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Abstract. For 1 < n < d integers and p > 2, we prove that an n-dimensional Ahlfors—David
regular measure u in RY is uniformly n-rectifiable if and only if the p-variation for the Riesz
transform with respect to @ is a bounded operator in Lz(u). This result can be considered as a
partial solution to a well known open problem posed by G. David and S. Semmes which relates the
L2(,u) boundedness of the Riesz transform to the uniform rectifiability of w.
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1. Introduction

In this paper we characterize the notion of uniform rectifiability in the sense of David and
Semmes [DS2] in terms of the LZ boundedness of the p-variation for the Riesz transform,
with p > 2.

Given integers 1 < n < d and a Radon measure u in R4, one defines the n-dimen-
sional Riesz transform of a function f € L' () by R* f(x) = lime\o RE f(x) (whenever
the limit exists), where

X =y
Rifo = [ I rorduo). e
[x—y|>€e |x - Y|

We will use the notation R* f (x) := {RE f(x)}e=0. Whend = 2 (i.e., u is a Radon mea-
sure in C), one defines the Cauchy transform of f € L' (i) by C* f (x) =lime\ o Cl f(x)
(whenever the limit exists), where

ctrw=[  Iaup.  xec

x—y|>e X — Y
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To avoid the problem of existence of the preceding limits, it is useful to consider the maxi-
mal operators Rf,ff(x) = SUP¢~q |R§f(x)| and Cff(x) = SUP¢~q |Cé‘f(x)|. Notice that
the Cauchy transform coincides with the 1-dimensional Riesz transform in R? modulo
conjugation, since 1/x = X/|x|? for all x € C \ {0}.

The Cauchy and Riesz transforms are two very important examples of singular in-
tegral operators with a Calderén—-Zygmund kernel. Given d > 2, the kernels K
R? \ {0} — R that we consider in this paper satisfy

C C
IK(x)| = i 10, K(x)] < T 10,0, K (x)| < e (H
foralll <i,j <dandx = (xl,...,xd) e R4 \ {0}, where 1 < n < d is some integer
and C > 0 is some constant; and moreover K(—x) = —K(x) for all x # 0 (i.e. K
is odd). Notice that the n-dimensional Riesz transform corresponds to the vector kernel
(oo x?)/1x "t and the Cauchy transform to (x', —x2)/|x|? (so, we may consider

K to be any scalar component of these vector kernels). For f € L'(x) and x € R?, we
set
0 = TG0 = [ K@= 0o,
[x—y|>€

and we denote T* f (x) = {T¥ f(x)}e=0.

Definition 1.1 (p-variation and oscillation). Let F := {F¢}c~0 be a family of functions
defined on R¢. Given p > 0, the p-variation of F at x € R? is defined by

1/p
Vo)) i= 5up(( Y [Fepey (@) = Fop, 0)1°)
{em} “mez
where the pointwise supremum is taken over all decreasing sequences {€;, };nez C (0, 00).

Fix a decreasing sequence {r, }ucz C (0, 00). The oscillation of F at x € R? is defined
by
5\ 172
OF @ = sup (3 1Fe, 0= Fs, @F)
{em}10m} ez

where the pointwise supremum is taken over all sequences {€,,};,ecz and {6 }mez such
that 41 < €y < 8y < ry forallm € Z.

The p-variation and oscillation for martingales and some families of operators have
been studied in many recent papers on probability, ergodic theory, and harmonic analysis
(see [Lp], [Bo], [JKRW], [CJIRW1], [JSW], [LT], and [OSTTW], for example). In this
paper we are interested in the p-variation and oscillation of the family 7* f. That is,
given a Radon measure 4 in R? and f € L'(u) we will deal with

Vp o T f(x) == Vo (THf)(x), (O TH) fx) :=O(TH f)(x).

We are specially interested in the case 7/ = RH. Notice, by the way, that T} f(x) <
(V, o TH) f (x) for any compactly supported function f € L'(x) and all x € R9,

When p coincides with the Lebesgue measure on the real line and K(x) = 1/x
is the kernel of the Hilbert transform, Campbell, Jones, Reinhold and Wierdl [CIRW 1]
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showed that V, o 7# and O o T# are bounded in LP(u) for | < p < oo, and of
weak type (1, 1). This result was extended to other singular integral operators in higher
dimensions in [CJRW2]. The case of the Cauchy transform and other odd Calderén—
Zygmund operators on Lipschitz graphs was studied recently in [MT].

Let us now turn our attention to uniform rectifiability. Recall that a Radon mea-
sure 1 in R? is called n-rectifiable if there exists a countable family {M;};en of n-
dimensional C! submanifolds in R? such that w(E N\ UU; «nMi) = 0. Moreover, p is
said to be n-dimensional Ahlfors—David regular, or simply AD regular, if there exists
some constant C > 0 such that C~'r" < w(B(x,r)) < Cr" for all x € supp p
and 0 < r < diam(supp ). One also says that u is uniformly n-rectifiable if there
exist 6, M > 0 so that, for each x € supppu and » > 0, there is a Lipschitz map-
ping g from the n-dimensional ball B” (0, ) C R” into R such that Lip(¢g) < M and
w(B(x,r)Ng(B"(0,r))) > 6r", where Lip(g) stands for the Lipschitz constant of g. In
particular, uniform rectifiability implies rectifiability. Given a set E C R?, we denote by

’}5 the n-dimensional Hausdorff measure restricted to E. Then E is called, respectively,
n-rectifiable, AD regular, or uniformly n-rectifiable if 7—[’]? is so. By the Lebesgue differ-
entiation theorem, any n-dimensional AD regular measure u is of the form u = f ’Hg‘upp u
with C~1 < f(x) < C for some constant C > 0 and all x € supp w.

More than twenty years ago G. David and S. Semmes asked the following question,
which is still open (see, for example, [Pa, Chapter 7]):

Question 1.2. Is it true that an n-dimensional AD regular measure ( is uniformly
n-rectifiable if and only if RY is bounded in L*>(11)?

Some comments are in order. By the results in [DS1], the “only if”” implication of the
question above is already known to hold. Also in [DS1], G. David and S. Semmes gave
a positive answer to Question 1.2 if one replaces the L? boundedness of RY by the L?
boundedness of T for a wide class of odd kernels K. In the case n = 1 (in particular,
for the Cauchy transform), the “if”” implication was proved by P. Mattila, M. Melnikov
and J. Verdera [MMV] using the notion of curvature of measures. Later on, G. David and
J. C. Léger [Lé] proved that the L> boundedness C! implies that p is rectifiable, even
without the AD regularity assumption (withn = 1).

When  is the n-dimensional Hausdorff measure on a set E C R¢ such that p(E) < oo,
the rectifiability of u is also related to the existence u-a.e. of the principal value of the
Riesz transform of y, that is, the existence of R*1(x) = lime\ o RE1(x) foru-ae.x € E.
In [MPr], P. Mattila and D. Preiss proved that, under the additional assumption that

limiélfr_”u(B(x, r)) >0 foru-ae. x € E, 2)
r—

the rectifiability of E is equivalent to the existence of R*1(x) u-a.e. x € E. Later on, in
[To3] X. Tolsa removed the assumption (2) and proved the result in full generality: a set
E c R? with u(E) < oo is rectifiable if and only if R*1(x) exists for u-a.e. x € E. Let
us mention that, for the case n = 1 and d = 2 (that is, for the Cauchy transform), the
analogous results had been obtained previously by [Ma2] under the assumption (2), and
in [Tol], in full generality, by using the notion of curvature of measures.

In this paper we prove the following:
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Theorem 1.3. Let 1| < n < d and p > 2. An n-dimensional AD regular Radon mea-
sure w in RY is uniformly n-rectifiable if and only if V, o R* is a bounded operator
in L2(w). Moreover, if i is uniformly n-rectifiable, then for any kernel K satisfying (1),
the operator V,, o T is bounded in L2(w).

Let us compare this result with the David—Semmes Question 1.2. Notice that the pre-
ceding theorem asserts that if we replace the L?(1) boundedness of RY by the stronger
assumption that V, o R* is bounded in L?(w), then 1 must be uniformly rectifiable. On
the other hand, the theorem claims that the variation for odd singular integral operators
with any kernel satisfying (1), in particular for the n-dimensional Riesz transforms, is
bounded in LZ(w).

A natural question then arises. Given an arbitrary measure p on R4, without atoms
say, does the L?(1) boundedness of RY implies the L?(x) boundedness of V, o R*, for
p > 27 By the results of [MMV] and Theorem 1.3, this is true in the case n = 1 if
is AD regular 1-dimensional. Clearly, a positive answer in the general case n > 1 would
solve the David—Semmes problem in the affirmative. Nevertheless, such an approach to
try to solve this problem looks quite difficult. In fact, we recall that it is not even known if
the L2(,u) boundedness of RY ensures the p-a.e. existence of the principal values of R*1,
which is a necessary condition for the L?(w) boundedness of V, o R¥.

Concerning the proof of Theorem 1.3, in our previous paper [MT] we showed that, if
w stands for the n-dimensional Hausdorff-measure on an n-dimensional Lipschitz graph,
then the p-variation for Riesz transforms and odd Calderén—Zygmund operators with
smooth truncations are bounded in L?(w). This is a fundamental step to prove that V, o
R* and, more generally, V, o T*, are bounded in LZ(M) if w is uniformly n-rectifiable.
Another basic tool in our arguments is the geometric corona decomposition of uniformly
rectifiable measures introduced by David and Semmes in [DS1], which, roughly speaking,
describes how supp u can be approximated at different scales by n-dimensional Lipschitz
graphs.

The proof of the fact that the L?(u) boundedness of V, o R* implies the uniform
rectifiability of w is not so laborious as the one of the converse implication. As remarked
above, if V, o R* is bounded in LZ(M), then the principal values of R*1 exist u-a.e.,
which implies the n-rectifiability of u, by the results of [MPr] or [To3]. However, this
is not enough to ensure the uniform n-rectifiability of n. We will prove the uniform
n-rectifiability by arguments partially inspired by some of the techniques in [To4].

Finally, let us remark that Theorem 1.3 follows from a more general result, namely
Theorem 2.3 below, which also deals with the variation for Riesz transforms and odd
Calder6n—Zygmund operators with smooth truncations.

As usual, the letter ‘C” stands for some constant which may change its value at dif-
ferent occurrences, and which quite often only depends on n and d. Given two families
of constants A(#) and B(t), where ¢ stands for all the explicit or implicit parameters de-
termining A(¢) and B(z), the notation A(z) < B(t) (or A(t) 2 B(t)) means that there is
some fixed constant C such that A(#) < CB(t) (resp. A(¢) > CB(t)) for all ¢, with C as
above. Also, A(t) ~ B(t) is equivalent to A(¢) < B(t) S A(1).
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2. Preliminaries

2.1. The main theorem

Definition 2.1 (families of truncations). Let xr = x[1,00) and let ¢g : [0,00) —
[0, c0) be a nondecreasing C? function with Xi4,00) < QR = X[1/4,00)- SUPPOSE more-
over that |g0]/R| is bounded below away from zero in [1/3, 3], i.e., x[1/3,3] < C|g0fR| for
some C > 0.

Givenx € R?, and 0 < € < §, we set

Xe(@) = xr(Ixl/€),  x2(x) == xe(x) — xs(x),
0e(x) i= gr(Ix12/€?), @2 (x) == e (x) — @s(x).

Notice that, for any finite Radon measure w, Teu(x) = (Kxe * p)(x). Given x =
(', ..., x%) e RY, we denote ¥ = (x!,...,x",0,...,0) € R?, and we set @, (x) 1=
e (¥) and G2 (x) := @2 (¥). Finally, for f € L'(u) we set T f = T(f ) := (T f}e>0,

Ty f(x) = Ty (f)(x) == (Kge ¥ )(x), TN f =To(f1) := (T} fle=o0,
TE f(0) = Ty (f () 1= (Kfe % i)@). TEf = To(f1) = (T fleso.

Remark 2.2. In the definition, the choice of [4, 00), [1/4, 00), and [1/3, 3] is not spe-
cially relevant, it is just for definiteness. One can replace those intervals by other suitable
intervals, and all the proofs remain almost the same.

We will prove the following.

Theorem 2.3 (Main Theorem). Let 1 < n < d be integers. Let u be an n-dimensional
AD regular Radon measure on R?. The following are equivalent:

(a) w is uniformly n-rectifiable.

(b) For any K satisfying (1) and any p > 2, the operator V, o 7;“ is bounded in LP (1)
forall 1 < p < oo, and from Ll(u) into Ll*oo(u).

(c) Forany K satisfying (1) and any p > 2, the operator V, o T" is bounded in LZ(;L).

(d) For some p > 0, the operator V, o R" is bounded in L3(p).

(e) For K(x) = x/|x|"*! and some p > 0, the operator V, 0 7;,“ is bounded in L*(w).

Clearly, Theorem 1.3 is a direct consequence of the preceding result.

Remark 2.4. Let {r,,};,cz C (0, c0) be a fixed decreasing sequence defining O. Then the
implications (a)=(b), ..., (¢) in the theorem above still hold if one replaces V, by O.
If there exists C > 0 such that C~'r,, < r, — Fm+1 < Cry, for all m € Z, then the
implications (b), ..., (€)= (a) also hold (so Theorem 2.3 remains true after replacing V,
by O), but we do not know if they are still true without this additional assumption (see
Remark 6.9).
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Notice that, by Theorem 2.3, besides V, o R* and O o R*, the operators V, o 7;,“
and O o ’7;,” for K (x) = x/|x|"*! characterize completely the n-AD regular measures /.
which are uniformly n-rectifiable.

One of the main ingredients for the proof of Theorem 2.3 is the following result, which
strengthens one of the endpoint estimates obtained in [MT]. Let M (R9) be the space of
finite real Radon measures on R?, with the norm induced by the variation of measures.

Theorem 2.5. Let p > 2 and let u be the n-dimensional Hausdorff measure restricted
to an n-dimensional Lipschitz graph. ThenV,, o Ty, is a bounded operator from M RY) to
Ll'oo(u), i.e., there exists C > 0 such that, for all . > 0 and allv € M(Rd),

(o
pilx €RT: 0V 0 Tpv(x) > 4D < vl

In particular, V,, o 7;“ is of weak type (1, 1). The constant C only depends on n, d, K, p,
©R, and the maximal slope of T'.

By an n-dimensional Lipschitz graph T C R? we mean any translation and rotation of
a set of the type {x € RY : x = (y, A(y)), y € R"}, where A : R" — RY™" is some
Lipschitz function with Lipschitz constant Lip(A), which coincides with the maximal
slope of T".

Remark 2.6. The theorem above remains valid if one replaces V, by O. Moreover, the
norm of O o 7(;“ is bounded independently of the sequence that defines O.

The plan to prove Theorem 2.3 is the following: in Section 3 we deal with Theorem
2.5, which is used in Section 4 to obtain the implication (a)=>(b) of Theorem 2.3. In
Section 5 we prove (a)=>(c) in Theorem 5.1, and in Section 6 we prove Theorem 6.8,
which gives (d)=-(a) and (e)=-(a), and finishes the proof of Theorem 2.3, taking into
account that the implications (b)=>(e) and (c)=(d) are trivial.

Theorems 2.3 and 2.5 are stated in terms of V,, but they also hold for O, as remarked
above. However, we will only give the proof for V,, because the case of O follows by
very similar arguments and computations.

2.2. Calderon—Zygmund decomposition for measures

Given acube Q C R? and a > 0, we denote by £(Q) the side length of Q and by a Q the
cube concentric with Q with side length a£(Q). The cubes that we consider in this paper
have sides parallel to the coordinate axes in R¢.

A proof of the following result can be found in [ToS5, Chapter 2] or [M, Lemma 5.1.2].

