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Abstract. We prove small data global existence and scattering for quasilinear systems of Klein—
Gordon equations with different speeds, in dimension three. As an application, we obtain a robust
global stability result for the Euler—Maxwell equations for electrons.
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1. Introduction

In this paper we consider systems of quasilinear Klein—-Gordon equations with differ-
ent speeds and masses in dimension three. Our aim is to prove that small, smooth, and
localized initial data lead to global solutions, assuming only certain mild nondegener-
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acy conditions which are automatically satisfied in our main applications. The method
we develop appears to be robust enough to deal with many situations that involve large
space-time resonant sets, at least in dimension three.

We will focus on two examples which should be sufficient to illustrate the scope of
our method. We first consider quasilinear systems of Klein—Gordon type with pointwise
quadratic nonlinearities

By — EA+ D)y = Fy, o €{l,....d), (1.1

satisfying a hyperbolicity condition on the quasilinear term in the nonlinearity. Variations
of such systems have been proposed in [17] to model bilayer materials. This problem also
appears in [5] as an important toy model. More specifically, this problem when the speeds
are the same has received a lot of attention in low dimensions [4, 13, 22].

Our second model case is the Euler—Maxwell system for electrons. This is a simplifi-
cation of the two-fluid Euler—Maxwell system, which is one of the main models in plasma
physics. We refer to [1] for some physical reference and to [6, 9] for previous mathemati-
cal study of the solutions. The system describes the dynamical evolution of the functions
ne :R3— R v, E/, B : R - R3, e

one + div(nev,) =0,

P, e , U ,
Ve + Ve - Vo = ——Vn, — —|E' 4+ — X B,
e Mme c (1.2)
%#B +cV xE =0,
W E —cV x B =4men,v,,
together with the elliptic equations
div(B)) =0, div(E") = —4me(n, — n°). (1.3)

Here e > 0 is the electron charge, P, is related to the effective electron temperature,!
m, is the mass of an electron and ¢ denotes the speed of light. The two equations (1.3)
are propagated by the dynamic flow, provided that they are satisfied at the initial time. In
addition, we make the following irrotationality assumption which removes a nondecaying

component:
mec

B'(0) = V x v.(0), 1.4

e
and which is also propagated by the flow and remains valid for all times.

In the case of the system (1.2)—(1.4) we want to explore the stability of the equilibrium
solution (ng, vg, EO, BO) = (no, 0,0,0), n% > 0. In the system above, we have chosen a
quadratic pressure p(n.) = Peng /2. This is chosen only to minimize the number of terms
in the nonlinearity but does not make the system (1.2) symmetric, and in particular, one
needs to add a cubic correction to the energy estimates.

In both cases (1.1) and (1.2)—(1.4), we prove that small, localized, and smooth initial
data lead to global classical solutions that scatter. Below is a precise description of the
main results.

I More precisely, kg T, = nY P,, where kg is the Boltzmann constant.
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1.1. Statement of the results

Given a real-valued vector u = (uy,...,ug) : R3 x [0,T] — R< such that u €
Cc(0, 7] : HYync'(o,7] : HN-1,2 for some T > 0,d > 1,and N > 5, we
consider quadratic nonlinearities of the form

3 d
Fu= YY" Gikojopu, + Q. (1.5)

jk=1v=1

where, with 9y := 0;,

d 3
GIE = GI (u, Vi u) = Z(Z g oo + h,fjj,gug), gl hik eR, (16)
o=1 [=0
and Q, = Q. (u, Vy ;u) is an arbitrary quadratic form (with reaﬂ constant coefficients) in
Uy, Olty), 0 € {1,...,d}, k € {0, 1,2,3}. We assume that G,’jf, are symmetric in both
wu, v and j, k (the latter not being a restriction in generality), i.e.

Jkl _ jkl _ Jkjl jk  _ pjk  _ pkj
g;wo - gv;uf - g;wo’ h;wo - hvuo - h;wo’ (17)

for all choices of j, k,[ and u, v, 0.
We consider general systems of Klein—Gordon equations of the form

O —ciA+blu,=F,, p=1,....4d,

where the coefficients by, ..., by, c1, ..., cq satisfy the nondegeneracy conditions (1.8)
below and the quadratic nonlinearities F), are as before. Our first main theorem concerns
the global stability of the equilibrium solution # = 0:

Theorem 1.1. Assume A,d > 1, and by, ...,bg,c1,...,cq € [1/A, A] satisfy the non-
resonance conditions
|bo, + by — boy| = 1/A forany o1,00,03 € {1,...,d},
Ico, — Col, Iboy — boy| € {0} U[1/A, 00) foranyoyi, o2 €{l,...,d}, (1.8)
(coy — caz)(c(z,lb(,2 - c?,zbgl) >0 foranyoi,0p €{l,...,d}.

Fix quadratic nonlinearities (F),) e(1,...,qy as in (1.5)—(1.7), let Ny = 10%, and assume
that vo, v1 : R3 — R4 satisfy the smallness conditions

lvoll ot 4+ lvnll, v 4+ 11— A2l z + vl z = €0 <&, (1.9)
H, H,

where € = €(d, A, F},) > 0 is sufficiently small (depending only on d, A, and the con-
stants in the definition of the nonlinearities F,), and the Z norm is defined in Defini-
tion 2.3.

2 Throughout, we let H N-H (sz ) denote standard LZ-based Sobolev spaces of complex vector-

valued functions f : R3 - C", m=1,2,..., and let HrN = HrN(m) denote L2-based Sobolev

spaces of real vector-valued functions f : R3 — R" m=1,2,....
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Then there exists a unique global solution u € C([0, 00) : H,NO+1 YNC([0, 00) : HN)
of the system
O —ciA+blu,=F,, p=1,....4d, (1.10)
with initial data (u(0), 2 (0)) = (vg, v1). Moreover, with 8 = 1/100,

sup [llu@)Il, o1 + [l v ]
1€[0,00) r r

+ sup (1+ r)‘*ﬁ[ sup | D2u(t)l|z~ + sup ||D,€u<r>||m] Seo. (11D
1€[0,00) lol<4 lpl=<3
Remark 1.2. (i) The nondegeneracy condition (1.8) is automatically satisfied if the
masses are all equal, by = --- = by, which is the case in our main application below
to the Euler—-Maxwell system.
(ii) Qualitatively, our condition on the parameters is

bi,....,bg,c1,...,cq €(0,00),
|boy + boy — boy| #0 for any 01, 02,03 € {1,...,d]},
(Coy — o) (€3, boy — Co,boy) = 0 forany o1, 02 € {1,....d}.

The point of the quantitative formulation in (1.8), in terms of the large parameter A, is to
indicate the exact dependence of the smallness parameter € in (1.9).

(iii)) The condition (1.8) can certainly be relaxed. We have chosen this condition
mostly because it is automatically satisfied in our application to the Euler—Maxwell sys-
tem, can be explained conceptually in terms of the nondegeneracy of the space-time res-
onant sets (see Subsection 1.2), and reduces the amount of technical work. However, it
seems natural to raise the question of whether this condition can be eliminated completely.

We turn now to the Euler-Maxwell system. Recalling the system (1.2), we make the
changes of variables

ne(x, 1) =n’[1 +n(ix, A0)], E'(x,t) = ZE(\x, A1),
ve(x, 1) = v(ix, AL), B'(x,t) = cZB(\x, At),

A= 4we2n®/m,, Z:=rm./e = 4mwen’/.

The system (1.2) becomes
o+ div((1 +n)v) =0,
hv+v-Vo+TVn+E+vxB=0,
#B+V x E=0,
%E —c*V x B=(1+n)v,

where

(1.12)

where?
T := Peno/me > 0.

3 X is often called the “electron plasma frequency”, 72 is the density of mass, and +/T is the
thermal velocity.
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For any N > 4 we define the normed space

HY = {n,v,E,B): R* 5> RxR}xR¥x R3:
I(n,v, E, B)ll gn == lInllgy + vy + I1Elgy + I1Bllgy < oo} (1.13)

We can now state our second main theorem.
Theorem 1.3. Let Ny = 10* and assume that (ng, vo, Eo, By) € HNot! satisfies

Il (0, vo, Eo, Bo)ll jivo+1 + (1 — A2 Egllz 4+ I(1 — A)ullz = &9 <7,

. (1.14)
no = —le(Eo), B() =V x Vo,

where € = €(c, T) > 0 is sufficiently small, and the Z norm is defined in Definition 2.3.

Then there exists a unique global solution (n,v, E, B) € C([0, c0) : HNotly of the

system (1.12) with initial data (n(0), v(0), E(0), B(0)) = (no, vo, Eo, By). Moreover,
n(t) = —div(E(t)), B@)=V xuv(), foranyt € [0,00), (1.15)

and, with 8 = 1/100,

sup [|(n(2), v(2), E(2), B()) | v+

t€[0,00)
+ sup sup (1+ )" P(IDLv@)llL> + IDLE@)lIL>) S 0. (1.16)
t€[0,00) |p|<4
We remark that our restriction n = — div(E), together with the assumptions on E, can

only be satisfied if ng n(t) dx = 0, which means that we are only considering electrically
neutral perturbations.

1.2. Comments and plan of the proof

1.2.1. Previous results on systems of Klein—-Gordon equations. Systems of wave and
Klein—Gordon-type equations have been studied by many authors, as they appear as nat-
ural models of physical evolutions. We also refer the reader to the introduction of [5] for
a review of previous work.

The scalar case (or the system when all the speeds are equal and all the masses are
equal) has been studied extensively. Some key developments include the work of John
[15] showing that blow-up in finite time can happen even for small smooth localized
initial data of a semilinear wave equation, the introduction of the vector field method
by Klainerman [18] and of the normal form transformation by Shatah [20], and the
understanding of the role of “null structures”, starting with the works of Klainerman
[19] and Christodoulou [2]. Recently, a convenient general framework, which explains
all of these results in the constant-coefficient case in terms of the concept of space-
time resonances, was introduced independently by Germain—-Masmoudi—Shatah [7] and
Gustasfon—Nakanishi—Tsai [11]. We will get back to this later in this subsection.
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The case of systems of wave equations with different speeds is well understood, both
in the semilinear and the quasilinear case (see [24] and [21]), provided that the nonlinear-
ities satisfy appropriate null conditions, similar to those in the scalar case.

The case of Klein—-Gordon quasilinear systems with equal speeds,c; = --- =¢4 = 1,
and different masses is also well understood both in dimensions two and three. For exam-
ple, in [4], the authors show that if by, + by, — by, # O for any o1, 02, 03, then one has
global existence and scattering in dimension two. If this condition is violated, then the
same conclusion holds if the nonlinearity satisfies an appropriate null condition. We refer
to [13, 22, 23] for related work.

As pointed out in [5], a key new difficulty (the presence of a large set of space-time
resonances) arises when the velocities are allowed to be different. In [5], the author studies
semilinear systems of two Klein—Gordon equations when the masses are equal, b1 = by
in dimension three. Under a less explicit assumption on the velocities that covers most
parameters, he obtains global existence and scattering with a weak decay like r~!/2 of the
solution as t — oo.

In [6], the authors study the Euler—-Maxwell system for electrons (1.2)—(1.4) in di-
mension three and obtain global existence and scattering with weak decay by an elabo-
rate iterated energy estimate. The results are conditional on ¢ and T satisfying an implicit
relation that holds for most values of 7', c.

Compared with previous work, our result is obtained by a robust method, which yields
time-integrability of the solution in L*° and holds for all values of the velocities when the
masses are equal. In addition, our smallness assumption is expressed explicitly in terms
of the parameters, and the number Ny of the derivatives needed is quantified (although
most likely not optimal).

1.2.2. General strategy. Systems (1.1) and (1.2) are hyperbolic systems of conservation
laws and no general theory exists yet for such systems, even for the scalar case. Indeed,
systems which are remarkably similar to (1.1) can be shown to have rather opposite be-
havior, even for small, smooth initial data, from blow-up in finite time for all positive
solutions of the quadratic wave equation [15] to global existence and scattering for the
quadratic scalar Klein—Gordon equation [20]. The case of systems is even more compli-
cated and only a few partial results are known [4, 5, 13].

We follow and extend the analysis started in our previous work [14]. We refer to [3,
7, 11, 18, 20] for previous seminal work on dispersive quasilinear systems. The main two
challenges we face are:

(i) overcoming the quasilinear nature of the nonlinearity to ensure global existence,
(ii) obtaining decay of the solution to control the asymptotic behavior.

Fortunately, these two difficulties are complementary provided one obtains sufficiently
strong control. Indeed:

(I) The loss of derivative coming from the nonlinearity is overcome by using energy
estimates which allow us to control high regularity norms provided a lower order
norm remains small.
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(IT) The decay estimate, if implying time-integrability, precisely propagates the smallness
of low regularity norms globally in time. This is obtained from a delicate semilinear
analysis assuming that high regularity norms remain bounded. Together, these two
ingredients allow a bootstrap in time, which yields both global existence and scatter-

ing.

Energy estimates come from the conservative structure of the equation and depend on
delicate symmetry properties of the nonlinearity. In order to be extended globally, they
require a decay of some norm of order at least 1/7.

This decay is provided by the semilinear analysis of systems of dispersive equations.
We use the Fourier transform method. After suitable algebraic manipulations, this is re-
duced to the study of bilinear operators of the form

T/, 518 = fR /R ED (e ) FiE — 0, 080 Ddndi. (1L17)

As a first approximation, one may think of f, g being smooth bump functions and m
being essentially a smooth cut-off, and the main challenge is to estimate efficiently the
infinite time integral. It then becomes clear that a key role is played by the properties of
the function ® and in particular by the points where it is stationary,

Viplt®(E, m] =0.

This was already highlighted in [7] and forms the basis of the space-time resonance
method. In some situations, one has no or few fully stationary points and the task is mainly
to propagate enough smoothness of f , & to exploit (non)stationary phase arguments.

However, this is not the case in the models in this paper and we have to face some un-
avoidable “space-time resonances”. Under some conditions that enforce nondegeneracy
of the phase at critical points, we perform a robust stationary phase analysis of this case.
We believe this forms the main contribution of the present work and we present it below
in more detail.

1.2.3. Space-time resonant sets. The analysis of operators of the form (1.17) relies espe-
cially on the properties of the phase ® which, in our case, is of the form

O =Ag®) EAE - EAE =), ApO) = JB2+ 202, p € (o, V).
As in [7], one can define the space-resonant set
Rx={&.n): V@&, n) =0},

the time-resonant set
Rl = {(é? 7)) . q’(gs Tl) = O}s

and the set of space-time resonances

RZRXHR[.
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The absence of any stationary point corresponds to the condition R = . This holds in a
certain number of cases and the semilinear analysis can be carried out using integration
by parts arguments either in x or in ¢. It is remarkable that the simple condition R = J ex-
plains essentially many of the classical global regularity results (see the longer discussion
in [5]). For example the case of scalar Klein—-Gordon equations corresponds to R; = @,
in which case one can perform an integration by parts in ¢ (the normal form method [20]).

More generally, one can sometimes adapt the integration by parts semilinear argu-
ments even if the set R is nontrivial, provided that either the multiplier m in (1.17) or the
& gradient V¢ ® vanishes suitably on this set. In the case of wave equations, the vanishing
of m corresponds precisely to Klainerman’s “null condition” [19]. See also [7, 11, 8, 10,
14, 12] for recent results exploiting these ideas.

However, it was observed by Germain [5] that the case of Klein—Gordon systems
with different speeds is genuinely different, even in the case of a system of two equations
with equal masses by = b;. In this case one cannot avoid the presence of large sets of
space-time resonances and there are no natural “null conditions”. In general, the sets of
space-time resonances take the form

R={En) = @re.r'e):ecS?

for certain values r, 7’ € (0, o0) which depend on the parameters. In other words, the
set R is a 2-dimensional manifold in R? x R3, which should be thought of as the natural
situation, in view of the fact that it is defined by four identities ® (&, n) = V,® (&, n) = 0.

A partial result, which assumes certain separation conditions of the problematic fre-
quencies, was obtained in [5] in the semilinear case, and later extended to a quasilin-
ear example in [6]. The results in [5] and [6] appear to hold only for “generic” sets of
parameters, and the required smallness of the perturbation depends implicitly on these
parameters.

Our analysis in this paper can be understood as a robust analysis of the case of non-
degenerate resonances R N D = ¢, where D is the degenerate set

D = (£, n) : det[V2, B (€. )] = 0}, (1.18)

The analysis seems to be limited to dimension three (and higher), and the method does
not appear to extend easily to the two-dimensional case. It is possible, however, that this
analysis can be developed further to allow for low-order degeneracy of the phase, thereby
removing the condition on the parameters by, ¢, in (1.8). We note however, that this
would require a nontrivial change of the norms as it becomes likely that the gap in xL?
integrability would increase between “weak” and “strong” norms. We note also that our
conditions are sufficient to cover our main physical application.

Regarding the precise conditions on the parameters in (1.8), the first condition ensures
that (0, 0) is not time-resonant and thus this point plays little role. Note that (0, 0) is a
specific point as all the gradients vanish there. The second condition only reflects a lack of
uniformity of the estimates in terms of the gap between like parameters.* Finally, the third

4 As different velocities and masses approach each other, the corresponding spheres of “space-
time resonances” go off to infinity (see (1.20)). However, a slightly more careful analysis would
yield the desired uniformity, at the expense of some clarity of the proof.
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condition is equivalent to demanding that there are no degenerate space-time resonant
points in R? x R3\ (0, 0). We justify this at the end of this section.

The relevance of (1.18) can be illustrated by the fact that, after suitable manipulations
and use of the Morse lemma, the study of operators like (1.17) is similar to the study of
operators in standard form:

—

T1f.8)6) = fR /R PO ) F& - n.0g0. 0 dnds
for some smooth function p : R? — R3, which allows for a precise estimate on the phase.

1.2.4. Norms. The choice of the Z norms we use in the semilinear analysis (see Defini-
tion 2.3) is important. These norms have to satisfy at least two essential requirements:

(a) they must yield a 1/¢ decay after we apply the linear flow,
(b) they must allow for boundedness of the basic interaction bilinear operator (1.17).

The simplest energy-type norm compatible with (a) corresponds to x 148 L2(dx). This
is, essentially, the “strong norm” B,:’ i in (2.19)5 and we are able to control most of the
interactions in this norm. Unfortunately, certain interactions, corresponding to space-
time resonances, are simply not bounded in this norm, even for inputs f, g which are
small smooth bump functions of scale 1. This forces us to add another component to
our space, measured in the “weak-norm” which has insufficient xL? integrability. This
corresponds to B,%’ . in (2.19). Fortunately, these only happen on an exceptional set of
frequencies and the “weak norm” has an additional component that captures the essential
two-dimensional nature of the support of these solutions. This smallness on the support
then more than compensates for the weaker integrability and yields the all-important 1/¢
decay.

In addition, although fundamental, the gap in L>-integrability between weak and
strong norms is sufficiently small to allow us to treat the two norms similarly for most
of the easier cases, thereby keeping the computations manageable.

