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Abstract. A family of linear homogeneous fourth order elliptic differential operators L with real
constant coefficients, and bounded nonsmooth convex domains � are constructed in R6 so that the
L have no constant coefficient coercive integro-differential quadratic forms over the Sobolev spaces
W2,2(�).
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1. Introduction

1.1. A nonexistence theorem and consequences

For u and v in the complex Sobolev space W 2,2(�) and � ⊂ R6 a bounded open set, let

A[u, v] =
∑

|α|≤2,|β|≤2

∫
�

aαβ∂
αu∂βv dX (1.1)

be any constant coefficient Hermitian bilinear integro-differential form associated to any
one of the elliptic fourth order homogeneous real constant coefficient linear partial differ-
ential operators

Lγ (∂) =

(
∂2

1 + ∂
2
2

4
− ∂2

3

)2

+ (∂2
3 − γ (∂

2
4 + ∂

2
5 + ∂

2
6 ))

2

+ (∂3∂4 − ∂5∂6)
2
+ (∂3∂5 − ∂6∂4)

2
+ (∂3∂6 − ∂4∂5)

2, 0 < γ < 1/3. (1.2)

In general ∂j = ∂/∂Xj for X = (X1, . . . , Xn) ∈ Rn, and in (1.1), ∂α = ∂
α1
1 · · · ∂

αn
n is

multi-index notation with |α| = α1+ · · ·+αn, the order of α. The aαβ are complex num-
bers satisfying no other condition other than that, by definition, the form A is associated
to Lγ if and only if

Lγ =
∑
|α|,|β|≤2

(−1)|β|aαβ∂α+β =
∑

|α|=|β|=2

aαβ∂
α+β ,
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the second equality being a necessary condition on the lower order coefficients because
of the homogeneity of Lγ .

There are many such bilinear forms associated to a single Lγ . Each is uniquely deter-
mined by its corresponding Hermitian quadratic integro-differential form

A[v] =
∑
|α|,|β|≤2

∫
�

aαβ∂
αv∂βv dX, v ∈ W 2,2(�), (1.3)

yielding a one-to-one correspondence between (1.1) and (1.3) (see [Aro61, p. 31]).
In this article the following theorem will be proved.

Theorem. For each fourth order elliptic real constant coefficient operator Lγ there exist
bounded convex domains � of R6 in which no constant coefficient Hermitian quadratic
integro-differential form A[v] associated to Lγ can be coercive over the Sobolev space
W 2,2(�).

Coerciveness fails in the same way over the corresponding real Sobolev space.

In order to make the statements of the theorem as meaningful as possible, Aronszajn’s
definition of coercive form, specialized to integro-differential Hermitian forms over
Wm,2(�),m a nonnegative integer, will be invoked. The Sobolev spaceWm,2(�) of func-
tions with square integrable weak derivatives up to order m is a Hilbert space with inner
product (u, v)m =

∑
|α|≤m

∫
�
∂αu∂αv dX and norm ‖v‖m =

√
(v, v)m. Seminorms are

defined by |v|2j =
∑
|α|=j

∫
�
|∂αv|2 dX (j = 1, . . . , m).

Let � ⊂ Rn be a bounded open set and let now

A[v] =
∑

|α|,|β|≤m

∫
�

aαβ(X)∂
αv∂βv dX, v ∈ Wm,2(�), (1.4)

where the aαβ are complex valued bounded measurable functions. Thus A is a bounded
quadratic form, |A[v]| ≤ CA‖v‖2m , with CA depending only on the coefficient bounds.
Let K[v] denote any completely continuous Hermitian quadratic form on Wm,2(�). This
means K is bounded and, given any ε > 0, there exist a bounded Hermitian quadratic
form Kε on Wm,2(�) and a subspace Vε ⊂ Wm,2(�) of finite codimension such that

(a) |Kε[v]| ≤ ε‖v‖2m on Wm,2(�),

(b) K[v] −Kε[v] vanishes identically on Vε .
(1.5)

The standard example of a completely continuous quadratic form on Wm,2(�) is the
square of the L2(�) norm (see 1 of Section 2).

Definition 1.1 ([Aro61, p. 38]). The quadratic form A[v] (1.4) with bounded mea-
surable coefficients is coercive over Wm,2(�) if there exist a completely continuous
quadratic form K and a number c > 0 such that

|A[v]| +K[v] ≥ c‖v‖2m for all v ∈ Wm,2(�). (1.6)
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As will be seen in 3 of Section 2, replacing the real valued completely continuousK in
(1.6) with |K[v]|, forK a complex valued completely continuous quadratic form, does not
enlarge the set of coercive forms A in Aronszajn’s definition. Moreover, in 4 of Section 2,
(1.6) will be replaced with the equivalent condition

|A[v]| + c0

∫
�

|v|2 dX ≥ c‖v‖2m, c > 0 and c0 ∈ R, (1.7)

whenever Rellich’s compactness theorem holds—for example, in any bounded Lipschitz
domain, hence any bounded convex domain, or in any bounded domain with the segment
property (see, for example, [Agm65, p. 30] for Rellich’s theorem).

1.1.1. Nonexistence of Hilbert space methods for Neumann problems. Conditions (1.6)
or (1.7) together with boundedness imply that the corresponding Hermitian bilinear form

A[u, v] =
∑

|α|,|β|≤m

∫
�

aαβ(X)∂
αu∂βv dX (1.8)

satisfies the hypotheses of the Lax–Milgram theorem on a subspace V ⊂ Wm,2(�) of
finite codimension. In general a Hermitian bilinear form B on a Hilbert space H with
norm ‖ ‖ is any functional H × H → C that is linear in its first variable and anti-linear
in its second, B[αx, y] = αB[x, y] = B[x, αy] for all α ∈ C. The bilinear form is
bounded if there is a constant CB so that |B[x, y]| ≤ CB‖x‖ ‖y‖. It is strongly coercive
if |B[x, x]| ≥ c‖x‖2 for some constant c > 0.

Theorem 1.2 (Lax–Milgram). Let B[x, y] be a bounded Hermitian bilinear form on a
Hilbert space H with norm ‖ ‖. If there is a constant c > 0 such that |B[x, x]| ≥ c‖x‖2

for all x ∈ H and if F : H → C is a bounded linear functional, then there exist unique
u and v such that F(x) = B[x, v] = B[u, x] for all x ∈ H .

Given the coerciveness estimate (1.6) one chooses ε = c/2 in (1.5) and deduces the
strong coerciveness estimate |A[v]| ≥ (c/2)‖v‖2m for all v in the Hilbert space Vc/2
of finite codimension in Wm,2(�). Lax–Milgram then shows that unique solutions, to a
variational Neumann problem determined by A and for the linear differential operator
formally associated with A, exist in Vc/2 for all Neumann data derived from Wm,2(�)

modulo a finite-dimensional subspace of possible data.
For example, take m = 2 in (1.8) with only second order derivatives and the aαβ con-

stant. Let � be a bounded Lipschitz domain and let ds denote surface measure on ∂�.
Then for every v ∈ W 2,2(�) the array of derivatives v̇ = {v, ∂1v, . . . , ∂nv} can be
strictly defined at a.e.(ds) point of ∂� and the set of all such traces is the Besov space
B

2,2
3/2(∂�) (see [JW84, pp. 206, 208]). The space of Neumann data for the equation
Lu =

∑
|α|=|β|=2 aαβ∂

α+βu = 0 is determined by Vc/2 to be a subspace of finite codi-

mension in the dual space of B2,2
3/2(∂�) in the following way. By 5 of Section 2 there is a

subspaceW such thatW 2,2(�) = Vc/2⊕W is a direct sum and such that w ∈ W implies∑
|α|=|β|=2

∫
�

aαβ∂
αu∂βw dX = 0 for all u ∈ Vc/2. (1.9)
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Take the space of Neumann data to be the finite-codimensional subspace of all bounded
linear functionals F in the dual of B2,2

3/2(∂�) that vanish on the traces of the finite-
dimensional W . By imbedding theorems [JW84, p. 208] every bounded linear functional
on B2,2

3/2(∂�) is also bounded on W 2,2(�). Therefore by the coercive estimate and Lax–
Milgram each Neumann data F yields a unique u = uF ∈ Vc/2 such that F(v̇) = A[u, v]
for all v ∈ Vc/2. Every ϕ ∈ C∞0 (�) can be written according to the direct sum as v + w.
By F(ẇ) = 0 and (1.9),

0 = F(ϕ̇) = F(v̇) = A[u, v] = A[u, ϕ] =
∫
�

uLϕ dX

so that LuF = 0 in the sense of distributions. By regularity theory [Agm65] we have
uF ∈ C

∞(�). Now a concrete representation of the Neumann data F can be obtained
by taking smooth interior approximating domains �j ↑ � [Neč62] and letting ∂ν denote
the derivative with respect to the outer unit normal vector to a boundary. By the Gauss
divergence theorem,

F(v̇) = lim
j

∑
|α|=|β|=2

∫
�j

aαβ∂
αu∂βv dX = lim

j

∫
∂�j

(Mu∂νv −Kuv) ds (1.10)

represents F as a sequence of Neumann data Fj = (Mu,Ku)|∂�j acting on the Dirichlet
data of each v ∈ W 2,2(�), where M and K are the compositions of differential and
multiplier operators,

M =
∑

|α|=|β|=2

aαβν
β∂α (1.11)

K =
∑

|α|=|β|=2

aαβ

(
νβ
′

∂β
′′

+

n∑
k=1

(νk∂
β ′
− νβ

′

∂k)νkν
β ′′
)
∂α, (1.12)

that have been fixed by the coefficients of the bilinear form. Here β is the sum of some
choice of first order indices β ′, β ′′; the choice does not affect the action of Ku on v.
Moreover, for each F the Fj are bounded linear functionals on W 2,2(�) that converge
to F in the norm of the dual of W 2,2(�), as (1.10) and

∑
|α|=2

∫
�\�j
|∂αuF |

2
→ 0 show.

By the extension theorem [JW84, p. 208] the Fj also converge to F in the norm of the
Besov space dual.

The point of view of this article then is that

• There are bounded convex domains and real constant coefficient linear elliptic op-
erators L for which no associated constant coefficient Hermitian bilinear integro-
differential form will work to solve a variational Neumann problem forL by the Hilbert
space methods outlined above.

Moreover, the collection of associated forms for each L includes a formally positive
quadratic form, and includes indefinite forms that are coercive on domains more regu-
lar than convex (see Section 3 below).
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1.1.2. Rellich identities. Consider again (1.8) with only mth order derivatives and con-
stant coefficients that in addition are Hermitian symmetric, aαβ = aβα . Then the cor-
responding quadratic forms can be placed on Lipschitz boundaries and used to obtain a
priori estimates for solutions Lu = 0 in boundary Sobolev spaces Wm,2(∂�).

Let ς be a smooth vector field transverse to the boundary of �, i.e. ς · ν ≥ c� > 0
a.e. (ds). Integration by parts yields∑
|α|=|β|=m

∫
∂�

aαβ∂
αu∂βu ς · ν ds = 2 Re

∑
|α|=|β|=m

∫
∂�

aαβ∂
αu∂β(ς · ∇u) ds + B[u]

(1.13)

where B is a Hermitian quadratic form (1.4) over the domain � consisting only of
terms that have at least one derivative applied to the smooth vector field. By Gagliardo–
Nirenberg estimates, B[u] can be bounded by a constant depending only on L, ς and
the Lipschitz character of �, times |u|2m + |u|

2
0. Let �′ be an interior approximating do-

main. Because u is a solution, estimates in [PV95] show that the integral of |u|2m over
� \ �′ is bounded by the maximum distance of �′ to ∂�, times a constant depending
only on L, ς and the Lipschitz character of �, times the boundary Sobolev square semi-
norm

∑
|α|=m

∫
∂�
|∂αu|2 ds. Because u is a solution the rest of |u|2m can be bounded by

the canonical c1
∫
�
|u|2 dX using interior estimates. Solution representations by spherical

means (see [Joh55, pp. 153–154]) or interior L2 regularity [Agm65, Theorem 6.3] can be
used for this. Also because u is a solution, the integral on the right of (1.13) can be written
in terms of the Neumann data for u and the Dirichlet data of v = ς · ∇u as above. For
example, in the m = 2 case,∑
|α|=|β|=2

∫
∂�

aαβ∂
αu∂βuς · ν ds

= 2 Re
∑

|α|=|β|=2

∫
∂�

(
Mu∂ν(ς · ∇u)−Kuς · ∇u

)
ds + B[u] (1.14)

where the data pairings are now L2(∂�) with L2(∂�) and W−1,2(∂�) with W 1,2(∂�).
If now there is a boundary coerciveness estimate for solutions

c
∑
|α|=m

∫
∂�

|∂αu|2 ds ≤
∑

|α|=|β|=m

∫
∂�

aαβ∂
αu∂βuς · ν ds + c0

∫
�

|u|2 dX (1.15)

where c > 0 depends only on the quadratic form, ς and the Lipschitz character of �,
then the term B[u] of (1.13) and (1.14) can be replaced by the canonical completely
continuous form and estimates follow from, for example,

c

2

∑
|α|=2

∫
∂�

|∂αu|2 ds

≤ 2 Re
∑

|α|=|β|=2

∫
∂�

(
Mu∂ν(ς · ∇u)−Ku ς · ∇u

)
ds + c2

∫
�

|u|2 dX. (1.16)

Identities like (1.14) have come to be known as Rellich identities, while (1.16) is an
example of a Rellich estimate. For second order operators (m = 1) they were introduced



2170 Gregory C. Verchota

into the scale invariant analysis of boundary values, taken in the strong pointwise sense,
for solutions in Lipschitz domains by Jerison–Kenig [JK81]. Earlier uses were made
by Nečas [Neč67], Rellich, Payne–Weinberger, Pohozaev and Morawetz. See [Ken94,
p. 112]. The identities and estimates can be used in various ways to solve boundary value
problems. One of these ways, since the boundedness of Calderón–Zygmund singular
integrals on Lipschitz graphs was proved by Coifman–McIntosh–Meyer [CMM82], is to
prove invertibility of classical layer potentials which have the virtue of simultaneously
solving Neumann and Dirichlet problems. Beginning with Laplace’s equation [Ver84], an
incomplete list of applications of this kind would be the heat equation [Bro89], linearized
Stokes system [FKV88], harmonic transmission [EFV92], nonstationary Stokes system
[She91], Dirac operator systems [MM99], the Hilbert problem and spectral properties
of the rotation operator [Axe03], [Axe04], Navier–Stokes on Riemannian manifolds
[MT01], the harmonic Neumann problem in non-Lipschitz polyhedra [Ver01], [VV06],
electromagnetic scattering [Mit95], [MMP97], spectral properties of electromagnetic
layer potentials [MO10], mixed problems for the Stokes system [BMMW10], a priori
layer potential solvability of the harmonic mixed problem [Ven12], homogenization
problems for elliptic systems [KS11], divergence form bounded measurable complex
coefficient equations [AAAHK11]. The only higher order result of this kind has been
for the biharmonic operator [Ver05].

