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Abstract. We take up the study of the Brill–Noether loci W r (L,X) := {η ∈ Pic0(X) | h0(L⊗ η)
≥ r + 1}, where X is a smooth projective variety of dimension > 1, L ∈ Pic(X), and r ≥ 0 is an
integer.

By studying the infinitesimal structure of these loci and the Petri map (defined in analogy with
the case of curves), we obtain lower bounds for h0(KD), whereD is a divisor that moves linearly on
a smooth projective variety X of maximal Albanese dimension. In this way we sharpen the results
of [Xi] and we generalize them to dimension > 2.

In the 2-dimensional case we prove an existence theorem: we define a Brill–Noether number
ρ(C, r) for a curve C on a smooth surface X of maximal Albanese dimension and we prove, under
some mild additional assumptions, that if ρ(C, r) ≥ 0 then W r (C,X) is nonempty of dimension
≥ ρ(C, r).

Inequalities for the numerical invariants of curves that do not move linearly on a surface of
maximal Albanese dimension are obtained as an application of the previous results.
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1. Introduction

The classical Brill–Noether theory studies the loci

W r
d (C) := {L ∈ Pic(C) | degL = d, h0(L) ≥ r + 1},

where C is a smooth projective curve of genus g ≥ 2. We refer the reader to [ACGH] for a
comprehensive treatment of this beautiful topic and to [ACG] for further information. We
only recall here that all the theory revolves around the Brill–Noether number ρ(g, r, d) =
g − (r + 1)(r + g − d): if ρ(g, r, d) ≥ 0 then W r

d (C) is not empty, and if ρ(g, r, d) > 0
thenW r

d (C) is connected of dimension≥ ρ(g, r, d). In addition, if C is general in moduli
then dimW r

d (C) = ρ(g, r, d).
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Several possible generalizations of this theory have been investigated in the past years,
the most studied being the case in which divisors of fixed degree are replaced by stable
vector bundles of fixed rank and degree on the smooth curve C (see [GT] for a recent
survey). Generalizations to some varieties of dimension > 1 have been considered by
several people (see for instance [DL], [H], [Le]).

Moreover, Brill–Noether type loci for higher-dimensional varieties occur naturally in
the theory of deformations, Hilbert schemes, Picard schemes and Fourier–Mukai trans-
forms, but usually not as the main object of study. In [CM] the case of vector bundles
on an arbitrary smooth projective variety is considered under the assumption that all the
cohomology groups of degree > 1 vanish. In [Kl1] the Brill–Noether loci are defined
in great generality for relative subschemes of any codimension of a family of projective
schemes, but the theory is developed only in the case of linear series on smooth projec-
tive curves. Any concrete theory of special divisors, like for instance existence theorems,
seems impossible in such generality.

Here we take up what seems to us the most straightforward generalization of the clas-
sical theory of linear series on curves, namely the case of line bundles on an arbitrary
projective variety. In this setup, Brill–Noether loci are a special instance of cohomolog-
ical support loci, whose study has been started in [GL1], [GL2], focusing on the case of
topologically trivial line bundles, and has been extended and refined in the context of rank
one local systems (see for instance [DPS]). However, our point of view and that of [GL1],
[GL2] are different, since we look for lower bounds on the dimension of these loci rather
than for upper bounds.

Let us now summarize the content of the paper. Given a projective variety X, a
line bundle L ∈ Pic(X) and an integer r ≥ 0, we set W r(L,X) := {η ∈ Pic0(X) |

h0(L ⊗ η) ≥ r + 1}. First we recall the natural scheme structure on W r(L,X) and, by
analysing it, we show that, if X has maximal Albanese dimension (i.e., it has generically
finite Albanese map) and D is an effective divisor contained in the fixed part of |KX|,
then 0 ∈ W(D,X) is an isolated point (Corollary 3.5).

Then we focus on two special cases: (a) singular projective curves and (b) smooth
surfaces of maximal Albanese dimension. In case (a) we assume that X is a connected re-
duced projective curve and, since in general Pic0(X) is not an abelian variety, we study the
intersection of W r(L,X) with a compact subgroup T ⊆ Pic0(X) of dimension t . We de-
fine the Brill–Noether number ρ(t, r, d) := t−(r+1)(pa(C)−d+r), where d := degL.
In this set-up we prove the exact analogue of the existence theorem of Brill–Noether the-
ory under a technical assumption on T (Theorem 5.1, cf. also Remark 5.2). We do not
consider here the very important theory of the compactifications of the Brill–Noether loci
of singular curves and the theory of limit linear series as treated by many authors (see,
for instance, [Gi, EH, Al, EK, Cap, ACG]; in particular [ACG] has a complete bibliogra-
phy). Our reason is that we are interested in line bundles coming from a smooth complete
variety via restriction, and these are naturally parametrized by a compact subgroup.

Theorem 5.1 is a key step in our approach to case (b): we combine it with the generic
vanishing theorem of Green and Lazarsfeld to obtain an analogue of the existence theorem
of Brill–Noether theory. Given a curve C on a surface S with irregularity q > 1, we
consider the image T of the natural map Pic0(S)→ Pic0(C). If this map has finite kernel
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and we take L = OC(C), then the Brill–Noether number introduced above can be written
as ρ(C, r) := q − (r + 1)(pa(C)− C2

+ r). (For r = 0 we write simply ρ(C).)
For surfaces without irrational pencils of genus > 1 and reduced curves C all of

whose components have positive self-intersection, we prove that if ρ(C, r) > 1, then
W r(C, S) is nonempty of dimension ≥ min{q, ρ(C, r)}, and that for ρ(C, r) = 1 the
same statement holds under an additional assumption. In the specific case r = 0 and
under the same hypotheses we are also able to show that C actually moves algebraically
in a family of dimension ≥ min{q, ρ(C}). For the precise statement see Theorem 6.2.
We remark that the assumptions on the Albanese map and on the structure of V 1 in these
results are quite mild (see Remark 6.3 and Section 2).

A second theme of the paper, strictly interwoven with the analysis of Brill–Noether
loci, is the study of the restriction map rD : H 0(KX)→ H 0(KX|D), whereX is a smooth
variety of maximal Albanese dimension and D ⊂ X is an effective divisor whose image
via the Albanese map a : X → Alb(X) generates Alb(X). In Proposition 4.6 we estab-
lish a uniform lower bound for the rank of rD under the only assumption that D is not
contained in the ramification locus of the Albanese map (this is also one of the ingredi-
ents of the proof of the Brill–Noether type result for surfaces). Then we show how one
can improve on this bound if the tangent space to W 0(D,X) at 0 has positive dimension
(Proposition 4.9); in order to do this we introduce and study, in analogy with the case
of curves, the Petri map H 0(D) ⊗ H 0(KX − D) → H 0(KX). If h0(D) > 1, a lower
bound for the rank of rD gives immediately a lower bound for h0(KD) (Corollaries 4.7
and 4.10): in this way we extend to arbitrary dimension the main result of [Xi], which
treats the case in which X is a surface and D is a general fiber of a fibration X→ P1.

All the previous results are applied in §7 to the study of curves on a surface of general
type S with q(S) := h0(�1

S) > 1 that is not fibered onto a curve of genus > 1. More
precisely, we give inequalities for the numerical invariants of a curve C =

∑
i Ci of S

such that C2
i > 0 for all i and h0(C) = 1 (Corollary 7.4); in the special case in which

pa(C) ≤ 2q(S)−2 we obtain a stronger inequality and a lower bound on the codimension
of W 0(C, S) in Pic0(S) (Corollary 7.6). Note that, apart from the case pa(C) = q(S)

(classified in [MPP1]), the question of the existence on a surface of general type S of
curves C with C2 > 0 and pa(C) ≤ 2q(S) − 2 is, as far as we know, completely open.
Finally, we prove a result (Proposition 7.7) that relates the fixed locus of the paracanonical
system of S to the ramification divisor of the Albanese map.

In §8 we collect several examples in order to illustrate the phenomena that occur for
Brill–Noether loci on surfaces and to clarify to what extent the results that we obtain
are optimal. We also pose some questions: in our opinion, the most important of these
is whether a statement analogous to Theorem 6.2 holds if one replaces the effective di-
visor C by, say, an ample line bundle, and whether a similar statement holds in arbitrary
dimension. The main difficulty here is that, while in the case of curves the cohomology
of a family of line bundles of fixed degree is computed by a complex with only two
terms, in the case of a variety of dimension n one has to deal with a complex of length
n + 1. Hence the negativity of Picard sheaves, which has been established for projective
varieties of any dimension (cf. [La, 6.3.C and 7.2.15]), does not suffice alone to prove
nonemptiness results for Brill–Noether loci.
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In the surface case the method of restriction to curves and the use of generic vanish-
ing theorems overcome the cohomological problem. We are aware however that usually
curves lying on surfaces are not general in the sense of Brill–Noether theory, hence, al-
though the existence theorem 6.2 is sharp, one cannot expect that the Brill–Noether num-
ber computes precisely the dimension of the Brill–Noether locus in most cases. In fact,
in view of the complexity of the geometry and of the topology of irregular surfaces (even
the geographical problem has not been solved yet, cf. [MP]), it is somewhat surprising
that a single numerical invariant, such as the Brill–Noether number, can give a definite
existence result for continuous families of effective divisors on surfaces. Our methods are
also useful for attacking problems in classification theory and questions about curves on
surfaces, as illustrated in [MPP1] and in Section 7 of this paper.