1.2.5. Condition on the parameters. We finish this section with simple computations
showing that the condition (1.8) implies the absence of degenerate space-time resonances,

5 We prefer, however, to first localize all our functions both in space and frequency. One should
think of a function as composed of atoms,

f= Yo hy= > P[k—2,k+2]($;k) P f),

k.jeZ. k+j>0 k.jeZ k+j>0

where the atoms fi ; are localized essentially at frequency ~ 2% and at distance ~ 2/ from the
origin in the physical space. Then we measure the size of each such atom appropriately, and use
this to define the Z norm of f. This point of view, which was used also in [14], is convenient to
deal with the main difficulty of the paper, namely efficiently estimating bilinear operators such as
those in (1.17).
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i.e. RND =0. Let

Ag(§) = /b2 + C2IEIZ,  Au) = /b2 +2IE12,  Ay(E) =/ + c2IEl?,
OE,n) =N () —e1Ap(E —n) —€1eAy(m), €1,e €{—1,1}

Clearly, ®(0, 0) = b, &+ b, £ b,, and therefore the first equation in (1.8) forces (§, n) =
(0, 0) not to be time-resonant. Moreover, clearly no point of the form (£, n) = (§,0),
£ € R3\ {0}, can be space-resonant.

We show now that (£, ) cannot be a degenerate space-time resonant point if (1.8)
holds and n # 0. We may assume, without loss of generality, that

cu=c, and byc, > byuch. (1.19)

The relation (V,®)(&, n) = 0 is satisfied if and only if £ = g(»), where

byc?
q(n) = |:1 +e v i|77. (1.20)
(bich +che2n? — eyt in|H)1/?

Clearly, r = |g(n)| depends only on s = |n| and

d b, c2bict

T=l+e >4 4M2U2U M4 232 (1.2D)

ds (bycy, + cjcus” — cycps®)
We claim now that

d

i >0 ifs e (0,00) and (¢(n), n) € Ry. (1.22)
Indeed, this is clear from (1.21) if € = 1 or if ¢ = —1 and either bvci > buc% or
¢y > cy. In the remaining case € = —1, ¢, = ¢y, by = by, we have g(n) = 0, so

D (g(n), n) = As(0) # 0, therefore (¢(n), n) ¢ R;. The conclusion (1.22) follows.
Finally, we show that

det[(V2, ®)(g(m), m] #0  if 5 € B3\ {0} and (g(n). n) € R. (1.23)

Letting E(§, n) := (V,P)(, n), we start from the defining identity E(g(n), n) = 0 and
differentiate it with respect to . Hence

_%

It follows from (1.20) and (1.22) that det(dg/dn) # 0. Moreover, from the definition,
det(0E/0&) = det(ViECD) # 0, and the conclusion (1.23) follows.

dE _ dq
d—n(q(n), n = (g(m,n) d—n(n).

The rest of the paper is organized as follows: In Section 2.1, we prove Theorem 1.1
and Theorem 1.3 relying on a decay assumption. The latter is then proved in Sections 3
and 4 where we prove respectively the continuity of the Z norm that captures the decay
and a bootstrap result that gives global control of this norm assuming global bounds on
high order energy. Finally, in Section 5, we provide some needed technical estimates and
we study the relevant sets associated to our phases.
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2. Reductions and proofs of the main theorems

2.1. Local existence results

In this subsection we state and prove suitable local regularity results for our equations.
We start with quasilinear systems of Klein—-Gordon equations. For o € {1, ..., d}

assume that by, ¢, € [1/A, A] and F, are nonlinearities as in (1.5)—(1.7). For N > 4 and

ueC(o0,T]: HrN) nclqo, 7]: H,N_l) we define the higher order energies

EXG (1) == {/ Z (8,Dpua) + b2 (DPugy)? —|—Zc (39; DPuy) ]
lol=N—1 VR o =

The following proposition is our first local regularity result:

{L’;(u,vx,,u)aiju,Lakl)gude}. 2.1
/LU ]]k 1

Proposition 2.1. (i) There is §9 > O such that if
lvoll g4 + 1113 < 8o 2.2)

then there is a unique solution u = (uy, ...,uqg) € C([0, 1] : Hr4) nclqo, 17 : Hr3)
of the system

O —ciA+blu,=F,, p=1,....4d, (2.3)

with (u(0), u(0)) = (vg, v1). Moreover,

sup |[u(t)|l g+ + sup el g3 < llvoll g + llvrll 3.
t€[0,1] t€[0,1]

@) If N = 4 and (vo, v1) € HrN X H,N_l satisfies (2.2), then u € C([0, 1] : H,N) N
Cc'([0,1]: HN=1), and

!

t
&) - 500 5 [ 500 [ X 1ptuls + Y IDzio)s|ds @)
t

[pl<2 [pl=1
foranyt <t €[0,1].

We remark that the nonresonance condition (1.8) is not needed in this local regularity
result. On the other hand, the symmetry conditions (1.7) on the quasilinear components
of the nonlinearities are important.

Proof of Proposition 2.1. The local existence claim in part (i) and the propagation of
regularity claim in part (ii) are standard consequences of the general local existence theory
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of quasilinear symmetric hyperbolic systems (see Theorems II and III in [16]). To prove
the estimate (2.4), we use the equations (2.3) and the definitions to estimate

d
‘Esﬁ%)
d d 3
< > /Z2(8,D§ua)~D§ngx+f > > 26K -0,0;Dlug -0 DPuy dx
lpl<N-11VR? 5 R3 5021 k=1
d 3
+ > / > Y9Gl - 9;DPuy - % DPuy dx|. (2.5)
lpl<N—1 IR 521 k=1

We will use the standard bound

IDYf - DY gllp2 S IV flieeellgl v + 1Vxgllzoell fll g (2.6)

provided that |p| + || < M + 1, M > 1, and |p|, | 0’| > 1. For any multi-index p with
o] < N — 1 we estimate, as long as [[ul| 4 + il g3 < 1,

d 3
/z > %Gk - 9;DLuy - 0 DLuy dx
R;

w,v=1jk=1
2 .
Sl - [ 0 1Dl + Y0 IDS |,

o] <2 lo|<1

and, applying also (2.6), we get

d
/R} > "2 DPus) - DY Qo dx
o=1

S Ul + 21 [ 32 1D8ullz + 3 D%l .

|| <2 | <1

Moreover, for any j, k € {1,2,3}and o, v € {1, ..., d} we estimate, using (2.6),

f} 28, D%uy - [DL(GIX - 8;uy) — GIX - DP3;dpu,] dx
R;

S Uy + Wil - [ D2 1DSulls + Y- 1Dl ]

lor] <2 ler] <1

and

/328,D§u(, -GIX - DPY;dpu, dx +/326-g’; -89, DPuy - 9 DPu, dx
R R:

S Ul + il - [ D2 1D%ullzs + Y- D%l ]

|| <2 le|=1
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Therefore, by (2.5),

d ) .
)Esﬁ‘“’a) S U@ + 1@ 1011 [ > IDSu@)lls + Y ||D§§u(t)||m]
loe|<2 ler] <1
for any ¢+ € [0, 1]. We notice that ||u(t)||?1,v + ||L't(t)||flﬂ\,,l ~ SﬁG(t) provided that
lull o + llit]l g3 < 1. The desired estimate (2.4) follows. O

We now consider the Euler-Maxwell system. Recalling the definition (1.13), for any
(n,v, E, B) € HY we define

Evi= ) / [TI1D{n|* + (1 +m)|DPvl* + IDYEP + *|DEBPldx - (2.7)
lp|<N R

and

[(n, v, E, B)|lz := [IVn|iLe + [[vliLee + [[VvliLee + [V E] Lo + || BllLoe + [V B]|Lo~.

2.8)
The following proposition is our second local regularity result:
Proposition 2.2. (i) There is 8o > 0 such that if
Il (0, vo, Eo, Bo)ll ga < o (2.9)
then there is a unique solution (n, v, E, B) € C([0, 1] : ﬁ“) of the system
on +div((1 +n)v) =0,
oov+v-Vv+TVn+E+vx B=0,
(2.10)

B+ V X E=0,
WE—c*VxB—(1+nv=0,
with (n(0), v(0), E(0), B(0)) = (ng, vo, Eg, Bo). Moreover,

sup [[(n(2), v(2), E(t), BO)l g+ < ll(no, vo, Eo, Bo)l 74
1€[0,1]

) If N >4 alzd (ng, vo, Eo, By) € HN satisfies condition (2.9), then (n, v, E, B) €
C([0,1]: HY), and

’

t
En(t) — En(D) 5/ En(s) - I, v, E, B)(5)|lz ds 2.11)
t

foranyt <t €0, 1].
@ii) If (no, vo, Eo, Boy) € H* satisfies (2.9), and, in addition,

div(Eg) +no=0, Byg—V xvg=0,
then, for any t € [0, 1],
div(E)(t) +n(t) =0, B()—(V xv)()=0. (2.12)
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Proof. We multiply each equation by a suitable factor and rewrite the system (2.10) as a
symmetric hyperbolic system,

3 3
Ton+T Z Ve den+T (1+n) Z vp = 0,
k=1 k=1
3

3
(1+n)a,vj+T(1+n)a,n+(1+n)kaakvj = —(14+n)Ej—(1+n) Z €jmkUm B,
k=1 k,m=1

3
2 2
c atBj'|'C Z EjmkamEk =0,
k,m=1

3
& Ej—c* Z €jmkdm Br = (14+n)v;.
k,m=1

Then we apply Theorems II and III in [16] to prove the local existence claim in part (i)
and the propagation of regularity claim in part (ii).
To verify the energy inequality (2.11) we let, for P = D%, |p| < N,

Ep = /3[T|Pn|2 + (14 n)|Pv> + |PE|> + ?|PB|*] dx.
R

Then we calculate

d .,
EEP =Ip+lp+1lp+1Vp,

Ip ::/ 2T Pn - Po;ndx,
R3
3
lp = Z/ dn - Pv; - Pv; dx,
j=1 R
3
Hip := Z/ 2(1 4 n) - Pvj - Pd,v; dx,
j=1 IR
3 3
IVp = f 2PEj - P&Ejdx + f 2¢*PB; - P9 Bjdx.
Then we estimate, using the equations and the general bound (2.6),

S v E, By - 10, v, E, Bz,

3
Ip+2TZ/ Pn-(1+n)- Povgdx
=1 /R?
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p| SN, v, E, B3y - 10, v, E, B)| 2,
3 3
‘IHP-}-ZTZ/ P8,~n-(1+n)-Pv,~dx+22/ PE; - Pvj - (1 4+ n)dx
=1JR ' j=1 /R
S, v, E, B) %y - (0,0, E, Bl
~ s Uy ) HN s Uy 9 VAR)

3
‘ <. E, B3y - 0.0, E. B) 2.

’VP—ZZf PE; - Pvj- (1 +n)dx
j=1 7%

Therefore

d
- Ep| SN0, E, By - 010, E, Bz,

and the bound (2.11) follows since Ey = Y p_pe |,1<n Ep = (1, v, E, B)||2ﬁN.
Finally, to verify that the identities (2.12) are propagated by the flow, we let

X :=n+div(E), Y:=B-Vxuv.

Using the equations in (2.10) we calculate

3 3 3
AX =0m+ Y 90 =—> l(1+nvl+ Y (1 +n)]=0,
j=1 j=1 j=1

therefore X = 0. Moreover
3
at(z akBk) —0,
k=1
therefore

3 3
ZakBkEO, ZakYkEO.
k=1 k=1

In addition, for any m, n € {1, 2, 3},

3
OmVUn — OV = Zejmn(Bj =Y.
j=1
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Finally, we calculate, fori € {1, 2, 3},

3
0;Y; = 0;B; — Z €ijk0j0r vk

k=1
3 3 3 3
= — Z €jk0; Ex + Z €jk0j [Tak”l + Er + Z v 0pvg + Z 6k1mlem]
j.k=1 j.k=1 =1 I,m=1
3 3
= Z €;jk (0;v;0pvg + v9;0pv) + Z € jk€kim9j (V1 Bpy)

Jok,l

1 jkLm=1

3 3 3
= Y epdu@ue — v + Y epviddive+ Y Sirdjm — 8j18im)dj (v Bm)
J

ik, =1 Jik,=1 Jj.l,m=1
3
=Y [(Bi — Yi)dv — vi(Bi — Y1) + vidi(Bi — Yi)]
=1
3
+ Z[Bjajvi + Uiaij — Bl‘ajl}j — UjajBi]
Jj=1

3
= Z[_Yialvl + Y;0v; — v;0;Y;].
=1
Therefore, by energy estimates, ¥ = 0 as desired. O

2.2. Definitions, function spaces, and the main propositions
We fix an even smooth function ¢ : R — [0, 1] supported in [—8/5, 8/5] and equal to 1
in [—5/4,5/4]. Let

() = p(1x]/2°) = @(x]/271) forany k € Z, x € R,

Q1 = Z ¢m forany I C R.
melNZ
Let
J={k,j)eZxZs+:k+j=>0}
For any (k, j) € J let

@(—oco—k)(x) ifk+j=0andk <0,
;5](k>(x) = { @(—oo0)(x) if j=0andk >0,

@i (x) ifk+j>1landj>1,
and notice that, for any k € Z fixed,
~(k) __
$; = 1.

j>—min(k,0)
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For any interval I C R let
~(k ~(k
Frlm= Y .
jel, (k,)eT

Let Py, k € Z, denote the operator on R? defined by the Fourier multiplier £ +— ¢y (£).
Similarly, for any I C R let P; denote the operator on R3 defined by the Fourier multiplier
&+ @j(&). Forany k € Z let

Xkl = {(k1, k2) € Z x Z : |max(ky, ko) — k| < 8},
sz = {(k1,k2) € Z x 7Z : max(ky, kp) —k > 8 and |k; — kp| < 8}, (2.13)
X=X U AR

For integers n > 1 let

S = [q {R} > C:liglls = sup sup [E]7[DLq(&)] < oo} (2.14)
£€R3\(0} lol<n

denote classes of symbols satisfying differential inequalities of the Hormander—Mikhlin
type. An operator Q will be called a normalized Calderén—Zygmund operator if

0f (&) =q(&) - f(&) forsomeq €SP, gl g0 < 1. (2.15)

For any integer d’ > 1 let

d/
Mg i={m R xR = Cimig,m) =Y m' € n) - a1(©) - g5(& —n) - ah ),
=1

sup [lghllgoo < 1, m' € {(1+1EHY2, A+ DY A+ 18 — P2
ne{l,2,3}

foranyl:l,...,d’}. (2.16)
Definition 2.3. Let

We define
Z = {f e L*(R) : Ifllz:= sup ||('i;](k)(x) <P f()B,; < oo}, (2.18)
(k. jyedJ

where, with k= min(k, 0) and k4 := max(k, 0),

Igls, = _inf [lgilg +lglg ], (2.19)
Il = @+ 29D a2+ 20272 ) ), (2.20)
Il g | == @ 421%) 27288200 ) 1 4 202Ky

+o0=B1Dp2kegri  gup R—2||ﬁ||L1(B(E07R»]_ 2.21)
Re[277,2k], &peR3



2372 Alexandru D. Ionescu, Benoit Pausader

In order to properly understand the Z norm, one should keep in mind that the B,g’ j
norm is the easiest norm one would want to use and which would be sufficient to obtain
the needed 1/t decay after we apply the linear flow. However, the B,i . norm is forced
upon us by the presence of space-time resonances. Its decay is slightly too weak, but this
is compensated for by the last term that captures the two-dimensional property of the
support.

The weak component B,% i is important only at middle frequencies |k| < 1, where one
has the more friendly expression

Wil ~ 2P 2+ Dl

_B)i -~ ; o~ 2.22
Vlgz ~ 20 Pl + Bl +27 sup RN - 222

Re[277,1], §eR3
One should think of j as being very large; the B,i ; horm is relevant to measure functions
that have thin, essentially two-dimensional Fourier support.

Finally, the weights in k in (2.20)—(2.21) are chosen so as to give (2.22) when k = 0
and so that, at the uncertainty principle k + j = 0, all norms should be comparable for a
bump function.

The definition above shows that if || f ||z < 1 then for any (k, j) € J one can decom-
pose

g0 Pof =@ +2'% 7 g + 1), (2.23)
where®
8=8 P ey h=h G, (2.24)
and
24 g 2 + 202 PR S 1,
27 2800=B)J | 1> + 202K oo 4 20 =B/ k1 0]

x sup RNl pegry S 1. (2.25)
Re[277,2F], )eR3

In some of the easier estimates we will often use the weaker bound, obtained by setting
R =2k,

204D gl 2 + 202Kl S 1,

- ] ~ -~ (2.26)
2=2Bkny(1=p)j ]2 + 2(1/2_ﬁ)k||h||Loo 4 2=B=5/Dkqyj 7l S 1.
As before, assume A > 1 is a (large number), d > 1 is a fixed integer, and by, . . ., by,
c1, ..., cq are real numbers with
bi,...,bg,c1,...,cqg €[1/A, A] (2.27)

6 The support condition (2.24) can easily be achieved by starting with a decomposition ?p';k) .

P f = (ok 4 210ky—1 (¢’ + ') that minimizes the By, j norm up to a constant, and then redefining

~(k ~(k
g:=g- (p[(j)ilng] and h :=h'- w[(jll’j+1] (see the proof of Lemma 5.1).
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and (see (1.8))

|bo) + by — bgy| = 1/A for any o1, 02,03 € {1, ...,d},
Ico, — Copls 1boy — boy| € (0} U[1/A, 00) forany oy, 07 € {1,...,d}, (2.28)
(Coy — €0 (Ca by — Coboy) = 0 forany o1, 00 € {1,...,d}.

Let Ay :R? - [0,00),0 =1,....,d,
Ao (§) i= (b2 + 2 E|HV2. (2.29)

Let
Ty ={(4),...,d+), A=), ..., (d-)}. (2.30)

Assume D = D(d, A, d’) is a sufficiently large fixed constant.
Given U = (Uy,...,Uy) € C([0,T] : HN), for some T > 1 and N > 4, we
consider quadratic nonlinearities of the form

NoE )= > fwma;u,v@,n)@(s—n,er(n,z)dn, o=1,....d, 231

w,vely
for symbols my. ., € My, where Uy := Uy, Uy i= Uy,o0 €{l,...,d).
We claim first that smooth solutions of suitable systems that start with data in the

space Z remain in Z, in a continuous way. More precisely:

Proposition 2.4. Assume Ny = 104, Ty > 1, and U = Uy, ..., Uy € C([0, Ty] : HNo)
is a solution of the system

O +iA)Us =Ny, o =1,...,d, (2.32)
where N are defined as in (2.31). Assume that, for some t € [0, Tp],
dhoy ez, o=1,....d. (2.33)
Then there is

r:r(To, sup  [le™Ao U, (t0)|z, sup  sup ||U0(t)||HNO)>O

oe{l,....d} oe{l,....d} t€[0,Tp]
such that
sup sup €Uy (t)lz <2 sup €M Uy(t0) 2, (2.34)
te[0,TyIN[tg,t0+1] 0=1,..., d oell,..., d}

and the mapping t +— €% U, (t) is continuous from [0, To] N [to, to + T] to Z, for any
oell,...,d}.