Lemma 2.7 (Calder6n—Zygmund decomposition). Assume that ju := H[-~p, where T is
an n-dimensional Lipschitz graph and B C RY is some fixed ball. For any v € M(R%)
with compact support and any A > 24+ 1y I/ lell, the following hold:
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(a) There exists a finite or countable collection {Q;}; C R of almost disjoint cubes (that
is, Z/ Xo; < C) and a function f € Ll(u) such that

Q) > 27" 20)), A3)
wInQ)) <27 "au@nQ))  forn>2, )
v=fu inRINU;Q; with |f] <A p-ae. 5)

(b) For each j, let Rj := 6Q; and denote wj := X, O XQk)_l- Then there exists a
family {b;}; of functions with supp b; C R; and with constant sign satisfying

fbjduszjdv, (6)
16j 1l Loo(uy i (Rj) < Cv(Q;), (N
Zj |bj| < Cod  (where Cy is some absolute constant). ®)

2.3. Dyadic lattices

For the study of uniformly rectifiable measures we will use the “dyadic cubes” built by
G. David [Da, Appendix 1] (see also [DS2, Chapter 3 of Part I]). These are not true cubes,
but they play this role with respect to a given n-dimensional AD regular Radon measure .,
in a sense. To distinguish them from the usual cubes, we will call them p-cubes.

Let us explain the precise results and properties related to the lattice of dyadic u-
cubes. Given an n-dimensional AD regular Radon measure x in R? (for simplicity, we
may assume diam(supp ) = 00), for each j € Z there exists a family D; of Borel subsets
of supp u (the dyadic p-cubes of the jth generation) such that:

(a) each D;j is a partition of supp u, i.e. supp u = UQeDj 0 (a disjoint union);
(b) if Q € Dj and Q' € Dy with k < j, then either 0 C Q" or Q N Q' = ¥;

(c) forall j € Zand Q € D;, we have 27/ < diam(Q) <27/ and u(Q) ~ 27/%;
(d) there exists C > O such that, forall j € Z, Q € Dj,and 0 < 7 < 1,

u(fx € Q :dist(x, suppp \ Q) <1277}
+ u(fx esuppu \ Q : dist(x, Q) < 1277} < /27" (9)

This property is usually called the small boundaries condition. From (9), it follows
that there is a point zg € Q (the center of Q) such that dist(zp, suppu \ Q) 2 27/
(see [DS2, Lemma 3.5 of Part I]).

We denote D:= UjeZ D;. For Q € D;, we define the side length of Q as £(Q) =2/,
Notice that £(Q) < diam(Q) < £(Q). Actually it may happen that a u-cube Q belongs
to D; NDy with j # k. In this case, £(Q) is not well defined. However, this problem can
be solved in many ways. For example, the reader may think that a p-cube is not only a
subset of supp u, but a couple (Q, j), where Q is a subset of supp . and j € Z is such
that Q € D;j.
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Givena > l and Q € D, we setaQ = {x € suppu : dist(x, Q) < (a — DL(Q)}.
Observe that diam(a Q) < diam(Q) + 2(a — 1)4(Q) < (2a — 1)¢(Q).

2.4. Corona decomposition

Given an n-dimensional AD regular Radon measure v on R let D = {Q € D; :
Jj € Z} be the dyadic lattice associated to w introduced in Subsection 2.3. Following
[DS2, Definitions 3.13 and 3.19 of Part I], one says that y admits a corona decomposition
if, for each n > 0 and 6 > 0, one can find a triple (B, G, Trs), where I3 and G are two
subsets of D (the “bad p-cubes” and the “good p-cubes”) and Trs is a family of subsets
S C G (that we will call trees), which satisfy the following conditions:

(a D=BUGand BNG =4.

(b) B satisfies the Carleson packing condition, i.e., ZQGB: ocr M(Q) < w(R) for all
R e D.

(©) G =Hger S-i.e., any Q € G belongs to only one S € Trs.

(d) Each S € Trs is coherent. This means that each § € Trs has a unique maximal
element Qg which contains all other elements of S as subsets, that Q" € S as soon as
Q' € D satisfies Q C Q' C Qg for some Q € S, and that if Q € S then either all
of the children of Q lie in S or none of them does (if Q € D;, the children of Q are
defined as the collection of u-cubes Q' € Dj such that Q' C Q).

(e) The maximal p-cubes Qg, for S € Trs, satisfy the Carleson packing condition. That
iS, ) getys: oscr 1 (Qs) < w(R) forall R € D.

(f) For each S € Trs, there exists an n-dimensional Lipschitz graph I's with constant
smaller than n such that dist(x, I's) < 6 diam(Q) whenever x € 2Q and Q € S (one
can replace “x € 2Q” by “x € C¢orQ” for any constant Ccor > 2 given in advance,
by [DS2, Lemma 3.31 of Part I]).

It is shown in [DS1] (see also [DS2]) that if w is uniformly rectifiable then it admits
a corona decomposition for all parameters k > 2 and n, 6 > 0. Conversely, the existence
of a corona decomposition for a single set of parameters k > 2 and n, 8 > 0 implies that
w is uniformly rectifiable.

2.5. The o and B coefficients

Let /1 be an n-dimensional AD regular Radon measure in R¢ and D as in Subsection 2.3.
Given 1 < p < oo and a u-cube Q € D, one sets (see [DS2])

, 1 dist(y, L))P }1/1’
— inf d ,
By u(Q) ”Z{aQw/zQ( T ) )

where the infimum is taken over all n-planes L in R?. For p = oo one replaces the L”
norm by the supremum norm. The B, coefficients were first introduced by P. Jones in
his celebrated work on rectifiability [Jn], while the 8, ,’sfor 1 < p < oo were introduced
by G. David and S. Semmes in their pioneering work on uniform rectifiability (see [DS1]
for example).
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Other coefficients that have proved useful in the study of uniform rectifiability and
boundedness of Calderén—Zygmund operators are the « coefficients introduced in [To4].
Let F C RY be the closure of an open set. Given two finite Radon measures o, v on R,
one sets distz (o, v) := sup{|[ fdo — [ fdv| : Lip(f) < 1, supp f C F}. Finally,
given a u-cube Q € D, consider the closed ball By := B(zop, 6/d £(Q)), where 49)
denotes the center of Q. Then one defines

au(Q) = mf dlStBQ (u, cHY), (10)

K(Q)”""l

where the infimum is taken over all constants ¢ > 0 and all n-planes L in R<.
The following result characterizes the uniform rectifiability of u in terms of the
a and B coefficients (see [DS1] for (a)< (b) and [To4] for (a) < (c)).

Theorem 2.8. Let p € [1, 2] and let u be an n-dimensional AD regular Radon measure
in RY. The following are equivalent:

(a) w is uniformly n-rectifiable.
(b) ZQED: OCR ,BI,,M(Q)ZE(Q)” < L(R)" for all w-cubes R € D.
(c) ZQGD: OCR au(Q)ZE(Q)" < L(R)" for all ji-cubes R € D.

For the case of u = Hp. for some Lipschitz graph I ={x eR:x = (y,A®)),
y € R"}, one can take D = {Q x R nr: Q € D(R™)}, where D(R”) denotes the
standard dyadic lattice of R". For Q = (Q x RN T e D, we set

aM(Q) = dlStéQXRd n(l’l/v CHL) (11)

1
g(Q)nJrl

where the infimum is taken over all constants ¢ > 0 and all n-planes L in RY. Then it is
easy to show that EZM(Q)~% o, (Q) forall Q € D.
One can also define 8, , (Q) in an analogous manner. By Theorem 2.8,

> Bpu(@? +E(QHEQ)" < CLR)" (12)
Q€eD: QCR

for all R € D, with C independent of R. Moreover, one can also show that this last
inequality also holds after replacing Q and R by k1 Q and k> R for any ky, ko > 1 given
in advance, where kQ = (kQ x R¥")NT fork > 0.

3. If I is an n-dimensional Lipschitz graph, then V, o ’7; M (Rd ) — LY °°(7-l )isa
bounded operator

The following result is contained in [MT, Theorem 1.1] (see also [M, Main Theorem
3.0.1)).
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Theorem 3.1. Let p > 2 and let p be the n-dimensional Hausdorff measure restricted to
an n-dimensional Lipschitz graph. Then the operator V,, o 7:75” is bounded in L*(1). The
bound of the norm only depends on n, d, K, p, pr, and the slope of the graph.

By very similar techniques to the ones used in the proof of the theorem above, one can
prove the following.

Theorem 3.2. Let p > 2 and let pu be the n-dimensional Hausdorff measure restricted to
an n-dimensional Lipschitz graph. Then the operator V,, o 7;,” is bounded in L*>(1). The
bound of the norm only depends on n, d, K, p, pr, and the slope of the graph.

Sketch of proof. The first step consists in obtaining the following basic estimate: Fix a
cube P C R™. Set T := {x € RY:x = (y,A(y), y € R"}, where A : R" - R/ ™" isa
Lipschitz function supported in P, and set P : = (P xR™NT.Setp:=f HT., where
f(x) =1forallx € '\ P and CO_l < f(x) < Cyp for all x € P, for some constant
Co > 0.

For each x € I, define

Wi(x)® =Y 1(Kgym ) (x) = (K@pom 5 ) (0, (13)
mez
Su)=supy > [(Kefr w0, (14)

{Gm}jeZ MEL: €m,€m+1€l;

where [; = [27/71,277) and the supremum is taken over all decreasing sequences
{€m}mez of positive numbers. Then we claim that

W il13 2, + IS8T S D (@(C1O) + Bou(2)%)(Q)", (15)

QeD

where C1 > 0 only depends on Cy, n, d, K, ¢Rr, and Lip(A), and where D denotes the
dyadic lattice associated to H{. defined after Theorem 2.8.

Let us prove the claim. If we define S like S but replacing @, by @er |, in the
proof of Theorem 3.1 in [MT] it is shown that ||S pLH 120 is bounded above by the right
hand side of (15). The proof for || Su||L2( ) is almost the same.

Let us deal now with Wu. Fix D := (D x Ry N T e D with £(D) = 2™ and
x € D.Let Lp be an n-plane that minimizes &, (C1D) in (11), where C; > 0 is some
constant large enough which will be fixed later, and let op := ¢ D’H’zD be a minimizing
measure for &, (C1 D). Let L}, be the n-plane parallel to Lp which contains x, and set
Ug = CDHn .

Since x € D and £(D) = 27", (pg-m (x —+) — @Po-m (x —-)) K (x —-) is a function sup-
ported in C D x Rd~—n (for some constant C large enough) and with Lipschitz constant
smaller than C2""+1) Moreover, by the antisymmetry of the function (¢-m(x — -) —
@r-m(x —-))K (x —-), and since ag is a multiple of the n-dimensional Hausdorff measure
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on an n-plane which contains x, we have (K@y-n * o) (x) — (K g-m * ol’g)(x) = 0.
Therefore,

(Kpy-m # 1) (x) = (K@p-m * ) (x) = (K (@2-m — @a-m) * ) (x)
= (K(pa-m — @a-n) * (L — 0p))(x) + (K (p2-m — Ga-m) * (6p —op))(x).  (16)

Using the definition of &,,, we get

(K (92-m = a-m) (e — op)(0)] S 2"V diste. 5, pa-n (10, 00) S @u(C1D).
(7
Since L’I‘) is a translation of L p, by standard estimates it is not hard to show that

|(K (¢2-m = @p-m) % (0p — o)) (x)| S 2" dist(x, Lp) = dist(x, Lp)/€(D). ~ (18)

Let disty(E, F) denote the Hausdorff distance of sets E, F C_ R?, and set BD =
6D x R4 If LID and L2 denote a mlnlmlzlng n- plane for ﬂl u(D) and ,32 w(D),
respectively, one can show that d1st7.[(L p N BD, L N BD) @, (D)¢(D) and that
d1st7.l(L1 n BD, Ly N Bp) < Bou(D)e(D). This eas1ly implies that dist(x, Lp) <
dist(x, L2 )+,32 M(D)K(D)—i—au(D)Z(D) for all x € D. Applying this to (18), and using
also (17) and (16), we obtain

Wi, = /Z|<K(¢z w = Goom) # (@) du(x)

mez

=y > /|<K(¢2 = Gyom) % ) (07 dpu(x)

meZ DeD: {(D)y=2""

S > /(dlst(x L )/E(D)-i-ﬁzu(D)—FaM(ClD)) du(x)
meZ DeD: ((D)=2—m "D

< D (@.(C1D)* + By (D)) E(D)",
DeD

which proves (15).

Letnow p be as in Theorem 3.2. Using (15) and Theorem 3.1, one can show that there
exists C > 0 such that, for any cube D C R" and any g € L°°(u) supported in D (where
D:=D x RA—my,

/D ((Vp 0 TH))2 it < Cligl2 oy 1(D).

This yields the endpoint estimates V, o 74" : H' (1) — L' (1) and V, o 7' : L®(n) —
BMO(u), where H ](/L) denotes the atomic Hardy space related to . Then by inter-
polation, one deduces that V, o 7;” is bounded in L? (). Since this part of the proof is
analogous to the one in the proof of Theorem 3.1 (see [MT, Theorem 1.1]), we omitit. O
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3.1. Proof of Theorem 2.5

The proof of Theorem 2.5 uses the Calderén—Zygmund decomposition of Lemma 2.7
and rather standard arguments. Set p = H'lin g» Where B C R4 is some fixed ball. Let
v € M(R?) be a finite Radon measure with compact support and A > 24 1||v| /|| ]|. We
will show that

C
pilx € RY 2 (V0 Tyu(x) > ) < Z v, (19)

where C > Odependsonn,d, K, p and I", but not on B. Let us check that this implies that
V, 0T, is bounded from M (R?) into L' (H1.). First, we show that (19) also holds for v
without compact support. Set vy = xp(o,n)V and let Ny be such that supp u© C B(0, Np).
Then it is not hard to show that, for x € supp pu,

[VIR?\ B(0, N))

[V o Tp)v(x) = (Vp o Tp)vn(x)| = C NN

)

thus (V, o To)vn(x) — (V, o Ty)v(x) for all x € supppu, and since the estimate
(19) holds by assumption for vy, letting N — oo, we deduce that it also holds for v.
Now, by increasing the size of the ball B and by monotone convergence, we deduce that
Hi({x € R : (V, 0 Tp)v(x) > A}) < CA7Y|v], as desired.

