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Abstract. The Euler—Poisson system is a fundamental two-fluid model to describe the dynamics
of the plasma consisting of compressible electrons and a uniform ion background. In the 3D case
Guo [7] first constructed a global smooth irrotational solution by using the dispersive Klein—-Gordon
effect. It has been conjectured that the same result should hold in the two-dimensional case. In our
recent work [13], we proved the existence of a family of smooth solutions by constructing the wave
operators for the 2D system. In this work we completely settle the 2D Cauchy problem.
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1. Introduction

The Euler—Poisson system is one of the simplest two-fluid models used to describe the dy-
namics of a plasma consisting of moving electrons and ions. In this model the heavy ions
are assumed to be immobile and uniformly distributed in space, providing only a back-
ground of positive charge. The light electrons are modeled as a charged compressible fluid
moving against the ionic forces. Neglecting magnetic effects, the governing dynamics of
the electron fluid is given by the following Euler—Poisson system in (¢, x) € [0, 00) x R¢:

on+V-(na) =0,
men(du+ (u-V)u) + Vpn) = enVe, (1.1)
A¢p = 4me(n — ngp).

Here n = n(¢, x) and u = u(¢, x) denote the density and average velocities of the elec-

trons respectively. The symbol e and m, denote the unit charge and mass of electrons.
The pressure term p(n) is assumed to obey the polytropic y-law, i.e.

p(n) = An?, (1.2)
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where A is the entropy constant and y > 1 is called the adiabatic index. The term
enV¢ = (—ne) - (—V¢) quantifies the electric force acting on the electron fluid by the
positive ion background. Note that the electrons carry negative charge —ne. We assume
that at equilibrium the density of ions and electrons are both a constant denoted by . To
ensure charge neutrality it is natural to impose the condition

/ (n —ng)dx =0.
R4

The boundary condition for the electric potential ¢ is decay at infinity, i.e.

lim ¢(t,x)=0. (1.3)
|x]—00
The first and second equations in (1.1) represent the mass conservation and momen-
tum balance of the electron fluid respectively. The third equation in (1.1) is the usual
Gauss law in electrostatics. It computes the electric potential self-consistently through
the charge distribution nge — ne. The Euler—Poisson system is one of the simplest two-
fluid models in the sense that the ions are treated as uniformly distributed sources in space
and they appear only as a constant n¢ in the Poisson equation. This is a very physical ap-
proximation since mjo, 3> m, and the heavy ions move much more slowly than the light
electrons.
Throughout the rest of this paper, we shall consider an irrotational flow,

V xu=0, (1.4)

which is preserved in time. For flows with nonzero curl the magnetic field is no longer
negligible and it is more physical to consider the full Euler-Maxwell system.

We are interested in constructing a smooth global solution around the equilibrium
(n,u) = (ng, 0). To do this we first transform the system (1.1) in terms of certain per-
turbed variables. For simplicity set all physical constants e, m,., 47 and A to be 1. To
simplify the presentation, we also set y = 3 although other cases of y can be easily
treated as well. Define the rescaled functions

n(t/co, x) — no 1
u(t,x) = ——,  V({t,x) = —u(t/co,x), Y, x)=3¢(t/co, x),
no (€]
where the sound speed is ¢cp = NE) ng. For convenience we set ng = 1/3 so that the

characteristic wave speed is unity. The Euler—Poisson system (1.1) in the new variables
takes the form
hu+V-v+V-(uv) =0,
v+ Vu+ V(5u? + Lv?) = vy, (1.5)
AY = u.
Taking one more time derivative and using (1.4) then transforms (1.5) into the following
quasi-linear Klein—Gordon system:

O+ Du = A(u> + 5Iv?) — 3,V - (uv),

O+ Dv=-3V(3u® + v} + 1 - A~HVV - ). (16)
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For the above system, in the 3D case Guo [7] first constructed a global smooth ir-
rotational solution by using dispersive Klein—Gordon effect and adapting Shatah’s nor-
mal form method. It has been conjectured that the same results should hold in the two-
dimensional case. In our recent work [13], we proved the existence of a family of smooth
solutions by constructing the wave operators for the 2D system. The 2D problem with
radial data was studied in [12]. Note that for radial data,! one has

ATIVV - (uv) = uv,

and the result follows easily from [18].

In this work we completely settle the 2D Cauchy problem for general non-radial data.
The approach we take is inspired by a new set-up of normal form transformation devel-
oped by Gustafson, Nakanishi, Tsai [10] and also Germain, Masmoudi and Shatah [4,
5, 3]. Roughly speaking (and over-simplifying quite a bit), the philosophy of the normal
form method is that one should integrate by parts whenever one can in either (frequency)
space or time. The part where one cannot integrate by parts is called the set of space-time
resonances which can often be controlled by some finer analysis provided the set is not too
large or satisfies some frequency separation properties. The implementation of such ideas
is often challenging and depends heavily on the problem under study. In fact the heart of
the whole analysis is to choose appropriate function spaces utilizing the fine structure of
the equations. The main obstructions in the 2D Euler—Poisson system are slow (nonin-
tegrable) (t)~! dispersion, quasilinearity and nonlocality caused by the Riesz transform.
Nevertheless we overcome all such difficulties in this paper. Shortly after our work was
completed, a similar result requiring at least 304 derivatives was obtained in [11]. To put
things in perspective, we review below some related literature as well as some technical
developments on this problem.

The main difficulty in constructing time-global smooth solutions for the Euler—
Poisson system comes from the fact that the Euler—Poisson system is a hyperbolic conser-
vation law with zero dissipation for which no general theory is available. The “Euler” part
of the Euler—Poisson system is the well-known compressible Euler equations. Indeed in
(1.1), if the electric field term V¢ is dropped, one recovers the usual Euler equations for
compressible fluids. In [21], Sideris considered the 3D compressible Euler equation for a
classical polytropic ideal gas with adiabatic index y > 1. For a class of initial data which
coincide with a constant state outside a ball, he proved that the lifespan of the correspond-
ing C 1 solution must be finite. In [19] Rammaha extended this result to the 2D case. For
the Euler—Poisson system, Guo and Tahvildar-Zadeh [9] established a “Siderian” blow-
up result for spherically symmetric initial data. Recently Chae and Tadmor [1] proved
finite-time blow-up for C! solutions of a class of pressureless attractive Euler—Poisson
equations in R, n > 1. These negative results show the abundance of shock waves for
large solutions.

The “Poisson” part of the Euler—Poisson system has a stabilizing effect which makes
the whole analysis of (1.1) quite different from the pure compressible Euler equations.
This is best understood in analyzing small irrotational perturbations of the equilibrium

! The vector function v is radial if it is the gradient of a scalar radial function.
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state n = ng, u = 0. For the 3D compressible Euler equation with irrotational initial data
(n(0),uc(0)) = (epo + no, €vp), where py € S(R3), v € S(R?)3 are fixed functions
(with € sufficiently small), Sideris [22] proved that the lifespan T, of the classical solution
satisfies Te > exp(C/¢€). As for the upper bound, it follows from Sideris’s previous paper
[21] that T, < exp(C/e€?). Sharper results were obtained by Godin [6] who showed
that for radial initial data like a smooth compact e-perturbation of the constant state, the
precise asymptotic of the lifespan T¢ is exponential in the sense that

lim elogT, =T¥,
e—~>0+

where T* is a constant. All these results rely crucially on the observation that after some
simple reductions, the compressible Euler equation in rescaled variables is given by a
vectorial nonlinear wave equation with pure quadratic nonlinearities. The linear part of
the wave equation decays at most as 7~ @~1D/2 which in 3D is not integrable. Unless the
nonlinearity has some additional nice structure such as the null condition [2, 15], one can-
not in general expect global existence of small solutions. On the other hand, the situation
for the Euler—Poisson system (1.1) is quite different due to the additional Poisson cou-
pling term. As was already explained before, the Euler—Poisson system (1.1) expressed
in rescaled variables is given by the quasi-linear Klein—Gordon system (1.6) for which
the linear solutions have an enhanced decay of (1 + ¢)~¢/2. This is in sharp contrast
with the pure Euler case for which the decay is only r~@~1/2 Note that for d = 3,
(14 1)~%2 = (1 +1)=3/2, which is integrable in . In a seminal paper [7], by exploiting
the crucial decay property of the Klein—Gordon flow in 3D, Guo modified Shatah’s normal
form method [20] and constructed a smooth irrotational global solution to (1.1) around
the equilibrium state (ng, 0) for which the perturbations decay at a rate of Cp, - (1 +1)77
forany 1 < p < 3/2 (here Cp, denotes a constant depending on the parameter p). Note
in particular that the sharp decay #~3/? is marginally missed here due to a technical com-
plication caused by the nonlocal Riesz operator in the nonlinearity.

Construction of smooth global solutions to (1.1) in the two-dimensional case has been
an open problem since Guo’s work. The first obstacle comes from slow dispersion since
the linear solution to the Klein—-Gordon system in d = 2 decays only as (1 4+ ¢)~!, which
is not integrable, in particular making the strategy of [7] difficult to apply. The other main
technical difficulty comes from the nonlocal nonlinearity in (1.6) which involves a Riesz-
type singular operator. For general scalar quasi-linear Klein—Gordon equations in 3D with
quadratic type nonlinearities, global small smooth solutions were first constructed inde-
pendently by Klainerman [14] using the invariant vector field method and by Shatah [20]
using a normal form method. Even in 3D there are essential technical difficulties in em-
ploying Klainerman’s invariant vector field method due to the Riesz type nonlocal term
in (1.6). The Klainerman invariant vector fields consist of infinitesimal generators which
commute well with the linear operator d;; — A + 1. The most problematic part comes
from the Lorentz boost Qp; = taxj + x;0;. While the first part taxj commutes naturally

with the Riesz operator R;; = (—A)_1 y; ij, the second part x;d; interacts rather badly
with R;;, producing a commutator which scales as

[x; 9, Rij1 ~ V|~
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After repeated commutation of these operators one in general obtains terms of the
form |V|~", which makes the low frequency part of the solution out of control. It is
for this reason that in the 3D case Guo [7] adopted Shatah’s method of normal form in
the L? (p > 1) setting for which the Riesz term R;; causes no trouble.

We turn now to the 2D Klein—Gordon equations with pure quadratic nonlinearities.
In this case, direct applications of either Klainerman’s invariant vector field method or
Shatah’s normal form method are not possible since the linear solutions only decay as
(1 + 1)~!, which is not integrable and makes the quadratic nonlinearity quite resonant.
In [23], Simon and Taflin constructed wave operators for the 2D semilinear Klein—Gordon
system with quadratic nonlinearities. In [18], Ozawa, Tsutaya and Tsutsumi considered
the Cauchy problem and constructed smooth global solutions by first transforming the
quadratic nonlinearity into a cubic one using Shatah’s normal form method and then ap-
plying Klainerman’s invariant vector field method to obtain decay of intermediate norms.
Due to the nonlocal complication with the Lorentz boost which we explained earlier, this
approach seems difficult to apply to the 2D Euler—Poisson system.

As was already mentioned, the purpose of this work is to settle the Cauchy problem
for (1.1) in the two-dimensional case. Before we state our main results, we need to make
some further simplifications. Since v is irrotational, we can write v = V¢ and obtain

from (1.5) (here (V) = /1 — A, see (2.1))

du+ A+ V- uVer) =0,
-2 2 1.2 2 (1.7
O p1 + IVITH(V)u+ 5w +Ve1|7) = 0.
We can diagonalize the system (1.7) by introducing the complex scalar function
h(t):ﬂu—iwmﬁl:mu—kil-v. (1.8)
V] V] V]
Note that since v is irrotational, we have
v
v=——1Im(h). (1.9)

VI
By (1.5), we have

it(V) ! it—sywy VIV i 2 2
h(t) =e ho-l-/ eV —W«(uv)—i—?w(u + |v|7) ) ds, (1.10)
0

where A is the initial data given by

Here uy is the initial density (perturbation) and vy is the initial velocity.
ForT >0,86 >0, N > 8, N’ = N — 3/2, we introduce the norms

. ) 1-26
g, = M1V (VDA qo.r) + 10 DO ey 15 0.1

—it(V)
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and
— - -4
”h”XT = ”h”XT + ”h(t)”C,OHN,([O,T]) + 11{2) h(t)”C?HN([O,T])'

Here for simplicity we have suppressed the notational dependence of the X7 norm on §.
We will use the notation X (resp. X o) when the norms are evaluated on the time interval
[0, 00).

Our result is stated in the following

Theorem 1.1 (Smooth global solutions for the Cauchy problem). There exists an abso-
lute constant §, > O sufficiently small such that the following hold:

Forany 0 < § < 8y, there exists € > 0 sufficiently small such that if the initial data h
satisfies ||e'" Y ho| Xoo = €, then there exists a unique smooth global solution to the 2D
Euler—Poisson system (1.8)—(1.10) satisfying ||h||x,, < const - €. Moreover the solution

scatters in the energy space HV B

Remark 1.2. A simple inspection of our proof shows that it suffices to take 6, = 1/500.
We do not make much effort to lower the regularity assumption (N > 8) on the initial
data although the result here is already better than many existing methods. The main point
here is to construct a smooth and global in time classical solution.