The key proposition is the following bootstrap estimate:



2374 Alexandru D. Ionescu, Benoit Pausader

Proposition 2.5. Assume No = 10*, Ty > 0, and U = (Uy, ..., Uy) € C([0, To] : HN0)
is a solution of the system

O +iANUs =N;, o=1,....d, (2.35)

where N, are defined as in (2.31) and the coefficients b, ¢y satisfy (2.27)—(2.28). Assume
that .
sup  sup [le" U ()l yvony < 81 < 1. (2.36)
te[0, Tyl o=1,....d
Then
sup  sup [|le"A UL (1) — Us O)llz S 67, (2.37)
te[0, Tyl o=1,....d

where the implicit constant in (2.37) may depend only on the constants A, d, and d’'.

We prove the easier Proposition 2.4 in Section 3 and the harder Proposition 2.5 in Sections
4 and 5. In the rest of this section we show how to use these propositions and the local
theory to complete the proofs of Theorems 1.1 and 1.3.

2.3. Proof of Theorem 1.1

We now prove Theorem 1.1, as a consequence of Propositions 2.1, 2.4, and 2.5. Indeed,
assume that we start with data (vg, v1) as in (1.9), where € is taken sufficiently small.
By Proposition 2.1 there is 77 > 1 and a unique solution u € C([0, T1] : H,N°+]) N
C1([0, 11 : H) of the system (2.3), with

. 3/4
sup ||u(t)||HNO+1 + sup ||u(t)||HN0 < 80/ . (2.38)
tel0,T1] r tel0,T1] r
Foro € {1,...,d}let
Us() =y (t) —iAsug, (2.39)

where, as in (2.29), A, = (b2 — c2A)'/2. Then U, € C([0, Ti] : HY0) for any o €
{1,...,d}, and
Uy = —AZ'SUy, iy = RU,. (2.40)

o

Using these definitions we calculate
3. 0d
O +ihe) Uy = O + b2 — 2D = Y > Gk (u, Vi )3ty + Qo (u, Vi 1)
jk=1v=1
(see (1.5)). Using the formulas in (2.40), it is easy to see that this is a system of the form
O +iA)Us =Ny, o €{l,....d},

where the nonlinearities N, can be expressed in terms of the functions U, as in (2.31).
Therefore we can apply the results in Propositions 2.4 and 2.5.
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From the definition (2.39) and Lemma 5.1, it follows that U € C([0, T;] : H™0) and

sup [ UDlgne S & sup [|Us(O)llz < %o (2.41)

t€[0,Ty] oe{l,...,d}

Let 75 denote the largest number in (0, 7] with

sup  sup e UL ()llz < e
te[0,Tp) o€{l,..., d}

3/4
0 -

Such a 7> € (0, T1] exists, in view of (2.41) and Proposition 2.4. We now apply Propo-
sition 2.5 on the intervals [0, Ta(1 — 1/n)], n = 2,3, ..., with 8 ~ &)/, It follows
that

sup  sup e U0z S .
1€[0,T2) o €{l,....d}

Using again Proposition 2.4 we see that 7, = 77 and

sup  sup  [le" A Us (1)]lz S #o. (2.42)
te[0,Ty] o €{l,...,d}

From the formulas in (2.40) and the bounds (2.42) and (5.18) it follows that

sup [0+ ((sup IDLu() i + sup IDZaIx)] Seo.  (243)
1€[0,71] lol<4 lpl<3

Therefore, by the energy estimate (2.4),
sup Eﬁﬁl(t) < €o.
te[0,T1]

As a consequence, if the solution u satisfies the bound (2.38) on some interval [0, T1],
then it has to satisfy the stronger bound

sup [lu(®)ll o+ sup i@l v S 0.
1€[0,T1] r 1€[0, 711 ’
Therefore the solution can be extended globally, and the desired bound (1.11) follows
using also (2.43). This completes the proof of Theorem 1.1.

2.4. Proof of Theorem 1.3

As before, Theorem 1.3 is a consequence of Propositions 2.2, 2.4, and 2.5. Indeed, assume
that we start with data (no, vo, Eo, Bo) as in (1.14), where  is taken sufficiently small. By
Proposition 2.2 there is 77 > 1 and a unique solution (n, v, E, B) € C([0, T1] : HN°+1)
of the system (2.10), with (n(0), v(0), E(0), B(0)) = (no, vo, Eo, Bo),

n(t) = —div(E)(t), B(t) = (V x v)(t), te€l[0,Ti], (2.44)
and .
sup ([ (n(1), v(®), E(6), B@)| s < &g (2.45)
+e[0,Ty]

Given the restriction (2.44), the system (2.10) can be written in an equivalent way, in
terms only of the vectors v and E,
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3 3
vy =—Ej+ Y TojoEr— Y vedjui,
k=1 k=1

3 3
UEj =vj — Avj+ Y Podjue — Y vjdkEx, (2.46)
k=1 k=1

3 3
—ZakEk, Bj = Z €kl Ok V1.
k=1

k=1

Let
Ui := A V|7 HAIV(E) + |V div(v),
1 1I1| 1 ( V| 1( (2.47)
Uy = ANV eurl(E) + |V curl(v),
where
AL:=+V1—-TA, Ar:=+v1-C2A.
Then Uy, U, € C([0, T;] : H™0) and
div(E) = ATV IVIRUY),  curl(E) = A2|VI(RU2),
div(v) = [V|(IUy), curl(v) = |VI(IV2),
3
v =—RSUD+ Y €mn(Ru(SUzn)), (2.48)

m,n=1

3
Ej = —RiAT U+ Y €mn(A2Rn(RU20)).

m,n=1

Using these definitions we calculate

@ +iA)UL =iA] IVI_ (div(E)) — A1]V] ™ (div(v))

+ A1|V|_1[div(v) - Z 3j(Uj3kEk)] +ilVIT (=14 TA)EVE) — 3A(v])]
J.k=1
3 i e
— =3 A1Rj (v div(E)) + 3 > IVIe).

Jj=1 j=1
and

3 3
(0 +iA2)U2,j = i|V|_1|: Z EjmnamEniI - A2|v|_l[ Z 6jmnamvn]

m,n=1 m,n=1

+ 5"V Z &mndnl (1 = A)vy = vy div(E)]| = i1V 7! Z &mndn En |

m,n=1 m,n=1

3
== Y €mndA; ' Rulv, div(E)].

m,n=1
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Using the formulas in (2.48), it is easy to see that the functions Uy, Uy ;, j € {1, 2,3},
satisfy the system

@ +iADUI =N1, (0 +iA)Usj =N, je(L,2,3),

where the nonlinearities N, A3, ;j can be expressed in terms of the functions Uy, Us ; as
in (2.31). Therefore we can apply Propositions 2.4 and 2.5.

We can now proceed as in the previous subsection. From the definition (2.47) and
Lemma 5.1, it follows that Uy, Us € C([0, T1] : HN0) and

3/4
S:)lp UL Ol o + 102011 gvg) S 80/ » UL O)Iz + 1020001z S g0- (2.49)
t€[0,71]

Let 7, denote the largest number in (0, 7] with
; j 3/4
sup [lle" 1 U1z + e M U2 (0)ll2] < &5
1€[0,T»)
Such a 7> € (0, T1] exists, in view of (2.49) and Proposition 2.4. We now apply Proposi-
tion 2.5 on the intervals [0, T>(1 — 1/n)],n = 2,3, ..., with 8 ~ & to obtain

sup [l U (D)7 + I Ux(1) 1 2] S e0.
t€[0,T»)

Using again Proposition 2.4 we see that 7, = T} and

sup [l U 1)1z + I 2 Ux (1)1 2] S e0. (2.50)
t€[0,T1]

The formulas in the second line of (2.48), and the bounds (2.50) and (5.18), show that

sup sup (1 +0"P(IDPu(®)llL + IDPE®)|1>) S eo. (2.51)
t€[0,71] |p|<4

Recalling the definition (2.8) and the restriction (2.44), it follows that

sup (1+0"P|(n, v, E, BY(D)llz < eo.
te[0,T1]

Therefore, by the energy estimate (2.11),

sup  Eng+1(1) S eo.
te[0,T1]

As a consequence, if the solution (n, v, E, B) satisfies the bound (2.45) on some interval
[0, T1], then it has to satisfy the stronger bound

sup [[(n(1), v(®), E(t), B ing+1 < €0-
te[0,T1]

Therefore the solution can be extended globally, and the desired bound (1.16) follows
using also (2.51). This completes the proof of Theorem 1.3.



2378 Alexandru D. Ionescu, Benoit Pausader

3. Proof of Proposition 2.4

For simplicity of notation, in this section we let C denote constants that may depend only
on To, SUpgeqy,..ay lle™"7 Us (0)llz, SUPseqs,...,
constants A, d, d’.

For any integer J > 0 and f € H™ we define

U
Ifllz, == sup 2mnO2=205E0 ). P f(x)]lpy 3.1)
k, j)eT

(compare with Definition 2.3), and notice that

Ifllz, < Wfllze  Wfllzy Sl flgno-
We will show that if t < ¢ € [0, To] N [fo, tp + 1] and J € Z then
sup e AUy (1) — €M Us (1)1 2,
~ . 2
<l - t|(1 + sup  sup  [lei*he Ug(s)||zj) . (2
se[t,t’1o€ell,...,d}
From (3.2), it follows easily that
sup sup [l Us(1)llz, < C,
o€ll,....d} te[0,T1N[ty, to+7]
e 2 Uy (1) = " Us (1) 2, < Clt" — 1)
foranyt,t’ € [0, T1N[tg, 10+ 7], 0 €{1,...,d},
uniformly in J, provided that t < Clis sufficiently small. The desired conclusions

follow by letting J — o0.
It remains to prove (3.2). The equations (2.32) and (2.31) give

[0 + iAo 0oy (E.0) = Y / Mo & MULE =0, 00,010 dn (3.3)
w,vely R3
foro =1,...,d. Letting
Vor (1) i= "™ Upy (1), Vo () :=e " Uy (1) =Vor (1), o=1,....d,

and

~

Aot i=4Ae, Ao i=—-A,, o=1,....d,

the equations (3.3) are equivalent to

d —
E[Va+(‘§st)]

= > / /Mo @=AunE=m=bolpy ) (&, M Vu(E — 0, V(0. 1) .
w,vely R?
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Therefore, forany t <t € [0, Toplando =1, ...,d,
Vor (6,1) = Vor (€. 1)

t ~ ~
> f / PR OT AR Doy V(€ Vi = 1 9) Va0, 5) dds
w,vely t R+

t/
> f QY (Vyu(s), Vo(s))ds, (3.4)
t

w,vely

where

FIOTH(f, 9)1(E) = /R ORIy e ) P& — B0 .

(3.5
The desired bound (3.2) is equivalent to

sup  [|[Vor (1) — VoyrDlz, < Ell‘/ —t[(1+ sup  sup ||Va+(S)||z,)2.
oell,....d} selt,r']oell,....d)}

Using formulas (3.4)—(3.5) and Definition 2.3, it suffices to prove the uniform bound

. 2
_9 i)y ~(k . ~
2021200 L P QT (Vi) VoDl = C(14 sup 1Vas(9)llz, )
' }

oefl,....d
(3.6)
for any fixed (k, j) € J,s €[0,Tpl, 0 €{l,...,d},and u, v € Zy.
Just from the definition (3.5) we easily estimate the L™ part of the B,i.j norm: If
k < 0 then

IFLPL QT (V,u(s), Vo)l S I+ 1DV 211+ 1) Ve )Y ()l 2 < C.

Similarly, if £ > 0 then

2K FLPQTHY (Vi (5), Vi ()]l oo
S 2 IFP< Vi 2 I F TPkt s Vo) 2
+ N FTPrk—a,k+4) Vi ) L2 I F[P<k Vo ()]l 12

Y ARG (2P Vel 2
|ki—ka|<4, k1 =k—6
<C.
Therefore, letting B := 1 + sup, (|
uniform bound

ay IVo+(s)llz,, for (3.6) it remains to prove the

.....

omin@21=2D ok 4 21T G0 - P QT (Viu(s), V(o)) ll2 < CB® - (37)

s

for any fixed (k, j) € J,s € [0,Tpl, 0 €{l,...,d},and u, v € Zy.
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The desired L? bound (3.7) follows easily from the L> bounds proved earlier unless
j > C + max(20k, —5k/4). (3.8)
Decomposing

Vi) = D P (Vu(s)),  Vals) = D Piy(Vals)),

ki€Z ko€Z
for (3.7) it suffices to prove that
. . . Ak .
amin0:27=2D ek 410 HA NG L P QT (P Via(s), P Vi ()l 2

(ky,ko)e Xy ~ 5
<CB 3.9)

for any fixed (k, j) € J satisfying (3.8), s € [0, Tp]l, 0 € {1,...,d},and u, v € Zy.
Using first the simple bound
| FLPQF Y (P, Vi (8), Py Vi (S)]l 2
< (1 42"y min [ P, Vi) 211 Py Vo) 1 1 Piy Vi1 1P Vi ()1 2]
< (1 4 amaxtkrko) p3min ko) /2 By () |2 | P Vi ()24
we estimate
(%% 4 210620+A)) > 1PL QT (Py Viu(s), Piy Vo ()2 < €
(ky,k2)€ Xy, min(ky ,kp)<—4j/5
and
2ok 4 210k) (1A > 1Pe QT (Piy Viu(), Piy Vo(s))ll2 < C.
(ky,k2)€ Xy, max(ky,k2)>j/20
Therefore, for (3.9) it suffices to prove the uniform bound

2min(0,2]—2j) (de + 210k)2(1+ﬂ)/

x > 13+ PQTHY (P Via(s), Py Vo))l 2 < CB?
(k1.k2)€Xy, —4j/5<ki <kr=j/20
(3.10)
for any fixed (k, j) € J satisfying (3.8), s € [0, Tp], 0 € {1,...,d},and u, v € Zy.
To prove (3.10) we further decompose
~(k
PaVu(s)= Y Pryak+2l@ " Py (Vu(s)]

Ji1zmax(—ky,0)

— Z Plie; -2,k +21(8ky, ji1)»

Ji1=max(—ky,0)

PoVo(s) = Y Piy2ks2l@? Py (Vi(s))]

J2=max(—kz,0)

= ) Pr2kmup)-

J2=max(—k3,0)
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Then we rewrite, using the definitions,

P OT Y (P 2,00 421(8k1, 1 )s Py —2,k2+21(8ky, j)) (X)

= / K (x, y1, y2) 8k, j1 (V1) &ka, j» (¥2) dy1dy2,
R3xR3
where

K(x, y1, y2) == C/ PAlE=YDE+1=32) 1 His[Ag () =AuE—m)—Ay ()]
R3xR3

X Moy 0 MOk —2.5+216 — MO —2,k+21(M @k (§) d& dn.

Recall that k, k1, ko € [—4j/5, j/20] and j > C. Therefore we can integrate by parts in
& or n to conclude that

j—10

it x—yil+ly—yl=2 then |K(x,y1,y2)| < C(lx — y1| + [y1 — y2))~'°.

Therefore, the contributions of the functions g, j, and g,, j, corresponding to |j; — j| +
|j» — j| = 10 are easily bounded,
(20{]( + 210k)2(1+/3)j

(k1,k2)eXy, —4j/5<ki,ka<j/20

> 13 - PeQT ™ (P 2,40 +21(8k1. 1)+ Pity—2.k0421 8k i)l 2 =< C.
lj1=Jjl+lj2—j1=10

Finally, for (3.10) it remains to prove the uniform bound
2min(0,2J72j) (20lk + 210k)2(] +ﬁ)]

x > 1PQY " (Pity —2,+21(8k1. 1) Plia—2.00+21(8kz, o) 2
(ky,ko)e Xy, —4j/5<k1<ka<j/20

<CB* (3.11)

for any fixed (k, j) € J satisfying (3.8), ji, j» € [J — 10, j + 10], s € [0, Tp], 0 €
{1,...,d},and u,v € Z,.
Using the definition (3.1), we obtain

—min(0,2J-2j
gk i lBe, 5, + lghoio By, S B2 ™22

for any ki, kp € [—4j/5, j/20] and j1, j» € [j — 10, j 4 10]. Therefore, by (2.26),
I (Pt 2414218y D1 S B2 ™O2T7200 o 2106 =30 /2=,

Since
186, 5l 2 < C(1 + 2k2)=No,
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we can estimate, for ky < k» € [—4j/5, j/20] and j1, jo» € [j — 10, j + 10],

I P QF Y (P, —2,k,+21(8ky, j1 ) Plka—2,k0421(8ka, o) Il 12
< 2% + DIF Py =2.004+21(8k1 i L1 IF Py —2,k0+21 8k, iy 12
< 5B27 min(0,2J-2j) . (20(](1 + 2]0k1)7123k1/227(1+ﬁ)]‘ 3 (1 4 Zkz)f(Nofl)‘
Therefore the left-hand side of (3.11) is dominated by

(Zak+210k) Z 5B(20tk1 +210k1)—123k1/2(1 +2k2)—(N0—1) < GB,
(k1.k2) € Xy, k1 <ks

as desired. This completes the proof of the proposition.

4. Proof of Proposition 2.5

We prove Proposition 2.5 in several stages. We first derive several new formulas describ-
ing the solutions U, .

4.1. Renormalizations

We will use the definition and the notation introduced in Subsection 2.2. The equations
(2.35) and (2.31) give

[0 + iAo (U1 (E.1) = » fRSma;u,u(s,n)@(fs—mr)ﬁv(n,r)dn @.1

w,vely
foro =1,...,d. Let
Voi®) =™ Uss(t), Vo) = e "o Us_(t) = Vor(t), o=1,....d,

and

Aoy :=4+As, Ao =—A,, o=1,...,d.

Then equations (4.1) are equivalent to

d —
—I[V. N
dt[ O'+($ )]
= > fR e @R Wl G VUE — 0. 0V D dn. (42)
w,vely :

Therefore, for any t € [0, Tp]and o =1, ...,d,
Vor (€,1) — Var(£.,0)

t ~ ~
= 3 [ [ e R Rl e Ve — ) Vi) dn s,
w,vely 0 JR3

(4.3)
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The desired bound (2.37) is equivalent to

1Vos () = Vor Oz S 87 (4.4)
for any t € [0, To] and any o € {1,...,d}. Given ¢t € [0, Tp], we fix a suitable de-
composition of the function 1jo ), i.e. we fix functions qo,...,qr+1 : R — [0, 1],

IL —log,(2 + )] <2, with

L
> am(s) =1j0.(s).  suppqo S 10,21, suppgri1 S [r — 2,11,

m=0

supp g C [2"71, 2m 1, 4.5)

t
gm € C'(R)  and f|q,’n(s)|ds§1 form=1,...,L.
0

Recall the assumption mg., , € My and the definition (2.16). Using also Lemma
5.1 and (4.3), for (4.4) it suffices to prove the following proposition.

