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Abstract. For 1 ≤ n < d integers and ρ > 2, we prove that an n-dimensional Ahlfors–David
regular measure µ in Rd is uniformly n-rectifiable if and only if the ρ-variation for the Riesz
transform with respect to µ is a bounded operator in L2(µ). This result can be considered as a
partial solution to a well known open problem posed by G. David and S. Semmes which relates the
L2(µ) boundedness of the Riesz transform to the uniform rectifiability of µ.
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1. Introduction

In this paper we characterize the notion of uniform rectifiability in the sense of David and
Semmes [DS2] in terms of the L2 boundedness of the ρ-variation for the Riesz transform,
with ρ > 2.

Given integers 1 ≤ n < d and a Radon measure µ in Rd , one defines the n-dimen-
sional Riesz transform of a function f ∈ L1(µ) byRµf (x) = limε↘0 R

µ
ε f (x) (whenever

the limit exists), where

Rµε f (x) =

∫
|x−y|>ε

x − y

|x − y|n+1 f (y) dµ(y), x ∈ Rd .

We will use the notation Rµf (x) := {R
µ
ε f (x)}ε>0. When d = 2 (i.e., µ is a Radon mea-

sure in C), one defines the Cauchy transform of f ∈L1(µ) by Cµf (x)= limε↘0 C
µ
ε f (x)

(whenever the limit exists), where

Cµε f (x) =

∫
|x−y|>ε

f (y)

x − y
dµ(y), x ∈ C.
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To avoid the problem of existence of the preceding limits, it is useful to consider the maxi-
mal operators Rµ∗ f (x) = supε>0 |R

µ
ε f (x)| and Cµ∗ f (x) = supε>0 |C

µ
ε f (x)|. Notice that

the Cauchy transform coincides with the 1-dimensional Riesz transform in R2 modulo
conjugation, since 1/x = x/|x|2 for all x ∈ C \ {0}.

The Cauchy and Riesz transforms are two very important examples of singular in-
tegral operators with a Calderón–Zygmund kernel. Given d ≥ 2, the kernels K :

Rd \ {0} → R that we consider in this paper satisfy

|K(x)| ≤
C

|x|n
, |∂xiK(x)| ≤

C

|x|n+1 , |∂xi∂xjK(x)| ≤
C

|x|n+2 , (1)

for all 1 ≤ i, j ≤ d and x = (x1, . . . , xd) ∈ Rd \ {0}, where 1 ≤ n < d is some integer
and C > 0 is some constant; and moreover K(−x) = −K(x) for all x 6= 0 (i.e. K
is odd). Notice that the n-dimensional Riesz transform corresponds to the vector kernel
(x1, . . . , xd)/|x|n+1, and the Cauchy transform to (x1,−x2)/|x|2 (so, we may consider
K to be any scalar component of these vector kernels). For f ∈ L1(µ) and x ∈ Rd , we
set

T µε f (x) ≡ Tε(fµ)(x) :=

∫
|x−y|>ε

K(x − y)f (y) dµ(y),

and we denote T µf (x) = {T
µ
ε f (x)}ε>0.

Definition 1.1 (ρ-variation and oscillation). Let F := {Fε}ε>0 be a family of functions
defined on Rd . Given ρ > 0, the ρ-variation of F at x ∈ Rd is defined by

Vρ(F)(x) := sup
{εm}

(∑
m∈Z
|Fεm+1(x)− Fεm(x)|

ρ
)1/ρ

,

where the pointwise supremum is taken over all decreasing sequences {εm}m∈Z ⊂ (0,∞).
Fix a decreasing sequence {rm}m∈Z ⊂ (0,∞). The oscillation of F at x ∈ Rd is defined
by

O(F)(x) := sup
{εm},{δm}

(∑
m∈Z
|Fεm(x)− Fδm(x)|

2
)1/2

,

where the pointwise supremum is taken over all sequences {εm}m∈Z and {δm}m∈Z such
that rm+1 ≤ εm ≤ δm ≤ rm for all m ∈ Z.

The ρ-variation and oscillation for martingales and some families of operators have
been studied in many recent papers on probability, ergodic theory, and harmonic analysis
(see [Lp], [Bo], [JKRW], [CJRW1], [JSW], [LT], and [OSTTW], for example). In this
paper we are interested in the ρ-variation and oscillation of the family T µf . That is,
given a Radon measure µ in Rd and f ∈ L1(µ) we will deal with

(Vρ ◦ T µ)f (x) := Vρ(T µf )(x), (O ◦ T µ)f (x) := O(T µf )(x).

We are specially interested in the case T µ
= Rµ. Notice, by the way, that T µ∗ f (x) ≤

(Vρ ◦ T µ)f (x) for any compactly supported function f ∈ L1(µ) and all x ∈ Rd .
When µ coincides with the Lebesgue measure on the real line and K(x) = 1/x

is the kernel of the Hilbert transform, Campbell, Jones, Reinhold and Wierdl [CJRW1]
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showed that Vρ ◦ T µ and O ◦ T µ are bounded in Lp(µ) for 1 < p < ∞, and of
weak type (1, 1). This result was extended to other singular integral operators in higher
dimensions in [CJRW2]. The case of the Cauchy transform and other odd Calderón–
Zygmund operators on Lipschitz graphs was studied recently in [MT].

Let us now turn our attention to uniform rectifiability. Recall that a Radon mea-
sure µ in Rd is called n-rectifiable if there exists a countable family {Mi}i∈N of n-
dimensional C1 submanifolds in Rd such that µ(E \

⋃
i∈NMi) = 0. Moreover, µ is

said to be n-dimensional Ahlfors–David regular, or simply AD regular, if there exists
some constant C > 0 such that C−1rn ≤ µ(B(x, r)) ≤ Crn for all x ∈ suppµ
and 0 < r ≤ diam(suppµ). One also says that µ is uniformly n-rectifiable if there
exist θ,M > 0 so that, for each x ∈ suppµ and r > 0, there is a Lipschitz map-
ping g from the n-dimensional ball Bn(0, r) ⊂ Rn into Rd such that Lip(g) ≤ M and
µ(B(x, r) ∩ g(Bn(0, r))) ≥ θrn, where Lip(g) stands for the Lipschitz constant of g. In
particular, uniform rectifiability implies rectifiability. Given a set E ⊂ Rd , we denote by
Hn
E the n-dimensional Hausdorff measure restricted to E. Then E is called, respectively,

n-rectifiable, AD regular, or uniformly n-rectifiable if Hn
E is so. By the Lebesgue differ-

entiation theorem, any n-dimensional AD regular measure µ is of the form µ = fHn
suppµ

with C−1
≤ f (x) ≤ C for some constant C > 0 and all x ∈ suppµ.

More than twenty years ago G. David and S. Semmes asked the following question,
which is still open (see, for example, [Pa, Chapter 7]):

Question 1.2. Is it true that an n-dimensional AD regular measure µ is uniformly
n-rectifiable if and only if Rµ∗ is bounded in L2(µ)?

Some comments are in order. By the results in [DS1], the “only if” implication of the
question above is already known to hold. Also in [DS1], G. David and S. Semmes gave
a positive answer to Question 1.2 if one replaces the L2 boundedness of Rµ∗ by the L2

boundedness of T µ∗ for a wide class of odd kernels K . In the case n = 1 (in particular,
for the Cauchy transform), the “if” implication was proved by P. Mattila, M. Melnikov
and J. Verdera [MMV] using the notion of curvature of measures. Later on, G. David and
J. C. Léger [Lé] proved that the L2 boundedness Cµ∗ implies that µ is rectifiable, even
without the AD regularity assumption (with n = 1).

Whenµ is the n-dimensional Hausdorff measure on a setE⊂Rd such thatµ(E)<∞,
the rectifiability of µ is also related to the existence µ-a.e. of the principal value of the
Riesz transform of µ, that is, the existence ofRµ1(x) = limε↘0 R

µ
ε 1(x) for µ-a.e. x ∈ E.

In [MPr], P. Mattila and D. Preiss proved that, under the additional assumption that

lim inf
r→0

r−nµ(B(x, r)) > 0 for µ-a.e. x ∈ E, (2)

the rectifiability of E is equivalent to the existence of Rµ1(x) µ-a.e. x ∈ E. Later on, in
[To3] X. Tolsa removed the assumption (2) and proved the result in full generality: a set
E ⊂ Rd with µ(E) <∞ is rectifiable if and only if Rµ1(x) exists for µ-a.e. x ∈ E. Let
us mention that, for the case n = 1 and d = 2 (that is, for the Cauchy transform), the
analogous results had been obtained previously by [Ma2] under the assumption (2), and
in [To1], in full generality, by using the notion of curvature of measures.

In this paper we prove the following:
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Theorem 1.3. Let 1 ≤ n < d and ρ > 2. An n-dimensional AD regular Radon mea-
sure µ in Rd is uniformly n-rectifiable if and only if Vρ ◦ Rµ is a bounded operator
in L2(µ). Moreover, if µ is uniformly n-rectifiable, then for any kernel K satisfying (1),
the operator Vρ ◦ T µ is bounded in L2(µ).

Let us compare this result with the David–Semmes Question 1.2. Notice that the pre-
ceding theorem asserts that if we replace the L2(µ) boundedness of Rµ∗ by the stronger
assumption that Vρ ◦Rµ is bounded in L2(µ), then µ must be uniformly rectifiable. On
the other hand, the theorem claims that the variation for odd singular integral operators
with any kernel satisfying (1), in particular for the n-dimensional Riesz transforms, is
bounded in L2(µ).

A natural question then arises. Given an arbitrary measure µ on Rd , without atoms
say, does the L2(µ) boundedness of Rµ∗ implies the L2(µ) boundedness of Vρ ◦Rµ, for
ρ > 2? By the results of [MMV] and Theorem 1.3, this is true in the case n = 1 if µ
is AD regular 1-dimensional. Clearly, a positive answer in the general case n ≥ 1 would
solve the David–Semmes problem in the affirmative. Nevertheless, such an approach to
try to solve this problem looks quite difficult. In fact, we recall that it is not even known if
the L2(µ) boundedness of Rµ∗ ensures the µ-a.e. existence of the principal values of Rµ1,
which is a necessary condition for the L2(µ) boundedness of Vρ ◦Rµ.

Concerning the proof of Theorem 1.3, in our previous paper [MT] we showed that, if
µ stands for the n-dimensional Hausdorff-measure on an n-dimensional Lipschitz graph,
then the ρ-variation for Riesz transforms and odd Calderón–Zygmund operators with
smooth truncations are bounded in L2(µ). This is a fundamental step to prove that Vρ ◦
Rµ and, more generally, Vρ ◦ T µ, are bounded in L2(µ) if µ is uniformly n-rectifiable.
Another basic tool in our arguments is the geometric corona decomposition of uniformly
rectifiable measures introduced by David and Semmes in [DS1], which, roughly speaking,
describes how suppµ can be approximated at different scales by n-dimensional Lipschitz
graphs.

The proof of the fact that the L2(µ) boundedness of Vρ ◦ Rµ implies the uniform
rectifiability of µ is not so laborious as the one of the converse implication. As remarked
above, if Vρ ◦ Rµ is bounded in L2(µ), then the principal values of Rµ1 exist µ-a.e.,
which implies the n-rectifiability of µ, by the results of [MPr] or [To3]. However, this
is not enough to ensure the uniform n-rectifiability of µ. We will prove the uniform
n-rectifiability by arguments partially inspired by some of the techniques in [To4].

Finally, let us remark that Theorem 1.3 follows from a more general result, namely
Theorem 2.3 below, which also deals with the variation for Riesz transforms and odd
Calderón–Zygmund operators with smooth truncations.

As usual, the letter ‘C’ stands for some constant which may change its value at dif-
ferent occurrences, and which quite often only depends on n and d. Given two families
of constants A(t) and B(t), where t stands for all the explicit or implicit parameters de-
termining A(t) and B(t), the notation A(t) . B(t) (or A(t) & B(t)) means that there is
some fixed constant C such that A(t) ≤ CB(t) (resp. A(t) ≥ CB(t)) for all t , with C as
above. Also, A(t) ≈ B(t) is equivalent to A(t) . B(t) . A(t).
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2. Preliminaries

2.1. The main theorem

Definition 2.1 (families of truncations). Let χR := χ[1,∞) and let ϕR : [0,∞) →
[0,∞) be a nondecreasing C2 function with χ[4,∞) ≤ ϕR ≤ χ[1/4,∞). Suppose more-
over that |ϕ′R| is bounded below away from zero in [1/3, 3], i.e., χ[1/3,3] ≤ C|ϕ′R| for
some C > 0.

Given x ∈ Rd , and 0 < ε ≤ δ, we set

χε(x) := χR(|x|/ε), χ δε (x) := χε(x)− χδ(x),

ϕε(x) := ϕR(|x|
2/ε2), ϕδε (x) := ϕε(x)− ϕδ(x).

Notice that, for any finite Radon measure µ, Tεµ(x) = (Kχε ∗ µ)(x). Given x =
(x1, . . . , xd) ∈ Rd , we denote x̃ = (x1, . . . , xn, 0, . . . , 0) ∈ Rd , and we set ϕ̃ε(x) :=
ϕε (̃x) and ϕ̃δε (x) := ϕ

δ
ε (̃x). Finally, for f ∈ L1(µ) we set T µf ≡ T (fµ) := {T µε f }ε>0,

T µϕεf (x) ≡ Tϕε (fµ)(x) := (Kϕε ∗ µ)(x), T µ
ϕ f ≡ Tϕ(fµ) := {T µϕεf }ε>0,

T
µ
ϕ̃ε
f (x) ≡ Tϕ̃ε (fµ)(x) := (Kϕ̃ε ∗ µ)(x), T µ

ϕ̃ f ≡ Tϕ̃(fµ) := {T µϕ̃εf }ε>0.

Remark 2.2. In the definition, the choice of [4,∞), [1/4,∞), and [1/3, 3] is not spe-
cially relevant, it is just for definiteness. One can replace those intervals by other suitable
intervals, and all the proofs remain almost the same.

We will prove the following.

Theorem 2.3 (Main Theorem). Let 1 ≤ n < d be integers. Let µ be an n-dimensional
AD regular Radon measure on Rd . The following are equivalent:

(a) µ is uniformly n-rectifiable.
(b) For any K satisfying (1) and any ρ > 2, the operator Vρ ◦ T µ

ϕ is bounded in Lp(µ)
for all 1 < p <∞, and from L1(µ) into L1,∞(µ).

(c) For any K satisfying (1) and any ρ > 2, the operator Vρ ◦ T µ is bounded in L2(µ).
(d) For some ρ > 0, the operator Vρ ◦Rµ is bounded in L2(µ).
(e) For K(x) = x/|x|n+1 and some ρ > 0, the operator Vρ ◦ T µ

ϕ is bounded in L2(µ).

Clearly, Theorem 1.3 is a direct consequence of the preceding result.

Remark 2.4. Let {rm}m∈Z ⊂ (0,∞) be a fixed decreasing sequence defining O. Then the
implications (a)⇒(b), . . . , (e) in the theorem above still hold if one replaces Vρ by O.
If there exists C > 0 such that C−1rm ≤ rm − rm+1 ≤ Crm for all m ∈ Z, then the
implications (b), . . . , (e)⇒(a) also hold (so Theorem 2.3 remains true after replacing Vρ
by O), but we do not know if they are still true without this additional assumption (see
Remark 6.9).
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Notice that, by Theorem 2.3, besides Vρ ◦ Rµ and O ◦ Rµ, the operators Vρ ◦ T µ
ϕ

and O ◦ T µ
ϕ for K(x) = x/|x|n+1 characterize completely the n-AD regular measures µ

which are uniformly n-rectifiable.
One of the main ingredients for the proof of Theorem 2.3 is the following result, which

strengthens one of the endpoint estimates obtained in [MT]. Let M(Rd) be the space of
finite real Radon measures on Rd , with the norm induced by the variation of measures.

Theorem 2.5. Let ρ > 2 and let µ be the n-dimensional Hausdorff measure restricted
to an n-dimensional Lipschitz graph. Then Vρ ◦ Tϕ is a bounded operator fromM(Rd) to
L1,∞(µ), i.e., there exists C > 0 such that, for all λ > 0 and all ν ∈ M(Rd),

µ({x ∈ Rd : (Vρ ◦ Tϕ)ν(x) > λ}) ≤
C

λ
‖ν‖.

In particular, Vρ ◦ T µ
ϕ is of weak type (1, 1). The constant C only depends on n, d, K , ρ,

ϕR, and the maximal slope of 0.

By an n-dimensional Lipschitz graph 0 ⊂ Rd we mean any translation and rotation of
a set of the type {x ∈ Rd : x = (y,A(y)), y ∈ Rn}, where A : Rn → Rd−n is some
Lipschitz function with Lipschitz constant Lip(A), which coincides with the maximal
slope of 0.

Remark 2.6. The theorem above remains valid if one replaces Vρ by O. Moreover, the
norm of O ◦ T µ

ϕ is bounded independently of the sequence that defines O.

The plan to prove Theorem 2.3 is the following: in Section 3 we deal with Theorem
2.5, which is used in Section 4 to obtain the implication (a)⇒(b) of Theorem 2.3. In
Section 5 we prove (a)⇒(c) in Theorem 5.1, and in Section 6 we prove Theorem 6.8,
which gives (d)⇒(a) and (e)⇒(a), and finishes the proof of Theorem 2.3, taking into
account that the implications (b)⇒(e) and (c)⇒(d) are trivial.

Theorems 2.3 and 2.5 are stated in terms of Vρ , but they also hold for O, as remarked
above. However, we will only give the proof for Vρ , because the case of O follows by
very similar arguments and computations.

2.2. Calderón–Zygmund decomposition for measures

Given a cube Q ⊂ Rd and a > 0, we denote by `(Q) the side length of Q and by aQ the
cube concentric with Q with side length a`(Q). The cubes that we consider in this paper
have sides parallel to the coordinate axes in Rd .

