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Abstract. We show that the only random orderings of finite graphs that are invariant under iso-
morphism and induced subgraph are the uniform random orderings. We show how this implies the
unique ergodicity of the automorphism group of the random graph. We give similar theorems for
other structures, including, for example, metric spaces. These give the first examples of uniquely er-
godic groups, other than compact groups and extremely amenable groups, after Glasner and Weiss’s
example of the group of all permutations of the integers. We also contrast these results to those for
certain special classes of graphs and metric spaces in which such random orderings can be found
that are not uniform.

Keywords. Graphs, hypergraphs, the random graph, metric spaces, Fraı̈ssé, Ramsey, minimal flow,
Urysohn space

1. Introduction

1.1. Random orderings

Consider the class of finite graphs, by which we mean simple graphs, i.e., without loops
or multiple edges. Is there any way to distinguish among the vertices of a finite graph
in a way that is preserved by isomorphism and by taking induced subgraphs? To make
this question more precise, consider random linear (total) orderings of vertices of finite
graphs. That is, for each graph G = 〈V,E〉, let µG be a probability measure on the |V |!
linear orderings of V . Suppose that the collection of measures µG is consistent, meaning
that it satisfies two properties:

(i) If φ : G → G′ is a graph isomorphism, then φ∗µG = µG′ . Here, φ∗ denotes the
push-forward map induced by φ; more precisely, φ∗ is the push-forward of the map
(φ, φ) on orders.
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(ii) If H is an induced subgraph of G, then µG induces µH by restriction. In other
words, if φ is the restriction map of orderings of V (G) to orderings of V (H), then
φ∗µG = µH .

We shall refer to the family (µG)G as a consistent random ordering (for the class of finite
graphs). Note that property (i) by itself guarantees that for a complete graphG, as well as
an empty graph, µG must be the uniform measure. If (µG)G is consistent, must µG be the
uniform measure on all linear orderings of V (G) for all G, or is there a more interesting
consistent assignment of random orderings?

For example, if instead of the collection of all finite graphs, we considered consistent
random orderings only of finite graphs that are paths, then there is clearly another choice:
orient the path in one of the two ways at random, with probability 1/2 each, and use the
orientation to define the naturally associated ordering.

It is much harder to define a non-uniform consistent random ordering on the class of
finite graphs all of whose components are paths, but it can be done. What about graphs
with a given bound on their degrees, or other classes of graphs? What about finite hyper-
graphs or finite metric spaces? In fact, such questions can be asked in great generality for
classes of finite structures in a given language in the sense of model theory.

We show in this paper the following.

Theorem 1.1. The only consistent random ordering for the class of finite graphs is the
uniform ordering. The same holds for the classes of Kn-free graphs, r-uniform hyper-
graphs, and metric spaces with (non-zero) distances in a given additive subsemigroup
of R+.

This is proved in Sections 2–7, where many other such examples are given, including
classes of hypergraphs with forbidden configurations. In these sections, we also discuss
several examples of classes of metric spaces and graphs for which the opposite happens,
i.e., there are non-uniform consistent random orderings, including the class of Euclidean
metric spaces and the class of bounded degree graphs, which can be proved by using a
random projection method suggested to us by Leonard Schulman.

Furthermore, we obtain quantitative versions of Theorem 1.1. Let dTV(µ, ν) :=
1
2‖µ − ν‖1 = maxA |µ(A) − ν(A)| denote the total variation distance between proba-
bility measures. We show the following:

Theorem 1.2. Let 2 ≤ r ≤ k ≤ n be integers. There is a constant C = C(k, r) with the
following property. Let (µG)G be a consistent random ordering defined on all r-uniform
hypergraphs G of size at most n, and let H be a r-uniform hypergraph of size k. If νH is
the uniform ordering on H , then dTV(µH , νH ) ≤ C

√
(log n)/nr−1.

In the case of graphs, we construct in Section 3 a consistent random ordering on graphs of
size at most n (or even with degrees bounded by n) such that for some H , dTV(µH , νH )

≥ C/n. A similar construction appears to give dTV(µH , νH ) ≥ C/nr−1 for r-uniform
hypergraphs.

Question 1.3. What is the largest possible total variation distance from the uniform or-
dering of a consistent random ordering on graphs (or hypergraphs) of size at most n?
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1.2. Unique ergodicity

The reason for our attention to these questions, beyond their intrinsic interest, is that, in
certain circumstances, they provide a way to prove unique ergodicity results for groups.
In order to explain this context, we need to review some concepts and results concerning
the model theory and combinatorics of classes of finite structures.

The general setting for our ergodicity results is the following. A (first-order) lan-
guage L consists of families (Ri)i∈I , (fj )j∈J of relation symbols Ri and function sym-
bols fj with associated arities mi ≥ 1 and nj ≥ 0. A structure for this language, or
L-structure, is an object of the form

A = 〈A, (RA
i )i∈I , (f

A
j )j∈J 〉,

where A is a non-empty set, called the universe of the structure, RA
i ⊆ Ami and

fA
j : A

nj → A, where if nj = 0, it is understood that fA
j is just an element of A. The

cardinality of the structure is the cardinality of its universe A. In this paper, all languages
and structures will be countable. For brevity, and when there is no danger of confusion,
we sometimes omit the superscripts.

As an example, if L = {E} with E a binary relation symbol, then the class of graphs
is the class of L-structures A for which EA is symmetric and irreflexive. A metric space
〈X, d〉 can also be viewed as a structure X = 〈X, (RX

q )q∈Q+〉 in the language with binary
relation symbols (Rq)q∈Q+ , where RX

q (x, y)⇔ d(x, y) < q.
Although this will be our standard notation when we discuss abstract structures, we

shall keep the more traditional notation (mainly in font type) for specific structures, like
graphs, hypergraphs, metric spaces, etc., that we used earlier and that we also use in
Sections 2–7.

A class K of finite L-structures is called a Fraı̈ssé class if it contains structures of ar-
bitrarily large (finite) cardinality, is countable (in the sense that it contains only countably
many isomorphism types) and satisfies the following:

(i) Hereditary Property: If B ∈ K and A can be embedded in B, then A ∈ K.
(ii) Joint Embedding Property: If A,B ∈ K, there is C ∈ K such that A,B can be

embedded in C.
(iii) Amalgamation Property: If A,B,C ∈ K and f : A → B, g : A → C are embed-

dings, there is D ∈ K and embeddings r : B → D, s : C → D such that r◦f = s◦g.

Throughout this paper embeddings and substructures will be understood in the usual
model-theoretic sense (see, e.g., Hodges [Ho, p. 5]); e.g., for graphs embeddings are in-
duced embeddings, i.e., isomorphisms onto induced subgraphs. To be precise, given a
language L consisting of families (Ri)i∈I and (fj )j∈J of relation symbols Ri and func-
tion symbols fj with associated arities mi ≥ 1 and nj ≥ 0, an embedding of an L-
structure A into an L-structure B is an injection φ : A → B such that for any Ri and
a1, . . . , ami ∈ A, we have RA

i (a1, . . . , ami ) ⇔ RB
i (φ(a1), . . . , φ(ami )) and for any fj

and any a1, . . . , anj ∈ A, we have φ(fA
j (a1, . . . , anj )) = f

B
j (φ(a1), . . . , φ(anj )). If the

identity is such an embedding, then we say that A is a substructure of B.
We recall the following results of [Fr] (see also [Ho, Section 7.1]):
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If K is a Fraı̈ssé class, there is a unique, up to isomorphism, countably infinite struc-
ture K that is locally finite (i.e., each finite subset ofK is contained in a finite substructure
of K), ultrahomogeneous (i.e., any isomorphism between finite substructures can be ex-
tended to an automorphism of the structure) and is such that, up to isomorphism, its finite
substructures are exactly those in K. We call this the Fraı̈ssé limit of K, in symbols

K = Flim(K).

Conversely, if K is a countably infinite structure that is locally finite and ultraho-
mogeneous, then its age, Age(K), i.e., the class K of all its finite substructures, up to
isomorphism, is a Fraı̈ssé class. Such structures K are called Fraı̈ssé structures. Thus
there is a canonical bijection K 7→ Flim(K), K 7→ Age(K), between Fraı̈ssé classes and
structures.

We are interested in the set of invariant Borel probability measures for continuous
actions of the automorphism group 0 := Aut(K), viewed as a topological group under the
pointwise convergence topology. We note that the groups Aut(K), for Fraı̈ssé structures K

as above, are (up to topological group isomorphism) exactly the closed subgroups of
the infinite symmetric group S∞, i.e., the group of permutations of N, again with the
pointwise convergence topology (see, e.g., [KPT]). Up to topological group isomorphism
they are also the same as the non-archimedean Polish groups, where a topological group
is called non-archimedean if it admits a basis at the identity consisting of open subgroups
(see [BK, 1.5.1]).

Consider now amenability properties of such groups. At one end of the spectrum, there
are many examples of automorphism groups that satisfy a very strong form of amenability,
namely, they are extremely amenable. This means that every continuous action of such a
group on a (non-empty) compact Hausdorff space, i.e., a 0-flow, has a fixed point. As was
shown in [KPT, 4.7], 0 = Aut(K) has this property exactly when K is an order Fraı̈ssé
structure, i.e., a Fraı̈ssé structure in which one of the relations is a linear ordering, such
that Age(K) satisfies the Ramsey Property (RP) (see [KPT, Section 3]). We also discuss
the RP in Section 9 below. Extensive lists of extremely amenable automorphism groups
are discussed in [KPT, Section 6].

Next there are automorphism groups that are amenable (i.e., every 0-flow has an in-
variant Borel probability measure) but not extremely amenable. The most extensive list, in
our framework, of such examples arises in the context of the Hrushovski property. Given
a class K of finite structures in a given language, we say that K is a Hrushovski class if
for any A ∈ K and any (partial) isomorphisms ϕi : Bi → Ci , 1 ≤ i ≤ k, where Bi , Ci

are substructures of A, there is B ∈ K containing A as a substructure such that each ϕi
can be extended to an automorphism ψi of B, 1 ≤ i ≤ k. It is shown in [KR, 6.4] that if
K is a Fraı̈ssé class with K = Flim(K), then K is a Hrushovski class iff 0 = Aut(K) is
compactly approximable, i.e., there is an increasing sequence10 ⊆ 11 ⊆ · · · of compact
subgroups of 0 with

⋃
n1n = 0. Calling the Fraı̈ssé limit K of a Hrushovski class K a

Hrushovski structure, we thus see that the automorphism groups of Hrushovski structures
are compactly approximable, whence amenable. Examples of Hrushovski classes of finite
structures include the following: pure sets, graphs (Hrushovski [Hr]), r-uniform hyper-
graphs, Kn-free graphs (Herwig [He1, He2]), metric spaces with distances in a countable
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additive subsemigroup of R+ (Solecki [So]), finite-dimensional vector spaces over a fixed
finite field, etc.

Finally, at the other end of the spectrum, there are also automorphism groups 0 =
Aut(K) that are not amenable. These include, among others, the automorphism groups of
the countable atomless Boolean algebra, the random poset, and the random distributive
lattice (see [KS]).

A characterization of the amenability of 0 = Aut(K) in terms of combinatorial prop-
erties of the Fraı̈ssé class Age(K) was obtained by Moore and Tsankov (see [Mo, 6.1]).
Another characterization, in a special case, is in Proposition 9.2 below.

In this paper we are interested in the ergodic theory of the flows of automorphism
groups, in particular, in the potential phenomenon of unique ergodicity. Below, measure
means Borel probability measure.

Let 0 be a topological group. We say that a 0-flow is uniquely ergodic if it has a
unique invariant measure (which therefore must be ergodic). We say that the group 0
is uniquely ergodic if every minimal 0-flow (i.e., one all of whose orbits are dense) is
uniquely ergodic. (The assumption of minimality is clearly necessary, as a given 0-flow
may have in general many minimal subflows that are pairwise disjoint, and by amenability
each will support an invariant measure.) Clearly every extremely amenable Polish group
is uniquely ergodic and so is every compact Polish group.

However, this property is never realized in the realm of infinite countable (discrete)
groups, as follows from results of Benjamin Weiss [W]. Weiss also believes that this ex-
tends to non-compact, Polish locally compact groups, although this has not been checked
in detail yet.

It is important here to review the concept of the universal minimal flow of a topolog-
ical group. It is a classical result in topological dynamics that every topological group 0
admits a unique, up to isomorphism of 0-flows, minimal flow M(0), called its universal
minimal flow, such that all other minimal 0-flows are factors of it (see, e.g., [KPT, Sec-
tion 1]). Recall that a 0-flow Y is a factor of a 0-flowX if there is a continuous surjection
φ : X→ Y that is a 0-map, i.e., φ(γ · x) = γ · φ(x) for every x ∈ X and γ ∈ 0. If such
a map is a bijection, we call it an isomorphism. Since every 0-flow contains a minimal
subflow, the group 0 is amenable iff M(0) has an invariant measure. Also, it can be seen
that 0 is uniquely ergodic iff M(0) is uniquely ergodic (see Proposition 8.1).