To prove Theorem 1.1, we shall establish an a priori estimate of the form
Inlx, S 1e'™ Y hollxa, + IIRI%, + 121%, + 151, (L.11)

where the implied constant depends only on § and N. The function can be shown to be
continuous in ¢ (see Step 2 below). By a standard continuity argument, if ||¢! TV ho| Xeoo
is sufficiently small, then ||| x, remains bounded for all # > 0, which yields global well-
posedness easily. Therefore our main work is to show (1.11). We sketch its proof in the
following steps.

Step 1: Preliminary transformations and normal form. In this step, we introduce f(z) =
e~V h(r) and rewrite (1.10) as

t
Fte =ho)+ [ [ ) ERT 66— R dnds, (112
where R is some Riesz-type operator and

$o(§,m) = (§) £ (& —n) = ().

By using the fact that the Klein—Gordon phase ¢o(&, ) never vanishes, we perform a
normal form transformation and integrate by parts in the time variable s. After some
simplifications, we arrive at an equation of the form

A

f(t, &) = “initial data” + “quadratic boundary terms” + fcubic (t, &),
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where foubic 1S cubic in £ and has the form foypic = R f3 with

fat.8) = [f ~ispeno) & <>—Rf( E—n)-Rf(s,n—0)Rf(s,o)do dnds.
éo(&,n) Inl 013

Here

¢E.n,0)=E) £ —n)*£(n—-o0)=£(0).
The estimates of the initial data part and the boundary terms are given in Section 5.

Step 2: Local theory, continuity of the X norm along the flow and H" " estimation. First
we carry out the (standard) H” energy estimation and obtain an estimate of the form

d
Z(”h(t)”%m) S (lu®llos + VU@ lloo + 1Y@ lloo) - @) 3,5

The subtle point here is that ||v(¢)|| s does not appear in the energy estimate.

Due to the slow (1/¢) decay in 2D, we need to have a slight (r)? growth of the norm
|h(t)|| g~ in order to close the estimates. Note that u = % Re(h) and v = —% Im(h),
hence

@ lloo + VU@ oo + V¥V oo S [IVIXVIRD]

It remains to prove the sharp 1/¢ decay of the L°°-norm || IVI3(V)h(t) H oo For this and
later estimates, we need to show the time-continuity of the norm || x (1—A)e ™! MRh) loss.
This is done in Section 4. The main idea there is a bootstrap estimate exploiting the finite
speed propagatlon property of the Klein—Gordon flow. In the last part of Section 4, we
complete the H N estimation of /. To lower the regularity assumption, we first introduce
frequency cut-offs x5 and x_ 5 in (1.12). For the high frequency part, we estimate
it using energy smoothing (recall N = N — 3/2) and dispersive decay. For the low
frequency piece, we use the normal form and obtain a cubic nonlinearity localized to low
frequencies. The HY " estimate is used in controlling some boundary terms in Section 5.

Step 3: Reduction to low frequencies and the (2 4 §)-trick. This is an important step in
controlling the X norm of 2. We use a multiscale argument and introduce the parameter
8o = 208. We then decompose the cubic nonlinear term feypic = R f3 (see (1.13)) into

two pieces:
t
2 _ —isp(€,m,0) (~’3> (n > n
heo=| [ & Tl N
: (mIOW(’S;:v n,0, S) + mhigh(%s n, 0, S)) ' Rf(s’%_ - 77)
~7/€7(s, n—o) ~7/37‘(s, o)do dnds
_. f(l) " f<2>’
where

Miow (8,1, 0,8) = Xjeyi<(s)%0 " Xin—ol<(s)%0 " Xjo|<(s)lo-

mhigh(§, 1, 0,5) =1 —mw(,n,0,5).
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We first show that the high frequency piece has good decay properties, namely
‘ 2
™R AP g, S W, - (1.14)

Thanks to the frequency cut-off mpign, we must have either [ — 7| 2 (Y%, In—0o| >
()%, or |o| > (s)%. This frequency localization coupled with the energy norm and dis-
persive effects then produces strong decay estimates for the X, norm of ¢/*(V)R f3(2) (7).
By a delicate analysis we are able to prove (1.14) under the weak assumption that N > 8.
We emphasize that this is the main place where the high derivative assumption is needed.

To control the X norm of the low frequency piece, we must estimate sev-
eral quantities including [|VI*(V)e" VR A (@) ., 1(V)e™VRED (@)]1)5, and
lx(1—A)R f3(1) (7) |l2+s- To do this we show that all the above norms can be bounded by
the L2~ norm of some weighted integral produced from f3. More precisely, we show that

1R AV @z, S fiow(O)ll o 27100 10 ) + 1013, (1.15)
where
N ! . s0
flow(t,é)=/ /e lw'—$¢'(5>4+28'(77>’i~M1ow($,n,a,S)
0 $o(5.m) i

Rf(s, £ —n) - Rf(s,n—0)-Rf(s,0)dodnds. (1.16)

We stress that the choice of the norm || x (1 — ANe TN () ll24s (the 248 trick) comes
from this part of analysis. In particular, when bounding the quantity ||xR f3(1) (245, we
have to control the commutator

1 -1 .0
1. RIS lles ~ [IVIT AP @] -
This latter quantity can be bounded by || fiow(7)ll2—s/100 thanks to the assumption § > 0.

Step 4: Control of the low frequency piece. The goal is to prove the bound
I fiow (D)1l o 23100 ) S WX, + ], - (1.17)

The main difficulty in establishing this bound is the slow (1/(s)) decay in (1.16). To see
this point, we can perform a rough estimation as follows: the integral in (1.16) can be
written as (see (2.2))

t
fiow® = | se7N0T oy (P<iyyioRhR(Pe o Rb - P g3 R)) ds.
0 o &) Sl S S

Ignoring the linear flow (¢ ~/*(V?) and multiplier issues for the moment, one has

t t
I fiow (D) ll2—-5/100 < /0 (8) - Mll24 1213 ds S /0 (s)! 72020 gg |1n |13,

t
< /0 ()" OO ds |13, (1.18)
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Clearly this shows that the decay in s is not enough to make the above time integral
converge. To resolve this difficulty we have to appeal to the specific form of the phase
function ¢ = ¢ (£, n, o) in (1.16) and exploit some subtle cancelations in various cases.
The main goal is to obtain a strong decay (s)~'~¢t9® with € > O(8) in (1.18). For this
we shall use some new ideas and devices, which are discussed below.

o Hidden derivatives. The first observation is that for phases of the form ¢ (&, n,0) =
() — (£ —n) £ (n—o0) £ (o), we have
§ §—n

Orth = — —
TR

where Q is smooth in (&, n). For |n| < (s)~C% the factor 5 in (1.19) corresponds to a
derivative and produces an extra decay (s) €% which will be enough to make the time
integral in (1.18) converge. Similarly for the phases ¢ (¢, n,0) = (§)+{(E—n)E(n—0)*L
(o), the factor d¢¢ will also produce an extra decay (s)~C% in the low frequency regime
161 S (5)7C%, Inl S (s) 7%,

= Q(&, mn, (1.19)

e Normal form and the 7 /|7| problem. Consider phases of the form ¢ (&, n, o) = (£)+
(¢ —n) + (n — o) £ (o). They have the property

1
> .
P R T E— M=o+ ()

By using this fact we can integrate by parts in the variable s in (1.16). Dropping boundary
terms, we arrive at an expression of the form

t 4426
£ ~ _is¢- sa§¢ . <$) . .l
fiow(t, 5) /ofe oEn sEme

iow (&, 17,0, 5) - O (Rf(s, & =) - Rf(s,n —0) - Rf(s,0)do dnds

+ similar terms.

Note that by (1.12), 9 (7/27) ~ 0((Rf)2), which is quadratic in f. By this fact one
may hope to get (s)2T2® decay in (1.18). However this argument is only correct in the
regime |n| > (s)7%. In the low frequency regime |n| < (s)~%, the symbol m . %
is no longer smooth and one has to deal with it separately.

e Partial normal form transform. To solve the 1/|n| problem, we will integrate by
parts using only part of the phase, to which we refer as partial normal form transform.
Consider for example the phase ¢ (¢, n,0) = (§) + (§ —n) + (n — o) — (o). We use the
identity

omisUEVHE-T) _ <$>+ZE )aﬂ([m«smsw)))
— ) s

to do integration by parts in 5. When the derivative d; hits the term e~ /$({1=0)=(0)) "\ye
obtain a factor (n — o) — (o) &~ Q(, o)n, which gains extra decay (s)~¢%. When the
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derivative hits the other terms, we obtain a quintic nonlinearity. Note that in this case all
symbols are separable in the sense that they can be written as

m(&,n,0) =a(§ nb, o)

for some functions a and b. The Riesz factor 1/|n| then causes no problem since we can
deal with the multipliers corresponding to (&, 1) and (7, o) separately.

o Transformation of phase derivatives and frequency separation. Consider for ex-
ample the phase ¢ (£, n,0) = (&) + (£ —n) — (n — o) — (o). By Lemma 2.8 we can
write, for some smooth Q1, O»,

dd = 015, 1,0)d,0 + 025, 1, 0)ds 0,
ise"9p = Q1(&, 0, 0)d,;("*?) + Q2(&, 1, 0)dy (€'?).

Consequently, one can integrate by parts in 1 and o respectively, which boosts the decay
in 5 to (s)7279®_ Note that there is still a subtle issue when we perform the above
argument and integrate by parts in 1. Namely the 9,, derivative may hit the Riesz term
n/|n| and produce an operator |V|~1 which is hard to control for nl < (s)7%. To solve
this problem we have to do a multi-scale partition of the (£, n, o)-phase space and discuss
several subcases (cf. Subcases 3a to 3d in Case 3). In particular for the low frequency
regime || < (s)7%, we have to discuss several situations and use the hidden derivatives
and partial normal form together with several other tricks to treat these cases (see in
particular Subcases 3a to 3c in Case 3). This part of the analysis is quite involved and
uses the nonlinear structure in an essential way.

The above ideas together with some further delicate analysis complete the proof of
Theorem 1.1. The rest of this paper is organized as follows. In Section 2 we gather some
preliminary linear estimates. In Section 3 we perform some preliminary transformations
and decompose the solution into three parts: the initial data, the boundary term g and
the cubic interaction term fypic. In Section 4 we establish local theory, prove continuity
of the X norm along the flow and give the HY " estimate of h. Section 5 is devoted to
the estimation of the boundary terms g arising from the normal form transformation.
In Section 6 we control the high frequency part of cubic interactions. In Section 7 we
control the low frequency part of cubic interactions, which is the most delicate part of our
analysis. In Section 8 we complete the proof of our main theorem.

2. Preliminaries

2.1. Some notation

We write X < Y or Y = X to indicate X < CY for some constant C > 0. We use
O(Y) to denote any quantity X such that | X| < Y. We use the notation X ~ Y whenever
X S Y < X.If C depends upon some additional parameters, we will indicate this with
subscripts; for example, X <, Y denotes the assertion that X < C,Y for some C,
depending on u. Sometimes when the context is clear, we will suppress the dependence
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on u and write X <, Y as X < Y. We will write C = C(Y1, ..., Y,) to stress that the
constant C depends on the quantities Y7, ..., Y,. We denote by X= any quantity of the

form X =+ € for any € > 0.
We use the “Japanese bracket” convention (x) := (1 +|x [2)1/2_ 1t is convenient to use
the notation (V) = +/1 — A where

V) FE) =+ ED2FE). .1)

In a similar manner one can define (V)*® and |V|* for any s € R.

For any function f on R4, we shall use the notation || f||z» or | f]| p to denote the
usual Lebesgue norm for 1 < p < oo.

We write L{ L". to denote the Banach space with norm

q/r 1/q
Nl 29 2r mxmray = (/ <f lu(t, x)|" dx) dt) ,
* R \JR4

with the usual modifications when ¢ or r are equal to infinity, or when the domain R x R?
is replaced by a smaller region of spacetime such as / x R?. When ¢ = r we abbreviate
LiLYas LT ,.

We will use ¢ € C®(RY), a radial bump function supported in the ball {x € R¢ :
|x| < 25/24} and equal to one on the ball {x € R? : |x| < 1}. For any constant C > 0, we

denote p<c(x) := ¢(x/C) and ¢p-c := 1 — p<c. We also write x|x|>c = X>c = ¢>cC
(resp. X|x|<c) sometimes.
We will often need the Fourier multiplier operators defined by

F(Tem (2 9))(€) = / mE, ) FE — maam dn,

F(Tnie.no)(f. 8, M) (&) = /M(E, n,0)f(E —mén —o)h(o)dndo. 2.2

Similarly one can define 7,,(f1, ..., fn) for functions f1, ..., f, and a general symbol
m=m@, n, ... Nn-1)

2.2. Basic harmonic analysis

For each number N > 0, we define the Fourier multipliers

Pnf(&) 1= dpn@E)F(E). PonF(E) = don(@) f(E)
PN(E) = (< — p=n/2)E) F(E),
and similarly for Py and Psy. We also define
Pusn =Py —Pcy= ) Py
M<N'<N

whenever M < N. We will usually use these multipliers when M and N are dyadic
numbers (that is, of the form 2" for some integer n); in particular, all summations over N
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or M are understood to be over dyadic numbers. Nevertheless, it will occasionally be
convenient to allow M and N not to be a power of 2. As Py is not truly a projection,
Pf, # Py, we will occasionally need to use fattened Littlewood—Paley operators

Py = Py + Py + Pay. (2.3)

These obey Py l;N = IsN Py = Py.