A proof of the following result can be found in [To5, Chapter 2] or [M, Lemma 5.1.2].

Lemma 2.7 (Calderón–Zygmund decomposition). Assume that µ := Hn
0∩B , where 0 is

an n-dimensional Lipschitz graph and B ⊂ Rd is some fixed ball. For any ν ∈ M(Rd)
with compact support and any λ > 2d+1

‖ν‖/‖µ‖, the following hold:
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(a) There exists a finite or countable collection {Qj }j ⊂ Rd of almost disjoint cubes (that
is,
∑
j χQj ≤ C) and a function f ∈ L1(µ) such that

|ν|(Qj ) > 2−d−1λµ(2Qj ), (3)

|ν|(ηQj ) ≤ 2−d−1λµ(2ηQj ) for η > 2, (4)

ν = fµ in Rd \
⋃
jQj with |f | ≤ λ µ-a.e. (5)

(b) For each j , let Rj := 6Qj and denote wj := χQj (
∑
k χQk )

−1. Then there exists a
family {bj }j of functions with supp bj ⊂ Rj and with constant sign satisfying∫

bj dµ =
∫
wj dν, (6)

‖bj‖L∞(µ)µ(Rj ) ≤ C|ν|(Qj ), (7)∑
j |bj | ≤ C0λ (where C0 is some absolute constant). (8)

2.3. Dyadic lattices

For the study of uniformly rectifiable measures we will use the “dyadic cubes” built by
G. David [Da, Appendix 1] (see also [DS2, Chapter 3 of Part I]). These are not true cubes,
but they play this role with respect to a given n-dimensional AD regular Radon measureµ,
in a sense. To distinguish them from the usual cubes, we will call them µ-cubes.

Let us explain the precise results and properties related to the lattice of dyadic µ-
cubes. Given an n-dimensional AD regular Radon measure µ in Rd (for simplicity, we
may assume diam(suppµ) = ∞), for each j ∈ Z there exists a family Dj of Borel subsets
of suppµ (the dyadic µ-cubes of the j th generation) such that:

(a) each Dj is a partition of suppµ, i.e. suppµ =
⋃
Q∈Dj Q (a disjoint union);

(b) if Q ∈ Dj and Q′ ∈ Dk with k ≤ j , then either Q ⊂ Q′ or Q ∩Q′ = ∅;
(c) for all j ∈ Z and Q ∈ Dj , we have 2−j . diam(Q) ≤ 2−j and µ(Q) ≈ 2−jn;
(d) there exists C > 0 such that, for all j ∈ Z, Q ∈ Dj , and 0 < τ < 1,

µ({x ∈ Q : dist(x, suppµ \Q) ≤ τ2−j })

+ µ({x ∈ suppµ \Q : dist(x,Q) ≤ τ2−j }) ≤ Cτ 1/C2−jn. (9)

This property is usually called the small boundaries condition. From (9), it follows
that there is a point zQ ∈ Q (the center of Q) such that dist(zQ, suppµ \Q) & 2−j

(see [DS2, Lemma 3.5 of Part I]).

We denote D :=
⋃
j∈ZDj . ForQ ∈ Dj , we define the side length ofQ as `(Q)=2−j .

Notice that `(Q) . diam(Q) ≤ `(Q). Actually it may happen that a µ-cube Q belongs
to Dj ∩Dk with j 6= k. In this case, `(Q) is not well defined. However, this problem can
be solved in many ways. For example, the reader may think that a µ-cube is not only a
subset of suppµ, but a couple (Q, j), where Q is a subset of suppµ and j ∈ Z is such
that Q ∈ Dj .
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Given a > 1 and Q ∈ D, we set aQ := {x ∈ suppµ : dist(x,Q) ≤ (a − 1)`(Q)}.
Observe that diam(aQ) ≤ diam(Q)+ 2(a − 1)`(Q) ≤ (2a − 1)`(Q).

2.4. Corona decomposition

Given an n-dimensional AD regular Radon measure µ on Rd , let D := {Q ∈ Dj :
j ∈ Z} be the dyadic lattice associated to µ introduced in Subsection 2.3. Following
[DS2, Definitions 3.13 and 3.19 of Part I], one says that µ admits a corona decomposition
if, for each η > 0 and θ > 0, one can find a triple (B,G,Trs), where B and G are two
subsets of D (the “bad µ-cubes” and the “good µ-cubes”) and Trs is a family of subsets
S ⊂ G (that we will call trees), which satisfy the following conditions:

(a) D = B ∪ G and B ∩ G = ∅.
(b) B satisfies the Carleson packing condition, i.e.,

∑
Q∈B:Q⊂R µ(Q) . µ(R) for all

R ∈ D.
(c) G =

⊎
S∈Trs S, i.e., any Q ∈ G belongs to only one S ∈ Trs.

(d) Each S ∈ Trs is coherent. This means that each S ∈ Trs has a unique maximal
element QS which contains all other elements of S as subsets, that Q′ ∈ S as soon as
Q′ ∈ D satisfies Q ⊂ Q′ ⊂ QS for some Q ∈ S, and that if Q ∈ S then either all
of the children of Q lie in S or none of them does (if Q ∈ Dj , the children of Q are
defined as the collection of µ-cubes Q′ ∈ Dj+1 such that Q′ ⊂ Q).

(e) The maximal µ-cubes QS , for S ∈ Trs, satisfy the Carleson packing condition. That
is,
∑
S∈Trs:QS⊂R µ(QS) . µ(R) for all R ∈ D.

(f) For each S ∈ Trs, there exists an n-dimensional Lipschitz graph 0S with constant
smaller than η such that dist(x, 0S) ≤ θ diam(Q) whenever x ∈ 2Q and Q ∈ S (one
can replace “x ∈ 2Q” by “x ∈ CcorQ” for any constant Ccor ≥ 2 given in advance,
by [DS2, Lemma 3.31 of Part I]).

It is shown in [DS1] (see also [DS2]) that if µ is uniformly rectifiable then it admits
a corona decomposition for all parameters k > 2 and η, θ > 0. Conversely, the existence
of a corona decomposition for a single set of parameters k > 2 and η, θ > 0 implies that
µ is uniformly rectifiable.

2.5. The α and β coefficients

Let µ be an n-dimensional AD regular Radon measure in Rd and D as in Subsection 2.3.
Given 1 ≤ p <∞ and a µ-cube Q ∈ D, one sets (see [DS2])

βp,µ(Q) = inf
L

{
1

`(Q)n

∫
2Q

(
dist(y, L)
`(Q)

)p
dµ(y)

}1/p

,

where the infimum is taken over all n-planes L in Rd . For p = ∞ one replaces the Lp

norm by the supremum norm. The β∞,µ coefficients were first introduced by P. Jones in
his celebrated work on rectifiability [Jn], while the βp,µ’s for 1 ≤ p <∞were introduced
by G. David and S. Semmes in their pioneering work on uniform rectifiability (see [DS1]
for example).
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Other coefficients that have proved useful in the study of uniform rectifiability and
boundedness of Calderón–Zygmund operators are the α coefficients introduced in [To4].
Let F ⊂ Rd be the closure of an open set. Given two finite Radon measures σ , ν on Rd ,
one sets distF (σ, ν) := sup{|

∫
f dσ −

∫
f dν| : Lip(f ) ≤ 1, supp f ⊂ F

}
. Finally,

given a µ-cube Q ∈ D, consider the closed ball BQ := B(zQ, 6
√
d `(Q)), where zQ

denotes the center of Q. Then one defines

αµ(Q) :=
1

`(Q)n+1 inf
c≥0, L

distBQ(µ, cH
n
L), (10)

where the infimum is taken over all constants c ≥ 0 and all n-planes L in Rd .
The following result characterizes the uniform rectifiability of µ in terms of the

α and β coefficients (see [DS1] for (a)⇔(b) and [To4] for (a)⇔(c)).

Theorem 2.8. Let p ∈ [1, 2] and let µ be an n-dimensional AD regular Radon measure
in Rd . The following are equivalent:

(a) µ is uniformly n-rectifiable.
(b)

∑
Q∈D:Q⊂R βp,µ(Q)

2`(Q)n . `(R)n for all µ-cubes R ∈ D.
(c)

∑
Q∈D:Q⊂R αµ(Q)

2`(Q)n . `(R)n for all µ-cubes R ∈ D.

For the case of µ = Hn
0 for some Lipschitz graph 0 = {x ∈ Rd : x = (y,A(y)),

y ∈ Rn}, one can take D = {Q̃ × Rd−n ∩ 0 : Q̃ ∈ D(Rn)}, where D(Rn) denotes the
standard dyadic lattice of Rn. For Q = (Q̃× Rd−n) ∩ 0 ∈ D, we set

α̃µ(Q) :=
1

`(Q̃)n+1
inf

c≥0, L
dist6Q̃×Rd−n(µ, cH

n
L), (11)

where the infimum is taken over all constants c ≥ 0 and all n-planes L in Rd . Then it is
easy to show that α̃µ(Q) ≈ αµ(Q) for all Q ∈ D.

One can also define β̃p,µ(Q) in an analogous manner. By Theorem 2.8,∑
Q∈D:Q⊂R

(β̃p,µ(Q)
2
+ α̃µ(Q)

2)`(Q)n ≤ C`(R)n (12)

for all R ∈ D, with C independent of R. Moreover, one can also show that this last
inequality also holds after replacing Q and R by k1Q and k2R for any k1, k2 ≥ 1 given
in advance, where kQ := (kQ̃× Rd−n) ∩ 0 for k > 0.

3. If 0 is an n-dimensional Lipschitz graph, then Vρ ◦ Tϕ : M(Rd)→ L1,∞(Hn
0) is a

bounded operator

The following result is contained in [MT, Theorem 1.1] (see also [M, Main Theorem
3.0.1]).
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Theorem 3.1. Let ρ > 2 and let µ be the n-dimensional Hausdorff measure restricted to
an n-dimensional Lipschitz graph. Then the operator Vρ ◦ T µ

ϕ̃ is bounded in L2(µ). The
bound of the norm only depends on n, d, K , ρ, ϕR, and the slope of the graph.

By very similar techniques to the ones used in the proof of the theorem above, one can
prove the following.

Theorem 3.2. Let ρ > 2 and let µ be the n-dimensional Hausdorff measure restricted to
an n-dimensional Lipschitz graph. Then the operator Vρ ◦ T µ

ϕ is bounded in L2(µ). The
bound of the norm only depends on n, d, K , ρ, ϕR, and the slope of the graph.

Sketch of proof. The first step consists in obtaining the following basic estimate: Fix a
cube P̃ ⊂ Rn. Set 0 := {x ∈ Rd : x = (y,A(y)), y ∈ Rn}, where A : Rn → Rd−n is a
Lipschitz function supported in P̃ , and set P := (P̃ ×Rd−n)∩ 0. Set µ := fHn

0 , where
f (x) = 1 for all x ∈ 0 \ P and C−1

0 ≤ f (x) ≤ C0 for all x ∈ P , for some constant
C0 > 0.

For each x ∈ 0, define

Wµ(x)2 :=
∑
m∈Z
|(Kϕ2−m ∗ µ)(x)− (Kϕ̃2−m ∗ µ)(x)|

2, (13)

Sµ(x)2 := sup
{εm}

∑
j∈Z

∑
m∈Z: εm,εm+1∈Ij

|(Kϕ εmεm+1
∗ µ)(x)|2, (14)

where Ij = [2−j−1, 2−j ) and the supremum is taken over all decreasing sequences
{εm}m∈Z of positive numbers. Then we claim that

‖Wµ‖2
L2(µ)

+ ‖Sµ‖2
L2(µ)

.
∑
Q∈D

(̃
αµ(C1Q)

2
+ β̃2,µ(Q)

2)`(Q)n, (15)

where C1 > 0 only depends on C0, n, d , K , ϕR, and Lip(A), and where D denotes the
dyadic lattice associated to Hn

0 defined after Theorem 2.8.
Let us prove the claim. If we define S̃µ like Sµ but replacing ϕ εmεm+1 by ϕ̃ εmεm+1 , in the

proof of Theorem 3.1 in [MT] it is shown that ‖S̃µ‖2
L2(µ)

is bounded above by the right
hand side of (15). The proof for ‖Sµ‖2

L2(µ)
is almost the same.

Let us deal now with Wµ. Fix D := (D̃ × Rd−n) ∩ 0 ∈ D with `(D) = 2−m and
x ∈ D. Let LD be an n-plane that minimizes α̃µ(C1D) in (11), where C1 > 0 is some
constant large enough which will be fixed later, and let σD := cDHn

LD
be a minimizing

measure for α̃µ(C1D). Let LxD be the n-plane parallel to LD which contains x, and set
σ xD := cDH

n
LxD

.

Since x ∈ D and `(D) = 2−m, (ϕ2−m(x−·)− ϕ̃2−m(x−·))K(x−·) is a function sup-
ported in C1D̃ × Rd−n (for some constant C1 large enough) and with Lipschitz constant
smaller than C2m(n+1). Moreover, by the antisymmetry of the function (ϕ2−m(x − ·) −

ϕ̃2−m(x−·))K(x−·), and since σ xD is a multiple of the n-dimensional Hausdorff measure
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on an n-plane which contains x, we have (Kϕ2−m ∗ σ
x
D)(x) − (Kϕ̃2−m ∗ σ

x
D)(x) = 0.

Therefore,

(Kϕ2−m ∗ µ)(x)− (Kϕ̃2−m ∗ µ)(x) = (K(ϕ2−m − ϕ̃2−m) ∗ µ)(x)

= (K(ϕ2−m − ϕ̃2−m) ∗ (µ− σD))(x)+ (K(ϕ2−m − ϕ̃2−m) ∗ (σD − σ
x
D))(x). (16)

Using the definition of α̃µ, we get

|(K(ϕ2−m − ϕ̃2−m) ∗ (µ− σD))(x)| . 2m(n+1) distC1D̃×Rd−n(µ, σD) . α̃µ(C1D).

(17)
Since LxD is a translation of LD , by standard estimates it is not hard to show that

|(K(ϕ2−m − ϕ̃2−m) ∗ (σD − σ
x
D))(x)| . 2m dist(x, LD) = dist(x, LD)/`(D). (18)

Let distH(E, F ) denote the Hausdorff distance of sets E,F ⊂ Rd , and set B̃D :=
6D̃ × Rd−n. If L1

D and L2
D denote a minimizing n-plane for β̃1,µ(D) and β̃2,µ(D),

respectively, one can show that distH(LD ∩ B̃D, L1
D ∩ B̃D) . α̃µ(D)`(D) and that

distH(L1
D ∩ B̃D, L

2
D ∩ B̃D) . β̃2,µ(D)`(D). This easily implies that dist(x, LD) .

dist(x, L2
D)+ β̃2,µ(D)`(D)+ α̃µ(D)`(D) for all x ∈ D. Applying this to (18), and using

also (17) and (16), we obtain

‖Wµ‖2
L2(µ)

=

∫ ∑
m∈Z
|(K(ϕ2−m − ϕ̃2−m) ∗µ)(x)|

2 dµ(x)

=

∑
m∈Z

∑
D∈D: `(D)=2−m

∫
D

|(K(ϕ2−m − ϕ̃2−m) ∗µ)(x)|
2 dµ(x)

.
∑
m∈Z

∑
D∈D: `(D)=2−m

∫
D

(
dist(x, L2

D)/`(D)+ β̃2,µ(D)+ α̃µ(C1D)
)2
dµ(x)

.
∑
D∈D

(̃
αµ(C1D)

2
+ β̃2,µ(D)

2)`(D)n,
which proves (15).

Let now µ be as in Theorem 3.2. Using (15) and Theorem 3.1, one can show that there
exists C > 0 such that, for any cube D̃ ⊂ Rn and any g ∈ L∞(µ) supported inD (where
D := D̃ × Rd−n), ∫

D

((Vρ ◦ T µ
ϕ )g)

2 dµ ≤ C‖g‖2L∞(µ)µ(D).

This yields the endpoint estimates Vρ ◦ T µ
ϕ : H

1(µ)→ L1(µ) and Vρ ◦ T µ
ϕ : L

∞(µ)→

BMO(µ), where H 1(µ) denotes the atomic Hardy space related to µ. Then by inter-
polation, one deduces that Vρ ◦ T µ

ϕ is bounded in L2(µ). Since this part of the proof is
analogous to the one in the proof of Theorem 3.1 (see [MT, Theorem 1.1]), we omit it. ut
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3.1. Proof of Theorem 2.5

The proof of Theorem 2.5 uses the Calderón–Zygmund decomposition of Lemma 2.7
and rather standard arguments. Set µ := Hn

0∩B , where B ⊂ Rd is some fixed ball. Let
ν ∈ M(Rd) be a finite Radon measure with compact support and λ > 2d+1

‖ν‖/‖µ‖. We
will show that

µ({x ∈ Rd : (Vρ ◦ Tϕ)ν(x) > λ}) ≤
C

λ
‖ν‖, (19)

whereC > 0 depends on n, d ,K , ρ and 0, but not onB. Let us check that this implies that
Vρ ◦Tϕ is bounded fromM(Rd) into L1,∞(Hn

0). First, we show that (19) also holds for ν
without compact support. Set νN = χB(0,N)ν and let N0 be such that suppµ ⊂ B(0, N0).
Then it is not hard to show that, for x ∈ suppµ,

|(Vρ ◦ Tϕ)ν(x)− (Vρ ◦ Tϕ)νN (x)| ≤ C
|ν|(Rd \ B(0, N))

N −N0
,

thus (Vρ ◦ Tϕ)νN (x) → (Vρ ◦ Tϕ)ν(x) for all x ∈ suppµ, and since the estimate
(19) holds by assumption for νN , letting N → ∞, we deduce that it also holds for ν.
Now, by increasing the size of the ball B and by monotone convergence, we deduce that
Hn
0({x ∈ Rd : (Vρ ◦ Tϕ)ν(x) > λ}) ≤ Cλ−1

‖ν‖, as desired.
To prove (19) for ν ∈ M(Rd) with compact support, let {Qj }j be the almost disjoint

family of cubes of Lemma 2.7, and set � :=
⋃
j Qj and Rj := 6Qj . Then we can write

ν = gµ+ νb, with

gµ = χRd\�ν +
∑
j

bjµ and νb =
∑
j

ν
j
b :=

∑
j

(wjν − bjµ),

where the functions bj satisfy (6)–(8) and wj = χQj (
∑
k χQk )

−1.
By the subadditivity of Vρ ◦ Tϕ , we have

µ({x ∈ Rd : (Vρ ◦ Tϕ)ν(x) > λ})

≤ µ({x ∈ Rd : (Vρ ◦ T µ
ϕ )g(x) > λ/2})+ µ({x ∈ Rd : (Vρ ◦ Tϕ)νb(x) > λ/2}). (20)

Since Vρ ◦T
Hn
0

ϕ is bounded in L2(Hn
0) by Theorem 3.2, it is easy to show that Vρ ◦T µ

ϕ

is bounded in L2(µ), with a bound independent of B. Notice that |g| ≤ Cλ by (5) and (8).
Then using (7),

µ({x ∈ Rd : (Vρ ◦ T µ
ϕ )g(x) > λ/2}) .