The boundary coercive estimate (1.15) is an automatic consequence of ellipticity
when m = 1. Some of the uses for Rellich identities listed above are for second order
systems for which boundary coerciveness can be problematic depending on the particu-
lar quadratic form used, i.e. the particular Neumann problem being solved for the given
system. For example, coerciveness for the traction Neumann problem [DKV88] required
proof of a boundary Korn inequality for solutions. The same is true for higher order scalar
valued equations. In [Ver05] boundary coerciveness either holds or is disproved by coun-
terexample depending on the quadratic form.

Of interest here is that the boundary coercive estimate for solutions is stronger than the
classical interior coercive estimate (1.6)–(1.7) for general v ∈ W 2,2(�). The completion
under the Sobolev norm of the C∞0 (�) functions is denoted Wm,2

0 (�).

Lemma 1.3. ForL with a homogeneous Hermitian symmetric bilinear form let boundary
coerciveness (1.15) hold for solutions Lu = 0, u ∈ Cm(�), with c > 0 and c0 depending
only on ς and the Lipschitz character of �. Let A denote the corresponding quadratic
form (1.4). There are then constants c′ > 0 and c′0 such that

c′|v|2m ≤ A[v] + c
′

0

∫
�

|v|2 dX for all v ∈ Wm,2(�). (1.17)

Proof. By the geometric formula in 6 of Section 2 there is a continuum of interior Lip-
schitz domains �t such that the main hypothesis can be applied as∑
|α|=m

∫
�\�1

|∂αu|2 dX

=

∫ 1

0
dt

∑
|α|=m

∫
∂�t

|∂αu|2ς · νt dst ≤ ‖ς‖∞

∫ 1

0
dt

∑
|α|=m

∫
∂�t

|∂αu|2 dst
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≤
2‖ς‖∞
c

∫ 1

0
dt

∑
|α|=|β|=m

∫
∂�t

aαβ∂
αu∂βuς · νt dst +

2c0

c

∫
�

|u|2 dX

=
2‖ς‖∞
c

∑
|α|=|β|=m

∫
�\�1

aαβ∂
αu∂βu dX +

2c0

c

∫
�

|u|2 dX.

Now by interior estimates, (1.17) follows for solutions u in place of v.
The coerciveness estimate (1.17) is also known to hold for allw ∈ Wm,2

0 (�) (Gårding’s
inequality), which, in addition, gives the solution to the Dirichlet problem via Lax–Mil-
gram in the classical Hilbert space sense. Modulo finite-dimensional subspaces, given any
v ∈ Wm,2(�) (data) there is a unique wv ∈ W

m,2
0 (�) such that u = v − wv is a weak

solution to Lu = 0. The map S : v 7→ wv is a bounded linear operator on Wm,2(�),
and A[u] + A[wv] = A[u + wv] because u is a solution while wv ∈ W

m,2
0 (�). Interior

regularity shows u ∈ C∞(�), justifying the a priori boundary coerciveness estimates.
Altogether it follows that

c′

2
|v|2m ≤ c

′
|u|2m + c

′
|wv|

2
m ≤ A[v] + c

′

0

∫
�

(|u|2 + |wv|
2)

≤ A[v] + 2c′0

∫
�

|v|2 + 3c′0

∫
�

|Sv|2,

and (1.17) follows since the last integral is also a completely continuous form on v ∈
Wm,2(�) (see 1, 3 and 4 of Section 2). ut

By this lemma and the main theorem it follows that

• For each of the constant coefficient elliptic operators Lγ there are bounded convex do-
mains for which every associated constant coefficient Hermitian symmetric quadratic
integro-differential form fails to give a coercive Rellich identity.

1.1.3. Second order Legendre–Hadamard systems. Letting subscripts denote derivatives
and letters dependent variables, the symmetric Legendre–Hadamard systems,

4u− 2w13 − x14 − y15 − z16 = 0,
4v − 2w23 − x24 − y25 − z26 = 0,
−2u13−2v23+(24−∂2

1−∂
2
2 )w−(γ+1)x34−x56−(γ+1)y35−y46−(γ+1)z36−z45 = 0,

−u14−v24−(γ +1)w34−w56+4x−(1−γ 2)x44+x55−(1−γ 2)y45−(1−γ 2)z46 = 0,
−u15−v25−(γ +1)w35−w46−(1−γ 2)x45+4y−(1−γ 2)y55+y66−(1−γ 2)z56 = 0,
−u16−v26−(γ +1)w36−w45−(1−γ 2)x46−(1−γ 2)y56+4z+z44−(1−γ 2)z66 = 0.

can be derived from the examples here after a scaling of the independent variables X1
and X2. Here 4 denotes the Laplacian of R6. The systems can be shown to have no con-
stant coefficient quadratic forms that are coercive over the vector valued Sobolev spaces
W 1,2(�) when the �’s are taken to be the corresponding scalings in X1 and X2 of the
convex domains constructed in this article. No constant coefficient form leads to a Korn
inequality even though, like the Lγ , there is an associated formally positive quadratic
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form (see Subsection 1.3 below) for each system,∫
�

(
|u1+ v2−w3|

2
+ |w3− γ x4− γy5− γ z6|

2
+ |w4− y6|

2
+ |w5− z4|

2
+ |w6− x5|

2

+ |z4 − x6|
2
+ |x5 − y4|

2
+ |y6 − z5|

2
+ |w4 − x3|

2
+ |w5 − y3|

2
+ |w6 − z3|

2

+ |v1 − u2|
2
+ |w1 − u3|

2
+ |x1 − u4|

2
+ |y1 − u5|

2
+ |z1 − u6|

2
+ |w2 − v3|

2

+ |x2 − v4|
2
+ |y2 − v5|

2
+ |z2 − v6|

2) dX.
A complete proof [Ver12a] will appear elsewhere.

1.2. Reduction to real homogeneous forms

In order to prove the main theorem and its consequences for the variational Neumann
problem, it is important that the coerciveness condition (1.6) be replaced, without loss of
generality, by

Re(eiθA[v])+K[v] ≥ c‖v‖2m (1.18)

where θ is some fixed angle and K is again completely continuous. Once this is done
it will be shown here that the noncoerciveness of the forms (1.3) for the operators Lγ
follows from the failure to achieve a coerciveness estimate that is equivalent to (1.6), viz.

A[v] + c0

∫
�

|v|2 dX ≥ c‖v‖22 (1.19)

whenever A is any real symmetric quadratic form associated to the Lγ . The failure to
achieve (1.19) is the statement of Theorem 1.5 below. Its proof is the greater part of this
article.

Aronszajn proves that (1.6) and (1.18) are equivalent conditions for coerciveness.
Condition (1.18) implies condition (1.6) directly. For the converse (see 7 of Section 2)

Theorem 1.4 ([Aro61, pp. 38–39]). If the integro-differential quadratic form with
bounded measurable coefficients A[v] of (1.4) is coercive over Wm,2(�), then there are
a constant c > 0 and a completely continuous quadratic form K such that (1.18) holds
for all v ∈ Wm,2(�) and for all θ in an interval θ0 < θ < θ1. Moreover K can be taken
to have finite rank.

A quadratic form has finite rank if it vanishes identically on a subspace of finite codimen-
sion.

One immediate consequence of Theorem 1.4 is that any quadratic form with bounded
measurable coefficients that satisfies Aronszajn’s definition of coercive in a bounded open
set must then be a uniformly strongly elliptic quadratic form after suitable rotation of its
range in the complex plane, i.e. satisfy

Re
(
eiθ

∑
|α|=|β|=m

aαβ(X)ξ
α+β

)
≥ E|ξ |2m (1.20)

for a.e. X ∈ �, all ξ ∈ Rn and for some ellipticity constant E > 0. See, for example,
[Agm65, p. 87 line (7.18)] and compare Theorem 1.4 with lines (7.20) and (7.21).
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Another consequence of Theorem 1.4 is

• The quadratic form A[v] (1.4) is coercive only if the real valued quadratic forms

Ãθ [v] :=
1
2

∑
|α|,|β|≤m

∫
�

(
eiθaαβ(X)+ e

−iθaβα(X)
)
∂αv∂βv dX (1.21)

are coercive, i.e. satisfy condition (1.18) which can now be written Ãθ [v] + K[v] ≥
c‖v‖2m.

Define ãαβ(θ) = 1
2 (e

iθaαβ + e
−iθaβα). Unlike the general Hermitian quadratic forms

(1.4) the forms (1.21) have coefficients satisfying ãαβ(θ) = ãβα(θ) and will be called
Hermitian symmetric quadratic forms. The unique Hermitian bilinear form for each Ãθ [v]
is Ãθ [u, v] =

∑
|α|,|β|≤m

∫
�
ãαβ(θ)∂

αu∂βv dX and satisfies Ãθ [u, v] = Ãθ [v, u].
Denote by L any of the elliptic real constant coefficient operators Lγ from

(1.2). By (1.21), if any quadratic form A[v] (1.3) associated to L is coercive,
then so too must its corresponding Hermitian symmetric form Ãθ [v]. Since L =∑
|α|=|β|=2 aαβ∂

α+β is real, letting v be a test function in the bilinear form Ãθ [u, v] =∑
|α|,|β|≤2

∫
�
ãαβ(θ)∂

αu∂βv dX and integrating by parts shows that Ãθ is associated with
the differential operator cos(θ)L. By the ellipticity of L and (1.20), cos(θ) > 0. Conse-
quently:

• If Lγ (1.2) is associated to a coercive constant coefficient form (1.3), then Lγ is asso-
ciated to a coercive Hermitian symmetric constant coefficient form.

Suppose then that L = Lγ has the coercive quadratic form A[v] (1.3), now with Her-
mitian symmetric coefficients, aαβ = aβα . Another real valued quadratic form associated
to L is

Areal[v] =
∑

|α|≤2,|β|≤2

∫
�

(Re aαβ)∂αv∂βv dX = Areal[Re v] + Areal[Im v].

Whenever v is real valued, A[v] = Areal[v]. Consequently, it can now be shown that

• If a Hermitian symmetric form A[v] is coercive, then the corresponding Areal[v] is
coercive.

To show this, one argues using the contrapositive lemma from 8 of Section 2. If Areal is
not coercive, there is a sequence of nonzero vj such that

Areal[Re vj ] +Areal[Im vj ] + j

∫
�

(
(Re vj )2+ (Im vj )

2) dX ≤ 1
j
‖Re vj‖2m+

1
j
‖Im vj‖

2
m.

(1.22)
The inequalities must also hold for a subsequence of Re vj or Im vj . Since A and Areal are
identical on either of these, and sequences of inequalities like (1.22) imply noncoercive-
ness, neither can A be coercive.

In contrast, when v is complex valued A[v] 6= Areal[v] in general, and Areal can
be coercive while A is not. For example, this is true for the Hermitian symmetric form
associated to the Laplacian in the plane,

∫
�
|(∂x + i∂y)v|

2 (see [Fol95, p. 242]).
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Continuing, the forms Areal[v] have real symmetric coefficients∑
|α|≤2,|β|≤2

∫
�

aαβ∂
αv∂βv dX

with aαβ = aβα ∈ R. The foregoing arguments therefore show that

• An elliptic operator with real coefficients has a coercive quadratic form in the sense of
Aronszajn’s definition if and only if it has a coercive quadratic form with real symmetric
coefficients satisfying inequality (1.19).

By using (1.22) and the contrapositive lemma again it follows that

• If an elliptic operator with real coefficients has no coercive quadratic form over
W 2,2(�), then it has no coercive quadratic form over the corresponding real Sobolev
space either.

Thus the second statement of the main theorem at the beginning of this article follows
from the first.

When � is a bounded Lipschitz domain, the Gagliardo–Nirenberg inequalities for
v ∈ Wm,2(�),

|v|2j ≤ ε|v|
2
m + Cε,j |v|

2
0,

hold for any ε > 0 and 0 ≤ j ≤ m − 1 with Cε,j also depending on � but independent
of v (see [Agm65, p. 25], for example). Therefore, by the coerciveness condition (1.7)
the quadratic form (1.3) will be coercive in a bounded Lipschitz domain if and only if
its principal part

∑
|α|=|β|=2

∫
�
aαβ∂

αv∂βv dX is coercive. By the homogeneity of Lγ ,
the principal part of its associated constant coefficient form is also associated to Lγ . If a
bilinear or quadratic form only consists of its principal part, it will be called homogeneous.

In sum, to prove the main theorem it suffices to prove the following.

Theorem 1.5. Given any homogeneous fourth order linear elliptic real constant
coefficient operator Lγ (1.2), there are bounded convex domains � of R6 in
which all homogeneous real symmetric constant coefficient quadratic forms A[v] =∑
|α|=|β|=2

∫
�
aαβ∂

αv∂βv dX associated to Lγ are noncoercive over W 2,2(�), i.e. the
coerciveness estimate

A[v] + c0

∫
�

|v|2 dX ≥ c|v|22 for all v ∈ W 2,2(�) (1.23)

must fail for all constants c0, all constants c > 0 and all such A[v] associated to Lγ .
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Theorem 1.5 is of interest in itself if, for example, lack of coercive Rellich identities is of
concern. The above reduction to real forms and the supporting arguments of Section 2 can
be omitted in order to more easily get to the construction demonstrating the absence of
coerciveness estimates. With the notation of Section 5, the convex domains are defined in
Section 8. All possible constant real coefficient associated forms make up a (large) finite-
dimensional affine space that can be viewed as a vector space of null quadratic forms
(Section 4) translated by a noncoercive formally positive form (3.3). This formally posi-
tive form vanishes on an infinite-dimensional subspace X ⊂ W 2,2 of separated solutions
(Section 6). By standard use of Rellich’s compactness theorem (Lemma 4.1), proving the
absence of coerciveness estimates for all forms reduces to showing that each null form
takes only nonpositive values on some infinite dimensional subspace of X. Separated so-
lutions E(zn,Q) (8.3) are singled out for the purpose of constructing these subspaces.
The polynomials Q in these solutions are any linear combinations of derivatives of the
polynomial (6.3). A lengthy argument (Sections 9, 10) reduces the space of null forms
to a 4-dimensional affine space (14.1) in the following sense (Lemma 10.1): If some null
form is coercive over X, then there is a null form from the 4-dimensional affine space
that is coercive over each of four subspaces of X defined in Subsection 10.1. Orthogonal-
ity properties, of separated solutions when acted upon by forms from the 4-dimensional
affine space, show that nonpositivity over a subspace is equivalent to nonpositivity over
a sequence of the separated solutions (Lemma 12.1). This setup for the final estimates of
Sections 15–18 is stated in 3 of Section 14. The basis elements for the affine space of
forms (14.1) are given in (5.2) and Section 9. The formulas for the forms of Section 9 are
valid on X only (see Lemma 9.1). By constructing various sequences of separated solu-
tions, subspaces of X are defined that impose necessary conditions on the coefficients of
these basis elements in order for a linear combination to be coercive. The first construc-
tion, based on lettingQ be the constant polynomial, is made in Subsection 4.2 and shows
that the null formN0 must appear as it does in (14.1). Five more sequences and subspaces
are constructed in Sections 15–17. The inequalities they force on the coefficients of the
remaining four null forms of (14.1) are shown to be incompatible in Section 18, finishing
the proof.