In addition, the use of generic vanishing combined with the infinitesimal analysis in
Sections 3 and 4 shows the importance of the Petri map in the higher-dimensional case.

We are convinced that the methods of the present paper together with the use of some
fine obstruction theory as in [MPP2] will give some striking new results in the theory of
continuous families of divisors on irregular varieties, which is ultimately Brill–Noether
theory.

Notation and conventions. We work over the complex numbers. All varieties are as-
sumed to be complete. We do not distinguish between divisors on smooth varieties and
the corresponding line bundles, and we denote linear equivalence by ≡.

Let X be a smooth projective variety. We denote as usual by χ(X) the Euler charac-
teristic of OX, by pg(X) the geometric genus h0(X,KX) and by q(X) the irregularity
h0(X,�1

X). We denote by albdim(X) the dimension of the image of the Albanese map
a : X → Alb(X). As usual, a fibration of X is a surjective morphism with connected
fibers X→ Y , where Y is a variety with dimY < dimX. We say that X has an irrational
pencil of genus g > 0 if it admits a fibrationX→ B onto a smooth curve of genus g > 0.

If D is an effective divisor of a smooth variety X we denote by pa(D) the arithmetic
genus χ(KD)−1, whereKD is the canonical divisor ofD. In particular, if dimX = 2 and
D is a nonzero effective divisor (a curve) then by the adjunction formula the arithmetic
genus of D of S is pa(D) = (KSD +D2)/2+ 1; the curve D is said to be m-connected
if, given any decomposition D = A+ B of D with A,B > 0, one has AB ≥ m.

Given a product of varieties V1 × · · · × Vn we denote by pri the projection onto the
i-th factor.

2. Preliminaries on irregular varieties

We recall some by now classical results on irregular varieties that are used repeatedly
throughout the paper.

2.1. Albanese dimension and irregular fibrations

LetX be a smooth projective variety of dimension n. The Albanese dimension albdim(X)
is defined as the dimension of the image of the Albanese map of X; in particular, X has
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maximal Albanese dimension if its Albanese map is generically finite onto its image and it
is of Albanese general type if in addition q(X) > n. For a normal variety Y , we define the
Albanese variety Alb(Y ) and all the related notions by considering any smooth projective
model of Y .

An irregular fibration f : X→ Y is a morphism with positive-dimensional connected
fibers onto a normal variety Y with albdimY = dimY > 0; the map f is called an
Albanese general type fibration if in addition Y is of Albanese general type. If dimY = 1,
then Y is a smooth curve of genus b > 0; in that case, f is called an irrational pencil of
genus b, and it is an Albanese general type fibration if and only if b > 1.

Notice that if q(X) ≥ n and X has no Albanese general type fibration, then X has
maximal Albanese dimension.

The so-called generalized Castelnuovo–de Franchis Theorem (see [Cat, Thm. 1.14]
and Ran [Ra]) shows how the existence of Albanese general type fibrations is detected by
the cohomology of X:

Theorem 2.1 (Catanese, Ran). The smooth projective variety X has an Albanese gen-
eral type fibration f : X → Y with dimY ≤ k if and only if there exist independent
1-forms ω0, . . . , ωk ∈ H

0(�1
X) such that ω0 ∧ ω1 ∧ · · · ∧ ωk = 0 ∈ H 0(�k+1

X ).

So in particular the existence of irrational pencils of genus > 1 is equivalent to the exis-
tence of two independent 1-forms α, β ∈ H 0(�1

X) such that α ∧ β = 0.

2.2. Generic vanishing

Let X be a projective variety of dimension n and let L ∈ Pic(X); the generic vanishing
loci, or Green–Lazarsfeld loci, are defined as V i(X) := {η | hi(η) > 0} ⊆ Pic0(X),
i = 0, . . . , n. They have been an object of intensive study since the groundbreaking
papers [GL1], [GL2] and their structure is very well understood.

We only summarize here for later use the properties of V 1(X), established in [GL1],
[GL2], [Be2], [Be3] and [Si]:

Theorem 2.2. Let X be a smooth projective variety. Then:

(i) if X has maximal Albanese dimension, then V 1(X) is a proper closed subset of
Pic0(X) whose components are translates by torsion points of abelian subvarieties;

(ii) if X has no irrational pencil of genus > 1, then dimV 1(X) ≤ 1 and 0 ∈ V 1(X) is
an isolated point.

3. Brill–Noether loci

In this section we recall the definition of Brill–Noether loci and some general facts on
their geometry. The scheme structure and the tangent space to a Brill–Noether locus have
been described in several contexts; however, for clarity’s sake we choose to spell out and
prove the properties we need. We close the section by proving some properties of the
ramification divisor of the Albanese map and of the fixed divisor of the canonical system
of a variety of maximal Albanese dimension (Proposition 3.4 and Corollary 3.5).
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Let X be a projective variety and let L ∈ Pic(X). For r ≥ 0 we define the Brill–
Noether locus

W r(L,X) := {η ∈ Pic0(X) | h0(L⊗ η) ≥ r + 1}.

If T ⊆ Pic0(X) is a subgroup, we set W r
T (L,X) := W

r(L,X) ∩ T . For r = 0 we write
W(L,X) instead of W 0(L,X).

Remark 3.1. When X is a smooth curve, Brill–Noether loci are a very classical object
of study (cf. [ACGH, Chs. III–V]). The definition we give here is slightly different from
the classical one, which consists in fixing a class λ ∈ NS(X) and defining the Brill–
Noether locus as W r

λ (X) := {M ∈ Picλ(X) | h0(M) ≥ r + 1}, where Picλ(X) denotes
the preimage of λ via the natural map Pic(X) → NS(X). Of course, if λ is the class
of L in NS(X), then W r(L,X) is mapped isomorphically onto W r

λ (X) by the translation
by L ∈ Pic(X). Our choice of definition is motivated by technical reasons that become
apparent, for instance, in the proof of Theorem 6.2.

By the semicontinuity theorem (cf. [Mu, p. 50]) Brill–Noether loci are closed in
Pic0(X). In fact, they are a particular case of cohomological support loci introduced in
[GL1, §1].

The scheme structure of W r(L,X) is described by following the approach of [Kl1].
Our point of view differs slightly from [Kl1] in that we consider line bundles rather than
subschemes.

We recall the following consequence of Grothendieck duality:

Lemma 3.2. Let X be a projective variety of dimension n, let L ∈ Pic(X) and let P be a
Poincaré line bundle on X × Pic0(X). Then there exists a coherent sheaf Q on Pic0(X),
unique up to canonical isomorphism, such that:

(i) for every coherent sheaf M on Pic0(X) there is a canonical isomorphism
HomOPic0(X)

(Q,M) ∼= pr2∗(P ⊗ pr∗1 L⊗ pr∗2 M);

(ii) if X is Gorenstein, then Q ∼= Rnpr2∗(pr∗1(KX − L)⊗ P∨).

Proof. (i) Follows by applying [EGAIII2, Thm. 7.7.6] to pr2 : X × Pic0(X)→ Pic0(X)

and to the sheaf P ⊗ pr∗1 L.
(ii) By (i) it is enough to show that for every coherent sheaf M on Pic0(X) there is a

canonical isomorphism

HomOPic0(X)
(Rnpr2∗(pr∗1(KX − L)⊗ P∨,M) ∼= pr2∗(P ⊗ pr∗1 L⊗ pr∗2 M).

If X is a Gorenstein variety, then pr∗1ωX is the relative dualizing sheaf for the morphism
pr2 : X × Pic0(X) → Pic0(X) and, since X is Cohen–Macaulay, the required functorial
isomorphism exists by [Kl2, Thm. 21]. ut

By Lemma 3.2 (i), a point η ∈ Pic0(X) belongs toW r(L,X) iff dimC(Q⊗C(η)) ≥ r+1;
hence we giveW r(L,X) the r-th Fitting subscheme structure associated with the sheafQ.
Notice that, since P is determined up to tensoring with pr∗2 M for M a line bundle on
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Pic0(X), Q is also determined up to tensoring with M; however, Q and Q⊗M have the
same Fitting subschemes, hence our definition is independent of the choices made.

Given η ∈ Pic0(X), we identify as usual the tangent space to Pic0(X) at the point η
with H 1(OX); then, generalizing the case when X is a curve, we have the following
description of the Zariski tangent space to W r(L,X).