Like all Fourier multipliers, the Littlewood—Paley operators commute with the prop-
agator ¢/’ as well as with differential operators such as i3, + A. We will use basic
properties of these operators many times, including

Lemma 2.1 (Bernstein estimates). For 1 < p < g < oo,

VI Put f || o gy ~ ME51Pu f 1l oy
IP<m £l g gay S MYP=Y U Papg £ 10 gy,
1Py S g gty S MYP4N Pag £l o gay-

We shall repeatedly use the following lemma which allows us to commute the L” esti-
mates with the linear flow ¢//(V). Roughly speaking, it says that for # > 1,

1Pce ™ flly SOFNfllp, p=2+0rp=2—.
Lemma 2.2. Forany 1 < p < 0o, g € LP?(R?) and dyadic M > 0, we have
e Poyiglly S (M) gl . 2.4)
Also forany 1 < p < oo, s > |1 —2/p|, we have

e Vegll, S 2PV gl 2.5)
In particular for any 0 < € < 1, we have

6/(2+6)”<V>€/2 it(V) 6/(2—6)”(V>€

gll2—e.
(2.6)

Proof. We first prove (2.4). The idea is to use interpolation between p = 1, p = 2 and
p = oo. We consider only the case p = co. The other case p = l is similar. To establish
the inequality it suffices to bound the L1 norm of the kernel e/!(V) P_;.

Note that ¢/’™Y) P_y; f = K % f, where K (§) = ¢/'6)¢ (£ /M). Observe IKl.2 <M
and for ¢t > 0,

le" M gllate Se (1) glaye. N glla—e Se (1)

[IXPE@) |2 = 102K @),z S ©*M +1+1/M.

Then

12 .
L2 N

1Kl S ||1<||1/2||| 2K | (Mt).

The desired inequality then follows from Young’s inequality.
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Next we show (2.5). By (2.4) and the inequality (Mt) < (M)(t), we have

le" ™ gllp < e Parglly + Y e ™ Puglly

M>1
SO gl + Y M AP 2P Py, S )PV gl
M>1
O
Lemma 2.3. Suppose m = m(&, ) € C3(R? x R?) satisfies
Im| + |92m| + [8;m| € L ,(R* x R?). 2.7
Then
1T (f N S U llp gl (2.8)
forany 1/r =1/p1+1/p2, 1 <7, p1, p2 < .
Proof of Lemma 2.3. Let
1 .
K(x,vy) = , LxE5+Y M gg dn.
(59 = o [ meme £ di
By (2.7), it is easy to check that
1K N1 gexgey S 10+ P+ 9P K G 9l gz
Sz @ewre) +10ml L2 @) + 189m0 12 @22y < 00
Define
1 A N i (x-E4y-
FOxuy) = oy [ me 6 = maone ™0 dg dn,
By Fourier transform,
F(x,y)= f K(x—x",y —y)h(x',y)dx'dy',
where
'Y = o / fE =mgme “E M dg dn = f(xNg(x" + y).
By Young’s and Holder’s inequalities, we then have
(T (fs )Ny = I1F (x, 0z,
=/ H [ kG =xy = yp ey ax | ay
LY
< / 1K Gy =Dl e ligl e dy" = 1Kz £ 1pilIgllp,-
O

By a similar proof we have
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Corollary 2.4. Suppose m = m(£,n,0) € C*(R? x R? x R?) satisfies
4 4 4
Imllz, +N0dmlz +logmlz  +lgml  <A<oo.  (29)
Then

1T (f 8 Wy = C-A-1fllp - 1&llp, - 121l s

forany 1/r =1/p1+1/p2+1/p3, 1 <r, p1, p2, p3 < 00. Here C > 0 is an absolute
constant.

We shall need the following simple Sobolev embedding lemma.

Lemma 2.5. Let the numbers (r, p) satisfy 2 < r < oo, r > p, p > (1/2+ 1/r)~L.
Then for any smooth f on R%, we have

VI S ) £l (2.10)
In particular, (2.10) holds for any 2 < p < r < oo.

Proof of Lemma 2.5. We only need to prove (2.10). By Sobolev embedding and Holder,

VI AL S gty ST Ly - 160 i yztyriyp-1 S 1Efllpe O

Lemma 2.6 (Bounds on the phase function). Let ¥ (x, y)= m forx, yeR>.
Then
102089 (x, y)| Sap min{(x), (y), (x + )}, Va,y e R% @11
Proof. Write
(x) +(y) + (x + )
VO = R O = ()2
KD+ +a+y) O+ +&E+y)
=: . (2.12)
T2 ) —x -y B
We first show that
|8°‘8ﬁ(1/B)| Se.p 1/B. (2.13)
We begin with the estimate
|[0xB|/B < 1. (2.14)
This is equivalent to
- y‘ S 1+ () —x - ). 2.15)

Denote 6 = Tl IDI It is obvious that (2.13) holds for —1 < 6 < 0. Therefore we only
need to consider the case 0 < 8 < 1. Taking the square of both sides of (2.15), we see
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that it suffices to prove for some 0 < € < 1 the inequality

|x|? ) 1
sz +1y1* — 2@')" 716 < —(1+ () () = Ix| 1y16)?). (2.16)

Now consider the function
F(0) = |x[*|y[?0% = 2|x| [y|(y)({x) — €/(x))6.
By using the obvious inequality (x) — |x]| > ﬁ, it is not difficult to check that for
0<e<1/2,
(V)({x) —€/{x)) o1
x| [yl

Since 0 < 0 < 1, clearly F (@) achieves its minimum at 6 = 1. Therefore it suffices
to prove (2.16) or equivalently (2.15) for 6 = 1.

Consider (2.15) for 6 = 1. We have
x ‘ B ‘ x| o 1yl

X
Ty =y ==y =y <1 A 1 =1+ ) = x).
<x><y) y <x><y) Iyl‘ ST+ ‘m ‘ + <x>(()6> lx 1)

On the other hand

() (y) = Ix[ Iyl = ((x) = xDIyl- (2.17)

Therefore (2.15) holds and consequently (2.14) is proved. By using an estimate similar to
(2.17), we have

() (y) = Ixlyl 2 max{lyl/{x), |x[/{»)}. (2.18)
This together with (2.14) obviously implies that

|0x B[ + 19y B[ + (x)/{y) + (y)/{x)
B

<1 (2.19)

It is easy to check that

X
10290 B| Sap @+Q, Vie| + 18] > 2. (2.20)

()

The estimate (2.13) now follows from (2.19), (2.20) and an induction argument.
By (2.12) and (2.13), we have

0208y (x, )| S ¥(x. ).

It remains to prove (2.11) fore = g = 0. If (x + y) K€ (x) or (x + y) <K (y),
then the estimate is obvious. Without loss of generality assume that (y) > (x) and
min{(x), (y), (x + y)} ~ (x). Then by (2.18) and (2.12), we have
ry) < T
L+ 1yl/(x)

Therefore (2.11) is proved. ]

v (
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We need a simple lemma from vector algebra.

Lemma 2.7. Forany x, y € R%, we have

2 = -y 221)
Wy ST '

where Q(x,y) = Q is the matrix given by

Qij = L(1 LGOI ) = L<5ij i ) ) l<ij=2
(y) () x)y+ ) /i ) (x)(x) + (¥)

(2.22)
Denote ¥ = (—x2, x1)7, y = (—y, yl)T. Then
s o T
-1 _ 1 —x. —1<[ _ M) 2.23
o ) Ux) + DA+ () y) —x-y) YIS (2.23)
We have the pointwise bounds
%98 0(x, y)| <« -1 Va, B,
[0y 0 Q(x, Y)| Sa.p (¥) o, B (2.24)

192080 (¢, DI Sep ()P + ()% Va, B.
Proof. We first show (2.21):

Xy L_L> I € o L S e DN SPR
_x(<x> o)t T amm oy TmE Y

(e e )
) () + () -

Since Q is a two by two matrix, the expression for Q™! is a straightforward computation.
The bounds (2.24) follow easily from (2.22), (2.23) and a similar estimate to (2.13). O

We shall need to exploit some subtle cancelations of the phases. The following lemma
will be useful in our nonlinear estimates.

Lemma 2.8 (Transformation of phase derivatives). Consider the following phases:

$15,m,0) = (&) +(§ —n) —(n—0o) — (o),
$2(8,m,0) = (&) —(E —n) +(n—0o)— (o),
¢35, m,0) = (&) —(E —n) —(n—o0o)+ (o).

There exist smooth matrix functions Q11 = Q11(6,n,0), Q12 = 012(5,1n,0), Q21 =
0216, 1), Q2 = 022(n,0), Q31 = 031§, n), O3 = 032(n, 0) such that
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a$¢l = Q]](E? n, U)an¢l + Q]Z(E? n, U)aa¢],
s = 0216, 1) 022(n, 0)35¢2,
de¢3 = 0315, 1) 032(n, 0)05 P3.

Moreover we have the pointwise bounds

Va, B, v,
(2.25)

1089807 011(E. . o) + 10808 9Y Q126 1. 0)| Sy (EI+ Il + lo])?,
10808 Qa1 (&, )| + 19292 0316, )| Sap 1. Vo B,
10292 022 (n, )| + 1350E 0320, )| Sap (Inl + lo])?,

Proof. We prove the statements for ¢;. The other two cases are simpler. By Lemma 2.7,
we write

Ya, B.

§ §—n ~
a g = s . 2 - 5
£ 1 ) + ) 01(&,n)- (25 —n)
n—=;§ n— =
9,01 = - = ,n,0)-(§ —0),
n®1 T 02(,n,0)-(§ —0)
bt = ——2 — T = 03(5,0) - (n — 20).
(n—o) (o)
Hence
dep1 = 01205 0y¢1 — 03 8:¢1) =1 Q1131 + Q123501
The bound (2.25) is obvious. ]

3. Preliminary transformations
Since the function & = h(z, x) is complex-valued, we write it as h(z, x) = hi(t,x) +
ihy(t, x). By (1.8) and (1.9), we have

M v
=—h;, v=——h.
V) V]

In Fourier space, (1.10) then takes the form

l’l — ]’l i(t—s)(& —1 'i: (g
(&) =" Sho&) — // In ||§||§ )

(- Inl 1§ —nl ~ 3
r i(t—s)(E) h h dnd
/ fe |$|< ><§ > ](San) l(své 77) nas

__/ f it=s)(& |§|r|’77||(§ n|)h2(s Mha(s, € —n) dnds.

Denote f(t) = e~ ") (¢). Then after a tedious calculation,

D iy (s, myha(s, & — ) dnds
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, .
76, 8) = ho®) + fo / eis<<é><"><f">><§<s><n>‘| G-

€015 — )
|s|!”'><'§ '> |s|'|’n|(é n?)f(s,n)f(s,é—n)dnds
+/ot/e”( e ( O™ 'Tai_n?
|s|<'”'><'§ n'>——|5|'|’n|(é "f)m,mmdnds
R e
|é|l”;i nl——|s|’|7m(é )f( —n) f(s,& — ) dnds
/f isti )( 2Em fs'(é_”?
|s|!”l<'§ nl 'S'Tm(é )f(s —n) fs,n— &) dnds.  G.1)

Here f denotes the complex conjugate of f . Note that

F.—&) =" ®h,£), .8 =e"Oha, ).

To simplify matters, we shall write (3.1) collectively as

t . A A
F(t.8) = hoe) + fo / TINED 6 ) Fs. & —m)fsamydnds,  (B2)

where
#o(§,m) = (§) £ (5§ —n) = (n), (3.3)
and mq(&, n) is given by (after some symmetrization between n and & — )
_ P & E—m) Inl
mo(&.m) = const (%Hm €—n T S e = )
Inl 1§ —nl E—n)-n
ay & —m T e
4
= > mi .
i=1

Hereafter we shall slightly abuse notation and write f (z, &) for both itself and its

complex conjugate (i.e. f (t, —£&), see (3.1)). Note that in the expression of m (&€, n) there
are four types of symbols. For w = (w1, wp) € R2, define

riw) =wi/lwl, W) =w/lwl, rw)=wl/(w).
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We write mq(&, n) collectively as

mo(§, 1) = Z a,kz ) -1 ()€ —mri(n), G4

Jk,1

where ajy; are some constant coefficients. For example

m3 (€. ) = const - () - % : H : !Zl const - (£) - r3(6)r3 (6 — mr3(n).

