometric Conjecture was confirmed for n = 3,4, 5 in [27], [16] and [3] re-
spectively.

In order to overcome the difficulty that the Sharp GLY Conjecture is only true if a,
is larger than y(n), a positive integer depending on 7, the third author proposes to prove
a new sharp polynomial estimate conjecture which is motivated by the Yau Geometric
Conjecture. The importance of this conjecture is that we only need a,, > 1 and hence the
conjecture will give a sharp upper estimate of the Dickman—de Bruijn function v (x, y).

Conjecture 1.3. Assume thatay > --- > a, > 1, n > 3. If P, > 0, then
n'Py <(ag—1-(ap—1) — (@ —D"+ap(@—1-(an—(n—1), (1.7)

and equality holds if and only if a1 = - - - = a,, = integer.
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Obviously, there is an intimate relation between the Yau Geometric Conjecture (1.6) and
the number-theoretic conjecture (1.7). Recall that if f : (C",0) — (C, 0) is a weighted
homogeneous polynomial with an isolated singularity at the origin, then the multiplicity v
of f at the origin is given by inf{n € Z : n > inf{wy, ..., w,}}, where w; is the weight
of x;. Notice that in general, w; is only a rational number. In case the minimal weight is
an integer, the Yau Geometric Conjecture (1.6) and the number-theoretic conjecture (1.7)
are the same. In general, these two conjectures do not imply each other, although they are
intimately related.

The number-theoretic conjecture (1.7) is much sharper than the Weak GLY Conjecture
(1.5). The estimate in (1.7) is optimal in the sense that equality occurs precisely when
a; = --- = a, = integer. Moreover, the Sharp GLY Conjecture (1.4) does not hold for
n = 7 as the counter-example shows. However, the number-theoretic conjecture (1.7)
does hold for this example.

By the previous works of Xu and Yau [26], [28], it was shown that the number-
theoretic conjecture is true for n = 3. The case n = 4 has been shown in our previous
work [18]. The purpose of this paper is to prove that the number-theoretic conjecture is
true for n = 5. The basic strategy for n = 4 and n = 5 is the same. But the feasibility
of the strategy has been a challenge, even if the dimension has only increased by 1. As
we will see in our proof, the number of subcases has increased from 4 (when n = 4)
to 11 (when n = 5). Showing all subcases one by one would require tremendously in-
volved computations. And it would be tedious to the reader. In this paper, we simplify the
11 subcases to five major classes (k = 1, 2, 3,4 and a5 > 5), and modify the former four
classes with a delicate analysis of A;’s domain, where A; = a; (1 — k/as),i = 1,2,3,4,
to deal with the subcases one by one. Furthermore, we give an explicit formula for the the
Dickman—de Bruijn function ¥ (x, y) when 5 < y < 13. Mathematica 4.0 is adopted for
some involved computations. The following are our main theorems.

Theorem 1.2 (Number-theoretic conjecture for n = 5). Leta; > --- > a5 > 1 be real
numbers. Let Ps be the number of positive integral solutions of x1/a1 + - - -+ x5/as < 1.
If Ps > O, then

120Ps < (a; — 1) -+~ (as — 1) — (as — 1)°
+as(as —1)---(as — 4),

and equality holds if and only if ay = - - - = a5 = integer. This can also be expressed as

120Ps < ajazazagas — (ayaxazas + ajarasas + arazasas + ajaszasas) — SagL
+ (a1a2a3 + araxaq + ayazas + arazaq + ayazas + ajaqas
+ arazaq + arazas + arasas + azaqas) + 25a§’
+ (a1az + a1a3 + ara4 + aras + axaz + axas + aras + azas + azas + asas)
—40a§ — (a1 + ax + a3z + ag) + 20as. (1.8)
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Theorem 1.3 (Estimate of the Dickman—de Bruijn function). Let ¥ (x, y) be the Dick-
man—de Bruijn function. We have the following upper estimate for 5 <y < 13:

(i) when5 <y < 7andx > 5, we have

1
Yx,y) < - (logx + log 15)(log x + log 10)(log x + log 6)

1
- 6{log210g310g5

[(log x + log 6)°

log®5
— (logx + log6 +log5)(log x + log 6)(log x + log 6 — log 5)]};

(i) when7 <y < 11 and x > 11, we have

1 1
y) < — 1 log 105)(1 log 70
Yx,y) = 24{10g210g310g510g7(0gx+ 0g 105)(log x + log 70)

- (logx 4+ log42)(log x + log 30)

a7 [(log x +1og 30)* — (log x 4 log 7 +log 30) (log x + log 30)
og

- (log x +1og 30 — log 7)(log x + log 30 — 2log 7)]};

(i) when 11 <y < 13 and x > 13, we have

I 1
)< — ] log 1155)(1 log 770
Vi) = 120{log2log3log510g7logll(ng+ og 1155)(log x +log 770)

- (log x 4+ 1log 462)(log x 4 log 330) (log x 4 log 210)

- [(logx + log 210)° — (logx +log 11 + log210)
log> 11

- (logx +1og210)(log x + log210 — log 11)

- (logx +10g210 — 2log 11)(log x 4+ log210 — 3 log 11)]}.

2. Proofs of theorems

2.1. Proof of Theorem 1.2

Our strategy is to divide the proof into five cases:
(1) as =5;

2) 5> a5 >4,

(3) 4=as>3;

4) 3>as5>2;

5) 2=>as5>1.

To prove case (1), we only need to recall the main theorem in [16].
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Theorem 2.1 ([16]). Leta; > --- > a5 > 4 be real numbers. Then

120P5 < ajarazasas — 2(ajarazas + ajazasas + araszasas + ajazasas + ajazazas)
+ %(0102613 + ajazas + arazas 4 azazas)

- %(alaz +aiaz + ajas + azaz + azas + azay) + 6(ay +ax +az +as), (2.9)
and equality is attained if and only if a1 = - - - = as = integer.

Case (1) is solved by showing that our sharp upper bound is larger than or equal to theirs,
and equality holds if and only if a; = - - - = as.

Lemma 2.1. When as > 5, R.H.S. of (1.8) > R.H.S. of (2.9).

Proof. Let A; = aj/as, i = 1,2,3,4. From the condition a; > --- > as > 1, we
have A; > 1,i = 1, 2, 3, 4. Now, subtracting R.H.S. of (2.9) from R.H.S. of (1.8), and
expressing the result in terms of A;,i = 1, 2, 3, 4, and as, we obtain

A1 :=RH.S. of (1.8) — RH.S. of (2.9)
= A1A2A3A4ad + (A1 A2 A3 + A1 ArAs + A1 A3 As + Ay A3 Ag) (af — 3La3)
+ (A1A2 + A1A3 + A1As + A2 Az + AsAs + A3A4)(€15 20%)

+ (A1 + Ay + Az + A4)(—a5 — Sas) + (—5a5 + 25a5 — 40(15 + 20as).
(2.10)

The idea is to show that for all a5 > 5, the minimum of Ajin A} > Ay > A3 > Ay > 1
occurs at Ay = Ap = A3 = Ay = 1, and Ay]a,=a,=a;=4,=1 = O forall as > 5. Note
that A1 is symmetric with respect to A, Az, A3, As. We have

————=a5;>0
0A10A20A30A,
53
for as > 1. It follows that W is an increasing function of A4 for as > 1 and
A4 > 1. Hence its minimum occurs at A4 = 1, and

33A1

A0/, L = [A4a§ + (ag - %ag)“m:l = ag(2a5 - 3741) >0
3 A=

3
for as > ﬂ . It follows that W > 0 for A4 > 1 and as > . Note that -7 aA aA

> (0 for A3 > 1 and as > ﬂ

Moreover, 32 ? o is increasing with respect to Az and A4 for A3 > A4 > 1 and a5 > ﬂ.

Hence its minimum occurs at A3 = A4 = 1, and

3
is symmetric with respect to A3 and A4. Thus, M%ﬁ

LEYN|

9A19A7 | 4oy 1: [A3A4a§+(A3+A4)( Zlag’)—}-(ag—f- e 2)]|A3 A=l
3=A4=

4 29 22 2
5

3 2 2 29 22
= 3as — 5a; + Fa =a5(3a5 — 7a5+T) >0
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for as > 5, since the largest solution to 3a§ — %a + % = O is around 4.26. It follows that
2

az 31]4 >0 for A3, A4 > 1landas > 5. As W is symmetrlc with respect to Aj, A3z, Aa,

we also get A dlA > 0 for Ap, A4 > 1 and as > 5, and A dlA > 0 for Ay, A3 > 1 and

as > 5. Therefore, gﬁl is an increasing function of A;, Az, A4 for Ay, A3, A4 > 1 and

as > 5. Hence its minimum occurs at Ay = A3 = A4 = 1, and
A
— = [A2A3A4a5 + (A2A3 + ArAs + A3As)(as — 3Lad)
aAl Ar=A3=A4=1
+ (A2 + A3 + Ag) (a3 + Fa3) + (=a5 = 5a5)][ 4 4 a,ey

= 4a 4—&a;’+21a5—5a5—a5(4a5 79 2+21a5—5)>0

foras > 5, since 4a3 — 81 az+2las—5 > a5(4a5 841 as+20) = 4das[(as— gé) %gg}t],

and £ (as) := (as — 2—;) — Ml > £(5) =2 > 0foras > 5.1t follows that Ml >0
for Ay, Az, Ay > landas > 5. As A} is symmetrlc with respect to Aq, Ao, A3, A4, its
minimum occurs at Ay = Ap = A3 = A4 = 1, and