Proposition 3.3. Let r ≥ 0 be an integer, let X be a projective variety, let L ∈ Pic(X)
and let η ∈ W r(L,X). Then:

(i) if η ∈ W r+1(L,X), then TηW r(L,X) = H 1(OX);
(ii) if η 6∈ W r+1(L,X), then TηW r(L,X) is the kernel of the linear map H 1(OX) →

Hom(H 0(X,L+ η),H 1(X,L+ η)) induced by cup product.

Proof. Let Q be the coherent sheaf of Lemma 3.2. As usual, we denote by C[ε]
the algebra of dual numbers. We regard an element v ∈ H 1(OX) as a morphism
v : SpecC[ε] → Pic0(X) mapping the closed point of SpecC[ε] to η and we denote
by Qv the pull back of Q via v. By the functorial properties of Fitting ideals, v is in the
tangent space to W r(L,X) iff the r-th Fitting ideal of Qv as a C[ε]-module vanishes.
Set m := h0(X,L + η). By the definition of Q (Lemma 3.2), there is an isomorphism
HomC[ε](Qv,C) ∼= H 0(X,L + η); it is not hard to show that there is an isomorphism
Qv
∼= C[ε]m−l ⊕ Cl for some 0 ≤ l ≤ m. Hence Qv has a presentation by an m × l

matrix with ε on the diagonal and 0 elsewhere. A direct computation shows that the r-th
Fitting ideal is 0 iff either m > r + 1, or m = r + 1 and l = 0. In particular, this proves
claim (i) and we may assume from now on that m = r + 1.

Denote by Lv the pull back of P⊗pr∗1 L toXε := X×SpecCSpecC[ε]. The condition
l = 0 is equivalent to the surjectivity of the map HomC[ε](Qv,C[ε])→ HomC[ε](Qv,C).
By Lemma 3.2, we have canonical isomorphisms

HomC[ε](Qv,C[ε]) ∼= H 0(Xε, Lv), HomC[ε](Qv,C) ∼= H 0(X,L+ η).

So v is tangent to W r(L,X) at η iff the restriction map H 0(Xε, Lv)→ H 0(X,L+ η) is
surjective. On the other hand, this map is part of the long cohomology sequence associated
with the extension

0→ L+ η
ε
−→ Lv → L+ η→ 0,

hence it is surjective iff the coboundary mapH 0(X,L+η)→ H 1(L+η) vanishes. Since
it is well known that the latter map is given by cupping with v, statement (ii) follows. ut

As an application of Proposition 3.3 we prove the following:

Proposition 3.4. LetX be a smooth projective variety such that n := dimX = albdimX

and let R be the ramification divisor of the Albanese map of X; if 0 < Z ≤ R is a divisor
and s ∈ H 0(OX(Z)) is a section that defines Z, then:

(i) the map H 1(OX)
∪s
−→ H 1(OX(Z)) is injective;

(ii) if h0(Z) = 1, thenH 0(Z|Z) = 0 and 0 ∈ W(Z,X) is an isolated point (with reduced
structure).
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Proof. (i) Denote by 3 the image of the map
∧n

H 0(�1
X)→ H 0(KX); the divisor R is

the fixed part of the linear subsystem |3| ⊆ |KX|.
Assume for contradiction that v ∈ H 1(OX) is a nonzero vector such that s ∪ v = 0;

then, since Z ≤ R, we have t ∪ v = 0 for every t ∈ 3.
By Hodge theory there exists a nonzero β ∈ H 0(�1

X) such that v = β̄ and the
condition t ∪ v = 0 is equivalent to t ∧ β̄ being an exact form: t ∧ β̄ = dφ. Let now
x ∈ X be a point such that β(x) 6= 0 and such that the differential of the Albanese map at
x is injective. Then we can find α1, . . . , αn−1 ∈ H

0(�1
X) such that α1, . . . , αn−1, β span

the cotangent space T ∗x X. Hence the form t := α1 ∧ · · · ∧ αn−1 ∧ β is nonzero at x and
therefore t ∧ t̄ 6= 0 and (−i)n

∫
X
t ∧ t̄ > 0. On the other hand, we have∫

X

t ∧ t̄ = ±

∫
X

(t ∧ β̄) ∧ ᾱ1 ∧ · · · ∧ ᾱn−1 =

∫
X

d(φ ∧ ᾱ1 ∧ · · · ∧ ᾱn−1) = 0,

a contradiction. So H 1(OX)
∪s
−→ H 1(OX(R)) is injective.

(ii) By (i) and by Proposition 3.3, the tangent space to W(Z,X) at 0 is zero, hence
{0} with reduced structure is a component of W(Z,X). The vanishing of H 0(Z|Z) also
follows from (i) by taking cohomology in the usual restriction sequence 0 → OX →

OX(Z)→ OZ(Z)→ 0. ut

Corollary 3.5. Let X be a smooth projective variety such that n := dimX = albdimX

and let Z > 0 be a divisor contained in the fixed part of |KX|. Then H 0(Z|Z) = 0 and
0 ∈ W(Z,X) is an isolated point.

Proof. As usual, let R denote the ramification divisor of the Albanese map of X. Since
Z is contained in the fixed part of |KX|, we have Z ⊆ R and h0(Z) = 1. So the claim
follows by Proposition 3.4. ut

4. Restriction maps

In this section we consider a smooth projective variety X of maximal Albanese dimen-
sion and an effective divisor D ⊂ X and we establish lower bounds for the rank of the
restriction map

rD : H
0(KX)→ H 0(KX|D),

and for the corank of the residue map

resD : H 0(KX +D)→ H 0(KD).

Such bounds, besides being intrinsically interesting, can be used to give lower bounds
for the arithmetic genus of divisors moving in a positive-dimensional linear system
(Corollaries 4.7 and 4.10).

More precisely, we give three inequalities. The first two (Proposition 4.6) are uniform
bounds for the rank of rD and the corank of resD under the assumptions that D is irre-
ducible, not contained in the ramification locus of the Albanese map a : X → Alb(X),
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and a(D) generates Alb(X). This is one of the ingredients in the proof of Theorem 6.2,
which is our main result on the structure of Brill–Noether loci in the case of surfaces.

The third one (Proposition 4.9) is based on the infinitesimal analysis of the Brill–
Noether locus W r(D,X) carried out in §3: the bound that we obtain is stronger than that
of Proposition 4.6 but it requires further assumptions.

4.1. Preliminary results

The main goal of this section is to prove Proposition 4.5, which is the key result that
enables us to obtain the inequalities of §4.2.

We start by listing some well known facts of linear algebra:

Lemma 4.1 (Hopf lemma). Let U , V and W be complex vector spaces of finite dimen-
sion and let f : U ⊗ V → W be a linear map. If ker f does not contain any nonzero
simple tensor u⊗ v, then rk f ≥ dimU + dimV − 1.

Lemma 4.2. LetV ,W be complex vector spaces of finite dimension and letf :
∧k

V→W

be a linear map. If ker f does not contain any nonzero simple tensor v1 ∧ · · · ∧ vk , then
rk f ≥ k(dimV − k)+ 1.

Lemma 4.3 (ker/coker lemma). Let V , W be complex vector spaces of finite dimension
and let f, g : V → W be linear maps. If rk(f + tg) ≤ rk f for every t ∈ C, then
g(ker f ) ⊆ Im f .

The next result is possibly also known, but since it is less obvious we give a proof for
completeness.

Lemma 4.4. Let V ,W be complex vectors spaces of finite dimension and set q := dimV .
Let φ :

∧2
V → W be a linear map such that:

(a) for every 0 6= v ∈ V, there exists w ∈ V such that φ(v ∧ w) 6= 0;
(b) if φ(v ∧ w) = φ(v ∧ u) = 0 and v 6= 0, then φ(u ∧ w) = 0.

Then:

(i) dimφ(V ) ≥ q − 1;
(ii) there exists v ∈ V such that the restriction of φ to v ∧ V is injective.

Proof. We observe first of all that (i) follows from (ii), hence it is enough to prove (ii).
For every v ∈ V we let kv : V → W be the linear map defined by x 7→ φ(v ∧ x),

and we let U(v) be the kernel and S(v) be the image of kv . Of course v ∈ U(v), and for
v 6= 0 the assumptions give:

(1) U(v) ( V ;
(2) U(v) = U(v′)⇔ v′ ∈ U(v) \ {0}.
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Claim (ii) is equivalent to the existence of a vector v ∈ V such that U(v) is 1-dimen-
sional. Choose v with m := dimU(v) minimal; notice that 0 < m < q. For any vector
u ∈ V and any t ∈ C the map kv + tku = kv+tu has rank ≤ q − m; by Lemma 4.3 we
have ku(U(v)) ⊆ S(v). Hence if φ(v′ ∧ v) = 0, then for any u ∈ V there exists h ∈ V
such that

ku(v
′) = φ(u ∧ v′) = φ(v ∧ h) = kv(h).