1
λ2

∫
|(Vρ ◦ T µ

ϕ )g|
2 dµ .

1
λ2

∫
|g|2 dµ

.
1
λ

∫
|g| dµ .

1
λ

(
|ν|(Rd \�)+

∑
j

∫
Rj

|bj | dµ

)

.
1
λ

(
|ν|(Rd \�)+

∑
j

|ν|(Qj )

)
.
‖ν‖

λ
. (21)
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Let �̂ :=
⋃
j 2Qj . By (3), we have µ(�̂) ≤

∑
j µ(2Qj ) . λ−1∑

j |ν|(Qj ) .

λ−1
‖ν‖. We are going to show now that

µ({x ∈ Rd \ �̂ : (Vρ ◦ Tϕ)νb(x) > λ/2}) ≤
C

λ
‖ν‖; (22)

then (19) is a direct consequence of (20)–(22) and the estimate µ(�̂) . λ−1
‖ν‖. Since

Vρ ◦ Tϕ is sublinear,

µ({x ∈ Rd \ �̂ : (Vρ ◦ Tϕ)νb(x) > λ/2}) .
1
λ

∑
j

∫
Rd\�̂

(Vρ ◦ Tϕ)νjb dµ

≤
1
λ

∑
j

∫
Rd\2Rj

(Vρ ◦ Tϕ)νjb dµ+
1
λ

∑
j

∫
2Rj \2Qj

(Vρ ◦ Tϕ)νjb dµ. (23)

We are going to estimate the two terms on the right of (23) separately. Let us start with
the first one. Given j and x ∈ suppµ \ 2Rj , let {εm}m∈Z be a decreasing sequence of
positive numbers (which depend on j and x, i.e. εm ≡ εm(j, x)) such that

(Vρ ◦ Tϕ)νjb (x) ≤ 2
(∑
m∈Z
|(Kϕεmεm+1

∗ ν
j
b )(x)|

ρ
)1/ρ

. (24)

If we set Ik := [2−k−1, 2−k), we can decompose Z = S ∪ L, where

L := {m ∈ Z : εm ∈ Ik, εm+1 ∈ Ii for some i > k},

S :=
⋃
k∈Z

Sk, Sk := {m ∈ Z : εm, εm+1 ∈ Ik}.

Let zj denote the center ofQj (and of Rj ). Then, since νjb (Rj ) = 0 and supp νjb ⊂ Rj ,

|(Kϕεmεm+1
∗ ν

j
b )(x)| =

∣∣∣∣∫ ϕεmεm+1
(x − y)K(x − y) dν

j
b (y)

∣∣∣∣
≤

∫
|ϕεmεm+1

(x − y)K(x − y)− ϕεmεm+1
(x − zj )K(x − zj )| d|ν

j
b |(y). (25)

If m ∈ L, it is easy to see that |∇(ϕεmεm+1K)(t)| ≤ |∇(ϕεm+1K)(t)| + |∇(ϕεmK)(t)| .

|t |−n−1 for all t ∈ Rd \ {0}. Moreover, since x ∈ Rd \ 2Rj and supp νjb ⊂ Rj , there are
finitely many m ∈ L such that (Kϕεmεm+1 ∗ ν

j
b )(x) 6= 0, and their number only depends

on n and d. On the other hand, if m ∈ Sk , it is not hard to show that |∇(ϕεmεm+1K)(t)| .
2k|εm − εm+1| |t |

−n−1. Actually, this follows from the fact that (ϕεmεm+1K)(t) 6= 0 only if
|t | ≈ 2−k and the estimates

|ϕ εmεm+1
(t)| =

∣∣∣∣ϕR( |t |εm+1

)
− ϕR

(
|t |

εm

)∣∣∣∣ ≤ ‖ϕ′R‖L∞(R)∣∣∣∣ |t |εm+1
−
|t |

εm

∣∣∣∣
= ‖ϕ′R‖∞|t |

εm − εm+1

εmεm+1
. 2k|εm − εm+1| (26)
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and

|∂t i (ϕ
εm
εm+1

(t))| ≤

∣∣∣∣ϕ′R( |t |εm
)

1
εm
− ϕ′R

(
|t |

εm+1

)
1

εm+1

∣∣∣∣
≤

∣∣∣∣ϕ′R( |t |εm
)∣∣∣∣ ∣∣∣∣ 1

εm
−

1
εm+1

∣∣∣∣+ ∣∣∣∣ϕ′R( |t |εm
)
− ϕ′R

(
|t |

εm+1

)∣∣∣∣ 1
εm+1

≤

(
‖ϕ′R‖∞ + ‖ϕ

′′

R‖∞
|t |

εm+1

)
εm − εm+1

εmεm+1
. 2k(εm − εm+1)|t |

−1, (27)

where 1 ≤ i ≤ d and t i denotes the ith coordinate of t ∈ Rd (recall that εm ≈ εm+1 ≈

2−k form ∈ Sk and we assumed |t | ≈ 2−k). Similarly to the casem ∈ L, there are finitely
many k ∈ Z such that suppϕ2−k

2−k−1(x − ·) ∩ Rj 6= ∅, and their number only depends on n

and d (notice that suppϕεmεm+1(x − ·) ⊂ suppϕ2−k
2−k−1(x − ·) for all m ∈ Sk).

From these estimates and remarks, and (24), (25), we obtain

(Vρ ◦ Tϕ)νjb (x) .
∑
k∈Z

∑
m∈Sk
|(Kϕεmεm+1

∗ ν
j
b )(x)| +

∑
m∈L
|(Kϕεmεm+1

∗ ν
j
b )(x)|

.
∑

k∈Z: suppϕ2−k

2−k−1 (x−·)∩Rj 6=∅

∑
m∈Sk

2k|εm − εm+1| |x − zj |
−n−1`(Rj )‖ν

j
b‖

+

∑
m∈L: suppϕεmεm+1 (x−·)∩Rj 6=∅

|x − zj |
−n−1`(Rj )‖ν

j
b‖ . |x − zj |

−n−1`(Rj )‖ν
j
b‖

for all j and x ∈ suppµ \ 2Rj . Therefore, since µ has n-dimensional growth and ‖νjb‖ .
|ν|(Qj ), and since the Qj ’s are almost disjoint,∑

j

∫
Rd\2Rj

(Vρ ◦ Tϕ)νjb dµ .
∑
j

`(Rj )‖ν
j
b‖

∫
Rd\2Rj

|x − zj |
−n−1 dµ

.
∑
j

‖ν
j
b‖ . ‖ν‖. (28)

Let us now estimate the second term on the right hand side of (23). As above, given j
and x ∈ 2Rj \ 2Qj , let {εm}m∈Z be a decreasing sequence of positive numbers such that

(Vρ ◦ Tϕ)(wjν)(x) ≤ 2
(∑
m∈Z
|(Kϕεmεm+1

∗ (wjν))(x)|
ρ
)1/ρ

,

where wj = χQj (
∑
k χQk )

−1. Since ρ > 2, Vρ ◦ Tϕ is sublinear, and since νjb =
wjν − bjµ, for x ∈ 2Rj \ 2Qj we have

(Vρ ◦ Tϕ)νjb (x) ≤ (Vρ ◦ Tϕ)(wjν)(x)+ (Vρ ◦ T )(bjµ)(x)

≤ 2
∑
m∈Z
|(Kϕεmεm+1

∗ (wjν))(x)| + (Vρ ◦ T µ
ϕ )bj (x)

. |ν|(Qj )|x − zj |
−n
+ (Vρ ◦ T µ

ϕ )bj (x).
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Since Vρ ◦ T µ
ϕ is bounded in L2(µ), using the estimate above and Cauchy–Schwarz we

get ∑
j

∫
2Rj \2Qj

(Vρ ◦ Tϕ)νjb dµ

.
∑
j

∫
2Rj \2Qj

|ν|(Qj )

|x − zj |n
dµ(x)+

∑
j

∫
2Rj \2Qj

(Vρ ◦ T µ
ϕ )bj dµ

.
∑
j

|ν|(Qj )
µ(2Rj )
`(Qj )n

+

∑
j

‖(Vρ ◦ T µ
ϕ )bj‖L2(µ)µ(2Rj )

1/2

.
∑
j

|ν|(Qj )+
∑
j

‖bj‖L∞(µ)µ(Rj ) .
∑
j

|ν|(Qj ) . ‖ν‖.

Together with (28) and (23), this proves (22), and Theorem 2.5 follows.

4. If µ is a uniformly n-rectifiable measure, then Vρ ◦ T µ
ϕ : L

p(µ)→ Lp(µ) is a
bounded operator for 1 < p <∞

The purpose of this section is to prove the following theorem and the subsequent corollary.

Theorem 4.1. Let µ be an n-dimensional AD regular Radon measure in Rd and let
ρ > 2. Assume that there exist constants C0 and C1 such that, for each ball B centered
in suppµ, there is a set F = FB such that:

(a) µ(F ∩ B) ≥ C0µ(B),

(b) Vρ ◦ Tϕ is bounded from M(Rd) to L1,∞(Hn
F ) with constant bounded by C1.

Then Vρ ◦ Tϕ is bounded from M(Rd) to L1,∞(µ), and Vρ ◦ T µ
ϕ is a bounded operator

in Lp(µ) for all 1 < p <∞.

Corollary 4.2. Ifµ is an n-dimensional AD regular uniformly n-rectifiable measure, then
Vρ ◦T µ

ϕ is a bounded operator in Lp(µ) for all 1 < p <∞ and ρ > 2. Moreover, Vρ ◦Tϕ
is bounded from M(Rd) to L1,∞(µ), so Vρ ◦ T µ

ϕ is also of weak type (1, 1).

Proof. Recall from [DS2, Definition 1.26] that a Radon measure ν in Rd has BPLG (big
pieces of Lipschitz graphs) if ν is n-dimensional AD regular and there exist constants
C1 > 0 and θ > 0 such that, for any x ∈ supp ν and 0 < r < diam(supp ν), there is
(a rotation and translation of) an n-dimensional Lipschitz graph 0 with constant less than
C1 such that ν(0 ∩B(x, r)) ≥ θrn. Thus, if ν has BPLG, the assumption (a) of Theorem
4.1 is satisfied for ν by taking F = 0, while Theorem 2.5 implies that the assumption
(b) holds with a uniform constant. Therefore, from Theorem 4.1 we deduce that, if ν has
BPLG and ρ > 2, then Vρ ◦ Tϕ is bounded from M(Rd) to L1,∞(ν).

Similarly, a measure ν has (BP)2LG (big pieces of big pieces of Lipschitz graphs) if
there exist constants Cg , θ , and 0 < α ≤ 1 such that, if B is any ball centered in supp ν,
then there is an n-dimensional AD regular set F ⊂ Rd (with constant bounded by Cg)
such that ν(F ∩ B) ≥ αν(B) and Hn

F has BPLG with uniform constants. So Vρ ◦ Tϕ is
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a bounded operator from M(Rd) to L1,∞(Hn
F ), by the comments above. Hence, we can

apply once again Theorem 4.1 to ν (now (b) is satisfied for the big pieces F of ν), and
we deduce that, for any measure ν which has (BP)2LG, Vρ ◦ Tϕ is bounded from M(Rd)
to L1,∞(ν). Similar arguments show that Vρ ◦ T ν

ϕ is a bounded operator in Lp(ν) for all
1 < p <∞.

Finally, from [DS2, p. 22] and the remark in [DS2, p. 16], we know that if µ is
n-dimensional AD regular, then being uniformly n-rectifiable is equivalent to having
(BP)2LG. Therefore, the corollary is proved by applying the comments above to ν = µ.

ut

Since the arguments for proving Theorem 4.1 are more or less standard in Calderón–
Zygmund theory, for brevity we will only sketch its proof (see [To5, Chapter 2] or [DS2,
Proposition 1.28 of Part I] for a similar argument).

Sketch of proof of Theorem 4.1. The proof follows by the so-called good λ inequality
method. Fix ρ > 2 and let Mµ denote the Hardy–Littlewood maximal operator

Mµν(x) := sup
r>0

|ν|(B(x, r))

µ(B(x, r))
for ν ∈ M(Rd) and x ∈ suppµ.

The good λ inequality: there exists some absolute constant η > 0 such that for all ε > 0
there exists δ := δ(ε) > 0 such that

µ({x ∈ Rd : (Vρ ◦ Tϕ)ν(x) > (1+ ε)λ, Mµν(x) ≤ δλ})

≤ (1− η)µ({x ∈ Rd : (Vρ ◦ Tϕ)ν(x) > λ}) (29)

for all λ > 0 and ν ∈ M(Rd). It is easy to check that this implies that Vρ ◦ Tϕ is bounded
from M(Rd) to L1,∞(µ), and that Vρ ◦ T µ

ϕ is bounded in Lp(µ) for all 1 < p <∞, by
standard arguments (recall that Mµ is bounded in these spaces).

The proof of (29) is quite standard. The interested reader may look at [M, Theorem
5.2.1] for the detailed proof, or at [To5, Chapter 2] for similar arguments. The only point
we should mention is that, in order to pursue the good λ inequality method, one needs the
following estimate: Let ν ∈ M(Rd), consider a ball B ⊂ Rd and take x, z ∈ B. Then

|(Vρ ◦ Tϕ)(χRd\2Bν)(x)− (Vρ ◦ Tϕ)(χRd\2Bν)(z)| . Mµν(x). (30)

We finish the sketch of proof of Theorem 4.1 by showing (30). Since x, z ∈ B and Vρ ◦Tϕ
is sublinear and positive, by the mean value theorem we have

|(Vρ ◦ Tϕ)(χRd\2Bν)(x)− (Vρ ◦ Tϕ)(χRd\2Bν)(z)|

≤ sup
εm

(∑
m∈Z
|(Kϕεmεm+1

∗ (χRd\2Bν))(x)− (Kϕ
εm
εm+1
∗ (χRd\2Bν))(z)|

ρ
)1/ρ

≤ sup
εm

(∑
m∈Z

(∫
Bm(x,z)

|∇(ϕεmεm+1
K)(ux,z(y)− y)| |x − z| d|ν|(y)

)ρ)1/ρ

, (31)
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whereBm(x, z) := (Rd \ 2B)∩(suppϕεmεm+1(x−·)∪suppϕεmεm+1(z−·)) and ux,z(y) is some
point on the segment joining x and z. For each x and z, let εm ≡ εm(x, z) be a sequence
that realizes the supremum on the right hand side of (31). Given εm > 0, let j (εm) denote
the integer such that εm ∈ [2−j (εm)−1, 2−j (εm)). For j ∈ Z set Ij := [2−j−1, 2−j ). As
usual, we decompose Z = S ∪ L, where

S :=
⋃
j∈Z

Sj , Sj := {m ∈ Z : εm, εm+1 ∈ Ij },

L := {m ∈ Z : εm ∈ Ii, εm+1 ∈ Ij for some i < j}.

Notice that if 2−j+2 < r(B), where r(B) denotes the radius of B, then Bm(x, z) = ∅
for all m ∈ Sj . Therefore, we can assume that j ≤ log2(4/r(B)). If m ∈ Sj , then
Bm(x, z) ⊂ B(x, 2−j+3), and for t ∈ supp(ϕεmεm+1K) we have |∇(ϕεmεm+1K)(t)| .
2j (n+2)

|εm − εm+1| (see (26) and (27)). If m ∈ L, we easily see that |∇(ϕεmεm+1K)(t)|

. |t |−n−1. Therefore, using (31) and the facts that ρ > 2, the sets Bm(x, z) have bounded
overlap for m ∈ L, and |x − z| . r(B), we get

|(Vρ ◦ Tϕ)(χRd\2Bν)(x)− (Vρ ◦ Tϕ)(χRd\2Bν)(z)|

.
∑

j≤log2(4/r(B))

∑
m∈Sj
|x − z|2j (n+2)

|εm − εm+1|

∫
B(x,2−j+3)

d|ν|(y)

+ |x − z|
∑
m∈L

∫
Bm(x,z)

|x − y|−n−1 d|ν|(y)

.
∑

j≤log2(4/r(B))

r(B)2j (n+1)
∫
B(x,2−j+3)

d|ν|(y)+ r(B)

∫
Rd\2B

d|ν|(y)

|x − y|n+1

.
∑

j≤log2(4/r(B))

r(B)2j

µ(B(x, 2−j+3))

∫
B(x,2−j+3)

d|ν|(y)

+ r(B)
∑
k≥1

∫
2k+2r(B)≥|x−y|≥2k−1r(B)

d|ν|(y)

|x − y|n+1

. Mµν(x)+
∑
k≥1

2−k

µ(B(x, 2k+2r(Bi)))

∫
B(x,2k+2r(B))

d|ν|(y) . Mµν(x). ut

Remark 4.3. Notice that, to prove (30), it is a key fact that we are considering smooth
truncations (given by ϕR) in the definition of Tϕ . These computations are no longer valid
if one replaces Tϕ by T .