Atla =Ar=A3=44=1 =0

for as > 5. Therefore, A1 > O whena; > a» > a3z > a4 > a5 > 5,and A; = 0 if and
only if a; = a» = a3 = a4 = as. Equality holds in (2.9) if and only ifa] = --- = a5 =
integer, as also does equality in (1.8). O

For cases (2) to (5), we adopt a similar strategy: the 5-dimensional tetrahedron will be
partitioned into 4-dimensional ones [25]. We have

X1 X2 X3 k
—+—+—+—+— <1,
ai aj as as as
X1 X2 X3 X4

1, 2.11
ar(l—kjas) | ax(l —kjas)  as(1 —kjas) | as(l —kjas) — @11)

fork =1,..., las], where |o] is the largest integer less than or equal to o. Let P4(k) be
the number of positive integral solutions of (2.11). Then

las|
= Z Py(k). (2.12)

According to Theorem 1.1 in [18], if P4(k) > 0O, then

SIPy(k) < S[(a1(1 —k/as) — D (ax(1 —k/as) — 1)(a3(1 —k/as) — 1)(as(1 —k/as) — 1)
— (as(1 —k/as) = 1)*
+as(1 —k/as)(as(1 —k/as) — 1)(as(1 —k/as) —2)(as(1 —k/as) —3)].
Suppose there exists some kg, 1 < ko < |as], which is the largest integer such that

Ps(ko) > 0 and Py(k) = O forall kg < k < |as]. In fact, the integer ko does exist due to
the condition Ps > 0. By (2.12), we have
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ko
51Ps =5 " Py(k)
k=1

ko
<5 [@ (1-k/as) — D(az(1—k/as)— 1) (a3 (1~ k/as)— 1) (as(1 —k/as) — 1)
S @1k /as)— 1)
+ as(1—k/as) (as(1—kjas)— 1) (as(1—k /as) —2)(as(1—k/as)—3)].  (2.13)

In order to prove (1.8), it is sufficient to show that R.H.S. of (1.8) > R.H.S. of (2.13).
For cases (2) to (5), equality in (1.8) is never attained: On the one hand, Ps > 0 will not
be satisfied if a; = ap» = a3 = a4 = a5 < 5. On the other hand, we could show that
R.H.S. of (1.8) is strictly larger than R.H.S. of (2.13) in these cases. Therefore, no such
ay > --->asandas € (1, 5) could make the equality in (1.8) happen.

Now, for case (5), there are two levels k = 1 and k = 2. It is easy to see that
P4(2) = 0. From the condition Ps > 0, we know that the level k = 1 can have no positive
integral solution, i.e. P4(1) = Ps > 0. Itis also implied that the smallest positive integral
solution (1, 1, 1, 1, 1) must be its solution, which gives 1/a; + 1/a> + 1/a3 + 1/as <
1—1/as =:a € (0, %], since as € (1,2]. Let A; = a;a, i = 1,2, 3,4, and notice that

A1 >4, A>3, A3>2, As4>1, (2.14)

since 1/A4 < 1,2/A3 < 1/A3+ 1/As < 1,3/Ay < 1/A> +1/A3+1/A4 < 1 and
4/A1 <1/A1+1/A> +1/A3 4+ 1/A4 < 1. (2.13) can be rewritten as

51Ps = 51P4(1) < 5[(A1 — (A2 — 1)(A3 — D(Ag — 1) — (A4 — D*
+ A4(As — (A4 — 2)(A4 = 3)]. (2.15)
To prove (1.8) in this case, it is sufficient to show:
Lemma 2.2. When 1 <as <2, RH.S. of (1.8) > RH.S. of (2.15).

Proof. Subtracting R.H.S. of (2.15) from R.H.S. of (1.8), writing the expression in terms
of A;,i =1, 2,3, 4, and o, and multiplying it by (1 — a)4, we get

1 3 3
— — = 4+ 2 —6+20a — 3002 + 200> — 5a*
a3 o2 o«

Ny = A1A2A3A4(
+ (A1A2A3 + A1A2A4 4+ A1 A3As + A2 A3Ay)
1 3
: (——2 + = +2— 19 + 30a” — 200’ +5a4)
o o
+ (A1A2 + A1As + A1As + As Az + As Ay + A3Ay)
1
: (— — 8+ 230 — 3la® + 200> — 50/‘)
o
+ (A1 4 As + A3)(4 — 170 + 27 — 19¢° + 5a*)
+ A3(10 — 400 + 600 — 40a® + 10a*)
+ A2(=25 4 100a — 15002 4 100a® — 25a*)
+ A4(14 — 57a + 87a® — 590> + 15a*) + (=5a + 200 — 200%).
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The idea is to show that for all « € (0, 1/2], the minimum of A, in A; > 4,
Ay > 3, A3 > 2, A4 > 1loccurs at Ay = 4, Ap = 3, A3 = 2, A4 = 1, and
A2|A]:4,A2:3,A3:2,A4:1 > (O for all @ € (0, 1/2]. We have

94 Ay 1 3 3 2 3 4
%2 2 Y 64200 — 300> +20a° —5
0A10A20A0A; o of T Ot e0e e At moe

1
= (-’ -5+5% >0 (2.16)
o

for @ € (0,1). In fact, let f(a) := 1 — 53 + 5a*. Then f'(a) = 200> — 150% =
Sa?(4a—3), which implies that f'(cr) < Ofora € (0, 2], while () > Ofora € (2, 1).
Thus, minge(,1) f (@) = f(3) = 12 > 0. Therefore, f(a) > 0 for & € (0, 1). It follows

= 256
3 A, . . . . .
that TA 54,94, 1S an increasing function of A4 for « € (0, 1) and A4 > 1. Hence its

minimum occurs at A4 = 1, and

3N, 1 3 3 2 3 4
- =|A4| = — =+ — —6+20a — 30 200” — 5
TATIAIAS 4 |: 4<a3 o2 +a + 20« o” + 20a a’)
1 3
+<——2+—+2—19ot+30a2—20a3+5a4>]
o’ o« Ag=1
1 4
=—=@-1)*">0 (2.17)
o

for @ € (0, 1). It follows that sz;% > 0for Ay > 1 and @ € (0, 1). Note that
32A2

, o Phy
3494, 18 symmetric with respect to A3 and A4. Thus, A 0AIA; 0 for A3 > 1 and
3%,

o € (0, 1). Moreover, 3A9A; is increasing with respect to A3 and A4 for Az > Ag > 1
and o € (0, 1). Hence its minimum occurs at A3 = A4 = 1, and

1 3 3

9%A
z = [A3A4<—3——2+——6+20a—30a2+20a3—5a4>
A3=A4=1 o o o

0A10A;

13 2 3 4
+ (A3 + A —— + = +2 — 19« + 30a” — 20a” + S
o o

1
+(— — 8+ 23« — 31a? + 200> — 5a4)]
o

Ay=Ag=1

1
— (14 a) >0 2.18)
o

for a € (0, 1). It follows that ;jg;z > 0for A3 > Ay > land @ € (0, 1). As % is
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2
symmetric with respect to Aj, Az, A4, we also get % > 0 for Ap > A4 > 1 and
2 N
a € (0,1), and ai1§i4 > 0for A, > A3 > 1 and @ € (0, 1). Therefore, g—ﬁf is an

increasing function of Aj, A3, A4 for Ay > A3 > A4 > 1 and @ € (0, 1). Hence its
minimum occurs at Ap = A3 = A4 = 1, and

3 3

0Ny _ 1 5 3 4
— =|AyA3A4 —3——2+——6+2()oz—30a + 20a” — S«
Ay=As=Ay=1 o o o

0A,

1 3
+ (A2A3 + AryAq + A3A4)<——2 + = 42— 190 4 300 — 200> + 5a4)
o o
1
+ (Ay + Az + A4)(— — 8+ 23c — 3la® + 200> — 5a4)
o

+ @4 =170 +270% — 190> + 5054):|

Ar=As=A4=1

1
=$(—1+a)6>0 (2.19)

for & € (0, 1). It follows that 552 > 0 for Ay > A3 > Ag > land € (0, 1). As Ay is
d

symmetric with respect to Ay, Ay, A3, we also have 3—ﬁ§ > 0for Ay > A3 > Ag > 1,

and g% > 0 for Ay > Ay > A4 > 1. Moreover,

33A2
3 =
A4

10(=1 +a)* >0 (2.20)

92N,
9AZ
a € (0, 1). Thus, its minimum occurs at A4 = 1, and

for o € (0, 1). It follows that is an increasing function of A4 for A4 > 1 and

%A
== = [6A4(10 — 40« + 600> — 400> + 10a*)
IAZ | 4=
+2(=25 + 1000 — 1500” + 1002’ — 25ah)]|, |
=10-1+a)*>0 (2.21)

2 .
for @ € (0, 1). It follows that BaAAZZ > 0 for Ay > 1 and ¢ € (0, 1). Thus, g% is
4
an increasing function of A4 for A4 > 1 and o € (0, 1). Moreover, it is an increasing
function with respect to A1, Az, A3, Asfor A > A > Az > A4 > 1, € (0, 1), since
it is symmetric with respect to A, A, A3. Taking condition (2.14) into consideration, the
minimum of % occurs at A1 =4, A, =3,A3 =2, A4 =1, and
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LVAY) 1 3 3 2 3 4
—_— =|A1ArA3 —3——2+——6+20a—300t +20a” — S5a
8A4 A1=4,A,=3,A3=2,A4=1 o o o