Since ku(v′) = −kv′(u), it follows that for every v′ ∈ U(v) we have S(v′) ⊆ S(v); since
U(v) = U(v′) by (2), it follows that S(v) = S(v′). Let now L ⊂ V be a subspace such
that V = U(v) ⊕ L. Then for every 0 6= v′ ∈ U(v), kv′ restricts to an isomorphism
hv′ : L → S(v). If we fix bases for L and S(v), this isomorphism is represented by an
invertible matrix of order q − m > 0, whose entries depend linearly on v′. Then taking
determinants one obtains a homogeneous polynomial of degree q − m > 0 that has no
zeros on P(U(v)). Since we are working over an algebraically closed field, this is possible
only if dimU(v) = 1. ut

Given a vector bundleE on a varietyX and a finite-dimensional subspace V ⊆H 0(X,E),
for any integer k ≥ 0 we denote by ψk :

∧k
V → H 0(X,

∧k
E) the natural map. Here

is the main result of this section:

Proposition 4.5. Let X be an irreducible variety, let E be a rank n vector bundle on X.
Assume that there exists a subspace V ⊆ H 0(X,E) of dimension q that generates E
generically. Then the map ψn :

∧n
V → H 0(X, detE) has rank ≥ q − n+ 1.

Proof. The proof is by induction on the rank n of E, the case n = 1 being trivial.
Up to restricting to a Zariski open set, we may assume that X is affine and that V

generates E.
Consider first the map ψ2 :

∧2
V → W := H 0(X,

∧2
E). Since ψ2 satisfies the

assumptions of Lemma 4.4, there exist a section s ∈ V such that ψ2(s ∧ t) = 0 if and
only if t = λs for some λ ∈ C. Up to replacing X by an open subset, we may assume that
s vanishes nowhere on X, hence there is a short exact sequence

0→ OX
s
−→ E→ E′→ 0, (4.1)

with E′ a rank n − 1 vector bundle. We denote by V ′ ⊆ H 0(X,E′) the image of V ;
the subspace V ′ has dimension q − 1 and generates E′ on X, hence by the inductive
assumption the mapψ ′n−1 :

∧n−1
V ′→ H 0(X, detE′) has rank≥ (q−1)−(n−1)+1 =

q − n+ 1.
The sequence (4.1) induces an isomorphism detE → detE′ and the induced map

H 0(X, detE) → H 0(X, detE′) maps Imψn to a subspace containing Imψ ′n−1. Hence
rkψn ≥ rkψ ′n−1 ≥ q − n+ 1. ut

4.2. Uniform bounds

Here we use the results of §4.1 to bound the rank of the map rD : H 0(KX)→ H 0(KX|D)

and the corank of the residue map resD : H 0(KX + D) → H 0(KD), where D is an
effective divisor of an irregular variety X.
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Proposition 4.6. Let X be a smooth projective variety with albdimX = dimX = n and
let D > 0 be an irreducible divisor of X such that the image of D via the Albanese map
a : X → Alb(X) generates Alb(X). Assume that D is not contained in the ramification
divisor of a. Then, letting q := q(X):

(i) the rank of rD : H 0(KX)→ H 0(KX|D) is ≥ q − n+ 1;
(ii) the corank of resD : H 0(KX +D)→ H 0(KD) is ≥ q − n+ 2.

Proof. (i) The inequality follows from Proposition 4.5 by taking E = �1
X|D and V =

i∗H 0(X,�1
X), where i : D→ X is the inclusion.

(ii) Consider the short exact sequence 0 → KX → KX + D → KD → 0. Taking
cohomology, we see that the corank of resD is equal to the rank of the coboundary map
∂ : H 0(KD)→ H 1(KX) or, taking duals, to the rank of t∂ : H n−1(OX)→ H n−1(OD).

Now let (X′,D′) be an embedded resolution of (X,D); then there is a commutative
diagram

H n−1(OX) −−−−→ H n−1(OX′)

t∂

y t∂

y
H n−1(OD) −−−−→ H n−1(OD′)

where the top horizontal map is an isomorphism. Hence we may assume without loss of
generality that D is smooth.

Then, by Hodge theory, the map t∂ is the complex conjugate of the natural map
ρ : H 0(�n−1

X ) → H 0(KD). Here we set E = �1
D and V = i∗H 0(�1

X) ⊆ H 0(�1
D),

where i : D → X is the inclusion; then the image of ρ contains the image of
ψn−1 :

∧n−1
V → H 0(KD). The required inequality now follows from Proposition 4.5,

since V has dimension q by the assumption that a(D) generates Alb(X). ut

Statement (i) of Proposition 4.6 has been proven in the case of surfaces fibered over P1

by Xiao Gang [Xi]. The following corollary generalizes to arbitrary dimension the main
result of [Xi].

Corollary 4.7. Let X be a smooth projective variety with albdimX = dimX = n and
let D > 0 be an irreducible divisor of X. If h0(D) = r + 1 ≥ 2, then

h0(KD) ≥ 2(q + 1− n)+ r.

Proof. By the semicontinuity of h0(KD′) as D′ ∈ |D| varies, we may replace D by a
general element of |D|, and assume that D is not contained in the ramification locus of
the Albanese map a : X → Alb(X). Observe also that a(D) generates Alb(X), since D
moves linearly.

Consider the map resD : H 0(KX + D) → H 0(KD). By Proposition 4.6, we have
h0(KD) ≥ rk resD +q − n+ 2.

To give a bound on the rank of resD , we observe that the image of resD contains the
image of the multiplication map

(Im rD)⊗H
0(D)/〈s〉 → H 0(KD),
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where s ∈ H 0(D) is a section defining D. By Proposition 4.6, rk rD ≥ q − n+ 1 and so
applying Lemma 4.1 we obtain rk resD ≥ q−n+ r . Hence h0(KD) ≥ (q−n+ r)+ q−

n+ 2 = 2(q + 1− n)+ r . ut

For future reference, we observe the following:

Corollary 4.8. Let S be a smooth complex surface with albdim(S) = 2, let a : S →
Alb(S) be the Albanese map and let C ⊂ S be a 1-connected curve having a component
C1 not contained in the ramification locus of a and such that C2

1 > 0. Then:

(i) h0(KS − C) ≤ χ(S);
(ii) h0(C|C) ≥ q + C

2
− pa(C).

Proof. (i) Note thatC1 is nef and big; so h1(OS(−C1))=0, the mapH 1(OS)→H 1(OC1)

is an injection and a(C1) generates Alb(S). As by Proposition 4.6 we have rk rC1 ≥ q−1,
we obtain rk rC ≥ q − 1 and so h0(KS − C) ≤ χ(S).

(ii) Since C is 1-connected, Riemann–Roch on C gives

h0(C|C) = C
2
+ h0(KS |C)+ 1− pa(C) ≥ C2

+ q − pa(C). ut

4.3. The Petri map

Let X be a smooth projective variety and let D be an effective divisor on X.
As a tool for studying the rank or rD we introduce the Petri map, which, in analogy

with the case of curves, is the map

βD : H
0(KX −D)⊗H

0(D)→ H 0(KX)

induced by cup product.
The Petri map is strictly related to the infinitesimal structure of Brill–Noether loci,

as follows. Let r = h0(D) − 1, let T be the tangent space to W r(D,X) at 0 and let
α : H 1(OX) ⊗ H

n−1(OX) → H n(OX) be the map induced by cup product. Then by
Proposition 3.3 for all σ ∈ T ⊗H n−1(OX) and ψ ∈ H 0(D)⊗H 0(KX −D) we have

α(σ) ∪ βD(ψ) = 0,

and so V := α(T ⊗H n−1(OX)) ⊆ H
n(OX) is orthogonal to ImβD ⊆ H

0(KX).

Proposition 4.9. Let X be a smooth projective variety of dimension n and irregularity
q ≥ n, let D > 0 be a divisor of X, let r := h0(D)− 1 and let T be the tangent space to
W r(D,X) at the point 0. Assume that dim T > 0 and that X has no fibration f : X→ Z

with Z normal of Albanese general type and 0 < dimZ < n. Then:

(i) if h0(KX −D) = 0, then rk rD ≥ n(q − n)+ 1;
(ii) if h0(KX −D) > 0, then

rk rD ≥

{
(n− 1)(q − n)+ dim T + r if dim T ≤ q − n,

n(q − n)+ 1+ r if dim T ≥ q + 1− n.
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Proof. (i) If h0(KX − D) = 0 then rk rD = h0(KX). By Theorem 2.1, under our as-
sumptions the map

∧n
H 0(�1

X)→ H 0(KX) does not map any simple tensor to 0, hence
Lemma 4.2 gives h0(KX) ≥ n(q − n)+ 1.