When 0 is compact, M(0) = 0 (with the left translation action) and when 0 is
extremely amenable, M(0) is trivial, i.e., a singleton, but in general M(0) is a very com-
plicated object that is difficult to “compute”. For example, when 0 is infinite countable,
M(0) is a “big” space of ultrafilters on 0, and more generally when 0 is non-compact,
locally compact,M(0) is not metrizable (see [KPT, A2.2]). However, over the last fifteen
years or so, there have been many examples of explicit descriptions of non-trivial metriz-
able universal minimal flows: see Pestov [Pe1], Glasner and Weiss [GW1, GW2] and, in
the case of automorphism groups of Fraı̈ssé structures, [KPT].

As was shown in [GW1], where the universal minimal flow of S∞ was computed, S∞
is uniquely ergodic. This seems to be the first example found of such a group that is neither
extremely amenable nor compact. We shall show in this paper that many other amenable
automorphism groups, for which we can compute a metrizable universal minimal flow,
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are also uniquely ergodic, so this appears as a general phenomenon. This will be a conse-
quence of the uniqueness results for consistent random orderings, like Theorem 1.1, that
we prove in Sections 2–6.

To see this connection, we need to explain briefly the method by which universal min-
imal flows are calculated in [KPT]. Details and precise definitions are given in Section 9.
Given a Fraı̈ssé class K with Fraı̈ssé limit K , one appropriately assigns to each structure
A ∈ K a collection of so-called admissible (linear) orderings on the universe A of A to
obtain a new class K∗ of expanded, ordered structures of the form 〈A, <〉, where A ∈ K
and < is an admissible ordering on A. In many cases, such as for graphs, every linear
ordering on a given structure is admissible, but in other cases, one has to take a more re-
stricted collection of linear orderings. For example, take as K the Fraı̈ssé class of bipartite
graphs with distinguished parts, i.e., structures of the form 〈V,E,A1, A2〉, where 〈V,E〉
is a graph and A1, A2 is a partition of V such that there are no edges within each Ai .
Then for each such graph, the relevant collection of admissible orderings consists of all
orderings < such that A1 < A2.

If an appropriate such class K∗ of expanded structures as above can be found that
satisfies various structural conditions, including Ramsey properties, we shall call K∗ a
“companion” of K. In that case, it is shown in [KPT] that the universal minimal flow
of 0 = Aut(K) is obtained as follows. Denote by XK∗ the space of all orderings < on
the universe K of K that are admissible (relative to K∗) in the sense that for every finite
substructure A of K , the restriction of < to A is admissible (for A). This is a compact
metrizable space on which 0 acts continuously in the obvious way, and it turns out to be
the universal minimal flow for 0. From this one can see that the existence of an invariant
measure on XK∗ (i.e., the amenability of 0) is equivalent to the existence of a consistent
random admissible ordering, and unique ergodicity of 0 is equivalent to the uniqueness
of a consistent random admissible ordering. Using this and the results in Sections 2–6
concerning uniqueness of consistent random orderings, we obtain, in Sections 10–11,
many new examples of uniquely ergodic automorphism groups. A sample is included in
the following theorem, which we state after we introduce some terminology.

If L = (Ri)i∈I is a finite relational language with Ri of arity mi ≥ 2, then a hyper-
graph of type L is an L-structure A in which each RA

i gives an mi-uniform hypergraph.
A hypergraph of type L is called irreducible if it has at least two vertices and every two-
element subset of the vertices belongs to some hyperedge. Given a class A of irreducible
hypergraphs of type L, a hypergraph of type L is A-free if it contains no (induced) copy
of a structure in A. If we choose L to have only one relation symbol of arity r and A = ∅,
then we obtain the class of r-uniform hypergraphs (graphs if r = 2), and if we choose
A = ∅, we obtain the class of all hypergraphs of type L. If we choose L to have only one
symbol of arity 2 and A = {Kn}, then we obtain the class of Kn-free graphs, where Kn is
the complete graph on n vertices.

The random A-free hypergraph of a given type L is the Fraı̈ssé limit of the class of
A-free hypergraphs of type L (thus by choosing L and A appropriately, this includes the
case of the random graph, random Kn-free graph, random r-uniform hypergraph, etc.).
The Urysohn space US , where S is a countable additive subsemigroup of R+, is the
Fraı̈ssé limit of the class of finite metric spaces with distances in S.
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Theorem 1.4. The automorphism groups of the following structures are uniquely er-
godic: the (countably) infinite-dimensional vector space over a given finite field, the ran-
dom A-free hypergraph of a given type, and US .

Restricting ourselves to automorphism groups of Hrushovski structures, which provide
the most prominent examples of amenable (but not extremely amenable) groups, we shall
find that unique ergodicity of Aut(K), with K a Hrushovski structure, is equivalent to
a combinatorial property of Age(K), very much in the spirit of [KPT]. In fact, rather
interestingly, if K := Age(K) admits a companion K∗ as above, then it turns out that
unique ergodicity is exactly equivalent to a quantitative version of what is called the
“ordering property”. The ordering property is a key ingredient of the Ramsey theory of
classes of finite structures that is instrumental in the computation of universal minimal
flows in [KPT, 7.5]. We discuss this in Section 13 below.

In Section 14, we show that for certain automorphism groups, including those of the
random A-free uniform hypergraph of a given type and of US , every minimal action
not only has a unique invariant measure, but also this measure concentrates on a single
comeager orbit. This was earlier proved for the group S∞ by Glasner and Weiss [GW1].

Finally in the last Section 15, we discuss some open problems arising from the work
in this paper.

2. Graphs and uniform hypergraphs

In this section, we prove that the only consistent random ordering on the class of all finite
graphs is the uniform ordering. In fact, we prove the same for hypergraphs. Recall that an
r-uniform hypergraph is a pair G = 〈V,E〉, where E ⊆

(
V
r

)
is a collection of subsets of

V of cardinality r; the elements of E are called hyperedges. The case r = 2 is the case of
graphs. The size ofG is defined to be the cardinality of V . IfG = 〈V,E〉 is a hypergraph
and V ′ ⊆ V , then the hypergraph induced on V ′ by G equals

〈
V ′, E ∩

(
V ′

r

)〉
. Note that

hyperedges intersecting V ′ that are not contained in V ′ are discarded.
The way we prove Theorem 1.2 is via the following general principle. LetNind(H,G)

denote the number of embeddings of H in G, i.e., the number of isomorphisms
φ : H → H ′ such that H ′ is an induced hypergraph in G. (Up to symmetries, this is the
number of induced subgraphs of G that are isomorphic to H .) Given a pair of orderings
<G of V (G) and<H of V (H), letNord(H,G) denote the number of ordered embeddings
of H in G, i.e., the number of embeddings φ : H → G such that φ∗(<G) = <H . Here,
φ∗ denotes the pull-back map induced by φ, i.e., x <φ∗(<G) y ⇔ φ(x) <G φ(y).

Lemma 2.1. Let k ≥ r ≥ 2 be integers. Let G be an r-uniform hypergraph and H be an
r-uniform hypergraph on k vertices such that Nind(H,G) > 0. Suppose δ is such that for
every pair of orderings <G of V (G) and <H of V (H),∣∣∣∣Nord(H,G)

Nind(H,G)
−

1
k!

∣∣∣∣ ≤ δ. (1)
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Let µG and µH be random orderings on G and H , respectively. Suppose that every em-
bedding φ of H inG satisfies φ∗µG = µH . Then dTV(µH , νH ) ≤ δk!/2, where νH is the
uniform ordering on H .

Proof. Fix<H . Choose <G at random according toµG and choose an embedding 8 ofH
inG uniformly at random. Let A be the event that the restriction of <G to the image of 8

equals 8∗(<H ). Since φ∗µG = µH for every φ, we have P(A | 8 = φ) = µH (<H ),
whence averaging over φ gives P(A) = µH (<H ). We can rewrite the assumption (1) as
|P(A | <G = <G)−1/k!| ≤ δ for each<G; averaging over<G gives |P(A)−1/k!| ≤ δ.
That is, |µH (<H )− 1/k!| ≤ δ. Finally, summing over all orderings <H gives the bound.

ut

Clearly Theorem 1.2 follows from Lemma 2.1 and the following result. Write I (n, k, r)
:= (n)k2−(

k
r), where (n)k := n(n − 1) . . . (n − k + 1) is the number of 1-1 maps from

{1, . . . , k} to {1, . . . , n}.

Theorem 2.2. Let 2 ≤ r ≤ k ≤ n be integers. There is a constant C = C(k, r) with
the following property. For every r-uniform hypergraph H on k vertices, there exists an
r-uniform hypergraph G on n vertices such that∣∣∣∣Nind(H,G)

I (n, k, r)
− 1

∣∣∣∣ < C

√
log n
nr−1

and for every pair of orderings <G of V (G) and <H of V (H),∣∣∣∣Nord(H,G)

Nind(H,G)
−

1
k!

∣∣∣∣ < C

√
log n
nr−1 . (2)

The proof of Theorem 2.2 uses the following classical inequality of McDiarmid [McD],
known as the bounded-differences inequality:

Theorem 2.3. Let Z := 〈Z1, . . . , Zn〉, where Zi are independent random variables, and
f (z1, . . . , zn) be a real-valued function such that

|f (z)− f (z′)| ≤ ai

when the vectors z and z′ differ only in the ith coordinate. Write ζ := E[f (Z)]. Then for
all L > 0,

P[|f (Z)− ζ | ≥ L] ≤ 2 exp
(
−

2L2∑n
i=1 a

2
i

)
.

Proof of Theorem 2.2. Let G be a uniformly random r-uniform hypergraph on n fixed
vertices, V (so that each hyperedge is present with probability 1/2). Note that

I (n, k, r) = E[Nind(H,G)].

Define
f (G) :=

Nind(H,G)
I (n, k, r)

,
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which we consider as a function of the
(
n
r

)
variables indicating the presence of each pos-

sible hyperedge. The addition or removal a single hyperedge to G changesNind(H,G) by
at most (k)r(n−r)k−r , and so f satisfies the conditions of Theorem 2.3 with ai = c1n

−r ,
where we shall denote by cj intermediate constants that depend on k and r , but not on n.
It follows that

P
[∣∣∣∣Nind(H,G)
I (n, k, r)

− 1
∣∣∣∣ ≥ D] ≤ 2 exp

{
−2D2(

n
r

)
(c1n−r)2

}
≤ 2e−c2D

2nr .

Similarly, for any fixed orderings <H and <V , we have E[Nord(H,G)] =
I (n, k, r)/k!. We apply Theorem 2.3 to

G 7→
Nord(H,G)
I (n, k, r)

.

Adding or removing a single hyperedge changes Nord(H,G) by at most
(
k
r

)
(n− r)k−r , so

as above,

P
[∣∣∣∣Nord(H,G)

I (n, k, r)
−

1
k!

∣∣∣∣ ≥ D] ≤ 2 exp
{
−2D2(

n
r

)
(c3n−r)2

}
≤ 2e−c4D

2nr .

Combining these, we find that except with probability c5n!e
−c6D

2nr , we have simul-
taneously ∣∣∣∣Nind(H,G)

I (n, k, r)
− 1

∣∣∣∣ < D and
∣∣∣∣Nord(H,G)
I (n, k, r)

−
1
k!

∣∣∣∣ < D

for all orderings<H and<V . We now takeD := c7
√
(log n)/nr−1 with c7 chosen so that

c5n!e
−c6D

2nr < 1. Then there is a G satisfying the above bounds. The claim then follows
by the triangle inequality with C := 2c7, since∣∣∣∣Nord(H,G)

I (n, k, r)
−
Nord(H,G)

Nind(H,G)

∣∣∣∣ = Nord(H,G)

Nind(H,G)
·

∣∣∣∣Nind(H,G)

I (n, k, r)
− 1

∣∣∣∣ < 1 ·D. ut

This method of proof can be applied to many other classes of structures, thereby es-
tablishing the uniqueness of consistent random (admissible) orderings for these classes.
These include: (i) the Fraı̈ssé class of finite tournaments and (ii) the Fraı̈ssé class of ar-
bitrary L-structures for any finite language L containing only relation symbols of arity
≥ 2. In both these cases, the uniform ordering is the unique consistent random ordering.
For another example, consider a finite language L containing at least one relation sym-
bol of arity ≥ 2 and unary relation symbols P1, . . . , Pk and consider the Fraı̈ssé class
of structures for this language in which the P1, . . . , Pk form a partition. In this case,
the admissible orderings for such a structure A will turn out to be those < for which
PA

1 < · · · < PA
k , and again the uniform ordering is the unique consistent random ad-

missible ordering. (This also holds if the language contains no relation symbols of arity
≥ 2, but uniqueness is straightforward in this case and does not need the methods of this
section; see Section 10.) Similarly, take as K the Fraı̈ssé class of bipartite graphs with
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distinguished parts, i.e., structures of the form 〈V,E,A1, A2〉, where 〈V,E〉 is a graph
and A1, A2 is a partition of V such that there are no edges within each Ai . Then for each
such graph the relevant collection of admissible orderings consists of all orderings <
such that A1 < A2 and the uniform ordering is the unique consistent random admissible
ordering.