Although the frequency variables (£, n) are vectors, this fact will play no role in our
analysis. The actual value of the constants a;;; will not be important either. Therefore
we shall suppress the subscript notation and summation in (3.4), pretend everything is
scalar, and regard mq (&, n) as any one of the summands in (3.4). Observe that mo (&, n) is
symmetric in the sense that

mo(§, 1) =mo(§,§ —n). (3.5
The nice feature of Klein—Gordon is (cf. Lemma 2.6)
lo(6. mI Z 1/(I&1+ Inl) ~ forany (&, n).
By the simple identity

emistoteny — 10 iy

—igo(5,m) Os
we can then integrate by parts in the time variable s in (3.2). By (3.5),

t
—isgo (&, n)m()(é 77)8 _ d
/0/ B0, s £ = ) fs

/ [ eimen ZOED ”) o femiGE—mdn (3.6
P06, 1

using the change of variable n — & — 7. In the above equality we have again abused
notation and denoted ¢g (&, n) = ¢o(&€, & — n) since it will remain of the same form as
(3.3). By (3.2), we have

3 f(s.m) = / e 0D mo(n, 0) f(s.n — 0) f(s,0) do. 3.7
Integrating by parts in the time variable s in (3.2), using (3.7) and (3.6), we obtain
Ft.8) = ho® + 81, )
+ /0 t f IVERD (&, ) f (s, € — ) f 5,1 — ) f (s, o) do diyd
= ho®) + 81, &) + foubic(t, &), (38)
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where /1 collects the contribution from the boundary term s = 0 and data hq:

ho@®) = ho@) + [ PUED e homydn = ho®) — 80,8 (3.9)
igo§, n)
the term g denotes the boundary term arising from s = #:
8,8 = / emitdon  MOCI_pe F (3.10)
—igo(&, 1)
and
_ mo(§, mmo(n, o)
mE o) = e
$E,n,0) =) EE—nEx(n—0)x(0).
Note that
mo(§, Mmo(n, o) = Z EYmriE)r(E —myr(mry (Mry(n — o)rp(o)

1<j.k,1,j" Kk I'<3

= Z &Y mrimry (mrjE)ri(E — mri (n — o)y (o).

I=j.k.1,j K I'<3

We shall slightly abuse notation and write

RIE =r@©f&). rE) =ri@), r&), 3, orrjE)ry (&),

n/Inl = ri(mrj ().
The notations R and n/|n| suggest that the functions r; and r;rjs are essentially the sym-
bols of some Riesz-type operators or better. Their estimates are the same and the actual

form plays no role in the proof. By adopting the above notation we can greatly simplify
the presentation and also the analysis. In this notation, we shall write

Feubic(t, &) = const - Rf3(t, £),

and

» Y (&) - (n) =
— is¢(&,n,0) R —
f3(t,8) /0 /6 S0 G. 1) f(s.&—m)

: %(7’37(& n—0)Rf(s,0))do dnds.  (3.11)
n
In a similar way, we write the boundary terms as
£(1,8) = const- Rgi (1, §),
()

§1(1,6) = [ e 0ED Sl _R7r, & —mRI, n)dn. 3.12
81,8 /e SR .E — DRI dy (3.12)
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4. Local theory, continuity of X norm and H" estimate

‘We recall that

. (V)V i 2 2
8,h=z(V)h—W-(uv)+§|V|(u + [v|9), “.1)
where h = h| +ihy, and
VI v
u=—h;, v=——h;.
(V) V]

Theorem 4.1. For any k > 4 and hy € HY(R?), there exists Ty = To(lholl gx) > O
and a unique smooth local solution h € C?Hk([O, To] x R?) to (1.10). Moreover, if
ho € H'(R?) and ||x(1 — A)hglla4s < 00, then

a(t) = [lx(1 = A)e "M h(t)]l245 < 00
forany O <t < Ty, and a(t) is a continuous function of t. Furthermore,

@ co v 0.7y S Tholl e + A1, + 11, -

The rest of this section is devoted to the proof of this theorem. We begin with the H* local
well-posedness theory, which is quite standard. We sketch the details here for the sake of
completeness.

4.1. Energy estimates

Let m be an integer. By (4.1), we compute

1d -
—— | 0"hd"h
2 dt /

_ m m . mﬂ 1 m 2 2\ qm l
/8 (W'V (uv))B |V|u+2/8 VI~ +|v|7)o <|V| v)

m ml_A 1 my(, 2 2\ am
=—fa V- (uv)d Au~|—§f8 (u® +v[7)3" (V- V). “4.2)

L? estimate. Taking m = 0 in (4.2), we get

1-A
—A

1d
2 dt

1
(||h<r)||iz>=/uv.v u+§/(uz+|V|2)(V'V)

2
IV - Vil (lull3 + 1IvI13)
v,

S (ulloo + 1V - Vlioo) 1A

S Mulloo Vil u
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H* estimate. Taking m = k in (4.2), we have
1d _
57 1R OIL) =—/a"V-<uv>(ak(—A) ")
—/8kV~(uV)8ku
1 k. 2Nk
+5 [ 8@V
1
~I—§/8k(|v|2)8k(v-v).
For (4.3), we estimate

4.3) = —/akVu-V(E)k(—A)_lu)—/u(akV-V)Bk(—A)_lu

+ ) 0(/ a’ua“l’vak(—A)lu)
1<i<k
= %f |8k(—A)_1Vu|2(V-V)—i—/u(akv-Vak(—A)_lu)
+ 0(/(—A)lak+2u . 8V8k(—A)1u>
+ > 0(/ a’uak+1—’va’<(—A)—1u)
1<i<k

2 2
IV - Vlloolleell 7px & lleelloo VIl i leell g 4 119V lloo [l 1

N

k
1—
—i—E 118 w2 185 W] 2y ot | g
=1 -1 k—I

S (lulloo + 13V Uluel3x + 19136

1

! k—
—

k -1 ! ! -
k - k -
+ E 19%ully~" ldullss" 19°vIs~" 10VIIas" llul g
=1

k=L
k—

S (Iullos + 10ulloo + 13VlIoo) (Nl + 1¥11%,0).

For (4.4), we write

(4.4) = —f(akV~V)u(8ku)—f(akVM'V)(ak”)

+ ) 0(/ 8lu8k+l_lv8kudx>

1<i<k
1
= —f(akV.V)uaku+E/V.v(aku)2+...,

where “- - -~ denotes terms which can be estimated in a similar way to (4.3).

4.3)

(4.4)

(4.5)

(4.6)
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Similarly,
4.5) = /(8kV-V)u8ku +oe

Also, using the fact that curlv = 0,
1 kg2
(4.6) = 1 [0°V]*(V - v) + - -
Collecting all the estimates, we obtain

1d
3 E(||h(t)”%1k) S (ulloo + 10ullco 4+ 10¥loo) 1A ()13

This concludes the energy estimates.

4.2. Continuity of X norm along the flow

Now we show that '
at) = x(1 — Ae " Vh(t)|lags

is a continuous function of ¢ (so that we can use the continuity argument later). Without
loss of generality we shall assume 0 < ¢ < 1.

Step 1. For any dyadic R, define

Ao — u n Vu
R = || XR/2<|x|<2R v XR/2<|x|<2R vy )
p p
where we fix some p suchthat2 +§ < p < 2(2 + §). Here
XR/2<|x|<2R = X|x|<2R — X|x|<R/2-
We first show that
AR <1/R for R > Ry, “@.7

and Ry as sufficiently large.

Linear flow estimate. For 0 <t < 1, by Lemmas 2.2 and 2.5, we have

VI it(V) ‘ (V)
XR/2<|x|<2R-—=<€ ' 'hg + XR/2<|x|<2R == ho
‘ (V) |V| »
< 1(” V1, I A )
~ w)° » V| ,
S S(IviTte™no|, + @)l holl, + 1Y (o))

N

2PV R |+ () 1D ol + 11(V) (xho)l )

x| == == X

A

(1Yol + lholl 3 + l1x Ao ll2-+5).-
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Similarly,
IVl v
‘XR/25|x|§2R—Ve”(V)h0 + | xr/2<pxi<28 — Ve Vg
V) P VI »
5 l( meeit(V)hO + xzveit(V)hO )
R (V) » ™ )

1 . . ;
< E(ue'“whonp + IV Y ho |, + 1Ve" Y (xho) )

1 _
< E(Ilhollm + IV(V) 2P (xho) | ).
Now note that by Sobolev embedding,
2 2
IV(VYA=2PF (xho) |, S IIV(VYIH PV T5 70 (xho) 245

Since2+% - % < 2, we get

IV 2% eho)lp S lholl g3 + llx Aholl2+5.-
So the contribution from the linear flow is < 1/R.
Nonlinear flow estimate. Denote

t ;o
Nu(t) = /0 e“’—W[— V- (uv) + ’5<—VA)<u2+ |v|2>} ds,

r vV [ (V) i
Ny(t) = / =9V [—(—V . (uv)) — —V@u*+ |V|2)i| ds.
' 0 IVI\ V] 2

‘We discuss two cases.

Low frequency piece. First note that by using the finite speed propagation of the Klein—

Gordon propagators cos T(V), Sin&()v) we have, forall 0 < 7 < 1 and R > 100,

XR/2<|-|<2R COS T(V) = XR/2<|.|<2R COS T(V)[X(2/5)R<|-|<(5/2)R]>

sin (V) sin (V) [ 1 4.8)
= = XR2<||S2R——=v— LX©2/5)R<|-|<(5/2)R]-
V) /2] (V) (2/5)R=|-|=(5/2)R

XR/2<|-|<2R
Consider the operators
1 ~
K(<1)f = X@/5R<x|<5/2RVP<1(X f),

K2 f= 2 bz
<1f—X(2/5)R§\x|§(5/2)Rﬁ <1 (X f),

\% ~
(VYP<i(X ),

3)
K@= -
21 = Xe/mr=ixi=5/9R VI V]

where ¥ = X<R/4 OF X>4g. We claim that

. 1 _
”Ki]f”p S E||f||(l/2+l/[))’l forany j =1,2,3. 4.9)
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Indeed, we shall prove it for j = 3 and X = x<g/4. The other cases are similar. For any
dyadic N < 1, it is not difficult to check that for some W (§) = ¢<1(§) — d<1,2(8),

—1 ll >:| — i§z (i)ii d
[F (|V| vV ) @ /e Y\ ) e ® %

_ N f e"E'NZws)é—' |‘§—|<N5> de = N*G(N. 2),

where ¢ € C satisfies

|p(N, 2)| <k (Nz)™%  foranyz e R, N < 1.

‘We then have
3 vV Vv -
IKS fllp £ Ixeyswisi=sian o o (V) PR E Dllp
— VI V]
_ 1
S D INRYTONIflajpiismet S 1 lajariypt-
N<l1

This settles the estimate (4.9). By using (4.8) and (4.9), we have

I XR2<1x1<2R P<iNullp + I XR/2<1x1<2R P<1NVIIp
+ 1xr2<1x1<2RV P<iNullp + | xR /2<1x1<2RV P<1 Ny |l
< 1(To) | xr/a<ixizaru’ Il + (o) xr/a<ixi<ar VI 1o + C/R
< n(To) (Il xrya<ix|<arullp + I xr/4<)x|<4r V] p) + C/R.
Here n(Ty) — 0as Ty — O.
High frequency piece. By (4.8) and a similar computation to the one in the low frequency
case, we have
xR/ 2<1x1<2R P> 1Nullp + | xR /2<ix1<2R P> 1NVl
+ I xr2<ix1<2R VP 1Nullp + 1 XR/2<1x1<2RV P> 1Ny p
< U(TO)[H(V>3(XR/4§\x|§4RMXR/4§\x|§4RV)||2
+ IV [Otr/asiei=ari) 2 + VY [Otr/a< x4V 1]

+ Y INRYTONA (s A+ V117,
N>1

< n(To) (I xra<ixi<arullp + | xR/4<ix1<4R V]I p) + C/R.

Collecting the estimates, we obtain

AR S n(To) (Il xrja<ixi<artellp + I XR/4<ix1<4r VI p) + C/R.

u Vu
am = ||X2m—1§|x|52m+1 v sz—lglxlsznﬂrl Vv

Now denote

"

p p
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Clearly by choosing Ty sufficiently small, we have
am < %(am—l +am + amy1) +C - 27", (4.10)

Note that a,, < 1 for any m. Iterating (4.10) gives a,, < 27", Therefore (4.7) is proved.

~

Step 2. We show that |x(1 — A)e V) h(1)||2s is continuous in 7. We first prove that

x(”)” <1 @.11)
v o0

1
HX|X|~R<u> ' < —  forany R > 100.
V)l R

This is equivalent to

From Step 1 and Sobolev embedding, we have

e ()] = s (O, # [

Hence (4.11) holds.
To continue we need a simple lemma.

< 1/R.
P

Lemma 4.2. Foranys > 0,

(VY (f@)llo4s S IIxfllocligl gs+s + 1xglloolLf | gs+s + I fll gs3llgll gs+s. (4.12)
Proof. We write

-

(V)*(f9)é)
= (&)° [ X Je—m<1.f (€ — Mg dn + (£)° / XnJe—my=11 (E —m&(n) dn

= (&) / Xie—ny/im<1f(NEE —n)dn + (&)° / Xn ) E—ny=1F (& —mgm) dn.