To prove (19) forv e M (R%) with compact support, let {Q;}; be the almost disjoint
family of cubes of Lemma 2.7, and set Q := (J; Q; and R; := 6Q;. Then we can write
v = gi + vp, with

g1 = Xra\@V + iju and v, = Z v,f = Z(wjv —bju),
J J J
where the functions b; satisfy (6)—(8) and w; = X0; O XQk)_l-
By the subadditivity of V,, o 7, we have
pn(x e R (V, 0 Tp)v(x) > A))
< ulx € R 1 (V, 0 THg(x) > /2D + u({x € R : (V0 Tphup(x) > 1/2)).  (20)
Since V, 07;%? is bounded in LZ(’H,'IL) by Theorem 3.2, it is easy to show that V, 07,

is bounded in L? (1), with a bound independent of B. Notice that |g| < CA by (5) and (8).
Then using (7),

1 1
il € RS 0, 0 g0 = 4720 £ 55 [ 100 TP 5 55 [ leP d

1 1 J '
52/'g'd“5x('“'(R \Q”;/R, |b,|du>

1 vl
§X(|v|(Rd\9>+lZ|v|<Q,~))gT. @1
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Let @ := (J;20;. By (3). we have u(Q) < ¥, 1(20)) < A7' Y, vl(@) <
A~ 1|v|l. We are going to show now that

~ C
n({x € RINQ : (V, 0 Tpvp(x) > A4/2}) < 5 Ivil; (22)

then (19) is a direct consequence of (20)—(22) and the estimate /L(ﬁ) < A7 H[v|. Since
V, o Ty is sublinear,

—~ 1 :
w(x e R\ Q: (V, 0 T)hup(x) > 1/2) < . Z/Rd\ﬁ(vp o Ty)vi du
j

1 j 1 j
= P ; /Rd\ZRj (Vo o Tp)vp din + X ;/2‘ VpoTpvydu.  (23)

Ri\20;

We are going to estimate the two terms on the right of (23) separately. Let us start with
the first one. Given j and x € suppu \ 2R}, let {€,,}mez be a decreasing sequence of
positive numbers (which depend on j and x, i.e. €, = €,,(j, x)) such that

. ; 1/
Vo Tovj = 2( 3 Ikeer,, = vhe) . 24)

mez
If we set I ;= [27%~ 1 Z_k), we can decompose Z = S U L, where

L:={meZ: ey, €y, €y41 € I; for somei > k},

S = U Sk, Sx:={mel:ey, ent1 €It}
keZ

Let z; denote the center of Q; (and of R;). Then, since vl{ (R;) = 0 and supp v,f C R;,

[(Kgm ug)(x)| = V g, (x = y)K(x — y)dvl{(y)

€m+1

< / o (x = DK —y) — ¢ (x —zpK(x — ). (25)

€m+1

If m € L, it is easy to see that |V(¢§,':+1K)(t)| < |IV(@e, 1 K) @O + |V (@, K)(D)] <
1|77 for all t € R \ {0}. Moreover, since x € RY \ 2R; and supp v}{ C Rj, there are
finitely many m € £ such that (K " o * v,f )(x) # 0, and their number only depends
on n and d. On the other hand, if m € S, it is not hard to show that |V(<p§;1”+l K)®)| <
2k1e, — €ms1] 1t~ 1. Actually, this follows from the fact that ((pé’,':Jrl K)(t) # 0 only if

7| ~ 27K and the estimates

gl (t)l—‘¢R< d ) m('”) < Nl ey | — 1
= — ) = — )| = lleg - —
Cmtl €m+1 €m €m+1 €m
€m — €m+1 k
= [log looltl——— < 2"|€m — €m1 (26)
EmEm+1
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(a)a(an)a
i €m /) €m ik €m+1/ €m+1
wﬁg(ﬂ) : l ¢ﬁ<ﬂ>—¢ﬁ@< o )

€m €m €m+1

[t] "\ €m — €m+1 _
s<||wﬁ§||oo+||¢ﬁ§||ooe M <K —emrltlT, 2T)

and

B, (@ ()] <
1

€m+1

<

€m €m+1
m+1 €Em€m41

where 1 < i < d and ¢ denotes the ith coordinate of r € R? (recall that €,, & €41 &
2% form € S; and we assumed [t] =~ 275, Similarly to the case m € L, there are finitely
many k € Z such that supp (pgi,f,l (x — ) N R; # ¥, and their number only depends on n

€m

and d (notice that supp ¢, , (x —-) C supp gog:,f_l (x — ) forall m € &).
From these estimates and remarks, and (24), (25), we obtain

Vo o Tovp @) S Y D 1Kl v+ Y (K v ()]

k€Z meSi meLl
k —n—1 j
S > > 2w — emillx — 77" LR Iv] I
k€Z: supp ‘/’2:11271 (x=)NR; #P meSi
—n—1 j —n—1 ]
+ > e — 27" URD I T S 1x = 217 TR IV

€m

meL: supp Pepy ] X—INR; 0

forall j and x € supp u \ 2R;. Therefore, since 1 has n-dimensional growth and || vl{ I <
[v[(Q;), and since the Q;’s are almost disjoint,

Z/ Vp o Tv]du < ZaRj)nv,in/ -z " dp
j Rd\2Rj F Rd\ZRj
<Y vyl S vl (28)
J

Let us now estimate the second term on the right hand side of (23). As above, given j
and x € 2R; \ 20, let {€,,}mez be a decreasing sequence of positive numbers such that

1/
Vp o T wm) @) = 2( 3 1Kz, + wpml)

€m+1
meZ

where wj = xo; O XQk)_l- Since p > 2, V, o 7T, is sublinear, and since vg =
wjv —bju, forx € 2R; \ 2Q; we have

V0 TV () < (Vy 0 Tp) (wij») () + (Vp 0 T (bj ) (x)
<2 IR e i) @)+ (V) 0 Tfbj(x)

€m+1
mez

S @) Ix = 217" + (Vp 0 TgObj (x).
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Since V, o Tw# is bounded in L?(x), using the estimate above and Cauchy—Schwarz we
get

Z/ Vy 0 Ty)vi dp

;e Vi)
< Iy + / Vy 0 TIb; d
N;/ ni(x) XI: 2Rj\2Q-( o (p)j M

2R)\20; X —zjI" y

2R;
<y |v|<Q,,~>’Z((Q')’,3 + 310 0 Tbj 2w QRN
J J J

S Y WI@) + Y lIbjllegr(R) S D vIQ) S vl
J J J

Together with (28) and (23), this proves (22), and Theorem 2.5 follows.

4. If 1 is a uniformly n-rectifiable measure, then V), o 7;“ LP(u) — LP(u)isa
bounded operator for 1 < p < co

The purpose of this section is to prove the following theorem and the subsequent corollary.

Theorem 4.1. Let yu be an n-dimensional AD regular Radon measure in R? and let
o > 2. Assume that there exist constants Cy and C1 such that, for each ball B centered
in supp W, there is a set F = Fp such that:

(@) n(FNB)=Cou(B),
(b) V, 0T, is bounded from M (R?) to LI’OO(H'}F) with constant bounded by C1.

Then V, o Ty, is bounded from M@®RY) to L%°(w), and Vo 7?;‘ is a bounded operator
in LP(u) forall 1 < p < oo.

Corollary 4.2. If 1 is an n-dimensional AD regular uniformly n-rectifiable measure, then
V, 07;“ is a bounded operator in LP (u) forall 1 < p < oo and p > 2. Moreover, V,07,
is bounded from M(R%) to L' (), so V, o 7;“ is also of weak type (1, 1).

Proof. Recall from [DS2, Definition 1.26] that a Radon measure v in R? has BPLG (big
pieces of Lipschitz graphs) if v is n-dimensional AD regular and there exist constants
Cy > 0 and 6 > 0O such that, for any x € suppv and 0 < r < diam(supp v), there is
(arotation and translation of) an n-dimensional Lipschitz graph I with constant less than
C1 such that v(I' N B(x, r)) > 6r". Thus, if v has BPLG, the assumption (a) of Theorem
4.1 is satisfied for v by taking F = I, while Theorem 2.5 implies that the assumption
(b) holds with a uniform constant. Therefore, from Theorem 4.1 we deduce that, if v has
BPLG and p > 2, then V, o 7, is bounded from M@RY) to LM (v).

Similarly, a measure v has (BP)>LG (big pieces of big pieces of Lipschitz graphs) if
there exist constants Cg, 6, and 0 < a < 1 such that, if B is any ball centered in supp v,
then there is an n-dimensional AD regular set F C R¢ (with constant bounded by C ¢)
such that v(F N B) > av(B) and H'; has BPLG with uniform constants. So V, o Ty, is
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a bounded operator from M (R9) to L1’°°(’H’}7), by the comments above. Hence, we can
apply once again Theorem 4.1 to v (now (b) is satisfied for the big pieces F of v), and
we deduce that, for any measure v which has (BP)%LG, V, o Ty, is bounded from M (R%)
to L% (v). Similar arguments show that V, 0 7;” is a bounded operator in L” (v) for all
l <p<oo.

Finally, from [DS2, p. 22] and the remark in [DS2, p. 16], we know that if u is
n-dimensional AD regular, then being uniformly n-rectifiable is equivalent to having
(BP)LG. Therefore, the corollary is proved by applying the comments above to v = .

O

Since the arguments for proving Theorem 4.1 are more or less standard in Calderén—
Zygmund theory, for brevity we will only sketch its proof (see [To5, Chapter 2] or [DS2,
Proposition 1.28 of Part I] for a similar argument).

Sketch of proof of Theorem 4.1. The proof follows by the so-called good X inequality

method. Fix p > 2 and let M* denote the Hardy-Littlewood maximal operator

WI(B(x, 1)
12 ——
MEve) = sup - B, )

The good X inequality: there exists some absolute constant > 0 such that for all € > 0
there exists § := §(¢) > 0 such that

forv e M(Rd) and x € supp .

n({x e R (Vy 0 To)v(x) > (14 €)r, MFu(x) < 8A})
< (L—mu(x e R?: (V, 0 T)Hv(x) > A} (29)

forall A > 0 and v € M(R?). It is easy to check that this implies that V, o Ty is bounded
from M (R%) to L1-*°(w), and that V, 0 7;)” is bounded in LP(u) forall 1 < p < oo, by
standard arguments (recall that M* is bounded in these spaces).

The proof of (29) is quite standard. The interested reader may look at [M, Theorem
5.2.1] for the detailed proof, or at [To5, Chapter 2] for similar arguments. The only point
we should mention is that, in order to pursue the good X inequality method, one needs the
following estimate: Let v € M (Rd), consider a ball B C R? and take x, z € B. Then

|(Vp © Tp) (Xparap V) (X) — (Vp © Tp) (Xpay2pV) (D) S MHv(x). (30)

We finish the sketch of proof of Theorem 4.1 by showing (30). Since x, z € B and V,07,,
is sublinear and positive, by the mean value theorem we have

|Vo 0 To) (xrar28V) (x) — (Vp 0 Tp) (Xpar2pV) (2]

€ € 1/p
< sup( 2 1K gEr,, * Gtganas) @) = (Kgg, o+ Gt ap) @)

m.meZ

P\ L/p
SSHP(Z(/B( )IV(¢§;7+]K)(ux,z(y)—y)llx—zldlvl(y)>) . (3D

€m \meZ
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where By, (x, z) := (RY \ 2B)N(supp gc”, , (x —)Usupp ¢¢”",, (z—)) and u, ; (y) is some
point on the segment joining x and z. For each x and z, let €, = €,,(x, z) be a sequence
that realizes the supremum on the right hand side of (31). Given ¢, > 0, let J (€m) denote
the integer such that €, € [27/ =1 2=/ For j € Z set I; := [27771,27/). As
usual, we decompose Z = S U L, where

S = US', Sj = {mEZZGm,ém_H EIj},

JjE€Z
L:={meZ:eyel, eny € Ijforsomei < j}.

Notice that if 27712 < r(B), where r(B) denotes the radius of B, then B,,(x,z) = ¢
forallm € ;. There_fore, we can assume that j < log,(4/r(B)). If m € §;, then
By(x,z) C B(x,27773), and for t € supp(p”, K) we have |V(pe", K)(1)| <

200D 1e, — €,41| (see (26) and (27)). If m € L, we easily see that |V (¢  K) ()|

€m+1
< 1|71, Therefore, using (31) and the facts that p > 2, the sets B, (x, z) have bounded
overlap form € £, and |x — z| < r(B), we get

|Vo 0 To) (xrar28V)(x) — (Vp 0 Tp) (Xpar2pV) (2]

S Y Y e — el dvl()
B(

j<log,(3/r(B)) meS; X271

+lx —z Z/ x =y vl ()
el Y Bu(x.2)

s Y rwren | i +rpy [ D

j<logy(4/r(B)) B(x,277+3) ri\2B |X — y[*t!
r(B)Zj

J=logy(4/r(B)) w(B(x,277%3) Jp(ro-i+3)

"'r(B)Zf d|v|(y)

= Jor2,(Byz|x—y|=2k-1r(B) X — [T

2—k
< MPy(x) +
~ 0 ;M(B(x,zk”r(Bi))) B(x,2%+2r(B))

< dv|(y)

dvl(y) S M"v(x). o

Remark 4.3. Notice that, to prove (30), it is a key fact that we are considering smooth
truncations (given by ¢R) in the definition of 7,. These computations are no longer valid
if one replaces 7, by T

S. If p is a uniformly n-rectifiable measure, then V, o 7" : L*(n) — L*(n)isa
bounded operator
This section is devoted to the proof of the following result.

Theorem 5.1. Let p > 2 and let u be an n-dimensional AD regular Radon measure
on R, If 11 is uniformly n-rectifiable, then V, o TH is a bounded operator in L2(w).
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5.1. Short and long variation

Given j € Z, set I; := [27/=1,27/). Then, using the triangle inequality, we can split
the variation operator into the so-called short variation and long variation operators,

Voo TMf () < (V5 o TH) () + (V5 o TH) f (x), where

VS o TH) f(x) = sup(z D KX, (f“))(x”p)l/p’

€m} JEZ €m€msr €l

1/
VT ) =swp( Y (Kx,, * o) 6

{em) meZ:en€l;, €yqi€ly
for some j <k

and, in both cases, the pointwise supremum is taken over all sequences {€,, },,cz of posi-
tive numbers decreasing to zero. To prove Theorem 5.1 we will show that both the short
and long variation operators are bounded in L3(w).

5.2. L?(w) boundedness of V/f: oTH

The L?(u)-norm of the long variation operator Vé: o T can be handled by comparing it
with its smoothed version V, o 7;“ , using Corollary 4.2, and estimating the error terms by
the short variation operator.

Lemma 5.2. We have [[(V5 o T™) fll 12 S 10V5 0 T) fll 20 + 112200

Proof. We decompose

(V5o T") f(x))” = sup > (K xém, s (fu) ()1

€m+1
lem} mez: em€lj, €mi1€l
for some j<k

s{sug Do (KGE, =i ) s (F)@) + (Ko | # (fu)(@)]°)
€m .
émEI;’:lEf;r]GIk

for some j<k

< sup > (K (xer, — e, ) * (fFr) @)1 + (Vo o TgH f(x))”. (33)

€m+1
{fm}meZ:emelj‘emHelk
for some j <k
For simplicity, we denote by ((Vpc o 7;“ ) f (x))” the first term on the right hand side
of (33). Notice that, given €, § > 0, we have X? — (p;S = (Xe — @) — (xs — @s). Recall
that, in the definition of ¢g in Definition 2.1, we have taken x[4,00) < ¥R =< X[1/4,00)-
Hence, given r > 0,
4
XR(E) — 9r() = X[1,00) () — /1/4 PR($) X1s,00) (1) ds

4
=/ PR (X[1,00) (1) — X[s5,00) (1)) d's
1/4

(that is, xg — ¢r is a convex combination of x[1,00) — X[s,00) fOr 1/4 < s < 4), and thus,
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by Fubini’s theorem,
(K (Xe — @) % (f1))(x)
= / (xr(lx — yI*/€®) — gr(lx — yI*/e))K (x — ) f(») dp(y)

4

- /1/4 (pﬁw)/ (X100 (1x = ¥I/€%) = is.00) (I = Y12 /€3)) K (x = 3) f () dpu(y) ds
! S

= f1/4 (PI/R(S)ere "= K@ —y) f(y)du(y)ds

N 5
= /] B PR (K xY * (f))(x)) ds.

Therefore, by the triangle inequality and Minkowski’s integral inequality, we get

IOVE o T ) fll 2 <2

sup (Z (K (Xey = @en) * (fu))(x>|p)l/p\

{emelm:meZ} ey, L%(w)
4 1/p
<2 [ g s (T eumr)”’
1/4 {emEln:meZ) \pe7, L)
One can easily verify that Sup{emelm:mEZ}(ZmeZ|(KX::nnﬁ * (f,u))(x)lp)]/p <
(V;? oTH) f(x) forall s € [1/4, 4] with uniform bounds. Hence
L 4 S
IOV5 o Tho o) fllrzg < /1/4 PrONVG o T flip2( ds
SNOVS 0T Fll2)- (34

Finally, using (33), (34), and Corollary 4.2, we obtain
IOVE o T Fll 2 S IOE o TH- D) Fllizg + 100 0 T Fll 20,
SIS 0T Fllrzgy + 1200 - O

Thus, to prove Theorem 5.1, it only remains to show the Lz(y,) boundedness of V;)g oTH.