3. Bounded degree graphs (and hypergraphs?)

In this section, we construct non-uniform consistent random orderings on graphs with
bounded degrees, and estimate their total variation distance from uniform. We believe we
have a construction for hypergraphs as well, but lack a proof.

Theorem 3.1. There is a constant C > 0 with the following property. Let n ≥ 2 be an in-
teger. There is a consistent random ordering (µG)G defined on all graphs of size at most n
such that for every k ∈ [3, n], there exists a graph H of size k with dTV(µH , νH ) ≥ C/n.

In fact, we prove the following more general lower bound.

Theorem 3.2. There is a constant C > 0 with the following property. Let D ≥ 2 be an
integer. There exists a consistent random ordering (µG)G defined on all graphs of degree
at most D such that for every k ≥ 3, there exists a graph H of degree at most D and of
size k such that dTV(µH , νH ) ≥ C/D.

Proof. Let G = 〈V,E〉 be a graph with maximal degree D. Let us make every vertex
x ∈ V have degree exactly D by adding D − dx additional edges connecting x to new,
auxiliary vertices. Call the resulting graph Ĝ. Let Z(e) be independent standard normal
random variables for the edges e of Ĝ. Define Y (x) :=

∑
e3x Z(e) for vertices x of G.

(We do not bother defining Y for vertices of Ĝ \G.) Assign to the vertices of G the order
induced from Y ⊂ R.

If H is an induced subgraph of G, then the inclusion of H in G can be extended to a
map from Ĥ to Ĝ that is 1-1 on edges (though some of the vertices added to H may be
mapped to the same vertex of G.) Now the IID Gaussians associated with the edges of Ĝ
can be pulled back to Ĥ . This gives the ordering of H as the restriction of the ordering
of G, thus showing that this ordering is consistent.

However, this ordering is not uniform. Given k, let H be the graph on vertices
{1, . . . , k} with only two edges, e1 := (1, 2) and e2 := (2, 3). Let A be the event that
Y (1) < Y(2) < Y(3). Then νH (A) = 1/6, whereas µH (A) ≥ 1/6+ 1/(6D)+ o(1/D).
To see this last fact, define Wi := Y (i)− Z(e1)− Z(e2), so that A = {W1 < W2 < W3}.
Note that W1, W2, and W3 are independent normal random variables with variances D,
D − 2, and D, respectively. Therefore, P(A) = P[Z1 < (1 − 2/D)Z2 < Z3] for
some independent standard normal random variables Z1, Z2, and Z3. Define f (ε) :=
P[Z1 < (1− ε)Z2 < Z3]. It suffices to show that f ′(0) = 1/(2π

√
3) > 1/12.

Write ϕ(x) for the standard normal probability density. Then for a < b,

d

dε
P[a < (1− ε)Z < b]

∣∣∣∣
ε=0
= bϕ(b)− aϕ(a),
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whereas for a > b the derivative is trivially 0. Thus

d

dε
P[Z1 < (1− ε)Z2 < Z3]

∣∣∣∣
ε=0
=

∫∫
z3>z1

(z3ϕ(z3)− z1ϕ(z1))ϕ(z1)ϕ(z3) dz1 dz3

=
1

2π
√

3
. ut

An even easier construction holds for orderings of finite connected bipartite graphs (such
as trees) whose parts are not distinguished. There we have the following:

Theorem 3.3. There is a non-uniform consistent random ordering of the class of finite
connected bipartite graphs.

Proof. We essentially saw this at the end of Section 2: Given a finite connected bipartite
graph, let A and B be its two parts, named in random order. Order all of A uniformly and
all of B uniformly independently, making all of A less than all of B. It is easy to check
that this is consistent. ut

Question 3.4. Is there a non-uniform consistent random ordering on all finite bipartite
graphs? Is there a non-uniform consistent random ordering on finite forests? Is there a
non-uniform consistent random ordering on finite planar graphs?

Remark 3.5. We believe that the following extension of Theorem 3.1 to uniform hyper-
graphs holds. Let n > r ≥ 2 be integers. Then there is a constant C(r) > 0 and a con-
sistent random ordering (µG)G defined on all r-uniform hypergraphs of size at most n
such that for every k ∈ [r + 1, n], there exists an r-uniform hypergraph H of size k
with dTV(µH , νH ) ≥ C(r)/n

r−1. In fact, we believe the following more general lower
bound. Note that the degree of a vertex in a hypergraph is defined to be the number of
hyperedges that contain the vertex. Let r,D ≥ 2 be integers. Then there is a constant
C(r) > 0 with the following property: There exists a consistent random ordering (µG)G
defined on all r-uniform hypergraphs of degree at most D such that for every k ≥ r + 1,
there exists an r-uniform hypergraph H of degree at most D and of size k such that
dTV(µH , νH ) ≥ C(r)/D.

It appears via simulations that the following modification of the proof of Theorem
3.1 should work. The consistency condition (ii) means that for r ≥ 3, assigning a single
Gaussian variable to each hyperedge and summing the variables of the edges containing
a vertex does not yield a consistent ordering. The following construction is consistent and
appears to give the claimed lower bound. LetZ := 〈Z1, . . . , Zr 〉 be a collection of (r−1)-
independent exchangeable standard normal random variables that are not independent.
(Recall that Z is exchangeable means that the law of Z is invariant under permutations
of its coordinates.) For example, let 8 be the standard normal cumulative distribution
function. Let T1, . . . , Tr be IID uniform [0, 1] random variables conditioned to sum to 0
modulo 1. Now define Zi := 8−1(Ti). Let G be an r-uniform hypergraph with maximal
degree D. Let Z(e) = 〈Z(e)x ; x ∈ e〉 be independent copies of Z for the hyperedges e
of G. Also, for each vertex x of G of degree dx < D, let Z(x, 1), . . . , Z(x,D − dx) be
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additional independent standard normal random variables. Define Y (x) :=
∑
e3x Z(e)x+∑D−dx

i=1 Z(x, i) for vertices x of G. Note that the process Y is Aut(G)-invariant. Assign
the vertices of G the order induced from Y ⊂ R. This is consistent and appears not to be
uniform.

In fact, given k, let H be the hypergraph consisting of the vertices {x1, . . . , xk} and
two hyperedges, e1 := {x1, . . . , xr} and e2 := {x2, . . . , xr+1}. Let A be the event that
Y (x1) < · · · < Y(xr) < Y(xr+1). Then νH (A) = 1/(r + 1)!, whereas it seems that
µH (A) ≥ 1/(r + 1)! + C(r)/D + o(1/D).

4. Dense hypergraphs of large girth

Here we prove a version of a lemma of [NR] that will be very useful to us in analyzing
more complicated structures in the next two sections. There are various kinds of paths
one can define in a hypergraph. We use the following. A path in a hypergraph is an
alternating sequence 〈x1, e1, x2, e2, . . . , xL, eL, xL+1〉 of vertices xi and hyperedges ei
such that xi 6= xi+1, xi, xi+1 ∈ ei , and ei 6= ei+1 for all i ∈ [1, L]. Such a path is said to
join x1 to xL+1, to have length L, and to be a cycle if L ≥ 2 and x1 = xL+1. The girth of
a hypergraph is the minimal length of a cycle that it contains. A hypergraph is connected
if every pair of distinct vertices is joined by some path.

Lemma 4.1. Let r ≥ 2 and g ≥ 3 be integers. There is a constantC = C(r, g) so that for
all n ≥ r , there exists an r-uniform hypergraph on n vertices and at least Cn(g−1)/(g−2)

hyperedges that has girth at least g.

Proof. The (standard) method is to take a random hypergraph and remove all edges that
are in short cycles. Let ci denote constants that depend on r and g, but not on n. Let
p := a/nr−(g−1)/(g−2) for a small constant a < 1 to be chosen later. Let G be the random
r-uniform hypergraph on n vertices such that each hyperedge belongs to G independently
with probability p. Thus, the expected number of hyperedges in G is

(
n
r

)
p, which is at

least c1an
(g−1)/(g−2). Let 2 ≤ j < g. The union of the hyperedges of any minimal cycle

of length j contains at most rj − j vertices. The number of cycles of length j whose
union is a given set of size i is at most

(
i
r

)j
, and each such cycle has probability pj to

belong to G. Also, the number of hyperedges that belong to some minimal cycle of length
j is at most j times the number of such minimal cycles. Thus, the expected number of
hyperedges that belong to some minimal cycle of length j is at most c2

∑rj−j
i=r

(
n
i

)
pj ≤

c3n
(r−1)jpj = c3a

jnj/(g−2). Hence the expected number of hyperedges that belong to
some cycle of length less than g is at most

∑g−1
j=2 c3a

jnj/(g−2)
≤ c4a

2n(g−1)/(g−2). Now
for a sufficiently small,C := c1a−c4a

2 > 0. That is, for a sufficiently small, the expected
number of hyperedges in G that do not belong to any cycle of length less than g is more
than Cn(g−1)/(g−2). Therefore, there is some hypergraph with more than Cn(g−1)/(g−2)

hyperedges that do not belong to any cycle of length less than g. Take such a hypergraph
and remove all hyperedges in cycles of length less than g. ut
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We remark that the hypergraph may be constructed to be connected at the price of allow-
ing the number of vertices to be in the interval [n, n + r − 2]. To see this, if the result
above is disconnected and has at least r connected components, then we may add a hy-
peredge to reduce the number of components without creating any new cycles. If, on the
other hand, the number p of connected components is between 2 and r − 1, then we may
add a hyperedge containing r −p new vertices to make it connected without creating any
new cycles.

5. Forbidden subgraphs

Given the edge set E of a graph K , identify subsets A ⊆ E with their indicator functions
1A ∈ (Z2)

E , so that A1 4 A2 is identified with 1A1 + 1A2 . We say that a simple cycle C
is generated by simple cycles C1, . . . , Cj if C is the sum (in the previous sense) of the Ci
(1 ≤ i ≤ j ), where we regard a simple cycle as its set of edges. Given an integer g ≥ 3,
say that a graph K is g-small if K is connected, has no cutpoints, and all simple cycles
in K are generated by simple cycles in K of length < g. For example, if K is connected,
has no cutpoints, and has size < g, then K is g-small. For another example, note that the
usual Cayley graph of Z2, i.e., the infinite square lattice graph, is 5-small.

Given a class H of graphs, write Forb(H) for the class of finite graphs that have no
induced subgraph in H. Note that if H is finite and consists of connected finite graphs
without cutpoints, then H contains only g-small graphs for some fixed g. Also, if H
is hereditary and each graph K in H has the property that all simple cycles in K are
generated by simple cycles in K of length < g, then Forb(H) = Forb(H′) for some
class H′ that contains only g-small graphs. Indeed, we may let H′ be the class of graphs
in H that are connected and have no cutpoints.

Theorem 5.1. Let g ≥ 3 be an integer and H be a collection of g-small graphs. The
uniform ordering is the unique consistent random ordering on the class Forb(H).
The quantitative version of this theorem follows. In it, we speak of a restricted class
of (induced) embeddings of a graph H in a graph G. We use the superscript “res” to
denote the restriction in counting embeddings and in counting ordered embeddings. The
restriction depends on both H and G and can be arbitrary, but it does not depend on
orderings of H and G. We denote by N res

ind(H,G) the number of restricted embeddings,
while for any fixed orderings <H , <G of H , G, resp., we denote by N res

ord(H,G) the
number of restricted embeddings that preserve <H , <G. The proof that Theorem 5.2
implies Theorem 5.1 is the same as that of Lemma 2.1.

Theorem 5.2. Let k, g ≥ 3 be integers and H be a collection of g-small graphs. There
exists a constant C(k, g) with the following property. For every graphH ∈ Forb(H) on k
vertices and n ≥ k, there exists a graph G ∈ Forb(H) on n vertices such that there is a
restricted class of embeddings for which N res

ind(H,G) > 0 and for every pair of orderings
<G of G and <H of H ,∣∣∣∣N res

ord(H,G)

N res
ind(H,G)

−
1
k!

∣∣∣∣ <
√

log n
C(k, g)n1/(g−2) .



2072 Omer Angel et al.

Proof. Let L be the number of automorphisms of H . Let C(k, g) be the constant of
Lemma 4.1. Write m := dC(k, g)n(g−1)/(g−2)

e. Let G0 be a k-uniform hypergraph on n
vertices V having m hyperedges e1, . . . , em and girth at least g. Such a G0 exists by
Lemma 4.1 when n ≥ k. Since the girth of G0 is larger than 2, no two hyperedges share
more than one vertex ofG0. Let G be the random graph obtained fromG0 as follows. For
1 ≤ i ≤ m, let Hi be the random graph isomorphic to H with vertex set ei induced by a
uniform random bijection between ei and V (H). Choose Hi independently. The union of
all Hi is G.