Proposition 4.1. Fix t € [0, To] and define the functions q,, as in (4.5). For any o €

{1,...,d} and ., v € I define bilinear operators Ty, """ by

FITSH(f, )] (€) = / [ ¢SO =R -Roly (). F(E — . $)8(n, 5) dn ds.
R JR3

4.6)
Assume that

fu = 81_1 0.V,  for some normalized Calderén—Zygmund operator Q @7

for any u € 1, and decompose

fu=Y" > Puawsa@ Pefiy= Y. fl.. @8)

k' €7 j'>max(—k’,0) k,jhed

Then

~(k . _p4
> a2 2150 P s, S27P @9)
(k1,j1), k2, )T

for any fixed
oell,....d}, pn,vely, (k,j)eJ, mef{0,...,L+1}, 4.10)

It follows from the definition that

TS (f, ) = / an(TTHV(f(5), 8(5) ds,
R (4.11)

FITE (L 0N@) = [ IR Rl ey .
R3
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Foro € {l,...,d}and pu, v € Iy, we define smooth functions ®%#¥ : R3 x R3 — R
and 24V R3 x R3 —» R3

QTHV(E, ) 1= Ay (§) — KM(E —n) = Au(p),  EMV(E ) = (Vy @7 ") (&, m).
4.12)

Many of the bounds needed in the proof of of Proposition 4.1 rely on having a good
understanding of the functions ®?°#:¥ and E/*". The relevant properties are proved in
Subsection 5.2.

In view of Lemma 5.1 and the main hypothesis (2.36), we have

sup |1 fuOllgnonz S1 (4.13)
t€[0,Ty]

for functions f, defined as in (4.6). Let
Eff (s) = Ml ). (4.14)

It follows from Lemma 5.2 that for any u € Z; and s € [0, Tp],

Yo UEFE Ol + £ 9)lp2) S min@mMomDE alHA=aky,
j'=max(—k’,0)

> NEfE @l S min@0, 202K (45717, (4.15)
Jj'=max(—k’,0)
sup | DY fii (€ )] Sjpl (0K 4 910Ky =1 H=(1/2=p)K 5lplj"
£eR3

Sometimes, we will also need the more precise bound

VESE Nz + £ &l 2 S @ +2106) 710268 0=0=A0" forany (K, j') € J.
(4.16)
In addition to the bounds (4.13)—(4.16), we will also need bounds on the derivatives

(05 fk’,{j/)(s), in order to be able to integrate by parts in s. More precisely:

Lemma 4.2. (i) With fk'f j,(s) as in (4.7) and (4.8), for any s € [0, Tyl, u € Zg, and
*'.jed,

102 D@2 S minl(1+ 57" ~F, 2% 2] min[1,2-%0-9K] @a7)
(ii) In addition, for any u € Iy, (k', j') € J withk’ € [-D/2,3D/2], and s € [0, Tp],

1@ fE )@l < (1 4s) P, 4.18)
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Proof. (1) We may assume that © = (o+) for some o € {1,...,d}, and use (4.2). It
follows that

1@ £ @112

sty

or(€) /H; e IR Dl € )V E = 0. 5) Vol 5)dn

nvely L
Sty Y ee®x

w,vely (ki,ky)eXy,

/ e A gy (€ Py Vi€ = 0, )P Vo ()| (4.19)

R- L

&

The main assumption (2.36) shows that ||V, (s)[l;~z
u € Zy. Therefore, by (5.17)—(5.18),

< §&; for any s € [0,¢] and

~

1P Vi ()l 2 S 81 min(UHA=0K" o=Nok™

o~ . Y (4.20)
le™ 8 P V() S 81 min@/2PmOR 2768 (1 4 5)~ 17,
forany s € [0, Tpl, u € Zy, and k" € Z.
Now (4.19), (4.20), and the definition of the space M in (2.16) yield
1@ £ @)1l
< § Z min(2(1+ﬁ—a)k2’ 2—(N0—2)k2) . min(z(l/z—ﬁ—a)kl , 9 —6ki )(1+S)—1—/3

(k1,k2)eXy, ki <ky
< (1 + )" min(1, 2~ Mo—9K,

Moreover, if K’ < 0, then we can estimate, using again (4.19), (4.20), and the definition
(2.16),

1@ £ @)1l

< 51 3k'/2
LD DD DI
w,vely (kg ,kz)GXk/

X

/R (e PR EEIE R Dy (& 1) Py Vi (& = 0. 5) Py Vo (0, 5) d

o0
Lg

S 8123](’/2 Z min(2(1+f37&)k1 , 27(N072)k1) . min(2(1+ﬁfol)k2, 27(N072)]<2)
(k1,kp)eXy

SJ 23k’/2.

The desired bound (4.17) follows.
To prove (ii) it suffices to show that

135 Per Vig 1)) (8) [l oo < 81(1 4 5)71=A/10
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Using (4.2) it suffices to prove that

ou () /R e @R EEI TR D € ) Via(E = 1, 5) Vo n, 5)
SEITCI

forany £ € R3, u,vely,oef{l,...,d},ands € [0, Tp]. Recall that IV zamgvo S
381 (see (2.36)). By the definition of the space M in (2.16) and Lemma 5.1, it suffices to
prove that if

181 20 + €20l zrpgmo < 1, @21)

and we decompose
[ [ ~ k,‘ .
g = Z g;l{i,ji, g;’{i,jl. = P[k,-—2,k,-+2](‘P}i )'Pk,-gi), i=1,2,
(ki,ji)ed
then

—

2max(k1,k2) (Pk’(f)/ eiS[Aa(E)*Au@*ﬂ)*/\u(ﬂ)]gil i (g — n)g%z i (T)) dn
R3 ; )

ki, j1), k2, jp)eT
< (14571710 (422)

forany £ € R3, w,vely,oefl,....,d},seR,andk € ZN[-D/2,3D/2].
We first only use the L2 bounds

”gl Ny < min(Z_Nok', 2(2/5—0)1:12—(1—&]'1)’
kT (4.23)

82,1l 2 S min(@ ok, 2@Fekap = (=R

(see (4.21) and (5.13)), and estimate easily

—_—
1

pmaxti k)| (g) / ISl O Rulem—RoIgl (& _pyo2 () diy
R? ) ’

((k1,j1), (k2 j2)) €T
5 (] -|—S)_1_‘5/10,

where

J1 = {((k1, j1), (kay ) € T x T = (ki, ko) € X, 2maxkika) > (] 4 )2/No
or 2max(j1,j2) > (1 +S)1+4ﬂ},

Also, the full bound (4.22) follows easily if s < 202. We let

Jai= {((ke, j1), (kay o)) € T x T = (ki, ka) € Xpr, 2m&xk1k2) < (7 4 )2/ No
and 2max(ji.j2) <(1+ S)l+4ﬂ},
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and notice that J» has at most C In(2 + s)* elements. Therefore, for (4.22) it suffices to
prove that

—

o (&) /A3 eiS[Aa(E)_AM(E_U)_AV(n)]inI,jl (€ — n)gl%z,j2 (mdn| <2° max (ky.k2) ;—1-/9
R
(4.24)

forany & € R3, v e Iy, 0 € {1,...,d},s > 2P° k' € ZN[-D/2,3D/2], and any

((k1, j1), (k2, J2)) € Ja.
Without loss of generality, in proving (4.24) we may assume that j; < jp. Assume
first that

272 > =D (1 4 g)1-H/6, (4.25)
Then, using (2.23), (2.26) and the assumption (4.21), we have

—

||g]%2’j2 ”Ll 5 27(]+ﬂ)j223k2/2(201k2 + 2]0](2)71 )

—

By (5.14), | g,gl il S 2-kij2, Using also (4.23) we estimate the left-hand side of (4.24)
by

—_——

Cmin(llg}, ; lrellgr, o e, 28k, ;1lz2)
< min(2_k~‘ 129=(+B)ja 2/?1(1+ﬂ—a)2—<1—ﬂ>jz) < p—(1+B/3)j2

The desired bound (4.24) follows if we assume (4.25).
Finally it remains to prove (4.24) assuming that

< 22 <2 PR, (4.26)
In this case we would like to integrate by parts in 7 to estimate the integral in (4.24). Let
K=(U+9R22+0+9Y2, s=K(1+s"", e=minQ 2, (1+s" 2.

Recalling the definition (4.12), using the bounds (5.27) and (5.14), we have

/]RS[l _ §0§0(571 EM,U(S’ n))]eiS[An(‘E)*All(gfn)*l\v(n)]glll’j] (s _ n)gizsjz (n) dn'
<4972 42D

Moreover, by (5.58) (since k' > —D/2, the last formula in (5.30) shows that the integral
below is nontrivial only if min(ky, k) > —D),

(Pk/(é) /I‘v wso(S—IEM,V(S’ n))eiS[Aa(S)_AM(E_W)_AU(U)]inI,jl (%‘ — n)glzz,jz (n) dn’

< /R Mo commaeriong (0 = PV EDgy, € =l Igg, ;,(Dldn. (4.28)
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Using (2.23), (2.25), and (4.21), and recalling that we may assume that min(ky, k2) >
—D, we have

—

||1[0’C24max(k|.k2)5](n - pvE) - g}%z,jz(n)”L}7
5 (20(1(2 + 210](2)—1 min[z—(l+ﬂ)j2 . 33/226max(k1,k2), 83212max(k1,k2)].

—

From (5.14) , we have || g,ll, e < 2710k Therefore, we may estimate the right-hand
side of (4.28) by

Cmin(Z_(1+ﬁ)j2K3/2, 22[113.)((1{1,/(2)83) g (1 +S)_1_/3.

The desired bound (4.24) follows, using also (4.27) and the definition of the set J>. O

4.2. Proof of Proposition 4.1

We will prove the key bound (4.9) in several steps. The main ingredients in the proof are
the estimates (4.13)—(4.17) above.

This proof constitutes the heart of the analysis. We proceed in three stages. Decom-
posing the solutions into atoms decomposes each interaction into a myriad of different
“elementary interactions”. The purpose of the first simplification is to get rid of most of
the easier cases so as to only focus on the few that really affect the outcome. This reduces
matters to proving Proposition 4.5 below, after which it suffices to bound each iteration
independently in a uniform way (see (4.39)). In the second stage, we reduce matters fur-
ther to the core of the difficulty in Proposition 4.11. This is done in Lemmas 4.6, 4.7
and 4.8 by using in various ways the finite speed of propagation which morally forces
the time to be the largest parameter in all the relevant interactions, and in Lemmas 4.9
and 4.10 which use the absence of (time) resonances at (0, 0) or at infinity provided by
the first condition in (1.8). The proof of Proposition 4.11 is harder and we postpone an
explanation of its ingredients to after its statement.

In this subsection we start by considering some of the easier cases, and reduce matters
to proving Proposition 4.5 below. In all the cases analyzed in this subsection we can in
fact control the stronger norm B,l’ ; (see Definition 2.3), instead of the required By ; norm.

Lemma 4.3. With D = D(d, A, d') sufficiently large as in Subsection 2.2, the estimate

~(k : _p4
Yo ARG BTl S ) ST 429)
(k1. j1). (k2. j2)eT ’

holds if
j < Bm/2+ Njky + D?,  where Ny :=2Ny/3 — 10. (4.30)

Proof. We observe that, in view of Definition 2.3,

~(k , ATk
13} - Pehllg,; S @ 4 219%) 2312002 PR GO pipy . @30
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Therefore, it suffices to prove that

> ¢ +20 429 @ 219 UREPR P (gl L e
(k1,j1), k2, j2)€

<27F'm (432)

Recalling the definition (4.14), it is easy to see that

FIPTT 0 (fL s fih 5)1E)

= / / ok (€)M O g (ES! & —n, ES ; (n.s)dnds.
R JR3
Therefore, by (5.24),

T, 153
IPT 0 L )l

S min( /R anONES 5 O 2IEFL () ds,
/R amOIEFL =N EfL )2 ds). 4.33)

Hence, using (4.15) and recalling the properties of the functions g,, (see (4.5)), we obtain

A4+ 25 2P (o e S 27 omDkep=hm,
(k1,k2)eXy, (k1. j1), k2, j2)€T
(4.34)
It follows that the left-hand side of (4.32) is dominated by

2—Bmo(1/2—B+a)kn3j/2

when k < 0, and by
7—(No=15)kn—pmn3j/2

when k > 0. The bound (4.32) follows if j < fm/2+ (2Ny/3 — 10)ky + D2, as desired.

[m}
Lemma 4.4. Assume that
j = Bm/2+ Njky + D (4.35)
Then, with the same notation as before,
~(k . g4
3 A+2942) |G- BT (G S )y 270

(k1,j1), ko, jp) €T, max(ky,ka)>j/ N (4.36)
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~(k . -
429421 BT (G S )y 270

(k1. j1), k2, j2) €T, min(ky,k2)<—10 4.37)
~(k . o4

> (294215 PTG S )l S 270

(k1. 1), (2, jo) T max(ji, 2)= 10 T 438)

Proof. Notice that if (ki, k2) € A, max(ky, k2) > j/Nj, and j > Njky + D? (see
(4.35)) then |k; — k| < 4. Therefore, by (4.31), (4.15), and (4.33), the left-hand side of
(4.36) is dominated by

Zmax(kl,kz,O) (20[]( + 210]{)23.//22(1/2—/3)](” Pk TYZ;M,V(fle’jl , fliz’jz)”Lz

(k1. j1), (k2. 2)€T i ) ~
max (ky,k2)>j/ N}, < p=Bmy—Noj/(2No/3-10) (2Olk + 210k)23//22(1/2—ﬁ)k’

which clearly suffices, in view of (4.35). Similarly, the left-hand side of (4.37) is domi-
nated by

Do (28 2@k 4 2106 R pe e (L e

ki, j0), ko, j2)e T, , , ~
(mlinj(lk)l (kf)ézlelojj < 9Bmp=3i ek 4 210k)93)/25(1/2=p)k

which clearly suffices. Finally, the more precise bound (4.16) implies that the left-hand
side of (4.38) is dominated by

D G A To S R B e LY S G/ o]

ki,j1),(ka, j R . . ~
kb ios? < g Bmy3i L (pok 4 910k)23i/29(1/2-)F.

which clearly suffices. O

We examine the conclusions of Lemmas 4.3 and 4.4, and notice that Proposition 4.1
follows from Proposition 4.5 below.

Proposition 4.5. With the same notation as in Proposition 4.1, we have

~

~(k . _p4 .
(1425 429150 PTT v (L s, S 27D (4.39)
for any fixed u,v € 1y, (k, j), (k1, j1), (ka, j2) € J, and m € [0, L + 11N Z, satisfying

j = Bm/2+ Njky + D*. —10j <ki, ky < j/Nj,  max(ji, j) < 10j. (4.40)
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4.3. Proof of Proposition 4.5

In this subsection we will show that proving Proposition 4.5 can be further reduced to
proving Proposition 4.11 below. The arguments are more complicated than before, and
we need to examine our bilinear operators more carefully; however, in all cases discussed
in this subsection we can still control the stronger B,l. . norms.

‘We notice that we are looking to prove the bound ('4.39) for fixed k, j, k1, j1, k2, j2, m.
We will consider several cases, depending on the relative sizes of these parameters.

Lemma 4.6. The bound (4.39) holds provided that (4.40) holds and, in addition,

j = max(m + max(ky, k2) + D, —k(1 + %) + D). (4.41)

Proof. Using definition (2.20), it suffices to prove that

_— _
(142 292 + 219 20 GO PTmer (L e
+ (1428 4202 4219 22O G L P (L ) e
<2 Bm+D (442
Assume first that
min(ji, j2) < (1 — B%). (4.43)

By symmetry, we may assume that j; < (1 — 2); and write

~(k .
GO @) - PTG @)

~(k ix-E i A (E—n)—A
— >(x)/ // o (8)e T E 51 ©—RuE=n=Kul oy
R3 JR JR?

—

x fl & —n.9)f (0. s)dnds dt.

We examine the integral in £ in the formula above. We recall the assumptions (4.40),
(4.41), and (4.43), and the last bound in (4.15). Notice that, just by the assumption (4.41)
and the definition (2.29),

|Ve[x & +5[Ag ()= A€ —m = Av]| = x| =5|Ve[ Ao (§) = A& =) = 27717,

as long as |£]| + |€ — n| < 2ma&kLk)+10 We apply Lemma 5.4 (with K &~ 2/, € ~ 2771)
to conclude that

~(k : —10j  ~(k
1300 0) - PTG (L 0] S 271050 (o),

and the desired bounds (4.42) follow easily.
Assume now that

min(ji, jo) > (1 — B2)j. (4.44)
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By symmetry, we may assume that k1 < kp. We first prove the bound on the second term
on the left-hand side of (4.42). Using (4.16) we estimate

(1424 4 282) (2% 1 210%) 202 PRy F(G0 . perimy (gl ]|l
S @2 4 DE 21002 BR o ap Ol O

S€[2m—1’2m+l]
< (2% £ 1) + 210k)2(1/2—,5)221—1€2 L%k 4 210k1)—122,51?1 7—(-B)ji
x (2% 4 910k2y—192pk29—(1=H) >
< (20 4 1)2i2~ W2k g=aki pin U+ o=(1=p=F)]) . p=(1—F—F)]
This suffices to prove the desired bound in (4.42), as can be easily seen by considering
the cases k1 < —j and k1 > —j.

Some more care is needed to prove the bound on the first term in the left-hand side of
(4.42). We recall that

~(k ~(k
f 5 = P —2,k|+2](§0;1 V' Py fu)s Tio. iy = Plko—2.k542] (w}f) - Py fo).

Since 17« Pe, fu(®)lls,, ;, + 180> - Pey fu(s)lls,, ;, S 1 (see (4.13)), we make use of
(2.23)—(2.26) to decompose
GV Py fu(s) = @R 4 21%0) 7Nl (5) + A )],
gklsll( 5) = gkl Jl(s) ¢(111)2j1+2]’ hkl jl( 5) = h;:l jl( s) - a[(fll)—ljl-ﬁ-Z]’
2B gl ()12 + 212 PR ()l S 1, (4.45)
2—2'”7'2“—*”]1 g, )2 + 2072 i AROI

2(}' B— 5/2)k127/11 ||h” (S)”Ll <1,

and

k —
12 P fols) = @0 42197 N gk s (5) + Ry, , ()],
_ ~(k2) o)
gkz,h(s) - g;cjzsjz(s) “Plip—2.jpt2p hZz»jz( 5) = hkz Jz(s) Pljp-2.p+21
2R g, 5, Ol + 20278 gl )l S 1, (4.46)
o 2ﬂk22(1 ﬂ)]zuhkz (S)||L2+2(1/2 ﬂ)k2||hk 12(s)||Loo
+ 20 PSR R ) S 1.