5. If µ is a uniformly n-rectifiable measure, then Vρ ◦ T µ
: L2(µ)→ L2(µ) is a

bounded operator

This section is devoted to the proof of the following result.

Theorem 5.1. Let ρ > 2 and let µ be an n-dimensional AD regular Radon measure
on Rd . If µ is uniformly n-rectifiable, then Vρ ◦ T µ is a bounded operator in L2(µ).
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5.1. Short and long variation

Given j ∈ Z, set Ij := [2−j−1, 2−j ). Then, using the triangle inequality, we can split
the variation operator into the so-called short variation and long variation operators,
(Vρ ◦ T µ)f (x) ≤ (VS

ρ ◦ T µ)f (x)+ (VL
ρ ◦ T µ)f (x), where

(VS
ρ ◦ T µ)f (x) := sup

{εm}

(∑
j∈Z

∑
εm,εm+1∈Ij

|(Kχ εmεm+1
∗ (fµ))(x)|ρ

)1/ρ
,

(VL
ρ ◦ T µ)f (x) := sup

{εm}

( ∑
m∈Z: εm∈Ij , εm+1∈Ik

for some j<k

|(Kχ εmεm+1
∗ (fµ))(x)|ρ

)1/ρ
, (32)

and, in both cases, the pointwise supremum is taken over all sequences {εm}m∈Z of posi-
tive numbers decreasing to zero. To prove Theorem 5.1 we will show that both the short
and long variation operators are bounded in L2(µ).

5.2. L2(µ) boundedness of VL
ρ ◦ T µ

The L2(µ)-norm of the long variation operator VL
ρ ◦ T µ can be handled by comparing it

with its smoothed version Vρ ◦T µ
ϕ , using Corollary 4.2, and estimating the error terms by

the short variation operator.

Lemma 5.2. We have ‖(VL
ρ ◦ T µ)f ‖L2(µ) . ‖(VS

ρ ◦ T µ)f ‖L2(µ) + ‖f ‖L2(µ).

Proof. We decompose

((VL
ρ ◦ T µ)f (x))ρ = sup

{εm}

∑
m∈Z: εm∈Ij , εm+1∈Ik

for some j<k

|(Kχ εmεm+1
∗ (fµ))(x)|ρ

. sup
{εm}

∑
m∈Z:

εm∈Ij , εm+1∈Ik
for some j<k

(
|(K(χ εmεm+1

− ϕεmεm+1
) ∗ (fµ))(x)|ρ + |(Kϕεmεm+1

∗ (fµ))(x)|ρ
)

. sup
{εm}

∑
m∈Z: εm∈Ij , εm+1∈Ik

for some j<k

|(K(χ εmεm+1
− ϕεmεm+1

) ∗ (fµ))(x)|ρ + ((Vρ ◦ T µ
ϕ )f (x))

ρ . (33)

For simplicity, we denote by ((VL
ρ ◦ T

µ
χ−ϕ)f (x))

ρ the first term on the right hand side
of (33). Notice that, given ε, δ > 0, we have χ δε − ϕ

δ
ε = (χε − ϕε) − (χδ − ϕδ). Recall

that, in the definition of ϕR in Definition 2.1, we have taken χ[4,∞) ≤ ϕR ≤ χ[1/4,∞).
Hence, given t ≥ 0,

χR(t)− ϕR(t) = χ[1,∞)(t)−

∫ 4

1/4
ϕ′R(s)χ[s,∞)(t) ds

=

∫ 4

1/4
ϕ′R(s)(χ[1,∞)(t)− χ[s,∞)(t)) ds

(that is, χR − ϕR is a convex combination of χ[1,∞) − χ[s,∞) for 1/4 ≤ s ≤ 4), and thus,
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by Fubini’s theorem,

(K(χε − ϕε) ∗ (fµ))(x)

=

∫ (
χR(|x − y|

2/ε2)− ϕR(|x − y|
2/ε2)

)
K(x − y)f (y) dµ(y)

=

∫ 4

1/4
ϕ′R(s)

∫ (
χ[1,∞)(|x − y|

2/ε2)− χ[s,∞)(|x − y|
2/ε2)

)
K(x − y)f (y) dµ(y) ds

=

∫ 4

1/4
ϕ′R(s)

∫
χ
ε
√
s

ε (x − y)K(x − y)f (y) dµ(y) ds

=

∫ 4

1/4
ϕ′R(s)((Kχ

ε
√
s

ε ∗ (fµ))(x)) ds.

Therefore, by the triangle inequality and Minkowski’s integral inequality, we get

‖(VL
ρ ◦ T

µ
χ−ϕ)f ‖L2(µ) ≤ 2

∥∥∥ sup
{εm∈Im:m∈Z}

(∑
m∈Z
|(K(χεm − ϕεm) ∗ (fµ))(x)|

ρ
)1/ρ∥∥∥

L2(µ)

≤ 2
∫ 4

1/4
ϕ′R(s)

∥∥∥ sup
{εm∈Im:m∈Z}

(∑
m∈Z
|(Kχ

εm
√
s

εm ∗ (fµ))(x)|ρ
)1/ρ∥∥∥

L2(µ)
ds.

One can easily verify that sup{εm∈Im:m∈Z}(
∑
m∈Z |(Kχ

εm
√
s

εm ∗ (fµ))(x)|ρ)1/ρ .

(VS
ρ ◦ T µ)f (x) for all s ∈ [1/4, 4] with uniform bounds. Hence

‖(VL
ρ ◦ T

µ
χ−ϕ)f ‖L2(µ) .

∫ 4

1/4
ϕ′R(s)‖(V

S
ρ ◦ T µ)f ‖L2(µ) ds

. ‖(VS
ρ ◦ T µ)f ‖L2(µ). (34)

Finally, using (33), (34), and Corollary 4.2, we obtain

‖(VL
ρ ◦ T µ)f ‖L2(µ) . ‖(VL

ρ ◦ T
µ
χ−ϕ)f ‖L2(µ) + ‖(Vρ ◦ T µ

ϕ )f ‖L2(µ)

. ‖(VS
ρ ◦ T µ)f ‖L2(µ) + ‖f ‖L2(µ). ut

Thus, to prove Theorem 5.1, it only remains to show the L2(µ) boundedness of VS
ρ ◦T µ.

5.3. L2(µ) boundedness of VS
ρ ◦ T µ

We will see that VS
2 ◦ T

µ is bounded in L2(µ), basically due to the big amount of can-
cellation given by the kernel defining T µ and the good geometric properties of µ. Since
VS
ρ ◦ T µ

≤ VS
2 ◦ T

µ for ρ ≥ 2, we will be done. One could try the same technique for
VL
ρ ◦ T µ; however, VL

2 ◦ T
µ is not bounded in L2(µ) in general, even for the case of

the Hilbert transform or in the setting of martingales (see [JKRW] for a precise example),
and this is why we should mantain ρ > 2 when we deal with Vρ ◦ T µ. Let us mention
that to pass from ρ > 2 to ρ = 2 in the study of the short variation operator is a rather
standard argument (see [CJRW1] for example).
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Given f ∈ L2(µ) and x ∈ suppµ, let {εm}m∈Z be a decreasing sequence of positive
numbers (depending on x) such that

((VS
2 ◦ T

µ)f (x))2 ≤ 2
∑
j∈Z

∑
εm,εm+1∈Ij

|(Kχ εmεm+1
∗ (fµ))(x)|2.

Given D ∈ Dj (see Section 2.3 for the definition of Dj ) and x ∈ D, we set SD(x) :=
{m ∈ Z : εm, εm+1 ∈ Ij }. Since ρ ≥ 2, we have

‖(VS
ρ ◦ T µ)f ‖2

L2(µ)
≤ ‖(VS

2 ◦ T
µ)f ‖2

L2(µ)

.
∫ ∑

j∈Z

∑
εm,εm+1∈Ij

|(Kχ εmεm+1
∗ (fµ))(x)|2 dµ(x)

=

∑
D∈D

∫
D

∑
m∈SD(x)

|(Kχ εmεm+1
∗ (fµ))(x)|2 dµ(x).

Let η and θ be two positive numbers that will be fixed below (see the proofs of Claims
5.5 and 5.6). Consider a corona decomposition of µ with parameters η and θ as in Sub-
section 2.4. Then we can decompose D = B ∪

⋃
S∈Trs S, so that

‖(VS
ρ ◦ T µ)f ‖2

L2(µ)
.
∑
D∈B

∫
D

∑
m∈SD(x)

|(Kχ εmεm+1
∗ (fµ))(x)|2 dµ(x)

+

∑
S∈Trs

∑
D∈S

∫
D

∑
m∈SD(x)

|(Kχ εmεm+1
∗ (fµ))(x)|2 dµ(x). (35)

Since the µ-cubes in B satisfy the Carleson packing condition, we can use Car-
leson’s embedding theorem to estimate the sum on the right hand side of (35) over
the µ-cubes in B. Carleson’s embedding theorem is a well known result in the area of
harmonic analysis (see [To5, Chapter 5] for example), but the most usual “continuous”
version of this result can be found in [Du, Theorem 9.5] for example. Thus, if we set
m
µ
Df := µ(D)

−1 ∫
D
f dµ for D ∈ D, we have∑

D∈B

∫
D

∑
m∈SD(x)

|(Kχ εmεm+1
∗ (fµ))(x)|2 dµ(x)

≤

∑
D∈B

∫
D

∑
m∈SD(x)

(∫
εm+1≤|x−y|≤εm

|K(x − y)| |f (y)| dµ(y)

)2

dµ(x)

.
∑
D∈B

∫
D

(
1

`(D)n

∫
5D
|f | dµ

)2

dµ ≈
∑
D∈B

(m
µ
5D|f |)

2µ(D) . ‖f ‖2
L2(µ)

. (36)

Now we are going to estimate the second term on the right hand side of (35), that is,
the sum over the µ-cubes in S, for all S ∈ Trs. To this end, we need to introduce some
notation.

Definition 5.3. Given R ∈ Dj for some j ∈ Z, let P(R) denote the µ-cube in Dj−1
which contains R (the parent of R), and set
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Ch(R) := {Q ∈ Dj+1 : Q ⊂ R},

V (R) := {Q ∈ Dj : Q ∩ B(y, `(R)) 6= ∅ for some y ∈ R}

(Ch(R) are the children of R, and V (R) stands for the vicinity of R). If R ∈ S for some
S ∈ Trs, we denote by Tr(R) the set of µ-cubes Q ∈ S such that Q ⊂ R (the tree of R).
Otherwise, i.e., if R ∈ B, we set Tr(R) := ∅. Finally, if Tr(R) 6= ∅, let Stp(R) denote
the set of µ-cubes Q ∈ B ∪ (G \ Tr(R)) such that Q ⊂ R and P(Q) ∈ Tr(R) (the
stopping µ-cubes relative to R), so actually Q ( R. On the other hand, if R ∈ B, we set
Stp(R) := {R}.

Notice that P(R) is a µ-cube but Ch(R) and V (R) are collections of µ-cubes. It is
not hard to show that the number of µ-cubes in Ch(R) and V (R) is bounded by some
constant depending only on n and the AD regularity constant of µ.

Fix S ∈ Trs, D ∈ S, and x ∈ D. To deal with the second term on the right hand side
of (35), we have to estimate the sum

∑
m∈SD(x) |(Kχ

εm
εm+1 ∗ (fµ))(x)|

2. By the definition
of SD(x), we have∑

m∈SD(x)
|(Kχ εmεm+1

∗ (fµ))(x)|2 =
∑

m∈SD(x)
|(Kχ εmεm+1

∗ (χD̃fµ))(x)|
2, (37)

where D̃ :=
⋃
R∈V (D) R. Since this union of µ-cubes is disjoint, we can decompose the

function χD̃f using a Haar basis adapted to D in the following manner:

χD̃f =
∑

R∈V (D)

(
(m

µ
Rf )χR +

∑
Q∈Tr(R)

1Qf +
∑

Q∈Stp(R)

1̃Qf
)
, (38)

where we have set
1Qf :=

∑
U∈Ch(Q)

χU (m
µ
Uf −m

µ
Qf ),

1̃Qf :=
∑

U∈Ch(Q)

χU (f −m
µ
Qf ) = χQ(f −m

µ
Qf ).

Using (38), we split the left hand side of (37) as follows:∑
m∈SD(x)

|(Kχ εmεm+1
∗ (fµ))(x)|2 .

∑
m∈SD(x)

∣∣∣ ∑
R∈V (D)

(Kχ εmεm+1
∗ ((m

µ
Rf )χRµ))(x)

∣∣∣2
+

∑
m∈SD(x)

∣∣∣ ∑
R∈V (D)

∑
Q∈Tr(R)

(Kχ εmεm+1
∗ (1Qfµ))(x)

∣∣∣2
+

∑
m∈SD(x)

∣∣∣ ∑
R∈V (D)

∑
Q∈Stp(R)

(Kχ εmεm+1
∗ (1̃Qfµ))(x)

∣∣∣2. (39)

In the following subsections, we will estimate each part separately. We could think that
the leading term on the right hand side of (39) is the second one, which corresponds
to the µ-cubes Q ∈ Tr(R) with R ∈ V (D). To control it, we will use the fact that in
these µ-cubes the measure µ is very close to a sufficiently flat Lipschitz graph, so good
estimates can be achieved using approximation arguments. To control the third term on
the right hand side of (39), we will basically use the fact that the number of cubes QS
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with S ∈ Trs or which belong to B is not too large (see the packing conditions (b) and
(e) in Subsection 2.4), so we will be able to apply Carleson’s embedding theorem. The
first term in (39) requires a much more detailed study, and we will need to use intensively
the multiscale analysis given by the αµ coefficients apart from Carleson’s embedding
theorem and the above-mentioned ideas.

5.3.1. Estimate of
∑
m∈SD(x) |

∑
R∈V (D)

∑
Q∈Tr(R)(Kχ

εm
εm+1 ∗ (1Qfµ))(x)|

2 from (39)

Lemma 5.4. Under the notation above, we have∑
S∈Trs

∑
D∈S

∫
D

∑
m∈SD(x)

∣∣∣ ∑
R∈V (D)

∑
Q∈Tr(R)

(Kχ εmεm+1
∗ (1Qfµ))(x)

∣∣∣2 dµ(x) . ‖f ‖2
L2(µ)

.

Proof. Let C0 > 0 be a small constant to be fixed below. Givenm ∈ SD(x) let Am(x) :=
A(x, εm+1, εm) = {y ∈ Rd : εm+1 ≤ |y − x| ≤ εm}, and given R ∈ V (D) let

J 1,R
m := {Q ∈ Tr(R) : Q ∩ Am(x) 6= ∅, `(Q) > C0(εm − εm+1)},

J 2,R
m := {Q ∈ Tr(R) : Q ∩ Am(x) 6= ∅, `(Q) ≤ C0(εm − εm+1)}.

Roughly speaking, J 1,R
m contains the µ-cubes which are big with respect to the thickness

of Am(x), and J 2,R
m contains the small ones. For the study of J 1,R

m , we will basically use
the fact that it does not contain too many µ-cubes. For J 2,R

m , using
∫
1Qf dµ = 0, we

will be reduced to those µ-cubes that “intersect” the boundary of Am(x), which are not
too many once again.

For Q ∈ J 1,R
m , we write |(Kχ εmεm+1 ∗ (1Qfµ))(x)| . `(D)−n‖χAm(x)1Qf ‖L1(µ).

The following claim will be proved in Subsection 5.3.2 below.

Claim 5.5. We have
∑
Q∈J

1,R
m
`(Q)n−1/2 . `(D)n−1/2.

Using the fact that V (D) has finitely many elements (depending only on n and the AD
regularity constant of µ), the Cauchy–Schwarz inequality, Claim 5.5, and the previous
estimate, we obtain∑
m∈SD(x)

∣∣∣ ∑
R∈V (D)

∑
Q∈J

1,R
m

(Kχ εmεm+1
∗ (1Qfµ))(x)

∣∣∣2
.

∑
R∈V (D)

∑
m∈SD(x)

( ∑
Q∈J

1,R
m

`(D)−n‖χAm(x)1Qf ‖L1(µ)

)2

.
∑

R∈V (D)

∑
m∈SD(x)

( ∑
Q∈J

1,R
m

`(Q)n−1/2
)( ∑

Q∈J
1,R
m

‖χAm(x)1Qf ‖
2
L1(µ)

`(D)2n`(Q)n−1/2

)

.
∑

R∈V (D)

∑
m∈SD(x)

∑
Q∈Tr(R)

‖χAm(x)1Qf ‖
2
L1(µ)

`(D)n+1/2`(Q)n−1/2

.
∑

R∈V (D)

∑
Q∈Tr(R)

(
`(Q)

`(D)

)1/2 ‖1Qf ‖
2
L1(µ)

`(D)n`(Q)n
. (40)
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We deal now with the µ-cubes Q ∈ J
2,R
m . Let zQ denote the center of Q. Since∫

1Qf dµ = 0, we can decompose

(Kχ εmεm+1
∗ (1Qfµ))(x)

=

∫ (
χAm(x)(y)K(x − y)− χAm(x)(zQ)K(x − zQ)

)
1Qf (y) dµ(y)

=

∫
χAm(x)(y)(K(x − y)−K(x − zQ))1Qf (y) dµ(y)

+

∫
(χAm(x)(y)− χAm(x)(zQ))K(x − zQ)1Qf (y) dµ(y)

=: T 1,µ
m (1Qf )(x)+ T

2,µ
m (1Qf )(x). (41)

For the first term on the right hand side of the last equality, we have the standard
estimate (by assuming C0 small enough, so any Q ∈ J 2,R

m is far from x)

|T 1,µ
m (1Qf )(x)| .