5.3. L?(w) boundedness of Vf oTH

We will see that Vf o T* is bounded in L? (1), basically due to the big amount of can-
cellation given by the kernel defining 7 and the good geometric properties of . Since
V;;S oTH < Vf o TH for p > 2, we will be done. One could try the same technique for

Vf’ o TH; however, V2L o TH is not bounded in L2(1) in general, even for the case of
the Hilbert transform or in the setting of martingales (see [JKRW] for a precise example),
and this is why we should mantain p > 2 when we deal with V, o T#. Let us mention
that to pass from p > 2 to p = 2 in the study of the short variation operator is a rather
standard argument (see [CJRW1] for example).
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Given f € Lz(,u) and x € supp i, let {€;,}mez be a decreasing sequence of positive
numbers (depending on x) such that

05 o THF? <2 > (& xén * (Fun @)%

JEL €m,€m+1€l}

Given D € Dj (see Section 2.3 for the definition of D;) and x € D, we set Sp(x) :=
{meZ: ey, enq1 € 1;). Since p > 2, we have

1VS o T f11%5,,, < (V5 o T“)fuiz

() — (1)

/ (K x| # (f ) () dpu(x)

JEZ €p, em+]el

/ [(KXE | (Fr) (0 dp(x).
DeD meSD(x)
Let n and 6 be two positive numbers that will be fixed below (see the proofs of Claims
5.5 and 5.6). Consider a corona decomposition of p with parameters n and 0 as in Sub-
section 2.4. Then we can decompose D = B U | Jgcr, S s0 that

IOVS 0T fllfay S D / [(K x&m o (fu) (0P dp(x)
DeB meSD(x)
LYY / (Ko, (FyoPdu).  (5)
SeTrs DeS meSD(x)

Since the p-cubes in B satisfy the Carleson packing condition, we can use Car-
leson’s embedding theorem to estimate the sum on the right hand side of (35) over
the p-cubes in B. Carleson’s embedding theorem is a well known result in the area of
harmonic analysis (see [To5, Chapter 5] for example), but the most usual “continuous”
version of this result can be found in [Du, Theorem 9.5] for example. Thus, if we set
mp f == (D)~ [, fdu for D € D, we have

/ [(K xm o (f ) (o) dp(x)
DeBB

mESD(x)

2
f (/ [K(x —»IfDI du(y)) du(x)
DEB mESD(x) Emt1=|x—Yy|<em

2
f(z(D)n/ 71 “) dp Y mEpl fPuD) SN f17a,,  (36)
DeB

DeB

Now we are going to estimate the second term on the right hand side of (35), that is,
the sum over the p-cubes in S, for all S € Trs. To this end, we need to introduce some
notation.

Definition 5.3. Given R € D; for some j € Z, let P(R) denote the p-cube in D;_
which contains R (the parent of R), and set
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Ch(R) := {Q € Dj11: Q C R,
V(R) :={Q €D;: 0N B(y, £(R)) # ¥ for some y € R}

(Ch(R) are the children of R, and V (R) stands for the vicinity of R). If R € S for some
S € Trs, we denote by Tr(R) the set of u-cubes Q € § such that Q C R (the tree of R).
Otherwise, i.e., if R € B, we set Tr(R) := . Finally, if Tr(R) # @, let Stp(R) denote
the set of pu-cubes Q € B U (G \ Tr(R)) such that O C R and P(Q) € Tr(R) (the
stopping p-cubes relative to R), so actually Q C R. On the other hand, if R € B, we set
Stp(R) := {R}.

Notice that P(R) is a p-cube but Ch(R) and V (R) are collections of p-cubes. It is
not hard to show that the number of p-cubes in Ch(R) and V (R) is bounded by some
constant depending only on n and the AD regularity constant of .

Fix § € Trs, D € S, and x € D. To deal with the second term on the right hand side
of (35), we have to estimate the sum ZmESD(x) |(K)(§,':+1 s (f ) (X)) By the definition
of Sp(x), we have

DK xE  x (frOP = D IKxE = g f )P (37

meSp(x) meSp(x)

where D := U Rev(p) R- Since this union of z1-cubes is disjoint, we can decompose the
function x 7 f using a Haar basis adapted to D in the following manner:

= (hpae+ Y aef+ Y Rof). (38)

ReV (D) Q€Tr(R) QeStp(R)
where we have set

Aof = Y xumpf—myf),

UeCh(Q)

Aof = > xu(f—mpyf)=xo(f—mpf).
UeCh(Q)
Using (38), we split the left hand side of (37) as follows:

DTOIKXE  x (fuWPF S Y \ > (Kx;:,’ﬂ*((m’,éf)xm»(x)f

meSp(x) meSp(x) ReV(D)

Y Y Y wae, s ofm]|

meSp(x) ReV(D) QeTr(R)

Ly ‘ DS (KXZ:H*(ZQJCM))(X)‘Z- (39)

meSp(x) ReV (D) QeStp(R)

In the following subsections, we will estimate each part separately. We could think that
the leading term on the right hand side of (39) is the second one, which corresponds
to the u-cubes Q € Tr(R) with R € V(D). To control it, we will use the fact that in
these p-cubes the measure w is very close to a sufficiently flat Lipschitz graph, so good
estimates can be achieved using approximation arguments. To control the third term on
the right hand side of (39), we will basically use the fact that the number of cubes Qg
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with § € Trs or which belong to B is not too large (see the packing conditions (b) and
(e) in Subsection 2.4), so we will be able to apply Carleson’s embedding theorem. The
first term in (39) requires a much more detailed study, and we will need to use intensively
the multiscale analysis given by the «,, coefficients apart from Carleson’s embedding
theorem and the above-mentioned ideas.

5.3.1. Estimate of ) 5,0 | 2_rev (D) ZQeTr(R)(KX:»:Ll * (Aqu))(x)|2from (39)

Lemma 5.4. Under the notation above, we have

S N Y Y kg, s @ofi ] dut) 15,

SeTrs DeS meSp(x) ReV(D) QeTr(R)

Proof. Let Co > 0 be a small constant to be fixed below. Given m € Sp(x) let A, (x) :=
AX, €my1,€m) ={y € R9 : €m+1 < |y — x| <€y}, and given R € V(D) let

TR ={Q e Tr(R) : QN Ap(x) # 0. £(Q) > Colem — €mt1)}.
IR ={Q € Te(R) : QN Ay (x) # B, £(Q) < Colem — €m+1))-
Roughly speaking, J,,ll’R contains the p-cubes which are big with respect to the thickness
of A, (x), and J,%,’R contains the small ones. For the study of J,,11’R, we will basically use
the fact that it does not contain too many p-cubes. For J,,%’R, using f Aofdu =0, we
will be reduced to those w-cubes that “intersect” the boundary of A,, (x), which are not
too many once again.

For Q € JuX, we write |(Kx&n,, * (Ao f10)0)] < D) X4 Ao f I L10)-
The following claim will be proved in Subsection 5.3.2 below.
Claim 5.5. We have 3, _ 1.k £(Q)" ™12 S e(D)"~/2.

Using the fact that V(D) has finitely many elements (depending only on n and the AD
regularity constant of u), the Cauchy—Schwarz inequality, Claim 5.5, and the previous
estimate, we obtain

Y Y Y ks Gosw|

meSp(x) ReV(D) ge Ik

DY (Z K(D)_"IIXA,,,oc)AQfHU(u))2

ReV(D) meSp(x) geybR

2
”XAm()C)AQf”Ll(M)>

5 Z Z ( Z Z(Q)nl/2>< Z Z(D)Z”E(Q)”_l/z
0eJl R

ReV(D) meSp(x) gejgbR

m

2
”XAm(X)AQf“Ll(M)

S Z Z Z K(D)"+1/2Z(Q)”*1/2

ReV (D) meSp(x) Q€Tr(R)

; 12 Ag 112
S22 (eg) (i “0)
ReV (D) QeTr(R)
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We deal now with the p-cubes Q € J,,Z;R. Let zp denote the center of Q. Since
[ Ag fdp =0, we can decompose

(K&, * (Ao fr)()

= /(XAm(x)()’)K(x =) = Xan) @)K (x —20))Ag f(y) du(y)
= /XA,,,m(y)(K(x —y)—Kx —2z9)Agf(y)du(y)

+ f O3 — a0 @OV K = 20)A 0 f () di(y)

=: T, (A0 /)(@) + T (Mg (). @1
For the first term on the right hand side of the last equality, we have the standard
estimate (by assuming Cy small enough, so any O € J,%,’R is far from x)

ly —zol

y|,,+1|AQf(y)|dM(y) S

ITM (Ao £)(0)] 5/ XA Ao fllLt-

(Q)
An(x) 1X — (D) +1

From this estimate and the Cauchy—Schwarz inequality, we obtain

> ‘ > 2 Tnlf"(AQf)(X)‘2

meSp(x) ReV(D) g j2k

(o) 2
S X (ZRﬁ”XAm(x)AQf”LI(H)>

ReV(D) meSp(x) “pegr

£(0) 2
W Z ”XAm(X)AQf”Ll(M))

meSp(x)

Yy s x %)
ReV(D) QETr(R)E(D)n+1 2(Q)r—lg(Dyn+1 )’

QETH(R)

A

ReV(D) <QETr(R)

AN

Since £(R) = £(D) for all R € V(D), we have ZQGTI(R)(E(Q)/E(D))”Jrl <

ZQGD: QcR(E(Q)/E(R))"‘|r1 < 1. Thus, using the fact that t < /7 for all t < 1, we
conclude

2
Y X mraenw)
meSp(x) ReV(D) QGJ;;ZJR

S

2
g(@)l/z A0l )

ReV(D) QeTr(R)<5(D) (o) ey
We deal now with the second term on the right hand side of (41). Given Q € J,f,'R,

since supp(Ap f) C Q,if @ C Au(x) or Q C (Ap(x))° then we obviously have

XAn)(Y) — X4, ) (2) = 0forall y € supp(Ag f). Therefore, to estimate the sum of
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T,ﬁ’“(AQf)(x) overall Q € J,,%’R, we can replace J,,%’R by
IoB={Q e Tr(R): QN Ap(x) £ 0, QN (An(x))° # B, £(Q) < Colem — €m+1)}-

For m € Sp(x) and Q € J,,31’R, we will use the estimate |T,%’“(AQf)(x)| <
ED)Y 1A fllp1 (-

Claim 5.6. We have 3, _ 5.k €(Q)" ™12 S €(DY" (em — em+)'/%.

Hence, using the fact that V (D) has finitely many terms, the Cauchy—Schwarz inequality,
assuming Claim 5.6 (see Subsection 5.3.2), and by the previous estimate, we deduce

) ) 1A fllLig \?
S Y Y mraenw[ s XY (Z aT)

meSp(x) ReV(D) QGJ;,Z{R ReV (D) meSp(x) QEJ;{R

(2 N
= Z Z <Z g(D)n1/2)< ZRE(D)nJrl/Z”AQf”il(M))
Qely

ReV (D) meSp(x) QGJ,,3{R
. 172 1/2—n
€m — €mt1 Q) 2
< = T =7
~ 2 < «(D) > 2 iy hes T
ReV(D) meSp(x) 0k
“©e)' 2 em — emr1)'?
= 2 qoyrldes i, 2 (D) '

ReV (D) Q€eTr(R) meSp (x): Ap (x)NQ#D,

LQ)=Colem—€m+1)

The sum over m on the right hand side can be easily bounded by some constant depending
on Cop, so we finally obtain

B 2 (@) 2180/ 11
) ‘ D Tm’u(AQf)(x)‘ DD (g(]))) z(Q)"z(D;”'

meSp(x) ReV(D) ge 2k ReV (D) QeTi(R)
(43)
Finally, combining (40)—(43), we conclude
. 2
SO Y Y kg, s ofmw)
meSp(x) ReV(D) QeTi(R) 5
- ReV(D) Q€Tr(R) t(D) {Ho)y"eD)"

Since [[Ag fllp1(y < ||AQf||Lz(M)£(Q)"/2 by Holder’s inequality, since V(D) has
finitely many terms, and since £(R) = £(D) for all R € V (D), we get
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2 Z/ 2 ’ > X (KX52’+.*(AQfM))(X)‘zdu(x)

Se€Trs DeS YD meSy(x) ReV(D) QeTr(R)

< ©O\'"? 2
S22 X (m) 180172,

S€Trs DeS ReV(D) QeTr(R)

(Q)\'"? >
= Z Z Z Z (m) ||AQf||Lz(H)

SeTrs QeS ReD:R>Q DeV(R)

2 2 2
S D Y IAgSlGag, < XZ;HAanLz(M) < 1f 1132
Qe

SeTrs QeS

To complete the proof of Lemma 5.4, it only remains to show Claims 5.5 and 5.6. O

5.3.2. Proof of Claims 5.5 and 5.6. First of all, we need an auxiliary result whose easy
proof is left to the reader.

Lemma5.7. Let T := {x € R? : x = (y, A(y)), y € R"} be the graph of a Lipschitz
function A : R" — RI™" such that Lip(A) is small enough. Then HT- (A%(z,a,b)) <
(b—a)b" ! forall0 <a <bandz eT.

Remark 5.8. Actually, to obtain the conclusion of the lemma, one only needs Lip(A) < 1
(see [M, Lemma 4.1.9]). Let us mention that this assumption is sharp in the sense that if
Lip(A) > 1 then the lemma fails. However, we do not need this stronger version for our
purposes.

Claims 5.5 and 5.6 follow from the next lemma, which will be proved using
Lemma 5.7.

Lemma 5.9. Let Cy > 0 be some constant depending only on n, d, and the AD regularity
constant of |, and consider x € D € Dj for some j € Z. Let € € (2771, 277). Given
k> jand R € V (D), set

Ar:={Q €T (R)NDy: O C A(x, € — Co2 7K, e + Co27M)}.
Then 1(Jgea, @) S 27F€(D) ! m 27k=i =D,

Proof. First of all, we can assume k >> j (otherwise, the claim follows easily using the
AD regularity of u), thus we may assume that dist(x, Q) > 3e/4. For simplicity, set
S = Tr(R). By the property (f) of the corona decomposition of u, there exists (a rotation
and translation of) an n-dimensional Lipschitz graph I'g with Lip(I's) < 5 such that
dist(y, I's) < 6diam(Q) whenever y € C¢orQ and Q € S, for some given constant
Ceor = 2. Since x € D and R € V(D), we have x € CgorQ assuming Cco is large
enough, and so dist(x, I's) < 6 diam(Q). Hence, if  and 6 are small enough, one can
easily modify I'g inside B(x, €/4) to obtain a Lipschitz graph I'§ such that x € I'g, and
moreover

Lip(T'{) < 1’ for some 1’ small enough, and T{\B(x,€/4) = Ts\B(x,€/4). (45)
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Using the fact that dist(x, Q) > 3¢/4 for all Q € Ay, that dist(zg, I's) < 6 diam(Q)
for the center zgp of Q, and the last part of (45), we deduce that dist(zgp, I”S“) <
6 diam(Q) for all Q € Aj. So we have B(zgp,6diam(Q)) N I'y # #, which
in turn yields H"(I'y N B(zg, 20 diam(Q))) 2 (0 diam(Q))". Therefore, since

{B(zg, 20 diam(Q))} pen, is a family with finite overlap bounded by some constant de-
pending only on n, 6, and the AD regularity constant of i, we have

n(U 0)~ Y 60" s7" Y H'([§ N Blzg, 20 diam(0)))
Qe Qe Q€A
< ’;§< |J Bo.260 diam(Q)))
Qe
SOTHE (Al € = Co27F e + C27H) o727k,

where we have used Lemma 5.7 and that € &~ 27/ in the last inequality. O

Proof of Claim 5.5. Recall that J% := {Q € Tr(R) : QN An(x) # @, £(Q) >
Co(em—€m+1)}, where R€ V(D) and D € D;. We have to check that 3, 1.« Q)12
< £(D)"1/2, We will split the sum into different scales and we will apply Lemma 5.9 at
each scale.