1 3
+ (A1As + A As + A2A3)(——2 + = 42— 19a + 30a? — 200> + 5a4>
o o

1
+ (A1 + Ay + A3)<— — 8+ 230 — 31a? + 200> — 5a4>
o

+ (14 — 57a + 870 — 59 + 15a*)
+3A3(10 — 40a + 60a> — 40a® 4 10a*)

+2A4(=25 + 100 — 1500 + 1000 — 25044)}

A1=4,Ar=3,43=2,A4=1

1
= —— (14 0)’(24 — 260 + 9a* — 41a” + 40a*) > 0 (2.22)
o

for a € (0, 2). In fact, let g(or) := 24 — 26 + 9o — 41a> + 40a*. Then g'(0r) =
—26 + 18a — 12302 + 1600® < —8a — 12302 + 160 = a(—8 — 123a + 160a?).
Moreover

h(a) = —8 — 123a + 16002 = 160(a — 123)7 — 229 _ 0 fora € (0, 3),

since h(0) = —8 and h(%) = —4, maxae(0 A) h(ae) = —4 < 0. Thus, g’(a) < 0 for
°5

a € (0, %) It follows that g(a) is a decreasing function in « € (0, %) Moreover, g(o) >
g(2) = 332 > Ofora € (0, 2). It follows that 532 > 0 for A} > 4, Ay > 3, A3 > 2,
Ay > land a € (O, ‘51) Therefore, A is an increasing function of A1, Az, Az, A4 for
Al >4,A)>3,A3>2,A4>1anda € (0, %) Thus, its minimum occurs at A| = 4,
Ay =3,A3=2,A4 =1, and

AZ |A1 =4,A,=3,A3=2,A4=1

1
= —— (=24 + 1220 — 257a” 4 289 — 180a* + 45 + 102°) > 0
o

fora € (0, 3] Indeed, let f () 1= —24+ 1220 —257a® +2890> — 180cr* + 450> +10a®.
Then f® () = 1734 — 4320 + 27000> 4 12000 > 1734 — 4320 + 27000> =
2700(a—%)*+6 > Ofora € (0, 1] Thus, f”(a) is increasing ina € (0, 1] and " (a) <

f”(%) = —% < 0.So f/(a) is decreasing in « € (0, %] and f'(a) > f’(%) = % > 0.

This implies that f(c) is increasing in @ € (0, 5] and f(a) < f(3) = —12 < 0.
Therefore, f(a) < 0 fora € (0, %] It follows that Ay > O for A1 >4, A, > 3, Az > 2,
As>lande € (0, 1] u!

For case (4), there are three levels: k = 1, k = 2 and k = 3. Also it is easy to see that
P4(3) = 0. The condition Ps > 0 guarantees that P4(1) > 0, but the positivity of P4(2)
is unknown. Therefore, we split this case into the following two subcases:
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(4a) P4(2) =0 (i.e. ko = 1in (2.13));
(4b) Ps(2) > 0 (i.e. ko = 2 in (2.13)).

For subcase (4a), the proof is quite similar to that in case (5). In the present case
Ps = P4(1) > 0, thus (1, 1, 1, 1, 1) is the smallest positive integral solution, i.e. 1/a; +
1/ay + /a3 + 1/ay < 1 — 1/as =: « € (3, %], since as € (2, 3]. This yields A| > 4,
A2 >3, A3 > Ay > 1%, since A; = aja > asa = 1% With a € (3, 3], itis easy to
check that 1 < ﬁ < 2. Therefore, it is sufficient to show that A, > 0 in the range

A1 >4, Ay>3, A3=>2, As> (2.23)
fora € (% 3] In the proof of Lemma 2.2, all the computations of the partial deriva-
tives in (2.16)—(2.22) are valid in the even larger range (2.14) for o € (0, g) so they
hold in the new range (2.23) for a € (— 2]. We only need to show the positivity of

Aol A =4, Ay=3,As=2 Ay=12 foroc € ( ] Taking condition (2.23) instead for (2.14) for
Aj,i=1,2,3,4, ylelds

1
Dol g =, =3 1m0, pg= gty = (24 = 3% — 820 + 2233 — 152a* 4 200°) > 0

for @ € (%, 3] In fact, let f(a) := 24 — 39a — 82a% + 223a® — 152a* + 20a°.

Then f”(a) = —162 + 1338a — 1824a? + 400 > —162 + 1338« — 16240 =
—1624(cr — £9)? 4 BH _: o(a), and g(a) > g(3) = 2 > 0. S0 f"(@) > O for
o € (% 3] Thus, f'(«) is increasing in o € (%, %], ie. fl(@) < f’(%) = —881—5 < 0.

1
So f'(a) < 0 fora € (% %] It follows that f(«) is decreasing in o € (% %], and
f@) > f(3) = 1 > 0. Therefore, f(a) > 0, fora € (1, 2].

For subcase (4b), P4(2) > 0 which implies that (1, 1, 1, 1, 2) is the smallest positive
integral solution for the level k = 2. Sowe have 1/a1+1/ax+1/az+1/as < 1-2/as =
B € ( ] sinceas € (2,3].Let A; = a;8,i =1, 2, 3, 4, and notice that condition (2.14)
still holds here. (2.13) can be written as

5!Ps = 51(P4(1) + P4(2))
() ) ) ()
28 28 28 28

4
() o ) ) )
2p 2 "2 2p 2p
+ (A=) (A2—D(A3—D)(As— D= (As—D*+ A4 (A4~ 1) (A4—2)(A4—3)].  (2.24)

It is sufficient to show:

Lemma 2.3. When2 < as <3, RH.S. of (1.8) > RH.S. of (2.24).
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Proof. Subtracting R.H.S. of (2.24) from R.H.S. of (1.8), writing the expression in terms
of A;,i =1,2,3,4,and g, and multiplying by (1 — B)° 8%, yields
A3 = A1A2A3A4
(———ﬂ+l3ﬁ+4,3 %ﬂ4+223/3 195,8+195/3 ﬂ+%69)
[.5pt] + (A1A2A3 + A1 A2As + A1 A3A4 + A2 A3 Ag)
_(_%ﬁ_’_;‘ﬁZ_%/334_%’34_22/35_’_1:;1’36 195;‘5 +105ﬂ ,39)
[.5pt] + (A1A2 + A1 Az + A1Ag + A2 A3 + A2 Ag + A3 Ayg)
-(—;ﬁﬂ2+%/33—¥/34+%/35 187ﬁ+2o9ﬁ “5ﬂ+25ﬁ)
L5pt]+ (A1 + Az + A3 (387 —28% — 28° +488° — 1287 + 3488 — L5p%)
+Ai(§ﬁ—%ﬂ2—%ﬂ3+%ﬂ4—50ﬂ5+185,8 @ﬂ7+105ﬂ %ﬂ9)
+A‘2‘(_24_5ﬁ2+%ﬂ3_%,34+¥’35_%ﬁ6+1025/3 %'38 %ﬁ())
+Ay(B8 — 128" — BB +1488° — 3267 1 10488 — L 8°)
+ (—408° + 408%).
The idea is to show that for all 8 € ( , 3] the minimum of A3in A} >4, Ay, > 3, A3 > 2

and A4 > loccursat Ay =4, Ay =3, A3 =2and Ay = 1, and A3|4,=4,4,=3,4;=2,4,=1
> (0forall 8 (O, %] We have

34A3
3A10A20A30A4
=16 TP+ EF I - B+ - PO+ P R+ B
= L (=1+p*11+ B — 1082 + 108> — 658* + 858°) > 0 (2.25)

for B € (0, 2). In fact, 1148 —10p%+108> —658*+856% > 11-98 558> +858° =
f(B) for B € (0, 2). Then f'(B) = —9—165p%+4258* = 425(p*— 17O)z—ﬂ Thus,
(B < f/(%) = —ﬂ <Ofor B € ( ) which implies f () is a decreasing function,
ie. f(B) > f(%) % > 0 for B € ( 3) It follows that ﬁ% is an increasing

function of A4 for 8 € (O, 5) and A4 > 1. Hence its minimum occurs at A4 = 1, and

333
3A10A20A3 A4 .
:[A (%é /3+135 +4/3 %ﬂ4+223,3 @1364_@[3 405/3+ ,39)
(—§ﬁ+zﬂ —%ﬁ +24—7;64—22ﬂ _'_181'3 195;37+105ﬂ 4513 )]|A4:1
— (=141 + A1 =58+ 58 +58%) > 0 (2.26)
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for B € (0, 2), since 11 — 58 + 582 + 583 > 8 + 582 +58° > Ofor,B € (0,2). It
follows that m > 0 for A4 > 1 and B € (0, 5) Note that 55554 A 3 35 is symmetric
with respect to A3 and Ag4. Thus, Mf’;ﬁ > 0 for A3 > 1and B € (0, 3). Moreover,

2
3‘31% is increasing with respect to A3z and A4 for A3 > A4 > land 8 € (O, %) Hence

its minimum occurs at A3 = A4 = 1, and

32A3
0A10A) Az=Ag=1
=[AsAs( - BB+ B +387 - BB+ 28— 1260+ 1057 - 4255 1 B27)
A+ AD (=3B + 18— BB+ Pt — 2087+ 1BLEO — 19987 4 10568 _ 4569
+ (1B 38 - B+ R O+ P - 25 By aim
= =1+ B+ (1+58%) >0 (2.27)