Applying these decompositions and recalling the definition (4.11), to prove the desired
bound on the first term on the left-hand side of (4.42), it suffices to prove that for any s
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in [2m—1 , 2m—|—1]7

(1+2k1 +2k2)(2ak+210k)2(1+,3)] _(20{1{1 +210k1)—1(20{k2 +210k2)—12m

~(k ~_.
< (137 - PTIH Py 2 k12188, (), Plko—2.404218%, (D)1 2
~(k ~o
13 PTE (Pl 20012180, () Pka—2.k0 42128y, (5 12
~(k)

H@ - P (P 2404210, ()5 Pko—2,k04218ky, j» )1 22

~(k ~ . 4 .
1PN - P (P 2k 42ahl, 5 (5). P21, jy (51 2] < 277 0D
(4.47)

Recall that we assumed k| < k»; therefore we may also assume that k < k +4. Using
(4.45)—(4.46) and recalling (4.44), we estimate

IPCT Y (Priey—2,04+2188, Ly )5 Plo—2,k04218%j, ()12
SIF Pk -2k 42186, ) O 111188, ;, ()2 S 27227 HHAp= (AR
< 23h1/2)=CQ+28)1-pY)]

—

IPCTT Y (P —2, 042117, ()5 Pia—2, 0021k iy D2 S Mg ) i llAg, 5, ()12

< 9vig/2HB=yIkig=(1=F)1292Bky < 9(B/2-2B)k192pkap~2+2B) (1))

IPT (P =2, 4211y, (9)s Piio—200+2188 )l 22 S Mg 5 D18y, ;)2
< 21y GI2HBPR 9= (4B < 931/29- 2517

and

IPT (P —2,04+2184, 1, (9 Pllo—2. 004218, 1, ()l 2
v v

S min@272 gl ()l 2llhy, g2, gl l2llhy, 5, ()l

< 72— (1+A) min(2_(l_ﬁ)j222’3k~223k1/2, 2—Vj22(5/2+/3—7)/<~2)

ka, jo
< =B jin=(4B)j23/2 i 2B+ 3tk —k)/2 H(I+B—)(ja+h))
< = (Q+28) (1) o3k /4p3ka /4.

Therefore, since 2" < 2/ and (2% 4 210ky(22k2 4 210k2)=1 < | the left-hand side of
(4.47) is dominated by

a+ ki + 2k2)2(1+ﬂ)j . (2Dtk1 + 210k1)*12j*k~2 . 2*(2+2ﬂ)(1*/32)j (23k1/2 + 23k1/4231:2/4)
<272hIB Rk 4,

which suffices since 22 < 2/ /No. This completes the proof of the lemma. O
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Lemma 4.7. The bound (4.39) holds provided that (4.40) holds and, in addition,

m +max(ky, k) + D < j < —k(1 + B%) + D. (4.48)

Proof. In view of the restrictions (4.48) and (4.40), we may assume that k < -D? /2.
Using the definition, it is easy to see that

ik . —
137 - Pehllp,; S @ 4 2'%) 20407232 P .
Therefore, it suffices to prove that
; . _ g4 ;
(1428 + 20y QWP o1t (L o )l S 277D (4.49)
Recall the definition

FPT 0 (f s i ) (€)

= o (&) /R /R g ) fE 5 E =09 () dnds. (4.50)

where
STV (E ) = Ao () = Rut =) = Ku(). 51

Using (4.16) and recalling that o < 28, it follows that

IFPTZ S il S fR OIS O )2 ds

< gl 1 gy @0 4 210k =1928k1 5 —(1=B)j1 . (quk2 4 910k =192pkan—(1=p)j2
S I gmll L1 gy min(1, 273127 0=At  min(1, 273k2)2=(1=A0,

Recalling the definitions (2.17) and the assumptions, the desired bound (4.49) follows if
m=L+1 or m=(1-p)(1+j2)—U1/2-p)k.
It remains to prove the bound (4.49) in the case
me[l,LINZ and m > —(1/2— Bk + (1 — B)(j1 + jo). (4.52)
Since j1 +k; >0, jo» + k» > 0, and k < —D?/2, the conditions (4.48) and (4.52) show

that k1, kp > k + 10. In particular, we may assume that |k; — k2| < 10. Using also (4.48),
for (4.49) it suffices to prove that, assuming (4.52),

. _ _A_oR2
A+ 2 F PRI (fl 5 i )l S 27K f=280), (4.53)
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To prove (4.53) we would like to integrate by parts in 1 and s in (4.50). Recall the
definitions (4.50) and (4.51), and decompose

FPRT V(S s o )€ = G&) + HE),
G@¢) = ' -
i (&) f [ T EM QP QT (& ) g () Ll & = n. ) L, (0. 8)dds,
R JR3

HE) =
() / / SV ED [ g @D O ) g () f €~ )T (0. 5) dnds.
R JR3

The function H can be estimated using integration by parts in s, Lemma 4.2, the assump-
tions (4.5), and the bounds (4.16). Indeed,

HOIS s (I, ©l2I7h .ol

S€[2m—l’2m+1]

2@ f DO I T SOl + 2" @216 )© 2]

< min(1, 27 Nom9k2y,
Therefore, for (4.53) it suffices to prove that
(1+22)|Gl| oo S 27K/ 2Ha=F=28), (4.54)

Recalling the definitions (2.29) and (4.12), we have

2 2
. o (n—8§) CoyMl
BYE ) = (V@7 ) E ) =~ - — 1 3 ,
! B2, + 2 In—EDV2 B2+ 2 P2
(4.55)
where
,LL=(O'1L1), MZ(02L2)5 01,02 € {17-"7d}a L15L2€{+3_}
In view of the first assumption in (2.27), we may assume that
ki, kp, = —D/10, (4.56)

since otherwise G = 0. For [ € Z let

G«(®) = wk(S)/ f Do) (BRV(E, ) - 57 ED
R JR3

X P OTHN & ) () L & = no ) T (s dnds.  (4.5T)

Let G; := G< — G<—1. In proving (4.54) we may assume that j; < jo. If
I > max(jp,m/2) — (1 — B%)m then we integrate by parts in 1, using Lemma 5.4
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with K ~ 2m*! and € ~ 2772, Using also the last bound in (4.15) and recalling that
ki,ky = —D/10, we get

> NG~ 27, where o= [max(jp.m/2) —m+p*m|. (458
I1=ly+1

It remains to estimate |G <y, || .o . It follows from Lemma 5.5 that G<;, = 0 provided that
2lotka < 2=D/10 This last inequality is an easy algebraic consequence of the assumptions
(4.40), (4.48), and (4.52). O

Lemma 4.8. The bound (4.39) holds provided that (4.40) holds and, in addition,
j <m+max(ki, ko) + D,  max(ji, jo) = (1 — B/10)(m + max(k1, k2)).  (4.59)
Proof. Using definition (2.20), it suffices to prove that
k k k i~k :
(1420 4 2% ek 4 210%) oA GO L praiv (fl - fY e
+ (1 + 28 4 2Ry 2k 4 210%) 2R F(G0 . v (e
< =B mED) - (4.60)

By symmetry, we may assume ki < k.
We first prove the bounds (4.60) in the case

ki < —5m/6. (4.61)
By (4.15), for any s € [0, ¢] we have
LA 5 Ol S2RNAE S ()l S 2627k

Therefore, using (4.15) again, we get

v i o o
VAT G g M S27 w1, @1 5,
sE m—’m

< omno(5/2—a+p)k min(z—(l\/o—l)kz7 2(l+/3—0t)k2)
and

IFIT s fo e S 27 o If 5, O I A5, (9l
SG[ m— s m ]

< 2m2(5/2—a+/5)k1 .(zolkz +210k2)—12—(1/2—ﬂ)]€‘2' (462)

Therefore, recalling (4.61), if £ < 0 then the left-hand side of (4.60) is dominated by
C2@+BIM (/2 + Pk < o(=1/12+5a/6+p/6)m

which suffices. Similarly, if £ > 0 then the left-hand side of (4.60) is dominated by
C2CHPIMS/2=a+B)kip=(No—15)k  co2kagmo(5/2—a+Plki < 9—10k(=1/12+50/6+p/6)m

which also suffices.
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To prove the bound (4.60) when —5m/6 < k; < k; we decompose, as in (4.45)—
(4.46), for any s € [2m~1 2m+1,

By - P fuls) = @0 21907 gh () A, 9],

~(k1)
(s) - PLji—2.j1+21°

OEF N OR ¢(511)2j1+2]’ hlq i) =n
204Dl ()l g2 + 20172 Pk Ingl I(S)”LOO SRR (4.63)
2—2ﬁ/<~12(1—/3)]1 ”hl/- (S)”LZ 4 201/2- B)ky ”hk ]l(S)HLO"

4 2v=F— 5/2)k127/11 ||h” (S)”Ll <1,

and

~(k: .
(pj(zz) Py, fu(s) = (zakz + 210k2) l[g/‘c)z,jz (s) + hzbjz 1,

~(k2) _ ~(k2)
gkijz( s) = gkz iy (5) - Pljp—2.jp+21° hZz J2 (5) = h/‘;z»jz(s) Pljp—2.jp+21
24O g L (2 + 202 PRgr ™ ()~ S 1, (4.64)
272K 0-P iy ()]l 2 + 202 PR (5) 1

+2(V B— 5/2)k22V12||hv (S)”L‘ <1.
We will now prove the L? bound
(14242) 7k 42106 D@HMOR Y PTGVl (5), £ D)l S27HM (465)

for any s € [2~1,2m+1] (see (4.11) for the definition of the bilinear operators 7" **").
In view of the assumption (4.59)) this would clearly imply the desired L? bound in (4.60).
Assume first that min(jq, j2) <m(1 —98), i.e.

min(ji, jo) <m(1—=96), max(ji, o) = (1= B/10)(m +k2), ko = k1 = —5m/6.
(4.66)
Using (5.15) and (5.16), and recalling that « € [0, B8], we notice that

IEfL S (9)llzse S min@Ph, 270k =3m/2U7240 ),
IEfY, ;, ()l < min(2F2, 270k =3m/2 02402,
for any s € [2"~!, 2*+1]. Therefore, using also (4.16), we get
y g

”Pkrya;u'u(fklijl (s), fk‘;’jz(s))HLz

Smin(IEL D= IEF ) IEF, 021 EfL ,(6)l)
S min(Zﬂkl , 2—6k1 ) min(zﬁkz’ 2—6k2) . 2—3m/22(1/2+ﬁ)min(j1,,j2)2—(1—ﬂ)max(j1,j2)

<1+ 2k2)—62—k~22—(2+2/3)m’

which suffices to prove (4.65).
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Assume now that min(j, j») > m(l —98), i.e.

min(ji, jo) = m(1—96), max(ji, o) = (1 = B/10)(m +k2), ko = ki = —5m/6.
4.67)
We recall that

~(k
Fiijn = Plli=2.k1+21 (<p}1 U Py fu)
— (%1 4 210k1)—1[P[kl—2,1<1+2]g,’flJ1 + P[k1—2,k1+2]h;:1,j1],
~(k) (4.68)
[ iy = Pla—2k0121@}, " - Pry o)

= (% 4 210k2)_1[P[kz—z,k2+2]g}§2,jz + Pliy—2,k0+2101, j, 1+
and apply the decompositions (4.63)—(4.64). Then we estimate, using also (4.67),

IPT Y (P =2, +211, i, (9), Piig—2.00218, 1, ()12
Smin(ly, 5 O prlhy, 2, 18 5 Oy, ;) 2)
< p—ymax(ji.j2)p—(1=) min(ji, j2)p28k1 5 (5/2+p—7)ks
< =m(y+1=11)(5/2+p~2)k22pk1

~ " /I-L-\ —
I PeT Y (Priey—2, 042115, () Plko—2,k04+218k,, 1o D12 S g, 5 ) prllgg, ()2

< 9=vig= (4B 292Bk19(5/2+ =)y < p=m(y+1-118)9(5/2+p—2p)ka2pki

IPCTT Y (P —2,0 42188,y )5 Pio—2. k0211, 1, D2 S llgky j, D21, 5, ()l
< 2= (+4B)j19=7292Bk19(5/2+B=)ks < p=m(y+1-118)9(5/2+p—2p)ka2pki

and, using also (5.20) and (5.22),

I PkTSU;/A,V(P[kl—2,k1+2]g]l:l’j1 (8)s Pity—2,k+218%,. j» (DI 12
< min (Jle™" M Py 2. +21(85, g, D lzeell8g, ;, ()2,
lgg, ;, Dllz2lle™ ™ P2 ky421(8F, 5, ()l 2)

< 2—(1+ﬁ)max(j],j2).2—3m/22(1/2—/3)min(j|,</2)(1+23k2) < Z—m(2+19ﬁ/10)2—3k~2/4(1+23k2)_

Therefore, since @ € [0, /2] and k; > —5m /6, the left-hand side of (4.65) is dominated
by
C(l + 24k2)2—0{k1 2—9/3m/10 < (1 + 24]{2)2—291’”/3/60.
This completes the proof of (4.65).
To complete the proof of (4.60) it remains to prove the L°° bound

_B\%k . _op4
(1+2/2)@%% 4-21%) 2P FR TRV (fE L Dl S27207 (4.69)
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If k, < —D/10 then max(k,k;) < —D/10 + 10 and 1 < |®7*V(&, )| whenever
€| ~ 2K, | — n| ~ 2K, |n| ~ 2*2. Therefore, we integrate by parts in s and use (4.16)
and (4.17) to estimate

IFRTGH Ll f e S sup (1A Ol £ 02

SE[Z'”’I,Z”‘*]]
2O AL DO Ol + 2" 1A 2@ £ )6 2] S 278

The desired estimate (4.69) follows easily in this case.
Assume now that k; > —D/10. For (4.69) it suffices to prove that

_B\%, ~ . _np4
22k 4 2106 W=Dk F R T (f L e 27 (4.70)
for any s € [2"~!, 2”1 If, in addition, k; < —2m /5 then, as in (4.62),

o, T Y 5/2—a+B)k) H—10k
IF P (fl 5 o il SUFL Ol F )l S 28270t Pkip=1tk,

and the desired bound (4.70) follows since @ € [0, §/2].
It remains to prove the bound (4.70) in the case

ko > —D/10, k1 > —2m/5. “4.71)
We decompose fklf,jl’ fkl;,jz as in (4.63), (4.64), (4.68). If j; < j» we estimate

IFPLTT Y (Pl —2ky421(80, () B (90), Plta—2.k012188,. 1, (D)l

S gt Ol + 1A Ol gl )l 2702
and
IFPLTT Y (Pl 2.4y 4218, (5) +hk1 1) Plkg—2.k0 421k, (S) Il L0
S gl Ol + 17 @) IR L @)l S 272PRgrs,
Since —k; < 2m/5 and 272 > 2m(=B/10) i follows that if j; < j, then
||]:Pk7~}g;ﬂ’u(f/<lf,jl’ fkl;’jz)”mc < 2~ (HAA=B/10m  gak | p10kiy=15=10ky (4 72y
Similarly, if j; > j,» we estimate
IF P (P24 421 g;f] 716Dy Pllo—20421(81y, j, (8) + Py s, (D)l Lo
Slgf gl 2 + 1A, L (6)llg2) S 27+,
and
IFPRTS Y (Pt —2.ky 4210, k0 o242 18R 1, () + gy ()L

SR @ lgl, 5@l + 1AL - (©)llzx) S 2777,
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Since 271 > 2m(1=A/10) jt follows that

if ji > jo then |FPLTT ™V (f L fin i)l
< 2~ UHAA=F/10m gaki 4 9l0kiy=1p=10k (4 73)

By (4.72) and (4.73), the left-hand side of (4.70) is dominated by C2%k22—@kip=4pm/5,
which suffices. O

Lemma 4.9. The bound (4.39) holds provided that (4.40) holds and, in addition,

j <m4max(ki, ko) + D,  max(ji, jo) < (1 — B/10)(m + max(ky, k), 474
min(k, ky, k) < —D/10. '

Proof. From the definition (2.20), it suffices to prove that

(1428 4 20) % 4210 DTG0 presi (£ £ e
k k k 10k 1/2—-p)k ~(k) N
+ (1428 22y @2% 4 219%) 2P FIGD - PTTV(fE f )lee
<2 2'm (475

By symmetry, we may assume ki < k.
As in the proof of Lemma 4.7 we decompose

FPT 3 (f G fo ) €)= GE) + H (),

Ge) ==

oue) [ [ e QP e g 0) (6 = 19T r0) dnds,
HE) =

() f f e8P ED [ _ o QDB &, ) g () S € —1, )T (0, 5) dnds.

We show first that
(14 202)(@% 4 210%) . 24D+
+ (1 + 2k 2k 42106y pU2=Pk o < 2728 (4.76)

For this we integrate by parts in s and use the bound (5.26) to obtain

1HI2 S A+2%)0+2%)  sup  [2"IERL D Ne<ll@s £ 1))
XE[Z’”’I,Z’”*I]

2@ S )OI NER, )l
+min (£ ORI ER Ol IEFE Ol £ ,©l2)]  @77)
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and

IHle S sup 271585 201G £ 1)) 2

S€[2m_1,2’”+]]
F2"N@s £ ;)OS 5 Ol + THIS L], (478)

where

Hy(§,5) = ¢r(§)

y / ISP E.n) [1— POV (€, n))]
R3 DoV(E, M)

By (4.15) and Lemma 4.2, for any s € [2"~!, 2m+1],

f/lff;(f — 0.9 .s)dn.  (4.79)

2MNES 5, O @s £y ;)2 +2" 1@ £ DO 2NES, g, (9o
< (14 2k)76(1 4 2k =6p=(1+20m (4 80)

Moreover, again by (4.15) and (4.16), if s € [2”~!, 2”*+1] and max(ji, jo) > 4Bm then
min (||fk;f,j1 O 2 NEfe,, j, ) liLee, ||Efk’ijl Ozl £, ) 12)
< (1425)70(1 4 2f2) 0~ (H2Hm,

On the other hand, using also (5.15)—(5.16), if s € (2= 2m+1] and max(ji, jo) < 4Bm
then we get

min (| £ O IEFRL s IEF =l £, ()l 2)
S (1 425)70(1 4 2k2) 6= (420,
Therefore, using also (4.77) and (4.80) we conclude that
(1 + 2k 20k 4 210Ky . 2(1+ﬁ)(m+sz)||H||L2 < g2 (4.81)

as desired.
To prove the L°° bound in (4.76) we apply (4.15) and Lemma 4.2 to estimate

2L OGOz + 2 1@ )OI, )2
< (142k)=627Fm  (4.82)
Then we estimate, using (4.16),

IH )z SIS ONpllf @)l S 272 429)710,

The desired L estimate in (4.76),

(14 22) (2% 4 21%) . 202-PK) | o < 27280, (4.83)
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follows from (4.78) unless
max(ji, j2, —k, —ki, —k2) < 2pm. (4.84)
On the other hand, assuming (4.84), we need to improve slightly on the L* bound
on H(s). We decompose Hi (&, s) = Hx(&,s) + H3 (&, s) where
Hy(&,5) == gr(§) /3 P(—o0,—(1/2—p2ym (B (&, n))es T Em
R

1 — pQRPOTIV(E, n) —
(pq()(fill«,v(s’ 77()%- n)) fklf‘jl(g - U’S)fk‘;,jz(ﬁvs)dﬂ,

and

H3(§,5) := @k (8) /R =0 a2y (B (E ) Je 7 ED

1 — QP71 (&, ) —— >
) FE 5 € =ns) f ,(n,s)dn.