Given i € Z such that 277 > Cy(e, — €m+1), the number of p-cubes Q in
D; such that 0 C R and Q N A, (x) # @ is bounded by CL(R)"~12/0~D =~
2= i(r=D+i=1 “since for all those -cubes, @ C A(x, €py1 — C275, €, + C279) C
Ax, €y — C271FL ¢, + C27*1) for some constant C > 0 large enough, and then by
Lemma 5.9, 'U“(Uer,l,'RﬁDi Q) < 271¢(D)"!. Therefore,

Z K(Q)n—l/z — Z 2i/2 Z Z(Q)n 5 Z 2i/227ie(D)n7]
QEJ,}[R iEZIiZj ernlz'RmDi iEZZiZj
~ 272Dy = (D), O
Proof of Claim 5.6. Recall that J,,31’R ={Q€eTr(R): ONA,(x)#D, QN (A (x))#0,
£(Q) < Co(e — €my1)}, where R € V(D) and D € D;. We have to check that
0w LDy em — emsn)'2.
Qe],f,‘R

As before, we will split the sum into the different scales and we will apply Lemma 5.9 at
each scale. Given i € Z such that 27/ < Cy(e,, — €m+1), since for any Q € J,?,’R N D;
we have O C A(x, €my1 — C27 €y + C27) U A(x, €y — C270 €,y + C271) for
some constant C > 0 large enough, by Lemma 5.9 applied to both annuli we have
1Ugesprap, @ S 2-1¢(D)"~ 1. Therefore,

Y ueyr= > 223w
oeJk i€Z:i>—10gy(Colem—€m+1)) 0el>RnD;

< > 272Dy & (e — eme)PUDTY. D

i€Z:i>—10gy (Col€m—€m+1))
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5.3.3. Estimate of Y csp ) | Sorev(p) Looespry K Xem, * (Ao f 1) (x)|? from (39)

Lemma 5.10. Under the notation above, we have

(Kx&r # (Mg fi))(x) “ap) < 112,
+ (DN

S€Trs Des mESD(x) ReV (D) QeStp(R)

Proof. Recall the definitions of V (D), Tr(R) and Stp(R) in Definition 5.3. Given R in
V (D), consider a u-cube Q € Stp(R). If Tr(R) # @,then Q € BU (G \ Tr(R)), O C R
and P(Q) € Tr(R) (in particular, 0 C R). Take S € Trs such that R € S. By property (f)
of the corona decomposition (see Subsection 2.4), we have dist(y, I's) < 6 diam(P(Q))
forall y € Ceor P(Q). Hence, dist(y, I's) < CO diam(Q) for all y € Ccor Q. On the other
hand, if Tr(R) = ¥ we have set Stp(R) = {R}. In this case, we have R € B. Take S such
that D € §. Since R € V(D), we have R C Ccor D if Cor is chosen large enough, and
thus dist(y, I's) < C6diam(R) for all y € C’R, where C is as above and C’ depends
on Ceor.

Taking into account the comments above, one can prove the following claims using
similar arguments to the ones in the proof of Claims 5.5 and 5.6.

Claim5.11. Letx € D € D, R € V(D), and m € Sp(x). Set Jo'® := {Q € Stp(R) :
QN ARX) # B, £(Q) = Colem — €m+))- Then 3, ,1.r €(Q)" 12 S (D)2,

Claim 5.12. Letx € D € D, R € V(D), and m € Sp(x). Set J,?,’R = {0 € Stp(R) :
QNAn(x) # 0, QN(An())° # 0, £(Q) < Colem—em+1)}. Then 3, 5.r £(Q)" ™1/
< e(D)n_l(Em - €m-i—l)1/2~

The only properties of A f that we used to obtain (44) were that A g f is supported in
Q and that [ Ag f dp = 0. The function A f is also supported in Q and has vanishing
integral. Thus, if we replace Tr(R) by Stp(R), Claims 5.5 and 5.6 by Claims 5.11 and
5.12,and Ag f by Ag f, the same arguments that gave us (44) yield

)N <Kx§:;;1*(ZQfm><x)\2

meSp(x) ReV (D) QeStp(R)
SN L
] 2+ Qf”LI( (46)
ReV(D) QeStp(R) E(D) /2t w

Below we will use the fact that ||AQf||L1( )E(Q)_” (fQ lf — m6f| du)ze(Q)—" <

| FD?1(Q). Notice that, by the definition of Stp(R) and since the corona decomposi-
tlon is coherent (property (d)), any Q € Stp(R) is actually a maximal p-cube Qg of some
S € Trs or Q € B (and in this case Tr(R) is empty). Hence, if we integrate (46) in D,
sum over all D € S € Trs, and change the order of summation, we get
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SY [ XY Y @+ Gofune| duc

SeTrs DeS meSD(x) ReV (D) QeStp(R)

o\ 2 IR0 fII2,
YT Y Y (52 e

SeTrs Des reviD) oespr) D) (o

- OO\
SO ) WDy ) o5l D(s)

DeD ReV (D) SeTrs: QsCR

LN L
+> > > (W) (mig| F)*1(Q)

DeD ReV(D) QeB: QCR

1/2
= > 2 (EE(QRS))) (s | £1)2(Qs)

SeTrs ReD: R>Qs DeV(R)

1/2
DD <@> (s F)*1(Q).

QeB ReD:RDQ DeV(R) E(R)

Finally, using the fact that V (R) has finitely many elements, and that the w-cubes Qg
with S € Trs and the u-cubes Q € B satisfy the Carleson packing condition (so we can
apply Carleson’s embedding theorem), we deduce

~ 2
>[ > > kxR fm))| dut)
eTrs DeS

meSD(x) RGV(D) QeStp(R)

Y] 1/ Y] 1/2
S Yl 1 fDPu@s) Y. Z((Q,f))l/z +Z( mp | F?u(@) Y %
SeTrs ReD: RDOQs ReD:ROQ

S Sl D@9+ Y b FDPu(Q) 5 1122 0

S€eTrs QeB

5.3.4. Estimate OmeGSD(x) | Z:RGV(D)(K)(EE;"+l *((m’; F)xrm))(x)|? from (39). Recall
the definitions of V(D) and Ch(R) in Definition 5.3. We will need the following auxiliary

lemma, which we prove for completeness, although we think it is known.

Lemma 5.13. Given D € D and f € L*(), set ap(f) := Y revpy Mg f — mp f1.
Then there exists C > 0 depending only n and the AD regularity constant of i such that

Y ap(’uD) = Cllflga,

DeD
Proof. By subtracting a constant if necessary, we can assume that f has mean zero.
Consider the representation of f with respect to the Haar basis associated to D, that
is, f = Y pepAof. For m € Z, we define the function u,, = ) pcp, Ao f, s0
f = ,nez tm and the equality holds in L*(11). Given j € Z, define the operator

5= (X an(xn)

DEDj
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We will prove that there exists a sequence {o (k) }rez such that

Y ok)<C<oo and [Sium)l2gy S oUm = jDluml 2y @7
keZ

Assume for the moment that (47) holds. Then, since each §; is sublinear, by the
Cauchy—Schwarz inequality and the orthogonality of the u,,’s,

> ap(f)Pudy =Y / Y ap(Nxpdu =Y 1N,

DeD JEZ DeD; JEZ

- ZZ: H Sj (r%”m) iz(u) =< jgz:(n% ||Sj(um)||L2(u))2
= Z(Z o(lm — j|))<;o(|m - j|)—1||sj(um)||iz(m)

JEZ meZ

S olm— jDllumlizs, = Z letm 175, Zoum —JD
JEZ meZ

S Mumlagy = 117200
meZ

and the lemma follows. Let us verify (47) now. By definition,

XR
d
Q;/ Qf(u(R) M(D)) g

Assume first that m > j.If D € D;, R € V(D), and Q € Dy, then either QN R = ¢
or O C R. In both cases, since Ag f has mean zero and is supported in Q, we have
f Ao f xrdp = 0. Thus, the right hand side of (48) vanishes (obviously D € V (D)),
and (47) follows. ~

Assume now that m < j. Set D = [Jgey(p) R. Recall that Agf =
ZUeCh(Q) XU (m‘ljf:m’é f),s50 Ag fis constantin each U € Ch(Q). Hence, if for some

U € Ch(Q) wehave D C UorD Csuppu\U,then (RUD) CUor (RUD)NU =0
for all R € V (D), and so

W XR XD
/XU(’"Uf me)(u(R) u(D))d“
XD
_ du=0
= my f Qf)/(u(R) M(D)) a

for all R € V(D). Therefore, if we set my; , f = my, f — mi, f, using the fact that

V(D) has finitely many elements and that [ [(R)"'xg — n(D)"'xpldp < 2 for all
R € V (D), we deduce from (48) that

2
) n(D). (48)

1Sj @132 = D (
ReV (D)

DEDJ'
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1S @) 13,

2
XR XD
- ( 2 XUmZ@f( (R) (D))‘”‘)’“‘(D)
DeD; \ReV(D) | 0eD,, Y UeCh(0): s s
DNU B, DAUC £
2
SY(Y Y ) uo

DeD; Q€Dy UeCh(Q): DNU#H,
DNUC#9

Z ( Z |mZ’p(U)f|)2M(D)~ (49)

DED; UeDy41: DAUAN,
DNUC#9

It is not hagd to show that, gnce m < jand D € D;, the number of p-cubes U € D41
such that D NU # @ and D N U€ # ¢ is bounded by some constant depending only on
n and the AD regularity constant of u (but not on the precise value of m). Hence,

(X |mZ,P(U)f|)2u<D>,sZ S ml e fIP(D)

DED; UeDy41: DAUAN, DeDj UeD,,11: DNUAD,
DU 0 DU Y
" 2
= D> Imf pa /] “( U D)' (50
UEDm+1 DeDj:DﬁU#V),
DNUC#(

Fix U € D;,+1. Recall that D= URev(D) R, so diam(l~)) ~ diam(D). Thus, there exists
a constant g > 0 such that

U D C {x € U : dist(x, supp u \ U) < 10¢(D)}
DeDj: DU, DAUT#) U{x e supp e\ U : dist(x, U) < 10€(D)}
= {x € U : dist(x, supp . \ U) < 102"/ T1e(U))

Ufx e suppu \ U : dist(x, U) < o2" /e ).

If m <« j, then t := 102”7+t < 1, so we can apply the small boundaries condi-
tion (9) of Subsection 2.3 to obtain 1t(Upep;: frw g, rvezs P) < Ct'/€27™. On
the contrary, if [m — j| < 1, then ©/C ~ 1, 50 1(Upep,: v, Bovess D) <
uw(CU) <27 =~ gl/Co=mn  for some large constant C; > 0. Thus, in any case,
1(Upep;: 5nu s, brvezg D) S 27"/€LU)", and combining this with (50) and (49)
we conclude that, for m < j,

1S W) 132,y S 2 777C Y Il f = mip ) FIPEQU)"
UEDI11+1

~ 2(”1—])/Cf Z XU'mllef _ ml;(U)f|2 dlL — 2_|m_]‘/C||um ||iz(u)’
UEDm+l

which gives (47) with o (k) = 2~ IKI/2C) and finishes the proof of the lemma. ]
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Lemma 5.14. Under the notation above, we have
2
S LOY | X k@m0 dn) £ 11z,
SeTrs DeS YD meSp(x) ReV(D)

Proof. Recall that, given D € D, we have set D := Urev(p) R. For x € D, we have

>y (Kxe,,ﬂ*«m‘,éfmm))(x)\z

meSp(x) ReV(D)

SO K xEr = (mly X)) ()]

meSp(x)
2
S| > &, # il f =l e 5D
meSp(x) ReV (D)

We are going to estimate the two terms on the right hand side of (51) separately. For the
second one, recall also that, given m € Sp(x), we have set A, (x) = A(x, €41, €m)-
We write

[(K x&m,, * (mlg f = mlpy ) xri)) ()]

< |mp f— meI/ |K (=D xr) dp(y) < lmg f—m'p f| w(An (x)NR)E(D) "

Ap (x)

Therefore, interchanging the order of summation,

Y | X kx, # nles —mly gy |

meSp(x) ReV(D)

(XX s w0 RID) )

meSp(x) ReV(D)

R) \? 2
5( 3 Im‘léf—m‘f)flf((mz,) ~ (X - mibf1) = ap()

ReV (D) ReV (D)

where ap(f) are the coefficients introduced in Lemma 5.13. If we integrate on D and
sum over all D € S and S € Trs, we can apply Lemma 5.13, and we finally obtain

2
S [N | X et =y x| duce)
SeTrs DeS

meSD(x) ReV (D)

S Y an(PuD) S flRag, (52

DeD
Let us now estimate the first term on the right hand side of (51). Let Lp be a min-
imizing n-plane for a, (D), which is defined in (10), and let L}, be the n-plane par-
allel to Lp which contains x. Given z € R?, let P, denote the orthogonal projec-
tion onto L7,. Let g1, g2 : R — [0, 1] be such that suppg; C (—2e€(D), 2e¢(D)),
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supp g2 C (—€(D)e, £(D)e)“, and g1 + g» = 1, where ¢ > 0 is some fixed constant small
enough. For z € R?, consider the projection onto L7, given by

|z — x|

)4 (z) := <x+(p0(Z)—X)m

>82(|P3(Z)—x|)+P(§(Z)gl(|P3(Z)—X|)- (53)

Since supp g» does not contain the origin, p* is well defined. Moreover, if z € R? is such
that g2(1py (z) — x[) = 1, then |z — x| = |p*(2) — x|.

Let C. > 0 be a small constant which will be fixed below. Assume that
o, (10D) > C,. Then we can easily estimate

2
DK #(my Hxp) O = mip f17 Y / _K(x—y)du(y)
meSp(x) meSp(x) Ay (x)ND
2
5|m‘5f|2< > / NIK(x—y)Idu(y))
meSp(x) Am(x)ND

2
5|m’5f|2( fISK(D)”dM(y)> < Umt F12 < imls fPa, (10D)2. (54)

From now on, we assume that &, (10D) < Cy. By assuming C, small enough, it is
not difficult to show that then the distance between D and L7, is smaller than £(D)/1000.
Moreover, p* restricted to {y € A, (x) : dist(y, LXD) < {£(D)/1000} is a Lipschitz
function with Lipschitz constant depending only 7, d, and the AD regularity constant
of w. Furthermore, by taking ¢ small enough, we have

Yo PR |z — x|
P (2) = x + (py(2) x)|pg(z)_x| (55

forall z € {y € DN Ay (x) : dist(y, L}) < £(D)/1000} C supp j.
Recall that D € S for some S € Trs. Let Qg be the maximal p-cube of S, and set

Vx 1= P (X405 1) (56)
where pg‘ denotes measure transport by p*. Then, since supp u N A, (x) C D by the

construction of D,

€m+1

(KxEm,, (! PXpr) () = (s f) fA o K= duw)

= Wﬁ%f)/ K(x =) d(u —v)(y) + (m’gf)/ K(x = y)dve(y)
Ay (x) A (x)

=:Ul,x)+ U2,(x). (57)
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Claim 5.15. Under the notation above, we have
dist(x, Lp)\>
S ULaP S Il P Bru(D)? + o (D) + | — 22 ) ).
£(D)
meSp(x)

Proof of Claim 5.15. By (55), y € A, (x) if and only if p*(y) € A, (x) in the integral
defining U'1,,(x). Since |y — p*(y)| < dist(y, L},) < dist(y, Lp) + dist(x, Lp) for all
yesupunAnyx),

ULn(x)| = Im’f)fI/A " |K(x —y) = K(x = p*O)ldu(y)
mlp £
YD)

im'y, f|
~ D Ja

)Iy —prldu(y)

(dist(y, Lp) + dist(x, Lp)) dju(y).

If L}) denotes a minimizing n-plane for B1(D), then disty(Lp N Bp, LID N Bp) <
o, (D)¢(D), sodist(y, Lp) S dist(y, L})) +a, (D)¢(D) for y € CD (see [To4]). There-
fore,

“w 2

Y UL P S Imp ]l ) / (dist(y, Lp) + dist(x, Lp)) dj(y)
(D)l A ()

meSp(x) meSp(x) Y 4Am

2
S Im%f|2<ﬁ(D)_"_1/ (dist(y, Lp) + dist(x, LD))dM(y)>
cD

dist(x, Lp)\?>
Sl (B0 + e 02+ (L)), .

Let us consider U2, (x) now. We can assume that vy is absolutely continuous with respect
to H} x (for example, by convolving it with an approximation of the identity and making

a limiting argument). Let &, be the corresponding density, so
Vy = thrix . (58)
D

We may also assume that /1, € LZ(H’ZY ). So,
D

Uam) =) [ Ky dno) = i) [ K= ) dHy o).
A (%) A (%) b

Roughly speaking, we are going to estimate U2,,(x) in terms of some coefficients
derived from a decomposition of %, in a suitable basis. Later on, we will need to relate
these coefficients to the «,’s but, in order to do this, we need the elements of the basis
which decompose &, to be at least Lipschitz. Actually, since v, is a transport measure
of u (and A is the density function corresponding to v, ), we can easily estimate integrals
of the type | g d(1 — vy) whenever g is Lipschitz with compact support. This is the main
reason to use a wavelet basis instead of a Haar basis in the study of U2, (x).