2
for B € (0, 2). It follows that 5553 > 0 for A3 > Az4 > land B € (0,2). As 53
ﬁ > 0for Ap > A4 > 1 and
,36( )and&>0forA > A >1andﬂe( )Therefore 983 i an
>’ 5 9A10A, 2 Z 43 Z 5 > 4,
increasing function of Aj, A3, Aq for Ay > A3 > Ay > land B € ( , 5) Hence its
minimum occurs at A = A3 = A4 = 1, and

is symmetric with respect to As, Az, A4, we also get

A3

dA] Ar=A3=A4=1
[A2A3A4(———,3+13ﬂ +4[33 79ﬂ +223ﬁ5 195/36_’_%/3 405/38 )
+(A2A3+A2A4+ A3Ay)

O A e A A N AR/ A 2
+(Ar+ A3+ A (-2 +38° - B+ 5387 - 1B p0 1 2P 7 — 1388 4 22 8°)
+(38° -2 — 25 +4860 — 11287 4 3468 — 15p9)]

Ar=Az=A4=1
= E(=1+pCU+p)(11+56%) >0 (2.28)

for B € ( ) It follows that - 3A3 > 0for Ap > A3 > Ay > land 8 € ( ,5) As A3
is symmetric with respect to A1, Az, Az, we also have g—ﬁz > 0for Ay > A3 > Ay > 1,
and % > 0 for Ay > Ay > A4 > 1. Moreover,
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3
P (38— 38— 380+ 5508+ S~ T 4 - 5
4
=21+’ +38)1+38HB >0 (229

for B € ( , 5) It follows that —23 is an increasing function of A4 for A4 > 1 and
4

B € (0, %) Thus, its minimum occurs at A4 = 1, and

82A3
B_AE‘, Ag=1
= [6A44(38—38> 38"+ 3" —508° + 124 — 1P 57+ 1P - 2p°)
+2A-Fp+ T B e S0 TSR 0]
= —3(—14+B)°BB+4B—p>+28°) > 0 (2.30)

for B € (0, 2), since3+4,3 Br+2B3 >3+4p -3 =3—|—1—7,B > 0for B € (0, 2).
It follows that Af > 0for A4 > land B € (0, ) Thus, W is an increasing function
Aj

of Ay for Ay > 1and 8 € ( , 5) Moreover, it is an increasing function with respect to

A1, Az, Az, Agfor Ay = Ay > A3 > Ay > 1,8 € (0 ,%), since it is symmetric with
respect to A1, Az, A3. Hence its minimum occurs at A}y = Ay = A3 = A4 = 1, and

A3
8A4 A1=Ar=A3=A4=1
= [A1A2A3

(%——,3—{—13/3 +4/3 %'344_223/3 %136_'_%[3 405/3+ ,39)
+ (A1A2+ A1A3 4+ ArA3)
=3B+ - B+ 2287 + @ﬁé - ﬂ/f +1F 8 - $5)
+ (83 —128% - §ﬁ5+148ﬁ6—¥ﬁ7+104ﬂ —%ﬂ )
+3A5(38 - 387 =387 + BB =508 + 120 — 7+ 1265 - L p°)
+2A4(_%,32+%ﬂ3 125ﬁ _'_375,3
875 1025 575 8 125 59
_TIB + ﬂ TIB +Tﬂ ):HA|:A2:A3:A4=1
— (=1 +ﬁ)5(11+54ﬂ+64ﬂ2+66f53+285ﬂ ) >0 (2.31)

for B € (0 ,5) It follows that A3 > 0for Ay = Ay > A3 > A4 > 1and B € (0, %)
Therefore, A3 is an increasing functlon of Ay, Ay, A3, Ag,for A1 > Ay > A3 > Ay > 1
and B € (0, 5) Thus, its minimum occurs at A = Ay = A3 = A4 = 1, and taking
condition (2.14) into consideration, we have
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A3\ A =4,A,=3,43=2,A4=1 > D3]A;=A,=A3=A4=1
= — (= 1+B)1+B)(—14+38)(—11+ 14843187 — 17287 +115p* —3228° +258°)
>0

for B € (0, 3], since —11 + 148 + 3182 — 17283 + 1158% — 32285 + 258° < —11 +
D43l g3+ 53 -32085 4+ 25 = -2 g3 ApS —oforp e (0,1]
It follows that A3 > Ofor A1 >4, A, >3,A3>2, A4 > 1and B € (O, %] O

For case (3), there are four levels: k = 1,k = 2, k = 3 and k = 4. It is easy to see that
P4(4) = 0. From the condition Ps > 0, we know that P4(1) > 0, but the positivity of
P4(2) and P4(3) is unknown. Therefore, we split this case into three subcases:

(3a) P4(2) = P4s(3) = 0 (i.e. kg = 1 in (2.13));
(3b) P4(2) > 0, P4(3) = 0 (i.e. ko = 2 in (2.13));
(3c) P1(2) > 0, P4(3) > O (i.e. ko = 3 in (2.13)).

For subcase (3a), the argument is nearly the same as that in subcase (4a) and case (5).
In the present case Ps = P4(1) > 0, thus (1, 1, 1, 1, 1) is the smallest positive integral
solution, i.e. 1/ay + 1/a> + 1/a3 + 1/as < 1 — 1/as =: a € (3, 3], since as € (3, 4].

The new range of « helps us to improve condition (2.14) to

A1 =4, A>3, A3>As> (2.32)

l—«a

; C— g - a 23 it i
since A; = a;jax > asa = —a° and 2 < —a = 3 for a € (3, 4]. Therefore, it is

sufficient to show that Ay > 0 in (2.32) for @ € (%, %] As argued in subcase (4a), all

the computations (2.16)—(2.22) hold in the range (2.14) for o € (0, %), so they hold in
(2.32) fora € (%, %] It only remains to show the positivity of Az|4, =4 4,=3,4,

Taking condition (2.32) instead of (2.14) yields

==t

Aol 4 =4 4y=3.4s=y= & = —25+ 1760 — 411a” + 415a° — 160a” > 0

fora € (3, 3] In fact, let f(a) := —25 + 1760 — 411a + 41503 — 160a*. Then
83 \2 881 2 3

f"() = —822 + 24900 — 19200 = —1920(a — 3)" — 1L < 0, fora € (3, 3].

Thus, f'() is decreasing in o, and f'(a) < f'(3) = —%% < 0. Therefore, f(c) is

decreasing in @ € (% %] and f(a) > f(%) = % > (O fora € (% %]

For subcase (3b), the proof is nearly the same as in subcase (4b). In the present case
Ps = Ps(1) 4+ P4(2) > 0, thus (1, 1, 1, 1, 2) is the smallest positive integral solution for
the level k = 2,i.e. 1/ai+1/ay+1/az+1/as < 1-2/as =: p € (3, 5] since as € (3, 4].
Let A; = a;B,i = 1,2, 3,4. The new range of 8 helps us to improve condition (2.14) to

2
Al >4, A>3, A3>2, A421ﬁ'8,

(2.33)

since A; = a; > asp = 125 With § € (

Therefore, it is sufficient to show that Aj

], it is easy to check that 1 < % < 2.

11
302
> 0in (2.33) for B € (3. 3] In the proof
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of Lemma 2.3, all the computations of the partial derivatives in (2.25)—(2.31) are valid
in the even larger range (2.14) for g € (0, 2), so they hold in the new range (2.33)

2,A4=ﬁ for

for B € (% %] We only need to show the positivity of A2|A1=4‘A2=3’A3= 2%

B € (3. 1] Taking condition (2.33) instead of (2.14) yields
A3 |A1 =4,Ar=3,A3=2,Ag=L,

B
= B(—1+ B)(—24 + 568 — 2687 — 655> +2228* — 25685 +288° + 14587) > 0

fora € (. 1]. Indeed, —24 + 568 — 2682 — 658° +2228* — 256° +284° + 14587 <
—24+568-26p%—65p3+2228% -8B 85 < 244565262653+ 1341 g 25 —24+
56p—264>+%5 B < —24+566 - % =1 f().and f(B) = — K (B—557) + 1567 -
Thus, f(B) < f(3) = —1o3 < Ofor B € (3. 5].