We claim that G ∈ Forb(H). Suppose not and that G has an induced subgraphK ∈ H.
Since H ∈ Forb(H), it follows that K is not contained entirely within any Hi . Since K
is connected and has no cutpoints, it also follows that there is a simple cycle C of K
that has length at least g and that there is a cycle C′ = 〈x1, er1 , x2, er2 , . . . , xl, erl , xl+1〉

in G0 and paths Pi ⊆ Hri joining xi to xi+1 so that C is the concatenation of the paths
P1, . . . , Pl . Choose such a pair of cycles C, C′ with l a minimum. Then all xi are distinct.
Now C is generated by simple cycles in K of length < g, each of which, being simple,
lies within some Hi . However, the sum of cycles is an even graph, i.e., all its vertices have
even degree, whereas the intersection of C with each Hi is a union of paths with distinct
endpoints and thus is not an even graph. Since this intersection must be generated by the
cycles that lie within Hi , we obtain a contradiction, which establishes our claim.

We shall restrict to the embeddings ofH in G that embedH in some hyperedge ofG0.
Thus, N res

ind(H,G) = Lm.
Fix <V and <H . Let G be a possible value of G. Let f (G) := N res

ord(H,G)/(Lm).
NowN res

ord(H,G) has a binomial distribution with parameters (m,L/k!). Thus, Chernoff’s
inequality yields

P[|f (G)− 1/k!| ≥ D] ≤ 2 exp{−2L2D2m}.

Choose

D :=

√
n log n
m
≤

√
log n

C(k, g)n1/(g−2) .

This gives
P[|f (G)− 1/k!| ≥ D] ≤ 2 exp{−2L2n log n}.

Since this holds for every <V and every <H and the number of pairs of orderings of
V (G0) and V (H) is n!k!, we obtain the result. ut

A similar proof clearly works for the Fraı̈ssé class of A-free hypergraphs of a given type
and also for the Fraı̈ssé class of abstract simplicial complexes of bounded dimension. So
we have:

Theorem 5.3. The uniform ordering is the unique consistent random ordering on the
class of finite A-free hypergraphs of a given type and for the class of finite simplicial
complexes of bounded dimension.

Remark 5.4. The method used in this section to prove uniqueness of consistent random
orderings works also for the classes considered in Section 2.
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6. Metric spaces

Since there are many interesting classes of metric spaces, they provide a fertile ground for
investigation. First we prove that when (essentially) no restriction is placed on the class of
metric spaces, the only consistent random ordering is the uniform one. In the next section,
we show that some particular classes have other consistent orderings.

Theorem 6.1. Let S be an additive subsemigroup of R+. The uniform ordering is the
unique consistent random ordering on the class of metric spaces with non-zero distances
in S.

A quantitative version follows.

Theorem 6.2. Let k, α ≥ 3 be integers. There exists a constant C′(k, α) with the fol-
lowing property. For every metric space 〈X, d〉 on k vertices satisfying d(x1, x2) ≤

αd(x3, x4) for all xi ∈ X with x3 6= x4, and for every n ≥ k, there exists a metric
space Y on n vertices with (non-zero) distances in the additive semigroup generated by
the (non-zero) distances in X and such that there is a restricted class of embeddings for
which N res

ind(X, Y ) > 0 and for every pair of orderings <X of X and <Y of Y ,∣∣∣∣N res
ord(X, Y )

N res
ind(X, Y )

−
1
k!

∣∣∣∣ ≤
√

log n
C′(k, α)n1/(α−1) .

Proof. Let L be the number of isometries of X, so L ≤ k!.
Let C′(k, α) := C(k, α + 1), where C(r, g) is the constant of Lemma 4.1. Write

m := dC′(k, α)nα/(α−1)
e. Let G0 be a k-uniform hypergraph on n vertices V having m

hyperedges e1, . . . , em and girth at least α + 1. Such a G0 exists by Lemma 4.1 when
n ≥ k. Note in particular that no two hyperedges share more than one vertex of G0. Let
Y be the random metric space on V obtained from G0 as follows. For 1 ≤ i ≤ m, let
(Xi, di) be the random metric space isometric to X on ei induced by a uniform random
bijection between ei and X. Extend the resulting metric d to all pairs z,w ∈ V by using
the induced shortest-path metric for those pairs that are joined by a path of points whose
consecutive distances have already been defined. Let β be the maximum distance thereby
obtained and define d(z,w) to be β if there is no path of G0 that joins z and w. This
defines Y. Note that the restriction of d to each Xi agrees with di since if P is a shortest
path between two points x, y ∈ Xi , then either P is contained within Xi , in which case
the result follows from the triangle inequality for di , or P has length at least α, in which
case the length of P is at least αdi(x, y)/α = di(x, y) by the hypothesized inequality
involving α.

We restrict to the embeddings of X in Y that embed X in some hyperedge. Thus,
N res

ind(X,Y) = Lm.
Fix <Y and <X. Let Y be a possible value of Y. Let f (Y ) := N res

ord(X, Y )/(Lm).
NowN res

ord(X,Y) has a binomial distribution with parameters (m,L/k!). Thus, Chernoff’s
inequality yields

P[|f (Y)− 1/k!| ≥ D] ≤ 2 exp{−2L2D2m}.
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Choose D :=
√
n log n/m. This gives

P[|f (Y)− 1/k!| ≥ D] ≤ 2 exp{−2L2n log n}.

Since this holds for every <Y = <V and every <X, and the number of pairs of orderings
of V and <X is n!k!, we obtain the result. ut

7. Euclidean and other metric spaces

For certain classes of metric spaces, there is a non-uniform consistent random ordering.
We begin by describing an idea of Leonard Schulman (personal communication, 2010) for
randomly ordering finite subsets X of Euclidean space Rn. Project Rn orthogonally onto
a uniformly random oriented line through the origin. Order the points ofX corresponding
to the order of their projections on the line. Write µX for the law of this random order.
By considering translations, rotations, and reflections separately, it is not hard to see that
if φ : Rn → Rn is an isometry, then µφ[X] = φ∗(µX); furthermore, µY is induced by
restriction of µX when Y ⊆ X. In that sense, X 7→ µX is consistent for the class of
finite subsets of Rn. In addition, it is consistent in the following sense: if X ⊂ Rm ⊂ Rn
for some m < n, then the probability measure on orderings of X induced by random
projections of Rm is the same as the one induced from Rn. Finally, it is consistent in that
whenever φ : X → Y is an isometry of finite subsets of Rn with their induced metrics,
then µY = φ∗(µX) since φ extends to an isometry of all of Rn. (That is, Euclidean space
is ultrahomogeneous.)

To extend this idea, call a metric space Euclidean if it is isometric to a subset of some
Euclidean space.

Theorem 7.1. Fix an injection f : [0,∞) → [0,∞) with f (0) = 0. There is a non-
uniform consistent random ordering on the class of those finite metric spaces 〈X, d〉 for
which 〈X, f ◦ d〉 is Euclidean.

Proof. Given an isometric embedding φ : 〈X, f ◦ d〉 → R|X|, define the ordering µX :=
φ∗µφ[X] pulled back from the ordering on the image of X defined above. By ultrahomo-
geneity, µX is independent of choice of φ. However, µX is not uniform whenever not all
non-zero distances in X are the same. Indeed, consider three points in X. Let their image
in Euclidean space be a, b, c. By consistency, we may assume that a, b, c ∈ R2 with a at
the origin. Let Lb and Lc be the lines through a that are orthogonal to ab and ac, respec-
tively. The lines through a the projection onto which give a either the smallest or largest
position are the lines in the minor arc between Lb and Lc. Thus, the probability that a is
not extreme equals the angle ∠bac divided by π . ut

Examples include metric spaces of negative type, which can be defined as those metric
spaces 〈X, d〉 such that 〈X, f ◦ d〉 is Euclidean for f (s) :=

√
s. In fact, it then turns out

that one may also take f (s) := sα for any α ∈ (0, 1/2] (see [Sch]). Examples of metric
spaces of negative type include ultrametric spaces, spheres, hyperbolic spaces, and all Lp

spaces for 1 ≤ p ≤ 2 (see [Mec, Theorem 3.6] and the references there).
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It should be pointed out that the Ramsey properties of classes of Euclidean metric
spaces are far from being understood and it is conceivable that the above have some
relevance in this context.

One can also establish Theorem 3.2, i.e., that there is a non-uniform consistent random
ordering on graphs of bounded degree, by this random projection method. In order to
choose distances on the vertices of a graphG = 〈V,E〉 with maximum degree at mostD
that give a metric of negative type, fix a < 1 such that a/(1− a) = D and for x, y ∈ V ,
define

d(x, y) :=


0 if x = y,
1 if {x, y} ∈ E,
a otherwise.

We use the fact [Sch] that a finite metric space has negative type iff its matrix of dis-
tances is conditionally negative semidefinite (CNSD). Here, a matrix M is called CNSD
if (Mv, v) ≤ 0 for all vectors v that are orthogonal to the constant vectors. Let A be the
adjacency matrix and J be the all-ones matrix indexed by the vertices. Then the distance
matrix is A + a(J − A − I ) = (1 − a)A − aI + aJ . When this matrix acts on a vector
orthogonal to the constants, J sends the vector to 0, so the distance matrix is CNSD iff
(1 − a)A − aI is CNSD iff −(DI − A) is CNSD. But in fact, this matrix is negative
semidefinite (NSD), as seen, e.g., by comparison to the graph Laplacian matrix. Here,
a matrix M is called NSD if (Mv, v) ≤ 0 for all vectors v.

It seems that using random distances, one can also use this method for uniform hyper-
graphs, but this appears even harder than the method used in the discussion of Remark 3.5.

If one wishes, one can define the random ordering on finite subsets of Euclidean
spaces in all dimensions at once by considering finite subsets X of Hilbert space H :=

`2(N) instead. For that case, let 〈vn ; n ≥ 0〉 be any orthonormal basis of H and let
〈Zn ; n ≥ 0〉 be independent standard normal random variables. Order X by the order
on the real numbers

∑
n Zn〈x, vn〉 for x ∈ X; this sum converges a.s. by Kolmogorov’s

Three-Series Theorem because
∑
n |〈x, vn〉|

2 < ∞. The sum has a normal distribution
with variance ‖x‖2. The spherical symmetry of the standard multivariate normal distribu-
tion in Euclidean spaces shows that this random ordering does not depend on the choice
of basis and agrees with the random ordering µX previously defined.

This is related to the Lévy–Ciesielski construction of Brownian motion: First, note
that R+ has negative type, as we can see by embedding R+ into L2(R+) via mapping
x ∈ R+ to the function s 7→ 1[0,x](s). Second, identify L2(R+) with H by taking as
orthonormal basis the Haar basis. Then it is not hard to see that

∑
n Zn〈1[0,x], vn〉 a.s.

converges uniformly for x belonging to any compact set. Since it is a mean-0 Gaussian
process with covariance (x, y) 7→ 〈1[0,x], 1[0,y]〉 = min{x, y}, it is standard Brownian
motion. This is precisely the Lévy–Ciesielski construction.

This concludes the discussion of consistent random orderings on specific classes of
finite structures. The rest of the paper will connect this with the unique ergodicity phe-
nomena.
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8. Topological dynamics and unique ergodicity

We prove here some facts concerning unique ergodicity for amenable groups that will be
used in subsequent sections. First we note the following general fact.

Proposition 8.1. Let 0 be a topological group. Then 0 is amenable iff the universal
minimal flow of 0 admits an invariant measure. Moreover, 0 is uniquely ergodic iff the
universal minimal flow of 0 is uniquely ergodic.

Proof. The first statement is obvious, since every flow contains a minimal subflow. For
the second, it is enough to show that if X is a uniquely ergodic 0-flow, Y is a 0-flow and
π : X → Y is a surjective, continuous 0-map, then Y is uniquely ergodic. For that it is
enough again to show that if ν is a 0-invariant measure on Y , then there is a 0-invariant
measure ν̂ such that π∗ν̂ = ν.

First note that there is a measure µ0 on X such that π∗µ0 = ν. Indeed, the set

{π∗µ ; µ is a measure on X}

is a compact, convex set, containing all Dirac measures, thus, by the Kreı̆n–Milman the-
orem, it contains all measures on Y . It follows that the set of all measures µ on X with
π∗µ = ν is a non-empty, compact, convex set of measures on which 0 acts continuously
by affine transformations (the action given as usual by

∫
f d(g · µ) =

∫
(g−1
· f ) dµ for

g ∈ 0, f ∈ C(X), where g · f (x) = f (g−1
· x)). Since 0 is amenable, this action has a

fixed point ν̂ (see [BHV, G.1.7]) and thus ν̂ is as required. ut

Next we provide a characterization of unique ergodicity in the case of compactly approx-
imable groups.

Let 0 be a compactly approximable topological group and let 10 ⊆ 11 ⊆ · · · be a
sequence of compact subgroups with

⋃
n1n = 0. Let λn be the Haar measure of1n. Let

X be a 0-flow. For f ∈ C(X), n ∈ N, define the averaging operator An on C(X) by

An(f )(x) :=

∫
1n

f (g−1
· x) dλn(g).