Let us now introduce a suitable wavelet basis.
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Definition 5.16. Let D" be the standard dyadic lattice of R”. Let {wg}QE'Du’ k=1...27—1
be an orthonormal basis of C! wavelets on R” such that (see [Da, Part I]):

(a) % :R* - RisaC' functionforall Q e D" andk =1,...,2" — 1.

(b) There exist C > 1 and vy : [0,C]" — R with ||¥oll2 = 1, [Yolloo < 1, and
such that, forany Q € D" and k = 1,...,2" — 1, there exists [ € Z" such that
Yo () = Yo(y/€(Q) — He(Q) "/ forall y € R™.

(c) ||1/fg||2 =1, fwgdm =0 andfl/fgl/f%d/:n =0, forall 0,R € D" and k,l =
1,...,2" — 1 such that (Q, k) # (R, [), where L" denotes the Lebesgue measure in
R”.

(d) supplﬁ]é C CyQforall Q €e D*andk = 1,...,2" — 1, where Cy, > 1 is some
fixed constant (which depends on n). In particular, for any j € Z the supports of the
functions in Uer,,: 00)=2- {wg}k: 1.....21—1 have finite overlap.

© ¥l S€(Q)™? and ||wg||<><>5£<Q>*"/2*1 forall Qe D", k=1,...,2" — 1.

() Ith e LX(L"), thenh =Y pepn gy o Aph, where AG R (fth ALY

In order to reduce the notation, we may think that a cube of D" is not only a subset
of R", but a couple (Q, k), where Q isasubsetof R andk = 1, ..., 2" — 1. In particular,
there exist 2" — 1 cubes in D" such that the subsets they represent in R” coincide. We
make this abuse of notation to avoid using the superscript k in the previous definition.
Then we can rewrite the wavelet basis as {1} gepr, with the evident adjustments of the
properties (a), . .., (f) in Definition 5.16.

Let D;"O be a fixed dyadic lattice of the n-plane L7,, and let {yp} 0D be a wavelet
basis as the one introduced in Definition 5.16 but defined on L7,. Denote by E7, the
n-dimensional vector space which defines L7,, and let {Qg}kez be a fixed sequence of
nested dyadic cubes in E7, having the origin as a common vertex and such that Z(Qg) =
27k forallk € Z.Givens € E},,set Dy* :={s+ Q: Q ¢ D0} (notice that, for any
k € Z, the family {Q € D}* : £(Q) = 27} is periodic in the parameter s). For any Q €
DM0andy € L%, if Q' = s + Q € D™*, we define Vo (¥) = Ysr0(y) = Yoy — s).
Then {{g'} g eprs 1s also a wavelet basis defined on L7,. Consider the decomposition of
hy in (58) with respect to this basis,

he= Y Abhe= > Ab k., (59)

QeDy” 0ep!?

where Ag’shx(z) = (f hyMVo(y — s)du(y)¥g(z — s) (recall that, for any Q in
Dy, [Yo dHZ*b = 0). We set Y(Qs) := —log,(¢£(Qs)), and given Q € Dy**, we set
Y(Q) := —log,(¢(Q)) and Y'(Q) := max{Y (Qs), Y(Q)}. Given Q C E7,, denote by
meqg the average of a function g : E7, — R over all s € Q and with respect to H',

Then by the periodicity of {wQ}ern s in the parameter s (recall Definition 5.16(b)) and
(59), we can write

_ _ v _
hy = M0l (hy) = Z 0 Mocgl, (AQ’ShX) Z OmSEQo
QeDy QeDy

hy).
Y'(Q) QA 2
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It could seem strange to introduce an averaging (with respect to s) at this point. How-
ever, it will be necessary in order to obtain the estimate in Lemma 5.20(d). More precisely,
we cannot ensure that the estimate in (92), which is used in the proof of Lemma 5.20(d),
holds for a particular s because we do not have such a level of control on vy, but to take an
average overcomes the problem. That is the only point where the averaging with respect
to s is used.

Set

J:={0Q € Dﬁ'o : supp Yo (- —s)Nsupp X;:f,l (x—-) # @ for some s € Q(;/(Q)}. (60)
Then

— (™ _ ¥ n
U200 = ) [ o KD g (B D0 6D

Recall that D € D; and m € Sp(x). Since x € D and £(D) = 27/, if Q € J, then
D C B(x,C44(Q)) or Q C B(x,Cu(D)) for some constant C, > 0 large enough. In
particular, if £(Q) 2 €(D) then D C B(zg, C44(Q)), and if £(Q) < C¢(D) with C > 0
small enough then Q C B(zp, C4€(D)), where zo denotes the center of Q C L}, and
zp denotes the center of D € D. From (60), we define
Ji={QeJ:4(Q) <CUD)} C{QeDr’: 0 CBp, Cal(D)},

. (62)
Jr:=J\Ji C{Q eD}: D C B(zg, Cal(Q))}.

Since [ A, 00 K@x—y) dHZ’g (y) = 0 by antisymmetry, if x’ denotes some fixed point in
A(x,27771, 277y N LY, we have

¥ n
Kx — m. AL h dH" .
fA K=y QEEh ety (Ab.x (D) dHy )

= / K=y > mg (MY he(y) = AG he@))dH. (v).  (63)
Am(x) Ocl, Y'(Q) D

Then, using (61), (62), the fact that Y'(Q) = Y (Q) for all Q € J; (because D C Qy),
and (63),

U2y (x) = (m'y f) /Am(x) Kx—y) Z mSEQ(;(Q)(A'g’ShX(y))dH’ZB )

Qe
+m f) K@=y Y moego  (Af h(y) =AY hox)) dH],s (3)
A (x) ot Y'(Q) ’ ’ b
=:U3,,(x) + U4, (x). (64)

Claim 5.17. Under the notation above, we have

> 'U4m<x)'2<'m’z§f|2Z(@yﬂﬁ(@—"(m 0 IAY il
meSp(x) Qe Q) $€Qyg) O
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Proof of Claim 5.17. By property (e) of the wavelet basis in Definition 5.16, we have
1AD hx(y) = A @] < VA h)lloolx’ = y] S 1AY hxllalx’ = yle(@) ™21,
Moreover, if y € A, (x), then |x" — y| < £(D). Therefore,

U ()]
<Y imlfl / K (x = y)myegn  (AY he(y) = A he () dH (7)
Oc Ap (x) Y'(Q) D
<D |m’gf|msegg,(g)<|m‘g,shx||z>e(D)‘*"aQ)*"/Z*‘H;xD (A (x)).
Qe

Then, by the Cauchy—Schwarz inequality and as J», C {Q € Dﬁ’o : D C B(zg, Cal(Q))}
(in particular, £(D)/£(Q) S (£(D)/£(Q)'?),

> U4 ))?

meSp (x) " Z(Q)n/2+1 2
§< D D Impfimg, (A R T (Amoc)))

meSp(x) Qer

2
= (Z |ml£f|mseQ(}),/(Q)(”Ag,shx||2)E(D)E(Q)”/2+l>

Qe
€<D>>< wen AT et HD) )
< (QEEJ:Z ) QEEJ:Z mip f12mgegn, 18D chal2) 5o
«D\V?
< L £12 § : n v 2
~ ol Qe]z<£<Q>> HO gy, 180, Mell2)” .

We are going to estimate U 3,,(x) with techniques very similar to the ones used in Sub-
sections 5.3.1 and 5.3.3. First of all, let b, > 0O be a small constant which will be
fixed later on, and consider the family P := {Q € D;’O : £(Q) < €(D)}. Let Stp
denote the set of cubes Q € P such that there exists Rgp € D with £(Rg) = £(Q),
10Rg N (p*)~ ! (supp ¥o) # ¥, and

@, (10R) > b, but > @, (10R) < by.
ReD:RoCR, L(R)<{(D) ReD: P(Rg)CR, L(R)<L(D)
(65)
Observe that if Q and Q' are different and belong to Stp, then O N Q' = @. Notice
also that D ¢ Stp because we assumed o, (10D) < C,. Finally, denote by Tr the set
of cubes O € P \ Stp such that R ¢ Stp for all R € P with R D Q. Then P =
TrUUgespiR € P : R C Q}. By taking C, small enough we can assume that, if
R e JiN'Pand R C Q for some Q € Stp, then Q € Ji. So we write

v
Z mSEQ(;(Q) (AsthX)

QeJ;
_ v v
- Z mSGQ?/(Q) (AQ»YhX) + Z Z mSEQ())/(Q) (ARyshX)
QeJiNTr QeJiNStp ReJiNP:RCQ
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Set Z‘é’shx = ZRE'P:RCQ A%’shx. Then using the definition of J; and J, we can split

U3(x) = (me>/ Ko=) 3 mogn (8h ) dHy, )

QeJNTr
+(m’5f)/ K(x—1y) Z Mmooy, (AQSh () dH] 5 ()
A (x) QeJiNStp
=: U34,(x) + U3}, (x). (66)

Claim 5.18. Under the notation above, we have

DU mPSImy Y <€(Q)>W|| (A ol D)™
m\ XS 1Mp (D) Msego st 12 :
meSp(x) QeJNTr e(D) *Ere

For simplicity of notation, we have set || - ||, := | - ||Lp(q_yi)b).

Proof of Claim 5.18. Notice that ?—[ : (Ap(x) < (e — em+1)£(D)”’1 Moreover, the
function m o (AQ Jhx) 18 supported in CQ and has vanishing integral, because the

same holds for each A‘// Jhx with s € QY o) Hence, thesum 3, .5 ) U3y, (x)]? can
be estimated using arguments very 31m11ar to the ones in Subsection 5.3.1 (see (44)), and
the analogues of Lemma 5.7 and Claims 5.5 and 5.6 for ’H"A follow easily. One obtains
the expected estimate. O

Claim 5.19. Under the notation above, we have

NA 2
Z <E(Q))1/2 ”mSGQ(l)/(Q) (AQ,shx)”l '

b 2 nop2
Z U3, ()" S |Imlp, f] ¢(D) LD)Y"L(Q)"

meSD(x) QG]]ﬂStp

Proof of Claim 5.19. Since m %) (zg’shx) has vanishing integral and it is supported

in a neighborhood of Q, the term U 331 (x) can be estimated in the same manner (but now
: A 2
we do not use the estimate ||mS€Q()>/(Q)(AQ’shx)H1 < Z(Q)"”msego (A h )|| ), and

one obtains the expected estimate (compare with (46)). ]

Recall that we have fixed x € D € S € Trs, and we denote by Qg the maximal
p-cube in S from the corona decomposition, so D C Qg. The following lemma, whose

proof is given in Subsectlon 5.3.5, yields the suitable estimates for m Qo (Ag’shx)

and m (A ¢hx) (recall that h, is given by (58)).

sEQ?,(
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Lemma 5.20. Assume that a, (D) < Cy for some constant Cy > 0 small enough. Given
Qe Dﬁ’o, there exist constants C1, Co > 1 depending on C, and b, (see (65)) such that:

(@) if Q € Joand £(Q) > £(Qs), then msegg,(g)(llAéshxllz) S Q8" L),
(®) if Q € J2 and £(Q) < £(Qys), then

dist(x, Lp)
Mycgo, (||Ag,shx||2)5< > awCrR) + ==y ) U,
@ ReD: DCRCB(z9,C14(Q))

(¢) if Q € J1 NTr, then there exists Qg = Qo(x, Q) € D depending on x and Q € Dﬁ‘o
such that Qo C C2D, £(Qo) ~ £(Q), Qo N (p*) ™ (supp ¥o) # ¥ and

W dist(x, Lp) 2
17 ey, (B sH)ln 5( > @ (CR) + — = U,
ReD: QgyCRCC,D

@ if Q € i NStp. then mycgn (R ho)li S €Q)"

We are ready to put all the estimates together to bound the first term on the right hand
side of (51). From (54), (57), (64), and (66) we have

> IEKXE ® (mly Hxpm) @ S Imhy f17e, (10D)
meSp(x)
+ Y (UL + U350 + U3 + U4 (0. (67)

meSp(x)

Let us deal with Ul,,(x) (the term |m’£)f|2otu(1OD)2 above is handled in the
same manner). If LlD and L2D denote minimizing n-planes for g , (D) and B> , (D),
respectively, one can show that distyy(Lp N Bp, L]D N Bp) S au(D)(D) and
distH(L}) N Bp, L%) N Bp) S B2, (D)E(D), so we have dist(x, Lp) < dist(x, L%)) +
B2, (D)E(D) + o, (D)€(D) for x € D. Then by Claim 5.15 and Carleson’s embedding
theorem,

S X wira

SeTrs DeS Y D meSp(x)

dist(x, Lp)\?
sy /D |m%f|2<ﬂl,ﬂ(D>2+au(D)2+ (%) )dﬂm

DeD

S Y Imp fPUD) (B1u (D) + au (D) + Bo,u(D)D) S 1 f I3,y (68)
DeD

For the case of U3¢, (x), by Claim 5.18 and Lemma 5.20(c) applied to the p-cubes in
J1 N Tr, we have
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>Y [ ¥ waita

SeTrs DeS meSp(x)
v 2
< Z Im” f|2/ Z (E(Q)>l/2 “mSEQ(;(Q)(AQ,shX)HZ )
- DeD P D gesinTe t(D) Loy
Q) n+1/2 )
< Im“fl2/ <—> a, (C2R)) dp(x)
DEZ% b DQ;TTr Z(D) < Rg’;: 8 )

Qo(x,Q)CRCC,D

n+1/2 /4 2
+ 2 |m:;f|2/ > <@> (M) dp(x) =: S + 5.
DeD D o&tm \ D) t(D)

Recall that J; C{Q € D*° : Q C B(zp, C,£(D))}. Then > pes, Q) /LD 2L,
and since dist(x, Lp) < dist(x, L%) + B2.u(DY(D) + o, (D)E(D) for x € D, we have
$2 S Ypep Imlp f17(B2.u(D)? + 0, (D))E(D)", and hence Sy < C|IfI7, . by Car-
leson’s embedding theorem. For Sy, since £(Q) =~ £(Qo(x, Q)) (recall the definition of
Qo = Qo(x, Q) in Lemma 5.20(c)), Qo(x, @) C C2D, and every Qo € D intersects
(p*)~ ! (supp Y o) for finitely many cubes Q € Dﬁ’o (with a bound for the number of
such cubes Q independent of x and Qp), we have

E(Q) n+1/2 2
2 (O e
QeJNTr ReD: Qp(x,Q)CRCC,D

E(Q) n+1/2 2
- ¥ Y (Gm) (X wes)
PeD: PCCyD QEDQ’OIQCB(ZD,C,Z[(D)), ReD: PCRCC,D
Qo(x,Q)=P

¢ n+1/2 2
%) ( 3 aﬂ(CzR)> .