For subcase (3c), P4+(3) > 0, which implies that (1, 1, 1, 1, 3) is the smallest positive
integral solution for the level k = 3. So we have 1 /a1 +1/ax+1/az+1/as < 1-3/a5 =:
y € (0, 4—1‘], since as € (3,4]. Let A; = a;y,i = 1,2, 3,4, and notice that condition
(2.14) still holds here. (2.13) can be written as

51Ps = 5I(Py(1) + Ps(2) + P4(3))
2 2 2 2

<sl (a2 S ) (a2 ) (a2 1) (a2
3y 3y 3y 3y

2 4 2 2 2 2
_(A4ﬂ_1) +A4ﬂ(A4ﬂ_1)<A4ﬂ_2>(A4ﬂ_3>
Y 3y 3y Y 14

142 142 142 142
a2 ) (a2 ) (a2 g ) (a2
3y 3y 3y 3y

142 4 142 142 142 142
—| A4 + )/_1 + Ay 2y Ay + J/_] A4ﬂ—2 A4ﬂ—3
3y 3y 3y 3y 3y

+ (A= D(Ay— D(A3—1)(Ag— 1) — (Ag— 1)+ A4 (A4 — 1)(A4—2)(A4—3)]
(2.34)
It is sufficient to prove
Lemma 2.4. When 3 < as <4, RH.S. of (1.8) > R.H.S. of (2.34).
Proof. Subtracting R.H.S. of (2.34) from R.H.S. of (1.8), writing the expression in terms
of A;,i =1,2,3,4, and y, and multiplying by (1 — y) y*, yields

Ay :=A1Ar2A3A4

77 38 62.,2 104,,3 534, 224 5 1300,,6 , 460,.,7  250,.,8 , 490, 9
(- ov+Sr -y v SV - oy - )
+(A1A2A3+A1A2AL+ A1 A3 A+ Ay A3 Ay)

(=dy+2r =5+ Ryt 23y 4 1290 - 19007 1 30y 8 — 2y 9)
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+(A1A2+A1A3+ A1A4+ A2 Az + Ar Ay + A3 Ay)

2 4
(5 SV - Ry I - T - 57

+ (A1 + A2+ A3) By —8y* =8y +52y° — 73y 7 +44y* — 10y°)

+AF(Ry —10y2+ 23+ 2yt =507 + B0y — 32037 1 608 — 40)9)
+AL (Y - By T - 2y 0 Ty T - R4 5 0)
+ As(13y3 —38y% —8y° + 15290 — 22397 + 1342 —30y%)

+ (=30p* —105y° —45y° + 12057 +60y%).

The idea is to show that forall y € (0, }‘], the minimum of A4 in A; > 4, Ay > 3, Az > 2
and A4 > loccursat Ay =4, Ay =3, A3 =2, Ay = 1, and A4|a,=4,4,=3,4;=2,4,=1
> (Qforall y € (O, 4—11] We have

34A4 1

8“181‘28“381‘4 +4 0 0

for y € (0, %), since 77 — 34y — 40y% + 403 — 290y* + 490y° > 77 — 34 - 2 — 40-

2 4 83
(3)"—290- (3)" +40y° +490y> = §57 440y +490y° > 0. It follows that 5504
is an increasing function of A4 for y € (0, %) and A4 > 1. Hence its minimum occurs at
Ag4 =1, and

33A4
0A10A20A3 (4,

77 _ 38 62,2 _ 1043 _ 53,4 224 5_ 1300.6 , 460 7 _ 250.8 , 490.9
= [AF -Fr+§V -5 =Ty B - O 2T - B P+ )

+ 3y +277 = By Ry =23y 1 Ry O Ay T30y - 20 ],
= — g (=14+9)°(77+16y +30y* +70y° +50y*) > 0 (2.36)

for y € (0, %) It follows that EM?;TA;E)M > (0 for Ay > land y € (0, %) Note that

4

2
&—SAZ is symmetric with respect to A3z and A4. Thus > 0 for A3 > 1 and

330y
> 0A10A20Ay
3 02Ny - - . .
B € (0, 2). Moreover, 3494, 1S increasing with respect to A3 and A4 for A3 > A4 > 1

and y € (0, %) Hence its minimum occurs at A3 = A4 = 1, and

32A4
0A10A2 [g,_p,=1

= [ A - Sr+ 57— o0 = Py e B - R O SR T B P 5y 0)

+(As+ A (= 3y +2y7 =Yy + 2y 23y + 14290 180,71 30,8 - 2)9)
7.2 ,22.3 16, 4 182.,5 443 _,6 178.,7 310.,8 , 70,9
H(=gr '+ 5V =+ =Y+ Ty =y + gy )]|A3:A4:l

= o1 (= 14+)°(77+66y +60y? +40y°) > 0 (2.37)
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2

. £ 024, > 0forA3 > Ay > landy € (0 2).Asaﬂ

dA[0A; 5 A,
2
is symmetric with respect to A», Az, A4, we also get ﬁ > 0 for Ay > A4 > 1 and
y € (0, %), and (f)lajl—gju > 0for A, > A3 > land y € (0, %) Therefore, 2%‘1‘ is an
increasing function of Ay, A3, A4 for Ay > A3 > A4 > 1 and y € (0, %) Hence its
minimum occurs at A = A3 = A4 = 1, and
004
aAl Ary=A3=A4=1
= [A2A3A4
77 38 62.2 104 .3 53 4,224 5 1300.,6 , 460.,7 250 8 , 4909
(o5 - g -3+ Sy -+ Y = 5ry)
+(ArA3+ArAs+ A3zAy)
=ty 422 =Ly Byt 03y 4 1426 180,7 4 30,8 _ 20,9)
F(Ar+ A3+ A (-3 + By  — Lyt 4 182)5 433, 0L 178, 7310, 8 70,9)
3 4 5 6 7 8 9
+ By’ =8y =8y  +52y° — 73y +44y° — 10y )]|A2=A3:A4:l
= — g (=1+) 77+ 116y +50y?) > 0 (2.38)

for y € (0, £). It follows that

fory € (0, %) It follows that 2% >(0forAy > A3 > A4 > landy € (0, %) Since A4

is symmetric with respect to A1, Ay, A3, we also have 0284 - () for Al > A3 > Ag > 1,

94y
and % > 0for Ay > Ay > A4 > 1. Moreover,
asA4 5 2
W =-20(—-14+py)yd+2y)(14+2y°) >0 (2.39)
4
for y € (0, %) It follows that a;/fz“ is an increasing function of A4 for A4 > 1 and
4

y € (0, %) Thus, its minimum occurs at A4 = 1, and
324
B_Ai Ag=1
= [644(1y — 102+ Q3+ 2004 5057 4 290),6 _ 320,74 60,8 — 40,,9)
+2(= 1Py 2+ 1Py - By 10T S By O 1 82y T B0 30 )|,
=L (=1+y)’y(U8+11y —4y*+2y%) > 0 (2.40)

fory € (O, %),since 18411y —4y2+42y3 > 18+11y—§y+27/3 = 18+%y+2y3 >0

for y € (0, %) It follows that 832%4 > 0 for Ay > land y € (0, %) Thus, % is
2

an increasing function of A4 for A4 > l and y € (O, 3). Moreover, it is an increasing
function of Ay, Ay, A3, Ag for Ay > Ay > A3 > A4 > land y € (0, %), since it
is symmetric with respect to A1, Az, A3z. Therefore its minimum occurs at A} = Ay =
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A3 = A4 = l,and

004
8A4 A1=Ar=A3=A4=1
=[A1A2A3

71 38 62,,2 104,,3 53 4, 224,55 1300,,6 , 460.,7 _ 250,,8 , 490.,9
(F—vr+ Sy -y sV Ty Sy =y 5y )

+ (A1Ay+A1A3+ ArAj)
(—iv oyt =P+ Byt 23y 4 14290 180,74 30,8 - 20,9)

A+ A+ A (=52 + ByP — 8yt 4 1820 48,0 118, 7 310,84 70,9)

+ (13y3 —38y* — 8y +1529° — 22397 +134y% — 309°)

+3A2(10y 102 + Dy3 1 20p4 5007 4 200 320,74 60)8 — 40,/9)

+244(— 5+ Ry - By ARy

2125 .,6 875.,7 1550 .,8 350.,9
Y HTFY v Ty )]|A1=A2=A3=A4=]

= & (=1+y)3 (=77 =772y + 735y + 1154y> + 1390y*) > 0 (2.41)

fory € (0, 2), since —=77—772y +735y2+1154y3+1390y* < —77-773y +735-2y +
1154-(2)%y +1390- (2)* = =37 _ B34y, _ 0 fory € (0, 2). It follows that 952 > 0

)Y 5) =T 57 Y 5) A4
for Ay > Ap > A3 > A4 > landy € (0, %) Therefore, A4 is an increasing function of
A, Ay, A3, Ag,for Aj > Ay > A3 > A4 > landy € (0, %) Thus, its minimum occurs
at A; = A, = A3 = A4 = 1, and taking condition (2.14) into consideration, we have
Aglay=4,Ay=3,A3=2, A4=1

= — (=1 +y)(616 — 2480y + 3304y? — 647y — 3023y* — 2180y "

—4235y% — 25707 +280y%) > 0

fory € (0, 3]. In fact, 616 — 2480y + 33042 — 647y —3023y* — 21805 — 4235y6 —
2570y7 + 280y% > 616 — 2480y + (3304 — 647 - 1 — 3023 . (1)* — 2180 - (1) -

4235 (1) = 2570 - (1)°)2 = 616 — 2480y 4 M80L,2 —: £(). Since f(y)

1484901 1015808012 11681320184 1\ _ 960613 1
8192 (v— 1484901 ) - Tagao01 > We have f(y) > f(Z) = G > Ofory € o, Z]~
]

It follows that Ay > O for Ay >4, A, >3, A3 >2, A4 > land y € (0, 4—1‘]

For case (2), there are four levels: k = 1, k = 2, k = 3 and k = 4. From the condition
Ps > 0, we know that P4(1) > 0, but the positivity of P4(2), P4(3) and P4(4) is unknown.
Therefore, we split this case into four subcases:

(2a) P4(2) = P4s(3) = Ps(4) = 0 (i.e. ko = 1 in (2.13));
(2b) Ps(2) > 0, P+(3) = Pa(4) = 0 (ie. ko = 2 in (2.13));
(2c) P1(2) > 0, P4(3) > 0, P4(4) = 0 (i.e. ko = 3 in (2.13));
2d) Ps(2) > 0, P4s(3) > 0, P4s(4) > 0 (i.e. ko = 4 in (2.13)).
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For subcase (2a), the proof is nearly the same as in subcase (3a), subcase (4a) and
case (5). In the present case Ps = P4(1) > 0, thus (1, 1, 1, 1, 1) is the smallest positive
integral solution, i.e. 1/a; + 1/ay + 1/az + 1/as < 1 —1/as =: a € (%, %) since

as € (4,5). The new range of « helps us to improve condition (2.14) to

A1 >4, Ay >A3> A4 > , (2.42)

since A; = gja > asa = 2. Witha € (%, %‘), it is easy to check that 3 < % < 4.
Therefore, it is sufficient to show that A, > 0 in (2.42) for a € (— —) In the proof of
Lemma 2.2, all the computations of the partial derivatives in (2.16)—(2.22) are valid in
the even larger range (2.14) for o € (0 ‘—‘) so they hold in the new range (2.42) for o €
(2. 2). We only need to show the positivity of Azl —4 4,—a,= A= fora e (3. 9).
Taking condition (2.42) instead of (2.14) yields

Aol g =4 my=Ay= g = (=4 +50)(=5 + 240 — 37a% + 16a°) > 0

for o € (3. 2). In fact, =5 + 240 — 370 + 1603 < —5 + 24 — 370 + 16 - 20 =

—5+4240—12g2 = f(a)fora € (3, %), and f@ = 12— 0y 115 50 £ ()
is decreasing in & € (3, 2). Thus, f(a) < f(3) = fora e (2.3).

For subcase (2b), the proof is nearly the same as 1n subcase (4b) and subcase (3b).
In the present case Ps = Ps(1) + P4(2) > 0, thus (1, 1, 1, 1, 2) is the smallest positive
integral solution for the level k = 2,i.e. 1/a; + 1/ax + 1/a3 + 1/as <1 —-2/as =: B €
(% %) since as € (4,5). Let A; = a;8,i = 1, 2,3, 4. The new range of 8 helps us to
improve condition (2.14) to

A1 >4, Ary>3, A3>As> -3’ (2.43)

since A; = a;8 > aspB = _ﬂ With 8 € (l §) it is easy to check that 2 < m < 3.
Therefore, it is sufficient to show that A3 > 0 in (2.43) for B € (l ) In the proof
of Lemma 2.3, all the computations of the partlal derivatives in (2.25)- (2 31) are valid
in the even larger range (2.14) for g € ( , 5), so they hold in the new range (2.43)

for B € (%,2). We only need to show the positivity of A| Armd A3, Ay Ay 2 for
B e (% %) Taking condition (2.43) instead of (2.14) yields =

A3 |A1=4,A2=3,A3=A4=%

= —B%(=12 — 178 + 998> — 2708> + 7188* — 9538° + 5158°) > 0

for g € (3. 2). Indeed, let f(B) := —12—17+9982—27083+7184* 95385 +5158°.
Then f®)(B) = 12(—135+14365—47658>+51508>) > 12(—270,3+1436/3 —47658%+
51508%) = 12B(1166 — 47658 + 515082) = 618008(8 — 23)* + 3515 5 0 for
B e (l —) This implies that f”(8) is increasing in 8 € (%, %) So f(B) > f”(%) =
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1%01 > 0, which tells us that f’(B) is also increasing in 8 € (%, %) Thus, f/(8) >
f/(%) = 13—9 > 0 for B € (%, %) It follows that f(B) is increasing in 8 € (% %) So
F(B) < £(3) = —33% < 0. Therefore, A3 > 0 for Ay > 4, Ay > 3, A3 > Ay > {45
and 8 € (% %)

For subcase (2¢), the proof is nearly the same as in subcase (3c). In the present case
Ps = Ps(1) + P4(2) + P4(3) > O, thus (1, 1, 1, 1, 3) is the smallest positive integral
solution for the level k = 2, i.e. 1/aj + 1/as + 1/az + 1/ay < 1 —3/as =1y € (. %),
since as € (4,5). Let A; = a;y,i = 1,2,3, 4. The new range of y helps us to improve
condition (2.14) to

, (2.44)

since A; = a;y > asy = 13_—7’)/ With y € (41'1’ %) it is easy to check that 1 < 13_—Vy < 2.

Therefore, it is sufficient to show that A4 > 0 in (2.44) for y € (le %) In the proof

of Lemma 2.4, all the computations of the partial derivatives in (2.35)—(2.41) are valid

in the even larger range (2.14) for o € (0, %), so they hold in the new range (2.44)

fora € (i, %) We only need to show the positivity of A4|A1:4 A3 A2, Ay 3 for

a € (4. %). Taking condition (2.44) instead of (2.14) yields o

A4|A1:4,A2:3,A3:2,A4:%
= § (—14y)(=544-+1560y — 1572y *+539y+2349y* 1353y > ~2974y O +-5640y )
>0

fory € (3, 2). Indeed, —544+ 1560y — 1572y 2 +539y3 42349y * — 1353y —2974y 6 +
5640y7 < —544 + 1560y + (—1572 +539 - 2 +2349 . (2)* — 1353 . (})’ — 2974 .

4 5
(3)7 +5640 - (2)7)y? = —544 + 1560y — 1BH3IT )2 —: f(y). We have f(y) =

76445137 6240000012 | 7085845472 2\ _ 36445137
~ 780000 (v - 76445137) + Feaaszr - S0 f(¥) < f(?) = — o000 < Ofory €

(le %) Therefore, Ay > Ofor Ay >4, Ay >3, A3 > 2, Ay > 1377/ and y € (41'1’ %)

For subcase (2d), P4(4) > 0, which implies that (1, 1, 1, 1, 4) is the smallest positive
integral solution to the level k = 4. Sowe have 1 /a1 +1/ax+1/az+1/as < 1—4/a5 =:
e (0, %) since as € (4,5).Let A; = a;8,i = 1,2, 3, 4, and notice that condition (2.14)

still holds here. (2.13) can be written as

5!Ps = 51 (Pa(1)+Ps(2)+ P4 (3)+ P4(4))

346 346 3446 REN
<5 Ali—l Azi—l A3i_1 A4i_1
43 43 43 45

348 \* 348 348 348 348
A ) A (A ) (A o) (A
(445 )+443(445 )(445 )(4 3)

148 146 1468 148
A2 (A2 ) A2 1 ) A2
+<125 ><225 )(325 )(425 )
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1+ \* 148 148 148 148
A= 1) +a Al ) (A2 2 ) (A2 3
(425 >+425<425 )(425 )(425 )
1438 1438 1438 1438
A ~1)(a —1)(a “1)(a -1
+<145 )(243 )(345 )(445 )

1438 \* 1438/ 1435 1438 1438
—(a 1) +4 A ~1)(a —2)(a -3
(445 )+445<445 ><443 )(443 >

+ (Aq —1)(A2—1)(A3—1)(A4—1)—(A4—1)4+A4(A4—1)(A4—2)(A4—3)}-
(2.45)

It is sufficient to show

Lemma 2.5. When 4 < as <5, RH.S. of (1.8) > R.H.S. of (2.45).

Proof. Subtracting R.H.S. of (2.45) from R.H.S. of (1.8), writing the expression in terms
of A;,i =1,2,3,4, and 8, and multiplying by (1 — §)°8*, yields

— 139 643 28342 20743 21964 | 149945
As '—A1A2A3A4(128 1288 + 336 370 510 T 659

1585 ¢6 1765 ¢7 3965 ¢8 885 (9
— 580+ 2 - R+ Re)
+ (A1A2A3 + A1A2A4 + A1 A3 Ay + A A3 Ay)
3 13 o2 373 73 o4 5 407 ¢6 475 7 275 o8 125 59
(0§ — O+ B8 248 + HL80 — 5T+ 225° - 1287)
+ (A1A2 + A1A3 + A1As + A2 Az + As Ay + A3Ay)
11 ¢2 37 ¢3 63 o4 177 o5 433 o6 543 {7 32508 75 ¢9
(gt - Rt 4+ e — 280+ 228 - 228° + 28
+ (A + Ax + A3)(387 — 146 — 367 +565° — 1357 4 545°% — 257)
+ A (P8 — B0+ T6% + 3% — 5087 + 4260 — 4367 + 2255 — 1357)
FAY(IS 4 ) Mgty 12555 250 2055T 18 4 IS0)
+ Ag(D8° —648% + 4L6° + 1566° — 3357 + 1645° — 25%)
+ (—2408* — 3208° + 1608° + 32087 + 805%).
The idea is to show that for all § € (0, %),the minimum of Asin A} >4,A, >3, A3 >2

and A4 > loccursat Ay =4, Ay =3, A3 =2, Ay = 1, and As5|a,=4,4,=3,4;=2,4,=1
> Oforall § € (O, %) We have

A
m = (=14 8)*(139 — 878 — 5087 + 5087 — 4258* + 8855”) > 0

for § € (0, 1), since 139—875 — 5052 +508° — 42554 +8855% > 139—87-1 —50. (1) +
(50 — 425 - 1)5% + 8858 = 22 — 3583 + 8856% > B + 8856% > 0fors € (0, 1). It
follows that Mﬁ;ﬁ is an increasing function of A4 for § € (O, %) and A4 > 1. Hence
its minimum occurs at A4 = 1, and
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83A5
0A10A20A3 (4,
—[Ag(12 685 W2 20753 21954, 1499