(ii) Let α : H 1(OX)⊗H
n−1(OX)→ H n(OX) be the map induced by cup product. As

remarked at the beginning of the section, V := α(T ⊗H n−1(OX)) ⊆ H
n(OX) is orthog-

onal to ImβD ⊆ H
0(KX), where βD is the Petri map. Let GT ⊆ G(n,H 1(OX)) be the

subset consisting of the subspaces that have nontrivial intersection with T . Since, as we
remarked in (i), the map

∧n
H 0(�1

X)→ H 0(KX) does not map any simple tensor to 0,
the complex conjugate map

∧n
H 1(OX)→ H n(OX) induces a morphism GT → P(V )

which is finite onto its image. It follows that dimV ≥ dimGT + 1. Since, as noticed
above, the space V is orthogonal to ImβD , the codimension of ImβD is ≥ dimGT + 1.

On the other hand, by Lemma 4.1 the dimension of ImβD is at least h0(KX −D) +

h0(D) − 1. Since h0(KX − D) = pg − rk rD and h0(D) = r + 1, one finds that the
codimension of ImβD is ≤ rk rD − r . So rk rD ≥ dimGT + r + 1, which is precisely the
statement. ut

Arguing as in the proof of Corollary 4.7, one obtains the following:

Corollary 4.10. Let X be a smooth projective variety of dimension n and irregularity
q ≥ n that has no fibration f : X → Z with Z normal of Albanese general type and
0 < dimZ < n. LetD > 0 be a divisor of X, let r := h0(D)− 1 and let T be the tangent
space to W r(D,X) at the point 0. Assume that r > 0 and dim T > 0. Then:

(i) if h0(KX −D) = 0, then h0(KD) ≥ (n+ 1)(q − n)+ r + 2;
(ii) if h0(KX −D) > 0, then

h0(KD) ≥

{
n(q − n)+ dim T + 2r + 1 if dim T ≤ q − n,

(n+ 1)(q − n)+ 2r + 2 if dim T ≥ q + 1− n.

5. Brill–Noether theory for singular curves

Here we prove a generalization of the classical results on the Brill–Noether loci of smooth
curves to the case of a compact subgroup of the Jacobian of a reduced connected curve.
The results of this section are used in Section 6 to prove the analogous result for smooth
irregular surfaces (Thm. 6.2).

Assume that C is a reduced connected projective curve with irreducible components
C1, . . . , Ck; for every i, denote by νi : Cνi → Ci the normalization map. We refer the
reader to [BLR, §9.2, 9.3] for a detailed description of the Jacobian Pic0(C). We just
recall here that Pic0(C) is a smooth algebraic group and that there is an exact sequence

0→ G→ Pic0(C)
f
−→ Pic0(Cν1 )× · · · × Pic0(Cνk )→ 0,

where G is a smooth connected linear algebraic group and f (η) = (ν∗1η, . . . , ν
∗

kη). No-
tice that if T ⊆ Pic0(C) is a complete subgroup, thenG∩T is a finite group, and therefore
the induced map T → Pic0(Cν1 )× · · · × Pic0(Cνk ) has finite kernel.
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Fix L ∈ Pic(C), an integer r ≥ 0 and a complete connected subgroup T ⊆ Pic0(C),
and consider the Brill–Noether locus W r

T (L,C) := {η ∈ T | h
0(L⊗ η) ≥ r + 1}.

As in the case of a smooth curve C, we define the Brill–Noether number ρ(t, r, d) :=
t − (r + 1)(pa(C)− d + r), where d is the total degree of L and t = dim T . In complete
analogy with the classical situation, we prove:

Theorem 5.1. Let r ≥ 0 be an integer, let C be a reduced connected projective curve and
let L be a line bundle on C of total degree d . If T ⊆ Pic0(C) is a complete connected
subgroup of dimension t such that for every component Ci of C the map T → Pic0(Cνi )

has finite kernel, then:

(i) if ρ(t, r, d) ≥ 0, then W r
T (L,C) is nonempty;

(ii) if ρ(t, r, d) > 0, then W r
T (L,C) is connected, it generates T and each of its compo-

nents has dimension ≥ min{ρ(t, r, d), t}.

Proof. The proof follows closely the proof given by Fulton and Lazarsfeld in the case of
a smooth curve (cf. [FL], [La, §6.3.B, 7.2]).

Denote by P the restriction to C × T of a normalized Poincaré line bundle on the
product C × Pic0(C). Let H be a sufficiently high multiple of an ample line bundle on C
and let M := L ⊗ H . Recall that for any product of varieties we denote by pri the
projection onto the i-th factor; we define

E := pr2∗(pr∗1 M ⊗ P).

By the choice of H , E is a vector bundle of rank d + degH + 1 − pa(C) on T and for
every η ∈ T the natural map E ⊗ C(η)→ H 0(M ⊗ η) is an isomorphism and M ⊗ η is
generated by global sections.

We let Z = x1 + · · · + xm ∈ |H | be a general divisor and we define F :=
pr2∗(pr∗1 M|Z ⊗ P). The sheaf F is a vector bundle of rank m = degH on Pic0(C)

and the evaluation map pr∗1 M ⊗ P → pr∗1 M|Z ⊗ P induces a sheaf map E → F . The
locus where this map drops rank by r + 1 is W r

T (L,C).
By Theorem II and Remark 1.9 of [FL], to prove the theorem it suffices to show that

Hom(E, F ) is an ample vector bundle. We have F =
⊕

i Pxi , where Pxi is (isomorphic
to) the restriction of P to {xi}×T . Since P is the restriction of a normalized Poincaré line
bundle, Pxi is algebraically equivalent to OT . Hence Hom(E, F ) =

⊕n
i=1(E

∨
⊗ Pxi ) is

ample if and only if E∨ is ample.
To show the ampleness of E∨ we adapt the proof of [La, Thm. 6.3.48]. Denote by

ξ the linear equivalence class of the tautological line bundle on P(E∨); we are going to
show that for any irreducible positive-dimensional subvariety V of P(E∨) the cycle V ∩ξ
is represented, up to numerical equivalence, by a proper nonempty subvariety of V .

Given a point x ∈ C, the evaluation map E → Px is surjective, since M ⊗ η is
globally generated for every η ∈ T , hence it defines an effective divisor Ix algebraically
equivalent to ξ . Denote by p : P(E∨)→ T the natural projection. A point v ∈ P(E∨) is
determined by a section sv ∈ H 0(M ⊗ p(v)), and v ∈ Ix if and only if sv(x) = 0. Let Ci
be a component of C such that the general element of V does not vanish identically on Ci .
If the support of the zero locus of sv on Ci varies, then for a general x ∈ Ci the set V ∩ Ix
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is a proper nonempty subvariety algebraically equivalent to V ∩ ξ and we are done. So
assume that for general v ∈ V the support of the zero locus of v on Ci is constant: then,
pulling back via νi : Cνi → Ci , we see that the line bundle ν∗i (M ⊗ p(v)) stays constant
as v ∈ V varies. Since the map T → Pic0(Cνi ) has finite kernel by assumption, p(V ) is a
point ηV ∈ T and V ⊆ P(H 0(M ⊗ ηV )). Since dimV > 0 and ξ restricts to the class of
a hyperplane of P(H 0(M ⊗ ηV )), the cycle V ∩ ξ is represented by a proper nonempty
subvariety of V also in this case. This completes the proof. ut

Remark 5.2. The proof of Theorem 5.1 does not extend to the case of a complete sub-
group T ⊆ Pic0(C) such that the map T → Pic0(Ci) does not have finite kernel for
some component Ci of C. Indeed, take C = C1 ∪ C2, with Ci smooth curves of genus
gi > 0 meeting transversely at only one point P , and T = Pic0(C1) ⊂ Pic0(C) =

Pic0(C1)× Pic0(C2). Twisting by H ⊗ η, η ∈ T , the exact sequence 0→ OC2(−P)→

OC → OC1 → 0 and taking global sections, one gets inclusions

H 0(OC2(H − P)) = H
0(OC2(H − P)⊗ η) ↪→ H 0(OC(H)⊗ η)

that sheafify to a vector bundle map OT ⊗H
0(OC2(H − P))→ E. So the bundle E∨ is

not ample.
We do not know whether the statement of Theorem 5.1 still holds without this as-

sumption on T .

6. Brill–Noether theory for curves on irregular surfaces

Our approach to the study of the Brill–Noether loci W r(D,X) for an effective divisor
D in an n-dimensional variety X of maximal Albanese dimension consists in compar-
ing it with a suitable Brill–Noether locus on the (n − 1)-dimensional variety D. Let
i∗ : Pic0(X) → Pic0(D) be the map induced by the inclusion i : D → X and denote
by T the image of i∗. The key observation is the following:

Proposition 6.1. Let X be a variety of dimension n > 1 with albdimX = n and without
irrational pencils of genus > 1 and let D > 0 be a divisor of X. Let Y be a positive-
dimensional irreducible component of W r

T (D|D,D). If dimY ≥ 2 or 0 ∈ Y , then i∗−1Y

is a component of W r(D,X).