The construction of the sequences generally begins by choosing Q to be an unde-
termined linear combination of polynomials from one of the four polynomial subspaces
T̂, Ŝ1, . . . from which the four subspaces of separated solutions are defined (Subsection
10.1). The null forms (14.1) are applied and each of the terms of the resulting sequence
is minimized by choosing values for the undetermined coefficients of the separated
solution. A condition on the coefficients of the null forms is obtained when the se-
quence can be made negative for all n large enough. The procedure is illustrated in
Section 12. In addition, Remark 12.4 illustrates the role played by one of two Lipschitz
constants, M , in the definition of the convex domains. In the end, the subspaces found
in this article by the methods described also impose the requirements on the convex
domains that M be confined to a bounded interval away from zero and that the second
Lipschitz constant be large enough depending on the parameter 0 < γ < 1/3, thereby
identifying a collection of convex domains for each Lγ in which no coercive form is
available.
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In general it is difficult to determine if a given quadratic form is coercive. A notable
exception seems to be for those that are formally positive. The Aronszajn–Smith theorem
gives an algebraic characterization (see also [Agm65]).

Theorem 1.6 ([Aro54], [Smi70]). Let p1, p2, . . . ∈ C[X1, . . . , Xn] denote a finite num-
ber of complex polynomials all homogeneous of degreem, and let � ⊂ Rn be a bounded
Lipschitz domain. Then a necessary and sufficient condition for the coercive estimate over
Wm,2(�),∑

j

∫
�

|pj (∂)v|
2 dX + c0

∫
�

|v|2 dX ≥ c|v|2m, c > 0, c0 ∈ R, (1.24)

is that there be no solution z ∈ Cn \ {0} to the system of algebraic equations

p1(z) = p2(z) = · · · = 0.

Often an elliptic operator with an associated formally positive form that is seen to be not
coercive has other formally positive forms that are coercive by this characterization. To
prove that this is not always the case the author constructed [Ver10] the positive definite
polynomial (3.1) from which the operators Lγ are derived. The Lγ have no coercive
formally positive forms but they do have coercive indefinite forms in C2 domains, as
shown in [Ver12] (Subsection 3.2 below). Consequently, the question arises as to the
existence of a coercive indefinite form, in Smith’s Lipschitz domains, when there are no
formally positive coercive forms for an operator. The answer here is that convex domains
lack sufficient regularity for such an outcome, at least in the case of constant coefficient
operators and forms.

The algebraic structure of the operators, the definition of the domains and the ability
to compute accurately in the last sections are all closely related. The space X of separated
solutions, described in Sections 6.1–6.3, is the solution space of the over-determined sys-
tem (6.1) that is derived from the sum of squares representation of each Lγ . While the
algebraic structure of the separated solutions is independent of the domains, integrability
is not (Remark 6.2 and Example 6.3). The null forms exist independently of the operators
and domains. Symmetries in the complex variable z of the domains and the separated
solutions effect the first reduction in their number (Section 9), while symmetries in the
variable s ∈ R3 are used in Section 10 (see Subsection 8.2). Section 13 gives an algorithm
for minimizing the terms of the sequences that result from applying the null forms to the
chosen subspaces of separated solutions. An appendix details the calculations required by
the algorithm in the case of the main estimate of Section 16.

2. Supporting introductory arguments

1. Let the bilinear form B[u, v] be the inner product (u, v)m on Wm,2(�), let S :
Wm,2(�) → Wm,2(�) be bounded linear, and let K[v] =

∫
�
|Sv|2 dX where � is any

domain in which the Rellich compactness theorem holds. That K is completely continu-
ous with respect to the norm ‖ ‖m may be seen as a consequence of the classical Hilbert
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space argument (see [Fol95, p. 251], for example) that the strong coerciveness of B pro-
vides a bounded self-adjoint linear injection T : L2(�) → Wm,2(�) ⊂ L2(�) that is
compact as a map L2

→ L2 (Rellich) and satisfies∫
�

f v dX = B[Tf, v], v ∈ Wm,2(�). (2.1)

By the spectral theorem, the normalized eigenfunctions of T form an orthonormal
basis {uj } for L2 with T uj = αjuj and 0 < αj → 0 as j → ∞. By (2.1),
B[uj , uk] = 0 when j 6= k. Therefore for any v =

∑
∞

j=N cjuj it follows that∫
�
|v|2 dX =

∑
∞

j=N αjB[cjuj , cjuj ] ≤ maxj≥N ajB[v, v]. And therefore given ε > 0
and N large enough, (1.5) follows by defining Kε[v] :=

∫
�
|SPNv|

2
≤ ‖S‖2

∫
�
|PNv|

2

with PN the orthogonal projection in Wm,2 onto Vε = span{uj }∞j=N . Or one can apply
Rellich’s theorem directly to the task.

2. In general, Hermitian quadratic forms B[v] may be defined directly as functionals
satisfying, for all complex numbers α, β and vectors u, v,

B[αu+ βv] = |α|2a(u, v)+ αβb(u, v)+ αβc(u, v)+ |β|2d(u, v)

where a, b, c and d are functionals independent of α and β. It may be shown that if B[v]
is Hermitian quadratic, then so is ReB[v]. Hermitian quadratic forms uniquely determine
Hermitian bilinear forms B[u, v] by the requirement B[v, v] = B[v]. The one-to-one
correspondence is given by B[u, v] = 1

4
∑3
k=0 i

kB[u + ikv] (see [Aro61, p. 31]). In the
case of the bounded integro-differential quadratic forms (1.4), it follows that (1.8) is the
unique bilinear form and inherits the bound |A[u, v]| ≤ CA‖u‖m‖v‖m from (1.4).

As a consequence of this, the triangle inequality, and Young’s inequality, there is a
constant CA,ε for each ε > 0 such that

|A[v]| ≤ |A[u+ v]| + ε‖v‖2m + CA,ε‖u‖
2
m (2.2)

for any u and v.

3. Consider the coerciveness condition

|A[v]| + |K[v]| ≥ c‖v‖2m (2.3)

in place of (1.6). Again |A[v]| ≥ 1
2c‖v‖

2
m follows for all v ∈ V , a subspace of finite

codimension. Let U be the finite-dimensional orthogonal complement of V in Wm,2 and
take u ∈ U , v ∈ V . By choosing ε in (2.2) and by orthogonality in Wm,2 it follows that

1
4c‖u+ v‖

2
m ≤ |A[u+ v]| + C‖u‖

2
m (2.4)

with C depending only on c and CA. But the real valued functional w = u+v 7→ C‖u‖2m
is a well defined quadratic form on all w ∈ Wm,2 and has finite rank. Therefore, (2.3) is
not more general than (1.6).
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4. Moreover, for a smaller c > 0, the last term in (2.4) may be replaced by a constant
times the squared L2 norm ‖u+ v‖20 for all u ∈ U , v ∈ V . This follows by orthogonality
in Wm,2 when 0 ≤ C‖u‖2m ≤

1
8c‖v‖

2
m. Otherwise it may be assumed that

‖u‖2m = 1 and ‖v‖2m ≤ 8C/c. (2.5)

Since U is finite-dimensional there is equivalence of norms ‖u‖20 ≤ ‖u‖
2
m ≤ CU‖u‖

2
0.

Hence, for any sequence of functions {u + v} there will be a subsequence such that {vj }
converges weakly in Wm,2 to v while {uj } converges strongly to a nonzero u0 ∈ U . By
the weak convergence, 0 = (vj , u)m→ (v, u)m for all u ∈ U so that v ∈ V . Now if there
is no constant c′ > 0 satisfying ‖u+v‖20 ≥ c

′ for all functions u+v satisfying (2.5), then
there are sequences as described with weak and strong limits v ∈ V and nonzero u0 ∈ U

respectively and v = −u0 a.e. in L2. But also v = −u0 in Wm,2 by weak convergence
since integration of v against the derivatives ∂αφ (0 ≤ |α| ≤ m) of test functions is
a bounded linear functional on Wm,2. Consequently, there exists c′ > 0 such that the
inequality 1

4c‖u+ v‖
2
m ≤ |A[u+ v]| + (CCU/c

′)‖u+ v‖20 follows from (2.4) in the case
of (2.5). By both cases then,

• The coerciveness condition (1.7) is equivalent to Aronszajn’s condition (1.6).

5. Let B[x, y] be a bounded Hermitian bilinear form on a Hilbert spaceH with norm ‖ ‖.
Let V ⊂ H be a closed subspace with orthogonal complement V ⊥. Suppose |B[x, x]| ≥
c‖x‖2, with some c > 0, for all x ∈ V . Each y ∈ V ⊥ yields a bounded linear functional
B[x, y] on x ∈ V . Applying Lax–Milgram to the Hilbert space V there is a unique
v = vy ∈ V such that B[x, y] = B[x, v] for all x ∈ V . Put w = wy = y − vy ; the set W
of all such w from all y ∈ V ⊥ is, by the boundedness of the linear projection operators, a
closed subspace of H with the additional properties that H = V ⊕W is the direct sum,
and B[x,w] = 0 for each w ∈ W and for all x ∈ V .

6. Let ς denote a smooth vector field of Rn that is transverse to the boundary of a
bounded Lipschitz domain � with outer unit normal vector ν, i.e. ς · ν ≥ c� > 0
a.e.(ds). The existence of such vector fields is equivalent to the existence of smooth
approximating domains [Neč62]. By compactness of ∂� and by classical ODE theory
there is then a unique smooth flow Y (X; t) ∈ Rn, defined for all X in a neighbor-
hood of ∂� and all t in an open interval containing the origin, that solves the system
d
dt
Y (X; t) = ς(Y (X; t)), Y (X; 0) = X. By uniqueness for the initial value problem the

map X 7→ Y (X; t) is a diffeomorphism for each t . Define ∂�t = {Y (X; t) : X ∈ ∂�}.
For all |t | small enough these will be the boundaries of Lipschitz domains �t with equiv-
alent Lipschitz characters, ς · ν ≥ c�/2. Fix one such domain �t1 ⊂ �, t1 < 0,
and consider the annular region A = � \ �t1 . Local patches of A can be defined by
Aω,ψ = {Y (X

′, 0; t) : t1 + ψ(X′) < t < ψ(X′) and Y (X′, 0;ψ(X′) ∈ ∂�} where
X = (X′, Xn) is a rotation and translation of the rectangular coordinate system of Rn and
where ω ⊂ Rn−1 is open. The map (X′, t) 7→ Y (X′, 0; t) onto Aω,ψ is also a diffeo-
morphism. The Jacobian of this transformation, det[∇ ′Y ∂tY ], when evaluated at points
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(X′, t + ψ(X′)), t1 < t < 0, can also be written

det
(
[∇
′Y ∂tY ]

[
I 0
∇
′ψ 1

])
= det[∇X′Y ∂tY ]

by the chain rule. Thus the area of a patch is calculated to be
∫
Aω,ψ

dY =∫ 0
t1
dt
∫
ω
|det[∇X′Y ς]| dX′. For each t the boundary ∂�t is locally parameterized by

X′ 7→ Y (X′, 0; t + ψ(X′)). Consequently, the surface area Jacobian for X′ → ∂�t is
a.e.(ds) equal to |det[∇X′Y ν]| where ν is the unit normal vector to ∂�t . Because ς and
ς · ν ν differ by a vector tangent to ∂�t ,∫

Aω,ψ

dY =

∫ 0

t1

dt

∫
ω

ς · ν |det[∇X′Y ν]| dX′ =
∫ 0

t1

dt

∫
∂�t∩Aω,ψ

ς · ν dst .

7. Most of the proof [Aro61, pp. 37–39] of Aronszajn’s theorem, as stated for Sobolev
spaces in Theorem 1.4 above, will be given. The proof is based on Hausdorff’s convexity
of range theorem for general quadratic forms B. A quadratic norm on a vector space is
the square root of a quadratic form that takes only positive (> 0) values for all nonzero
vectors.

Theorem 2.1 (Hausdorff [Hau19]). Let B be a quadratic form on a vector space V with
quadratic norm ‖ ‖. Then the range of B[v]/‖v‖2 over V \ {0} is a convex subset of the
complex plane.

The proof reduces immediately to the case of a two-dimensional vector space V and can
be found on pp. 37–38 of [Aro61].

To prove Theorem 1.4, if A[v] is coercive over Wm,2(�), then there are a con-
stant c > 0 and a subspace V of finite codimension such that |A[v]|/‖v‖2 ≥ c for all
v ∈ V \ {0}. The convex range of A[v]/‖v‖2 is disjoint from the interior of the disc of
radius c centered at the origin. Therefore there is a separating line which can be taken as a
tangent line to the disc. There is then an angle so that Re(eiθA[v]) ≥ c‖v‖2m for all v ∈ V .
Since A[v] is also bounded, there is an interval of angles. Again letting U be the orthog-
onal complement of V and uniquely writing each element of Wm,2 as u + v, define the
quadratic formK[u+ v] = −Re(eiθA[u, v])−Re(eiθA[v, u])−Re(eiθA[u])+ c‖u‖2m.
(See Subsection 2 above.) By orthogonality c‖u + v‖2m ≤ Re(eiθA[v]) + c‖u‖2m =
Re(eiθA[u + v]) + K[u + v]. Since K vanishes identically on V , Aronszajn’s Theo-
rem 1.4 is proved.