The following is an analog of 4.9 in Glasner [Gl].

Theorem 8.2. In the preceding notation, the following are equivalent:

(i) ∀f ∈ C(X) ∃f ∗ ∈ C (An(f ) converges uniformly to f ∗).
(ii) ∀f ∈ C(X) ∃f ∗ ∈ C (An(f ) converges pointwise to f ∗).

(iii) There is a 0-invariant measure µ on X such that

∀f ∈ C(X) (An(f ) converges pointwise to
∫
f dµ).

(iv) The 0-flow X is uniquely ergodic.



Random orderings and unique ergodicity of automorphism groups 2077

Proof. (i)⇒(ii) is obvious.
(ii)⇒(iii): PutA(f ) := limn→∞An(f )(x) ∈ C (for any x ∈ X). ThenA is a positive

linear functional on C(X) with A(1) = 1, so by the Riesz Representation Theorem there
is a measure µ on X with

A(f ) =

∫
f dµ.

We shall show that µ is 0-invariant. It is of course enough to show that it is (
⋃
n1n)-

invariant or equivalently thatA is (
⋃
n1n)-invariant, where 0 acts onC(X) by g·f (x) :=

f (g−1
· x). Fix h ∈

⋃
n1n. Then

A(h · f )(x) = lim
n→∞

∫
1n

(h · f )(g−1
· x) dλn(g) = lim

n→∞

∫
1n

f (h−1g−1
· x) dλn(g)

= lim
n→∞

∫
1n

f ((gh)−1
· x) dλn(g) = lim

n→∞

∫
1n

f (g−1
· x) dλn(g) = A(f )(x)

by the invariance of Haar measure.
(iii)⇒(iv): Let µ be a 0-invariant measure with An(f )(x) →

∫
f dµ = f ∗ point-

wise. Let ν be any 0-invariant measure. We shall show that µ = ν. By Lebesgue Domi-
nated Convergence, we have∫

An(f )(x) dν(x)→

∫
f ∗ dν = f ∗ =

∫
f dµ.

But also by Fubini and the 0-invariance of ν,∫
An(f )(x) dν(x) =

∫ (∫
1n

f (g−1
· x) dλn(g)

)
dν(x)

=

∫
1n

(∫
f (g−1

· x) dν(x)

)
dλn(g) =

∫
1n

(∫
f dν

)
dλn(g) =

∫
f dν,

i.e.,
∫
f dµ =

∫
f dν, ∀f ∈ C(X), so µ = ν.

(iv)⇒(i): Let µ be the unique 0-invariant measure. If (i) fails, there is f ∈ C(X)
such that An(f ) does not converge uniformly to

∫
f dµ. Fix then ε > 0 such that for

infinitely many n, there is xn ∈ X with |An(f )(xn)−
∫
f dµ| ≥ ε. For such n, let ρn be

the measure on X defined by∫
h dρn :=

∫
1n

h(g−1
· xn) dλn(g)

for h ∈ C(X). Thus
∫
f dρn = An(f )(xn), so∣∣∣∣∫ f dρn −

∫
f dµ

∣∣∣∣ ≥ ε.
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By compactness there is a measure ρ∞ and a subsequence (ρni ) converging to ρ∞ in the
weak∗-topology of measures. Thus∣∣∣∣∫ f dρ∞ −

∫
f dµ

∣∣∣∣ ≥ ε,
so ρ∞ 6= µ. We shall show that ρ∞ is 0-invariant, which is a contradiction. Fix g0 in⋃
n1n. Then for any h ∈ C(X),∫
(g0 · h) dρ∞ = lim

i→∞

∫
(g0 · h) dρni = lim

i→∞

[∫
1ni

(g0 · h)(g
−1
· xni ) dλni (g)

]
= lim
i→∞

[∫
1ni

h((gg0)
−1
· xni ) dλni (g)

]
= lim
i→∞

∫
1ni

h(g−1
· xni ) dλni (g) = lim

i→∞

∫
h dρni =

∫
h dρ∞. ut

9. Universal minimal flow of automorphism groups and unique ergodicity

Throughout the rest of this paper we shall work in the following context developed in
[KPT] (although our notation will be slightly different).

Consider a Fraı̈ssé class K in a language L. Let L∗ := L ∪ {<} be the language
obtained by adding a binary relation symbol < to L. A structure A∗ for L∗ has the form
A∗ = 〈A, <A〉, where A is a structure for L and <A is a binary relation on A (= the
universe of A). We often write more simply 〈A, <〉 for 〈A, <A〉. A class K∗ of finite
structures in L∗ is called an order class if (〈A, <〉 ∈ K∗ ⇒ < is a linear ordering on A).
For such A∗ = 〈A, <〉, let A∗�L := A.

We say that an order class K∗ on L∗, closed under isomorphism, is an order expansion
of K if K = K∗�L := {A∗�L ; A∗ ∈ K∗}. In this case, if A ∈ K and A∗ := 〈A, <〉 ∈ K∗,
we say that < is a K∗-admissible ordering of A. The order expansion K∗ of K is reason-
able if for every A,B ∈ K with A ⊆ B and any K∗-admissible ordering <A on A, there
is a K∗-admissible ordering <B on B such that <A⊆<B .

If K is a Fraı̈ssé class with K = Flim(K) and K∗ is a reasonable order expansion
of K, we denote byXK∗ the space of linear orderings< onK such that for any finite sub-
structure A of K ,<�A is K∗-admissible on A. We call these the K∗-admissible orderings
on K . They form a compact, non-empty subspace of 2K

2
, with the product topology, on

which the group 0 := Aut(K) acts continuously. Thus XK∗ is a 0-flow.
If K∗ is an order expansion of K, we say that K∗ satisfies the ordering property (OP)

if for every A ∈ K, there is B ∈ K such that for every pair of K∗-admissible orderings
<A on A and <B on B, 〈A, <A〉 can be embedded in 〈B, <B〉.

We also say that a class K of finite structures in a given language L has the Ramsey
Property (RP) if for any A,B ∈ K with A ≤ B (i.e., A can be embedded in B), there is
C ∈ K with B ≤ C such that for any coloring c :

(
C
A

)
→ {1, . . . , k}, there is B ′ ∈

(
C
B

)
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such that c�
(

B ′

A

)
is constant. Here for D ≤ E, we let

(
E
D

)
:= the set of all substructures

of E isomorphic to D.
The following is shown in [KPT, 7.4, 10.8].

Theorem 9.1 ([KPT]). Let K be a Fraı̈ssé class in L, and K∗ a reasonable order expan-
sion of K in L∗ that is also a Fraı̈ssé class. Let K := Flim(K) and 0 := Aut(K). Then
the following are equivalent:

(i) XK∗ is a minimal 0-flow;
(ii) K∗ satisfies the OP.

Moreover, the following are equivalent:

(a) XK∗ is the universal minimal flow of 0;
(b) K∗ satisfies the OP and the RP.

We call (K,K∗) an excellent pair if K is a Fraı̈ssé class in L, K∗ is a Fraı̈ssé, reasonable
order expansion of K in L∗, and K∗ satisfies the OP and the RP. It was shown in [KPT,
9.2] that if K admits an excellent pair (K,K∗), then K∗ is essentially unique. We then
call K∗ a companion of K.

The paper [KPT] contains many examples of excellent pairs (K,K∗) including, e.g.,
K = A-free hypergraphs of a given type, metric spaces with distances in a given count-
able additive subsemigroup of R+ (see also [N1] here), vector spaces over a given finite
field, etc., with corresponding companions K∗ = ordered graphs, ordered A-free hyper-
graphs of a given type, ordered metric spaces with distances in a given countable additive
subsemigroup of R+, lexicographically ordered vector spaces over a given finite field
(i.e., with an ordering induced lexicographically by an arbitrary ordering of a basis), etc.
There are also examples of K that have no companion (see [J], [N2], [KS]), including the
class of finite distributive lattices (see [KS]).

If K is a Fraı̈ssé class with K = Flim(K) and K∗ is a reasonable order expansion
of K, the compact space XK∗ is 0-dimensional, i.e., has a basis consisting of clopen sets.
For each finite substructure A ⊆ K and each K∗-admissible ordering < on A, let

NA,< := {≺ ∈ XK∗ ; ≺�A = <}.

This is a clopen basis inXK∗ and the class of the setsNA,< generates the Borel σ -algebra
of XK∗ .

Thus, if µ is a measure on XK∗ , then µ is completely determined by the values
µ(NA,<) for A ⊆ K and 〈A, <〉 ∈ K∗. These satisfy the obvious relations:

(i) For A ∈ K, A ⊆ K , ∑
{µ(NA,<) ; 〈A, <〉 ∈ K∗} = 1.

(ii) For A,B ∈ K, A ⊆ B ⊆ K ,

µ(NA,<) =
∑
{µ(NB,<′) ; 〈B, <

′
〉 ∈ K∗, < ⊆ <′}.
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Moreover any map NA,< 7→ µ(NA,<) ∈ [0, 1] that satisfies these conditions extends
uniquely to a measure on XK∗ .

In fact, if A0 ⊆ A1 ⊆ · · · is a sequence of finite substructures of K with K =
⋃
nAn,

the sets NAn,<, for 〈An, <〉 ∈ K∗, form in an obvious way a finite branching tree (where
the children of NAn,< are all NAn+1,<′ where < ⊆ <′) and a measure µ on XK∗ is com-
pletely determined by the values µ(NAn,<). Conversely, any map NAn,< 7→ µ(NAn,<) ∈

[0, 1] such that ∑
{µ(NA0,<) ; 〈A0, <〉 ∈ K∗} = 1

and
µ(NAn,<) =

∑
{µ(NAn+1,<′) ; 〈An+1, <

′
〉 ∈ K∗, < ⊆ <′}

extends uniquely to a measure on XK∗ .
Let K be a Fraı̈ssé class in L and K∗ a reasonable order expansion of K in L∗.

A consistent random K∗-admissible ordering on K is a map that assigns to each A ∈ K
a probability measure µA on the set of K∗-admissible orderings on A that is isomor-
phism invariant (i.e., if π : A → B is an isomorphism, then π∗µA = µB) and satisfies
the following for each A ⊆ B in K and 〈A, <〉 ∈ K∗:

µA(<) =
∑
{µB(<

′) ; 〈B, <′〉 ∈ K∗, < ⊆ <′},

where we put µA(<) := µA({<}).
It is clear that if (µA)A∈K is a consistent random K∗-admissible ordering on K, then

we can define a 0-invariant measure µ on XK∗ , where 0 := Aut(K), K := Flim(K), by

µ(NA,<) := µA(<).

Conversely, given such a 0-invariant measure µ on XK∗ , we can define a consistent ran-
dom K∗-admissible ordering of K by

µA(<) := µ(NA′,<′),

where A′ ⊆ K and 〈A, <〉 ∼= 〈A′, <′〉. By the ultrahomogeneity of K , this is well-
defined.

Thus 0-invariant measures on XK∗ can be identified with consistent random K∗-
admissible orderings on K.

We then have, using Proposition 8.1:

Proposition 9.2. Let (K,K∗) be an excellent pair. Let K := Flim(K). Then 0 :=
Aut(K) is amenable iff K admits a consistent random K∗-admissible ordering. Moreover,
0 is uniquely ergodic iff K admits a unique consistent random K∗-admissible ordering.

If (K,K∗) is an excellent pair for which every linear ordering on each given A ∈ K is
K∗-admissible (in this case, we write K∗ = K ∗ LO), then there is an obvious Aut(K)-
invariant measure µ on XK∗ , which in this case is the space of all linear orderings on K ,
given by µ(NA,<) := 1/n!, where n := |A|; we call this the uniform measure on XK∗ .
Thus we have the following:

Proposition 9.3. Let (K,K∗) be an excellent pair such that K∗ = K∗LO. Then Aut(K)
is amenable for K := Flim(K).
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10. Order transitivity and unique ergodicity

We shall discuss here a simple criterion for unique ergodicity and use it to provide our first
examples of uniquely ergodic automorphism groups. Given an excellent pair (K,K∗), a
structure A ∈ K is K∗-order transitive if Aut(A) acts transitively on the set of K∗-
admissible orderings on A. We now have:

Proposition 10.1. Let (K,K∗) be an excellent pair, let K := Flim(K) and assume that
0 := Aut(K) is amenable. If the class of order-transitive structures in K is cofinal, i.e.,
for every A ∈ K, there is an order-transitive B ∈ K with A ⊆ B, then 0 is uniquely
ergodic.