In view of Lemma 5.4 (with K = 2”’(1/“’32), € ~ 27™/2) the restriction (4.84), and
the bound (4.15), it follows that |H3(&, s)| < 27™. At the same time, using the explicit
formula (4.55), and the simple equality

A~ BI> =141 - 1BI|> + 4] -1BI(1 — cos0). 0= Z(A, B),

itis easy to see that if |£| ~ 2K, |§—n| &~ 2k1, || ~ 2k2, where max (||, |k |, |kz2|) < 2Bm,
and if |[E®V (g, )| < 2773, then

min (|n — &lnl/I€1]. |n + &lnl/1£1]) < 27"/

Therefore, by the last bound in (4.15), |H2 (&, )| < 27m/5 As aresult, assuming (4.84),
it follows that |H (&, s)| < 2-™/5_The desired bound (4.83) follows using also (4.78)
and (4.82). This completes the proof of the main estimate (4.76).

We show now that

’

(14 2k2) (22 4 210Ky . 2(1+/3)(m+k~2)”G”L2
(14 2Ry 2ok 42106y (/2B |Gl <2728 (4.85)

Notice that G = 0 unless
ko > —D/20. (4.86)

As in the proof of Lemma 4.7, for any [ € Z we define

G<(§) :=<pk($)// D(—oot](BRV(E, 1)) - SE7EM
R JR3

X 2P OTHN E ) () FL & = 0.5 T (0. ) dnds.
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Let G; := G<; — G</—1. Recalling the assumption max(ji, j2) < (1 — B8/10)m, we
notice that if / > —pm/11 then we may apply Lemma 5.4 (with K ~ 2(=A/1Dm o ~
2_(1_/3/10)’") and use the bounds (4.15) to conclude that

Gl S 274 ifl > I := |—Bm/11].

On the other hand, recalling that min(k, k1, k2) < —D/10 and the inequality (4.86), we
notice that

G<,=0 ifky <—-D/I10.
Finally, if k < —D/10 and k» < j/N,, then using Lemma 5.5(i) we get G<;, = 0. The
desired estimate (4.85) follows easily. O
Lemma 4.10. The bound (4.39) holds provided that (4.40) holds and, in addition,

j <m+max(ki, ko) + D,  max(ji, ja) < (1 — B/10)(m + max(ky, k)),
max(k, k1, k) > D.

Proof. This is similar to the proof of Lemma 4.9, with Lemma 5.5(ii) applied instead of
Lemma 5.5(i). Using the definition (2.20), it suffices to prove that

(4.87)

_— |
gt ok 4 106 pUHDNGI P (R L R )

—Bky T : gt
omatkik) ek 49106 QW2 FIGD L BT (L LS e S 27
(4.88)
The inequalities in (4.87) show that

max(ki, k2) = D —10, j<m+ D, max(ji,j2) < (1 —pB/10)m.

By symmetry we may assume that k| < k.
As in the proof of Lemma 4.9 we decompose

FRIZH(fE o ) E) = GE) + HE),
G) =

PG fR /R O e g DRI 6 ) () S L G, 9) T (0, ) dnds,
HE) = pe(6)
« fR /R BT @A QT (6 1)) (s) L (6=, )T, (1, 5) diyds.

As in the proof of Lemma 4.9 we integrate by parts in s to estimate the contributions
of H, and integrate by parts in 7 to estimate the contributions of G. More precisely, we
argue as in the proof of Lemma 4.9, using Lemma 5.5(ii) instead of Lemma 5.5(i), to
conclude that

2k2 (20!]( + 210]() . 2(1+ﬂ)m”H”L2 + 2](2(2051( + 210k) . z(l/z—ﬁ)EHHHLOO + 22m ||G||LOO
< 9=2p*m

Clearly, this suffices to prove the desired estimate (4.88). O
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We now examine the conclusions of Lemmas 4.6—4.10, and notice that to complete the
proof of Proposition 4.5, it suffices to prove Proposition 4.11 below.

Proposition 4.11. With the same notation as in Proposition 4.1, we have
~(k . _np4

(1+28 25 - PTG e, S 277 (489)

for any fixed ., v € 1y, (k, j), (k1, j1), (ka, j2) € T, and m € [0, L + 1] N Z, satisfying

pm/2+D* < j<m+D, max(ji,j2) <(1—pB/10m, —D/10 <k, ki,ky < D.
(4.90)

The most delicate part of the analysis is to prove Proposition 4.11; it corresponds to the
resonant interaction at time 7' and at location X >~ T of inputs located at position ¥ < T.
This forms the bulk of the nonlinear stationary phase argument. We separate two cases:

(i) When the inputs are located close to the origin, 1 < ¥ < T!/2 essentially no
parameter in the norm can give additional control and we must understand the result of
the interaction. This is what sets the “weak norm”. On the positive side, in this case, the
inputs have essentially smooth Fourier transforms and allow for efficient stationary phase
analysis, which gives a good description of the output.

(ii) When at least one input is located further away from the origin, 7'/ <Y < T,
the stationary phase analysis gets less and less efficient as Y increases and we have access
to less information on the output. However, this is compensated for by the fact that the
parameters in the norm (and in particular the appropriate choice of 8) start to give stronger
control as Y increases. In our situation, this is enough and we can always control the
outcome of this interaction in the strong norm.

4.4. Proof of Proposition 4.11

The arguments are more complicated than before; to control some of the more difficult
space-time resonances we need to use the more refined By ; norms. We also need addi-
tional L2 orthogonality arguments.

Lemma 4.12. The bound (4.89) holds provided that (4.90) holds and, in addition,
max(ji, j2) <m(1/2 - p?). (4.91)
Proof. Let
Ky = 272 (4.92)

and decompose first

FRIGM (S f ) E) = GE) + HE),

o) [ [0 D@ a9 T, G = 19T ) dnds,
R JR3
H(§) =
o1 (&) / / eV EM o (B (€, ) k) lam (&) L E =1, )T, (0, 8) dn ds.
R JR3 ’
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Using Lemma 5.4 (with K &~ 2™k and € = k1) and the last bound in (4.15) it is easy to
see that || H ||z~ < 270" Therefore it remains to prove that

~ _ _op4
13- F @l s270 (4.93)

~

Applying the L* bounds in (4.15) and Lemma 5.6, we see easily that
Gl S i - 2m S 2 mi2p3m, (4.94)

This suffices to prove the desired bound (4.93) if, for example, j < m(1/2 — 4pB). To
cover the entire range j < m + D we need more refined bounds on |G ()|, which we
prove using integration by parts in s.

In the argument below we may assume that G # O0; in particular this guaran-
tees that the main assumptions (5.51) and (5.59) are satisfied. With Wo:*V(|&|) =
QoMY (E, pHV(£)), defined as in (5.60), assume that

2w (gn) e 28,20, 1 e [Bm, o0) N Z. (4.95)

Then, by Lemma 5.6, we see that

| D7V (E, ) — W (JE))]

<|n— p"rE)l- sup B4V, )] S 2%k |n — p™Y (®)]
le—p-v (§)1210Pky

since "V (&, p*¥(&)) = 0. Therefore
MBI (E, )| € 2073, 24 iF ERV(E, ) < 100k;.

After integration by parts in s it follows that

G@®)| < zm*’uok(sn/R/RJWQ(E“’”@, WDl g OV E= )T 0.9

+ 190 @ E /) lam O] 1@ F ) E = 0oL L1, 9)]

+ lo=0(B Y € ) kD) lgm O L, € = 0. 911 ). )] dn ds.
We now use (4.5), the last bound in (4.15), (4.18), and Lemma 5.6 to obtain

1GE)] S 2" g (®)] - 1 < lgu(§)] - 27127 mI203m (4.96)

provided that (4.95) holds.
We can now prove the desired bound (4.93). To apply (4.95)—(4.96) we need a good
description of the level sets of the functions W7°#-V. Let

lo:=1Bm~+2], Dy :={§ € R : 2" WY (g])| < 2"},

Dp:={ e R 2MWoHhr(gp e @27, Tellp+1,m+ DINZ,
m+D

G=)Y G Gi&):=GE)  1p&).
i=l
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For (4.93) it remains to prove that for any ! € [ly, m + D] N Z,

A~ _ _2p4
1 F Y G, S 273 4.97)
From Lemma 5.8, it follows that there is r7*V = ro*V(u,v,0,k, ki, ky,1) €
27D, 00) with
Dy C {g e R¥: ||g| — roi] < 2lm) (4.98)

Therefore, using also (4.96), we get

15,7 - F1 Gl S 21 PING 2 + G
< 2—12—m/223ﬁ2m . (2(1+/3)j2(l—m)/2 + 1)
< 2j7m271/22ﬂm+3ﬂ2m + zflzfm/ZZSBZm'

This clearly suffices to prove (4.97)if [ > 68m or j < m — 38m.
It remains to prove (4.97) in the remaining case

le[Bm,6BmINZ, jelm—23Bm,m+DINZ. (4.99)

For this we need to use the norms B,f’ j defined in (2.21). Assume first that / > [y + 1. As
before we estimate easily

201Gyl 2 + Gl oo S 2712720380 (p(=Pimp=m)/2 4 1)
< 2—1/22—,3m+3,32m + 2—12—m/223/32m.

Therefore, for (4.97) it suffices to prove that

. e o
27 sup RPIFIGY FTGO L ey ry S27F (4100)
Re[277,2K], §eR3

Since |]—'(<25;k))($)| < 237(1 +271€])75, it follows from (4.96) that

717 FGoI®)| £ /R (Gi(€ —m) - 2% (1 +2/[n))~%dn
2712 [ e - )21+ 2.
R3

Therefore, using now (4.98), for any R € 277, 2k] and &) € R3 we get
R_2||]:[$}k) ‘f_l(Gl)]”Ll(B(go,R)) S 2lgmm/23m gl=m < 27323,
Similarly, by (4.94) and (4.98),

2(1—/3)j||G10||L2 + ”Gl()”LOO 5 2(1—ﬂ)(j—m)z—ﬂm+l()/2+3ﬁ2m + 2—m/4 § 2—3’34m
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and

\FI5) - FHGiI@©)] < A{ Gio(6 — )| - 237 (1 +27 1)~ dn
S2 P [ g, @ <) 2T+ 2 ),
R

from which we conclude that, for any R € 2=/, 2%] and & € R3,
_ ~ _ _ 2 _ _
R 2||-F[§0;k) . ,_F 1(G10)]||L](B(SO’R)) 5 2 m/223;3 m 2[0 m S 2 3m/222;‘}m.
The desired bound (4.100) follows, which completes the proof of the lemma. O
Lemma 4.13. The bound (4.89) holds provided that (4.90) holds and, in addition,
max(ji, j2) = m(1/2 — ). (4.101)
Proof. Using definition (2.20), it suffices to prove that
i1~k : ~(k :
2RI P (L ) e+ IFIB - TS ) e
<272 (4102

Let
j" = max(ji, j2) + 138%m] € [m(1/2 4 ), m(1 — B/20)], (4.103)

and decompose

FRT B (S s fo )€ = G&) + Hi(§) + Ha(6),

where

Hy () = wk(é)// eSPTINEM [ _ 230P @Y (£ )]
R JR3

X Qm(s)fkllt,jl & —n, S)fkvz’jz(’?v s)dnds,
G() = g(§) /R /RS el EM 3P @Y (£ )y o (2" EMV(E, )

X Qm(s)fklijl & —n, S)fk‘;,jz(n, s)dnds,
Hi(§) = gi () fR /R T EN G @OPRTIY (E )[1 — 0@ B 6L 0]

X qm() [l ;6 =191, (. 5)dnds.

Applying Lemma 5.4 (with K ~ 2/" and € ~ 2~ m2(1.22)) and the last bound in

(4.15) it is easy to see that |H}||pe < 2710m Moreover, the same argument as in the

first part of the proof of Lemma 4.9 (which does not use the assumption min(k, k1, kp) <
—D/10) shows that

_ 4
20 || 2 + | Hall oo S 2720,
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Therefore it remains to prove that
20HD™ Gl 12 + (|G L S 272, (4.104)

In proving (4.104) we may assume that G # 0; in particular this guarantees that the
main assumption (5.51) is satisfied. We first prove the L°° bound in (4.104). Assume that
J1 < jo (the case j; > j» is similar). Then (see (4.15) and (2.23)—(2.25)),

1AL Ol S 1,

supg ||fkv2’j2 )21 (BEo.R)) < 2= (+Bi2 R3/12  for any R < 1.
&oeR’

From Lemma 5.6 and (4.103) it follows that

1G oo S 2" 27 U+PI ()" —m)3/2 < gmm 2047 mo(12=P)" < p=28"m,

as desired.
To prove the L? bound in (4.104) it suffices to show that

2(2—}-2/3)711”G”i2 S 2—4/34”7' (4.105)

To prove this we need first an orthogonality argument. Let x : R — [0, 1] denote a
smooth function supported in the interval [—2, 2] with

Z)((x—n):l for any x € R.

nez

We define the smooth function x’ : R® — [0, 1] by x/(x, v, z) := x (x)x (y) x (z). Recall
the functions W7:* defined in (5.60). We define, for any v € Z> and n € Z,

Gv,n(é) =

X@"E = v ®) fR /R HPTED @D TN (£, m))po (2" ER (6, 1)

x x@7s = m)gn() £ E —n.9) L (n.5)dnds,  (4.106)

and notice that G = Y, 73 >,z Gu.n-
We show now that

IGI7: S D" Y NG ualy, +271" (4.107)

veZ3 nel

Indeed, we clearly have

1G12: < Y D Gun i S0 > HGum Gumy)l-

veZ3 neZ veZ3 ni,na€Z
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Therefore, for (4.107) it suffices to prove that
HGonys Gony)| S 2729 ifv € Z3 and |ny — ny| = 21907, (4.108)

To prove this, we notice that, since |V, $7:#V| < 2J"=m and [P @Y | < | for |p| = 2,
after repeated integration by parts in &, for any n € Z,

IF M Gu ()] S b4 wa 2% x4 wy| = 270027,

w, =020 (WY 2T ) v/ v,
Moreover, G, is nontrivial only if | W4 (27"~ |y|)| < 2725 We can therefore apply
Lemma 5.8 to conclude that [(W7#) (20"~ |v])| > 2720P_ Therefore if |n; — na| >
2100D thep W, — Wh,y| > 270D72J" and the desired bound (4.108) follows. This completes

the proof of (4.107).
In view of (4.107), for (4.105) it remains to prove that

_ap4
2(2+2p)m 3 1Goull?s S 274, (4.109)

~J
2=k |y, n€[2’”_j”_4,2”l_j//+4]

Assuming v, n fixed, the variables in the definition of the function G, , are naturally
restricted as follows:

g =27 S = ptr @ T S 2 s =27y S 27

W??zre p*V is defined as in Lemma 5.6. More precisely, we define functions f;"" and
/" by
]71”7’(9, §) = l[n_4,n+4](27j”3)€050
x [2750Dom=1" (g _oJ"=my 4 v (I myy)) m(@, s),
]72”\’"(9, §) = l[n_4,n+4](2_j//s)§050
x [2750Dm=1" (g _ phv (21" My . @(9, 5).

(4.110)

Since | V(27" “Muy) — it (21" TMuy)| > 280027 =M and [[27" My — phv (21T
— [27" My — ptv (20" My,) ]| > 280P27" =M whenever |v; — vy| > 1 (these inequalities
are consequences of the lower bounds in the first line of (5.53)), it follows by orthogonal-
ity that, for any s € R,

) 2 2 —2j1+28j
> LA @7 SIAE S @, S 2724200,
2—k|U‘E[2m—j”—4’2m—j”+4] (4 111)
) 2 2 —2j2+28j :
> 15" 72 SN, 9172 S 2722420,

271(|v‘e[2m—j”—412m7j”+4]
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Using the definition (4.106) and Lemma 5.6 we notice that, for any (v, n) € 73 x 7,

Gyu) =

@ e =0 @) [ [ D@0 er i g B € )
X @75 = m)gu() FIE = 1. $) F G s)dyds. (4.112)

Letting, as in (4.14), (Ef")(s) := e~ 8 (£ (5)) and (EL")(s) = e~ 1580 (£ (s5)),
we obtain

1G ol < /R X Q"5 = magm A ES"(5), Efy™ ()]l 12 ds.
where, by definition,
Ay(g1, 82)(8)
= x'2" e — )i () /R @O (E )o@ B 6. )

X F(Piy—a.k1+4181)E — MF (Plky—a,kp+4182) () dn.  (4.113)
Therefore

1Gual2 S 27 /H; am )| Au(ES} " (5), Efy ™ ()17, ds.

and for (4.109) it suffices to prove that

.y _ApR4
P2y 3 [ NAER ) B IR ds 5274
2-k|v|, ne[2m—i"—4 2m=j"+4] R
(4.114)
We notice now that if p, g € [2,00], 1/p + 1/g = 1/2, then
lAu(gr, 822 < ligtllzellg2lia. (4.115)

Indeed, as in the proof of Lemma 5.3, we write

F N Aug1, 82)(x) = ¢ /

R3x

- 81(N& () Ky (x; y, 2)dydz,

where
Ky y.2) = / IO E 0=y 1 om=T" g _ )2 =T BV (€, )
R3xRR3 B
X ok (E)p (2P DTV (&, )ik, —a by 141 — M Plky—a ko +41(n) dE d.