Differentiating in & gives

Fewr () © = 0™ [ xe-mma fnae —mdy @13
+60° [ Benie-msm=r Fnieee —man “.14)
+60° [ emmar FTEE —mdn “.15)
+ (&) f X /& —m=1%F (€ = M) dn (4.16)
o

where “- - -” denotes similar terms.
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It is not difficult to show that

IF @130 246 + IF 1@ 14D ags SN gsesligll goes-

We shall only estimate (4.15). The estimation of (4.16) is similar. By Lemma 2.3, we have

IF @I l215 STy, ety -c0- (V)T fxg) 245

SV Fllagslixglloo S lxgllooll £l gsss-

The lemma is proved. O

By (1.10), observe that
1= A)e "Vip =1 = A)hg
(V)v

t
+[ eV A)<__ (u v)+—|V|(u + |v| ))
0 VI

By Lemma 4.2 and (4.11), we have
[x(( = M)V h(6)) = x(1 = Ao, 5

t
4
S leHlull oo o lIVI oo o +/ X (V)" @v)ll24s ds
0

t
+ /0 (I (V) @D ll4s + 1x (V) (VI llo1s) ds

S el el (lxulloo (el g7+ 117

+ lxvlloo (el g7 + VIl g7) + (lull g7 + ||V||H7)2)
S el

Clearly this gives continuity in 7.

4.3. HY estimate of h

By (1.12), we decompose f as
3

= hoe) + / / —”"’OE@ Xie (510 Xig (o RI (5. & — RF (5. m) i ds
4.17)

t . — —
+,/() /e_”(po%<$>X|§—r;|>(§}10‘;X|q|§(s)105Rf(S7S - n)Rf(sv 7]) d’? ds (418)

t . — —
+ /0 / e‘”"’"%<§>X|n|><s)los73f(s,é — MR, mdnds. (4.19)
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For (4.19), we compute
I~ (A1) [ v
< /O t 1P (105 RA(S) - RI(S) | w1 s
/ l(nP 310 | vt IRA(S) oo + 1R )| garst | P 510 RA(S) o) dis
< /O l<s>—55||h(s>||HN/+3/2 VRS 115 ds
< fo t<s>—55”—“—23> ds |hl%, < Ik,

Here we have used the fact that N’ = N — 3/2.

Similarly
171 (@180 | yar S IR, -
For (4.17), we use the identity e "#5%0 = % % e~15%) to integrate by parts in s, which
gives
. e—is%0 £ . e s=t
@IT) =1 | = 2l Mgt 0 gy R (5,& = DRT G| (420)
s=0
ze‘”‘”o — —
f / - |$| 105 Ot <100 Xy < 5710 RT (5, & — R (s, 1) dn dis
4.21)
—zsq)o o
/ / &) X|&—n)=<(5)10 X || (5105 Os (Rf(s E—nRS(s, n))dnds.
(4.22)
For (4.20), we have

IF (@200l v S 1 T1/go (P<1Rho, P<iRho) || gy
+ 171 /g0 (P<py10s RA(2), P—ipy10s RR(O) | w1
< llholl3 + ||P5<;>106h(l)||H1v'+4+5 NRA® oo
S llhol3 4+ )42 0%, < R,

For (4.21), we note that
P ( _ M —1
s (X1 (108 Xpp| < (5)106) = X —n|< (s)100 X|y| < ()10 {(s)

@ -1
F Xjg—nl<(s)105 Xy < (gy108 (80
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where x 1, x @ are some modified cut-offs. Therefore

t
IF @20 [ yn S /0 () THUVIN O P 105k () 12| R P )10 (5 [l oo ds

~

~

t
—1—(1-268)+405 2 2
<f0<s> A=20H40 gs nl1k, S IR0, -

For (4.22), we observe that (see (3.7))
SV FTL @ (RF(5))) = R(V)(RA(s) - Rh(s)).

Therefore

~

t
IF @220 v S /0 () 7207200 g h %, < Al -

5. Estimates of the boundary term g

In this section we control the boundary term g coming from integration by parts in the
time variable s (see (3.10)). We have the following

Proposition 5.1.
)4 = D) Mgl 13 ) + I = D)D) o243 0,17y S WA, -
By Proposition 5.1 and Sobolev embedding, it is easy to show that
)™V g (Ol e 0.y < 1A%, -

The rest of this section is devoted to the proof of Proposition 5.1. We begin with a simple
lemma.

Lemma 5.2. Forany 1 <s' <7andt > 0, we have
V) hO) ey < 6) "B |m) . (5.1)
Similarly forany 1 < s’ < 6andt > 0, we have
V) (O lhase < 670D a1, (5.2)
Proof of Lemma 5.2. Observe that by interpolation we have
V) Porh@lliess S 1O ey S (6778 |k,
On the other hand, for any dyadic M > 1,

’ 1 /8 1—s'/8
1Y) Puh)liesy S M™O7 (MBI Pyh()112)"* (M1 Puh()]100) ™

S MU O

Summing over M gives (5.1).
The estimation of (5.2) is similar except that we use ||A(?)| yos S 1forallz > 0. O
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We begin by estimating ||(1 — A)e’”™) g(#)|l15. By (3.12) and Lemmas 2.3 and 2.6 and
5.2, we have
11— A)e™ Ve @)l175 S 1 Tiey3 g, (REW), REA) 175

S IV RAG ool (V)RR 1175

1
S IUVYCRO) 361 (V)R 175 S muhn%{,.

It remains to control ||x(1 — A)g(#)]l2+s- By (3.12), we have

lx(1 = A)gllas S llx(1 — A)Rgill2+s-

Note that
£ 24 ) (I £ \s § 2~
e — ~ = — — .
s(m(E) g1(8) 2] 16) + |S|<§>g1(é)+ |é|<§> xg1(§)
Therefore by Lemma 2.5,

Ix(1 = ARgill2rs S [IVITHV)281|5ys + V)1 248 + (VY2 (xgD)ll24s
Slgtlge + 1x(V) g1l + V) (gD llots
Sletlg + V)2 (xgn) .

It is easy to check that |gillg2 S ||h||§(’. We only need to estimate (V)29 (xg1). We
decompose g; as

21(1,€) = / e—“¢°f—o>xw/<n>g7’e7<r,s —)Rf, n)dn (5.3)
+ / e‘”"’of—gngm/m)ﬂﬁ?(h& —)Rf, n)dy. (5.4)

We shall only estimate the contribution of (5.3). The term (5.4) can be dealt with in the
same way as (5.3) using the change of variable n — & — 7.
Now we have

(£)*Txg1(t, €)

= (=in)- f Bepoe i1 . @;0

+ / i1 (£)2H0 5, <§—0>X|gn|/(n>51)7/37(h5 —Rf@, n)dy (5.6)

346

Kl <1 REtE =R, Mdn (5.5

N itdo <$)3+8 o -
e ™ Xig—nl/m<10s (Rf(t, & —m)Rf(t,n)dn (5.7

—+ ..,

where - - - denotes similar terms.
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By Lemmas 2.3 and 5.2, we estimate (5.5) as

||.7:_1((5.5))||2 < |t|” T 345 (RA(2), Rh(t))”
Sao Xlg—nl/tm=19 %o 2

S IV 2RO 136 1{V) A [113/0.5
S ey~ ()= % S IRl -
Similarly
IF 1G-S Ikl

For (5.7), we note that by Lemmas 2.2 and 2.5,
1(V)2720861 V) F=1 (@ (R ) 12425
SO (V) 2IV 7! fllaas + VYRGS lla42s)
SO (Ix (1 = A) fllogs + £ 1 2)-
Therefore

IF=HGE 2 S Wl 0 V)22 o < IR, -

-
2+28)

The proposition is proved.

6. Reduction to low frequency

In this section we control the high frequency part of the solution. The main result of this
section is

Proposition 6.1.
”emV)f bic(O s < ||h||3 + Il fiow (Dl 2-5/100
cubic X, ~ X, ow L®Ly ([0,t])°

where

N t . 0
Fow(,8) = /0 / eis0 S0P myai2 6 0)

Po(&,n)
— r} — —
“Rf(s, & — n)m(Rf(s, n—0)Rf(s,0))dodnds (6.1
and
Miow (§ 1, 0) = Xjg —pi<(s)% Xjy—o|<(5)%0 K| | <(s)%0
Here 69 = 206.

The rest of this section is devoted to the proof of this proposition.
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Estimate of |||V1* (V) (e feuric) | ., and 11{V) (€™ feupic)ll1/5. By using the disper-
sive inequality and noting that fyhic = const - R f3 (see (3.11)), we have
VI (V)™ feupic @) | o

S MNPy (Dl + Y M Py f3(1) oo
M<1 M=>1

1 348 1 3428
— — M P, < —|V .
(>||f3||1+ o MEZI | P f3llh S o (V) Sf3lh

Similarly,

V(" feuic s S IVIEY 3Dy S 6™V fall 1 _g)-1
S TIPIVYTR fa).

Since
(VY2 51 S 1O (V)3T £3) =8 100,

we obtain

ONVIEEY feuvie ) || o, 4+ 0PIV E ™ feuvic ) 1175
S XUV £5(0)112-5/100-

Estimate of ||x(1 — A) feubicll2+s. By Lemma 2.5, we have

IX(1 = A) fewvicll2+s S IXR(V) f3ll245
SNIVITHUY £ 505 + V) Fall2gs + (V)2 @) 1245
S VTR ] s + 1V Bllas /100
SV f3ll-s100.

Estimate of ||(x)(V)*T2 f3]lo_s/100. We shall only estimate [x(V)3*% f3]l2_s/100. The
estimation of || (V)32 f3_s /100 is simpler and is omitted.
Observe that by (3.11),

t . 1
v)3+28 / / —is¢ 4428
F({V) f3)E) = | e —¢0($ n (&) (m

Rf(s.6 — ﬂ)ﬁ(Rf(S n—o)Rf(s, 0))do dnds.

Differentiating in & gives us

F(=i)x (V)12 f3) = 3¢ (F(V sz)(s))

_ ~isé (_isa 4+28
fO/e (=is g¢>)—¢0@ (60

'7’37(&5 n)ﬁ(Rf(s r)—a)Rf(s O’))dO’dT)dS (6.2)
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£)4+28
= [ (e )0
#o0(§, 1)
~7?,f(s,$ — n)ﬂ(Rf(s n—a)Rf(s a))dadnds (6.3)
B %-)4+28
mp
/ / g0 "

. Bng(s,E — n)ﬁ(Rf(s n— 0)7237(& a)) dodnds. (6.4)

We first deal with (6.2). We have

! —isp_ 959
(6.2) =/0 /(—IS) ¢¢0(§ m <§>4+28<77)X|g_m><s)50

-Rf(s,é‘—n)ﬁ(Rf(s n—a)Rf(s o))dadnds (6.5)

! . —is 8§¢
+ /0 f (—is)e "’m(s)“““w)xlg_w (5)%0

Rf(s. € —n)ﬂ(Rf(s n—)Rf(s,0))dodnds.  (6.6)

For (6.5), we further decompose it as

N
(6.5) = /0 f (—i8)e ™ =2 ()2 (0) ) e —m) <1 K 5170

$0(&, m)
RI(s.6 — n)%(ﬁ?(s, n—0)Rf(s.0))dodnds  (6.7)
! . —Is 8§¢
_’_/0' /(—ls)e ¢m(5)4+25(7’/))((77)/(5—'1)>1X\§—'7|> (s)%

-7/37(&5;‘ - n)ﬁ(’Rf(s n— U)Rf(s a)) dodnds. (6.8)

We estimate (6.7) as

IF1(6.7) ll2—s/100

t
</ s‘eism
0

By Lemma 2.2,

(RP_ oh, R(RARA))) HHHOO ds.

(6.9)

T o4
( Foem E ) X6 -n<1

—5/100 is(V) < 7<\8/100
(V) e ||L)%—6/100_)L§—6/100 < {s) .

Therefore by Lemmas 2.3 and 2.6, we have
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(RP_ y0h, R(RRRN)))

o5 (V) (T a6

o EVP )Xy -m = H 2-5/100

_ H (V) —8/100,is(V) (T "

FoEm (&R0 ) gy <1 (RP. (oo, R(RA Rh))) H

2-8/100

< (5)/100 (RP_ (yp0h, RIRRRE))

T 0

oD <$)4+26+S/100(n>x<

n/E-m=1 2—5§/100

< (S)S/IOO‘ T o

T+36
P (E)4+26+8/100(,7))((]7)/(5_”)51 (E—n)—(T+38) ()1 ((v> 7Q’P>(S)‘50h’

(VIR(RhRh)) Hz—S/IOO

SAONYFIRP_ a0l 128 /100-28)-1 (V) R(RE R |12
SONTYTFP_ o k2l (VAR 5 S ()10 (s) 20N 770045y 2(5) 7202
S

§) 20N R L S () TR,

where we have used the fact that N > 7 and 76 < 8o(N — 7). This clearly implies that

t
IF1 (6.7 2100 < fo ()71 ds - Al S WAl
Similarly
I ((6.8)) l2-5/100

t
< / () NONTYTFIP_ sy RERI 1 s 1 I{V)Rll1y5 ds

~ Jo 2=5/100

t
< /0 ()71 ds - I, < Il

Therefore
IF 1 (6.5)l2=s/100 < N1R11%,-

For (6.6), we decompose it as

! o _isp 0@
©0= /0 /(_”)e 50— (P 1) Xy <90 Xipmol (610 Kio = 1

o0&, m)
Rf(s, & — n)%(ﬁ?(s, n—o)Rf(s,0))dodnds (6.10)
' . —is 8545
+/0 /(_m)e ¢¢o($,n) <$)4+28(n)XPE—’?\S(S)‘SOXln—0|§(5)50XIJI>(S>80
'@(575—’7)%(7/37(&H—G)@(s,a))dcrdnds (6.11)
n
' . N, —is ai"d’
+/(; /(—lS)e ¢¢0($’ n) (%-)4+25 (ﬂ)X|§,mS<S)60X|n76|>(s>50

R (5.8 = (R 6.0 = OORF (5, 0)) do dnds. (6.12)
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The estimation of (6.11) is similar to that in (6.7). We have

IF=1((6.11)) l2=5/100

t
< /0 () ORI s IOV (P g REP. g RI 11 ds

~ 2=5/100

t
< / () ORI s (VYT P o R 1o 1 1P i hllngs
A <

2-5/100

F IV PRI 1 s 1 I1P-gyohlliys) ds

2=5/100

< fo () 0T R s (V)N Rl (s) 0 1Y) Rl s

+ (5) NI N | (V)R s) ds

t

g /(; (S)1+8/1007(1725)(<s>730 + <S>750(N77775))(S)S(s)f(lles) ds”h”%(t
t

< /0 ()" ds|hll, S kI,

The estimation of (6.12) is the same as (6.11), and we have

IF1(6.12)ll2=5/100 < 12113, -

The piece (6.10) is exactly in the form given by (6.1). Hence we have finished the estima-
tion of (6.6) and consequently the estimation of (6.2).
11 1
4+25[_ LY <_>]
() do b0

We now estimate (6.3). Note that
aeaf| L L Lo (L) < min{(£ —n), (n)}, V& neR?
13| ¢0 s ~a, B ny, N, i .