8. The contrapositive lemma follows:

Lemma 2.2. Let V be a closed subspace of Wm,2(�) and A a Hermitian symmetric
quadratic form. The coerciveness estimate

A[v] + c0

∫
�

|v|2 dX ≥ c‖v‖2m for all v ∈ V (2.6)

does not hold for any c0 and c > 0 if and only if there exists a sequence {vj }∞j=1 of nonzero
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elements of V such that

A[vj ] + j

∫
�

|vj |
2 dX ≤

1
j
‖vj‖

2
m, j = 1, 2, . . . . (2.7)

Proof. Necessity follows directly.
For sufficiency, if both inequalities (2.6) and (2.7) hold, then for all 1/j < c,

A[vj ] + j

∫
�

|vj |
2 dX ≤ A[vj ] + c0

∫
�

|vj |
2 dX,

so that j ≤ c0, a contradiction. ut

For sufficiency it does not work to replace (2.7) with A[vj ]+ c1
∫
�
|vj |

2 dX ≤ j−1
‖vj‖

2
m

for some constant c1. This is because it is possible, for a given c1, that there is a nonzero
v such that A[v] + c1

∫
�
|v|2 dX ≤ 0.

3. Operator symbols and formally positive forms for Lγ

3.1. Algebraic properties of the operator symbols

The Fourier symbols for the operators Lγ , after a slight change of variables (the inverse
of (3.2) below), are certain real homogeneous polynomials

pγ (u, v,w, x, y, z)

= (u2
+v2
+vw)2+ (w2

−γ (x2
+y2
+z2))2+ (wx−yz)2+ (wy−zx)2+ (wz−xy)2,

(3.1)

0 < γ < 1/3, constructed in [Ver10, p. 244]. Write any of these as p =
∑5
j=1 q

2
j .

As a sum of squares of the real polynomials qj , the positive definiteness of a p can be
deduced by showing that there are no roots in R6

\ {0} for the system of equations

q1 = 0, q2 = 0, q3 = 0, q4 = 0, q5 = 0.

The only roots for this system are the scalar multiples of the roots (1,±i, 0, 0, 0, 0). Fur-
ther, the existence of these nontrivial complex roots to the system is an integral part of the
construction (3.1) and acquires significance because of another objective of the construc-
tion. The representation of the polynomials (3.1) as sums of squares is essentially unique.
The idea of unique representation is taken from [CLR95] and is also explained in [Ver10],
[Ver12]. Uniqueness of representation is proved for the polynomials (3.1) in [Ver10, The-
orem 4.1]. It can be accurately expressed here by saying that if p =

∑
r2
k is any other

sum of squares representation for p, then the rk are necessarily linear combinations of
the qj . Thus the system r1 = 0, r2 = 0, . . . must also have the roots (1,±i, 0, 0, 0, 0).

These algebraic properties of the polynomials (3.1) also hold for any polynomial of
the form q =

∑5
j=1 cjq

2
j where cj > 0 (j = 1, . . . , 5). For if q =

∑
r2
k with some rk not
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a linear combination of the qj , then by defining c∗ = max{cj }, any polynomial of (3.1),

p =

5∑
j=1

(
1−

cj

c∗

)
q2
j +

1
c∗

∑
r2
k ,

would also have such a sum of squares representation. This contradiction together with
the change of variables in (3.1)

u→ 1
4u, v→ 1

4v −
1
2w, w→ w (3.2)

proves that the symbols for the operators Lγ have the same algebraic properties as just
described for the polynomials (3.1) (see [Ver10, Corollary 1.5 and Theorem 3.1]).

3.2. Noncoerciveness of the formally positive forms

The sum of squares representation (1.2) for an operator Lγ directly yields the associated
formally positive quadratic form

G[v] =
∑

|α|=|β|=2

∫
�

gαβ∂
αv∂βv dX

=

∫
�

(∣∣∣∣(∂2
1 + ∂

2
2

4
− ∂2

3

)
v

∣∣∣∣2 + |∂2
3v − γ (∂

2
4 + ∂

2
5 + ∂

2
6 )v|

2

+ |(∂3∂4 − ∂5∂6)v|
2
+ |(∂3∂5 − ∂6∂4)v|

2
+ |(∂3∂6 − ∂4∂5)v|

2
)
dX, (3.3)

where each coefficient gαβ is uniquely determined as the sum of the coefficients of the
corresponding terms ∂αv∂βv that result from expanding each of the five squares. The
form (3.3) is a real symmetric quadratic form and the gαβ are the entries of a symmetric
21×21 positive semidefinite matrix. Conversely, any real symmetric quadratic form with
coefficients that make a positive semidefinite matrix is a formally positive quadratic form.
Positive semidefinite matrices that represent the sums of squares of real polynomials are
known as Gram matrices [CLR95].

The assertion that Lγ has a unique sum of squares representation (uniqueness of the
sos representation (3.1), (1.2)) has a well defined meaning in terms of associated real
symmetric quadratic forms. It means that the formG[v] of (3.3) is the only associated real
symmetric quadratic form for Lγ that has coefficients that make a positive semidefinite
matrix. All other associated real symmetric quadratic forms are algebraically indefinite
and not formally positive (see [Ver12]).

Now the algebraic system of equations q1 = 0, . . . , q5 = 0 that corresponds to
each Lγ , from its sum of squares representation (1.2), has roots in C6

\ {0}. It follows
by Aronszajn’s algebraic characterization of coercive formally positive forms (Theorem
1.6) that the only formally positive real symmetric form for an Lγ , viz. G[v], must be
noncoercive in any bounded open set. By the reduction to real forms in the introduction
or by arguments in [Ver12],
• There are no coercive formally positive Hermitian quadratic forms (1.3) for the oper-

ators Lγ in any domain.
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It is possible, however, for an algebraically indefinite form to be coercive over
Wm,2(�). For example, Agmon [Agm61] shows this to be true for certain forms asso-
ciated to the bi-Laplacian. Using Agmon’s characterization of general coercive forms
[Agm58], it is shown in [Ver12] that certain algebraically indefinite forms associated to
the Lγ are coercive over W 2,2, as long as the domains � have C2 boundaries.

Remark 3.1. The polynomial w4
+ x2y2

+ y2z2
+ z2x2

− 4wxyz was discovered by
Choi and Lam [CL77], and is an example of a Motzkin type positive semidefinite poly-
nomial that cannot be written as a sum of squares. The polynomials pγ were constructed
in [Ver10] by continuously perturbing Choi and Lam’s polynomial into the cone of pos-
itive definite polynomials until a sum of squares was produced. This yielded the elliptic
operators L̂γ in (6.2) below. By adding the first square in (3.1), both the uniqueness and
the noncoerciveness of the formally positive form G was achieved.

4. Null forms and a basic argument

4.1. Null forms

Given an Lγ and its associated formally positive form G[v], any other homogeneous
real symmetric constant coefficient quadratic formA[v] =

∑
|α|=|β|=2

∫
�
aαβ∂

αv∂βv dX

associated to Lγ must differ from G by a null quadratic form

N [v] =
∑

|α|=|β|=2

∫
�

nαβ∂
αv∂βv dX, (4.1)

also with real symmetric coefficients and satisfying
∑
|α|=|β|=2 nαβ∂

α+β
= 0.

Define
Re
∫
�

(∂αv∂βv − ∂α
′

v∂β
′

v) dX (4.2)

to be an elementary null form whenever α + β = α′ + β ′ and |α| = |β| = |α′| = |β ′|.
In R6 for fourth order homogeneous operators, a basis for all null quadratic forms can be
formed by a collection of 105 elementary null forms [Ver10, p. 240].

4.2. A basic argument

The noncoerciveness ofG[v] established above can be seen directly, without Aronszajn’s
characterization, by observing that G[v] vanishes whenever v(X) = h(X1, X2) for any
harmonic function of two variables that defines v inW 2,2(�). Since these functions form
an infinite-dimensional subspace, coerciveness of G over W 2,2(�),

G[v] + c0

∫
�

|v|2 dX ≥ c|v|22, c > 0,

contradicts the Rellich compactness theorem by the following lemma (see, for example,
[Agm65, Lemma 11.6]).

Lemma 4.1. Let� be a bounded domain in which Rellich’s compactness theorem holds.
Suppose A[v] is coercive over Wm,2(�) while A[v] ≤ 0 for all v in a subspace V ⊂
Wm,2(�). Then V is finite-dimensional.
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Proof. Suppose V is not finite-dimensional. Being a subspace of L2(�), V contains an
infinite sequence of orthonormal functions. By the coerciveness estimate (1.23), the in-
equality A[v] ≤ 0 and Rellich compactness there is then a subsequence {vj } that con-
verges in L2. Now ‖vj+1 − vj‖0 → 0 contradicts orthonormality. ut

Consequently, any null quadratic form N for which A[v] = G[v] + N [v] might be coer-
cive, is necessarily a positive multiple of the elementary null form

N0[v] =
1
2

Re
∫
�

(|∂1∂2v|
2
− ∂2

1v∂
2
2v) dX (4.3)

plus some linear combination of the remaining 104 basis null forms. This follows be-
cause N0 is positive on all but a finite-dimensional subspace of the space of harmonic
functions h(X1, X2). But all other elementary null forms vanish on every harmonic func-
tion h(X1, X2). Therefore we have the following approach to proving Theorem 1.5.

• To prove the noncoerciveness for the forms A of Theorem 1.5, it suffices to show that
whenever a choice of b > 0 and a choice of null form N is given, there is an infinite-
dimensional subspace on which G[v] + bN0[v] +N [v] ≤ 0.

5. Change of notation

In the remainder of this article, R6 will be thought of as C × R × R3. The operators Lγ
are written

Lγ = (∂∂−∂
2
t )

2
+(∂2

t −γ4)
2
+(∂t∂1−∂2∂3)

2
+(∂t∂2−∂3∂1)

2
+(∂t∂3−∂1∂2)

2, (5.1)

0 < γ < 1/3. We write z ∈ C, z = x+ iy for (x, y) ∈ R2, ∂ = 1
2 (∂/∂x− i∂/∂y), t ∈ R,

∂t = ∂/∂t , s = (s1, s2, s3) ∈ R3, ∂j = ∂/∂sj (j = 1, 2, 3), and 4 = ∂2
1 + ∂

2
2 + ∂

2
3 .

In this notation the elementary null form N0 (4.3) is

N0[v] =

∫
�

(|∂2v|2 + |∂
2
v|2 − 2|∂∂v|2). (5.2)

For economy of notation we will also write ∂tv = vt , ∂kv = vk , ∂t∂jv = vtj , etc. By
∇v is meant the gradient in s, (v1, v2, v3), so that ∂∇v = (∂v1, ∂v2, ∂v3) and |∂∇v|2 =
|∂v1|

2
+ |∂v2|

2
+ |∂v3|

2, etc. Polar coordinates z = reiθ in C, and s = ρσ , ρ = |s|,
σ ∈ S2 in R3 will also be used.

6. Two over-determined systems and their solution spaces

6.1. The elliptic noncoercive over-determined system and its solution space X

The algebraic system of equations q1 = 0, . . . , q5 = 0 that corresponds to each Lγ from
Section 3 are symbol equations for an elliptic second order over-determined system (o-ds)

∂∂v − vt t = vt t − γ4v = vt1 − v23 = vt2 − v31 = vt3 − v12 = 0. (6.1)
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Ellipticity here is the same as the ellipticity of the sum of squares operators Lγ (see
[Agm65, Definition 6.3]).

Define X ⊂ W 2,2(�) to be the linear space of weak solutions to the o-ds (6.1) in �.
The solution space X is the subspace on which the formally positive quadratic form G[v]

vanishes identically. As mentioned in Section 4, X is infinite-dimensional. It is also self-
adjoint, i.e. v ∈ X if and only if v ∈ X.

Because the elliptic o-ds is homogeneous and constant coefficient, interior regularity
theory shows that each weak solution v ∈ X is infinitely differentiable when redefined on
a set of measure zero (see [Agm65, Theorem 6.6]).

6.2. The reduced over-determined system

By omitting the first equation from the elliptic o-ds (6.1) one obtains a reduced elliptic
o-ds in R4. It corresponds to the elliptic fourth order operator

L̂γ = (∂
2
t − γ4)

2
+ (∂t∂1 − ∂2∂3)

2
+ (∂t∂2 − ∂3∂1)

2
+ (∂t∂3 − ∂1∂2)

2, (6.2)

which like Lγ has a unique sum of squares representation and therefore a unique formally
positive quadratic form [Ver10, Theorem 3.1]. This form is coercive and the reduced o-ds
can therefore be thought of as coercive.

The following proposition is proved by applying Hilbert’s Nullstellensatz for a differ-
ent end but in a way almost identical to part of the proof of Smith’s theorem extending
Aronszajn’s algebraic characterization of coercive formally positive forms to bounded
Lipschitz domains (see [Agm65, p. 161]).

Proposition 6.1. There is a positive integer d such that for every infinitely differentiable
function v(t, s) that solves the reduced o-ds vt t − γ4v = vt1 − v23 = vt2 − v31 =

vt3 − v12 = 0 in any open set of R4 it follows that v is a polynomial of degree no more
than d .

Proof. Because the operator symbols q2, q3, q4, q5 from (3.1) share no common nonzero
complex root, Hilbert’s Nullstellensatz implies there are polynomials Qα,j such that
∂α =

∑5
j=2Qα,j (∂)qj (∂) for every multi-index α with order greater than some num-

ber depending only on the qj . An application of Taylor’s theorem yields the result. ut

In fact d = 4 and the solution space X̂ of the reduced system has a basis of 16 real ho-
mogeneous polynomials. The basis elements can be taken to be derivatives of the unique
homogeneous fourth degree element

P(t, s) =
3γ
4!
t4+

1
22 |s|

2t2+ s1s2s3t+
1
22 (s

2
1s

2
2 + s

2
2s

2
3 + s

2
3s

2
1)+

γ−1
− 2

4!
(s4

1 + s
4
2 + s

4
3).

(6.3)
These assertions can be verified as follows.

By inspection the set

B = {P, Pt , P1, P2, P3, Pt1, Pt2, Pt3, P11, P22, P33, t, s1, s2, s3, 1} (6.4)

is linearly independent (the four remaining second order derivatives are in the span of B
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since P is a solution to the o-ds). That B spans X̂ is a consequence of the uniqueness
of P , which will be deduced in three steps.

Re-index the polynomials from (6.2) and (3.1),

q0(t, s) = t
2
−γ |s|2, q1(t, s) = ts1−s2s3, q2(t, s) = ts2−s3s1, q3(t, s) = ts3−s1s2.

Let C[x] denote the polynomial ring over C in x = (x1, x2, . . .) and let C[x]d denote the
vector space over C of polynomials homogeneous of degree d in x.