Proof. Let V 1(X) = {η ∈ Pic0(X) | h1(η) > 0} be the first Green–Lazarsfeld locus (see
§2.2).

Denote by U the complement of V 1(X) in Pic0(X); for η ∈ U , the short exact se-
quence

0→ η→ OX(D + η)→ (D + η)|D → 0

induces an isomorphism H 0(OX(D + η)) ∼= H
0((D + η)|D). Hence U ∩W r(D,X) =

U ∩ i∗−1W r
T (D|D,D) and to prove the claim it is enough to show that i∗−1Y 6⊂ V 1(X).

By Theorem 2.2, if dim Y ≥ 2 this follows from dimV 1(X) ≤ 1, and if 0 ∈ Y it follows
from the fact that 0 is an isolated point of V 1(X). ut
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In the case of surfaces, Proposition 6.1 can be made effective. Let S be a surface with
q(S) = q and let C ⊂ S be a curve; we define the Brill–Noether number ρ(C, r) := q −
(r+1)(pa(C)−C2

+r). For r = 0 we write simply ρ(C) for ρ(C, 0) = q+C2
−pa(C).

Recall that by the adjunction formula q + C2
− pa(C) = q − 1+ (C2

−KSC)/2.

Theorem 6.2. Let r ≥ 0 be an integer. Let S be a surface with irregularity q > 1 that
has no irrational pencil of genus> 1 and let C ⊂ S be a reduced curve such that C2

i > 0
for every irreducible component Ci of C.

(i) If ρ(C, r) > 1 or ρ(C, r) = 1 and V 1(S) = {η ∈ Pic0(S) | h1(η) > 0} does not
generate Pic0(S), then W r(C, S) is nonempty of dimension ≥ min{q, ρ(C, r)}.

(ii) If ρ(C) > 1, or ρ(C) = 1 and C is not contained in the ramification locus of the
Albanese map, or ρ(C) = 1 and V 1(S) does not generate Pic0(S), thenW(C, S) has
an irreducible component of dimension ≥ min{q, ρ(C}) containing 0.

Proof. We start by observing that by the Hodge index theorem any two irreducible com-
ponents of C intersect, hence in particular C is connected.

Let Ci be a component of C and denote by Cνi its normalization; since C2
i > 0, by

[CFM, Prop. 1.6] the map Pic0(S)→ Pic0(Ci) is an injection. Since Pic0(S) is projective
and the kernel of Pic0(Ci) → Pic0(Cνi ) is an affine algebraic group, it follows that the
map Pic0(S)→ Pic0(Cνi ) has finite kernel and we may apply Theorem 5.1.

By Theorem 5.1, if ρ(C, r) > 0 then W r

Pic0(S)
(C|C, C) is nonempty, it generates

Pic0(S) and all its components have dimension ≥ min{q, ρ(C, r)}. Claim (i) follows
directly from Proposition 6.1 if ρ(C, r) > 1. If ρ(C, r) = 1 and V 1(S) does not generate
Pic0(S), then there exists a positive-dimensional component Y of W r

Pic0(S)
(C|C, C) not

contained in V 1(S) and arguing as in the proof of Proposition 6.1 one shows that Y is a
component of W r(C, S).

By Proposition 6.1 to prove claim (ii) it is enough to show that 0 ∈ WPic0(S)(C|C, C),
that is, h0(C|C) > 0.

If ρ(C) = 1 and C is not contained in the ramification locus of the Albanese map
of S, this follows from Corollary 4.8.

Otherwise assume that ρ(C) > 1 or ρ(C) = 1 and V 1(S) does not generate Pic0(S).
Then by claim (i), (−1)∗W(C, S) has dimension ≥ min{q, ρ(C)}. As previously we
conclude that (−1)∗W(C, S) is not contained in V 1(S).

Assume for contradiction that h0(C|C) = 0. Then the Riemann–Roch theorem on C
gives h0(KS |C) = pa(C)−C

2
− 1. Since pa(C)−C2

− 1 = q − 1− ρ(C), one obtains
h0(KS |C) < q − 1 and thus h0(KS − C) > χ(S).

For every η ∈ W(C, S)we have h0(KS+η) ≥ h
0(KS+η−(C+η)) = h

0(KS−C) >

χ(S), hence −η ∈ V 1(S), a contradiction. This completes the proof. ut

Remark 6.3. There are plenty of irregular surfaces without irrational pencils, for in-
stance complete intersections in abelian varieties and symmetric products of curves (cf.
[MP, §2]); indeed such surfaces can be regarded in some sense as “the general case”.
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Note that if S has no irrational pencil of genus > 1 and Alb(S) is not isogenous to
a product of elliptic curves, then the assumption that V 1(S) does not generate Pic0(S) is
satisfied, since by Theorem 2.2 the positive-dimensional components of V 1(S) are elliptic
curves. In Example 8.5 we describe a surface without irrational pencils of genus> 1 such
that V 1(S) generates Pic0(S).

Furthermore the inequalities of Theorem 6.2 are sharp: see Example 8.1.

7. Applications to curves on surfaces of maximal Albanese dimension

7.1. Curves that do not move in a linear series

Here we apply the results of the previous sections to curves C with h0(C) = 1 on a
surface of general type S.

The cohomology sequence associated to the restriction sequence for such a curve C
gives an exact sequence

0→ H 0(C|C)→ H 1(OS)
∪s
−→ H 1(OS(C)),

where s ∈ H 0(OS(C)) is a nonzero section vanishing on C. Hence by Proposition 3.3,
the spaceH 0(C|C) is naturally isomorphic to the tangent space toW(C, S). This remark,
together with Proposition 4.9, gives the following:

Lemma 7.1. Let S be a surface of general type with irregularity q > 0 that has no
irrational pencil of genus > 1 and let C ⊂ S be a 1-connected curve with h0(C) = 1.
Then one of the following occurs:

(i) 0 ∈ W(C, S) is an isolated point (with reduced structure);
(ii) 0 < h0(C|C) < q and C2

+ 2q − 4 ≤ KSC;
(iii) h0(C|C) = q and C2

+ 2q − 6 ≤ KSC.

Proof. As we observed above, the tangent space to W(C, S) has dimension equal to
h0(C|C), therefore case (i) occurs for h0(C|C) = 0. If h0(C|C) > 0, then we can ap-
ply Proposition 4.9, which gives h0(KS |C) ≥ q − 2 + h0(C|C) if h0(C|C) < q, and
h0(KS |C) ≥ 2q − 3 if h0(C|C) = q. By Riemann–Roch and by the adjunction formula,
we have

h0(KS |C) = h
0(C|C)+KSC + 1− pa(C) = h0(C|C)+

KSC − C
2

2
,

and statements (ii) and (iii) follow immediately by plugging this expression in the above
inequalities. ut

Remark 7.2. The inequality (ii) of Lemma 7.1 is sharp (cf. Example 8.1). Using the
adjunction formula it can be rewritten as

C2
≤ (pa(C)− q)+ 1,

or, equivalently, ρ(C) ≤ 1.
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In the situation of Lemma 7.1(i) we can also find a lower bound for KSC using the
results of Section 6.

Proposition 7.3. Let S be a surface of general type with irregularity q > 1 that has no ir-
rational pencil of genus > 1 and let C ⊂ S be a curve with h0(C) = 1 and h0(C|C) = 0.
Assume that C is connected and reduced and that every irreducible component Ci of C
satisfies C2

i > 0. Then
C2
+ 2q − 4 ≤ KSC,

or, equivalently, C2
≤ (pa(C)− q)+ 1.

Furthermore, if equality occurs then V 1(S) generates Pic0(S) and C is contained in
the ramification locus of the Albanese map.

Proof. Since h0(C) = 1 and h0(C|C) = 0, 0 ∈ W(C, S) is an isolated point. So by
Theorem 6.2(ii), ρ(C) ≤ 1, i.e. q + C2

− pa(C) ≤ 1, and this last inequality can be
written as C2

+ 2q − 4 ≤ KSC.
The last assertion of the proposition is also an immediate consequence of Theorem

6.2(ii). ut

As immediate consequences of the above two propositions we obtain:

Corollary 7.4. Let S be a surface of general type with irregularity q > 1 that has no
irrational pencil of genus > 1 and let C ⊂ S be a curve with h0(C) = 1. Assume that C
is connected and reduced and that every irreducible component Ci ⊆ C satisfies C2

i > 0.
Then

C2
+ 2q − 6 ≤ KSC,

or, equivalently, C2
≤ (pa(C)− q)+ 2.

Furthermore, if equality holds then h0(C|C) = q.

Corollary 7.5. Let S be a surface of general type with with irregularity q > 1 that has
no irrational pencil of genus > 1 and let C be an irreducible component of the fixed part
of |KS | such that C2 > 0. Then

CKS ≥ C
2
+ 2q − 4.