Proof. By Theorem 9.1 and Proposition 8.1, it is enough to show that XK∗ is uniquely
ergodic. Since 0 = Aut(K) is amenable, there is a 0-invariant measure on XK∗ . Fix
any such measure µ. By hypothesis, there is a sequence A0 ⊆ A1 ⊆ · · · of finite sub-
structures of K with

⋃
nAn = K and each An order transitive. It follows that for each

K∗-admissible order < on An, we have µ(NAn,<) = 1/kn, where kn is the cardinality of
the set of K∗-admissible orders on An. Thus µ is uniquely determined. ut

Here are some examples of Hrushovski classes of finite structures satisfying the hypoth-
esis of the previous proposition:

(i) K = pure sets, K∗ = linear orderings. Then K = Flim(K) = N and Aut(K) = S∞.
So S∞ is uniquely ergodic (Glasner and Weiss [GW1]).

(ii) K = equivalence relations, K∗ = equivalence relations with convex orderings, i.e.,
orderings in which each equivalence class is convex (see [KPT, Section 6]). Then
K = the equivalence relation on N that has infinitely many classes, each infinite, so
Aut(K) ∼= S∞ n SN∞ (where S∞ acts on SN∞ by shift) is uniquely ergodic.

(iii) Let K := 〈N<N,∅, p〉, where ∅ is the empty sequence and p is the prefix map,
p(s) := s�(n − 1) for s ∈ Nn for n > 0 and p(∅) := ∅. Then K is a Fraı̈ssé
structure. Let K := Age(K). The elements of K are the structures isomorphic to
finite subtrees T of N<N, i.e., finite subsets T ⊆ N<N containing ∅ and having
the property that if s ∈ Nn, n > 0, and s ∈ T , then for every m < n, we have
s�m ∈ T . We define the class K∗ by saying that < is a K∗-admissible ordering on
T as above if s, t ∈ T , s�m = t�m (for m < length(s), length(t)) and s < u < t ,
imply u�m = s�m. Then (K,K∗) is excellent and K is a Hrushovski class (see [KR,
Section 6.11] and [N1, Chapter 2]). Moreover, if Tn := {s ∈ N<N ; length(s) ≤ n
and ∀i < length(s) (si < n)}, then {Tn ; n ≥ 0} is a cofinal class of order-transitive
structures in K. Thus Aut(K) ∼= Aut(T∞), where T∞ is the rooted ℵ0-regular tree,
is uniquely ergodic.

(iv) More generally, let S ⊆ (0,∞) be countable, let US := the class of finite ultrametric
spaces with distances in S and U∗S := the class of all convexly ordered finite ultra-
metric spaces, where an ordering is convex if metric balls are convex. Then (US,U∗S )
is excellent and US is Hrushovski. Moreover the order-transitive A ∈ US are cofi-
nal (see [N1, Chapter 2]). Here Uult

S := Flim(US) is the Urysohn ultrametric space
with distances in S and thus Aut(Uult

S ) = Iso(Uult
S ) is uniquely ergodic. (The case

S = {2−n ; n ∈ N} corresponds to the previous example.)
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(v) Let F be a finite field and let KF be the class of finite-dimensional vector spaces
over F . Fix an ordering of F in which 0 ∈ F is least. Let K∗F be the class of nat-
urally ordered vector spaces, where a natural order is one induced lexicographi-
cally by an ordering of a basis. Then (KF ,K∗F ) is an excellent pair and KF is
Hrushovski (see [KPT, Section 6]). Clearly every A ∈ KF is order transitive. Now
V∞,F := Flim(KF ) is the (countably) infinite-dimensional vector space over F and
Aut(V∞,F ) = GL(V∞,F ) is the general linear group of V∞,F . Thus GL(V∞,F ) is
uniquely ergodic.

Remark 10.2. Let V ⊆ V∞,F be a finite-dimensional vector space over F . Then the
number of K∗F -admissible orders on V is equal to |GL(V )| and if µ is the unique in-
variant measure, then µ(NV ,<) = 1/|GL(V )|. Thus if V ⊆ W ⊆ V∞,F and < is a
K∗F -admissible order on V , then the number of K∗F -admissible orders on W that extend
< is equal to |GL(W )|/|GL(V )|.

11. A quantitative ordering property and unique ergodicity

We formulate here a quantitative version of the ordering property and show that it implies
unique ergodicity for automorphism groups.

Let K be a Fraı̈ssé class and K∗ be an order expansion of K. We say that K∗ satisfies
the quantitative ordering property (QOP) if there is an isomorphism-invariant map that
assigns to each structure A∗ = 〈A, <A〉 ∈ K∗ a real number ρ(A∗) ∈ [0, 1] such that
for every A ∈ K and every ε > 0, there is a B = B(A, ε) ∈ K and a non-empty set
of embeddings E = E(A, ε) of A into B with the property that for each pair of K∗-
admissible orderings <A of A and <B of B, the proportion of embeddings in E that
preserve <A and <B is equal to ρ(〈A, <A〉), within ε.

There is also a slight variation of this property, which we denote by QOP∗, that reads
as follows: Let K be a Fraı̈ssé class and K∗ be an order expansion of K. We say that K∗
satisfies the QOP* if there is an isomorphism-invariant map that assigns to each structure
A∗ = 〈A, <A〉 ∈ K∗ a real number ρ(A∗) ∈ [0, 1] such that for every A∗ = 〈A, <A〉 ∈

K∗ and every ε > 0, there is a B = B(A∗, ε) ∈ K and a non-empty set of embeddings
E = E(A∗, ε) of A into B with the property that for each K∗-admissible ordering <B

of B, the proportion of embeddings inE that preserve<A and<B is equal to ρ(〈A, <A〉),
within ε.

The QOP implies the QOP∗; for Hrushovski classes, they are equivalent by Theo-
rem 13.3. Note that the QOP does not imply the ordering property, unless the function ρ
above is strictly positive.

We now have the following result, whose proof is related to that of Lemma 2.1.

Proposition 11.1. Let K be a Fraı̈ssé class and K∗ be a Fraı̈ssé class that is a reasonable
order expansion of K. Write K := Flim(K) and 0 := Aut(K). If 0 is amenable and the
QOP∗ holds for K∗, then the 0-flow XK∗ is uniquely ergodic. If moreover (K,K∗) is an
excellent pair, then 0 is uniquely ergodic.
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Proof. Since 0 is amenable, the 0-flow XK∗ has an invariant measure µ. Let (µA)A∈K
be the associated consistent random K∗-ordering. For each 〈A, <A〉 ∈ K∗, we shall show
that µA(<A) = ρ(〈A, <A〉), where ρ comes from the QOP∗; this shows the uniqueness
of µ.

Fix such 〈A, <A〉 and ε > 0. Let B and E be as in the definition of the QOP∗. For
each f ∈ E, we have

µA(<A) = µf (A)(f∗(<A)) =
∑
{µB(<B) ; 〈B, <B〉 ∈ K∗, f∗(<A) ⊆ <B},

so

|E| · µA(<A) =
∑
f∈E

∑
{µB(<B) ; 〈B, <B〉 ∈ K∗, f∗(<A) ⊆ <B}

=

∑
〈B,<B 〉∈K∗

∑
{µB(<B) ; f ∈ E, f∗(<A) ⊆ <B}

=

∑
〈B,<B 〉∈K∗

µB(<B) · |{f ∈ E ; f∗(<A) ⊆ <B}|,

and thus
µA(<A) =

∑
〈B,<B 〉∈K∗

|{f ∈ E ; f∗(<A) ⊆ <B}|

|E|
· µB(<B).

Since
∑
〈B,<B 〉∈K∗ µB(<B) = 1, this shows that |µA(<A) − ρ(〈A, <A〉)| < ε, and

the proof is complete. ut

In Sections 2–6, we have seen that many excellent pairs (K,K∗) satisfy the QOP and
therefore the uniqueness of consistent random K∗-admissible orderings. As a sample, we
have the following result.

Theorem 11.2. The automorphism groups of the random A-free hypergraph of a given
type and the Urysohn space US are uniquely ergodic, but not compact nor extremely
amenable.

We remark that the Urysohn space U without any restriction on distances, which is not a
Fraı̈ssé structure since it is uncountable, has an extremely amenable isometry group (see
[Pe2]).

12. Hrushovski structures

Let K be a Hrushovski structure. Then there is a sequence 10 ⊆ 11 ⊆ · · · of compact
subgroups of 0 := Aut(K) with

⋃
n1n = 0. We shall now prove a stronger version of

this fact that will be used in the next section.

Proposition 12.1. Let K be a Hrushovski structure. Then we can find a sequence A0 ⊆

A1 ⊆ · · · of finite substructures of K with K =
⋃
nAn and a sequence of compact

subgroups 10 ⊆ 11 ⊆ · · · of 0 := Aut(K) with
⋃
n1n = 0 such that for each n, An

is invariant under 1n and g ∈ 1n 7→ g�An ∈ Aut(An) is a surjection from 1n onto
Aut(An).
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Proof. Let 30 ⊆ 31 ⊆ · · · be compact subgroups of 0 with
⋃
n3n = 0. Fix an

enumeration {a0, a1, . . . } = K . We shall construct recursively An,1n as above such that
for each n, 3n ⊆ 1n ⊆ 3n′ for some n′ ≥ n, and An ⊇ {a0, . . . , an}.

We take A0 to be a finite substructure of K that contains a0 and is closed under 30.
Such exists by the compactness of 30. Let Aut(A0) = {ϕ1, . . . , ϕk}. Since

⋃
n3n is

dense in 0, there are f1, . . . , fk ∈ 3M for some large M ≥ 1 such that fi�A0 = ϕi for
1 ≤ i ≤ k. Then 30 ∪ {f1, . . . , fk} ⊆ 3M . Put

10 := 〈30 ∪ {f1, . . . , fk}〉,

which is a compact subgroup of 3M such that 30 ⊆ 10 ⊆ 30′ , where 0′ := M . Clearly
A0 is invariant under 10 and the restriction map from 10 to Aut(A0) is surjective.

Assume now An,1n have been constructed. To define An+1,1n+1, we proceed as be-
fore. Let An+1 be a finite substructure of K with An ⊆ An+1 such that an+1 ∈ An+1 and
An+1 is invariant under 3m, where m := max{n+ 1, n′}, so that also 3m ⊇ 1n ∪3n+1.
Let Aut(An+1) = {ψ1, . . . , ψ`}. As before, there is N ≥ m and f1, . . . , f` ∈ 3N such
that fi�An+1 = ψi for 1 ≤ i ≤ `. Put

1n+1 := 〈3m ∩ {f1, . . . , f`}〉 ⊆ 3N ,

so that1n+1 is compact,1n+1 ⊇ 1n∪3n+1, and1n+1 ⊆ 3(n+1)′ , where (n+1)′ = N .
Finally, An+1 is invariant under 1n+1 and the restriction map from 1n+1 to Aut(An+1)

is surjective. ut

Let K be a Hrushovski structure. A sequence 〈(An,1n) ; n ≥ 0〉 as in the previous
theorem will be called characteristic.

13. Equivalence of unique ergodicity and the QOP for Hrushovski structures

We shall now consider unique ergodicity in the context of Hrushovski classes. Note first
that if K is a Hrushovski class and K = Flim(K), there is a sequence of finite substruc-
tures A0 ⊆ A1 ⊆ · · · ⊆ K such that

⋃
nAn = K and every isomorphism between

substructures of An extends to an automorphism of An+1. We now have for every such
sequence 〈An〉:

Proposition 13.1. Assume that the Hrushovski class K admits a companion K∗. Let
K := Flim(K). For each finite A ⊆ K and each K∗-admissible ordering < on A, let

µA,n(<) :=
|{<n ; 〈An, <n〉 ∈ K∗, < ⊆ <n}|
|{<n ; 〈An, <n〉 ∈ K∗}|

for any n such that A ⊆ An. Let U be a non-principal ultrafilter on N and put

µ(NA,<) := µA(<) := lim
n→U

µA,n(<).

Then µ is a 0-invariant measure on XK∗ , where 0 := Aut(K).
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Proof. It is easy to check that µ defines a measure. We next check its 0-invariance. Let
g ∈ 0 and let g(〈A, <〉) =: 〈B, <′〉 in order to check that µA(<) = µA(<

′). Let
n0 be large enough so that A,B ⊆ An0 . Let n > n0. Then g restricted to A is an
isomorphism between substructures of An0 , so g extends to an automorphism of An.
Clearly µA,n(<) = µA,n(<

′), so µA(<) = µA(<
′). ut

This gives us the following formula for every such sequence 〈An〉 in the case of unique
ergodicity.

Theorem 13.2. Let K be a Hrushovski class that admits a companion K∗. Let K :=

Flim(K) and 0 := Aut(K). If 0 is uniquely ergodic, then the unique 0-invariant mea-
sure µ on XK∗ is given by

µ(NA,<) := lim
n→∞

µA,n(<).

Proof. This follows from the preceding proposition and the fact that for any bounded
sequence 〈an〉 of reals, limn an = a iff for every non-principal ultrafilter U on N, we have
limn→U an = a. ut

We shall next see that for Hrushovski classes K admitting a companion K∗, unique er-
godicity for 0 := Aut(K), with K := Flim(K), is actually equivalent to the quantitative
ordering property for K∗.