128 — 128
138356 4 176557 39638 | 8839
300+ 8 — g st + 1t

3 13 ¢2 37 ¢3 73 o4 5 407 ¢6 475 o7 275 8 125
(60 + §0° — O+ §81 - 248 + 558 _T8 +T5 — BB iz

= —de(—1+8%)(139 4 285 4 9082 + 1408° + 1155 > 0

for § € (0, 5) It follows that m > 0 for Ay > 1land § € (0, 5) Note that

322] i is symmetric with respect to A3 and A4. Thus, M‘r’;ﬁ > (0 for A3 > 1 and
8 € (0, 1). Moreover, 32 50 s increasing with respect to A3 and A4 for A3 > Ag > 1
and § € (O, 3). Hence its minimum occurs at A3 = A4 = 1, and
32 As
_ [A3A4(% _ %5+ 28352 202783 _ %544_ 149955
_ @56+ 176587 319268588 + 2135259)

(A3 Ag) (= b + 5187 — o7+ o' — 2457 1 6% — 5357 4 226% - L2 p7)
4 (—lle% 4 383 G5t 17165 43356 4 3T 30548 4 169)]

= e (—1 4+ 8)°(139 + 1438 + 1455% + 855%) > 0

|A3=A4=1

for § € (0, 5) It follows that af]?iz > 0 for A3 > A4 > land § € (0, 5) As g% is

2
symmetric with respect to Ay, Az, A4, we also get af‘lgjh > 0 for Ap > A4 > 1 and
2 N -
S (O, %), and 321324 > 0 for Ap > A3 > land é € ( ,5) Therefore, SA is an

increasing function of A, A3, A4 for Ay > A3 > A4 > land § € (0, 5) Hence its
minimum occurs at A = A3 = A4 = 1, and

A5
VAL [ gy =As=a4=1

128 128
1585 86 + 1765 1765 57 3965 58 885 89)

128 128

+(A2A3 + Ay Ay + A3Ay)
(—Ro4 362 U3 Tt gusS 4 40146 _ 47557 4 27548 _ 125 g9
Fr 4 Ay AD(— R84 50— Gt 4 P50 4056 4 3057 W81 T
+(36% — 148% — 367 4+ 5660 — 1367 4 5468 — 25°)]

= — g (=1 +8)7(139 + 2588 + 1156%) > 0

|A2:A3=A4=l
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for 8 € (0, 1). It follows that 532 > 0 for Ay > A3 > Aq > land § € (0, £). Since As
is symmetric with respect to Al, Az, Az, we also have g% >0for A| > A3 > Ag > 1,

and g% > 0for Ay > Ay > A4 > 1. Moreover,

33As 15 5 )
—2 = ——(=14+8)83+5)3+5%) >0
oA2 7 (C1H8°8G +56)(3 +587) >

for 5 € (0, 5) It follows that 2 25 is an increasing function of A4 for A4 > 1 and
Aj

s € (0, %) Thus, its minimum occurs at A4 = 1, and
32A5
IA7 |ay=1
= [6A4(F8 — T6% + 257 + Fs* — 508 + 4360 — 4357 + Z568 — 11357)

(-0 4 G - st S S0 25471058 ]|

= 3(—148)°8(=27— 108 +56%) > 0

for § € (0, 5) In fact, let f(§) := —27 — 108 + 582 = 5(8 — 1)> — 32. Then f@) <
f0) = —27 < Ofory € (O, 5) It follows that 725 > (Qfor Ay > 1and$ € (0, %)
Thus, TA4 A is an increasing function of A4 for A4 > 1 and § € (O ) Moreover, it is an
increasing function with respect to Ay, Az, A3, Aq for Ay > A, > A3 > A4 > 1 and
§ € (O, %), since it is symmetric with respect to Ay, Az, Az. Hence its minimum occurs
at Ay = Ap = A3 = A4 =1, and
0As
0A4 Aj=Ar=A3=A4=1
— [A1A2A3(% ?‘2‘38—}— 28382 20783 214984+ 149955
1585 ¢6 ]765 7 _ 3965 ¢8 885 <9
— 8+ T8 = gt 4 7))
+ (A1Ay + A1A3z + ArAz)
3 1302 3703 |, 1344 5, 4076 47557 | 2758 125
(—28+ 882 - 353 4 Bst 0485 4 2066 1357 4 25458 125 89)
11 ¢2 3743 63 o4 177 o5 433 ¢6 543 o7 325 o8 75 9
+ (A1 + Ay + A3) (- 87+ F8° — F6* + 1180 — 5260+ 2267 — 225° + 287)
2045 75¢2 | 7553 | 25¢4 5, 41506  475¢7 | 2758 12549
+3A5(%0 — 26° + 287 + 5% —508° + 128° — 1287 + 228° — 128)
175 o2 625 o3 875 ¢4 1125 ¢5
+2A4(—56" + 5707 — 8T+ =4

2125 6 2675 7 1625 8, 37559
- 8" + 8" — 8 +_5 :HA.:A2:A3:A4:1

= g (=1 +8)°(—139 — 21408 + 226282 + 245253 + 268584) >0

for 8 € (o, 1), since —139 — 21408 + 226262 + 24526 + 26856* < —139 + (—2140 +
2262 - 1 42452 (1)7 +2685- (1)*)s = =139 — 225 < 0 for 5 € (0, ). It follows
that MS > Ofor Ay > Ap) > A3 > A4 > land § € (0, 5) Therefore, As is an
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increasing function of A, Ay, A3, Aq for A} > A > A3 > A4 > land § € (0, %)
Thus, its minimum occurs at A; = A = Az = A4 = 1 and taking condition (2.14) into

consideration, we have

As| A =4,A,=3,43=2, A4=1
= 8(417— 15728 4 17046% 46208 — 63348* — 76608 — 57608° — 2140587 +2455%)
>0

for § € (0, 1), since 417 — 15728 + 17048 + 6208° — 63348* — 76608 — 57605° —
214087 424558 > 417—1572- 1 +170482 + (620 — 6334 1 —7660- (2)* —5760- (2) —

2\4 53 8 _ 513 2 125338 ¢3 8 513 125338
2140 - (2))83 + 24588 = 31 4 170482 — 12333853 4 04588 > 313 4 (1704 — 123338 .
1182 + 24588 = 313 4 90252 4 24568 > 0 for § € (0, 1). It follows that As > O for

Al >4,A,>3,A3>2, A4 > Tand§ € (0, 1). o

2.2. Proof of Theorem 1.3

As we stated in the introduction, an estimate of the Dickman—de Bruijn function ¥ (x, y)
is equivalent to a sharp estimate of Q, (or P, by (1.2)). We have already got an estimate
of P,, n <5, so we can apply it to estimating ¥ (x, y). In detail, let p; < --- < ps5 be
5 primes < y. Clearly pll1 e pés < x if and only if ml% + 4 mng < 1. Therefore,
Tog pj log pn

¥ (x,y) is precisely the number Q, of (1.1) with a; = lloogx’_, 1 < i < n. Moreover,
by (1.2), ¥ (x, y) is also precisely the number P(a;(1 + a), ..., a,(1 + a)), where a =
/a1 +---+ 1/ay.

According to the number of prime numbers < y, we split the proof of Theorem 1.3

into three cases:
) 5S<y<T
() 7<y < 11;

(iii) 11 <y < 13.

Cases (i) and (ii) have been proven in [18]. For (iii), we have five prime numbers p; = 2,
p2=13,p3 =35, pa=7and ps = 11, thus

log2 +log3 +log5 + log7 4+ log 11
a= .

log x
Therefore,
vix,y) = 0s
_p log x 1_’_log(2-3~5~7-11) ’logx l_’_log(2-3~5~7-11) ’
log?2 log x log3 log x
log x | log(2-3-5-7-11)\ logx ! log(2-3-5-7-11)
log 5 log x " log7 log x ’

log x I+ log(2-3-5-7-11)
log 11 log x
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<l{(logx+10g(3-5~7-11)>(10gx 10g(2~5-7~11))
— 5! \log2 log2 log 3 log 3
logx log(2-3-7-11)\ (logx log(2-3-5-11)
-(logSjL log5 )<1og7 log7 )
logx log(2-3-5-7)
.<log11+ log 11 )
logx log(2-3-5-7)
_[<logll+ log 11 )

1 log(2-3-5-7 1 log(2-3-5-7
_(Jogx | log( )\ (logx _ log( )
log 11

log 11 log11 log 11
1 log(2-3-5.- 1 log(2-3-5-
' ogx+og( 357)_1 ogx+og( 357)_2
log 11 log 11 log 11 log 11
1 log(2-3-5-7
(Jogx , log( ),
log 11 log 11

1 1
_ log x +log 1155)(log x +log 770) (log x + log 462
120{log2log3log510g7logll(ng+Og )(log.x+log 770)(log x +log 462)

- (log x +1og 330)(log x +10g 210)
— ———[(log x +10g 210)°
1og511[( £ £210)
— (logx +1log 11 +1og210)(log x +1og 210)(log x +1og210—log 11)

-(logx +1log210—2log 11)(log x +10og 210 -3 log 11)]}. O

Acknowledgements. Research of X. Luo is supported by the start-up fund from Beihang University
(grant no. YWF-14-RSC-026).