First, the set C3 = {tq0, sjq0, tqj , sjqk : 1 ≤ j, k ≤ 3} of 16 polynomials is linearly
independent in C[t, s]3. This is because no dependence relation can nontrivially contain
tq0 as it is the only polynomial with t3; likewise s3

j is exclusive to sjq0 which thus being
eliminated from any dependence relation leaves t2sj exclusively to tqj which are therefore
also eliminated. For the remaining nine elements of C3, s2

j is exclusive to sjqj , which are
therefore eliminated. The remaining six elements of C3 each contain and are in one-to-one
correspondence with s2

j sk (j 6= k), and are eliminated.
Second, there is the dual relation, q(∂t , ∂)q(t, s) > 0, for every nonzero homoge-

neous polynomial q ∈ C[t, s] (see [SW71, p. 139] for example). Let q be any linear
combination of the polynomials from C3 and let P ′ be any linear combination of the third
degree polynomials from B. Since q(∂t , ∂)P ′(t, s) = 0, it follows that q + P ′ = 0 will
imply 0 = (q(∂t , ∂) + P ′(∂t , ∂))P ′(t, s) = P ′(∂t , ∂)P ′(t, s), whence P ′ = 0. Because
C[t, s]3 has dimension 20 it then follows that C3 ∪ {Pt , P1, P2, P3} is a basis for C[t, s]3.
It also follows from the dual relation that no nontrivial q in the span of C3 can be in
the solution space X̂. Consequently, it has been shown that all homogeneous solutions of
degree 3 to the reduced o-ds are in span{Pt , P1, P2, P3}, as asserted.

Third, suppose there is a homogeneous fourth degree solution that is not a multi-
ple of P . Then there is a linear combination of the two solutions, Q, such that Qt =∑3
j=1 ajPj , whence Q =

∑3
j=1 aj

∫
Pjdt + r(s) where r is homogeneous of degree 4.

Applying the operators ∂kqk(∂t , ∂), k = 1, 2, 3, and noting that ∂1∂2∂3Pj = 0 it follows
that

0 = a1(γ
−1
− 2)s1 + a2s2 + a3s3 − r123 = a1s1 + a2(γ

−1
− 2)s2 + a3s3 − r123

= a1s1 + a2s2 + a3(γ
−1
− 2)s3 − r123.

Since γ 6= 1/3 it follows that a1 = a2 = a3 = 0 and Q is a polynomial in s only. One
observes that the ideal 〈4, ∂2∂3, ∂3∂1, ∂1∂2〉 ⊂ C[∂] contains C[∂]3. Consequently, the
vanishing of Q(s) under each of ∂jq0(∂t , ∂), ∂jqk(∂t , ∂), 1 ≤ j, k ≤ 3, implies Q = 0.
Thus P is unique.

Finally, any homogeneous fifth degree solution R must then have each of its first
order derivatives equal to a multiple of P . If R is not identically zero, this can only occur
if R is a nonzero multiple of the monomial x5 with x evaluated at a linear combination
b0t + b1s1+ b2s2+ b3s3 so that P would similarly be a multiple of x4, which is not true.

6.3. Algebraic structure of the solutions in X

Let � ⊂ R6 be a bounded convex domain and let v ∈ X ⊂ W 2,2(�). Fix z = x + iy so
that the set {(z, t, s) : (t, s) ∈ R4

} has nonempty intersection with �. Then for z fixed,
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v(z, t, s) is the restriction of a polynomial from X̂ with complex coefficients. Therefore

v(z, t, s) =
∑
j

fj (z)pj (t, s) (6.5)

where, by the previous section, the pj can be taken to form a basis of real homogeneous
polynomials for X̂, and the coefficients fj (z) are in C. Since v ∈ C∞(�), the fj are also
infinitely differentiable in z. Apply the operator ∂∂ − ∂2

t to (6.5), obtaining

0 =
∑
j

∂∂fjpj −
∑
j

fj∂
2
t pj . (6.6)

The second sum contains only polynomials from X̂ of at most degree 2. By linear inde-
pendence,

• The coefficient in v of each pj that is of degree 4 or 3 must satisfy ∂∂fj = 0.

Using this and applying ∂∂ to (6.6) yields the second sum now over only the constant
polynomial. Therefore by the first sum,

• (∂∂)2fj = 0 for each pj of degree 2 or 1.

Finally,

• (∂∂)3fj = 0 if fj is the coefficient of the constant polynomial in v.

6.4. Elementary solutions of X

These are based on a general polynomial (not necessarily homogeneous) Q ∈ X̂ and a
given complex valued harmonic function h(z). They are in W 2,2(�) by definition, and
take the form (6.5) as

v = E(h,Q) := hQ+ G(h)Qt t + G(G(h))Qt t t t (6.7)

where G(f ) denotes any function of z satisfying ∂∂G(f ) = f (as long as v ∈ W 2,2(�)).

Remark 6.2. Any v ∈ X can be written as a linear combination of functions (6.7),
E(hj , pj ), 1 ≤ j ≤ 16, where the pj are the homogeneous basis polynomials for X̂
from (6.5). To see this let v be as in (6.5) and let d be the highest degree of any pj with
nonzero coefficient fj (z). Then by the same arguments as those following (6.5) the co-
efficients of basis elements of degrees d and d − 1 are harmonic, while those of basis
elements of degrees d − 2 and d − 3 are biharmonic, etc. For each Q = pj of degree d
in (6.5) subtract from v the corresponding solution (6.7) with h = hj = fj . The result is
still a solution but with new fj ’s and with highest degree now at most d − 1 so that the
coefficients of basis elements of degrees d − 1 and d − 2 are now harmonic, etc. With
a few iterations this decomposes v into a linear combination of solutions E(hj , pj ), as
asserted.

However, even though v ∈ W 2,2(�) and even though eachE(hj , pj ) satisfies the o-ds
(6.1), it does not follow that the E(hj , pj ) are in W 2,2(�). This loss of integrability can
be seen in the following example.
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Example 6.3. Take p1 = s1 + t and p2 = s1 − t for basis elements. Now consider the
convex domain in R6 defined by

� = {(z, t, s) : |z| < t < 1− |s|}

and let v = 2f (z)s1 = E(f, p1) + E(f, p2) for a holomorphic function f in the disc
D = {z : |z| < 1}. Denote Lebesgue measure in the disc by dm = dm(z). Then∫

�

|∂2v|2 = 4
∫
D
|f ′′|2 dm

∫
|s|<1−|z|

s2
1 ds

∫ 1−|s|

|z|

dt =
8π
45

∫
D
|f ′′|2(1− |z|)6 dm,

while∫
�

|∂2E(f, pj )|
2
=

∫
�

|f ′′|2(s2
1 + t

2)

≥

∫
D
|f ′′|2 dm

∫ 1

|z|

t2 dt

∫
|s|<1−t

ds =
π

45

∫
D
|f ′′|2(1− |z|)4(1+ 4|z| + 10|z|2) dm,

j = 1, 2. Then for example, if f = 1/(1− z) the first integration converges while the sec-
ond does not; computing the norms of the remaining derivatives shows that 2s1/(1− z)
∈ W 2,2(�).

7. The basic argument

For a bounded convex domain � the unique formally positive form G[v] (3.3) vanishes
identically on the o-ds solution space X. Therefore by the basic argument of Section 4
and normalizing b = 1,

• To prove Theorem 1.5, it suffices to show that whenever a choice of null form N is
given, there is an infinite-dimensional subspace of X on which N0[v] +N [v] ≤ 0.

Here N0 is the null form of (5.2) and (4.3) that has been shown to be necessary for
coerciveness because it and only it is positive on the harmonic solutions.

8. The convex domains �M,T and solution spaces XM,T

8.1. The domains

Parameters M > 0 and T > 0 will be called Lipschitz constants. Define

� = �M,T = {(z, t, s) : T |s| < t < (1− |z|)/M}. (8.1)

In the polar coordinates for C and R3,

� = {(reiθ , t, ρσ ) : Tρ < t < (1− r)/M}.
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Let 0 < φ < 1, z = (1− φ)z1 + φz2, t = (1− φ)t1 + φt2 and s = (1− φ)s1 + φs2.
Then

T |s| ≤ T (1− φ)|s1| + T φ|s2| < t = (1− φ)t1 + φt2 < (1− φ)
1− |z1|

M
+ φ

1− |z2|

M

=
1− (1− φ)|z1| − φ|z2|

M
≤

1− |z|
M

.

Therefore � is bounded and convex.
The outer unit normal vector does not vary continuously on the boundary of �, hence

∂� /∈ C1.

8.2. Invariance of the solution spaces X = XM,T under transformations

Let XM,T denote the solution space X of the o-ds (6.1) in the domain �M,T .
By the structure of the solutions (6.5), reflection and rotation invariance of the Lapla-

cian ∂∂ and the property of �M,T that each nonempty Dt,s = {z : (z, t, s) ∈ �M,T } is a
disc (of radius 1−Mt) centered at the origin, it follows that

• XM,T is invariant under unitary transformations of C.

That is, v(z, t, s) ∈ XM,T if and only if v(z, t, s) and v(eiφz, t, s), for each 0 ≤ φ ≤ 2π ,
are also solutions.

Though the reduced solution space X̂ is not invariant under unitary transformations
of R3,

• X̂ is invariant under permutations of {s1, s2, s3}, as also is XM,T .

This can be seen by inspecting the polynomial basis B (6.4).

8.3. Elementary solutions in XM,T

Let f (z) be a holomorphic function in the unit disc D. Denote by f−1, f−2 holomorphic
primitives of f in D, i.e. f ′′

−2 = f
′

−1 = f . For Q ∈ X̂, � = �M,T and fQ ∈ W 2,2(�)

define elementary solutions (6.7) by

E(f,Q) = fQ+ zf−1Qt t +
1
2z

2f−2Qt t t t (8.2)

together with their complex conjugates.
Below we will make use of sequences of elementary solutions (8.2) defined by

vn = E(z
n,Q) = zn

(
Q+ (n+ 1)−1

|z|2Qt t +
1
2 (n+ 1)−1(n+ 2)−1

|z|4Qt t t t

)
,

n = 1, 2, . . . , where the Q ∈ X̂ are

(a) nonzero, (b) allowed to depend on n. (8.3)

We observe that

∂E(zn,Q) = nE(zn−1,Q) and ∂E(zn,Q) = (n+ 1)−1E(zn+1,Qt t ).
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9. Narrowing the space of null forms I

In this section the following argument will be successively applied. Given a null form N

(4.1) that is assumed to be coercive over X = XM,T there is a null form N ′, also coercive
over X, that has a simpler structure than N , e.g. is a linear combination of fewer elemen-
tary null forms (4.2), or exhibits more symmetry. This argument results in a reduced space
of null forms that must contain a coercive null form whenever some null form has been
hypothesized to be coercive. In subsequent sections it will be shown that no null form in
this reduced space can be coercive over X.

We denote ∂t = ∂0 and again use the derivatives ∂x and ∂y . Subscripts j, k, l will
denote derivatives in t or s. An integrand

Re(∂αv∂βv − ∂α
′

v∂β
′

v)

of an elementary null form will also be called a null form.

9.1. Coerciveness preserving transformations of null forms

Both X and the Sobolev norm ‖v‖2 are invariant under unitary transformations in x and y.
If it is assumed that N [v] + c0

∫
�
|v|2 dX ≥ c|v|22 for some v ∈ X, then the same

inequality holds for all vφ ∈ X where vφ(z, t, s) = v(eiφz, t, s). Averaging over 0 ≤
φ ≤ 2π yields

1
2π

∫ 2π

0
N [vφ] dφ + c0

∫
�

|v|2 dX ≥ c|v|22

where the leftmost term is again a quadratic form in v that is coercive over X. After
changing variables eiφz → z and applying Fubini’s theorem this quadratic form is also
seen to be a null form.

Using the unitary transformation of reflection and averaging also preserves coercive-
ness on X:

1
2 (N [v] +N [̃v])+ c0

∫
�

|v|2 dX ≥ c|v|22

where ṽ(z, t, s) = v(z, t, s), and results in a null form.
For example, the elementary null form (5.2) is preserved by each of the above trans-

formations and averagings, (2π)−1 ∫ 2π
0 N0[v

φ
] dφ = 1

2 (N0[v] + N0 [̃v]) = N0[v]. In
general, however, null forms are transformed into new null forms by these averagings.
We will examine various cases of this. The cases are described by the types of derivatives
occurring in the multi-index α + β for an elementary null form (4.2).

For a function F of the complex variable z the following conventions will be used:

∂F = Fz, ∂F = Fz, F φ(z) = F(eiφz),

so that the chain rule is written

∂F (eiφz) = eiφFz(e
iφz), i.e. ∂F φ = eiφF φz ,
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and similarly
∂F φ = e−iφF

φ

z .

The chain rules for reflection are written

∂F (z) = Fz(z) and ∂F (z) = Fz(z).

9.2. Reducing null forms containing xy-derivatives

9.2.1. Elementary null forms containing only xy-derivatives. The only nonzero elemen-
tary null form containing only xy-derivatives is N0[v] of (4.3) and (5.2).

9.2.2. Exactly one or three xy-derivatives. Applying the null form Re(vxjvkl − vkjvxl)
to vφ , integrating and then changing variables yields

Re
∫
�

(
(∂ + ∂)v

φ
j v

φ
kl − v

φ
kj (∂ + ∂)v

φ
l

)
= Re

∫
�

(
(eiφv

φ
jz + e

−iφv
φ

jz)v
φ
kl − v

φ
kj (e

iφv
φ

lz + e
−iφv

φ
lz)
)

= Re
∫
�

(
eiφ(∂vjvkl − vkj∂vl)+ e

−iφ(∂vjvkl − vkj∂vl)
)
.

Averaging over 0 ≤ φ ≤ 2π transforms this type of form to the zero form.
The same steps produce the same conclusion for any elementary null form with three

xy-derivatives.

9.2.3. Exactly two xy-derivatives. There are three nonvanishing types of these repre-
sented by

(i) Re(vxxvjk − vxkvjx),
(ii) Re(vxyvjk − vxkvjy),

(iii) Re(vxkvjy − vxjvky), j 6= k.

Applying the first to vφ as above yields

Re
∫
�

(
(e2iφ∂2v + 2∂∂v + e−2iφ∂

2
v)vjk − (e

iφ∂vk + e
−iφ∂vk)(e

iφ∂vj + e
−iφ∂vj )

)
.