We recall that k, k1, ko € [—D/10, D] and integrate by parts in § and 5. Using also
Lemma 5.6, we obtain

1Ky (s y, )] S 230771 2 7y =y 2307 (20 gy

and the desired estimate (4.115) follows.
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We can now prove the main estimate (4.114). Assume first that
max(ji, j2) — min(j, j2) = 10Bm. (4.116)
By symmetry, we may assume that j; < j, and estimate, using (5.15)—(5.16),

sup | Ef"" ()| oo < 2732202 R,

seR

Therefore, by (4.115) and (4.111), the left-hand side of (4.114) is dominated by

2 2 1 . s . | 2
C2 m-+ ﬂmzl Z 2 mZ( +28) i / ”Efzv n(S)”LZ ds
27k|U|,HE[2’71*j//*4,2))z—j//+4] R

< C22m+2pmy " o=3moy(142B)j1  9=2j2+2Bj2  pm < 2J1=292Bmo2Bji 22/31'22]”—]2’

and the desired bound (4.114) follows provided that (4.116) holds.
Assume now that
max(ji, j2) < (3/5 —28)m. 4.117)

By symmetry, we may assume again that j; < j, and estimate
. : 3j"-3
sup | Ef" () llzee S sup [l ()l S 270 7.
seR seR

Therefore, by (4.115) and (4.111), the left-hand side of (4.114) is dominated by

Co2m+2pmy )" Z 2—6m26j/// ||Ef2v’n(s)||iz ds
2K |ul, ne[m 7" =4, 2m=i"+4) R

< C22m+2my " a—b6mn6j" 5=2jr+2Bjr om < 2=3m5i297(" = j2)92Bm 282

and the desired bound (4.114) follows provided that (4.117) holds.
Finally, assume that

max(ji, j2) —min(ji, j2) < 10Bm,  max(ji, j2) = (3/5 =2p)m. (4.118)

In this case we need the more refined decomposition in (2.23)—(2.25). More precisely,
using the definitions we decompose

T3 6) = Pig—2+21(81(6) + h1(), fi 1, () = Plip—2,k,421(82(8) + ha(s)),
where’

~(k ~(k
g19) =) P55 1o 8208) = 82(8) 2y o (4.119)

7 The decomposition in (2.23)—(2.25) provides some more information about the functions
81,1, g2, ho, but only (4.119) and (4.120) are used in the proof.
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and

2B g1 ()1 12 4+ 297PI Ry (s) ) 12

+ 2 sup R72h )t 3y ry S 1.
Re[2771,2%17,60eR3
24P gy (5) ] 12 (4.120)
+ 2072 |y () | 2
+270 sup R_ZHI’TZ(S)“U(B(QO,R)) S L

Re[2772,2%2],0p€R3

Then, we define functions g}"", h{"", g5, hy" by (cf. (4.110))

20, 5) = Npu_a a1 277 $)p<o[270P 2" (9 — 20"~y 4 phor 21"y
X F (P -2,k +2181)(0, ),

R0, 5) = g a1 277 $)p<o[270P 21" (9 — 20"~y 4 phor 21"y
X F(Py=2,5,+2111) (6, 5),

2070, 5) = 1y a1 27 $)p<o[270P2" (9 — pr-r 21"y
X F(Pliy—2,5,42182) (0, 5),

RS0, 5) = s a1 277 $)p<o[270P 21" (9 — pi-r 21"~y
X F(Pky—2,ky+2112)(0, 5).

Asin (4.111), using L? orthogonality and (4.120), for any s € R we have
) ler" ()7, S 2721720,

szIv‘E[zm—j”—4’2mfj”+4]

> 1Ry ()17, S 272200,

2—k|U‘E[zm—j”—4’2m—j”+4]
> gy ()7, S 27227200,
2k |y|e[am—i"=4 am=j"+4

> 1hS" ()17, < 2722 F 2P0,

~

4.121)

2=k |y|e[2m—i"—4 pm—j"+4]
From (5.12) and (4.119)—(4.120), we derive the L bounds

IEG)" ()l S 27" Pllgi(s) [l < 27" /220 /2R,
IER" ()l S IR ()l S 22027,
IEGY™ ()l S 2732 ga(s) |1 < 272002 P2,

- 11 -
IERS"™ ()l S A" ()]0 S 2% ~2m2viz,

(4.122)
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for any v, n, s. Using (4.115) and (4.121)—(4.122), we estimate, assuming j; < jp,

F2m+2pmo / 1A (ES" (s), Egy™ ()32 ds
27K|v|, nel zm 374 om=j"+4)

5 22m+2}3m2]

x f 1> " (1172 NESY" (|7 + 1 ERY" ()] ) ds
2=k|v|, nel 2m j"—4 om= J”+4]

< 92m+2Bmo " Amy=2j2=2Bjs [2-3mp(1=28)1 4 24j”—4m2—2)/j1]
< p2Pmyj o=(14+4B) o | 93Bm)2j29=2vj1

Similarly, we estimate

p2m+2pm o 2 / |AVES" (), ERy" (572 ds
27K |u|, ne[2m—i"—4 om—j"+4]

5 22m+2/3m 2./

x / U8y I 2 + 1A (N7 IERS"™ () Zos ds
2=k, n€[2m J"=4 om— j”+4]

S 22m+2/3m2] _2m2—2j|+2/3]1 _24j”—4m2—2yj2 S/ 25}3m2—2j12(4—2y)j2.

The desired estimate (4.114) follows from the last two bounds and the restriction (4.118).
O

5. Technical estimates

In this section we collect several technical estimates that are used at various stages of the
argument.

5.1. Linear and bilinear estimates

We now prove some important linear and bilinear estimates, which are repeatedly used in
the paper. We show first that our main spaces constructed in Definition 2.3 are compatible
with normalized Calderén—Zygmund operators.

Lemma 5.1. If Q is a normalized Calderon—Zygmund operator (see (2.14)—(2.15)) then

10fllz S Wfllz  forany f € Z. (.1
Proof. We may assume that || f||z < 1 and it suffices to prove that
~(k
13 - PcOflls,; < (5.2)

for any (k, j) € J fixed.
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We have
7w 20rw =30 [ P Ketx =y, (53)
where
Ko =c [ e q@umorinn(®)de
Clearly,

Kk (@) S 2% (1 4281z ~°. (5.4)
As before, let k¥ = min(k, 0), k4 = max(k, 0). Since ||a}f‘) - Pcflls, , < 1 for any
Jj' > —k, we can decompose, as in (2.23)—(2.26),
G Pf =gyt ey 8Ly =81y Bl g iy 82 =820 B ieay
24T |y 2 + 2(1/275%”53,””0 < (20K 4 210Ky~
272R20P gy 2+ 202 PR g e
+ 20 =B=S/Rr g1 < (K 4 210Ky,

(5.5)

and moreover

2y =B=1/2kn2k+ 5y sup R2g s ry S QX +21%)71 (5.6)
Re[2-7" 2], g eR3

Then we decompose, using (5.3) and (5.5),
77 POf(x) = Gi + G,
Gi) = ) 7@ @K@+ 3§70 (g2 % K,
J'=—k J'==k, |j'=j1=4

~(k
Ga):= 3 G700 (g2 * K.
J'z=k,1j'=jl<3
5.7
In view of the definitions, for (5.2) it suffices to prove that

||G1||Bk1j + IIGzllBlgj S (5.8

To prove the bound |G| 5 y < 1 we notice first that
5J

~(k
Yoo 1Y @y Kol
J'=—k,1j'—jl<3

S Y gyl S @ 4217
J'==k, 1 —j1<3
~(k
Z ”‘F[WJ( ) : (gl,j’ * Kk)]”Loo
J'z—k 1j'—jl<3

S gyl S Q% 4210 2-HE,
J'==k 1j'=jl<3
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Therefore it remains to prove that

~(k ~(k
Yoo U ey Kol + 18 - (g2 % Kl 2]

J'z=k 1) =jl1z4 < (k4 pl0ky—1p—(1+h)]

~ - 5.9
Yo FEE - gy Kol + 1F13 - (g2, % Kiollle]

Jzk =14 < (2o 4 210ky=19—(1/2-P)F

Since . . . )
IFIE - rllee SUE - kil S 227208 - b2,
for (5.9) it suffices to prove that
~(k ~(k
Yoo [E @ Kol + 13 - (g2, % Kl 2]

Jzk 1= j1z4 - k
< (zak +2101()*]2*3]/227(1/27/9)](, (510)

Notice thatif |j — j’| > 4 and u € {1, 2} then

~(k >k
77 () g+ Ko@) = 51700 - (g7 % Ki o) (%)
where Ky j j7(z) := Ki(2) - @max(j. j)—10.00) (2)-
Therefore, by (5.4),

~(k ~(k
Yoo U @ Kol + 18 - (g2 * Kl 2]
JES RV Ey[EY

S22 N gl + g2 DKk, j ol
J==k 1= j1=4

< 93j/2 Z 23j’/2(2ak 4 210k)-1 '27(17,3)1"22/3?231((1 +2k2max(j,j’))76
j'=—k

< (20 +210k)—12—3j/22—(1/2—f3)z.2—|k+j|,

which suffices to prove the desired bound (5.10).
To prove the bound || G || B < 1in (5.8) we notice first that
sJ

1G22 S > lga ol S (2% 4 210k =1 =(1=P)in2Bk
Jz—k1j=j1<3
1G22l < Z g2y llzoe S (2% 4 210k)=19=(1/2=pk

J'=—k, 1j'—j1<3

by the assumptions on g3 j in (5.5). Therefore it remains to prove that
—B—1/2)% i y— ~(k —
20’ B 1/2)k22k+2)’./ R 2”‘F[§0J( ) . (gz,j/ * Kk)]”Ll(B(EO,R)) 5 (20{]{ + 210/() 1 (511)

forany R € [277,2F], & e R3,and j' € [j — 3, j + 3] N Z.
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To prove (5.11) we notice that, for any & € B(&p, R),
FIo®  (gr 1 % K < & — M FEEY 4
|Flg;™ - (g2, * K S - 182,576 = m| | F(@; ) ()| dn

S /R 182.77(& — 12 (1 +2/|n) ™ dn.
Therefore

~(k —
IF187 - (8.5 % KOs,y S S0P 18272 ay 0
&R’

and the desired bound (5.11) follows from (5.6). O

We now prove several dispersive estimates.
Lemmas5.2. (i) ForanykeZ,t € R o €{l,...,d},and g € LY(R3) we have
1P-come™ gl S (L4 1) 7225 1]l 1. (5.12)
(ii) Assume || fllz <1, t €eR, (k,j) € J, and letk = min(k, 0) and
fej = P[k72,k+2][§’5;k) “Pefl.

Then B '
I fejll 2 S 20K 4 210Ky =1 p2Pkp=(1=F)] (5.13)
JILA A5

and ~
sup |Df frj(®)] Sjp %% 21971 272 Pkalol), (5.14)
EeR

Moreover, foro € {1,...,d}, ifk <0 then
”eitAg fk,j”LO“ 5 z—ak min(z_(l+ﬁ)j23k/2, (1 + |l‘|)_3/22(1/2_ﬂ)j)
+ 27 minQYHAIDRTYI (1 ey TI2URRIRPK) - (5.15)
Ifk > 0 then
™ fr jllzoo < 27 % min@ AT (1 4 |¢)) 7322027 Py

+27% min(277, (1 + |¢])73/220/2HA)), (5.16)
(iii) As a consequence
I feillr2 < minQUFA—k 2—10k (5.17)
JINL2 ~
j>max(—k,0)
and3
e’ fi il < min(U/2A=0k 2=6ky(p 1 ,y=1=F (5.18)
j>max(—k,0)

8 In many places we will be able to use the simpler bound (5.18), instead of the more precise
bounds (5.15) and (5.16).
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Proof. The dispersive bound (5.12) is well-known. To prove the bounds in (ii), we start
by decomposing, as in (2.23)—(2.26),
~(k) ~(k) ~(k)
(/)j 'Pkfzgl,j + 82,5, gl,j:gl,j"PU_z,j_Fz]a gZ,ngZ,j'(p[j_z,H_z],
2P Yigy 2 4 292 PRg e S 7% 42197, 5.19)
272P20=P gy 12 + 202K 1ga e

+ 2()/—/3—5/2)/(2)/j ||§2,\/ ”Ll S (2ak 4 210/{)—1.
The bound (5.13) follows easily. To prove (5.14) we use the formulas in the first line of
(5.19) to write, for u =1, 2,

— — ~ k
GE) =c /R ETDFGE )€ mdn,

Therefore
— — ~ k
DLgy© = [ GmFGS 5Ly )€ =,

The desired bounds (5.14) follow from the bounds || g, j [l < (2% 4210k =1 —(1/2-p)k
(see (5.19)).
We now prove the bounds (5.15). Assuming k < 0 we estimate

e Py_a ko181, jllioe S 232 N1gr jll 2 S 2302 27k (A,
and, by (5.12),

e Pu—ziraigrjlie S (L + 1D 2lgr il S L+ (D227 gy I 2
<1+ |t|)*3/223j/2 Lp—aky—(1+p)j
Therefore
e Puapsangn,jllee < 27 min@THAT22, (1 41y 732202707 (5.20)
Similarly,
oA Pz snga e S gl S 27 K20y P2k,
and, by (5.12),
e Pz 2182, il S (L +1ED 7 llga sl S (1 + [e) 72232 i 2
< (14 [1]) 73223012 . p-akp2Bky—(1=B)]

Therefore

”eitl\a Pk—2.k+2182.; Il o < o—ak min(z(—y+ﬂ+5/2)k2—)/j’ a+ |t|)—3/22(1/2+ﬂ)j22/3k).
(5.21)



2418 Alexandru D. Ionescu, Benoit Pausader

Similarly, if £ > 0 then we estimate
le™™ Pu—a kymigrjlliie S 2% g1 jll e S 22/% . 2710 (4A)]
and, by (5.12),

e Py—a kg jliee S (A1) 722 gy il S (4 [e)™3/223% 23072 gy 1112
<+ |t|)—3/223k23j/2 .0~ 10ky—(1+p)j

Therefore,
e Pl—a k2181, jll oo S 27 % min@ =AY (1 4 ¢y T3/220/27P0y 0 (5.22)

Similarly,
e P—o k42182, 1o S g2l S 27 1%,
and, by (5.12),

e’ Py_a k2182, jlleoe S (11t 7221 go il S (1 + 12)73/22%2%72 165 51112
<+ |t|)—3/223k23j/2 .= 10ky—(1-B)j

Therefore
”eitAa Py axiz82.jlle < 2% min(27"/, (1 + |t|)—3/22(1/2+ﬂ)j)' (5.23)

The last bound in (5.15) follows from (5.22) and (5.23).
(iii) The desired bounds follow directly from (5.13), (5.15), and (5.16), by summation
over j. O

Lemma 5.3. Assume that k, ki, ky € Z, and p,q € [2,00] satisfy 1/p + 1/q = 1/2.
Then

H fRS O (&) pry (€ — Wi, () - F(E — ME() dn . SUfllzelighee. (5.24)
Lg

More generally, if ki < ky and Ak, &, : R x R = C satisfies

sup sup AP DEDS A gy () < 1 (5.25)
|x|e[2k=1 2k+17 |y|e[2k1—1 2k1+1] |pl,lo]€[0,4]

for some A, A1 € (0, 00), then

H /RS Ak ko E, & — Mo (E) ok, E — Mok, () - F(E =g dn ,
Lg

SA+253HA + 22D fllerllgle.  (5.26)
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Proof. The bound (5.24) follows from the Plancherel theorem. To prove (5.26), letting

F(§) = /R3 Ak ko (5.5 — Mok (E)or, (§ — nor, (n) - FE—mgmdn
we calculate

(F'F)(x) = c/3

R x

- FOg@) Kk k(X3 ¥, 2) dy dz,
where

Kt by (17, 2) 1= /R s &I ETIAG ook (D (€ — ) dE d.
X
By integration by parts and (5.25),
| K (x'yz)|<23k 1+|x—Z| 74.23k1 1+ |Z_Y| -
kiky,kp\ X5 YV, ~ 2_k Y 2—](1 + A1 ’
and the desired bound (5.26) follows. O

The following general oscillatory integral estimate is used repeatedly in the proofs.

Lemma 5.4. Assume that0 <€ < 1/e < K, N > 1 is an integer, and f, g € CN(R").
Then
/ e"ng dx

provided that f is real-valued and

Ve fl > Lappgs  ID2f - Lappglizee Sy €' 7171 2 < |p| < N. (5.28)

Proof. We localize first to balls of size ~ €. Using the assumptions in (5.28) we may
assume that inside each small ball, one of the directional derivatives of f is bounded
away from 0, say |31 f| =n 1. Then we integrate by parts N times in x|, and the desired
bound (5.27) follows. m]

Sy (K™ Y elDplell, (5.27)
[pI=N

5.2. Analysis of the functions ®°*V and E*Y
Foro € {1,...,d}and u, v € Zy, with
w=(o1t1), v=(oa), o1,00¢€f{l,....d}, ,t€{+, -}, (5.29)
recall the definitions of the smooth functions A, : R3 — (0, 00), PIHV R3xR} >R
and BV : R3 x R3 — R3,
Ao(€) = (07 + 51612,
OTV(E M) = A (§) = Au(E —m) — Av(m),
f G =® |
B2, + 2 — €D T2 + e, D)2
(5.30)

g0, ) = (V@7 E ) = —
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In this subsection we prove several lemmas describing the structure of almost resonant
sets, which are the sets where both |®7*V (&, n)| and |E*V (&, n)| are small. These lem-
mas are used at several key places in the proof of Proposition 4.1. Recall the sets

LUk ks = (E M) € RO xR 1 [E] € [267%,25H4], |5 — ] € (20174, 2044,
In| € [2k274, 2k 4] j@hv (e, )| < 81, |DTHV(E, | < &), (5.31)
defined foro € {1,...,d}, u,v € Iy, k, k1, ky € Z, 1, 52 € (0, 00).

Lemma 5.5. (i) Assume that

k<=D/100, 82 <27P/10 ) < 27PN, (5.32)
Then .
Ly s =1 (5.33)

(i) Alternatively, assume that
max(ki, ky) > D/2, & <2 Ppdmaxtkik) 5, < p=Dp—maxtkik) (534
Then

Ly o0 = 9- (5.35)

Proof. (i) Assume that there is a point (£, 1) € Lz;g’zz,al 5, Since k < —D/100 and

|71V (g, )| < 27P/100 ysing the assumption |by =& by, + by, | > 1/A (see (2.28)) we
obtain
ki ky > —Ca: (5.36)

in this proof, we let C 4 denote constants in [1, oo) that may depend only on A. Moreover,

(b7 + 3161912 — 0@, + 2\ ln = €12 — 1267, + g, Inh) /2| < 27210

(o

Since

(0% + ZIED? = bo| + |7, + 2, In— &N = (b7, + 2, In1H)'?] < C427 P/,

g

it follows that

|~bg + 11(BZ, + 2 1D+ 0®2, + 2, InH| < €427 P10, (5.37)

(e} 0

Using the definitions (5.29)—(5.31), we see that

2 2
5 (N —§) 2
‘Ll 2 1712 21172 + 0 5 022 NV < CA81.
(b2, +c2In— &%) B2, + 2,11
Since ) 2
CO'l (77 - g:) B Caln —c 2k-k2
(b(zrl +Cr2rl|n —&|H)1/2 (b{z,1 +c(271|,7|2)1/2 =ta ,
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it follows that ¢; - t1p = —1 and

Co, M B 03277
©F, + 2P B, + P12 | =

< Ca(81 + 28R,

Therefore
|(ca,ca, — caca)lnl + (B2 ca, — bl ca)| < Ca(812% + 28+,
In view of the assumption in the second line of (2.28), this implies that

e 2 — 3 c2 |Inl? < Ca(8:2%F2 4 2kHh2),

o) 01 oo
2 4 2ky | Hk+ky
b2 ¢4 — b2 | < Ca(812% + 2F ),

Therefore
Ico, — Con| < Ca(81 +257R2),  |by, — boy| < Ca(82%42 4 2KFHh2y,
which shows that
|(bm + Cal|77| Hlz (b(,2 + CU2|77| )1/2| < C4(8;2F2 4 2%).