Theorem 13.3. Let K be a Hrushovski class, K∗ be a Fraı̈ssé class that is a reasonable
order expansion of K, and let K := Flim(K) and 0 := Aut(K). Then the following are
equivalent:

(i) The 0-flow XK∗ is uniquely ergodic.
(ii) There is an isomorphism-invariant map ρ : K∗→ [0, 1] such that for every A ∈ K

and every ε > 0, there is B ∈ K with B ⊇ A such that for every 〈A, <A〉 ∈ K∗ and
〈B, <B〉 ∈ K∗, the proportion of automorphisms π of B such that π∗(<A) ⊆ <B

is equal to ρ(〈A, <A〉), within ε.
(iii) There is an isomorphism-invariant map ρ : K∗ → [0, 1] such that for every A∗ =

〈A, <A〉 ∈ K∗ and every ε > 0, there is B ∈ K with B ⊇ A such that for every
〈B, <B〉 ∈ K, the proportion of automorphisms π of B such that π∗(<A) ⊆ <B

is equal to ρ(〈A, <A〉), within ε.
(iv) (QOP) There is an isomorphism-invariant map ρ : K∗→ [0, 1] such that for every

A ∈ K and each ε > 0, there is a B ∈ K and a non-empty set of embeddings E
of A into B with the property that for each K∗-admissible ordering <A of A and
each K∗-admissible ordering <B of B, the proportion of embeddings in E that
preserve <A, <B is equal to ρ(〈A, <A〉), within ε.

(v) (QOP∗) There is an isomorphism-invariant map ρ : K∗ → [0, 1] such that for
every A∗ = 〈A, <A〉 ∈ K∗ and each ε > 0, there is a B ∈ K and a non-empty
set of embeddings E of A into B with the property that for each K∗-admissible
ordering <B of B, the proportion of embeddings in E that preserve <A, <B is
equal to ρ(〈A, <A〉), within ε.
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Moreover, if K∗ has the OP, then (i)–(v) are equivalent to

(vi) The same as (ii), but with ρ strictly positive.
(vii) The same as (iii), but with ρ strictly positive.

(viii) The same as (iv), but with ρ strictly positive.
(ix) The same as (v), but with ρ strictly positive.

Finally, if (K,K∗) is an excellent pair, then (i)–(ix) are equivalent to

(x) 0 is uniquely ergodic.

Proof. (i)⇒(ii): Let µ be the unique invariant measure for the 0-flow XK∗ . Put

ρ(〈A, <〉) := µ(NA,<)

for any A ∈ K, A ⊆ K and 〈A, <〉 ∈ K∗. This extends in an obvious way to an
isomorphism-invariant map on all of K∗, also denoted by ρ (since each A ∈ K has an
isomorphic copy contained in K and any two such copies are isomorphic via an automor-
phism of K).

Consider now a characteristic sequence 〈(An,1n) ; n ≥ 0〉 as in Section 12. Write
λn for the Haar measure of 1n. Then

An(f )(x) :=

∫
1n

f (g−1
· x) dλn(g)

converges uniformly to
∫
f dµ for every f ∈ C(XK∗) by Theorem 8.2. For A∗ :=

〈A, <〉 ∈ K∗ with A ⊆ K , denote by 1A∗ the indicator function of the set {≺ ∈ XK∗ ;
< ⊆ ≺}. Then 1A∗ is continuous, so∫

1n

1A∗(g
−1
· x) dλn(g)→

∫
1A∗ dµ = ρ(A, <)

uniformly. For x = ≺ ∈ XK∗ , the left-hand side is∫
1n

1A∗(g
−1
· x) dλn(g) = λn({g ∈ 1n ; g∗(<) ⊆ ≺}).

Find nA∗ large enough so that

|λn({g ∈ 1n ; g∗(<) ⊆ ≺})− ρ(A
∗)| < ε (3)

for all ≺ ∈ XK∗ and n ≥ nA∗ . Since there are only finitely many 〈A, <〉 ∈ K∗ (where
A is fixed), we can find N large enough so that A ⊆ AN and (3) holds for all < with
A∗ = 〈A, <〉 ∈ K∗, ≺ ∈ XK∗ , and n ≥ N . Take then B := AN . Let 〈A, <〉 ∈ K∗, let <′

be K∗-admissible for B, and let ≺ ∈ XK∗ extend <′. We only have to check that

λN ({g ∈ 1N ; g∗(<) ⊆ ≺}) =
|{π ∈ Aut(B) ; π∗(<) ⊆ ≺}|

|Aut(B)|
.



Random orderings and unique ergodicity of automorphism groups 2087

Indeed, let ϕ : 1N → Aut(B) be the epimorphism ϕ(g) := g�B. Then

λN ({g ∈ 1N ; g∗(<) ⊆ ≺}) = λN ({g ∈ 1N ; ϕ(g)∗(<) ⊆ ≺})

= λN (ker(ϕ)) · |{π ∈ Aut(B) ; π∗(<) ⊆ ≺}|.

But clearly λN (ker(ϕ)) = 1/|Aut(B)|, so we are done.
(ii)⇒(iii) is obvious.
(iii)⇒(i): This is similar to the proof of Proposition 11.1. Since 0 is amenable, the 0-

flow XK∗ has an invariant measure. Let µ be any such measure. For each 〈A, <A〉 ∈ K∗
with A ⊆ K , we shall show that µ(NA,<A

) = ρ(〈A, <A〉), which shows the uniqueness
of µ.

Fix such 〈A, <A〉 and ε > 0. Let B be as in (iii). For each π ∈ Aut(B), we have

µ(NA,<A
) =

∑
{µ(NB,<B ) ; 〈B, <B〉 ∈ K∗, π∗(<A) ⊆ <B}

since µ(NA,<A
) = µ(Nπ∗(A),π∗(<A)) and Nπ∗(A),π∗(<A) is the disjoint union of the sets

NB,<B with 〈B, <B〉 ∈ K∗ and π∗(<A) ⊆ <B . So

|Aut(B)| · µ(NA,<A
) =

∑
π∈Aut(B)

µ(NA,<A
)

=

∑
π∈Aut(B)

∑
{µ(NB,<B ) ; 〈B, <B〉 ∈ K∗, π∗(<A) ⊆ <B}

=

∑
〈B,<B 〉∈K∗

∑
{µ(NB,<B ) ; π ∈ Aut(B), π∗(<A) ⊆ <B}

=

∑
〈B,<B 〉∈K∗

µ(NB,<B ) · |{π ∈ Aut(B) ; π∗(<A) ⊆ <B}|,

whence

µ(NA,<A
) =

∑
〈B,<B 〉∈K∗

|{π ∈ Aut(B) ; π∗(<A) ⊆ <B}|

|Aut(B)|
· µ(NB,<B ).

Since
∑
〈B,<B 〉∈K∗ µ(NB,<B ) = 1, this shows that |µ(NA,<A

)− ρ(〈A, <A〉)| < ε.
(ii)⇒(iv): Let ρ be as in (ii). Given A and ε > 0, let B again be as in (ii). Let

E consist of the restrictions to A of all the automorphisms of B. For f ∈ E, let Af :=
{π ∈ Aut(B) ; π�A = f }. It is clearly enough to show that |Af | is independent of f . So
take f1, f2 ∈ E and fix π1 ∈ Af1 , π2 ∈ Af2 . It is enough to show that for σ := π2 ◦ π

−1
1 ,

we have σ ◦ Af1 ⊆ Af2 . Indeed, let π ∈ Af1 . Then for a ∈ A, we have σ ◦ π(a) =
σ(f1(a)) = σ(π1(a)) = π2(a) = f2(a), i.e., σ ◦ π ∈ Af2 .

(iv)⇒(v) is obvious.
(v)⇒(i): This follows by Proposition 11.1.
If K∗ satisfies the OP, then XK∗ is a minimal 0-flow and thus the (closed) support

of any invariant measure is equal to XK∗ , whence in all of (ii)–(v), we may take ρ to be
strictly positive, i.e., (vi)–(ix) hold.

Finally, the equivalence with (x) follows from Proposition 8.1 and Theorem 9.1. ut
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Remark 13.4. In Theorem 13.3, consider the following strengthening of (ii):

(ii)′ There is an isomorphism-invariant map ρ : K∗ → [0, 1] such that for every A ∈ K
and ε > 0, there is B ∈ K with B ⊇ A such that for A0 ⊆ A, 〈A0, <0〉 ∈ K∗, and
every K∗-admissible ordering <B for B, we have∣∣∣∣ |{π ∈ Aut(B) ; π∗(<0) ⊆ <B}|

|Aut(B)|
− ρ(〈A0, <0〉)

∣∣∣∣ < ε.

It is easy to check that the proof of Theorem 13.3 also shows that for a Hrushovski class K,
(ii)′ is equivalent to (ii). However, we can see, without assuming that K is Hrushovski,
that (ii)′⇒(i) and thus when (K,K∗) is an excellent pair, (ii)′ implies that 0 := Aut(K)
is uniquely ergodic.

We shall check that µA(<) := ρ(A, <) for 〈A, <〉 ∈ K∗ is a consistent random
K∗-admissible ordering on K. This shows that the 0-flow XK∗ admits an invariant mea-
sure and the argument in Theorem 13.3 (iii)⇒(i) shows that it is uniquely ergodic.

First note that
∀A ∈ K

∑
{ρ(A∗) ; A∗�L = A} = 1,

since (ii)′ implies that for all ε, this sum is equal to 1 within |A|!ε.
Next fix A0 ⊆ A in K and (A0, <0) ∈ K∗ in order to show that

ρ(〈A0, <0〉) =
∑
{ρ(A, <) ; 〈A, <〉 ∈ K∗, <0 ⊆ <}.

Let ε > 0 and let B be as in (ii)′.
Note that for 〈B, <B〉 ∈ K∗,

{π ∈ Aut(B) ; π∗(<0) ⊆ <B} = {π ∈ Aut(B) ; <0 ⊆ π
∗(<B)}

=

⊔
〈A,<〉∈K∗
<0⊆<

{π ∈ Aut(B) ; π∗(<) ⊆ <B},

so

|{π ∈ Aut(B) ; π∗(<0) ⊆ <B}|

|Aut(B)|

=

∑{
|{π ∈ Aut(B) ; π∗(<) ⊆ <B}|

|Aut(B)|
; 〈A, <〉 ∈ K∗, <0 ⊆ <

}
. (∗)

Let

a :=
∑
{ρ(〈A, <〉) ; 〈A, <〉 ∈ K∗, <0 ⊆ <}

N := |{< ; 〈A, <〉 ∈ K∗, <0 ⊆ <}|.

Then a −Nε < (∗) < a +Nε. Thus∣∣∣∣ |{π ∈ Aut(B) ; π∗(<0) ⊆ <B}|

|Aut(B)|
−

∑
{ρ(〈A, <〉) ; 〈A, <〉 ∈ K∗, <0 ⊆ <}

∣∣∣∣ < Nε.
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But also ∣∣∣∣ |{π ∈ Aut(B) ; π∗(<0) ⊆ <B}|

|Aut(B)|
− ρ(〈A0, <0〉)

∣∣∣∣ < ε,

so, taking ε → 0, we see that

ρ(A0, <0) =
∑
{ρ(〈A, <〉) ; 〈A, <〉 ∈ K∗, <0 ⊆ <}.

A similar remark holds if we replace (iv) by the analogous (iv)′.

14. The support of the unique measure

We shall show here that in certain situations where unique ergodicity holds, the unique
measure is supported by a single orbit, which is actually comeager.

We first discuss the notion of generic point and orbit. If 0 is a topological group that
acts continuously on a topological space X, we say that x ∈ X is generic if its orbit 0 · x
is comeager. In this case, we also say that 0 · x is a generic orbit. Clearly there is at most
one generic orbit in any Baire space X. We first note the following general fact:

Proposition 14.1. Let 0 be a Polish group acting continuously on topological spaces X
and Y that are Hausdorff and Baire. Assume that the action of 0 on X is minimal and
π : X → Y is a continuous surjective 0-map. If x0 is a generic point for X, then π(x0)

is a generic point for Y .

Proof. We use arguments similar to those in Appendix A of Melleray and Tsankov [MT],
although we need to exercise extra care because of our more general context.

Let y0 := π(x0). First notice that 0 · y0 is dense in Y . We next verify that 0 · y0 has
the Baire Property in Y . By the Nikodým Theorem (see [K, 29.14]), it is enough to show
that 0 · y0 can be obtained via the Suslin operation A applied to closed sets in Y , i.e.,
can be written in the form AsFs := {y ∈ Y ; ∃α ∈ N ∀n (y ∈ Fα�n)}, where N := NN

is the Baire space and (Fs)s∈N<N is a family of closed sets indexed by the set of finite
sequences from N. To exhibit such a representation, let ρ : N → 0 be a continuous
surjection and let f : N → Y be defined by f (α) := ρ(α) · y0. Clearly f is continuous.
Let Ns := {α ∈ N ; s ⊆ α}, for s ∈ N<N, be the basic open sets in N . Put Fs := f [Ns].
Then it is easy to see that 0 · y0 = AsFs .