~

o o) ®o

4425 3428
a;(“” ) e (€>4+2aa‘§<i> ~
By Lemma 2.6, obviously

(&) $o

We then write

( >4+28 ( >4+28 ( >4+25
3&( E¢O ) = X(E—n>/<n><1aé< E¢O ) + X<§—n)/(n)>13$< E¢0 )

It is not difficult to check that the functions

(€)%r1 (&, m) () () =13 ()= e gy =1
(€)°ma(E, m(m)(E — )~ O3 (g — =T =t
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satisfy (2.7). Therefore, by Lemma 2.3, we have

t
IF=1(6.3)l12—s/100 S /0 (5)2/100
7+48
Ny n o643y -049).g -1 (VRA, RAVY TR RERD) [, 109 45

t
+/ (5)3/100
0
T+46
N Ty iny 6=y 6301 =gy~ (V) FERRERCVY(RERI) |5y 10 D

t
S /O ()N AIs IV TR RER 1 g 1 ds

~ 2=5/100

t
+ /O (N TRRN g VIR R [12s) ds

2=5/100
! 1 3 3

S / (s)" " dslhly, < Ihlly,-
0

Finally we estimate (6.4). We decompose it as

t ise <$>4+25
(6.4) = /0 /e S0 ) (M) X&) <(sy%

R (5,8 = (R (5.0 = OORF (5, 0)) dordnds (6.13)

t ise <$>4+28
+/0 /e g0 m Xm0

RS (5, € — n)%(ﬁ?(s, n—0)Rf(s.0))do dnds.  (6.14)

For (6.13), we note that by Lemma 2.6 the function
( >4+36
$o(&, m)
satisfies (2.7). Therefore, by Lemmas 2.2 and 2.3, we have

>7(6+145) ( )7(6+146)

m&, n) = (77)X|§_,7\§<S>50 (§—n n

t
17~ ((6.13)) ll2-5/100 < /0 ()10 Tz (VTP P_ g eV F 1 0 (R 1)),

(V)STOR(Rh RA)) ds

H2—5/100

t
S /0 ()1 OIVYFRP_ s T FT @ RN (1 _p51

7=5/100

UV (RR R 28) ds.

To continue we need a lemma.
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Lemma 6.2. For any dyadic M > 1, and2+ 6§ < p < 0o, we have
4
1 Paste ™ F @RIy S M 5577 (1) 722 (x) f 1245
Proof of Lemma 6.2. By Lemmas 2.2 and 2.5, we have
||P<Meif(v>f*] (3§(7€?))||p S M1*2/p<t)]72/17(“|V|71f||p + ”P<M(-xf)||p)
1 1
< MU ((x) Fllags + MPFS T8 |x fllngs)
2 4
< M (0)17YP) (x) fllss. o

By Lemma 6.2, we have

VI P_ 0 e N F @RI (1 sy

(5)20(0H4) (5 P0C1+ 553~ =280 () 120w =2 1) £

S
780+4
S ()TN x) fll2ps-

By Sobolev embedding and Lemma 5.2,

(V)T RERI 1128y S VTRl ys S VY Blles7 Rl s
ST T AR, = ()7 R,

Therefore
t
IF 1 (6.13)l2-5/100 < / (5) /100F8FT00=9/8438 g 1% S IR, -
0

For (6.14), we decompose

0 4+25
6.14) = f/‘” (M xe— 50 X (&~ 1
do(E, 1) [E=n|> (s)%0 X{E—n)/(n) <

-85Rf(s,.§ — n)ﬂ(Rf(s n—o)RF(s, 0))dodnds  (6.15)

)42
// e ¢0(§ 7))< ) X)) (5)%0 X(E—n) /() >1

RS (s, E — n)m(ﬁ?(s, n—o0)Rf(s,0))dodnds. (6.16)

For (6.15), we note that by Lemma 2.6 the function

4436

M(E, 1) = ——— () Xjs—p /= (sy%0 X(E— 1E—n —(6+148)
doE, n) T Aig=nl> ()0 XE=m)/ ()=

)—2+108<n>

satisfies (2.7). Therefore by Lemmas 2.2 and 2.3, we have
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t . —
IF1((6.15) 12—5/100 S /0 ()71 Tz ((V)F 1905V (F1 (3 (R 1)),

(V)STIOR(RRRR)) ds

H2—6/100

l —
< f ()10 V)T F @ (RN (101
0

2=5/100

ANV (R RR) |11 /2s) ds.

By Lemmas 2.2 and 2.5, we have

(V)21 P SN FL @RI 151

2-5/100
SEPITOVIT S an H IR NN
S PNV fll21s-
On the other hand by Lemma 5.2,

(VYT RRR 125y S V)T 01151k s S Y)Y Rlles7 IR s
S ) sy U %, = ()RR %,

Therefore

t
IF1((6.15)) l2—s5/100 S /0 (5)°/100F409/8430 g |in )1, S IR%,-

For (6.16), we use the identity
(Rf(s, & —m) = —3,(Rf (5,6 — 1))

to integrate by parts in 7. This gives

(6.16) = /l /(—isanme—”q’
0

RF(s.& - n)%(ﬁ?(& n—0)RJ(s.0))dodnds  (6.17)

t i 1
+/O /e ”"’(é)‘””an(%(n)x@,7,><S>80x<s—n>/<n>>1)

Rf (s, & — n)%(@(& n—0)Rf(s,0))dodnds (6.18)

t _isp <%->4+28
+/O /e o0 (M) Xy —p)> (sy%0 X(E—n)/(m)>1
R, & —mOU/D(Rf(s,n —)Rf(s,0))dodnds  (6.19)
B ()
+/0 /e ‘ o0 (M X1 —y1> (sy%0 X (=) /) >1
RF (s, — n)%an(ﬁ?(& n—o0)Rf(s,0))dadnds.  (6.20)

<$)4+25

(M) X —n1> (s)% X(E—n) /m)>1
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The estimation of (6.17) is exactly the same as that of (6.5). The only change is that 9¢ ¢
is now replaced by 9,¢. But in the estimates there only the boundedness of d¢¢ (and its
derivatives) is used. Therefore we have

—1 3
[ 77O 55100 < 1711, -
The estimation of (6.18) is similar to the estimation of (6.3), and we have
| 76180 [, y100 S A1,
For (6.19), we can decompose

o/Inl) =0Q/InDxm<1 +O0Q/InDxip=1-

The piece corresponding to O (1/|n|) x| =1 is estimated in the same way as in (6.18). For
the low frequency piece, we note that the function

4438

m(, n) = T(ﬂ)X|g_m><s>éoX<sfn>/<n>>1X|n|<1 (& —n)

satisfies (2.7). Therefore by Lemmas 2.2 and 2.3, we have

—(5+4%)

I771(6.19)ll2-5/100

S ki, + /0 (5199 i) (954 Py R V17 (R, Ri) l2-s/100
< Ik, +/0t<s>5/‘°°||<V>5+48P2<x>ao Dl [V RARD |y 4y ds
SRl + /0 t(S)S/IOO_(SOHhHHN’||Rth||2—3/100 ds

t
< Ikl + fo (5)2/100=30 () =(=29) g | 1|3, < Al -

Finally, we deal with (6.20). We decompose it further as

t _ise <é>4+28
(6.20) = /0 /e (M) Xj&—n)> (5% X(g—m)/ (m)>1

0

o@(s,é )| o ( J(n—o) <1Rf(s n—o)Rf(s a))dadnds (6.21)

4+28
/ / 9 (M) Xje 1> ()20 X(E—m)/ () >1

Rf(s, & — n)%an(xwm_gw’z?(s, n—o0)Rf(s,0))dadnds. (6.22)

We only need to estimate (6.21). The piece (6.22) can be estimated similarly after the
change of variable 0 — n — o. Now
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t —iv¢<s>4+28
(6.21) = fo /e ‘ M X1 —y1> (s)% X =) /m)>1

$o
Rf(s,& — ﬂ)%(an(ﬂw/m—a)g)ﬁ?(& n—0)Rf(s,0))dodnds (623)
t i (5)44—25
+/0 fe ¢ % (77>X|g_n|>(s)5oX(E—n)/(n>>1

RF 518 =i (o 1210 IR (5.0 = IR (5,0)) dordnds. (6.24)
We first deal with (6.23). Note that the function
(£)4+30
S d0
satisfies (2.7). Therefore by Lemmas 2.2 and 2.3, we have

)*(7+45)<n>71

”7(5, n) = <77>X|§,n|>(3>50X(S—n)/(n)>1<§ —-n

IF~1((6.23)) l2—5/100

t
< / ()1 T ey (V)P REAVYRT, (410 -y 1) (REL RID)) ds

~ || 2-8/100

t
8/100 48
S /0 ()10 vy h”( L _28)-1 ”(V>T3n(x<a>/<n—o>sl)(Rh’Rh)”l/(m)ds'

2=5/100

Now note that

VY T3, oy 0oy <) (R RA) 11726
ST, (k0 oy <) (R, Ry 28) + 1V T, (40 0oy <) (R, RID 1 26)
ST,y oy <) (R R 28) + 1T, (10 00y <1) (VR RID 125
+ 175, oy tr-or<0) (R, VR |1/(25).

It is not difficult to check that

19508 9y (o /-1 <)) S (1) + (o)~ (HHIAD.

Therefore, 3, (x(o)/(3—o)<1) is a standard Coifman-Meyer multiplier, and we have
V) T, (ki) R RID 172 S VDRI 5 S () 2022 )15,

Hence,
t
IF1((6.23) 257100 < /0 (5)°/10040 () =202 g |13, S IR, -

It remains to estimate (6.24). Note that the function

< >4+28

T(’])X|g_m><s)50 X{E—n)/(n)>1 (€ —n

)—(O+158) () —2+105

mE, n) = n
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satisfies (2.7). Therefore by Lemmas 2.2 and 2.3, we have
171 (6.24) l12-8/100 S fo (5197199 Ty ()01,
(VTIORTy oy (€ (F (0 (RF)), Ri) “2—5/100 ds
< /O (5151100 w) O+
V20T @S F TN @, (RF)), RN (1 s)-1ds.

Now we make a Littlewood—Paley decomposition and write

(027108, (€ (F B, (RF))). Rh)

”(2—51/100_3)71
< ()2 108T . “M(P<leis(V)(]-'*1(8n(Rf))),Rh) ||(2751/mo_5),l (6.25)
LY o 108T s (Pae™ >(f—1(an(7’z?))),Rh)H(Hl/m_a)_l. (6.26)

M=>1
For the low frequency piece (6.25), we note that by the cut-off x(s)/(;—0)<1 and Py,
) <o) +m—-0)Sh—-0)S 1

Therefore, using the fact that x(s)/(;—s)<1 18 @ Coifman—-Meyer multiplier, we have

(6.25) S | P<1 Ty gapet (P<1€™ Y (F 1@, (R 1)), R

1 _
757100 —%) !

S P F! @RIV a1l

S )P Fllas(s) ™ T2 A,

where in the last inequality we have used Lemma 6.2. Hence,

—1468 7,12
(6.25) < ()T nl%,-
For (6.26), thanks to the localization Py and x(s)/(y—0)<1, it follows easily that
() <lo)+n—0)Sh—0)SM.