This contradicts (5.37), since ¢1 - tp = —1 and 2k 4 52k < CAZ’D”OO

(ii) As before, assume that there is a point (§, 1) € ﬁk . kz 518 Assume that n = re,
E=se+v,reRh 2kt ccS? seR v-e=0.The condltlon (&, )| < &
gives

L c(,l (r—s) cgzr N c?,l [v]
1
(b2 + 2 ((r—s5)%+ |v|2)1/2 (17(2,2 + 2 D2 (B2 2 ((r —5)2 + [v)1/?
< Caéy.
Therefore
2min(k1,k2) > C*]’ |U| < CA(SlzmaX(kl,kz)’
k 6_kA6 ~ k—6 ~k+6 k1—6 ~k1+6 (538)
re[2970, 2070 s e 2970, 2870 r — s € [2070, 2479,
L 2 (r—s) L 2 r s (5.39)
ATy S U e Ve L) |
Assume first that
min(ky, ko) > max(ky, ko) — D/10. (5.40)

Using (5.38)—(5.39) and the assumption (5.34), and recalling that |¢5, — ¢4, € {0} U
[1/A, o0) (see (2.28)), we obtain

Coy = Copy  UL(r—5) <0, |boy|r — 5| = boyr| < Cad23m>krk) 0 (541)
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As a consequence of the last inequality and the assumption |by, — bg,| € {0}U[1/A, 00),
either |s| > 2MXk1k)=D/I0 o — po and [s| < Cp828MKLK) (5 4)

To use the condition |7 *V (&, n)| < &5, we estimate first, using (5.38) and (5.40),

b2 .
b2 C2 _ &2 = o lr — 5|+ o1 + 0] 2—3m1n(k|,k2) ,
5+l = 61 = eyl — sl 5= E s+ Oa )
b2 .
Vb2, + 2 n? = copr + 72—+ O (2 3mintkik2)y
2o, 1

Therefore, by again, (5.38) and (5.41),

@7 &, )l = |02 + 2 IR — 1 J02, + 2 In — £ — B2, + 2, InP?|

2 22 bg'l b(%'z
%) ba +C0S — L1l cgllr —Sl + m — C02r+ 2002}”

+ OA(273min(k1‘k2))
bZ b?
b2 1 252 _ o1 _ o
2y P F o8 ot 2c5,(r —s)  2co,r

We now examine the alternatives in (5.42). Clearly, if |s| < C A8123ma"(1‘"k2) then
[PV (E, )] > CXI, in contradiction with the assumption |®7*V(&, )] < 8.
On the other hand, if |s| > pmax(ki.k2)=D/10 " thep using (5.43) and the assumption
| Do H-V(E, )| < &2, we obtain

404 (2_3 min(k]»kz)). (5.43)

2 2 2
o _bgl lﬁ

< Cp2 Do~ maxtki k2) (5.44)

Co =Cop, LS| =,
r—s

We compare now with the last inequality in (5.41), written in the form

boy b,

S CA2—D2—max(k|,k2).
r [r —s|

Letting A := by, /r € [C'27%2, C427%2] yields |by, — Alr — s|| < C427P. Using the
last inequality in (5.44) shows that Ib?, — A2s2| < C42~D. Therefore

boy — Ar| + |boy — Alr —s|| + |bs — Als|| < Ca277,

which contradicts the assumption in the first line of (2.27).
Assume now that

min(ky, k2) < max(ki, k2) — D/10 and Ky < ko. (5.45)
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Using (5.38)—(5.39) and the assumption (5.34) we obtain

2
Co I — 5]

_CUZ
/b(z,1 + cgl lr —s|?

Since |r — 5| < 2kit6 < 42~ D/10pmax(ki.k2) j¢ follows from the inequality above that
Coy, > Cqy, therefore cq; > ¢y, +1/A. Using again the last inequality in (5.41), we deduce
that |[r — s| < C4 and s > 252710, Therefore we can write

|7V (E, )| = |\/b§ +c2lE)> — ll\/b?,] +c2In— &7 —1a\/bZ, + 2, Inl?|
= |cos —11y/b2, + 2 |r — s|? — aco,r| + 04275, (5.47)

From the assumption |®7°#V (&, n)| < §, and the inequalities |r — s| < C4 and s,r >
2k2—10 proved earlier, it follows that ¢, = ¢4,, t2 = 1, and

/ —k
|Coylr = 5| = (Jb2, + €2 Ir — 52| < Ca27%2.

It is easy to see that this contradicts the last inequality in (5.46) and the inequality ¢, >
¢y, + 1/A proved earlier.
The proof in the remaining case

min(ky, kp) < max(ky, ky) — D/10 and ki > kp

< CA2—2maX(k1,k2). (5.46)

tirp(r —s) <0, ‘

is similar. o

To deal with the space-time resonant region we need a more precise description of the
sublevel sets of the functions ®%°#¥ and |E*'¥|. The estimates in Lemmas 5.6 and 5.8
below are used only in the proof of Proposition 4.11.

We define functions r*¥ : (0,00) — R, u = (o1t1), v = (02t2), in the following
way:

(@) If (1 -1p = 1 then r*V(s) is defined, for any s > 0, as the unique solution r € [0, 5]
of the equation

¢ (s —r)? A
5 5 7~ 33 5— =0. (5.48)
b(71 + ¢35, (s—r) bg2 +c5,r
) If {t1 - 12 = =1, co; > coy} 0r {11 - 12 = =1, ¢, = Coy, by, > by, } then r*Y(s)
is defined, for any s > 0, as the unique solution r € [s, co) of the equation

(Cg oy — CayCa)r — ) + 5 b2, (1 —5/r) = cg,ba =0. (5.49)
©@If{t1-10=—1, ¢y <cCoy}or{ty -2 =—1, co; = Coy, b, > b, } then r’*>¥(s)

is defined, for any s > 0, as the unique solution r € (—oo, 0] of the equation
(Ca,Co, — Co Ca )P + o by 12/ (r — $)* — g by, = 0. (5.50)

The function ¥ is not defined (nor needed) when {t -1, =—1, ¢4, =Cq,, b, =bo,}.
Notice that r*-" is well-defined since the functions in (5.48)—(5.50) are strictly monotonic
(as functions of r) and change sign in the respective ranges.
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Lemma 5.6. Assume that o € {1,...,d}, n = (o111),v = (o212) € Iy, k, k1, ky €
[-D,2D]NZ, § € [0,2719P), and assume that there is a point (€,7) € R® x R3
satisfying

€] € 274,244, gl e 2974, 201,

(5.51)
& —nl e (297528, EhvE ) <6,
Then, with r*¥ defined as above and letting p'¥(§) .= r*V(1€])&/|&|, we have
|n—p*v@©)| <2808, E-V(E, pUE) = 0. (5.52)
Moreover, for any s € [2]‘_6, 2k+6],
min([(3,7 ") (s)], |1 — (377Y)(s)]) = 2742,
(1@sr™ ") ()], [1 = (@gr™ ") (9)]) = (5.53)

(DPrHVY(s) <22°P  p=0,1,...4.

Proof. We remark first that the existence of a point (£, ) satisfying (5.51) implies non-
trivial assumptions on k, k1, k2 and the coefficients 1, (3, ¢4, Co,, bo,, bs,. The conclu-
sions of the lemma depend, of course, on the existence of a point (&, n) satisfying (5.51).

We examine the formula (5.30) and assume that £ = |£|e for some unit vector e € S°.
If n = pe +v with p € R, v € R?, and v - e = 0, then the condition |2 (£, )| < §
shows that

2 2

’ Licg,v LCg,v
587
B2+ P+ (o= 1ED) \/b + 2, (o + p)
(5.54)
‘ teg, (p — €D 123, p -
P+ WP+ (o= 180D B2, + 2 (0P o)
In particular, by the second equation in (5.54),
2 2
‘ Cal LzCzrz |,O| > C;lzkikl;
P+ e (0P + (o = €D /b + 2, (1P + 0?)

in this proof, the constants C4 € [l, c0) may depend only on the parameter A. Since
lp| < C42k2 it follows that
2 2

CU] LQC(72

' + > 7 ok—ki—k2
+ = YA .
\/b cg, (WP + (0 — 1ED?) \/b +c2, (w2 + p?)

Using now the inequality in the first line of (5.54) we have

o] < Ca2kithe=ks |p| e 20270, 20701 |p — Jg]] € 2K, 25176 (5.55)
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We now analyze more carefully the inequality in the second line of (5.54). Using
(5.55) we see that

‘ ¢z, (0 — 15D) (o —lgD
o+ WP+ o)) 1R, +ch (0 — )2

2
€, P

+] <s.
J2 +c(,2 |v|2+p2) \/b +c2p?

Therefore 5
uck (p — €D N 0Cs, P

'\/b + 2 (p— IED2 \/b +c2 p?

We consider two cases. If ¢ - 1 = 1 then p € [0, |€|] and equation (5.56) shows that

< 48. (5.56)

¢t (18] - p)? ¢t o

— < C4é.
B, + &= PP B, +

In this case we let s := |£| and use the definition (5.48). Using also (5.55) we see that
lp — rV(s)| < Ca29P8, and the desired conclusion (5.52) follows in this case.

Assume now (] - 1, = —1 and either ¢;; > ¢4, Or {c(,1 = Coy, by, > by }. From
(5.55), (5.56), and the assumption (2.28), it follows that c(7 bgz > cgzb?,l, € [|&], 00),

k1 < ky + 10, and

cr (o —|ED? cr .0’

— < C4é.
B2+ (0 — D B, + 2,0

Therefore

(ca ca, — chca)(p —IED? +cglb§2(1—|s|/p)2—c(,2 2 < Cas(1+ 2%,

Recall that either c — c2 > Cy Uor c4 b2 — cﬁ b?,l C;l. Then we let, as before,
= |&| and use the deﬁmtlon (5.49). The conclus1on (5.52) follows, using also (5.55).
The argument is similar if ¢; - to = —1 and either ¢4, < ¢q, O {¢5; = Coy, bo, < by}

Using (5.55), (5.56), and the assumption (2.28), we deduce that cg,b2 > ci b2,
o= 18D g p?
b, +cg,(p —IED* b3, +c5,07

< C4é.

Therefore

(ca,c2, — ca co)p> + ca, b p*/(p — |ED* — i b, | < Cad(14+2%9).

Then we let s := |&| and apply the definition (5.50). The concluswn (5.52) follows, using
also (5.55) and the fact that either 6[2,2 - CC271 > CXl orct b2 —c* bz > C_

02701 01702 —
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To prove (5.53) we let, for simplicity of notation, r(s) = r*¥(s). We differentiate
(5.48), so

|: cf,l b?,l (s—r) cﬁzbgzr i| (s) = cﬁl b,z,1 (s —r)
[19(2,1 + 61271 (s —r)2)? [19(2,2 + c(2,2r2]2 - [b?,l + c?,l (s —r)?2)?

Using again equation (5.48) we see that

b2 C4 r3
r/(s) — 0] 02

2 o443 2 A4 3
b, c5,r° + b c5 (s — 1)

The desired bounds in (5.53) follow easily in this case since r(s) ~ 2k g — p(s) ~ 2k,
Similarly, we differentiate (5.49) to get

204 2 4 2 432 / 2.4 2 4 2 42
[r(cy, C5, — C5,Co0) F Co b5, s /11T (s) = r(cg c5, — €5,¢5,) + €5, b5,

which gives
cil b?,z (r—-ys)

42 _ A2y A
(c5,€5y = Co,Co 1> + €5, b5, 8

rlis) =1+

The desired bounds in (5.53) follow easily in this case as well.
Finally, we differentiate (5.50) to get

4 2 4 2 3, 442 4,2
[(co,c, = Co o) (s — 1) 4, b5, 5] -1/ (s) = cg, b5, 7,

which gives
4 12
() = c(,zb(,lr
(cézc?,1 — C§1 cgz)(s —r) 4+ cf,zbgls

and the desired bounds in (5.53) follow easily. ]

Remark 5.7. The conclusions of Lemma 5.6 hold, in a suitable sense, without the as-
sumption k, k1, ko < 2D. More precisely, to prove the bound (4.28), we need the follow-
ing slightly stronger version: Assume thato € {1, ...,d}, u = (o1t1), v = (0202) € Iy,
k ki, ko € [-D,00) NZ, 8 € [0,278Pp—4max(ki.k2)] and assume that there is a point
(€, 1) € R3 x R3 satisfying

& € [2F74, 254, |l e 2R 2k,

(5.57)
& —n e [2h=4 2k jERvE, ) < 6.

Then, with r#V defined as in (5.48)—(5.50), and letting p*¥ (&) = r*V(|€])&/|&], we
have

ln—prv@©)| Sotmakikls o grv e pivE)) = 0. (5.58)

The proof of (5.58) is similar to the proof of (5.52) given above.
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Lemma 5.8. As in Lemma 5.6, assume that o € {1,...,d}, u = (o1t1),v = (0212) €
Ta, k, ki, ky € [—D, 2D]NZ, and assume that there is a point (§, ) € R3xR3 satisfying

|§| c [2](74’ 2k+4], |n| c [21{274, 2k2+4], (5 59)
& —nl e [297%, 284, @ E ) < 27107, '

Define Wi« [2k=4 2k+4] 5 R by

WIS (s5) 1= @7 (se, 1 (s)e)
= (b2 + c2sH'2 — b2, + 5 (7 (s) — )MV — walbl + V()P (5.60)

for some e € S* (the definition, of course, does not depend on the choice of e). Then there
is some constant ¢ = ¢(i1, 12, Co, bos Coys Doy Coys boy) € {—1, 1} with the property that

if s e 26425 and (WY (5)] <2720 then  T(9, W7 V) (s) > 2720P,
(5.61)

Proof. For simplicity of notation, let W(s) := W?*:V(s) and r(s) := r*¥(s) in the rest
of the proof. Recalling that E*Y (&, r*V(|§])€/1&|) = 0, we obtain

2 e (r(s) —s
V() = T A (5.62)
Vet g+ () — 9
Recall the identity (see (5.56))
t]C(2, (r(s) —s) chg r(s)
1 2 =0. (5.63)
\/b<271 + 2 (r(s) — 5)? \'/19[2,2 +c2,r(s)?
Recalling (5.48)—(5.50), in proving (5.61) we need to consider five cases:
(t1,2) = (1, 1), r(s) € [0, s], (5.64)
or
(L17L2)=(_1a])7 CO'] 260'29 r(S) € [S, oo)? (5'65)
or
(LI»LZ) = (lv _1)’ CO'] Z C(rz» r(s) € [S, Oo), (566)
or
(le L2) = (17 _1)7 Coy = Coys r(S) € (—OO, 0]7 (567)
or
(1, )=L1, ¢y Zc, rls)e(—o00,0] (5.68)

The desired lower bound in (5.61) follows easily from the identities (5.62) and (5.63),
with ¢ := 1, in the cases (5.66) and (5.68).
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We now consider the case described in (5.64) and rewrite, using (5.62) and (5.63),

W(s) = c25 c(71 (s —r(s))
\/b2 + cZ 2 \/b + Cal 5 — r(s))2
cts ca,r(s) (5.69)

Vit b 4+ (s

W(s) = \/bg + 252 — \/brzn + C<271 (s —r(s)? — \'/btz,2 + cgzr(s)z.

If ¢; > ¢4, then czba1 > ¢ 2 ,bo (see (2.28)), and the inequality W (s) > 271D fol-
lows easily from (5 69), since |s| g 2K 1r(s)| a2k, |s — r(s)| A4 2K, Similarly, if
¢y > Cg, then cab<72 > cgzb (see (2.28)), and the inequality W/ (s) = 2~ 10D follows
easily from (5.69).

On the other hand, if ¢, < min(cy,, ¢s,), We consider two cases. Assume first that

max(Cq, Coy) = Co + 1/A,  min(cyy, Csy) > C5.

—20D

In this case, using (5.69) and the assumption |W (s)| < 2 , we estimate

2 (s = r(s)) +cZ,r(s) cls

NG —i—c(z,ls—r(s))z—i-\/b +2r(s)? Vb3 s’

. oy (s = 1(5)) +cqr(s) — s _ 910D 5 p-10D,

The desired bound (5.61) follows.

In the remaining case ¢, = ¢4, = C4,, We show that [W(s)| > 277", which would
suffice to prove (5.61) (since the hypothesis in (5.61) does not hold). Indeed, the identity
(5.63) shows that

—V'(s) =

10D

b2 () = b3 (s —r(s)* =

Letting « := by, /by, = (s — r(s))/r(s) € [1/A%, A?] and using also the assumption
|by — bs, — bo,y| = 1/A (see (2.28)), we estimate

W = |52 + 252 = i2bE, + (o) = b2, + ()]
> 27P|(62 + ¢2s?) = (k + DGR, + 2r(9)?)]
> 2730C; by — (6 + Dbl = 2730C

as desired.
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We now consider the case described in (5.65) and rewrite, using (5.62) and (5.63),
c(z,s B C?,l("(s) — )
Vb2 + 252 \/b(z,l + 2 (r(s) — 5)?

_ s ) (5.70)
VO eist B2 + 2 r(s)?

W' (s) =

W(s) = /02 + 25 + VP2 0 6) = 92 = B2, + 2, (5)?).

If ¢, > c5 then c2 b > c?,b(72 (see (2.28)) and the inequality —¥’(s) > 2710D follows
easily from (5.70), since |s| ~4 2K 1r(s)| =4 2%2, |s — r(s)| =4 2%1. On the other hand,
if ¢y, < min(cy, ¢4,) then, as before, we consider two cases. If

max(ca’col) 2C02+1/A7 min(co‘vco‘l)zcﬁz’

then, using (5.70) and the assumption |W (s)| < 2-20D e estimate
W(s) = cls B c3,r(s) —ca (r(s) —s)
Vb2 + c2s? \/bgz +c2,r(s)? —\/b?71 + 2 (r(s) — 5)?

2 2 2
. CoS — CUZV(S) + Co (r(s) —s) _ 2—1()D > 2—10D

Vb2 + 252

as desired.

On the other hand, if ¢,, = ¢, = ¢,, we show that |¥(s)| > 27!19P  which would
suffice to prove (5.61) (since the hypothesis in (5.61) does not hold). Indeed, arguing as
before, the identity (5.63) shows that

b2 r()* = b3 (r(s) — $)* = 0.

Letting k := by, /by, = (r(s) — s)/r(s) € [1/A2, 1] and using the assumption |b, +
by, — bs,| > 1/A (see (2.28)), we estimate

W)= |\/b§ +cgs? +\/"2b§2 + c22r(s)? - \/b + c2r(s)?|
>273P|(b] + 557 — (1 = k)* (b7, + cor(5)?)]
> 27 C by — (1 — )by | 2 273PC 1,

as desired.
The analysis in the case described in (5.67) is similar. This completes the proof of the
lemma. O
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