Research of S. S.-T. Yau is supported by the start-up fund from Tsinghua University.

Research of H. Zuo is supported by NSFC (grant no. 11401335) and the start-up fund from
Tsinghua University.

References

[1] Brion, M., Vergne, M.: Lattice points in simple polytopes. J. Amer. Math. Soc. 10, 371-392
(1997) Zbl 0871.52009 MR 1415319

[2] Cappell, S. E., Shaneson, J. L.: Genera of algebraic varieties and counting of lattice points.
Bull. Amer. Math. Soc. (N.S.) 30, 62-69 (1994) Zbl 0847.14010 MR 1217352

[3] Chen, I., Lin, K.-P., Yau, S. S.-T., Zuo, H.: Coordinate-free characterization of homoge-
neous polynomials with isolated singularities. Comm. Anal. Geom. 19, 661-704 (2011)
Zbl 1246.32030 MR 2880212

[4] de Bruijn, N. G.: On the number of positive integers < x and free of prime factors > y. Indag.
Math. 13, 50-60 (1951) Zbl 0042.04204 MR 0046375

[5] de Bruijn, N. G.: On the number of positive integers < x and free of prime factors > y, II.
Indag. Math. 28, 239-247 (1966) Zbl 0139.27203 MR 0205945


http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0871.52009&format=complete
http://www.ams.org/mathscinet-getitem?mr=1415319
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0847.14010&format=complete
http://www.ams.org/mathscinet-getitem?mr=1217352
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1246.32030&format=complete
http://www.ams.org/mathscinet-getitem?mr=2880212
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0042.04204&format=complete
http://www.ams.org/mathscinet-getitem?mr=0046375
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0139.27203&format=complete
http://www.ams.org/mathscinet-getitem?mr=0205945

Integral points in a 5S-dimensional tetrahedron 1965

(6]
(71
(8]
(9]
(10]
(11]
[12]
(13]

[14]

(15]

(16]

(17]

(18]

(19]

(20]
(21]
(22]
(23]
[24]

[25]

[26]

Dickmann, K.: On the frequency of numbers containing prine factors of a certain relative
magnitude. Ark. Mat. Astronom. Fys. 22, 1-14 (1930) JFM 56.0178.04

Diaz, R., Robins, S.: The Ehrhart polynomial of a lattice polytope. Ann. of Math. 145, 503—
518 (1997); Erratum, ibid. 146, 237 (1997) Zbl 0874.52009 MR 1454701

Durfee, A.: The signature of smoothings of complex surface singularities. Ann. of Math. 232,
85-98 (1978) Zbl 0346.32016 MR 0466620

Granville, A.: letter to Y.-J. Xu (1992)

Granville, A.: On positive integers < x with prime factors < ¢ log x . In: Number Theory and
Applications (Banft, AB, 1988), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 265, Kluwer,
Dordrecht, 403—422 (1989) Zbl 0686.10031 MR 1123086

Hardy, G. H., Littlewood, J. E.: Some problems of Diophantine approximation. In: Proc. 5th
Int. Congress of Mathematics, 223-229 (1912) JFM 44.0237.01

Hardy, G. H., Littlewood, J. E.: The lattice points of a right-angled triangle. Proc. London
Math. Soc. (2) 20, 15-36 (1921) JFM 48.0187.01

Hardy, G. H., Littlewood, J. E.: The lattice points of a right-angled triangle (second memoir).
Hamburg Math. Abh. 1, 212-249 (1922) JFM 48.0187.01

Kantor, J.-M., Khovanskii, A.: Une application du théoréme de Riemann—Roch combinatoire
au polyndme d’Ehrhart des polytopes entiers de R4. C.R. Acad. Sci. Paris Sér. 1317, 501-507
(1993) Zbl10791.52012 MR 1239038

Lin, K.-P,, Yau, S. S.-T.: Analysis for a sharp polynomial upper estimate of the number of
positive integral points in a 4-dimensional tetrahedron. J. Reine Angew. Math. 547, 191-205
(2002) Zbl 1013.11064 MR 1900141

Lin, K.-P., Yau, S. S.-T.: A sharp upper estimate of the number of integral points in
a S-dimensional tetrahedra. J. Number Theory 93, 207-234 (2002)  Zbl 0992.11057
MR 1899303

Lin, K.-P, Yau, S. S.-T.: Counting the number of integral points in general n-
dimensional tetrahedra and Bernoulli polynomials. Canad. Math. Bull. 24, 229-141 (2003)
7Zbl 1056.11054 MR 1981677

Luo, X., S. S.-T. Yau, Zuo, H.: A sharp polynomial estimate of positive integral points in a
4-dimensional tetrahedron and a sharp estimate of the Dickman—de Bruijn function. Math.
Nachr., to appear

Merle, M., Teissier, B.: Conditions d’adjonction d’apres Du Val. In: Séminaire sur les singu-
larités des surfaces. Centre Math. Ecole Polytechnique, 1976-1977, Lecture Notes in Math.
777, Springer, Berlin, 229-245 (1980) Zbl 0461.14009

Milnor, J., Orlik, P.: Isolated singularities defined by weighted homogeneous polynomials.
Topology 9, 385-393 (1970) Zbl 0204.56503 MR 0293680

Mordell, L. J.: Lattice points in a tetrahedron and generalized Dedekind sums. J. Indian Math.
Soc. 15, 41-46 (1951) Zbl 0043.05101 MR 0043815

Pommersheim, J. E.: Toric varieties, lattice points, and Dedekind sums. Math. Ann. 295, 1-24
(1993) Zbl0789.14043 MR 1198839

Spencer, D. C.: On a Hardy-Littlewood problem of diophantine approximation. Proc. Cam-
bridge Philos. Soc. 35, 527-547 (1939) Zbl 0022.30904 MR 0001247

Spencer, D. C.: The lattice points of tetrahedra. J. Math. Phys. 21, 189-197 (1942)
Zbl1 0060.11501 MR 0007767

Wang, X., Yau, S. S.-T.: On the GLY conjecture of upper estimate of positive integral points
in real right-angled simplices. J. Number Theory 122, 184-210 (2007) Zbl 1115.11062
MR 2287119

Xu, Y.-J., Yau, S. S.-T.: A sharp estimate of the number of integral points in a tetrahedron.
J. Reine Angew. Math. 423, 199-219 (1992) Zbl 0734.11048 MR 1142487


http://www.emis.de/cgi-bin/jfmen/MATH/JFM/quick.html?first=1&maxdocs=20&type=html&an=56.0178.04&format=complete
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0874.52009&format=complete
http://www.ams.org/mathscinet-getitem?mr=1454701
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0346.32016&format=complete
http://www.ams.org/mathscinet-getitem?mr=0466620
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0686.10031&format=complete
http://www.ams.org/mathscinet-getitem?mr=1123086
http://www.emis.de/cgi-bin/jfmen/MATH/JFM/quick.html?first=1&maxdocs=20&type=html&an=44.0237.01&format=complete
http://www.emis.de/cgi-bin/jfmen/MATH/JFM/quick.html?first=1&maxdocs=20&type=html&an=48.0187.01&format=complete
http://www.emis.de/cgi-bin/jfmen/MATH/JFM/quick.html?first=1&maxdocs=20&type=html&an=48.0187.01&format=complete
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0791.52012&format=complete
http://www.ams.org/mathscinet-getitem?mr=1239038
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1013.11064&format=complete
http://www.ams.org/mathscinet-getitem?mr=1900141
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0992.11057&format=complete
http://www.ams.org/mathscinet-getitem?mr=1899303
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1056.11054&format=complete
http://www.ams.org/mathscinet-getitem?mr=1981677
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0461.14009&format=complete
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0204.56503&format=complete
http://www.ams.org/mathscinet-getitem?mr=0293680
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0043.05101&format=complete
http://www.ams.org/mathscinet-getitem?mr=0043815
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0789.14043&format=complete
http://www.ams.org/mathscinet-getitem?mr=1198839
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0022.30904&format=complete
http://www.ams.org/mathscinet-getitem?mr=0001247
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0060.11501&format=complete
http://www.ams.org/mathscinet-getitem?mr=0007767
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1115.11062&format=complete
http://www.ams.org/mathscinet-getitem?mr=2287119
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0734.11048&format=complete
http://www.ams.org/mathscinet-getitem?mr=1142487

1966 Ke-Pao Lin et al.

[27] Xu, Y.-I., Yau, S. S.-T.: Durfee conjecture and coordinate free characterization of homoge-
neous singularities. J. Differential Geom. 37, 375-396 (1993) Zbl 0793.32016 MR 1205449

[28] Xu, Y.-J., Yau, S. S.-T.: A sharp estimate of the number of integral points in a 4-dimensional
tetrahedra. J. Reine Angew. Math. 473, 1-23 (1996) Zbl 0844.11063 MR 1390680

[29] Yau, S. S.-T., Zhang, L.: An upper estimate of integral points in real simplices with an
application to singularity theory. Math. Res. Lett. 13, 911-921 (2006) Zbl 1185.11062
MR 2280784


http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0793.32016&format=complete
http://www.ams.org/mathscinet-getitem?mr=1205449
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0844.11063&format=complete
http://www.ams.org/mathscinet-getitem?mr=1390680
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1185.11062&format=complete
http://www.ams.org/mathscinet-getitem?mr=2280784

	Introduction
	Proofs of theorems
	References