Therefore by Lemma 6.2,

6260 S > MPTO| Ty  (Pue T (F @, (R, RA) |
M=>1

<y MZ—]OSHPMeiS(V)(]-‘—l(8,7(73?)))”(2_51/100
M>1

Y MM Pyl VI L
2-8/100
M>1

D0 MBIV flla + V2P llagsllkllx, S ()7 PRI,

M=>1

1 -1
7=3/100 —%)

_asy-tI17llys

A

—28)-1 + ”PM(xf)||(2781/100723)—1]”h” 1/6

A
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Collecting the estimates and using Lemma 5.2, we obtain
t
IF (6.2 1237100 S /0 () 1OV PR (s ) O ds IR,

t
S /0 (5) 008 (7Y |17 dls (IR,

t
< /0 (5) 1 TONOHT () as 1%, S IR, -

7. Control of cubic interactions: the low frequency piece

In the previous section, we controlled the high frequency part of the cubic interaction
term. In this section, we analyze in detail the low frequency piece. The main result of this
section is the following

Proposition 7.1. We have

4
I fiow (D)l 23100 ) S W%, + 1K,

where
t
2 _ —isp S0P 4425
Siow(t, &) /0 fe DG 1) (&) (mmiow (&, n,0)
: ﬁﬁﬁs, & —mMRf(s,n—0)Rf(s,0)dodnds (T.1)
n
and
Miow(E. 11 0) = Xjg_yi<(5)% Xjy—o|=(s)% X|a|<(s)%0- (7.2)

The rest of this section is devoted to the proof of this proposition. The analysis will depend
on the explicit form of the phase function ¢ (£, n, o). We discuss several cases.

Case 1:
¢, n0)=() - —n+n—o0)— (o) (7.3)

By Lemma 2.8, we have

dep = Q1(§,m) Q2(n, 0)3 ¢,

where

10807016 M| Sap 1. 10295 00(n. 0)| Sap (0l + o). (74)

‘We now write

sdepe ™ =i Q1(&, 1) Q2(n, 0)ds (e79). (7.5)
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Plugging (7.5) into (7.1) and integrating by parts in o, we then obtain
fow(t, &)
t
. _isp Q1(5, 1)
== /e lwmaa(Q?(”’ ) Xin—o<(s10 Xjo|<(s)0)
4425 7 N (57 7
O ez R 6.6 = (RF G = R s,0)) dodnds (7.6
t
. —is¢ 01,n)
i /0 /e B0 22U T Xin—ol=(sy%0 Xiol (510 Xig—ni<(s1*
T’ — — —
- (5)H ()7 RIG. & =m@Rf (5.1 = oNRf(s,0)dodnds  (1.7)
t
. —isp Q1(5, 1)
—i /0 /e lw—%(s, ny 2201 O Xin—a<(5% Xia1<5)%0 Xig—ni (51
}7 — — —
(&) () RS § —mRF (50— )& Rf (5, 0)dodnds.  (18)
We first estimate (7.6). By Lemma 2.2, we have
t
IIJ:_I((7.6))|I2—3/100 < / (59/100+808/100+89(4+28)
0
. ‘ T§$5§23< >(P§<S>5°Rh’RT&"(QZ(""’)X\n—ﬂswﬁOX\n|s<s>30)(Rh’ Rh))HzfzS/loo s 09
By (7.4) and Lemma 2.6, it is easy to check that the functions
~ Q1. 1) o o
M, n) = ~—Z—= () (€ — ) 7270200 () 7220,
$o(&, 1)
”7/2(7], o) = 30(Q2(77, U)X|,,_g|§(s)5o X|g|§(s>50)<n - ‘7>_4_8/200(0)_4_6/2OO
satisfy (2.7). By Lemma 2.3, we have
‘ Tg(;g.’%)( ) Petoyto RI R0 (@210, 1) Rt D) HZﬂS/lOO
_ H Tr?ﬁ(é‘,n)(PS(s)ao(V>2+5/200th P§<s>aOR(V)2+8/ZOO
: TnTz(n,U)(Pscv)‘SO (V)H020RA, PSM‘S‘) <V>4+6/200Rh)) HZ—B/IOO
< P_iyyo (V)2+8/200Rh||(2_51/100 . (5)2+8/200080 <V>4+5/200PS(S)%h”%/(S

~

< (s>(2+8/200)80+2(3+8/200)5072(1728) A ”:;(, 5 (S)(8+8/100)8072+58 ||h||§(t )

Plugging the above estimate into (7.9), we obtain

t
IFH(7.6) 128100 < /0 (5)(12HOP0F2000+ OHT00O=2 g |1p |13 < (1R, -
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The estimation of (7.7) is similar. By Lemma 6.2 we have, for some m3(1, o) similar to
ma(n, o),

IF 177D ll2=s/100

t
5 ‘/0 (s>6/100+806/1OO+80(4+28) H Trﬁ](é,n)(Pﬂs)(SO(v)2+8/200Rh’
P§<s>5oR<V)2+8/200Tn73(n,a)(P5<s>6o (V)4HH3/200,is(V) F=1(3 (R F)),

P_ 30 (V)TPPPORR) [, /10095

=<(s)

t
< / (S>6/IOO+806/1OO+(4+28)80||(V>2+8/200P5(S)60h||1/8

0

() (2H0/200)30 6y (4+8/200)30 P_ 0 SV FLQ, (Rf))||(2_61/100 —28)-1

)HPOP_ sohllys ds

t
S / (S>6/100+50(4+25+6/100)<S>60(4+5/100)—2(1—25)<s>50(6+5/100)
0

. <s)“‘*‘ﬁ_“(2—5‘/100_2‘3)]50+1—2(2—51/|00—25) ds ||h|1%
t

t
S fo ()" ds I, < IR, -

Similarly,
171 8D ll2-s100 S I, -

This concludes Case 1.
Case 2:

¢E.n,0)=E)—(—n)—n—0)+(0).
This is exactly the same as Case 1 after the change of variable 0 — n — 0.
Case 3:

¢@E.n,0)=E)+{E—n)—n—0)—(0). (7.10)

For this case, we will have to exploit some delicate cancelations of the phases. Let N1 = 4.
We now introduce several frequency cut-offs and write (7.1) as

(7.1) = i f t / e 150 S0Py 6, 0, 5)
= Jo P05, m)

: %7’37@,5 — D(RF(s.n — )R (s, 0)) do dn ds

ZIZL',

i=1
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where

m1(E::048) = Xje_p<(5)%0 Xiy—o1|= ()% Xjor|=(5)% Xjni<(s) %0 X|g < (s) 20/ M1

m2(&. 1. 02 8) = Xje—p< ()% Xjn—o1=(5)% Xlor|<(5)%0 Xln| <(5) %0 Xg | (5) ~30/M X|or| <2(s) %0
m3(€. 1, 0, 8) = Xjg—p < ()% Xjy—a|<(5)% Xjor | <(5)%0 X|n| <(5)~%0 X]g|> (5)~20/M X]or|2(5) %0
m4 (€. 1, 0, 8) = Xje—p) < ()% Xln—o|<(5)% Xjor | <(5)0 X]|>(5) %0

Subcase 3a: estimation of I1. By (7.10), we have
§ §—n

0gh = — .
AT

Since on the support of m (£, n, o, s) both £ and 5 are localized to low frequencies, we
gain one derivative by using the above identity. Therefore

t
I~ () ll2-57100 /0 () O P mm Bl gyt [Py T 5 s

!
1 1— —2(1-28
5/0 (5)8/100+1=80/N1=2(1=26) g ||h||§(,

t
S /0 ()" " ds |Ihllk, S IR,

where we require that o/N; > 4.016.

Subcase 3b: estimation of I,. Note that in this subcase we have |&| > (s)7%/N_|n| <

%(s)_‘so, and |o| <2 - % - {s)~% on the support of m> (&, n, o, s). Hence

5

oy 1= —280/Ny -
(E)+(E—m—2=(§) 1_(§)+IZ(S) O it g =3,
E+E—m-22E-—n ifl§l >3 (7.11)
_ oy y . _M=0)-n—0)  o-0
m—o)+{o)—2=m—0)—1+4+(0)—1= r—— PR

We now perform a partial normal form transform. Namely, we write

o=iS9 — pmis(E)HE-M)=2) is(1-0)+(0)=2)

Using the identity

ois(EVHE-T=D) _ i 9, (¢~ (&) HE—n)~2)
E)+(E—m—-2

and integrating by parts in the time variable s, we obtain
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; ,
L= / / ! 8, (¢S UEHE=M=2)) is((n—0) +(o)~2)
oJ E)+E-—m-2

%D pyars

oy & 2 n 005)
. %7/37(& £ —mMRf(s,n—0)Rf(s,0)dodnds
taggb

_ /e—mp !
() + (& —n) —2¢o, m

B (myma(E, n, 0, 1)

G RIE =R = R (o) dody  (112)
, .
_ _is¢ I 34 44281y
/0 /e @+ E—n —2pEn ) WElmEneD)
. %7’37(& E—mMRf(Gs,n—0)Rf(s,0)dodnds (7.13)
t
—is¢ n—o)+ (o) —2 s 4425
+/0 /e @rE-m-2pEn ey
_|_Z|7’37c(s’g_n)ﬂ(s,n_g)ﬂ(s,a)dadnds (7.14)
t .
_ —isg i SO 4t0s
[ are—mmane p® e ey
.%&7’37(&5_n)'}/g?(s,n—a)ﬁ?(s,a)dadnds (7.15)
, .
_ —is¢ l Sag(f) 4426
[ are—mmane p @ me e
LRT (5. & = ma[RF .0~ o)R (s.0)]do dnds.  (7.16)

0]

For (7.12), by using (7.11) and Lemma 2.6, it is not difficult to check that the functions

& ) = i %9
(E)+(E—n)—2 goE. )
] (E)4+25+5/100<77>X\5|33Xm\<1 (E — ) (4H2549/99)
~ _ i %
) = T E S =2 doe. )
(&0 00 g1 <3 xim <1 M X ey 46—y —23 20

satisfy (2.7). Therefore by Lemma 2.3, we have

IF (T 12) l-s7100 S ()1 T ey (D)2 HP_ s,

RP_1y-0 (RPpyooh - RP_ 0 P52<t)—50h)) ”275/100
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1-48/100-4680/ N
+ () +0/100+6%0 /Ny | Tz 6. (P<gpyo P<1 1,

RP_ )= (Rps<t>50h “RP_ 0 P52<t>—50h)) ||2_5/1oo

SO RO skl 1 gl s

2=5/T00
14-6/1004-68¢ /N1 2
) 1Pl a1 W1
< (t 1468/1004+680/N1—2(1-26) h 3 <k 3 . 7.17
S (1) I7lx, < ki, (7.17)

To estimate (7.13), we need a simple fact: if ¥ = 1 (x) is a smooth cut-off function
localized to {x : |x| < 1}, then for any real number «,

5 (9) = e ()| o) == 0 (5)
as\"\ 52 )) = o) (s)e (s)) ~ A=W )

i.e. the function 9, (¥ (x/(s)*)) has the same support as v (x/(s)*) and picks up a decay
factor 1/(s). Using this fact, we can write

ds(sma(§,m,0,5) =mr(§,1,0,5),

where m3 has essentially the same form as m;. By essentially repeating the estimation as
in (7.12) (see (7.17)), we have

t
IF1(7.12) l2=s/100 S / (5) ! TO/100+630/N1=200220) g |1y |3,
0
t
< /0 ()" " ds Ik, < IR,

For (7.14), we need to use the third identity in (7.11). Note that |n| < %(s)_‘s() and
lo| < 3(s)~%, and we can insert a fattened cut-off P (5)=%0 when needed. By an estima-
tion similar to that in (7.17), we have

P§<s)—5oh ||h||1/8 ds

t
IF (714 la-s/100 < /O (s) 1 FO/100+630 /N1 |
1/8

(V) +1

t
145/100+680/ N1 —26 —2(1-28 3
< /(; (s) +6/100+680 /N1 0 (s) ( )dS ”h”X,

~

t
< /O ()" ds |nll%, SR,

where we need (2 — 6/N1)8y > (4 + 1/100)3.
We turn now to the estimation of (7.15). For this we need a lemma.