∫
Am(x)

|y− zQ|

|x− y|n+1 |1Qf (y)| dµ(y) .
`(Q)

`(D)n+1 ‖χAm(x)1Qf ‖L1(µ).

From this estimate and the Cauchy–Schwarz inequality, we obtain∑
m∈SD(x)

∣∣∣ ∑
R∈V (D)

∑
Q∈J

2,R
m

T 1,µ
m (1Qf )(x)

∣∣∣2
.

∑
R∈V (D)

∑
m∈SD(x)

( ∑
Q∈J

2,R
m

`(Q)

`(D)n+1 ‖χAm(x)1Qf ‖L1(µ)

)2

.
∑

R∈V (D)

( ∑
Q∈Tr(R)

`(Q)

`(D)n+1

∑
m∈SD(x)

‖χAm(x)1Qf ‖L1(µ)

)2

.
∑

R∈V (D)

( ∑
Q∈Tr(R)

`(Q)n+1

`(D)n+1

)( ∑
Q∈Tr(R)

‖1Qf ‖
2
L1(µ)

`(Q)n−1`(D)n+1

)
.

Since `(R) = `(D) for all R ∈ V (D), we have
∑
Q∈Tr(R)(`(Q)/`(D))

n+1
≤∑

Q∈D:Q⊂R(`(Q)/`(R))
n+1 . 1. Thus, using the fact that t .

√
t for all t . 1, we

conclude∑
m∈SD(x)

∣∣∣ ∑
R∈V (D)

∑
Q∈J

2,R
m

T 1,µ
m (1Qf )(x)

∣∣∣2
.

∑
R∈V (D)

∑
Q∈Tr(R)

(
`(Q)

`(D)

)1/2 ‖1Qf ‖
2
L1(µ)

`(Q)n`(D)n
. (42)

We deal now with the second term on the right hand side of (41). Given Q ∈ J 2,R
m ,

since supp(1Qf ) ⊂ Q, if Q ⊂ Am(x) or Q ⊂ (Am(x))
c then we obviously have

χAm(x)(y) − χAm(x)(zQ) = 0 for all y ∈ supp(1Qf ). Therefore, to estimate the sum of
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T
2,µ
m (1Qf )(x) over all Q ∈ J 2,R

m , we can replace J 2,R
m by

J 3,R
m := {Q ∈ Tr(R) : Q ∩ Am(x) 6= ∅, Q ∩ (Am(x))c 6= ∅, `(Q) ≤ C0(εm − εm+1)}.

For m ∈ SD(x) and Q ∈ J
3,R
m , we will use the estimate |T 2,µ

m (1Qf )(x)| .
`(D)−n‖1Qf ‖L1(µ).

Claim 5.6. We have
∑
Q∈J

3,R
m
`(Q)n−1/2 . `(D)n−1(εm − εm+1)

1/2.

Hence, using the fact that V (D) has finitely many terms, the Cauchy–Schwarz inequality,
assuming Claim 5.6 (see Subsection 5.3.2), and by the previous estimate, we deduce

∑
m∈SD(x)

∣∣∣ ∑
R∈V (D)

∑
Q∈J

2,R
m

T 2,µ
m (1Qf )(x)

∣∣∣2 .
∑

R∈V (D)

∑
m∈SD(x)

( ∑
Q∈J

3,R
m

‖1Qf ‖L1(µ)

`(D)n

)2

≤

∑
R∈V (D)

∑
m∈SD(x)

( ∑
Q∈J

3,R
m

`(Q)n−1/2

`(D)n−1/2

)( ∑
Q∈J

3,R
m

`(Q)1/2−n

`(D)n+1/2 ‖1Qf ‖
2
L1(µ)

)

.
∑

R∈V (D)

∑
m∈SD(x)

(
εm − εm+1

`(D)

)1/2 ∑
Q∈J

3,R
m

`(Q)1/2−n

`(D)n+1/2 ‖1Qf ‖
2
L1(µ)

≤

∑
R∈V (D)

∑
Q∈Tr(R)

`(Q)1/2−n

`(D)n+1/2 ‖1Qf ‖
2
L1(µ)

∑
m∈SD(x):Am(x)∩Q6=∅,
`(Q)≤C0(εm−εm+1)

(
εm − εm+1

`(D)

)1/2

.

The sum overm on the right hand side can be easily bounded by some constant depending
on C0, so we finally obtain

∑
m∈SD(x)

∣∣∣ ∑
R∈V (D)

∑
Q∈J

2,R
m

T 2,µ
m (1Qf )(x)

∣∣∣2 .
∑

R∈V (D)

∑
Q∈Tr(R)

(
`(Q)

`(D)

)1/2 ‖1Qf ‖
2
L1(µ)

`(Q)n`(D)n
.

(43)
Finally, combining (40)–(43), we conclude

∑
m∈SD(x)

∣∣∣ ∑
R∈V (D)

∑
Q∈Tr(R)

(Kχ εmεm+1
∗ (1Qfµ))(x)

∣∣∣2
.

∑
R∈V (D)

∑
Q∈Tr(R)

(
`(Q)

`(D)

)1/2 ‖1Qf ‖
2
L1(µ)

`(Q)n`(D)n
, (44)

Since ‖1Qf ‖L1(µ) . ‖1Qf ‖L2(µ)`(Q)
n/2 by Hölder’s inequality, since V (D) has

finitely many terms, and since `(R) = `(D) for all R ∈ V (D), we get
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∑
S∈Trs

∑
D∈S

∫
D

∑
m∈SD(x)

∣∣∣ ∑
R∈V (D)

∑
Q∈Tr(R)

(Kχ εmεm+1
∗ (1Qfµ))(x)

∣∣∣2dµ(x)
.
∑
S∈Trs

∑
D∈S

∑
R∈V (D)

∑
Q∈Tr(R)

(
`(Q)

`(D)

)1/2

‖1Qf ‖
2
L2(µ)

≤

∑
S∈Trs

∑
Q∈S

∑
R∈D:R⊃Q

∑
D∈V (R)

(
`(Q)

`(R)

)1/2

‖1Qf ‖
2
L2(µ)

.
∑
S∈Trs

∑
Q∈S

‖1Qf ‖
2
L2(µ)

≤

∑
Q∈D
‖1Qf ‖

2
L2(µ)

≤ ‖f ‖2
L2(µ)

.

To complete the proof of Lemma 5.4, it only remains to show Claims 5.5 and 5.6. ut

5.3.2. Proof of Claims 5.5 and 5.6. First of all, we need an auxiliary result whose easy
proof is left to the reader.

Lemma 5.7. Let 0 := {x ∈ Rd : x = (y,A(y)), y ∈ Rn} be the graph of a Lipschitz
function A : Rn → Rd−n such that Lip(A) is small enough. Then Hn

0(A
d(z, a, b)) .

(b − a)bn−1 for all 0 < a ≤ b and z ∈ 0.

Remark 5.8. Actually, to obtain the conclusion of the lemma, one only needs Lip(A)<1
(see [M, Lemma 4.1.9]). Let us mention that this assumption is sharp in the sense that if
Lip(A) ≥ 1 then the lemma fails. However, we do not need this stronger version for our
purposes.

Claims 5.5 and 5.6 follow from the next lemma, which will be proved using
Lemma 5.7.

Lemma 5.9. Let C0 > 0 be some constant depending only on n, d , and the AD regularity
constant of µ, and consider x ∈ D ∈ Dj for some j ∈ Z. Let ε ∈ [2−j−1, 2−j ). Given
k ≥ j and R ∈ V (D), set

3k := {Q ∈ Tr(R) ∩Dk : Q ⊂ A(x, ε − C02−k, ε + C02−k)}.

Then µ(
⋃
Q∈3k

Q) . 2−k`(D)n−1
≈ 2−k−j (n−1).

Proof. First of all, we can assume k � j (otherwise, the claim follows easily using the
AD regularity of µ), thus we may assume that dist(x,Q) ≥ 3ε/4. For simplicity, set
S ≡ Tr(R). By the property (f) of the corona decomposition of µ, there exists (a rotation
and translation of) an n-dimensional Lipschitz graph 0S with Lip(0S) ≤ η such that
dist(y, 0S) ≤ θ diam(Q) whenever y ∈ CcorQ and Q ∈ S, for some given constant
Ccor ≥ 2. Since x ∈ D and R ∈ V (D), we have x ∈ CcorQ assuming Ccor is large
enough, and so dist(x, 0S) ≤ θ diam(Q). Hence, if η and θ are small enough, one can
easily modify 0S inside B(x, ε/4) to obtain a Lipschitz graph 0xS such that x ∈ 0xS , and
moreover

Lip(0xS) ≤ η
′ for some η′ small enough, and 0xS\B(x, ε/4) = 0S\B(x, ε/4). (45)
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Using the fact that dist(x,Q) ≥ 3ε/4 for all Q ∈ 3k , that dist(zQ, 0S) ≤ θ diam(Q)
for the center zQ of Q, and the last part of (45), we deduce that dist(zQ, 0xS) ≤
θ diam(Q) for all Q ∈ 3k . So we have B(zQ, θ diam(Q)) ∩ 0xS 6= ∅, which
in turn yields Hn(0xS ∩ B(zQ, 2θ diam(Q))) & (θ diam(Q))n. Therefore, since
{B(zQ, 2θ diam(Q))}Q∈3k is a family with finite overlap bounded by some constant de-
pending only on n, θ , and the AD regularity constant of µ, we have

µ
( ⋃
Q∈3k

Q
)
≈

∑
Q∈3k

`(Q)n . θ−n
∑
Q∈3k

Hn
(
0xS ∩ B(zQ, 2θ diam(Q))

)
. θ−nHn

0xS

( ⋃
Q∈3k

B(zQ, 2θ diam(Q))
)

. θ−nHn
0xS

(
A(x, ε − C02−k, ε + C02−k)

)
. θ−n2−k−j (n−1),

where we have used Lemma 5.7 and that ε ≈ 2−j in the last inequality. ut

Proof of Claim 5.5. Recall that J 1,R
m := {Q ∈ Tr(R) : Q ∩ Am(x) 6= ∅, `(Q) ≥

C0(εm−εm+1)},whereR∈V (D) andD∈Dj . We have to check that
∑
Q∈J

1,R
m
`(Q)n−1/2

. `(D)n−1/2. We will split the sum into different scales and we will apply Lemma 5.9 at
each scale.

Given i ∈ Z such that 2−i ≥ C0(εm − εm+1), the number of µ-cubes Q in
Di such that Q ⊂ R and Q ∩ Am(x) 6= ∅ is bounded by C`(R)n−12i(n−1)

≈

2−j (n−1)+i(n−1), since for all those µ-cubes, Q ⊂ A(x, εm+1 − C2−i, εm + C2−i) ⊂
A(x, εm − C2−i+1, εm + C2−i+1) for some constant C > 0 large enough, and then by
Lemma 5.9, µ(

⋃
Q∈J

1,R
m ∩Di

Q) . 2−i`(D)n−1. Therefore,∑
Q∈J

1,R
m

`(Q)n−1/2
=

∑
i∈Z: i≥j

2i/2
∑

Q∈J
1,R
m ∩Di

`(Q)n .
∑

i∈Z: i≥j
2i/22−i`(D)n−1

≈ 2−j/2`(D)n−1
= `(D)n−1/2. ut

Proof of Claim 5.6. Recall that J 3,R
m :={Q∈Tr(R) : Q∩Am(x) 6=∅, Q∩ (Am(x))c 6=∅,

`(Q) ≤ C0(εm − εm+1)}, where R ∈ V (D) and D ∈ Dj . We have to check that∑
Q∈J

3,R
m

`(Q)n−1/2 . `(D)n−1(εm − εm+1)
1/2.

As before, we will split the sum into the different scales and we will apply Lemma 5.9 at
each scale. Given i ∈ Z such that 2−i ≤ C0(εm − εm+1), since for any Q ∈ J 3,R

m ∩ Di
we have Q ⊂ A(x, εm+1 − C2−i, εm+1 + C2−i) ∪ A(x, εm − C2−i, εm + C2−i) for
some constant C > 0 large enough, by Lemma 5.9 applied to both annuli we have
µ(
⋃
Q∈J

3,R
m ∩Di

Q) . 2−i`(D)n−1. Therefore,∑
Q∈J

3,R
m

`(Q)n−1/2
=

∑
i∈Z: i≥− log2(C0(εm−εm+1))

2i/2
∑

Q∈J
3,R
m ∩Di

`(Q)n

.
∑

i∈Z: i≥− log2(C0(εm−εm+1))

2−i/2`(D)n−1
≈ (εm − εm+1)

1/2`(D)n−1. ut
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5.3.3. Estimate of
∑
m∈SD(x) |

∑
R∈V (D)

∑
Q∈Stp(R)(Kχ

εm
εm+1 ∗ (1̃Qfµ))(x)|

2 from (39)

Lemma 5.10. Under the notation above, we have

∑
S∈Trs

∑
D∈S

∫
D

∑
m∈SD(x)

∣∣∣ ∑
R∈V (D)

∑
Q∈Stp(R)

(Kχ εmεm+1
∗ (1̃Qfµ))(x)

∣∣∣2dµ(x) . ‖f ‖2
L2(µ)

.

Proof. Recall the definitions of V (D), Tr(R) and Stp(R) in Definition 5.3. Given R in
V (D), consider a µ-cube Q ∈ Stp(R). If Tr(R) 6= ∅, then Q ∈ B ∪ (G \ Tr(R)), Q ⊂ R
and P(Q) ∈ Tr(R) (in particular,Q ( R). Take S ∈ Trs such that R ∈ S. By property (f)
of the corona decomposition (see Subsection 2.4), we have dist(y, 0S) ≤ θ diam(P (Q))
for all y ∈ CcorP(Q). Hence, dist(y, 0S) ≤ Cθ diam(Q) for all y ∈ CcorQ. On the other
hand, if Tr(R) = ∅ we have set Stp(R) = {R}. In this case, we have R ∈ B. Take S such
that D ∈ S. Since R ∈ V (D), we have R ⊂ CcorD if Ccor is chosen large enough, and
thus dist(y, 0S) ≤ Cθ diam(R) for all y ∈ C′R, where C is as above and C′ depends
on Ccor.

Taking into account the comments above, one can prove the following claims using
similar arguments to the ones in the proof of Claims 5.5 and 5.6.

Claim 5.11. Let x ∈ D ∈ D, R ∈ V (D), and m ∈ SD(x). Set J 1,R
m := {Q ∈ Stp(R) :

Q ∩ Am(x) 6= ∅, `(Q) ≥ C0(εm − εm+1)}. Then
∑
Q∈J

1,R
m
`(Q)n−1/2 . `(D)n−1/2.

Claim 5.12. Let x ∈ D ∈ D, R ∈ V (D), and m ∈ SD(x). Set J 3,R
m := {Q ∈ Stp(R) :

Q∩Am(x) 6= ∅, Q∩(Am(x))
c
6= ∅, `(Q) ≤ C0(εm−εm+1)}. Then

∑
Q∈J

3,R
m
`(Q)n−1/2

. `(D)n−1(εm − εm+1)
1/2.

The only properties of1Qf that we used to obtain (44) were that1Qf is supported in
Q and that

∫
1Qf dµ = 0. The function 1̃Qf is also supported in Q and has vanishing

integral. Thus, if we replace Tr(R) by Stp(R), Claims 5.5 and 5.6 by Claims 5.11 and
5.12, and 1Qf by 1̃Qf , the same arguments that gave us (44) yield

∑
m∈SD(x)

∣∣∣ ∑
R∈V (D)

∑
Q∈Stp(R)

(Kχ εmεm+1
∗ (1̃Qfµ))(x)

∣∣∣2
.

∑
R∈V (D)

∑
Q∈Stp(R)

`(Q)1/2−n

`(D)1/2+n
‖1̃Qf ‖

2
L1(µ)

. (46)

Below we will use the fact that ‖1̃Qf ‖2L1(µ)
`(Q)−n = (

∫
Q
|f − m

µ
Qf | dµ)

2`(Q)−n .
(m

µ
Q|f |)

2µ(Q). Notice that, by the definition of Stp(R) and since the corona decomposi-
tion is coherent (property (d)), anyQ ∈ Stp(R) is actually a maximal µ-cubeQS of some
S ∈ Trs or Q ∈ B (and in this case Tr(R) is empty). Hence, if we integrate (46) in D,
sum over all D ∈ S ∈ Trs, and change the order of summation, we get
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∑
S∈Trs

∑
D∈S

∫
D

∑
m∈SD(x)

∣∣∣ ∑
R∈V (D)

∑
Q∈Stp(R)

(Kχ εmεm+1
∗ (1̃Qfµ))(x)

∣∣∣2dµ(x)
.
∑
S∈Trs

∑
D∈S

∑
R∈V (D)

∑
Q∈Stp(R)

(
`(Q)

`(D)

)1/2 ‖1̃Qf ‖
2
L1(µ)

`(Q)n

.
∑
D∈D

∑
R∈V (D)

∑
S∈Trs:QS⊂R

(
`(QS)

`(D)

)1/2

(m
µ
QS
|f |)2µ(QS)

+

∑
D∈D

∑
R∈V (D)

∑
Q∈B:Q⊂R

(
`(Q)

`(D)

)1/2

(m
µ
Q|f |)

2µ(Q)

=

∑
S∈Trs

∑
R∈D:R⊃QS

∑
D∈V (R)

(
`(QS)

`(R)

)1/2

(m
µ
QS
|f |)2µ(QS)

+

∑
Q∈B

∑
R∈D:R⊃Q

∑
D∈V (R)

(
`(Q)

`(R)

)1/2

(m
µ
Q|f |)

2µ(Q).