ReD: PCRCC2D

5 <
PeD: PCCyD

By the Cauchy—Schwarz inequality,

K(P)>n+l/2 2
= a,(C2R)
PED:PCC2D<Z(D) (Re'D: I;QCCZD 8 )
< (Z(P)>n+1/2log (z(D)) Z 0, (CoR)?
~Y Vs PV N 2
PeD: PCCyD t(D) ’ t(p) ReD: PCRCCyD "
S ) au@R? Y <ﬁ>
ReD: RCC,D PeD: PCR (D)
2(R) n+1/4
s ) (XM(CzR)2<m> =: 21 (D)% (69)

ReD:RcC,D
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By standard arguments one can easily show that these Aj coefficients satisfy the
Carleson packing condition, so by (69) and Carleson’s embedding theorem we obtain
S1 <Y pen |me|2£(D)”A1(D)2 < ||f||L2( ,+ which combined with $, < I £ 11

yields

L2(w)
S Y[ X WP sirt,, 10)
SeTrs DeS meSD(x)

Let us deal now with U 3,1;. By Claim 5.19 and Lemma 5.20(d) applied to the p-cubes
in J; N Stp, we have

/ D UEARN
eTrsDeS eSp(x) ~
et o2 lmcgo  (RY o}
T P ol o) i s Tl
beb D oisp V(D) UDY"U(Q)

¢ n+1/2
SN DS (;?) du
DeD D gejinsyp (D)

Given D € D, consider the family Ap := {R € D : R = Rg for some x € D and some
Q € J; N Stp} (see the definition of Ry in (65)). Observe that every R € D intersects

(PH~ o n L7,)) for finitely many u-cubes Q € Dﬁ’o such that £(Q) = £(R). Thus,
similarly to what we did for Q € J; N Tr in the case of U3{,, we have

e 0°0) n+l/2 . 2/ @ n+1/2
it f, ) s it ], 2 () o

DeD DeD ReAp
¢(R) n+1/2 5 )
S imlpfP Z (Z(D)) (D) =Y |mh f*22(D)* (D),
DeD DeD

where we have set 12(D)? := ZReAD (Z(R)/Z(D))"+1/2. Since the o, ’s satisfy the Car-
leson packing condition, it is not hard to show that the same holds for the A,’s. Indeed,
since for any R € Ap we have ZR’eD:RcR’,Z(R)ge(D) aﬂ(IOR/) > b, by (65), then

B @(R) n+1/2 2
(D b Y <m> ( 3 @, (10R))",
ReAp ( R'€D: RCR’, ¢L(R)<{(D)

and we can proceed as in (69). Hence, putting these estimates together and using Car-
leson’s embedding theorem for the 1,’s, we obtain

b2 2
/ U317 di S 11 172, (1)
SeTrsDeS

mESD(x)
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We deal now with U4,,(x). By Claim 5.17 and Lemma 5.20(a)&(b) applied to the
cubes in Jo,

SY [ ¥ wata

SeTrs DeS meSD (x)

v 2
Z ' 4 / (E(D))l/z mseQ(}),,(Q)(”AQ,th”ﬁ i
P S\ (o

SeTrsDeS
w2 (D)\'2
S D Impf] ) 70
SeTrs Des D gen:0(0)<t(Qs)

2 . )
T e (582
ReD: DCRCB(z9.C14(Q)) ( )

E(D) 1/2£(QS)2;1
+ZZ|me|f ( ) ndy,:;SS+S4_ (72)
’ e Z(Q)>E(Qs) He) /) «o?

SeTrs DeS

Regarding S3, since dist(x, Lp) < dist(x, L2 D) + B2, (DY(D) + ay, (D)E(D) forx € D
and ZQE[Z (Z(D)/Z(Q))l/2 < 1, the second term in the definition of S3 is bounded
by X pep Im'y f12(B2,u(D)? + e (D)*)€(D)", and hence by C| f1I7, . by Carleson’s
embedding theorem. For the first term in S3, by the Cauchy—Schwarz inequality,

D) 1/2 2
> |m"f|/ ( ) ( > o <clR>> dp
P Qe E(Q)<K(Qs) 2 '

SeTrs DeS ReD:
DCRCB(z9,C1£(Q))
w2
S E E lmp f1
SeTrs DeS

D\ () :
X/D 2 (@) oz (z(p)) > eu@Rdu

QelJy: :
«Q)=t(0s) DCRCB(z9,C14(Q))
E(D) 1/4
SOk / PR AT (@) dp.
DeD D ReD: Oc DnO
DCR

RCB(zg, Cli(Q))

Notice that ZQED?’O:RCB(zQ,Clé(Q))(Z(D)/Z(Q))IM < (€(D)/€(R))/4, thus the right
side of the preceding inequality is bounded above by

. (D) 1/4
> imip f1PeD)" Y au<clR>2(m>

DeD ReD: DCR
=: Y |Impy fPUDY"A5(D)*. (73)
DeD
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By standard arguments one can show that the A3’s satisfy the Carleson packing condi-
tion, sp by Carleson’s embedding theorem again, the last term in (73) is bounded by
C||f||L2( . Thus we obtain S3 < ||f||L2( )

The estimate of S4 from (72) is easier:

(D) 2e(Qs)*
SR YD N R S R
S€Trs DeS 0eD": 4(0)>£(Qs),
DCB(zg,C1£(Q))

As before, 3, 0 Q)12 < Q)72 12, thus

H(Q)>(Qs), DCB(zg,C14(Q))

(o) \'"? “o) \'"?
2@ n< ) < 13 2£Dn ( )
S YD iml fIPeD) 70y S Y mpf1reoyt > G

SeTrs DeS DeD SeTrs: S3D

= ) Imp fPUD)" ha(D)%,

DeD

Similarly to the case of the A3 coefficients, one can show that the A4’s also satisfy the
Carleson packing condition, thus Sy < || |1 1200 by Carleson’s embedding theorem. Ac-
tually, if one defines @, (Q) = 1if Q = Qy for some S € Trs and @, (Q) = 0 otherwise,
using the packing condition for the p-cubes Qg with S € Trs, one can easily verify that
the @,,’s satisfy the Carleson packing condition. Then

¢D) \'? ¢D)\'?
uD?= Y (ﬁ) Gu09%= Y. (%) @u(0)%,

SeTrs: DC Qg QeD:DcQ
and we can argue as in the case of the A3’s in (73).
By the estimates of S3 and S4, we obtain
/ Udn>di S 1172, (74)
SeTrs DeS mESD(x)

Finally, plugging (68), (70), (71), and (74) in (67), and combining the result with (51)
and (52), we conclude that

>N / Z (K xm. s (mg ) xri) (x) dM(X)<||f||Lz(W

SeTrs DeS YD meSp(x) ReV(D)

and Lemma 5.14 is finally proved, modulo Lemma 5.20. O
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5.3.5. Proof of Lemma 5.20. See (56) and (58) for the definitions of v, and A,.
Proof of Lemma 5.20(a). By Definition 5.16(e), for any s € Q?/,(Q) we have

8% sl < 0 Vs 06" £ @) [y, =) [ av,

- - L(Q9"
— E n d X ) — g n < .
Q) / (p; (Xa0051)) = £(Q) LOQS R o)

< L(Q5)"(Q)™? for all

~

Hence, |AD firllz < [1AG hixlleol” (supp ¥si0)'/?
s € Q(}, )’ and Lemma 5.20(a) follows by taking the average over s € Q?,,( 0 O

Proof of Lemma 5.20(b). Since D C B(zg,Cyl(Q)), D € S, and £(D) < £(Q) <
£(Qs), by taking C,r large enough (see property (f) in Subsection 2.4), we can assume
that p is well approximated by I's in a neighborhood of Q. We are going to show that,
foreach s € Q(;,(Q),

dist(x, Lp)

14
1A} hellz S ( > @ (CIR) + —; o

ReD: DCRCB(z¢.C14(Q))

)ag)"/z, (75)

and Lemma 5.20(b) will follow by taking the average over s € Q(}, )

Fix Q € J,50 D C B(zg, Co(Q)) with £(Q) < £(Qs),and s € Q?/,(Q). Take Q' €
D such that £(Q) = £(Q') and Q C B(zg, 3¢(Q)). Recall that supp ;1o C CQ and
Vg0l S 2(Q) ™21 Let ¢s+ 0 be an extension of Y, i.e., let ¢y : RY > R
be such that supp ¢, o C Bgr C RY, IVosrol S 2(Q")/2=1 and bs+0 = Vs+0
in LY.

Let Ly be a minimizing n-plane for o, (C1Q’), where C1 > 1 is some large con-
stant to be fixed below, and let L"Q, be the n-plane parallel to Lo which contains x. Let

og = chH’iQ, be a minimizing measure for o, (C; Q") and define aé/ = co M« .

Q/
Finally, set o := CQ'HZB . Since Y540 has vanishing integral in L7},, we also have
[ bs+0 dH], = 0. Hence,

IIAZ,thllz = [(hx, Y5+ 0)¥stoll2 = [{hx, Ysy0)| = VL bs+0(y) dvx(y)

= ‘ / 50 (V) d vy — a)(y)‘ S U@ N distg,, (v, 0). (76)

We can assume that

au(cl R) < b,, an
ReD: DCRCB(z9,C14(Q))

otherwise Lemma 5.20(b) follows easily. By assuming (77) one can show that the angle
between L7, and L"Q, is small. By the triangle inequality, we have

distg,, (vx, 0) < distg,, (vx, pgaé/) + distp,,, (pgaé/, o). (78)
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To deal with the first term on the right hand side of (78), let & be a Lipschitz function
such that supp 2 C By and Lip(h) < 1. Then, since supp u is well approximated in C Q’
by a Lipschitz graph I's with small slope, the function 4 o p* restricted to supp u U LXQ
can be extended to a Lipschitz function supported in B¢, o/ (if Cy is large enough) with
Lip(h o p*) bounded by a constant which only depends on n, d, and Lip(I"s). Therefore,

S distg, o (14, 0)

/ hd(vx—pgaé,) / hopxd(u—oé,)
By Be,or

< distBC1 o (1, 00) + distBC] o (ogs aé,) S au(Ch Q/)g(Q)nJrl + dist(x, LQ/)Z(Q)n.
(79)

Since x € D and D C C{Q’ (if C; > Cp), by [To4, Remark 5.3] we have

dist(x, L) < Z o, (R)L(R) + dist(x, Lp). (80)
ReD: DCRcCC Q'

Taking the supremum over all possible Lipschitz functions # in (79) and using £(D) <
£(R) < £(Q) in the sum above, we get
dist(x, Lp)

n+1
D) L(o) ™. @D

distg, (v, PJOR) S Y. «u(CIREQ)"T+
ReD:DCRcCCQ’

To estimate the second term on the right hand side of (78), notice that pio = o
because p*| Ly = Id. Hence, as in (79),

. X __Xx T X __X X . X
d1stBQ/ (pﬁaQ,, o) = dlStBQ, (pi oy P:o) < dlstBCl o (aQ,, o)

< diSthlgf (aé,, og) + distBC1 o (ogr,0)

< diSthlg/ (”HZXQ/, ZQ/) + distBCI o (H’EQ,, ’iD) + diSthlg/ (HZD, 7—[’2%)

< dist(x, Lo)e(Q)" + diSthlgf (HZQ,, ’iD) + dist(x, Lp)e(Q)".

The term distBC1 o (”HZQ/, ’H,ZD) can be estimated using the intermediate @-cubes be-

tween D and C; Q' (similarly to (81)), and we obtain

distpe, o (Mo HE ) S D au(CIRUQ™.
ReD:DCRCC;Q

Thus, by (80) and since £(D) < £(Q),

dist(x, Lp)

n+1
D) Lo .

dists,, (piof.0) S Y. auCRUQ)"! +
ReD:DCRCC1 Q'

Then (75) follows by plugging this last inequality and (81) in (78) combined with (76),
and recalling that £(Q) ~ £(Q"). ]
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Proof of Lemma 5.20(c). Given Q € J; N Tr, using (65) we have

aM(IOR’) < by
R'€D:RCR’, L(R")<t(D)

for all R € D with £(R) = £(Q) and such that R N (p*) ™! (supp Ysto) # P foralls e
Q()),(Q). By assuming b, small enough, we are going to show that for some Q¢(x, Q) € D

as in statement (c) and all s € Q(}( o) We have

dist(x, Lp)
1A el < ( Y @R+ —D>E(Q)n/2. (82)
Y ReD: Q9CRCCyD 4(D)

As before, Lemma 5.20(c) will follow by averaging over s € Q?,(Q), and noting that
”msng’,(Q) (A'g’shx) 2 < msng’,(Q) | A‘g’shx l2 by Minkowski’s integral inequality.

Take Q € J; NTr. Let C; be some large constant which will be fixed later on, and let
Qo € D be aminimal z-cube such that C; Q¢ contains supp N (p*) ! (supp Ys+oNLY)
for all s € Y(Q). We can assume that Qg C C,D if C5 is large enough and, by (65),
we may also suppose that } gcp. oocrcc,p @ (C2R) is small enough. Hence, if Lo,
is a minimizing n-plane for B, ; (C2Qp), the angle between L, and L7, is also small
enough, since it is bounded by ) pp. 0ocrcc,p 2 (C2R) (see [To4, Lemma 5.2] for a
related argument). It is not hard to show that then

diam( N (p*)"'(Q N L)) S Q). (83)

Let Lo, and g, := CQO'HZQO be a minimizing n-plane and measure for a;, (C2 Qo),

respectively. Fix zg, € Lo, N Bc,0, and let L, be an n-plane parallel to L}, which
contains z g, . Finally, define the measures o, := cg,H} and o’ :=cg,H}. .
r D

Since o’ is a multiple of HZ'B’ similarly to (76) and using the triangle inequality,
IAG, hell2b(Q)"*F! < distp, (v, )

S diStBQ (UXa ng—QQ) + diStBQ (p;O'Qoa Pgar) + diStBQ (Pgo'ry U,)ﬂ (84)
where we have set By := B(zp, 3¢(Q)) C R? (for these computations, we may also
assume that £(Q) is small enough in comparison with £(D)).

Arguing as in (79), if C; is large enough, we have

dista, (ve, pEogy) = dists, (P, PLogy) S @u(C00LQ)™!,  (85)
and
diStBQ (péthQo’ pgdr) < diStBCZQO (00y, 0r) S disty (Lo, N Bc,oy, Lr N Be,y)E(0)".

Let y be the angle between L, and L, (which is the same as the one between Lp and
Lg,)- Since zp, € Lo, N L, N B¢, g,, we have disty (Lo, N Bc,0,, Lr N Bcy0,) S

~

sin(y)£(Q), and it is not difficult to show that sin(y) < ZRED: roRcczDau(CZR)~
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Thus,
distg, (Pfogy, P50 S Y au(CaRE(Q)"H. (86)
ReD: QoCRCCyD
Let us estimate the last term on the right hand side of (84). Since cg, < 1, we have
distg, (p;or, o) < distg, (PiH],, HZ;))' Let i be a 1-Lipschitz function supported
in By and such that

distBQ(ngzr,"H’iE) R 'fhd(pé";’-['ir — HZXD) .

Set d := dist(zg,, L},). Since Q € J; C J and £(Q) < CL(D), if C is small enough
then dist(x, Bp) 2 £(D). Without loss of generality, we may assume that x = 0 and that

LY, =R" x {0} ", s0 L, = 29, +R" x {0}4~". Thus, if we set 7}, := (Z"Qﬁl, a2l
we see that d = |z’QO| and p”* restricted to L, N By can be written in the following

manner: p* 1y = (y!, ..., y”,z/QO) — (F(y',...,y"),0), where F : R" \ {0} — R”"

is defined by
P+ &
Fy)=y——=y,/1+ —.
|yl ly[?