Lemma 7.2. Forany 8 > 0and2 < p < 1/8, we have

VY 8, (REFO)p S VP RO 1/ ps)-1 1RO 1s-



2258 Dong Li, Yifei Wu

Proof of Lemma 7.2. By (3.7), we have
"NV Rf (1) = (VR(RA®) Rh(1)).
Then the result follows from the product rule. O

Now we continue the estimation of (7.15). By Lemma 7.2 and a similar computation to
(7.17), we have

t
IF (715D ll2-5/100 S /0 (5) ! FONNO0FOON | ()3T y R s ds

2-5/100

~

t
< / (S)1+5/100+650/N1 <s>—3(1—23) ds ||h||§(
0 t
! 1 4 4
< /0 ()" ds |nl%, S IRl
In a similar way, we bound (7.16) as
t
IF~1(7.16) l—s/100 < / (5) HO/100+630/ N 1 (1Y) 93(R )11 j28) 111 /5 s
0
t
< / () THO/100F630 /N1 (7 By s 1Bl s (V) R s ds Nl x,

0

t
< / (S)1+6/100+650/N1 (S)—3(1—28) ds ”h”;‘([
0

~

t
< /0 ()" ds Ik, < Ikl

Subcase 3c: estimation of I3. In this subcase, we have |n| < %(s}“80 and 2(s)"% <
lo| < %(s)‘SO on the support of m3 (&, n, 0, 5). Then clearly,
20 —nl = 3lo].
By (7.10) and (2.23), we then have
o —n o lo] _2s
105 ¢| = — Rz 2 (7.18)
’ (0 —mn) (o) o)?
Using the identity se™/%¢ = j I aa“flz - 95 (e7'5?), we integrate by parts in o in I3 to obtain
' isp_ 9P . 4125 9o @
L=~ if fe—”"’—<s> T2 - ( m3(&,n, 0, s))
0 $o(&, ) ANERTE
LRI & = MR (5.0~ 0RF (s, 0)dodnds  (719)
n
Y A P 1Y) A
—i / / 70T () ) T s (6., 0, )
0 $o(§,m) 100

LRF(s.& = mde (Rf (5.1 — )RS (s.0)) do dnds.  (7.20)

0]
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For (7.19), note that
3 3o P
7\ (o, )2 XloIs0 Xin=cl=ts)’0 Xjo|>2(s) %

_ 9o
=00 - { 57 | Xio1=()% Xin—o1= ()% Xjo|>2(5) %0
|95 ¢

0,9 0~

T ol ) Kol Xin—o1<(5% Xjorl=205) 0
o
0,9 e
T3 Kol <(5)%0 80 Xi—gr 1~ ()90 Xjr | >2(5) 0
|05 9|
050

8o
18 g2 Kol =(51%0 Xin=o1=(5)% 81 X ~2(5) %0

where ¥ are some modified cut-offs.
By (7.18), it is easy to check that the functions

~ 0o ¢ _ _ -
mi(n,o) = X|3a¢\2(‘9)72‘30 Dy - (|80¢|2><s> 1089 (n—o) (144/400) (o) (1448/400) and
o
—~ s P _ _ _
ma(n, o) = XI30¢\2(s)*250|86W<5>80<5) 1089 (n—o) (144/400) (o) (144/400)
o

satisfy (2.7). Therefore by Lemma 2.3, we have

t
-1 8/100 7y 5+26+5/100
IF~ (719 ll2-5/100 < /o ()7 FIV) RP(syohll (28

2
H(s)10% 3 T .oy (V) FORP b, (V) FAORP_ g P a0 h) ds
i=1

H 1/(28)

t
< /0 ()71 R x, (s)! P00 (VR 5 ds

t

t
5 /(; <s>5/100+(10+8/200)80—2(1—25) dS ||h||§(r 5 /(; <S)_1_ ds ||h||:§([ S_, ||h||:;([
Similarly for (7.20), we use Lemma 6.2 to obtain
t
1F =1 (7.20) ll2-5/100 S / (s)2 /1O (w)TH2HNORP_ iRl 15
0 S

. 84 14-6/400 is(V) 1 D7
R I A CH )] P

AUV HHORPL bl ds

~

! 2 1
< / (S)6/100+(4+25+8/100)60||(V)h||1/5(S)850 (S)60(1+6/400+m_4(m_26))
0

R, YR S
() T 2 ) £l (5) P20 40 (V) 5 ds
t
S /O ()" ds|Ihl, S IRl

This ends the estimation of /3.
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Subcase 3d: estimation of I4. Note that in this subcase, |n| 2> (s)~%_ By Lemma 2.8, we
have

%t = Q1(5,n, 0o + 02(£.1,0)359,
where
g 0007 Qi(6. 0. 0)| Sapy (El+ M +0), i=12.

Obviously,
sdepe P = i(013,(e7*?) + 023, (7).

Using the above identity, we shall integrate by parts in 1 and o. It is not difficult to check
that the functions

()2 q . — (134268
¢0(§’ T]) <n>|n|m4(§v 77707 S)Ql(gv 7770)<S> )
m3(&,n,0) = dym; (&, n, 0, 5)(s)

my(&,n, 0) = dmi (€, 1, 0,5)(s)

mi(§,n,0) = i=1,2,
—(14428)8  ;_1 2

—(13+268)8¢ =12

satisfy (2.9). Therefore by Corollary 2.4, we have
t
IF 1 9)ll2-s/100 < / () 10042000 T (Rh, R, R ll2-5/100 ds
0

l . —
+ f <S>5/100+(13+25)50 ” Tﬂlvl (P<<S)80 elS(V)JT_'—l(an (Rf)), Rh, Rh) ds
0 ~

”2—5/100

ds

t
¥ / ()10 32000 | 7 (R, R, P ysne”™ YV F " @ (RIN) 5100
; S

t 1
S /0 <s>8/100+(14+25)80—2(1—25) dS ||h||§(r 5 /(; (S)_l_ds ||h||§([ SJ ||h||:;([
Hence Case 3 is finished.

Case 4:

¢E.n.0)=E)+(E—n+n—0)— (o). (7.21)

In this case we decompose (see (7.2))

Miow (&, 1, ) = Miow (&, 10, 0) Xy < (5)=00 T Miow (§: 15 0) X))~
= Mign (€. 1,0) +mio (£, 0, 0),
and denote the corresponding integrals in (7.1) by I; and I respectively.
Subcase 4a: estimation of /1. We again use the partial normal form trick. Note that
(o — ) — (o) = Qo —n)-(=n)
(0 —n)+ (o)
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Using the identity
e~ isUE+E—) i 3 (e IsUEVHE—M)y
E+E—n
and integrating by parts in the time variable s, we get
; 4425
I = —itg i1dg ¢ (&) 1))
! fe doE. ) (&) + € —n><”>’"l°w
|—|Rf(t E—mMRf(t.n—)Rf(t.0)dody (7.22)
/ / i Qo =) (=) ()T UL
G—m+io) E+E—m " goGninl o
~Rf(s,$ —n)Rf(s,n—a)Rf(s,o)dcr dnds  (7.23)
[ e e o)
+<€ =) gt In "
T\’,f(s & — n)Rf(s n—o)Rf(s,0)dodnds (7.24)
/ / fzsq) 4+25 ) 1S8.§¢ n ml(;gv
m goE il
S(Rf(s,é - n)Rf(s, n—o)Rf(s, 0)) dodnds. (7.25)

The estimation of (7.22) is similar to (7.12), and we have
1771 (7.22)ll2-5/100 < [111%, -

For (7.23), note that % is a Coifman—Meyer multiplier. We compute

t
1F (723D ll2-5/100 S fo () OV P_ 0 RAN 1y

1
2=5/100

NVPys0T _2os (P o R, P s R 2, ds

—n)+(o)

t

< fo () OB v ()TN 5 ds
t

5/(; <S>1+8/100—80—2(1—25)ds ||h||§(1

t
S /O ()" ds I, S IRl
The estimation of (7.24) is similar to (7.13), and we obtain
1F (T 240 257100 S 1A%, -
The estimation of (7.25) is also similar to that of (7.15) and (7.16). We have

IF1 (725 ll2=s/100 < 1A%, -
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Subcase 4b: estimation of /5. It is not difficult to check that

EV+(E—n)+(n—0)— (o) 2 1/(E), VE o ecR. (7.26)

Using the identity e=/*¢ = é&s (e7'5?), we integrate by parts in the variable s. This gives

5o [ itel 16D vavas @)
2 / e Mt N
"Rt E—=mRf(t,n—0)Rf(t,0)dodn (7.27)
t .
_ —is¢p b 0t ¢ 4428 ia ®)
/0 /e G A
Rf(s,E —MRf(s,n—)Rf(s,0)dodnds  (7.28)
t .
_ Cisg L S0P ay2s, (2
/0 /e G Dy o
9 (Rf(s,& = Rf(s,n — 0O)VRf (s, 0))do dnds.  (7.29)

For (7.27), by using (7.26) and Lemma 2.6, it is not difficult to check that the function

~ i 09 4428, N
m&,n,0,8)=————&)"" " (n)—
¢ P&, n) 0]
—(14+436)4
* Xle—nl=(51%0 Xln—o|=(s)% Xjo| =(s)70 Xy (50 {8) 7T
satisfies (2.9). Therefore by Corollary 2.4, we have
IF (7270257100 S () HIOOFAEED0 m iy RO s

2=5/100
1+8/1004+(14+368)59—2(1—-28 3 3
S (o) HO100FAS3N30 =220y 13 < I,

Similarly,
t
171 (7.28) =510 < /0 (5) /10043000 =20=20) gg |1

t
< f ()" " ds Ih13, S Ih1,.
0

In a similar way, using Lemma 7.2, we have

t
1F (729D ll2-5/100 S /0 () FOO0FAHEINY SIS (R 1y 11T ds

7-5/100

t

5/0 (5) I F8/100 143000 3 s
t

§/ (5)1F8/100+(14+39080-30-28) g 14
0

t
< /0 ()7 ds Ik, < Ik,
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Case 5:

¢E.n,0)=E)+{E—n) —n—-0)+(0).
This is exactly the same as Case 4 after the change of variable 0 — n — o.
Case 6:

¢@E.n,0)=E)—E—n+n—-o0)+(0). (7.30)
In this case we decompose (see (7.2))

Miow (€. 17, ) = Miow(E. 1. 0) Xy ()50 + Mow €+ 1, )Xy 1= (40
= Mign (€. 1,0) + mig, (E, 0, 0),

and denote the corresponding integrals in (7.1) by I; and I, respectively. The estimation

of I, is exactly the same as in Subcase 4b. Hence we only need to estimate ;. In this
situation, note that

§ &-n

0gp = — —

() ¢—-n

= Q. M, where (3¢9 Q5. m)| Saup L.

Therefore,

t
IF= D ll2=s100 S / ()OI
0 2-5/100

[ Peiy-30 V(P 30 R(P gy RE - P30 RI) | 128 48
t
pS /0 () OB v ()"0 ds

t
</ <S>1+5/100+5—80—2(1—28) ds ||h||§(,
0

~

t
5/0 ()71 ds W1, S WAl

This settles Case 6.
Case 7:
¢E.n,0)=E)—(—n—n—o0)— (o). (7.31)
In this case we again decompose
Miow (&, 1, ) = Miow (&, 1, ) X} < (5)=00 T Miow(§: 15 0) X1 (5~
=m0 (&, 1, 0) +mis (€., 0),
and denote the corresponding integrals in (7.1) by /1 and I respectively. Note that

& E§—n
> d 0¢¢p=—— :
E oI Z1/E) and Bep= =

The estimations of /1 and I, are exactly the same as in Case 6. Hence Case 7 is settled.
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Case 8:

¢E.n,0)=E)+(E—n+n—-0)+ (o). (7.32)

In this case we again decompose (see (7.2))

Mmiow (§, 0, 0) = miow(§, 1, U)X|n|§<s>_50 Xlo|>2(s)~%
+ miow (&, 1, 0) Xy 1< (5)% Xjor| <2(s) 20
+ miow (€, 1, U)X|,,|>(S>—5Ov

and denote the corresponding integrals in (7.1) by I, I and I3 respectively. We discuss
three subcases.

Subcase 8a: estimation of /1. This subcase is exactly the same as Subcase 3c before.
Therefore,
IF () 257100 S A1, + A1, -

Subcase 8b: estimation of I5. In this subcase, we shall again use the partial normal form
trick. Write

oI5 — i 8, (¢S UEHE=MF2) pmis(n—0)+(0)=2)
(E)+(E—m+2

Note that by (7.11),

_=0)-h—0) o-0
T (p—o)+1 (o) +1°

n—o)+(o)—2

Integrating by parts in s, we arrive at essentially the same situation as in Subcase 3b
before. Hence we have

IF N (1) ll2=s/100 S I1A1%, + 1A, -

Subcase 8c: estimation of I3. In this subcase we note that || > (s) % and ¢ (&, n, o) >
1. We can integrate by parts in the time variable s and use the same estimates as in Subcase
4b. Hence
—1 3 4
IF~ (I3 l2—s/100 S IAllx, + A, -

We have completed the estimation of all phases. The proposition is now proved.

8. Proof of Theorem 1.1
In this section we complete the proof of Theorem 1.1. Define

a(t) = ||(T>_8h('f)||c9HN([o,;]) + ||h(T)”C9HN/([OJ])
+ DIV g g0 + 160 T (VRO 150,

—it(V)
+ 111 = 2)e ™ DR e 245 0.0
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By the local theory in Section 4, a(t) is a continuous function of 7. Also from the energy
estimates therein, we have

%(nh(r)n,{m S (@ oo + VU@ lloo + VYO lloo) 12D | g3
S NIVIEVA@| ROl gy S a(m) ()~
Integrating in time and using the monotonicity of a(t) gives us
IR v S lholl gy + a(s)*(s)°,
or
@) PRl copy qo.qy S eV hollxy, + a@)?.
By the analysis in Sections 4—7, we also have
DIV R@ L0 + 1A@ cogn 0.0
+ 1) h@) 1) (4 = D) TV R@ 2000,

SN Vhgllxy, + a0 +a@)® + a0,

L=LY? (0,01)

Thus we have proved that for some constant C > 0,
at) < C- (1" hollxo, +a(®)? +a@®)’ +a@®)?).

Since a(z) is a continuous function of 7 and a(0) < ||¢!* M k| X0 DY a standard argument
we conclude that if ||e”<v>ho||xoo is sufficiently small, then a(z) is bounded for all ¢ >
0. Note that the scattering of the HY " norm is a simple consequence of the analysis in
Section 4. This concludes the proof of Theorem 1.1.
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