Finally, using the fact that V (R) has finitely many elements, and that the µ-cubesQS

with S ∈ Trs and the µ-cubes Q ∈ B satisfy the Carleson packing condition (so we can
apply Carleson’s embedding theorem), we deduce∑
S∈Trs

∑
D∈S

∫
D

∑
m∈SD(x)

∣∣∣ ∑
R∈V (D)

∑
Q∈Stp(R)

(Kχ εmεm+1
∗ (1̃Qfµ))(x)

∣∣∣2 dµ(x)
.
∑
S∈Trs

(m
µ
QS
|f |)2µ(QS)

∑
R∈D:R⊃QS

`(QS)
1/2

`(R)1/2
+

∑
Q∈B

(m
µ
Q|f |)

2µ(Q)
∑

R∈D:R⊃Q

`(Q)1/2

`(R)1/2

.
∑
S∈Trs

(m
µ
QS
|f |)2µ(QS)+

∑
Q∈B

(m
µ
Q|f |)

2µ(Q) . ‖f ‖2
L2(µ)

. ut

5.3.4. Estimate of
∑
m∈SD(x) |

∑
R∈V (D)(Kχ

εm
εm+1∗((m

µ
Rf )χRµ))(x)|

2 from (39). Recall
the definitions of V (D) and Ch(R) in Definition 5.3. We will need the following auxiliary
lemma, which we prove for completeness, although we think it is known.

Lemma 5.13. Given D ∈ D and f ∈ L2(µ), set aD(f ) :=
∑
R∈V (D) |m

µ
Rf − m

µ
Df |.

Then there exists C > 0 depending only n and the AD regularity constant of µ such that∑
D∈D

aD(f )
2µ(D) ≤ C‖f ‖2

L2(µ)
.

Proof. By subtracting a constant if necessary, we can assume that f has mean zero.
Consider the representation of f with respect to the Haar basis associated to D, that
is, f =

∑
Q∈D1Qf . For m ∈ Z, we define the function um =

∑
Q∈Dm

1Qf , so
f =

∑
m∈Z um and the equality holds in L2(µ). Given j ∈ Z, define the operator

Sj (f ) :=
( ∑
D∈Dj

aD(f )
2χD

)1/2
.
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We will prove that there exists a sequence {σ(k)}k∈Z such that∑
k∈Z

σ(k) ≤ C <∞ and ‖Sj (um)‖L2(µ) . σ(|m− j |)‖um‖L2(µ). (47)

Assume for the moment that (47) holds. Then, since each Sj is sublinear, by the
Cauchy–Schwarz inequality and the orthogonality of the um’s,

∑
D∈D

aD(f )
2µ(D) =

∑
j∈Z

∫ ∑
D∈Dj

aD(f )
2χD dµ =

∑
j∈Z
‖Sj (f )‖

2
L2(µ)

=

∑
j∈Z

∥∥∥Sj(∑
m∈Z

um

)∥∥∥2

L2(µ)
≤

∑
j∈Z

(∑
m∈Z
‖Sj (um)‖L2(µ)

)2

≤

∑
j∈Z

(∑
m∈Z

σ(|m− j |)
)(∑

m∈Z
σ(|m− j |)−1

‖Sj (um)‖
2
L2(µ)

)
.
∑
j∈Z

∑
m∈Z

σ(|m− j |)‖um‖
2
L2(µ)

=

∑
m∈Z
‖um‖

2
L2(µ)

∑
j∈Z

σ(|m− j |)

.
∑
m∈Z
‖um‖

2
L2(µ)

= ‖f ‖2
L2(µ)

,

and the lemma follows. Let us verify (47) now. By definition,

‖Sj (um)‖
2
L2(µ)

=

∑
D∈Dj

( ∑
R∈V (D)

∣∣∣∣ ∑
Q∈Dm

∫
1Qf

(
χR

µ(R)
−

χD

µ(D)

)
dµ

∣∣∣∣)2

µ(D). (48)

Assume first that m ≥ j . If D ∈ Dj , R ∈ V (D), and Q ∈ Dm, then either Q ∩ R = ∅
or Q ⊂ R. In both cases, since 1Qf has mean zero and is supported in Q, we have∫
1Qf χR dµ = 0. Thus, the right hand side of (48) vanishes (obviously D ∈ V (D)),

and (47) follows.
Assume now that m < j . Set D̃ :=

⋃
R∈V (D) R. Recall that 1Qf :=∑

U∈Ch(Q) χU (m
µ
Uf−m

µ
Qf ), so1Qf is constant in eachU ∈ Ch(Q). Hence, if for some

U ∈ Ch(Q) we have D̃ ⊂ U or D̃ ⊂ suppµ \U , then (R∪D) ⊂ U or (R∪D)∩U = ∅
for all R ∈ V (D), and so∫

χU (m
µ
Uf −m

µ
Qf )

(
χR

µ(R)
−

χD

µ(D)

)
dµ

= (m
µ
Uf −m

µ
Qf )

∫
U

(
χR

µ(R)
−

χD

µ(D)

)
dµ = 0

for all R ∈ V (D). Therefore, if we set mµU,Qf := m
µ
Uf − m

µ
Qf , using the fact that

V (D) has finitely many elements and that
∫
|µ(R)−1χR − µ(D)

−1χD| dµ ≤ 2 for all
R ∈ V (D), we deduce from (48) that
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‖Sj (um)‖
2
L2(µ)

=

∑
D∈Dj

( ∑
R∈V (D)

∣∣∣∣ ∑
Q∈Dm

∫ ∑
U∈Ch(Q):

D̃∩U 6=∅, D̃∩U c 6=∅

χU m
µ
U,Qf

(
χR

µ(R)
−

χD

µ(D)

)
dµ

∣∣∣∣)2

µ(D)

.
∑
D∈Dj

( ∑
Q∈Dm

∑
U∈Ch(Q): D̃∩U 6=∅,

D̃∩U c 6=∅

|m
µ
U,Qf |

)2
µ(D)

=

∑
D∈Dj

( ∑
U∈Dm+1: D̃∩U 6=∅,

D̃∩U c 6=∅

|m
µ

U,P (U)f |
)2
µ(D). (49)

It is not hard to show that, since m < j and D ∈ Dj , the number of µ-cubes U ∈ Dm+1
such that D̃ ∩ U 6= ∅ and D̃ ∩ U c 6= ∅ is bounded by some constant depending only on
n and the AD regularity constant of µ (but not on the precise value of m). Hence,∑
D∈Dj

( ∑
U∈Dm+1: D̃∩U 6=∅,

D̃∩U c 6=∅

|m
µ

U,P (U)f |
)2
µ(D) .

∑
D∈Dj

∑
U∈Dm+1: D̃∩U 6=∅,

D̃∩U c 6=∅

|m
µ

U,P (U)f |
2µ(D)

=

∑
U∈Dm+1

|m
µ

U,P (U)f |
2µ
( ⋃
D∈Dj : D̃∩U 6=∅,

D̃∩U c 6=∅

D
)
. (50)

FixU ∈ Dm+1. Recall that D̃ :=
⋃
R∈V (D) R, so diam(D̃) ≈ diam(D). Thus, there exists

a constant τ0 > 0 such that⋃
D∈Dj : D̃∩U 6=∅, D̃∩U c 6=∅

D ⊂ {x ∈ U : dist(x, suppµ \ U) ≤ τ0`(D)}

∪ {x ∈ suppµ \ U : dist(x, U) ≤ τ0`(D)}

= {x ∈ U : dist(x, suppµ \ U) ≤ τ02m−j+1`(U)}

∪ {x ∈ suppµ \ U : dist(x, U) ≤ τ02m−j+1`(U)}.

If m � j , then τ := τ02m−j+1 < 1, so we can apply the small boundaries condi-
tion (9) of Subsection 2.3 to obtain µ(

⋃
D∈Dj : D̃∩U 6=∅, D̃∩U c 6=∅D) ≤ Cτ 1/C2−mn. On

the contrary, if |m − j | . 1, then τ 1/C
≈ 1, so µ(

⋃
D∈Dj : D̃∩U 6=∅, D̃∩U c 6=∅D) ≤

µ(C1U) . 2−mn ≈ τ 1/C2−mn, for some large constant C1 > 0. Thus, in any case,
µ(
⋃
D∈Dj : D̃∩U 6=∅, D̃∩U c 6=∅D) . 2(m−j)/C`(U)n, and combining this with (50) and (49)

we conclude that, for m < j ,

‖Sj (um)‖
2
L2(µ)

. 2(m−j)/C
∑

U∈Dm+1

|m
µ
Uf −m

µ

P(U)f |
2`(U)n

≈ 2(m−j)/C
∫ ∑

U∈Dm+1

χU |m
µ
Uf −m

µ

P(U)f |
2 dµ = 2−|m−j |/C‖um‖2L2(µ)

,

which gives (47) with σ(k) = 2−|k|/(2C) and finishes the proof of the lemma. ut
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Lemma 5.14. Under the notation above, we have∑
S∈Trs

∑
D∈S

∫
D

∑
m∈SD(x)

∣∣∣ ∑
R∈V (D)

(Kχ εmεm+1
∗ ((m

µ
Rf )χRµ))(x)

∣∣∣2 dµ(x) . ‖f ‖2
L2(µ)

.

Proof. Recall that, given D ∈ D, we have set D̃ :=
⋃
R∈V (D) R. For x ∈ D, we have

∑
m∈SD(x)

∣∣∣ ∑
R∈V (D)

(Kχ εmεm+1
∗ ((m

µ
Rf )χRµ))(x)

∣∣∣2
.

∑
m∈SD(x)

|(Kχ εmεm+1
∗ ((m

µ
Df )χD̃µ))(x)|

2

+

∑
m∈SD(x)

∣∣∣ ∑
R∈V (D)

(Kχ εmεm+1
∗ ((m

µ
Rf −m

µ
Df )χRµ))(x)

∣∣∣2. (51)

We are going to estimate the two terms on the right hand side of (51) separately. For the
second one, recall also that, given m ∈ SD(x), we have set Am(x) := A(x, εm+1, εm).
We write

|(Kχ εmεm+1
∗ ((m

µ
Rf −m

µ
Df )χRµ))(x)|

≤ |m
µ
Rf−m

µ
Df |

∫
Am(x)

|K(x−y)|χR(y) dµ(y) . |m
µ
Rf−m

µ
Df |µ(Am(x)∩R)`(D)

−n.

Therefore, interchanging the order of summation,∑
m∈SD(x)

∣∣∣ ∑
R∈V (D)

(Kχ εmεm+1
∗ ((m

µ
Rf −m

µ
Df )χRµ))(x)

∣∣∣2
.
( ∑
m∈SD(x)

∑
R∈V (D)

|m
µ
Rf −m

µ
Df |µ(Am(x) ∩ R)`(D)

−n
)2

≤

( ∑
R∈V (D)

|m
µ
Rf −m

µ
Df |

µ(R)

`(D)n

)2

≈

( ∑
R∈V (D)

|m
µ
Rf −m

µ
Df |

)2
= aD(f )

2,

where aD(f ) are the coefficients introduced in Lemma 5.13. If we integrate on D and
sum over all D ∈ S and S ∈ Trs, we can apply Lemma 5.13, and we finally obtain∑

S∈Trs

∑
D∈S

∫
D

∑
m∈SD(x)

∣∣∣ ∑
R∈V (D)

(Kχ εmεm+1
∗ ((m

µ
Rf −m

µ
Df )χRµ))(x)

∣∣∣2dµ(x)
.
∑
D∈D

aD(f )
2µ(D) . ‖f ‖2

L2(µ)
. (52)

Let us now estimate the first term on the right hand side of (51). Let LD be a min-
imizing n-plane for αµ(D), which is defined in (10), and let LxD be the n-plane par-
allel to LD which contains x. Given z ∈ Rd , let px0 denote the orthogonal projec-
tion onto LxD . Let g1, g2 : R → [0, 1] be such that supp g1 ⊂ (−2ε`(D), 2ε`(D)),
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supp g2 ⊂ (−`(D)ε, `(D)ε)
c, and g1+g2 = 1, where ε > 0 is some fixed constant small

enough. For z ∈ Rd , consider the projection onto LxD given by

px(z) :=

(
x+(px0 (z)−x)

|z− x|

|px0 (z)− x|

)
g2(|p

x
0 (z)−x|)+p

x
0 (z)g1(|p

x
0 (z)−x|). (53)

Since supp g2 does not contain the origin, px is well defined. Moreover, if z ∈ Rd is such
that g2(|p

x
0 (z)− x|) = 1, then |z− x| = |px(z)− x|.

Let C∗ > 0 be a small constant which will be fixed below. Assume that
αµ(10D) ≥ C∗. Then we can easily estimate

∑
m∈SD(x)

|(Kχ εmεm+1
∗((m

µ
Df )χD̃µ))(x)|

2
= |m

µ
Df |

2
∑

m∈SD(x)

∣∣∣∣ ∫
Am(x)∩D̃

K(x−y) dµ(y)

∣∣∣∣2
. |mµDf |

2
( ∑
m∈SD(x)

∫
Am(x)∩D̃

|K(x − y)| dµ(y)

)2

. |mµDf |
2
(∫

D̃

`(D)−n dµ(y)

)2

. |mµDf |
2 . |mµDf |

2αµ(10D)2. (54)

From now on, we assume that αµ(10D) < C∗. By assuming C∗ small enough, it is
not difficult to show that then the distance between D̃ and LxD is smaller than `(D)/1000.
Moreover, px restricted to {y ∈ Am(x) : dist(y, LxD) ≤ `(D)/1000} is a Lipschitz
function with Lipschitz constant depending only n, d, and the AD regularity constant
of µ. Furthermore, by taking ε small enough, we have

px(z) = x + (px0 (z)− x)
|z− x|

|px0 (z)− x|
(55)

for all z ∈ {y ∈ D̃ ∩ Am(x) : dist(y, LxD) ≤ `(D)/1000} ⊂ suppµ.
Recall that D ∈ S for some S ∈ Trs. Let QS be the maximal µ-cube of S, and set

νx := p
x
] (χ40QSµ), (56)

where px] denotes measure transport by px . Then, since suppµ ∩ Am(x) ⊂ D̃ by the
construction of D̃,

(Kχ εmεm+1
∗ ((m

µ
Df )χD̃µ))(x) = (m

µ
Df )

∫
Am(x)

K(x − y) dµ(y)

= (m
µ
Df )

∫
Am(x)

K(x − y) d(µ− νx)(y)+ (m
µ
Df )

∫
Am(x)

K(x − y) dνx(y)

=: U1m(x)+ U2m(x). (57)
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Claim 5.15. Under the notation above, we have∑
m∈SD(x)

|U1m(x)|2 . |mµDf |
2
(
β1,µ(D)

2
+ αµ(D)

2
+

(
dist(x, LD)
`(D)

)2)
.

Proof of Claim 5.15. By (55), y ∈ Am(x) if and only if px(y) ∈ Am(x) in the integral
defining U1m(x). Since |y − px(y)| . dist(y, LxD) ≤ dist(y, LD) + dist(x, LD) for all
y ∈ supµ ∩ Am(x),

|U1m(x)| ≤ |m
µ
Df |

∫
Am(x)

|K(x − y)−K(x − px(y))| dµ(y)

.
|m
µ
Df |

`(D)n+1

∫
Am(x)

|y − px(y)| dµ(y)

.
|m
µ
Df |

`(D)n+1

∫
Am(x)

(dist(y, LD)+ dist(x, LD)) dµ(y).

If L1
D denotes a minimizing n-plane for β1(D), then distH(LD ∩ BD, L1

D ∩ BD) .
αµ(D)`(D), so dist(y, LD) . dist(y, L1

D)+αµ(D)`(D) for y ∈ CD (see [To4]). There-
fore,∑
m∈SD(x)

|U1m(x)|2 .

(
|m
µ
Df |

`(D)n+1

∑
m∈SD(x)

∫
Am(x)

(dist(y, LD)+ dist(x, LD)) dµ(y)
)2

. |mµDf |
2
(
`(D)−n−1

∫
CD

(dist(y, LD)+ dist(x, LD)) dµ(y)
)2

. |mµDf |
2
(
β1,µ(D)

2
+ αµ(D)

2
+

(
dist(x, LD)
`(D)

)2)
. ut

Let us considerU2m(x) now. We can assume that νx is absolutely continuous with respect
to Hn

LxD
(for example, by convolving it with an approximation of the identity and making

a limiting argument). Let hx be the corresponding density, so

νx = hxHn
LxD
. (58)

We may also assume that hx ∈ L2(Hn
LxD
). So,

U2m(x) = (m
µ
Df )

∫
Am(x)

K(x − y) dνx(y) = (m
µ
Df )

∫
Am(x)

K(x − y)hx(y) dHn
LxD
(y).

Roughly speaking, we are going to estimate U2m(x) in terms of some coefficients
derived from a decomposition of hx in a suitable basis. Later on, we will need to relate
these coefficients to the αµ’s but, in order to do this, we need the elements of the basis
which decompose hx to be at least Lipschitz. Actually, since νx is a transport measure
of µ (and hx is the density function corresponding to νx), we can easily estimate integrals
of the type

∫
g d(µ− νx) whenever g is Lipschitz with compact support. This is the main

reason to use a wavelet basis instead of a Haar basis in the study of U2m(x).
Let us now introduce a suitable wavelet basis.
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Definition 5.16. Let Dn be the standard dyadic lattice of Rn. Let {ψkQ}Q∈Dn, k=1,...,2n−1

be an orthonormal basis of C1 wavelets on Rn such that (see [Da, Part I]):

(a) ψkQ : R
n
→ R is a C1 function for all Q ∈ Dn and k = 1, . . . , 2n − 1.

(b) There exist C > 1 and ψ0 : [0, C]n → R with ‖ψ0‖2 = 1, ‖ψ0‖∞ . 1, and
such that, for any Q ∈ Dn and k = 1, . . . , 2n − 1, there exists l ∈ Zn such that
ψkQ(y) = ψ0(y/`(Q)− l)`(Q)

−n/2 for all y ∈ Rn.
(c) ‖ψkQ‖2 = 1,

∫
ψkQ dL

n
= 0 and

∫
ψkQψ

l
R dL

n
= 0, for all Q,R ∈ Dn and k, l =

1, . . . , 2n − 1 such that (Q, k) 6= (R, l), where Ln denotes the Lebesgue measure in
Rn.