Averaging in φ transforms type (i) to

Re
∫
�

(2∂∂vvjk − ∂vk∂vj − ∂vk∂vj ). (9.1)

Similarly (ii) transforms to

Re
∫
�

(−i∂vk∂vj + i∂vk∂vj ), (9.2)

which is nonzero only when k 6= j .
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Form (iii) transforms to

Re
∫
�

(
i∂vk∂vj − i∂vk∂vj − i∂vj∂vk + i∂vj∂vk

)
= 2Re

∫
�

(i∂vk∂vj − i∂vk∂vj ),

i.e. (9.2) again.
Now applying form (9.2) to reflected solutions ṽ = v(z, t, s) and then changing vari-

ables yields

Re
∫
�

(−iṽkzṽjz + iṽkzṽjz) = Re
∫
�

(−i∂vk∂vj + i∂vk∂vj ).

Averaging with (9.2) it follows that all forms (ii) and (iii) transform to zero.

9.2.4. Two xy-derivatives with t-derivatives. From (9.1) follow two types, viz.

Re(2∂∂vvtk − ∂vk∂vt − ∂vk∂vt ), k = 1, 2, 3, (9.3)

and 2∂∂vvt t − |∂vt |2 − |∂vt |2 which on X is, by (6.1),

Nt [v] =

∫
�

(2|vt t |2 − |∂vt |2 − |∂vt |2). (9.4)

9.2.5. Two xy-derivatives with no t-derivatives. Again two types follow from (9.1): first,

Re(∂∂vvjk − ∂vk∂vj − ∂vk∂vj ), 1 ≤ j < k ≤ 3; (9.5)

second, Re(2∂∂vvjj − |∂vj |2 − |∂vj |2), j = 1, 2, 3. Since both XM,T and �M,T are in-
variant under permutations in s, this second form can be transformed by s permutations
in a manner that is similar to the way above that (9.2) was transformed to zero by trans-
posing x and y and averaging. Here, when j = 1, averaging with the two transpositions
(1, 2) and (1, 3) yields 2∂∂v4v − |∂∇v|2 − |∂∇v|2, which by the o-ds (6.1) becomes
(2/γ )|vt t |2 − |∂∇v|2 − |∂∇v|2. We use this to define

Ns[v] =

∫
�

(2|vt t |2 − γ |∂∇v|2 − γ |∂∇v|2). (9.6)

The same transformation is obtained for j = 2 and 3.

9.3. Reducing null forms with t-derivatives and no xy-derivatives

9.3.1. Two t-derivatives. We have

Re(vt tvjk − vtkvj t ), 1 ≤ j < k ≤ 3. (9.7)

The j = k cases transform by way of transpositions in s to γ−1
|vt t |

2
− |∇vt |

2 as with
(9.6). Define

Nts[v] =

∫
�

(|vt t |
2
− γ |∇vt |

2). (9.8)
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9.3.2. One t-derivative. For 1 ≤ j, k ≤ 3 we have

Re(vtjvkk − vtkvkj ), j 6= k. (9.9)

For forms like Re(vt1v23−vt3v21), transformation by transposing (1 and 3 here) as above
yields the zero null forms.

9.4. Reducing null forms containing only s-derivatives

For j, k, l distinct we have
Re(vjjvkl − vj lvkj ). (9.10)

The form Re(v11v22 − |v12|
2) can be transformed using transpositions (1, 3) to

Re((v11 + v33)v22 − |v12|
2
− |v32|

2) = Re(4vv22 − |∇v2|
2), which in turn transforms

by transpositions to |4v|2 − |∇∇v|2 where ∇∇v denotes the Hessian matrix for s-
differentiations. By (6.1) then, define

Nss[v] =

∫
�

(|vt t |
2
− γ 2
|∇∇v|2). (9.11)

9.5. A narrowed space of null forms

The computations of this section and the basic argument of Section 7 yield

Lemma 9.1. If a null form N is coercive over X = XM,T , then there exists a null form
N0+N

′, also coercive over X, where N ′, when restricted to X, is a linear combination of
null forms Nt , Ns , Nts and Nss together with elementary null forms that have integrands
(9.3), (9.5), (9.7), (9.9) and (9.10).

10. Narrowing the space of null forms II

10.1. Some orthogonal subspaces of XM,T

Recall the fourth degree polynomial P (6.3) and the basis B (6.4). Partition B as

T = {P, Pt , P11, P22, P33, t, 1},
S1 = {P1, Pt1, s1}, S2 = {P2, Pt2, s2}, S3 = {P3, Pt3, s3}.

Define the corresponding spans T̂, Ŝ1, Ŝ2 and Ŝ3 in X̂.
By inspection and using the o-ds (6.1), first derivatives map the spans as follows:

∂t : T̂→ T̂ and Ŝj → Ŝj , j = 1, 2, 3,

∂1 : T̂→ Ŝ1 → T̂ and Ŝ2 → Ŝ3 → Ŝ2,

∂2 : T̂→ Ŝ2 → T̂ and Ŝ3 → Ŝ1 → Ŝ3,

∂3 : T̂→ Ŝ3 → T̂ and Ŝ1 → Ŝ2 → Ŝ1.
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In particular, two polynomials from different spans are mapped by the same derivative,
of any order, to different spans.

Also by inspection each basis element of T is orthogonal in L2(S2, dσ ) to each ele-
ment of the Sj , as is each element of Sj to each of Sk , j 6= k.

Now define subspaces T, S1, S2, S3 of XM,T to be those solutions v in which only
polynomials from T̂, Ŝ1, . . . respectively appear in the representation (6.5). If v is taken
from one of these subspaces, derivatives, up to order two, in ∂ and ∂ of v remain, as
L2 functions, in that subspace. Also in this sense derivatives up to order two in t and s
map between the subspaces according to the way they mapped between the correspond-
ing spans above. Further, the L2(S2) orthogonality between spans induces an L2(�M,T )

orthogonality between subspaces since nonempty sets Bt,z = {s : (z, t, s) ∈ �M,T } are
balls (of radius t/T ) centered at the origin of R3.

By these observations, if v and w are taken from distinct subspaces, then the W 2,2

inner product (v,w)2 is zero. Indeed, each term of the inner product vanishes. Thus the
subspaces defined above are mutually orthogonal in XM,T .

10.2. Coercive null forms over X restricted to T, S1, S2, S3

Consider the null forms (9.3), (9.5), (9.7), (9.9) and (9.10) restricted to any one of the
subspaces defined here. By applying the mapping properties of derivatives between sub-
spaces and the L2 orthogonality between them it follows by inspection that each term in
each of the null forms vanishes upon integration. By Lemma 9.1 this establishes

Lemma 10.1. If any null form is coercive over X = XM,T , then there exists a null form
which, when restricted to X, is a linear combination of the null formsN0,Nt ,Ns ,Nts and
Nss only, and which is coercive over each of the subspaces T, S1, S2 and S3.

11. The basic argument

Because of Lemma 10.1 the basic argument can now be stated as follows:

• To prove Theorem 1.5, it suffices to show that for each null form on X,

N = N0 + εNt + δsNs + δtsNts + δssNss, (11.1)

where ε, δs , δts and δss are real numbers, and there is an infinite-dimensional subspace
XN contained in one of T, S1, S2 or S3 such that N [v] ≤ 0 for all v ∈ XN .

12. N = N0 does not suffice for coerciveness

Let Q(t, s) = 1
2 t

2
+

1
6γ |s|

2
+ X1t + X0 ∈ T̂ and consider elementary solutions (8.2),

v = E(f,Q) ∈ T ⊂ X = XM,T , where f is holomorphic and X0, X1 are real numbers
that will be chosen depending on f , as stated in (8.3). Then

∂2v = f ′′Q+ zf ′, ∂
2
v = 0, ∂∂v = f
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and therefore we want to show that

N0[v] =

∫
�

(|f ′′Q+ zf ′|2 − 2|f |2) ≤ 0 (12.1)

over an infinite-dimensional subspace of such solutions. When f =zn and vn=E(zn,Q)
as in (8.3), one obtains

∂2vn = z
n−2(n(n− 1)Q+ n|z|2), n = 2, 3, . . . ,

so that by orthogonality over D,

N0[c1vn + c2vm] = |c1|
2N0[vn] + |c2|

2N0[vm], n 6= m. (12.2)

Consequently, showing N0[vn] ≤ 0 for an increasing infinite sequence of n yields an
infinite-dimensional subspace and establishes the noncoerciveness of N0 over X.

This orthogonality works more generally by definition of the domains �M,T , defini-
tion of the null forms (11.1) and the differentiability properties of the elementary solutions
(8.3), as can be seen by inspection. We state it as a lemma.

Lemma 12.1. Let N be any null form (11.1), and let � be any of the convex domains
(8.1). Suppose N [vn] ≤ 0 on � for an increasing subsequence of elementary solutions
vn = E(z

n,Q) of (8.3). Then N [v] ≤ 0 on an infinite-dimensional subspace of X.

One then wants to minimize each N0[vn] over the real coefficients X0, X1 in hope of
obtaining a sequence of inequalities (12.1). This is the straightforward task of minimizing
quadratic polynomials, here in the variablesX = (X0, X1), with coefficients derived from
definite integrations over �. That this results in the inequality (12.1) will be proved. Why
one might hypothesize this to result in the inequality (12.1) can be partially explained.

Definition 12.2. Let F(z, t, s) be a function defined on� = �M,T . Let C(M, T ) denote
the quantity 3M4T 3/(2π2). Define the integral∫
M,T

F

(
z,

1− |z|
M

t,
1− |z|
MT

ts

)
:= C(M, T )

∫
�

F(z, t, s)

= C(M, T )

∫
D
dm(z)

∫ (1−|z|)/M

0
dt

∫
|s|<t/T

F(z, t, s) ds.

By scalings s → t
T
s, then t → 1−|z|

M
t and Fubini,∫

M,T

F

(
z,

1− |z|
M

t,
1− |z|
MT

ts

)
=

3
4π

∫
|s|<1

ds 4
∫ 1

0
t3 dt

1
2π

∫ 2π

0
dθ

∫ 1

0
F

(
reiθ ,

1− r
M

t,
1− r
MT

ts

)
(1− r)4r dr.

(12.3)



2196 Gregory C. Verchota

Integration over � is seen as integration over D of a scaled integrand against four powers
of the distance to the boundary function 1 − |z| = 1 − r , with the angular integration
averaged over 0 ≤ θ ≤ 2π , and then averaged over the unit interval, with respect to the
measure t3dt , and over the unit ball in R3.

Formulating the desired inequality (12.1) this way gives∫
M,T

∣∣∣∣f ′′ (1− |z|)2M2
1
2
t2
(

1+
|s|2

3γ T 2

)
+X1f

′′
1− |z|
M

t +X0f
′′
+ zf ′

∣∣∣∣2
−

1
π

∫
D
|f |2(1− |z|)4 dm(z) ≤ 0. (12.4)

When f = zn the negative term is precisely

−2
∫ 1

0
r2n+1(1− r)4 dr = −2B(2n+ 2, 5)

where B is the beta function [Rud76, p. 193]. The first integral yields a linear combination
of beta functions. In general B(2n+ k, h) = O(n−h) as n→∞ so the first integral may
not be allowed to decay slower than O(n−5) if the inequality (12.1) and (12.4) is to hold
for a sequence of n.

Classical interior estimates for holomorphic or harmonic functions yield the principle
that each power of the distance to the boundary function removes a derivative from f .
Consequently, in the first integral the first term of the sum being squared can be thought of
as fM−2 which when squared integrates just as the negative integral, i.e. asO(n−5)when
f = zn, but with a small coefficient forM sufficiently large. It can be discounted if the re-
maining terms also integrate asO(n−5)with small enough coefficients. The integral of the
square of the fourth term is precisely (2π)−1 ∫

D |f
′
|
2
|z|2(1−|z|)4dm = n2B(2n+2, 5) =

O(n−3)when f = zn and is therefore an obstacle to the desired inequality. In this case the
third and fourth terms together can be writtenX0f

′′
+zf ′ = n(|z|2−1)zn−2 by choosing

X0 =
−1
n−1 . In principle this is again like f , the distance to the boundary effectively can-

celing the n. Its square integral is n2(B(2n−2, 7)+2B(2n−1, 7)+B(2n, 7)) = O(n−5),
with a larger coefficient than the 2B(2n+ 2, 5). Hence, consider also X1 = X11

M
n−1 with

X11 = O(1) to be determined. Now the second term also behaves like zn. A quadratic
minimization yields

min
X11

∫
M,T

∣∣X11nz
n−2(1− |z|)t + nzn−2(|z|2 − 1)

∣∣2 − 1
π

∫
D
|z|2n(1− |z|)4 dm

= −
3

5n5 +O(n
−6). (12.5)

The minimum is achieved at X11 =
6
5

4n+3
2n+5 . Setting X11 = 12/5 yields the same asymp-

totic expression.
With f = zn and with these choices forX, the general inequality (a+b)2 ≤ (1+c2)a2

+ (1+ c−2)b2 proves that (12.4) is true for allM and n large enough. A better result than
(12.5), − 3

4n5 + O(n
−6), is obtained by setting X0 =

−1
n−1 + X02

1
n(n−1) and minimizing

over X02 and X11. The values X02 = 1 and X11 = 2 in place of the minimizers also
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suffice. The best result is by minimizing (12.4) directly. A method for computing these
asymptotic results is discussed in the following section.

Remark 12.3. A more precise computation (16.6) will show that N0 does not suffice for
coerciveness whenever 8M4 > 5.

Remark 12.4. The roles of the Lipschitz constant M and therefore of the distance to the
boundary function can be seen when they are absent, by considering the domains obtained
by letting M → 0 and cutting off at height t = H ,

�H0,T = {(z, t, s) : z ∈ D and T |s| < t < H }.

Scaling s → ts and forming the average in the ts-integration allows one to write inequal-
ity (12.1) for �H0,T as

3T 3

πH 4

∫
|s|<1/T

∫ H

0
t3 dt ds

∫
D
(|f ′′Q+ zf ′|2 − 2|f |2) dm ≤ 0 (12.6)

whereQ has been scaled. Denote the average of a function F(t, s), with respect to t3dtds
here, as [F ]. Then by the arithmetic-geometric mean inequality,[∫

D
|f ′′Q+ zf ′|2 dm

]
=

∫
D
(|f ′′|2[Q2

] + 2Ref ′′zf ′[Q] + |z|2|f ′|2) dm

≥

∫
D
(|f ′′|2[Q2

]− |f ′′|2[Q]2−|z|2|f ′|2+|z|2|f ′|2) dm = ([Q2
]− [Q]2)

∫
D
|f ′′|2 dm.