It follows that if 0 · y0 is not meager, it must be comeager (see [K, 8.46]). That is, it
suffices to show that 0 · y0 is not meager. Now if it were meager, then there would be a
sequence 〈Vn〉 of dense open sets in Y with

⋂
n Vn ∩ 0 · y0 = ∅. This would imply that⋂

n π
−1(Vn) ∩ 0 · x0 = ∅, so it is enough to show that if V ⊆ Y is dense and open in Y ,

then π−1(V ) is dense in X. To see this, let W ⊆ X be non-empty and open. Let 00 be a
countable dense subgroup of 0. By the minimality of X, we have 00 ·W = X, whence
00 ·π(W) = Y . Then π(W) is not meager in Y , thus π(W)∩V 6= ∅, soW∩π−1(V ) 6= ∅.

ut
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Specializing to the case of 0-flows, we then have the following:

Corollary 14.2. Let 0 be a Polish group. If the universal minimal flow of 0 has a generic
point, then so does every minimal flow of 0.

Let us say that a Polish group 0 has the generic point property if every minimal 0-flow
has a generic point. We note now the following:

Proposition 14.3. Let (K,K∗) be an excellent pair. Let K :=Flim(K) and 0 :=Aut(K).
Then 0 has the generic point property.

Proof. By the previous corollary, it is enough to show that XK∗ has a generic point. Let
K∗ := 〈K, <∗〉 be the Fraı̈ssé limit of K∗. Clearly the 0-orbit of <∗ consists of all <
in XK∗ such that 〈K, <〉 ∼= 〈K, <∗〉, i.e., all 〈K, <〉 that are, up to isomorphism, the
Fraı̈ssé limit of K∗. These are characterized by the following two properties (see [Ho,
7.1.4]):

(i) Age(〈K, <〉) = K∗.
(ii) Given A∗ ⊆ B∗ in K∗ and an embedding π : A∗ → 〈K, <〉, there is an embedding

ρ : B∗→ 〈K, <〉 extending π .

Since property (i) is true for all < ∈ XK∗ by the minimality of XK∗ , this orbit consists of
all < ∈ XK∗ that satisfy condition (ii), and this is clearly a Gδ subset of XK∗ . It is also
dense by the minimality of XK∗ . ut

We now have the following result.

Theorem 14.4. Let (K,K∗) be an excellent pair with K∗ = K ∗ LO. Let K := Flim(K)
and 0 := Aut(K). Then the uniform measure on XK∗ is supported by the generic orbit.
In particular, if 0 is uniquely ergodic, then the unique measure in each minimal flow is
supported by the generic orbit.

Proof. Since K∗ = K ∗ LO, it is clear that XK∗ = LO(K) is the space of all linear
orderings on K . Let K∗ := 〈K, <∗〉 be the Fraı̈ssé limit of K∗. Clearly <∗ ∈ LO(K).
We shall show that the uniform measure µ is supported by the generic orbit, which is the
0-orbit of <∗ in the 0-space LO(K).

As we have seen in the proof of the preceding proposition, the 0-orbit of <∗ consists
of all < in LO(K) that satisfy the following property:

Given A∗ ⊆ B∗ in K∗ and an embedding π : A∗ → 〈K, <〉, there is an embedding
ρ : B∗→ 〈K, <〉 extending π .

Since K∗ is countable (up to isomorphism), it is enough to show that for each given
A∗ ⊆ B∗ in the class K∗, where A∗ = 〈A, <A〉 and B∗ = 〈B, <B〉, and any embedding
πA : A→ K , if we let (πA)∗(A) =: A0 ⊆ K and also (πA)∗(<A) =: <0, then the set of
all < ∈ LO(K) with <0 ⊆ < for which there is no embedding πB : B → K extending
πA with (πB)∗(<B) ⊆ < is µ-null.

Since K satisfies the strong amalgamation property (see [KPT, Section 2 and 5.3] for
the definition and this result), for each n ≥ 1, we can find B1, . . . ,Bn ⊆ K such that
A0 ⊆ Bi for 1 ≤ i ≤ n and Bi ∩ Bj = A0 if i 6= j , and isomorphisms πi : B → Bi
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extending πA. Let <i be the image of <B by πi . Thus <0 ⊆ <i for 1 ≤ i ≤ n. It is
thus enough to show that the µ-measure of the set of < ∈ LO(K) with < ⊇ <0 but
< 6⊇ <i,∀1 ≤ i ≤ n, tends to 0 as n→∞.

When the language of K is relational, then it is clear that it is enough to restrict
ourselves to pairs A∗, B∗ as above where |B| = |A| + 1. In this case, we can complete
the proof as follows:

Let A := {a1, . . . , ak} and B = {a1, . . . , ak, b}, where a1 <A · · · <A ak . Then one
of the following holds:

b <B a1, a1 <B b <B a2, . . . , ak−1 <B b <B ak, or ak < b.

Assume a1 <B b <B a2, the argument being similar in all the other cases. Let bi := πi(b)
for 1 ≤ i ≤ n and πA(aj ) = aj for 1 ≤ j ≤ k. Then

{< ∈ LO(K) ; <0 ⊆ < & ∀1 ≤ i ≤ n (<i 6⊆ <)}

⊆{< ∈ LO(K) ; <0 ⊆ < & ∀1 ≤ i ≤ n (bi < a1 ∨ a2 < bi)}

⊆

⋃
{NC,< ; < ∈ LO(C) & a1 < a2 & ∀1 ≤ i ≤ n (bi < a1 ∨ a2 < bi)},

where C is the substructure of K with universe C = {a1, a2, b1, . . . , bn}. Since µ(NC,<)

= 1/(n+ 2)! for each < ∈ LO(C), it is enough to show that

|{< ∈ LO(C) ; a1 < a2 & ∀1 ≤ i ≤ n (bi < a1 ∨ a2 < bi}|

(n+ 2)!
→ 0

as n → ∞. But simple counting shows that the numerator is equal to (n + 1)!, so this
ratio is equal to 1/(n+ 2)→ 0, and the proof is complete.

In the general case, we have A = {a1, . . . , ak} and B = {a1, . . . , ak, b1, . . . , bm}.
Then if bil := πi(bl) (1 ≤ i ≤ n, 1 ≤ l ≤ m) and πA(aj ) =: āj , let C := {ā1, . . . , āk} ∪⋃n
i=1{b

i
1, . . . , b

i
m}. Then the µ-measure of

{< ∈ LO(K) ; <0 ⊆ < and ∀1 ≤ i ≤ n (<i * <)}

is equal to
|{< ∈ LO(C) ; <0 ⊆ < and ∀1 ≤ i ≤ n (<i * <)}|

|LO(C)|
,

so it is enough to show that this ratio goes to 0 as n goes to infinity. This is a consequence
of the following lemma.

Lemma 14.5. Let X = {x1, . . . , xk} and Y = {y1, . . . , ym} be two disjoint sets and
let <∗ be an ordering of X t Y . Consider the set X + nY := X t

⊔n
i=1 Y

i , where
Y i := {yi1, . . . , y

i
m}, consisting of the union of X and n disjoint copies of Y . Let <i be

the copy of <∗ on X t Y i . Then, for the uniform probability measure on LO(X + nY ),
the probability that a linear ordering < on X + nY extends <∗�X but < + <i for every
1 ≤ i ≤ n, tends to 0 as n→∞.
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Proof. This was proved first by Padraic Bartlett with another method. One way to gener-
ate a uniform ordering onX+nY is to assign to each element t ∈ X+nY an independent
random variable Ut , uniform in [0, 1]. The order < is then induced from [0, 1].

The event that < extends <∗�X depends only on 〈Ut ; t ∈ X〉, and is equivalent to
those being in the right order. Conditioned on 〈Ut ; t ∈ X〉, the restrictions of< toXtY i

are independent, and each has non-zero probability q = q(〈Ut ; t ∈ X〉) of being <i .
Thus the conditional probability that < extends <∗�X but not any <i is (1− q)n.

Since q is almost surely non-zero, after taking expectation with respect to
〈Ut ; t ∈ X〉, this tends to 0 as n→∞ by the bounded convergence theorem. ut

Many of the examples of uniquely ergodic automorphism groups that we discussed earlier
satisfy the conditions of the preceding theorem, so the unique invariant measure in each
minimal flow concentrates on the generic orbit. These include the automorphism groups
mentioned in Theorem 11.2.

15. Some open problems

The preceding work suggests a number of open problems.

Question 15.1 (Unique Ergodicity Problem). Let 0 be an amenable Polish group with
metrizable universal minimal flow. Is 0 uniquely ergodic?

Recall that the universal minimal flow of a non-compact locally compact group is not
metrizable, so such groups do not provide counterexamples.

One can even consider a more general version of Question 15.1 for Polish groups that
need not be amenable: If 0 is a Polish group with metrizable universal minimal flow, then
does every minimal flow of 0 have at most one invariant measure?

Question 15.2 (Generic Point Problem). Let 0 be a Polish group with metrizable uni-
versal minimal flow. Does 0 have the generic point property?

Finally we have the following stronger version of the first problem.

Question 15.3 (Unique Ergodicity-Generic Point Problem). Let 0 be an amenable Pol-
ish group with metrizable universal minimal flow. Is it true that 0 is uniquely ergodic
and has the generic point property and moreover for every minimal 0-flow, the unique
invariant measure is supported by the generic orbit?

Recent work of Melleray, Nguyen Van Thé and Tsankov may be relevant to these prob-
lems for the case when 0 is the automorphism group of a Fraı̈ssé structure K .

As we mentioned earlier in Section 9, there are examples of Fraı̈ssé classes K that
have no companions at all. However, Nguyen Van Thé [N2] developed a more general
notion of expansion K∗ for a given Fraı̈ssé class K in a language L. Such an expansion
is obtained by taking L∗ to be a language obtained from L by adding not merely a single
binary relation symbol <, but instead a finite or infinite (countable) family of relation
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symbols (of various arities) (Ri)i∈I . It is shown in [N2] that the basic theory of [KPT]
goes through in this more general context, provided the class K∗ is precompact, i.e.,
every structure in K has only finitely many expansions in K∗ (this will be automatically
true if one adds only finitely many symbols to L to form L∗). In particular, if K admits a
precompact companion K∗ (i.e., such an expansion that satisfies the Ramsey Property and
the analog of the Ordering Property in this context, called the Expansion Property), then
an analogous metrizable space XK∗ is the universal minimal flow of the automorphism
group of the Fraı̈ssé limit of K.

Melleray, Nguyen Van Thé and Tsankov have shown that for a Fraı̈ssé class K with
Fraı̈ssé limit K and 0 := Aut(K), the following are equivalent:

• 0 has metrizable universal minimal flow with a comeager orbit,
• K admits a precompact expansion with the Ramsey Property and the Expansion

Property.

Such precompact companions have been computed for: (i) the class of local orders,
(ii) the age of the Fraı̈ssé directed graph S(3) (see [N2]) and (iii) the class of boron tree
structures (see [J]). (In all these cases, the language L∗ turns out to be finite.) For (i) it
was shown in [KS] that the corresponding automorphism group is not amenable and the
same has been proved for (ii) and (iii) by Andrew Zucker.

Finally, let again (K,K∗) be an excellent pair, with K := Flim(K) and 0 := Aut(K)
amenable. In all the cases that we have been able to prove unique ergodicity for 0, it
turned out that the unique 0-invariant measure on XK∗ was the uniform measure given
by µ(NA,<) := 1/k(A), where k(A) := |{< ; 〈A, <〉 ∈ K∗}| is the cardinality of the set
of K∗-admissible orderings on A. One can ask whether this is a general phenomenon.

Question 15.4. Let (K,K∗) be an excellent pair with K := Flim(K) and let 0 :=
Aut(K) be amenable. Is there a (necessarily unique) 0-invariant measure µ on XK∗
satisfying µ(NA,<) = 1/k(A)?

Notice that this is equivalent to asking the following: Let (K,K∗) be as in the previous
problem. Is it true that for any A ⊆ B in K, every K∗-admissible ordering on A has the
same number of extensions to a K∗-admissible ordering on B?

Addendum. Let 0 be the automorphism group of the (countably) infinite-dimensional
vector space over a finite field. Then 0 has metrizable universal minimal flow and is
uniquely ergodic and has the generic point property. However, Andrew Zucker has re-
cently shown that the unique invariant measure on its universal minimal flow is not sup-
ported by the generic orbit, thereby answering negatively the last part of Question 15.3.
Note that the language here has function symbols.

On the other hand, András Pongrácz and Moritz Müller have shown that if (K,K∗)
is an excellent pair in a relational language, every structure in K is order transitive (as
defined in the first paragraph of Section 10), and 0 is amenable, then 0 is uniquely ergodic
and the generic orbit supports the unique measure. (Note that in the case of the vector
spaces over a finite field, all these hypotheses are true except that the language is not
relational.)
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Finally, Andrew Zucker has shown that the Generic Point Problem has a positive
answer when 0 is the automorphism group of a countable structure.
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