(d) suppψkQ ⊂ CwQ for all Q ∈ Dn and k = 1, . . . , 2n − 1, where Cw > 1 is some
fixed constant (which depends on n). In particular, for any j ∈ Z the supports of the
functions in

⋃
Q∈Dn: `(Q)=2−j {ψ

k
Q}k=1,...,2n−1 have finite overlap.

(e) ‖ψkQ‖∞.`(Q)−n/2 and ‖∇ψkQ‖∞.`(Q)−n/2−1 for all Q∈ Dn, k=1, . . . , 2n − 1.
(f) If h ∈ L2(Ln), then h =

∑
Q∈Dn, k=1,...,2n−11

k
Qh, where1kQh := (

∫
hψkQ dL

n)ψkQ.

In order to reduce the notation, we may think that a cube of Dn is not only a subset
of Rn, but a couple (Q, k), whereQ is a subset of Rn and k = 1, . . . , 2n−1. In particular,
there exist 2n − 1 cubes in Dn such that the subsets they represent in Rn coincide. We
make this abuse of notation to avoid using the superscript k in the previous definition.
Then we can rewrite the wavelet basis as {ψQ}Q∈Dn , with the evident adjustments of the
properties (a), . . . , (f) in Definition 5.16.

Let Dn,0
x be a fixed dyadic lattice of the n-plane LxD , and let {ψQ}Q∈Dn,0

x
be a wavelet

basis as the one introduced in Definition 5.16 but defined on LxD . Denote by ExD the
n-dimensional vector space which defines LxD , and let {Q0

k}k∈Z be a fixed sequence of
nested dyadic cubes in ExD having the origin as a common vertex and such that `(Q0

k) =

2−k for all k ∈ Z. Given s ∈ ExD , set Dn,s
x := {s +Q : Q ∈ Dn,0

x } (notice that, for any
k ∈ Z, the family {Q ∈ Dn,s

x : `(Q) = 2−k} is periodic in the parameter s). For any Q ∈
Dn,0
x and y ∈ LxD , if Q′ = s +Q ∈ Dn,s

x , we define ψQ′(y) ≡ ψs+Q(y) := ψQ(y − s).
Then {ψQ′}Q′∈Dn,s

x
is also a wavelet basis defined on LxD . Consider the decomposition of

hx in (58) with respect to this basis,

hx =
∑

Q∈Dn,s
x

1
ψ
Qhx =

∑
Q∈Dn,0

x

1
ψ
Q,shx, (59)

where 1ψQ,shx(z) := (
∫
hx(y)ψQ(y − s) dµ(y))ψQ(z − s) (recall that, for any Q in

Dn,s
x ,

∫
ψQ dHn

LxD
= 0). We set Y (QS) := − log2(`(QS)), and given Q ∈ Dn,s

x , we set

Y (Q) := − log2(`(Q)) and Y ′(Q) := max{Y (QS), Y (Q)}. Given � ⊂ ExD , denote by
ms∈�g the average of a function g : ExD → R over all s ∈ � and with respect to Hn

ExD
.

Then by the periodicity of {ψQ}Q∈Dn,s
x

in the parameter s (recall Definition 5.16(b)) and
(59), we can write

hx = ms∈Q0
Y (QS)

(hx) =
∑

Q∈Dn,0
x

ms∈Q0
Y (QS)

(1
ψ
Q,shx) =

∑
Q∈Dn,0

x

ms∈Q0
Y ′(Q)

(1
ψ
Q,shx).
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It could seem strange to introduce an averaging (with respect to s) at this point. How-
ever, it will be necessary in order to obtain the estimate in Lemma 5.20(d). More precisely,
we cannot ensure that the estimate in (92), which is used in the proof of Lemma 5.20(d),
holds for a particular s because we do not have such a level of control on νx , but to take an
average overcomes the problem. That is the only point where the averaging with respect
to s is used.

Set

J := {Q ∈ Dn,0
x : suppψQ(·−s)∩suppχ 2−j

2−j−1(x−·) 6= ∅ for some s ∈ Q0
Y ′(Q)}. (60)

Then

U2m(x) = (m
µ
Df )

∫
Am(x)

K(x − y)
∑
Q∈J

ms∈Q0
Y ′(Q)

(1
ψ
Q,shx(y)) dH

n
LxD
(y). (61)

Recall that D ∈ Dj and m ∈ SD(x). Since x ∈ D and `(D) = 2−j , if Q ∈ J , then
D ⊂ B(x, Ca`(Q)) or Q ⊂ B(x, Ca`(D)) for some constant Ca > 0 large enough. In
particular, if `(Q) & `(D) then D ⊂ B(zQ, Ca`(Q)), and if `(Q) ≤ C`(D) with C > 0
small enough then Q ⊂ B(zD, Ca`(D)), where zQ denotes the center of Q ⊂ LxD and
zD denotes the center of D ∈ D. From (60), we define

J1 := {Q ∈ J : `(Q) ≤ C`(D)} ⊂ {Q ∈ Dn,0
x : Q ⊂ B(zD, Ca`(D))},

J2 := J \ J1 ⊂ {Q ∈ Dn,0
x : D ⊂ B(zQ, Ca`(Q))}.

(62)

Since
∫
Am(x)

K(x − y) dHn
LxD
(y) = 0 by antisymmetry, if x′ denotes some fixed point in

A(x, 2−j−1, 2−j ) ∩ LxD , we have∫
Am(x)

K(x − y)
∑
Q∈J2

ms∈Q0
Y ′(Q)

(1
ψ
Q,shx(y)) dH

n
LxD
(y)

=

∫
Am(x)

K(x − y)
∑
Q∈J2

ms∈Q0
Y ′(Q)

(1
ψ
Q,shx(y)−1

ψ
Q,shx(x

′)) dHn
LxD
(y). (63)

Then, using (61), (62), the fact that Y ′(Q) = Y (Q) for all Q ∈ J1 (because D ⊂ QS),
and (63),

U2m(x) = (m
µ
Df )

∫
Am(x)

K(x − y)
∑
Q∈J1

ms∈Q0
Y (Q)

(1
ψ
Q,shx(y)) dH

n
LxD
(y)

+ (m
µ
Df )

∫
Am(x)

K(x − y)
∑
Q∈J2

ms∈Q0
Y ′(Q)

(1
ψ
Q,shx(y)−1

ψ
Q,shx(x

′)) dHn
LxD
(y)

=: U3m(x)+ U4m(x). (64)

Claim 5.17. Under the notation above, we have∑
m∈SD(x)

|U4m(x)|2 . |mµDf |
2
∑
Q∈J2

(
`(D)

`(Q)

)1/2

`(Q)−n(ms∈Q0
Y ′(Q)

‖1
ψ
Q,shx‖2)

2.
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Proof of Claim 5.17. By property (e) of the wavelet basis in Definition 5.16, we have
|1

ψ
Q,shx(y)−1

ψ
Q,shx(x

′)| ≤ ‖∇(1
ψ
Q,shx)‖∞|x

′
−y| . ‖1ψQ,shx‖2|x

′
−y|`(Q)−n/2−1.

Moreover, if y ∈ Am(x), then |x′ − y| . `(D). Therefore,

|U4m(x)|

≤

∑
Q∈J2

|m
µ
Df |

∫
Am(x)

|K(x − y)|ms∈Q0
Y ′(Q)

(|1
ψ
Q,shx(y)−1

ψ
Q,shx(x

′)|) dHn
LxD
(y)

.
∑
Q∈J2

|m
µ
Df |ms∈Q0

Y ′(Q)

(‖1
ψ
Q,shx‖2)`(D)

1−n`(Q)−n/2−1Hn
LxD
(Am(x)).

Then, by the Cauchy–Schwarz inequality and as J2 ⊂ {Q ∈ Dn,0
x : D ⊂ B(zQ, Ca`(Q))}

(in particular, `(D)/`(Q) . (`(D)/`(Q))1/2),∑
m∈SD(x)

|U4m(x)|2

.

( ∑
m∈SD(x)

∑
Q∈J2

|m
µ
Df |ms∈Q0

Y ′(Q)

(‖1
ψ
Q,shx‖2)

`(Q)n/2+1

`(D)n−1 Hn
LxD
(Am(x))

)2

≤

(∑
Q∈J2

|m
µ
Df |ms∈Q0

Y ′(Q)

(‖1
ψ
Q,shx‖2)`(D)`(Q)

n/2+1
)2

≤

(∑
Q∈J2

`(D)

`(Q)

)(∑
Q∈J2

|m
µ
Df |

2(ms∈Q0
Y ′(Q)

‖1
ψ
Q,shx‖2)

2 `(D)

`(Q)n+1

)

. |mµDf |
2
∑
Q∈J2

(
`(D)

`(Q)

)1/2

`(Q)−n(ms∈Q0
Y ′(Q)

‖1
ψ
Q,shx‖2)

2. ut

We are going to estimate U3m(x) with techniques very similar to the ones used in Sub-
sections 5.3.1 and 5.3.3. First of all, let b∗ > 0 be a small constant which will be
fixed later on, and consider the family P := {Q ∈ Dn,0

x : `(Q) ≤ `(D)}. Let Stp
denote the set of cubes Q ∈ P such that there exists RQ ∈ D with `(RQ) = `(Q),
10RQ ∩ (px)−1(suppψQ) 6= ∅, and∑
R∈D:RQ⊂R, `(R)≤`(D)

αµ(10R) ≥ b∗ but
∑

R∈D:P(RQ)⊂R, `(R)≤`(D)
αµ(10R) < b∗.

(65)
Observe that if Q and Q′ are different and belong to Stp, then Q ∩ Q′ = ∅. Notice
also that D 6∈ Stp because we assumed αµ(10D) < C∗. Finally, denote by Tr the set
of cubes Q ∈ P \ Stp such that R 6∈ Stp for all R ∈ P with R ⊃ Q. Then P =
Tr∪

⋃
Q∈Stp{R ∈ P : R ⊂ Q}. By taking C∗ small enough we can assume that, if

R ∈ J1 ∩ P and R ⊂ Q for some Q ∈ Stp, then Q ∈ J1. So we write∑
Q∈J1

ms∈Q0
Y (Q)

(1
ψ
Q,shx)

=

∑
Q∈J1∩Tr

ms∈Q0
Y (Q)

(1
ψ
Q,shx)+

∑
Q∈J1∩Stp

∑
R∈J1∩P :R⊂Q

ms∈Q0
Y (Q)

(1
ψ
R,shx)
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Set 1̃ψQ,shx :=
∑
R∈P :R⊂Q1

ψ
R,shx . Then using the definition of J1 and J , we can split

U3m(x) = (m
µ
Df )

∫
Am(x)

K(x − y)
∑

Q∈J1∩Tr
ms∈Q0

Y (Q)
(1

ψ
Q,shx(y)) dH

n
LxD
(y)

+ (m
µ
Df )

∫
Am(x)

K(x − y)
∑

Q∈J1∩Stp

ms∈Q0
Y (Q)

(1̃
ψ
Q,shx(y)) dH

n
LxD
(y)

=: U3am(x)+ U3bm(x). (66)

Claim 5.18. Under the notation above, we have

∑
m∈SD(x)

|U3am(x)|
2 . |mµDf |

2
∑

Q∈J1∩Tr

(
`(Q)

`(D)

)1/2

‖ms∈Q0
Y (Q)

(1
ψ
Q,shx)‖

2
2 `(D)

−n.

For simplicity of notation, we have set ‖ · ‖p := ‖ · ‖Lp(Hn
Lx
D
).

Proof of Claim 5.18. Notice that Hn
LxD
(Am(x)) . (εm − εm+1)`(D)

n−1. Moreover, the
function ms∈Q0

Y (Q)
(1

ψ
Q,shx) is supported in CQ and has vanishing integral, because the

same holds for each 1ψQ,shx with s ∈ Q0
Y (Q). Hence, the sum

∑
m∈SD(x) |U3am(x)|

2 can
be estimated using arguments very similar to the ones in Subsection 5.3.1 (see (44)), and
the analogues of Lemma 5.7 and Claims 5.5 and 5.6 for Hn

LxD
follow easily. One obtains

the expected estimate. ut

Claim 5.19. Under the notation above, we have

∑
m∈SD(x)

|U3bm(x)|
2 . |mµDf |

2
∑

Q∈J1∩Stp

(
`(Q)

`(D)

)1/2 ‖ms∈Q0
Y (Q)

(1̃
ψ
Q,shx)‖

2
1

`(D)n`(Q)n
.

Proof of Claim 5.19. Since ms∈Q0
Y (Q)

(1̃
ψ
Q,shx) has vanishing integral and it is supported

in a neighborhood of Q, the term U3bm(x) can be estimated in the same manner (but now
we do not use the estimate ‖ms∈Q0

Y (Q)
(1̃

ψ
Q,shx)‖

2
1 . `(Q)n‖ms∈Q0

Y (Q)
(1̃

ψ
Q,shx)‖

2
2), and

one obtains the expected estimate (compare with (46)). ut

Recall that we have fixed x ∈ D ∈ S ∈ Trs, and we denote by QS the maximal
µ-cube in S from the corona decomposition, so D ⊂ QS . The following lemma, whose
proof is given in Subsection 5.3.5, yields the suitable estimates for ms∈Q0

Y ′(Q)

(1
ψ
Q,shx)

and ms∈Q0
Y ′(Q)

(1̃
ψ
Q,shx) (recall that hx is given by (58)).



2304 Albert Mas, Xavier Tolsa

Lemma 5.20. Assume that αµ(D) < C∗ for some constant C∗ > 0 small enough. Given
Q ∈ Dn,0

x , there exist constants C1, C2 > 1 depending on C∗ and b∗ (see (65)) such that:

(a) if Q ∈ J2 and `(Q) > `(QS), then ms∈Q0
Y ′(Q)

(‖1
ψ
Q,shx‖2) . `(QS)

n`(Q)−n/2,

(b) if Q ∈ J2 and `(Q) ≤ `(QS), then

ms∈Q0
Y ′(Q)

(‖1
ψ
Q,shx‖2) .

( ∑
R∈D:D⊂R⊂B(zQ,C1`(Q))

αµ(C1R)+
dist(x, LD)
`(D)

)
`(Q)n/2,

(c) if Q ∈ J1 ∩ Tr, then there exists Q0 ≡ Q0(x,Q) ∈ D depending on x and Q ∈ Dn,0
x

such that Q0 ⊂ C2D, `(Q0) ≈ `(Q), Q0 ∩ (p
x)−1(suppψQ) 6= ∅ and

‖ms∈Q0
Y (Q)

(1
ψ
Q,shx)‖2 .

( ∑
R∈D:Q0⊂R⊂C2D

αµ(C2R)+
dist(x, LD)
`(D)

)
`(Q)n/2,

(d) if Q ∈ J1 ∩ Stp, then ‖ms∈Q0
Y (Q)

(1̃
ψ
Q,shx)‖1 . `(Q)n.

We are ready to put all the estimates together to bound the first term on the right hand
side of (51). From (54), (57), (64), and (66) we have∑

m∈SD(x)
|(Kχ εmεm+1

∗ ((m
µ
Df )χD̃µ))(x)|

2 . |mµDf |
2αµ(10D)2

+

∑
m∈SD(x)

(|U1m(x)|2 + |U3am(x)|
2
+ |U3bm(x)|

2
+ |U4m(x)|2). (67)

Let us deal with U1m(x) (the term |mµDf |
2αµ(10D)2 above is handled in the

same manner). If L1
D and L2

D denote minimizing n-planes for β1,µ(D) and β2,µ(D),
respectively, one can show that distH(LD ∩ BD, L1

D ∩ BD) . αµ(D)`(D) and
distH(L1

D ∩ BD, L
2
D ∩ BD) . β2,µ(D)`(D), so we have dist(x, LD) . dist(x, L2

D) +

β2,µ(D)`(D) + αµ(D)`(D) for x ∈ D. Then by Claim 5.15 and Carleson’s embedding
theorem,

∑
S∈Trs

∑
D∈S

∫
D

∑
m∈SD(x)

|U1m|2 dµ

.
∑
D∈D

∫
D

|m
µ
Df |

2
(
β1,µ(D)

2
+ αµ(D)

2
+

(
dist(x, LD)
`(D)

)2)
dµ(x)

.
∑
D∈D
|m
µ
Df |

2`(D)n(β1,µ(D)
2
+ αµ(D)

2
+ β2,µ(D)

2) . ‖f ‖2
L2(µ)

. (68)

For the case of U3am(x), by Claim 5.18 and Lemma 5.20(c) applied to the µ-cubes in
J1 ∩ Tr, we have
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∑
S∈Trs

∑
D∈S

∫
D

∑
m∈SD(x)

|U3am|
2 dµ

.
∑
D∈D
|m
µ
Df |

2
∫
D

∑
Q∈J1∩Tr

(
`(Q)

`(D)

)1/2 ‖ms∈Q0
Y (Q)

(1
ψ
Q,shx)‖

2
2

`(D)n
dµ(x)

.
∑
D∈D
|m
µ
Df |

2
∫
D

∑
Q∈J1∩Tr

(
`(Q)

`(D)

)n+1/2( ∑
R∈D:

Q0(x,Q)⊂R⊂C2D

αµ(C2R)
)2
dµ(x)

+

∑
D∈D
|m
µ
Df |

2
∫
D

∑
Q∈J1∩Tr

(
`(Q)

`(D)

)n+1/2(dist(x, LD)
`(D)

)2

dµ(x) =: S1 + S2.

Recall that J1⊂{Q ∈ Dn,0
x : Q⊂B(zD, Ca`(D))}. Then

∑
Q∈J1

(`(Q)/`(D))n+1/2 .1,
and since dist(x, LD) . dist(x, L2

D)+ β2,µ(D)`(D)+ αµ(D)`(D) for x ∈ D, we have
S2 .