Since Q is not constant, this and (12.6) imply∫
D
|f ′′|2 dm ≤ CQ

∫
D
|f |2 dm (12.7)

where CQ is a constant depending only on the integral averages of Q. By Gagliardo–
Nirenberg inequalities and Rellich compactness, (12.7) cannot hold for an infinite-dimen-
sional subspace of W 2,2(D). Similar uses of the arithmetic-geometric mean inequality
show that v = fQ + zf−1 ∈ W

2,2(�H0,T ) if and only if f ∈ W 2,2(D). Thus the above
proof that N0 is noncoercive in the domains �M,T fails in these domains.

It is also to be remarked that the failure exhibited here remains when D is replaced by
any bounded domain of C satisfying, for example, the segment property.

13. Computing asymptotics

Let A be a real symmetric positive definite m × m matrix with entries ajk , 0 ≤ j, k ≤
m − 1. Let X = (X0, . . . , Xm−1) ∈ Rm and define am = (a0

m, . . . , a
m−1
m ) ∈ Rm. Define

amm ∈ R. Let ak denote the column vectors of A. Denote the transpose of ak by aTk .
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Then the quadratic in the variables X,

F(X) = X · AX + 2am ·X + amm,

reaches its minimum when AX = −am. The minimum value is −am · A−1am + a
m
m . If

Ak denotes the matrix A with its kth column replaced by −am, then the minimizing Xj ,
0 ≤ j ≤ m − 1, can be realized by Cramer’s rule as the ratio of determinants Xj =
detAj/ detA. From this and cofactor expansion (e.g. along the last row of Ǎ) it can be
seen that the minimum value of F is det Ǎ/ detA where Ǎ is the (m+1)×(m+1)matrix[ A am
aTm amm

]
.

Put Q = X4q4 + X3q3 + X2q2 + X1q1 + X0 where each qj is a polynomial of X̂
of homogeneity j . Let vn be the elementary solutions E(zn,Q) of (8.3) and let N be
any null form (11.1). For each n, matrix entries ajk are defined by ajk =

1
2
∂
∂Xj

∂
∂Xk

N [vn],

0 ≤ j, k ≤ 4. By what was said immediately after (4.3), a0
0 > 0. In order to find the Xj

such that N [vn] < 0 one successively computes, for h = 1, 2, 3, 4, the determinants of
the (h + 1) × (h + 1) matrices with entries ajk , 0 ≤ j, k ≤ h, until a negative result
is obtained. By the above discussion the negative result is the determinant of Ǎ, thus
identifying Ǎ and then giving the matrix A, the minimizing X0, . . . , Xh−1 with Xh = 1
and Xh+1 = · · · = X4 = 0 together with the negative minimum value of N [vn].

Unless, of course, there is no negative determinant.
As seen in the last section, each matrix element ajk will be a rational function in the

variables n,M and T . Then so will the determinants, the minimizingXj and the minimum
values of the N [vn].

14. Change of notation and the basic argument

1. On � = �M,T define the integration∫
F(z, t, s) := C(M, T )

∫
�

F(z, t, s) dm(z) dt ds =

∫
M,T

F

(
z,

1− |z|
M

t,
1− |z|
MT

ts

)
where the quantity C(M, T ) and the last integral are from Definition 12.2.

2. Redefine the null forms N0, Nt , Ns, Nts, Nss of (5.2), (9.4), (9.6), (9.8), (9.11) by
replacing

∫
�

with
∫

.

3. By Lemma 12.1 and the basic argument of Section 11,

• To prove Theorem 1.5, it suffices to show that for each null form on X,

N = N0 + εNt + δsNs + δtsNts + δssNss, (14.1)

where ε, δs , δts and δss are real numbers, there is a sequence of nonzero polynomialsQ
in one of T̂, Ŝ1, Ŝ2 or Ŝ3 and a corresponding subsequence of elementary solutions
vn = E(z

n,Q) such that N [vn] ≤ 0 for all members of the subsequence.
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15. A bound on ε

Lemma 15.1. For all M,T > 0, a necessary condition for the coerciveness of N (11.1)
over XM,T is that ε < M−2.

Proof. Choose Q = t + X0 and consider elementary solutions (8.2), v = E(f,Q) =

fQ ∈ T. Then vt t = 0 and

Ns[v] = Nts[v] = Nss[v] = 0.

In addition ∂
2
v = ∂vt = 0 so that

N [v] =

∫
(|f ′′|2(t +X0)

2
− ε|f ′|2). (15.1)

Choosing f = zn and defining vn (8.3) we use the basic argument of Section 14. For each
n choose X0 =

−4
M(2n+3) . Integrating (15.1) according to Definition 12.2 yields

∫
M,T

(
n2(n− 1)2|z|2n−4

(
1− |z|
M

t +X0

)2

− εn2
|z|2n−2

)
=
−6n2(εM2

− 1)− 3n(3εM2
+ 2)

M2(2n+ 3)2(2n+ 1)(n+ 2)(n+ 1)
, (15.2)

which is negative whenever ε ≥ M−2. For each N , with ε in this range, the solutions
vn = zn(t − 4M−1(2n + 3)−1) generate the infinite-dimensional subspace XN ⊂ T
⊂ XM,T required by the basic argument. ut

Remark 15.2. Computing the minimum over X0 of (15.1) (15.2) directly by the ratio
det Ǎ/ detA = det Ǎ/a0

0 of Section 13 yields the sum of rational functions − 3
4
εM2
−1

M2n3 +

O(n−4). This is positive for all ε < M−2 and n large enough so that the bound of this
section is sharp.

We record that a0
0 = n

2(n− 1)2B(2n− 2, 5) = 4!
25n
+O(n−2) = 3

4n +O(n
−2) > 0

and that det Ǎ = − 9
16
εM2
−1

M2n4 +O(n
−5), positive (n large enough) if and only if ε < M−2.

16. Main estimate and lemma

Let X = (X0, X1) ∈ R2. Let Q(t, s) = 1
2 t

2
+

1
6γ |s|

2
+ X1t + X0 ∈ T̂, and let v =

fQ+ zf−1 be elementary solutions (8.2) in �M,T . Then

N0[v] + εNt [v] =

∫
(|f ′′Q+ zf ′|2 − 2(1− ε)|f |2 − ε|f ′Qt |

2).



2200 Gregory C. Verchota

16.1. The estimate

We have the following negative bound from above, uniformly over ε < M−2, when
f = zn.

Lemma 16.1. There are numbers µ0, µ1 > 0 independent of n, M , T , and γ ; a con-
stant Tγ depending only on the parameter 0 < γ < 1/3; and an open interval I
containing the closed interval [1, 2], such that for all T > Tγ , all M2

∈ I and all
−∞ < ε < M−2,

min
X∈R2

[∫
M,T

|z|2n−4
(
n(n−1)

(
1
2
(1− |z|)2

M2 t2
(

1+
|s|2

3γ T 2

)
+X1

1− |z|
M

t+X0

)
+n|z|2

)2

−

∫
M,T

(
2(1− ε)|z|2n + ε|z|2n−2

(
n

1− |z|
M

t +X1n

)2)]
≤ −

µ0 + µ1(M
−2
− ε)

n5 +O(n−6), (16.1)

where the leading coefficient of O(n−6) is allowed to depend on M , T and ε.

Proof. Consider first the modified minimization problem that would arise if Q(t, s) were
replaced byQ(t, 0), i.e. remove the factor 1+ |s|2

3γ T 2 from the first square being integrated.

In the fashion of Section 12 write X0 =
−1
n−1 +X02

1
n(n−1) and X1 = X11

1
n

where X02
and X11 are to be O(1) as n→∞. With X2 = 1 the first square is now

r2n−4
(
X2

(
n(n− 1)

1
2
(1− r)2

M2 t2 + n(r2
− 1)

)
+X11(n− 1)

1− r
M

t +X02

)2

. (16.2)

By the heuristics of Section 12, after integration the coefficient of each of the quadratic
monomials X2

02, X02X11, etc. will beO(n−5). This is also the case for the second square

− 2(1− ε)r2nX2
2 (16.3)

and the third which now reads

− εr2n−2
(
X2n

1− r
M

t +X11

)2

. (16.4)

Thus by integrating (16.1) , the matrix entries ajk , 0 ≤ j, k ≤ 2, of Section 13 that arise
as coefficients of the quadratic monomials X2

02, X02X11, . . . will all be rational functions
of n and will beO(n−5) as n→∞. The entries a0

0, a
0
1 and a1

1 which form the symmetric
matrix A of Section 13 arise from integrating (16.2) and (16.4) and taking the coefficients
of X2

02, X02X11 and X2
11. By inspecting (16.2) and (16.4), a0

0 and a0
1 must be independent

of ε, while a1
1 will be a polynomial in ε of degree 1 (for each n). The entries a0

2 , a1
2 , a2

2 ,
the coefficients of the monomials containing X2, complete the matrix Ǎ. The first entry,
arising only from (16.2), is independent of ε, while a1

2 and a2
2 , from (16.2)–(16.4), are

polynomials in ε of degree 1. Consequently, detA is O(n−10) and of degree 1 in ε, while
det Ǎ is O(n−15) and of degree 2 in ε.



Strongly elliptic operators without coercive forms 2201

Computing explicitly (see Appendix), we find

detA =
9

16
M−2

− ε

n10 +O(n−11) (16.5)

and

det Ǎ =

−
27

512M6n15

(
8M4(2M2

− 1)(ε −M−2)2 +M2(24M4
− 1)(ε −M−2)+ 2(4M2

− 1)2
)

+O(n−16). (16.6)

When written out, the first determinant (16.5) differs from the determinant of the Ǎ of
Remark 15.2 by a factor of exactly n−4(n − 1)−2, as can be seen by comparing (15.2)
with (16.2) and (16.4). It is, like that determinant, positive if and only if ε < M−2.

Therefore, in order for the minimum of the modified (16.1), viz. det Ǎ/ detA, to be
negative for all ε < M−2 and n large enough, the parenthetic quadratic, in the inde-
terminant ε − M−2, of (16.6) must remain positive. This can be arranged because its
discriminant equals

M4(576M8
− 2048M6

+ 2000M4
− 640M2

+ 65).

Here the parenthetic quartic inM2 is negative on an open interval containing 1 ≤ M2
≤ 2,

while the coefficient of (ε −M−2)2 in (16.6) is positive for these M .
Moreover, for M in this range, det Ǎ is negative at the endpoint ε = M−2, while the

leading term of detA decreases to 0 as ε ↑ M−2. Likewise det Ǎ behaves like −ε2 as
ε → −∞, while detA behaves like |ε|. Thus det Ǎ/ detA < 0 for all ε < M−2 and
diverges to −∞ at both endpoints of that interval.

Consequently, there are numbers µ0, µ1 > 0 such that the minimum of the modified
problem satisfies inequality (16.1) for the stated range of M .

Remark 16.2. The leading coefficient of the rationalO(n−6) function in (16.1) will con-
tain the factor ε −M−2 in its denominator.

With patience one can carry out by hand the calculations leading to (16.5) and (16.6).
However, in order to finish the proof of the lemma we will verify by a perturbation argu-
ment that the modified case, now completed, implies the original inequality (16.1).

By adding X2n(n − 1) 1
2
(1−r)2

M2 t2
|s|2

3γ T 2 to the square (16.2) one returns to the original

problem. The only effect is to replace a0
2 , a1

2 and a2
2 with a0

2 + r
0
2 , a1

2 + r
1
2 and a2

2 + r
2
2

respectively where each rjk is independent of ε and is O(n−5). In addition each rjk is
O
( 1
γ T 2

)
as T →∞.

Therefore the matrix A is unchanged, and Ǎ is replaced by Ǎ+ R where R = (rjk ) is
symmetric with the rjk as defined and with also rjk = 0, 0 ≤ j, k ≤ 1. Using the previous
observations about the ajk , inspection shows that det(Ǎ + R) − det Ǎ is of degree 1 in ε.
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Also by inspection it is O( 1
γ T 2 ). With M confined to a compact interval, then, there are

positive numbers a and b such that

|det(Ǎ+ R)− det Ǎ| ≤
a + b(M−2

− ε)

γ T 2n15 +O(n−16).

Because it has been arranged that the quadratic in ε of (16.6) has no real roots, it follows
that there is a Tγ such that for all T > Tγ and all ε < M−2,

a + b(M−2
− ε)

γ T 2n15 ≤
1
2
|det Ǎ|

once n is large enough for each ε. Consequently, given det Ǎ
detA ≤ −

µ0+µ1(M
−2
−ε)

n5 +O(n−6),
the minimum of (16.1) satisfies

det(Ǎ+ R)
detA

≤
det Ǎ+ 1

2 |det Ǎ|
detA

=
1
2

det Ǎ
detA

≤ −
1
2
µ0 + µ1(M

−2
− ε)

n5 +O(n−6)

for all n large enough. ut

16.2. The main lemma

In addition to N0[v] + εNt [v] when f = zn, we also have, by (9.6),

Ns[v] =

∫ (
2|f |2 − γ |f ′

1
3γ
s|2
)
=

∫
M,T

(
2|z|2n −

1
9γ
|z|2n−2n2 (1− |z|)

2

M2 t2
|s|2

T 2

)
= 2B(2n+ 2, 5)−

1
9M2γ T 2

2
5
n2B(2n, 7) = 2

(2n+ 1)!4!
(2n+ 6)!

−
Cs

M2γ T 2
1
n5 +O(n

−6)

=

(
3
2
−

Cs

M2γ T 2

)
1
n5 +O(n

−6), (16.7)

where Cs > 0 is a constant independent of n, M , T , and γ . Also by (9.8),

Nts[v] =

∫
|f |2 = B(2n+ 2, 5) =

3
4

1
n5 +O(n

−6).

And by (9.11),

Nss[v] =

∫ (
|f |2 − γ 2

∣∣∣∣f 1
6γ
∇∇|s|2

∣∣∣∣2) = ∫ (|f |2 − 1
3
|f |2

)
=

1
2

1
n5 +O(n

−6).

Let vn = zn( 1
2 t

2
+

1
6γ |s|

2
+X1t +X0+ (n+ 1)−1

|z|2) be elementary solutions (8.3)
where X, for each n, is the minimizer of (16.1). Let N be any null form (11.1) such that
ε < M−2. Then using Lemma 16.1 and the above, we obtain

N [vn] ≤

(
−µ0 − µ1(M

−2
− ε)+

(
3
2
−

Cs

M2γ T 2

)
δs +

3
4
δts +

1
2
δss

)
1
n5 +O(n

−6).