Therefore, [hd(piHj )= [hop* dH] = [g.(hop*)(y,2,) dy= [gu h(F(y),0)dy,

and we also have [hdM]. = [puh((y,0)dy = [pu h(F(y),0)J(F)(y)dy by a
D

change of variables, where J (F) denotes the Jacobian of F. Hence

)/hd(pf{?—lﬁr —H)

Notice that, because of the assumptions on supp 2(F(-), 0) and since zg, € Bc,o, and
Qo C CoD, wehaved < |y| forall y € supp h(F (), O)..If 'F,- denotes the ith coordinate
of F, itis straightforward to check that d,,; F; (y) = —d?ylyly| (P +d>) V20 £
and 9, Fi(y) = (1 + d?/ly)HV? — d>(y")?|y| 3 (|y|> + d*)~ /2. Thus, we easily obtain

1= J(F)YWI < d/lyl < d/e(D) (83)
for all y € supph(F(-),0). Since diam(supp h(F(-),0)) < £(Q) and h((F(-),0)) is
Lipschitz, using (88) and taking the supremum in (87) over all such functions &, we
have distg,, (Pg/H'z., Hyx) < 2(Q)"*t'd/€(D). Finally, by [To4, Remark 5.3] and since

’ D
20 € Lg,»
d S dist(zg,, Lp) +dist(Lp, L) < Z a, (C2R)E(R) + dist(x, Lp),
ReD: QgyCRCC,D

< /Rn |h(F (), O)[[1 = J(F)(»)]dy. 87)

and thus

distg,, (pé‘ Zr, 7—[’25))
dist(x, Lp)

n+1
D) (o) ™. (89)

S ). @GR +
ReD: QgyCRCC,D

Finally, (82) follows by applying (85), (86), and (89) to (84). O
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Proof of Lemma 5.20(d). As remarked just before (60), this is the key point where tak-
ing averages of dyadic lattices with respect to the parameter s is necessary. Given Q in
J1 N Stp, we have to show that ||mS€Q(}(Q)(A‘éqshx)||l < £(Q)". Unlike (a)—(c), the es-

timate in (d) does not hold for a particular choice of s in general but, as we will see, it
holds on average. Recall that, for a fixed s € Q()),( 0y

~V v
Ay hy = Z N

ReP:RCQ
= Z Xs+0 A%’th - Z Xs+Q A%,th
ReP:supp yrNQ#P ReP:supp yrNQ#Y
LR)=UQ) LR)=t(Q), RZQ
+ 3 Keror Ak hy =t I + 1, + ;.
ReP:
RCQ

We are going to estimate I, Il, and 11l separately. For the case of I, we have

Xs+0 hx = Xs+0 > AR shx + X540 > A sh
ReD!:4(R)>£(Q) ReD"O: ((R)<£(Q)

= XS+Q Is/ + IS’
where we have set I; = ZReD”’O: (R)>£(0) A%yyhx. On the one hand, since Q € J1NStp,
(65) holds. Thus, using ZRGD;P(RQ)CR, UR)=<L(D) o, (10R) < by, one can show that

IXs+0 hxlli S €(Q)" (90)

(see above (83) for a related argument). On the other hand, since || xs+0 hxll1 S €(Q)",
it is known that then || xs+0Z/ll1 < €(Q)" (see [Da, Part I], in particular pay attention

~

to the last sum in equation (46) of Part I). Combining these estimates, we conclude that

151 S €(0)".
Let us now deal with II;. First of all, we split I into different scales, that is,

DR ARTY I DR DI IS
ReP:supp yrNQ#D k=Y (Q) ReP:supp yrNQ#Y
L(R)=<L(Q), RZQ {R)=2"% R¢Q

Observe that if k > Y(Q), suppyr N Q # @, £(R) = 2% and R ¢ Q,thens + R C
Uco-k(s +9Q), where C > 1 is some fixed constant and Uy« (s +0Q) :={z € L, :
dist(z, s + 0Q) < C27*}. Hence, using Definition 5.16(e) and the definition of &,, we
get

ATEEDS > AR el Y ve(Ueai(s +00)).
k=Y (Q) ReP:supp YrNQ#H k=Y (Q)
UR)=27% RzQ
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The case of IIl; can be dealt with using very similar techniques, and one obtains the
same estimate. Therefore,

ey R hlli = lImegy (o4 s + I < my gy s+ 1y + 1]

< Q)" +mS€Q3( )( Z Ve (Uep—i (s + aQ))). 91)
2 N%=v(0)

Using Fubini’s theorem, it is not difficult to show that
Myegy Vs Uere(s +90)) $274(Q) 10 (CQ) 92)

for all k > Y (Q) (see [To2, Lemma 7.5] for example, for a related argument). Since
Q € Stp, (65) holds, and so, as in (90), we have v, (C Q) < £(Q)", thus

If we combine this last estimate with (91), we are done. m]

5.3.6. Final estimates. From Lemmas 5.4, 5.10, and 5.14, we obtain

> Z/ Y Y @+ Genm| duw

SeTrs DeS meSp(x) ReV (D) QeTr(R)

+ ) Z/ > (Kxé, *(ZQf)M)(X)‘ZdM(X)

SeTrs DeS meSD(x) ReV(D) QeStp(R)

2
Y[ X | X kug, o i S 11y,
SeTriDeS

meSD(x) ReV (D)

Combining this estimate with (39), we deduce

f (K xS, * (PP di@) S 1172,
SeTrs DeS

mESD(x)

Finally, using (35) and (36), we conclude that

VS o T) 72 S D / (K&, * (PP dr@) S 1172,

DeD meSD (x)

This finishes the proof of Theorem 5.1.
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6. IfV, o R\ : Lz(/,e) — LQ(M) is a bounded operator, then . is a uniformly
n-rectifiable measure

Let C,, > 0 be the AD regularity constant of an AD regular measure (, that is, C;lr” <
w(B(x,r)) < Cur" forall x € suppu and 0 < r < diam(supp p). For simplicity of
notation, we may assume that diam(supp ) = oo (the general case follows by minor
modifications in our arguments). As before, we denote by D the dyadic lattice of u-cubes
introduced in Subsection 2.3.

In this section, we set K (x) = x|x|~"~! for x # 0. Recall that, given ¢ > 0, a Radon
measure p, and f € L' (), we have set R* f := {RY f}c~0, where

RYF(x) =/ K(x =) () du(y).

|x—y|>e€

In order to prove the main theorem of this section (Theorem 6.8), we need first to
introduce some notation and state some preliminary results.

Definition 6.1 (Special truncation of the Riesz transform). For € > 0, let ¢ be as in
Definition 2.1. Given m € Z and a Radon measure p in RY, we set

Smucw::=/kwrw—dx-—y)—-¢rw(x—-yDKTx-—y)du(y)

Lemma 6.2 ([DS1, Lemma 5.8]). Given Q € D, there exist n+ 1 points xg, ..., X, in Q
(and thus in supp ) such that dist(x;, L;_1) > CE(Q), where Ly denotes the k-plane
passing through xo, . . ., xx, and where C depends only on n and C,,.

Lemma 6.3 ([To4, Lemma 7.4 and Remark 7.5]). Let Q € D and xg,...,x, € Q be
as in Lemma 6.2. Denote r = diam(Q), and let m, p € 7Z be such thatt > s > 4r for
t =277 and s = 27™. Suppose that A(xg, 27"~ 1/2 27m+12y N supp u # 0. Then any
point x,4+1 € 30 satisfies

n+l m 2
. r rs
dist(ta, Lo) S5 Y D 0 ISeu(x)) = Spxo)l + — + =, 93)
j=lik=p s
where L is the n-plane passing through xo, . .., Xp.

The following proposition is a direct consequence of the techniques used in the last sec-
tion of [To4]. We give the proof for completeness.

Proposition 6.4. Given €y > 0, there exist 59 > 0 and mg, ko € N depending on €, n,
and C,, such that, for all i € Z and all Q € D; with B1,,(Q) > €, there exist k € Z with
|k| < ko and P € Djykym, such that P C 40 and |S; 1y (x)| = 8o forall x € P.
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Proof. Fix g > 0. Let Q € D; be such that 81 ,(Q) > €. Take xg, ..., x, in Q asin
Lemma 6.2, denote r = diam Q, and let m € Z (to be fixed below) be such that 4r <
27" —: s and A(xg, 27"~ 1/2, 2=m+1/2y supp i # ¥ (we assume diam(supp i) = o0).
By Lemma 6.3, for r := 277 > s to be fixed below and all x,, 1 € 30,

n+1 m 2
. r rs
dist(x,41, Lo) <'s Z D ISkm(x) — Skp(xo)l + —+
j=lk=p
m n+l 2
r rs
S92 ISl + —+ —.
k=p j=0

Then by integrating over x,4+1 € 3Q, for some constant C; > 0 depending only on n
and C,, we have

1 dist(xns 1, Lo)
0 < BLu(@ = o /3Q e )
5 & 1 & ros
<C (; ];(Z(Q)” /3Q [Ski () dp(xp41) + 2 |SkM(xj)|> + " + ;)
Thus,
z(e_o T i) - i(/ 1Sk Consdl ;o Mimw.)l)
s\C1 s 1) 7 = \z0 Q)" " =0 )

We can easily choose s and ¢ large enough (depending on r, €p, and Cp) such that, for
some constant €] > 0 depending only on €g, n and C,

& [Sk i (xp+1)| < )
0 ——d n S SINE 94
<a §k§_p:</39 gy )+ 32 5 ©4)

Notice that, since t = 277 and s = 27" were chosen depending on r ~ 27/, the sum on
the right hand side of (94) has a finite number of terms which only depends on €g, n and
C,,. Therefore, there exist kg € N and C, > 0 depending only on €y, n and C,, such that,
for some negative integer k with |k| < kg and some j =0, ..., n,

1
<C S; d S; SINE
e < 2(,3(@” /3Q| el o+ | z+kM(XJ)|)

which implies that there exist C3 (depending on C») and z € 3Q such that €7 <

C31Sivkn(2)]- ,
Given x € supp i, if [x — z|] < 2-i=k then

[Sipimt(x) — Sk (2)] < / V(@i K loolx — 2l de(y)
ly—z| <21k

< 2UHRFD | _ ) du(y) S2Rx — 2.
ly—z] 527+
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Hence if |x —z| < C427' 7% with C4 > 0 small enough, we have C3|S; 1t (x)— Six it (2)|
< €1/2,50 €1/2 < C3|Si+im(x)|. Therefore, there exist my € N depending on Cy4 (and
thus on €g, n, and C,) and P € D;yjym, such that €1 /2 < C3|S;xpu(x)| forall x € P.
We can also assume that P C 4Q by taking C4 small enough, and since |k| < kg we have
L(P) = £(Q). The proposition follows by setting &p := €1 /(2C3) > O. ]

Definition 6.5. Given ¢y > 0, let §p, mg > 0 be as in Proposition 6.4. Set

B:={0eD:pu(Q) >e} B:=|J{0€Dipm: [Scp(x)| = b forall x € 0},
keZ

Given P, ReD with P C R, we set Fg:ZQeE:PchR Xo and FRZZQeE;QcR X0-

Lemma 6.6. Let p > 0. Assume that there exists Co > 0 such that, for all R € D,
/ (F®)P dp < Con(R). 95)
R

Then there exists C > 0 such that ZQeEz OCR u(Q) < Cu(R) forall R € D.
Proof. Let M > 1 be large enough (it will be fixed below). For R € D, set

Tree(R) :={Q € B: Q0 CR, )(QFée < My},
Topy(R) :={P € B: P C R, xpFf > Myp, and xoF§ < Myxo
forall Q € Bsuchthat P C Q C R}.

Form > 1, set Top,, (R) := Uperop, _,(r) TOPo(P), and Top(R) := J,,,( Top,, (P).
Notice that if R € B then R € Tree(R), because M > 1. Notice also that

{QeB:QC R =Tree(R)U | ] Tree(P), (96)
PeTop(R)

and the union is disjoint.
Fix R € D. Then by (96),

Yoow@= Y w@+ Y Y w

Qeg: OCR Q€Tree(R) PeTop(R) Q€eTree(P)
= > xodu+ / xodw.  (97)
R QeTree(R) R peTop(R) QeTree(P)

Given x € R and P € D such that P C R, by the definition of Tree(P), we have

> xo() = Myp().

Q€Tree(P)
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Therefore, by (97),

> w@=Mu®+ [ Y Mxpdu=M(u®)+Y D wp)).

0eB: OcR R peTop(R) m=0 PeTop,, (R)
(98)
We are going to prove that, if M is large enough,
> u(P) <27"u(R) (99)

PeTop,, (R)

for all m > 0, and then, by (98), we will finally obtain

Y. Q) = Mu(R)+ MY 27" u(R) < 3Mp(R),
QeB: QcR m=0

and the lemma will be proven.

Notice that, if P, P’ € Topy(R) are different, then P N P’ = @ because of the last
condition in the definition of Topy(R). So, to verify (99), it is enough to show that, for all
m >0,

1
Yo wPy<o > P (100)
PeTop,,41(R) PeTop,,(R)
We have
uwPy= > > W) (101)
PeTop,,41(R) PeTop,,(R) QeTopy(P)

and ZQeTOpo(P) X0 = xu, where U := UQeTopo(P) Q C P.If x € U, there exists Q €
Topy(P) such that x € Q,s0 1 = xp(x) < M‘z/p(Fg(x))z/P < M~2P(FP(x))%r,
and then using (95) we have

n(Q) = / Xodu
QETOPO(P) P 0etop,(P)
2/p PN2/p
/Uldu<M /(F) dM_Mz/pM( )s
which, in combination with (101), yields (100) by taking M > (2Co)P/2. |

Lemma 6.7. Assume that, for some C1 > 0, ZQeE; OCR u(Q) < Ciu(R) forall R €
D. Then there exists Co > 0 such that ZQEBZ ocr M(Q) = C2u(R) for all R € D.

Proof. Given Q € B, by Proposition 6.4, there exists Pg € Dj1p, for some k € Z such
that Pp C 40, n(Pg) > Cou(Q), and |Sxu(x)| > o forall x € Pp, where Cp > 0is
some small constant. Thus, in particular, Py € B for all Q € B. Since Pp C 4Q and

w(Pg) = Cou(Q) for all Q € B, given P € B there are finitely many u-cubes Q € B
such that Pp = P, and the number of such pu-cubes is bounded above by a constant
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depending only on n, Cy, and C,,. Hence, since 4R is contained in the union of a bounded
number of p-cubes with side length £(R), we have

Yo w6t Y wP S Y. w(P) < Ciu(R)

0eB: QcR QeB:QcR PelB: PC4R
for all R € D, as desired. O

Theorem 6.8. Let p > 0. Given an n-dimensional AD regular measure (i, if V, o R* is
a bounded operator in L*(w), then w is uniformly n-rectifiable.

Proof. It is easy to see that, if V, o R* is a bounded operator in L?(uw), then RY is also
bounded in Lz(u). By Theorem 1.2 in [DS2, Part III, Chapter 1], in order to show that
w is uniformly n-rectifiable, it is enough to show that p satisfies the Weak Geometric
Lemma, i.e., for any €y > 0, the set 3 is a Carleson set. In other words, it suffices to show
that there exists a constant C > 0 depending on €( such that ZQEB: OCR n(Q) < Cu(R)
for all R € D. By Lemmas 6.7 and 6.6, this holds if, for some p > 0, there exists C > 0
depending on € such that, for all R € D,

/ (FRY/? dp < Cu(R). (102)
R

Notice that, form € Z and f € L' (w), Su(fu) = T#l;;—m—l f =T}, f, where Sy, is

—m

introduced in Definition 6.1 and T}); is as in Definition 2.1 (remember that now K denotes
the Riesz kernel), thus

D IS F @I < (Vp o T f (1)) (103)

keZ
We may assume that p > 1, since (V5 o R*) f(x) < (V, o R*) f(x) for p > p, and
then the L2 (1) boundedness of V, o R for some p > 0 implies the L?(1) boundedness
of V5 o R* for all p > p. Since ¢r(2%"1?) is a convex combination of the functions
X{scR:s>¢}(t) for € > 0, using p > 1 and Minkowski’s integral inequality it is not hard to
show that the L2 (1) boundedness of V, o R* implies the L?() boundedness of V,o 7;“
(see Subsection 5.2, or [CJRW1, Lemma 2.4], for a similar argument). Therefore, for any
M > 0, we have

(Vo o T(p“)xMRlliz(w < Cu(MR) < Cu(R) forall R € D. (104)

Fix €9 > 0, let §p, mo > 0 be as in Proposition 6.4, and let R € D. Given x € R and
k € Z,forany Q € Dyym, NBsuchthatx € Q C R we have |Sgu(x)| = 8¢. Notice that,
since Q € Dyyp, and Q C R, there exists M > 1 depending only on n and mg such that
80 < |Skm(x)| = |Sk(xpmr 1) (x)]. Therefore, using (103) and the fact that for each k € Z
there is at most one p-cube Q € Dy, such that x € Q C R, we obtain

FRy =) > Xo() <Y > 8o " 1Sk xmri) (x)|°
keZ QE’DHmOﬂBN:erCR keZ QEDHmOﬂg:xEQCR

<48,” Z 1Sk ORI (1P < 85 ((Vp o TI) xmr(x))” (105)
keZ
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and then, by (104),

/R (FRYPdp < 557 fR (Vo o T xmr) die < 85210Vp 0 TP Xkl < CH(R)

for all R € D. This yields (102), and the theorem follows. m]

Remark 6.9. Let {r,}cz C (0, 00) be a fixed decreasing sequence defining O. If there
exists C > 0 such that C~1r,, < ry — Im+1 < Cry, for all m € Z, then the last inequality
in (105) still holds if we replace V, by O (by taking o = 2 from the beginning). Hence,
Theorem 6.8 still holds after replacing V,, by O for this particular sequence {ry}mez.
However, we do not know if it holds for any {r;, };nez C (0, 00).
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