Proof. We have h0(C) = 1 by assumption and h0(C|C) = 0 by Corollary 3.5. Hence the
required inequality follows from Proposition 7.3. ut

In [MPP1] we have characterized surfaces S of irregularity q > 1 containing a curve C
such that C2 > 0 and pa(C) = q (i.e., the smallest possible value). By [Xi] (cf. also
Corollary 4.7), any irreducible curve with h0(C) ≥ 2 must satisfy pa(C) ≥ 2q − 1. We
know of no example of a curve with C2 > 0 and q < pa(C) < 2q − 1. The next result
gives some information on this case:

Corollary 7.6. Let S be a surface of general type with irregularity q ≥ 3 that has no
irregular pencil of genus > 1 and let C ⊂ S be an irreducible curve such that C2 > 0
and pa(C) ≤ 2q − 2. Then:

(i) C2
≤ (pa(C)− q)+ 1;

(ii) the codimension of the tangent space at 0 to W(C, S) is ≥ (3q − pa(C) − 3)/2 ≥
(q − 1)/2.
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Proof. Since by Corollary 4.7 (cf. also [Xi]) we have h0(C) = 1, by Proposition 3.3 the
tangent space to W(C, S) at 0 has dimension w := h0(C|C). Note that by Lemma 4.1 we
have h0(KS |C)+ h

0(C|C) ≤ pa(C)+ 1 < 2q.
Now observe that w < q. In fact, if w = q then, by Proposition 4.9, one has

h0(KS |C) ≥ 2q−3. Since pa(C) ≥ h0(KS |C)+h
0(C|C)−1 we obtain pa(C) ≥ 3q−4,

contrary to the assumptions pa(C) ≤ 2q−2 and q ≥ 3. So (i) follows from Corollary 7.4.
Now Clifford’s theorem gives 2w − 2 ≤ C2. Since pa(C) ≤ 2q − 2, from (i) we

obtain w ≤ (pa(C) − q + 3)/2 ≤ (q + 1)/2. Statement (ii) then follows since w is the
dimension of the tangent space to W(C, S) at 0. ut

7.2. The fixed part of the paracanonical system

Let S be a smooth surface of general type of irregularity q ≥ 2 such that albdim S = 2.
Recall (cf. [Be2, §3]) that the paracanonical system {KS} of S is the connected component
of the Hilbert scheme of S containing a canonical curve. There is a natural morphism
c : {KS} → Pic0(S) defined by [C] 7→ OS(C−KS) and the fiber of c over η ∈ Pic0(S) is
the linear system |KS + η|, hence there is precisely one irreducible component Kmain of
{KS} (the so-called main paracanonical system) that dominates Pic0(S). By the generic
vanishing theorem of Green and Lazarsfeld, one has dim |KS+η| = χ(S)−1 for general
η ∈ Pic0(S), and so the main paracanonical system Kmain has dimension q +χ(S)− 1 =
pg(S). It is known [Be2, Prop. 4] that if q is even and S has no irrational pencil of genus
> q/2, then the canonical system |KS | is an irreducible component of {KS}.

The relationship between the fixed part of Kmain and the fixed part of {KS} does
not seem to have been studied in general. Here we relate the fixed part of Kmain to the
ramification locus of the Albanese map.

Proposition 7.7. Let S be a smooth surface of general type of irregularity q ≥ 2 that has
no irrational pencil of genus > q/2 and let C ⊂ S be an irreducible curve with C2 > 0
that is contained in the fixed part of the main paracanonical system Kmain. Then C is
contained in the ramification locus of the Albanese map of S.

Proof. By the semicontinuity of the map η 7→ h0(KS − C + η), η ∈ Pic0(S), we have
h0(KS −C) ≥ χ(S). Assume for contradiction that C is not contained in the ramification
divisor of the Albanese map. Then by Corollary 4.8 (i) we have h0(KS −C) = χ(S). By
Proposition 3.3 it follows that the bilinear map H 1(OS)⊗H

0(KS −C)→ H 1(KS −C)

given by cup product is zero. Hence for every section s ∈ H 0(KS) that vanishes along
C and for every v ∈ H 1(OS) we have s ∪ v = 0. Therefore, by the proof of Proposition
3.4, it follows that if α, β ∈ H 0(�1

S) are such that α ∧ β 6= 0, then α ∧ β does not vanish
along C.

Consider the Grassmannian G := G(2, H 0(�1
S)) ⊆ P(

∧2
H 0(�1

S)) and the projec-
tivization T ⊂ P(

∧2
H 0(�1

S)) of the kernel of
∧2

H 0(�1
S) → H 0(KS). By Theorem

2.1 the intersection T ∩ G is the union of a finite number of Grassmannians G(2, V ) ⊂
P(

∧2
V ) where V ⊂ H 0(�1

S) is a subspace of the form p∗H 0(ωB) for p : S → B an
irrational pencil of genus > 1. Since by assumption S has no irrational pencil of genus
> q/2, if G0 ⊂ G is a general codimension q − 3 hyperplane section then G0 ∩ T = ∅.
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Hence the image of G0 in |KS | is a closed subvariety Z of dimension q − 1. Hence
(C + |KS −C|)∩Z is nonempty, that is, there exist α, β ∈ H 0(�1

S) such that α ∧ β 6= 0
and α ∧ β vanishes on C, a contradiction. ut

8. Examples and open questions

We collect here some examples to illustrate the phenomena that one encounters in study-
ing the Brill–Noether loci of curves on irregular surfaces. We also give an example (Ex-
ample 8.5) that shows that the hypothesis that V 1(S) does not generate Pic0(S) in The-
orem 6.2 is not empty, i.e. surfaces S of maximal Albanese dimension without irrational
pencils of genus> 1 such that V 1(S) generates Pic0(S) do exist. We conclude the section
by posing some questions.

Example 8.1 (Symmetric products). Let C be a smooth curve of genus q ≥ 3 and let
X := S2C be the second symmetric product of C. The surface X is minimal of general
type with irregularity q (cf. [MP, §2.4] for a detailed description of X).

For any P ∈ C, the curve CP = {P + x | x ∈ C} ⊂ X is a smooth curve isomorphic
to C, in particular it has genus q. It satisfies C2

P = 1, h0(CP ) = 1 and ρ(CP ) = 1.
If we fix P0 ∈ C, then it is easy to check that the map C → W(CP0 , X) defined by
P 7→ CP − CP0 is an isomorphism, hence Theorem 6.2 is sharp in this case.

Notice also that for every P ∈ C we have h0(KX|CP ) = q−1, hence both Proposition
4.6 and Proposition 4.9 are sharp in this case.

Example 8.2 (Étale double covers of symmetric products). As in Example 8.1, take a
smooth curve C of genus q ≥ 3, let X := S2C be the second symmetric product and
for P ∈ C let CP = {P + x | x ∈ C} ⊂ X. Let f : C′ → C be an étale double cover
and let X′ := S2C′. The involution σ of C′ associated to the covering C′ → C induces
an involution τ of X′ defined by τ(A + B) = σ(A) + σ(B). The fixed locus of τ is the
smooth curve 0 = {A+ σ(A) | A ∈ C′}, hence Y := X′/τ is a smooth surface. It is easy
to check that q(Y ) = q and that f descends to a degree 2 étale cover Y → X.

Denote byDP the inverse image of CP in Y . The mapDP → CP is a connected étale
double cover, henceDP is smooth (isomorphic to C′) withD2

P = 2 and g(DP ) = 2q−1.
In this case ρ(DP ) = 3−q ≤ 0 althoughDP moves in a 1-dimensional algebraic family.

Next we study h0(DP ). The standard restriction sequence for DP on Y gives 0 →
H 0(OY ) → H 0(DP ) → H 0(DP |DP ) → H 1(OY ) and by Proposition 3.3 the last
map in the sequence is nonzero for every P since DP moves algebraically. Hence if
H 0(DP |DP ) = 1 (e.g., if C′ is not hyperelliptic) then h0(DP ) = 1. Consider now a spe-
cial case: take C hyperelliptic, A,B ∈ C two Weierstrass points and C′ → C the double
cover given by the 2-torsion element A−B, so that the corresponding étale double cover
Y → X is given by the equivalence relation 2(CA − CB) ≡ 0. Then the curves DA and
DB are linearly equivalent on Y and we have h0(DA) = 2.

With a little extra work it is possible to show that this is the only instance in which
h0(DP ) > 1.

Example 8.3 (The Fano surface of the cubic threefold). This example deals with a well-
known 2-dimensional family of curves of genus 11 on a surface of irregularity q = 5.
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Let V = {f (x) = 0} ⊂ P4 be a smooth cubic 3-fold. Let G := G(2, 5) be
the Grassmannian of lines of P4. The Fano surface (see [CG] and [Ty]) is the sub-
set F = F(V ) ⊂ G of lines contained in V . We recall that F is a smooth surface
with irregularity q = 5. In fact, let J (V ) be the intermediate Jacobian of V ; the Abel–
Jacobi map F → J (V ) induces an isomorphism Alb(F ) → J (V ). Moreover one has
H 2(F,C) ∼=

∧2
H 1(F,C), K2

F = 45, χ(OF ) = 6, pg(F ) = 10 and c2(F ) = 27.
Following Fano, for any r ∈ F we consider the curve

Cr = {s ∈ F : s ∩ r 6= ∅}.