Consequently, we obtain the following coerciveness condition.
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Lemma 16.3. Suppose 1 ≤ M2
≤ 2 and let N be any null form (11.1) satisfying ε <

M−2. There is a constant Tγ , depending only on the parameter 0 < γ < 1/3, such that
for all T > Tγ a necessary condition for the coerciveness of N over XM,T is(

3
2
−

Cs

M2γ T 2

)
δs +

3
4
δts +

1
2
δss ≥ µ0 + µ1(M

−2
− ε)

where Cs , µ0 and µ1 are positive numbers independent of M , T and γ .

17. Bounding the δ’s from above

1. Let v = f s1 ∈ S1. Applying any N (11.1) to v yields N [v] = N0[v] + δsNs[v]. For
f = zn,

N0[v] =

∫
|f ′′|2s2

1 =
1
3

∫
|f ′′|2|s|2 =

1
3

∫
M,T

|z|2n−4n2(n− 1)2
(1− |z|)2

M2 t2
|s|2

T 2

=
2

15M2T 2 n
2(n− 1)2B(2n− 2, 7) =

3
4M2T 2

1
n3 +O(n

−4).

And

Ns[v] = −γ

∫
|f ′|2 = −γ n2B(2n, 5) = −γ

3
4

1
n3 +O(n

−4).

Thus N [v] = γ 3
4

( 1
M2γ T 2 − δs

) 1
n3 +O(n

−4) and the following bound is established.

Lemma 17.1. For all M,T > 0, a necessary condition for the coerciveness of N (11.1)
over XM,T is that δs ≤ 1

M2γ T 2 .

2. By subtracting P22 from P11 where P is the polynomial (6.3) it follows that s2
1 − s

2
2

is an element of T̂. Let v = f 1
2 (s

2
1 − s

2
2). Applying any N (11.1) to v yields N [v] =

N0[v] + δsNs[v] + δssNss[v]. For f = zn,

N0[v] =

∫ ∣∣∣∣f ′′ 12 (s2
1 − s

2
2)

∣∣∣∣2 = 1
4

∫
M,T

|z|2n−4n2(n− 1)2
(1− |z|)4

M4 t4
(s2

1 − s
2
2)

2

T 4

=
C0

M4T 4
1
n5 +O(n

−6)

where C0 > 0 is a constant independent of n,M, T , and γ . Moreover

Ns[v] = −γ

∫
|f ′|2(s2

1 + s
2
2) = −γ

2
3

∫
M,T

|z|2n−2n2 (1− |z|)
2

M2 t2
|s|2

T 2

= −γ
6Cs
M2T 2

1
n5 +O(n

−6) (17.1)
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where Cs is the constant from (16.7). Finally,

Nss[v] = −γ
22
∫
|f |2 = −γ 2 3

2
1
n5 +O(n

−6), (17.2)

as is also seen in (16.7).
Consequently, we obtain

Lemma 17.2. For allM > 0 and T > 0 a necessary condition for the coerciveness of N
(11.1) over XM,T is that 1

2δss ≤
C0

3M4γ 2T 4 − δs
2Cs

M2γ T 2 where C0 and Cs , the constant of
the main lemma, Lemma 16.3, are positive numbers independent of M , T and γ .

3. Let Q = s1t + s2s3 + X0s1 ∈ Ŝ1 and let v = fQ be elementary solutions. When
f = zn,

Nt [v] = −

∫
|f ′s1|

2
= −

3Cs
M2T 2

1
n5 +O(n

−6) (17.3)

by comparison to (17.1). Moreover,

Nts[v] = −γ

∫
|f |2 = −γ

3
4

1
n5 +O(n

−6) (17.4)

as in (17.2), and

Nss[v] = −γ
22
∫
|f |2 = −γ 2 3

2
1
n5 +O(n

−6). (17.5)

Remark 17.3. When multiplied by −γ−1 the coefficients of 1
n5 for Nts and Nss are al-

most the coefficients of δts and δss respectively of the main lemma. Replacing γ 3 with
1 in the Nss coefficient would make them identical to the main lemma coefficients. The
restriction γ < 1/3 will be used in the next section for just this purpose.

What remains is

N0[v] + δsNs[v] =

∫ (
|f ′′|2((t +X0)s1 + s2s3)

2
− δsγ |f

′
|
2((t +X0)

2
+ s2

3 + s
2
2)
)

=

∫ (
|f ′′|2

(
(t +X0)

2 1
3
|s|2 + s2

2s
2
3

)
− δsγ |f

′
|
2
(
(t +X0)

2
+

2
3
|s|2

))
where

∫
|s|<1 s1s2s3 ds = 0 has also been used.

The main lemma puts only a partial restriction on the negativity of δs , δts and δss .
Here and in Lemmas 17.1 and 17.2 unrestricted negative values for the δ’s are seen to
allow the coerciveness that is to be disproved in this article. Thinking of δs < 0 then, it
will be seen below that here one wants to choose X0 for each n in order to minimize the
term

∫
|f ′|2(t + X0)

2. The minimizer (compare (15.2)) is X0 =
−4

M(2n+5) . Hence with

vn = z
n
(
s1t + s2s3 −

4s1
M(2n+5)

)
,
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N0[vn] + δsNs[vn] =∫
M,T

n2(n−1)2|z|2n−4
((

1−|z|
M

t−
4

M(2n+ 5)

)2 1
3
(1−|z|)2

M2 t2
|s|2

T 2 +
(1− |z|)4

M4 t4
s2

2s
2
3

T 4

)
− δsγ

∫
M,T

n2
|z|2n−2

((
1− |z|
M

t −
4

M(2n+ 5)

)2

+
2
3
(1− |z|)2

M2 t2
|s|2

T 2

)
=

(
C1

M4T 2 − δsγ

(
3

4M2 +
6Cs
M2T 2

))
1
n5 +O(n

−6) (17.6)

where C1 > 0 is independent of n,M, T , and γ ; evaluation of the second integral is as in
(15.2) and (17.1).

By (17.3)–(17.6) and with N = N0 + εNt + δsNs + δtsNts + δssNss ,

N [vn] = γ

(
C1

M4γ T 2 −ε
3Cs

M2γ T 2 −δs

(
3

4M2 +
6Cs
M2T 2

)
−

3
4
δts−γ

3
2
δss

)
1
n5 +O(n

−6).

Consequently, we obtain

Lemma 17.4. For all M,T > 0 and real ε, a necessary condition for the coerciveness
of N (11.1) over XM,T is that(

3
4M2 +

6Csγ
M2γ T 2

)
δs +

3
4
δts + γ

3
2
δss ≤

C1

M4γ T 2 −
3Cs

M2γ T 2 ε

where C1 and Cs are positive numbers independent of M , T and γ .

Remark 17.5. Choosing Q = s1t + s2s3, i.e. X0 = 0 in
∫
|f ′|2(t + X0)

2, and forgoing
minimization produces

∫
|f ′|2t2 = 2

3M2 n
2B(2n, 7) + 15

4M2
1
n5 + O(n

−6). Thus 15
4M2 re-

places 3
4M2 in the coefficient of δs . In the main lemma the quantity 3

2 is the principal part
of the coefficient of δs . The inequality 3

2 >
3

4M2 is needed in the argument of the next
section.

18. Final inequality

As in the main lemma, Lemma 16.3, fix 1 ≤ M2
≤ 2. By Lemma 15.1 a necessary

condition for coerciveness of any N (11.1) is M−2
− ε > 0. With these conditions,

Lemma 16.3, Lemmas 17.1, 17.2 and 17.4, together with further restrictions on T , we
obtain

µ0 + µ1(M
−2
− ε) ≤

(
3
2
−

Cs

M2γ T 2

)
δs +

3
4
δts +

1
2
δss

≤
C1

M4γ T 2 −
3Cs

M2γ T 2 ε +

(
3
2
−

3
4M2 −

(1+ 6γ )Cs
M2γ T 2

)
δs +

1
2
(1− 3γ )δss

≤
(1− 3γ )C0

3M4γ 2T 4 +
C1

M4γ T 2 −
3Cs

M2γ T 2 ε +

(
3
2
−

3
4M2 −

3Cs
M2γ T 2

)
δs

≤
(1− 3γ )C0

3M4γ 2T 4 +
C1

M4γ T 2 +

(
3
2
−

3
4M2 −

3Cs
M2γ T 2

)
1

M2γ T 2 −
3Cs

M2γ T 2 ε
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=
1
γ T 2

(
(1− 3γ )C0

3M4γ T 2 +
C1 − 3Cs
M4 +

(
3
2
−

3
4M2 −

3Cs
M2γ T 2

)
1
M2

)
+

1
γ T 2

3Cs
M2 (M

−2
− ε).

The first inequality is the conclusion of Lemma 16.3 for T > Tγ . The second is Lemma
17.4. The third uses 1− 3γ > 0 in order to apply Lemma 17.2. The fourth follows from
Lemma 17.1 whenever T is large enough so that 0 < 3Cs

M2γ T 2 ≤
3
2 −

3
4M2 . By choosing T

larger still, the positivity of µ0 and µ1 of the main lemma is contradicted. The necessary
conditions on the coefficients ε, δs, δts and δss for coerciveness of the null forms (11.1)
have been shown to be inconsistent.

Remark 18.1. The real partial differential operators Lγ (1.2) are not elliptic when γ = 0
or γ = 1/3. They are elliptic otherwise. However, in each of the ranges γ < 0 and γ >
1/3 the formally positive quadratic form (3.3) is coercive by the theorem of Aronszajn–
Smith. The use made of both γ > 0 and γ < 1/3 in the final inequality cannot be
an artifact of the various XN chosen to exhibit noncoerciveness in the lemmas of Sec-
tions 15–17.

The proof of the following restatement of Theorem 1.5 and the Theorem stated at the
beginning of this article is now complete.

Theorem. For each elliptic constant coefficient fourth order operator (1.2) Lγ , 0 < γ

< 1/3, and each Lipschitz constant M , 1 ≤ M ≤
√

2, there is a real number T (γ,M)
such that for all Lipschitz constants T > T (γ,M) there is no constant coefficient Her-
mitian quadratic form (1.3) associated to Lγ that is coercive over the Sobolev spaces of
functions with square integrable derivatives up to order 2 in the bounded convex domains
�M,T of (8.1).

19. Open problems

1. Construct C1 domains in which the Lγ or related operators have no constant coeffi-
cient coercive forms.

2. Can nonconstant coefficient coercive forms be associated to the Lγ in convex domains
and, more generally, in Lipschitz domains?

3. Solve the Neumann problem for constant coefficient higher order elliptic operators
and second order Legendre–Hadamard systems in convex domains and, more generally,
in Lipschitz domains.

20. Appendix

Using (12.3), the symmetric matrix entries ajk , 0 ≤ j, k ≤ 2, in the proof of the main
estimate will be computed. The determinants (16.5), (16.6) can then be computed. As
explained, the integrands are from (16.2)–(16.4) and the matrix entries are obtained as the
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coefficients of the quadratic monomials in X02, X11 and X2 in the manner of Section 13.
We have

a0
0 =

∫
M,T

r2n−4
=

∫ 1

0
r2n−4(1− r)4r dr = B(2n− 2, 5),

a0
1 =

∫
M,T

n− 1
M

tr2n−4(1− r) =
n− 1
M

4
∫ 1

0
t4 dt

∫ 1

0
r2n−3(1− r)5 dr

=
n− 1
M

4
5
B(2n− 2, 6),

a1
1 =

∫
M,T

(
(n− 1)2

M2 t2r2n−4(1− r)2 − εr2n−2
)

=
(n− 1)2

M2 4
∫ 1

0
t5 dt

∫ 1

0
r2n−3(1− r)6 dr − ε

∫ 1

0
r2n−1(1− r)4 dr

=
(n− 1)2

M2
2
3
B(2n− 2, 7)− εB(2n, 5).

We have B(2n+ k, h) = (h−1)!
2hnh +O(n

−h−1). Write x � y to mean x = yn−5
+O(n−6).

Then

a0
0 �

4!
25 =

3
4
, a0

1 �
4

5M
5!
26 =

3
2M

, a1
1 �

2
3M2

6!
27 − ε

4!
25 =

3
4
(5M−2

− ε).

Computing a0
0a

1
1 − (a

0
1)

2 yields (16.5).
Moreover,

a0
2 =

∫
M,T

(
n(n− 1)

2M2 t2r2n−4(1− r)2 + nr2n−4(r + 1)(r − 1)
)

=
n(n− 1)

2M2
2
3
B(2n− 2, 7)− nB(2n− 1, 6)− nB(2n− 2, 6),

a1
2 =

∫
M,T

(
n(n−1)2

2M3 t3r2n−4(1−r)3−
n(n−1)
M

tr2n−4(r+1)(1−r)2−ε
n

M
tr2n−2(1−r)

)
=
n(n−1)2

2M3
4
7
B(2n−2, 8)−

n(n−1)
M

4
5
(B(2n−1, 7)+B(2n−2, 7))−ε

n

M

4
5
B(2n, 6),

a2
2 =

∫
M,T

(
n2(n− 1)2

4M4 t4r2n−4(1− r)4 −
n2(n− 1)
M2 t2r2n−4(r + 1)(1− r)3

)
+

∫
M,T

(
n2r2n−4(r2

+ 2r + 1)(1− r)2 − 2(1− ε)r2n
− ε

n2

M2 t
2r2n−2(1− r)2

)
=
n2(n− 1)2

4M4
1
2
B(2n− 2, 9)−

n2(n− 1)
M2

2
3
(B(2n− 1, 8)+ B(2n− 2, 8))

+ n2(B(2n, 7)+ 2B(2n− 1, 7)+ B(2n− 2, 7))− 2(1− ε)B(2n+ 2, 5)

− ε
n2

M2
2
3
B(2n, 7).
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These satisfy

a0
2 �

1
3M2

6!
27 −

5!
26 −

5!
26 =

15
8
(M−2

− 2),

a1
2 �

2
7M3

7!
28 −

8
5M

6!
27 − ε

4
5M

5!
26 =

3
2M

(
15
4
M−2

− ε − 6
)
,

a2
2 �

1
8M4

8!
29 −

4
3M2

7!
28 + 4

6!
27 − 2(1− ε)

4!
25 − ε

2
3M2

6!
27

=
15

4M2

(
21
8
M−2

− ε

)
−

3
2

(
35
2
M−2

− ε

)
+ 21.

With a little more work det Ǎ can now be computed and (16.6) obtained. The author
found Maple 14 to be a useful tool, especially before it was clear that these kinds of
computations would lead to the noncoercivity conclusion.

Acknowledgements. The author thanks the referee for the attentive reading of a not always easy to
read argument and appreciates the time taken to write a report that contained several insights and
fresh perspectives on the article’s contents. The first of the open problems above is the referee’s.
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