We have h0(Cr) = 1, C2
r = 5, pa(Cr) = 11 and KF ∼alg 3Cr ; in addition, the general

C = Cr is smooth (see [CG] and [Ty]).
We remark that W(C,F) contains a 2-dimensional variety isomorphic to F , while

one would expect it to be empty, since ρ(C) = −1. On the other hand, since the family
has dimension 2, we have h0(OC(C)) = 2, henceW 1

5 (C) 6= ∅ and C is not Brill–Noether
general. In fact the corresponding Brill–Noether number is ρ(11, 5, 1) = 11 − 2(11 −
5+1) = −3. Moreover there is a degree 2 étale map C → D, whereD is a smooth plane
quintic, and Alb(F ) is isomorphic to the Prym variety P(C,D) of the covering, thus the
curve C has very special moduli.

Nevertheless we will see that the family {Cr}r∈F has a good infinitesimal behaviour.
Firstly we recall that h0(KF − Cr) = 3 by [Ty, Cor. 2.2]. Let T be the tangent space to
W(Cr , F ) at 0; since dim T ≥ 2, the image V ⊆ H 2(OF ) ∼=

∧2
H 1(OF ) of T⊗H 1(OF )

has dimension ≥ 7. On the other hand, V is orthogonal to the image in H 0(KS) of the
Petri map βCr : H

0(Cr) ⊗ H
0(KF − Cr) → H 0(KF ), therefore dimV ≤ pg(F ) −

h0(KF − Cr) = 7. So we have dimV = 7, dim T = 2 and in this case the dimension of
the family is predicted by the Petri map.

Example 8.4 (Ramified double covers). LetX be a smooth surface of irregularity q such
that the Albanese mapX→ Alb(X) is an embedding (for instance, take forX a complete
intersection in an abelian variety), and let π : S → X be the double cover given by
a relation 2L ≡ B with B a smooth ample curve. Write π∗B = 2R; the induced map
Alb(S)→ Alb(X) is an isomorphism (cf. [MP, §2.4]), hence R is the ramification divisor
of the Albanese map of S. We have R ∈ |π∗L| and, by the projection formula for double
covers, for every η ∈ Pic0(S) = Pic0(X) we have H 0(R + η) = H 0(L + η) ⊕ H 0(η),
where the first summand is the space of invariant sections and the second one is the space
of anti-invariant sections. Hence for η 6= 0 all sections are invariant, while for η = 0 the
curve R is the zero locus of the only (up to scalars) anti-invariant section. Hence R moves
only linearly on S, as predicted by Proposition 3.4.

This construction can also be used to produce examples of surfaces of fixed irregu-
larity q that contain smooth curves C with C2 > 0, h0(C) = 1 and unbounded genus.
Assume that X contains a smooth curve D such that D2 > 0 and h0(D) = 1 (for in-
stance, take as X a symmetric product as in Example 8.1). Set C := π−1(D); if B
meets D transversely, then C is smooth of genus 2g(D) − 1 + LD, hence g(C) can
be arbitrarily large. Again by the projection formulae, for every η ∈ Pic0(S) = Pic0(X)

we have h0(C + η) = h0(D + η) + h0(D + η − L). Hence if L − D > 0, we have
h0(C + η) = h0(D + η) = 1 and W(C, S) = W(D,X).
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Example 8.5. An example of a surface S without pencils of genus > 1 such that V 1(S)

generates Pic0(S) can be constructed as follows.
Let E be an elliptic curve, let C → E and E′ → E be double covers with C a curve

of genus 2 and E′ an elliptic curve, and set B := C×EE′. The map B → E is a Z2
2-cover

and B has genus 3. We denote by α the element of the Galois group of B → E such that
B/〈α〉 = E′, and by β, γ the remaining nonzero elements. The curves B/〈β〉 and B/〈γ 〉
have genus 2.

Now choose elliptic curves E1, E2, E3 and for i = 1, 2, 3 let Bi → Ei and αi, βi, γi
be as above. Let X := B1 × B2 × B3 and let G be the subgroup of Aut(X) generated
by g1 = (α1, β2, γ3) and g2 = (β1, γ2, α3); note that G acts freely on X. Let S′ ⊂ X

be a smooth ample divisor which is invariant under the G-action and let S := S′/G; we
denote by fi : S → Ei the induced map, i = 1, 2, 3. The surfaces S′ and S are minimal of
general type. By the Lefschetz Theorem, Alb(S′) = Alb(X) = J (B1)× J (B2)× J (B3).
It is immediate to check that q(S) = 3 and that the map S → A = E1×E2×E3 induces
an isogeny Alb(S)→ A. Consider the étale cover S1 = S

′/〈g1〉 → S; the map S′ → B1
induces a map S1 → E′1 = B1/〈α1〉 which is equivariant for the action of G/〈g1〉. The
group G/〈g1〉 acts freely on E′1, hence the cover S1 → S is obtained from E′1 → E1 by
base change. It follows that the 2-torsion element η1 ∈ Pic(S) associated to this double
cover is a pull back from E1. Thus η1 belongs to Pic0(S).

The map S′ → B2 induces a fibration S1 → C2 = B2/〈β2〉. There is a commutative
diagram

S1 −−−−→ Sy yf2

C2 −−−−→ E2

where the map S1 → S is obtained from C2 → E2 by base change and normalization.
This means that the fibration S1 → C2 has two double fibres 2F1 and 2F2, occurring
at the ramification points of f2, and that η1 = F1 − F2 + α for some α ∈ Pic0(E2),
hence η1 restricts to 0 on the general fiber of f2. By [Be4, Thm. 2.2], this implies that
η1+f

∗

2 Pic0(E2) is a component of V 1(S). A similar argument shows that V 1(S) contains
translates of f ∗1 Pic0(E1) and f ∗3 Pic0(E3). Since Alb(S) is isogenous to E1 × E2 × E3,
it follows that V 1(S) generates Pic0(S).

To conclude, we show that if the curves Ei are general, then S has no irrational pencil
of genus > 1. In this case Hom(Ei, Ej ) = 0 if i 6= j , hence End(A) = Z3. Assume for
contradiction that S → B is an irrational pencil of genus b > 1. Since the map S → A

is generically finite by construction and q(S) = 3, b = 2 is the only possibility. Then we
have a map with finite kernel J (B) → A. Let W be the image of J (B) in A. Consider
the endomorphism φ of A defined as A → A/W = (A/W)∨ → A∨ = A (both A and
A/W are principally polarized). The connected component of 0 ∈ kerφ is W , hence W
is a product of two of the Ei . So the map S → W has finite fibres, while S → J (B) is
composed with a pencil, and we have a contradiction.

Question 8.6. Let S be a surface of general type of irregularity q and of maximal Al-
banese dimension. A curve C ⊂ S with C2 > 0 satisfies pa(C) ≥ q and in [MPP1] we
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have proven that if S contains a 1-connected curve C with C2 > 0 and pa(C) = q, then S
is birationally a product of curves or the symmetric square of a curve. On the other hand,
the curves DP in Example 8.2 have D2

P > 0 and genus equal to 2q − 1. We do not know
any surface S containing a curve C with C2 > 0 and arithmetic genus in the intermediate
range q < pa(C) < 2q− 1, so it is natural to ask whether such an example exists. Notice
that, by Corollary 4.7 (cf. also [Xi]), a curve C with C2 > 0 and pa(C) < 2q − 1 cannot
move linearly and that some further restrictions are given in Corollary 7.6. In addition,
the image C′ of such a curve C via the Albanese map generates Alb(C) and therefore
by the Hurwitz formula C′ is birational to C. Hence this question is also related to the
question of existence of curves of genus q < pa(C) < 2q − 1 that generate an abelian
variety of dimension q (see [Pi] for related questions).

Question 8.7. On a variety X with albdimX = dimX there are three intrinsically de-
fined effective divisors:

(a) the fixed part of |KX|;
(b) the ramification divisor R of the Albanese map;
(c) the fixed part of the main paracanonical system Kmain (cf. §7.2).

Clearly the fixed part of |KX| is a subdivisor of R. In the case of surfaces, in Proposition
7.7 it is shown that the componentsC of the fixed part of Kmain withC2 > 0 are contained
in R if the surface has no irrational pencil of genus > q/2.

It would be interesting to know more precisely in arbitrary dimension how these three
divisors are related.1

Question 8.8. In §6 we study the Brill–Noether loci for curves C on a surface S, that is,
we always assume that 0 ∈ W(C, S) 6= ∅. It would be very interesting to find numerical
conditions on a line bundle L ∈ Pic(X), X a smooth projective variety, that ensure that
W(L,X) is not empty.
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