∑
D∈D |m

µ
Df |

2(β2,µ(D)
2
+ αµ(D)

2)`(D)n, and hence S2 ≤ C‖f ‖
2
L2(µ)

, by Car-
leson’s embedding theorem. For S1, since `(Q) ≈ `(Q0(x,Q)) (recall the definition of
Q0 ≡ Q0(x,Q) in Lemma 5.20(c)), Q0(x,Q) ⊂ C2D, and every Q0 ∈ D intersects
(px)−1(suppψQ) for finitely many cubes Q ∈ Dn,0

x (with a bound for the number of
such cubes Q independent of x and Q0), we have

∑
Q∈J1∩Tr

(
`(Q)

`(D)

)n+1/2( ∑
R∈D:Q0(x,Q)⊂R⊂C2D

αµ(C2R)
)2

=

∑
P∈D:P⊂C2D

∑
Q∈Dn,0

x :Q⊂B(zD,Ca`(D)),
Q0(x,Q)=P

(
`(Q)

`(D)

)n+1/2( ∑
R∈D:P⊂R⊂C2D

αµ(C2R)
)2

.
∑

P∈D:P⊂C2D

(
`(P )

`(D)

)n+1/2( ∑
R∈D:P⊂R⊂C2D

αµ(C2R)
)2
.

By the Cauchy–Schwarz inequality,

∑
P∈D:P⊂C2D

(
`(P )

`(D)

)n+1/2( ∑
R∈D:P⊂R⊂C2D

αµ(C2R)
)2

.
∑

P∈D:P⊂C2D

(
`(P )

`(D)

)n+1/2

log2

(
`(D)

`(P )

) ∑
R∈D:P⊂R⊂C2D

αµ(C2R)
2

.
∑

R∈D:R⊂C2D

αµ(C2R)
2

∑
P∈D:P⊂R

(
`(P )

`(D)

)n+1/4

.
∑

R∈D:R⊂C2D

αµ(C2R)
2
(
`(R)

`(D)

)n+1/4

=: λ1(D)
2. (69)
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By standard arguments one can easily show that these λ1 coefficients satisfy the
Carleson packing condition, so by (69) and Carleson’s embedding theorem we obtain
S1 .

∑
D∈D |m

µ
Df |

2`(D)nλ1(D)
2 . ‖f ‖2

L2(µ)
, which combined with S2 . ‖f ‖2

L2(µ)

yields ∑
S∈Trs

∑
D∈S

∫
D

∑
m∈SD(x)

|U3am|
2 dµ . ‖f ‖2

L2(µ)
. (70)

Let us deal now with U3bm. By Claim 5.19 and Lemma 5.20(d) applied to the µ-cubes
in J1 ∩ Stp, we have

∑
S∈Trs

∑
D∈S

∫
D

∑
m∈SD(x)

|U3bm|
2 dµ

.
∑
D∈D
|m
µ
Df |

2
∫
D

∑
Q∈J1∩Stp

(
`(Q)

`(D)

)1/2 ‖ms∈Q0
Y (Q)

(1̃
ψ
Q,shx)‖

2
1

`(D)n`(Q)n
dµ(x)

.
∑
D∈D
|m
µ
Df |

2
∫
D

∑
Q∈J1∩Stp

(
`(Q)

`(D)

)n+1/2

dµ.

Given D ∈ D, consider the family 3D := {R ∈ D : R = RQ for some x ∈ D and some
Q ∈ J1 ∩ Stp} (see the definition of RQ in (65)). Observe that every R ∈ D intersects
(px)−1(Q ∩ LxD) for finitely many µ-cubes Q ∈ Dn,0

x such that `(Q) = `(R). Thus,
similarly to what we did for Q ∈ J1 ∩ Tr in the case of U3am, we have

∑
D∈D
|m
µ
Df |

2
∫
D

∑
Q∈J1∩Stp

(
`(Q)

`(D)

)n+1/2

dµ .
∑
D∈D
|m
µ
Df |

2
∫
D

∑
R∈3D

(
`(R)

`(D)

)n+1/2

dµ

.
∑
D∈D
|m
µ
Df |

2
∑
R∈3D

(
`(R)

`(D)

)n+1/2

µ(D) =
∑
D∈D
|m
µ
Df |

2λ2(D)
2µ(D),

where we have set λ2(D)
2
:=
∑
R∈3D

(`(R)/`(D))n+1/2. Since the αµ’s satisfy the Car-
leson packing condition, it is not hard to show that the same holds for the λ2’s. Indeed,
since for any R ∈ 3D we have

∑
R′∈D:R⊂R′, `(R)≤`(D) αµ(10R′) ≥ b∗ by (65), then

λ2(D)
2
≤ b−2
∗

∑
R∈3D

(
`(R)

`(D)

)n+1/2( ∑
R′∈D:R⊂R′, `(R)≤`(D)

αµ(10R′)
)2
,

and we can proceed as in (69). Hence, putting these estimates together and using Car-
leson’s embedding theorem for the λ2’s, we obtain

∑
S∈Trs

∑
D∈S

∫
D

∑
m∈SD(x)

|U3bm|
2 dµ . ‖f ‖2

L2(µ)
. (71)



Variation for the Riesz transform and uniform rectifiability 2307

We deal now with U4m(x). By Claim 5.17 and Lemma 5.20(a)&(b) applied to the
cubes in J2,∑
S∈Trs

∑
D∈S

∫
D

∑
m∈SD(x)

|U4m|2 dµ

.
∑
S∈Trs

∑
D∈S

|m
µ
Df |

2
∫
D

∑
Q∈J2

(
`(D)

`(Q)

)1/2 ms∈Q0
Y ′(Q)

(‖1
ψ
Q,shx‖2)

2

`(Q)n
dµ

.
∑
S∈Trs

∑
D∈S

|m
µ
Df |

2
∫
D

∑
Q∈J2: `(Q)≤`(QS )

(
`(D)

`(Q)

)1/2

×

[( ∑
R∈D:D⊂R⊂B(zQ,C1`(Q))

αµ(C1R)

)2

+

(
dist(x, LD)
`(D)

)2]
dµ

+

∑
S∈Trs

∑
D∈S

|m
µ
Df |

2
∫
D

∑
Q∈J2: `(Q)>`(QS )

(
`(D)

`(Q)

)1/2
`(QS)

2n

`(Q)2n
dµ =: S3 + S4. (72)

Regarding S3, since dist(x, LD) . dist(x, L2
D)+ β2,µ(D)`(D)+ αµ(D)`(D) for x ∈ D

and
∑
Q∈J2

(`(D)/`(Q))1/2 . 1, the second term in the definition of S3 is bounded
by
∑
D∈D |m

µ
Df |

2(β2,µ(D)
2
+ αµ(D)

2)`(D)n, and hence by C‖f ‖2
L2(µ)

, by Carleson’s
embedding theorem. For the first term in S3, by the Cauchy–Schwarz inequality,

∑
S∈Trs

∑
D∈S

|m
µ
Df |

2
∫
D

∑
Q∈J2: `(Q)≤`(QS )

(
`(D)

`(Q)

)1/2( ∑
R∈D:

D⊂R⊂B(zQ,C1`(Q))

αµ(C1R)

)2

dµ

.
∑
S∈Trs

∑
D∈S

|m
µ
Df |

2

×

∫
D

∑
Q∈J2:

`(Q)≤`(QS )

(
`(D)

`(Q)

)1/2

log2

(
`(Q)

`(D)

) ∑
R∈D:

D⊂R⊂B(zQ,C1`(Q))

αµ(C1R)
2 dµ

.
∑
D∈D
|m
µ
Df |

2
∫
D

∑
R∈D:
D⊂R

αµ(C1R)
2

∑
Q∈Dn,0

x :

R⊂B(zQ,C1`(Q))

(
`(D)

`(Q)

)1/4

dµ.

Notice that
∑
Q∈Dn,0

x :R⊂B(zQ,C1`(Q))
(`(D)/`(Q))1/4 . (`(D)/`(R))1/4, thus the right

side of the preceding inequality is bounded above by

∑
D∈D
|m
µ
Df |

2`(D)n
∑

R∈D:D⊂R
αµ(C1R)

2
(
`(D)

`(R)

)1/4

=:

∑
D∈D
|m
µ
Df |

2`(D)nλ3(D)
2. (73)
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By standard arguments one can show that the λ3’s satisfy the Carleson packing condi-
tion, so by Carleson’s embedding theorem again, the last term in (73) is bounded by
C‖f ‖2

L2(µ)
. Thus we obtain S3 . ‖f ‖2

L2(µ)
.

The estimate of S4 from (72) is easier:

S4 .
∑
S∈Trs

∑
D∈S

|m
µ
Df |

2
∫
D

∑
Q∈Dn,0

x : `(Q)>`(QS ),
D⊂B(zQ,C1`(Q))

`(D)1/2`(QS)
2n

`(Q)2n+1/2 dµ(x).

As before,
∑
Q∈Dn,0

x : `(Q)>`(QS ),D⊂B(zQ,C1`(Q))
`(Q)−2n−1/2 . `(QS)

−2n−1/2, thus

S4 .
∑
S∈Trs

∑
D∈S

|m
µ
Df |

2`(D)n
(
`(D)

`(QS)

)1/2

.
∑
D∈D
|m
µ
Df |

2`(D)n
∑

S∈Trs: S3D

(
`(D)

`(QS)

)1/2

=:

∑
D∈D
|m
µ
Df |

2`(D)nλ4(D)
2.

Similarly to the case of the λ3 coefficients, one can show that the λ4’s also satisfy the
Carleson packing condition, thus S4 . ‖f ‖2

L2(µ)
by Carleson’s embedding theorem. Ac-

tually, if one defines α̂µ(Q) = 1 if Q = QS for some S ∈ Trs and α̂µ(Q) = 0 otherwise,
using the packing condition for the µ-cubes QS with S ∈ Trs, one can easily verify that
the α̂µ’s satisfy the Carleson packing condition. Then

λ4(D)
2
=

∑
S∈Trs:D⊂QS

(
`(D)

`(QS)

)1/2

α̂µ(QS)
2
=

∑
Q∈D:D⊂Q

(
`(D)

`(Q)

)1/2

α̂µ(Q)
2,

and we can argue as in the case of the λ3’s in (73).
By the estimates of S3 and S4, we obtain

∑
S∈Trs

∑
D∈S

∫
D

∑
m∈SD(x)

|U4m|2 dµ . ‖f ‖2
L2(µ)

. (74)

Finally, plugging (68), (70), (71), and (74) in (67), and combining the result with (51)
and (52), we conclude that

∑
S∈Trs

∑
D∈S

∫
D

∑
m∈SD(x)

∣∣∣ ∑
R∈V (D)

(Kχ εmεm+1
∗ ((m

µ
Rf )χRµ))(x)

∣∣∣2 dµ(x) . ‖f ‖2
L2(µ)

,

and Lemma 5.14 is finally proved, modulo Lemma 5.20. ut
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5.3.5. Proof of Lemma 5.20. See (56) and (58) for the definitions of νx and hx .

Proof of Lemma 5.20(a). By Definition 5.16(e), for any s ∈ Q0
Y ′(Q)

we have

‖1
ψ
Q,shx‖∞ . |〈hx, ψs+Q〉|`(Q)

−n/2 . `(Q)−n
∫
hx dHn

LxD
= `(Q)−n

∫
dνx

= `(Q)−n
∫
d(px] (χ40QSµ)) = `(Q)

−n

∫
40QS

dµ .
`(QS)

n

`(Q)n
.

Hence, ‖1ψQ,shx‖2 ≤ ‖1
ψ
Q,shx‖∞L

n(suppψs+Q)1/2 . `(QS)
n`(Q)−n/2 for all

s ∈ Q0
Y ′(Q)

, and Lemma 5.20(a) follows by taking the average over s ∈ Q0
Y ′(Q)

. ut

Proof of Lemma 5.20(b). Since D ⊂ B(zQ, Ca`(Q)), D ∈ S, and `(D) . `(Q) ≤

`(QS), by taking Ccor large enough (see property (f) in Subsection 2.4), we can assume
that µ is well approximated by 0S in a neighborhood of Q. We are going to show that,
for each s ∈ Q0

Y ′(Q)
,

‖1
ψ
Q,shx‖2 .

( ∑
R∈D:D⊂R⊂B(zQ,C1`(Q))

αµ(C1R)+
dist(x, LD)
`(D)

)
`(Q)n/2, (75)

and Lemma 5.20(b) will follow by taking the average over s ∈ Q0
Y ′(Q)

.
FixQ ∈ J2, soD ⊂ B(zQ, Ca`(Q)) with `(Q) ≤ `(QS), and s ∈ Q0

Y ′(Q)
. TakeQ′ ∈

D such that `(Q) = `(Q′) and Q ⊂ B(zQ′ , 3`(Q)). Recall that suppψs+Q ⊂ CQ and
|∇ψs+Q| . `(Q)−n/2−1. Let φs+Q′ be an extension of ψs+Q, i.e., let φs+Q′ : Rd → R
be such that suppφs+Q′ ⊂ BQ′ ⊂ Rd , |∇φs+Q′ | . `(Q′)−n/2−1 and φs+Q′ = ψs+Q
in LxD .

Let LQ′ be a minimizing n-plane for αµ(C1Q
′), where C1 > 1 is some large con-

stant to be fixed below, and let Lx
Q′

be the n-plane parallel to LQ′ which contains x. Let
σQ′ := cQ′Hn

LQ′
be a minimizing measure for αµ(C1Q

′) and define σ x
Q′
:= cQ′Hn

Lx
Q′

.

Finally, set σ := cQ′Hn
LxD

. Since ψs+Q has vanishing integral in LxD , we also have∫
φs+Q′ dHn

LxD
= 0. Hence,

‖1
ψ
Q,shx‖2 = ‖〈hx, ψs+Q〉ψs+Q‖2 = |〈hx, ψs+Q〉| =

∣∣∣∣∫
LxD

φs+Q(y) dνx(y)

∣∣∣∣
=

∣∣∣∣∫ φs+Q′(y) d(νx − σ)(y)

∣∣∣∣ . `(Q)−n/2−1 distBQ′ (νx, σ ). (76)

We can assume that ∑
R∈D:D⊂R⊂B(zQ,C1`(Q))

αµ(C1R) ≤ b∗, (77)

otherwise Lemma 5.20(b) follows easily. By assuming (77) one can show that the angle
between LxD and Lx

Q′
is small. By the triangle inequality, we have

distBQ′ (νx, σ ) ≤ distBQ′ (νx, p
x
] σ

x
Q′)+ distBQ′ (p

x
] σ

x
Q′ , σ ). (78)
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To deal with the first term on the right hand side of (78), let h be a Lipschitz function
such that supph ⊂ BQ′ and Lip(h) ≤ 1. Then, since suppµ is well approximated in CQ′

by a Lipschitz graph 0S with small slope, the function h ◦ px restricted to suppµ ∪ LxQ
can be extended to a Lipschitz function supported in BC1Q′ (if C1 is large enough) with
Lip(h ◦ px) bounded by a constant which only depends on n, d , and Lip(0S). Therefore,∣∣∣∣∫
BQ′

h d(νx − p
x
] σ

x
Q′)

∣∣∣∣ = ∣∣∣∣∫
BC1Q

′

h ◦ px d(µ− σ xQ′)

∣∣∣∣ . distBC1Q
′ (µ, σ

x
Q′)

≤ distBC1Q
′ (µ, σQ′)+ distBC1Q

′ (σQ′ , σ
x
Q′) . αµ(C1Q

′)`(Q)n+1
+ dist(x, LQ′)`(Q)n.

(79)

Since x ∈ D and D ⊂ C1Q
′ (if C1 > Cb), by [To4, Remark 5.3] we have

dist(x, LQ′) .
∑

R∈D:D⊂R⊂C1Q′

αµ(R)`(R)+ dist(x, LD). (80)

Taking the supremum over all possible Lipschitz functions h in (79) and using `(D) ≤
`(R) . `(Q) in the sum above, we get

distBQ′ (νx, p
x
] σ

x
Q′) .

∑
R∈D:D⊂R⊂C1Q′

αµ(C1R)`(Q)
n+1
+

dist(x, LD)
`(D)

`(Q)n+1. (81)

To estimate the second term on the right hand side of (78), notice that px] σ = σ

because px |LxD = Id. Hence, as in (79),

distBQ′ (p
x
] σ

x
Q′ , σ ) = distBQ′ (p

x
] σ

x
Q′ , p

x
] σ) . distBC1Q

′ (σ
x
Q′ , σ )

≤ distBC1Q
′ (σ

x
Q′ , σQ′)+ distBC1Q

′ (σQ′ , σ )

. distBC1Q
′ (Hn

Lx
Q′
,Hn

LQ′
)+ distBC1Q

′ (Hn
LQ′
,Hn

LD
)+ distBC1Q

′ (Hn
LD
,Hn

LxD
)

. dist(x, LQ′)`(Q)n + distBC1Q
′ (Hn

LQ′
,Hn

LD
)+ dist(x, LD)`(Q)n.

The term distBC1Q
′ (Hn

LQ′
,Hn

LD
) can be estimated using the intermediate µ-cubes be-

tween D and C1Q
′ (similarly to (81)), and we obtain

distBC1Q
(Hn

LQ
,Hn

LD
) .

∑
R∈D:D⊂R⊂C1Q

αµ(C1R)`(Q)
n+1.

Thus, by (80) and since `(D) . `(Q),

distBQ′ (p
x
] σ

x
Q′ , σ ) .

∑
R∈D:D⊂R⊂C1Q′

αµ(C1R)`(Q)
n+1
+

dist(x, LD)
`(D)

`(Q)n+1.

Then (75) follows by plugging this last inequality and (81) in (78) combined with (76),
and recalling that `(Q) ≈ `(Q′). ut
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Proof of Lemma 5.20(c). Given Q ∈ J1 ∩ Tr, using (65) we have∑
R′∈D:R⊂R′, `(R′)≤`(D)

αµ(10R′) < b∗

for all R ∈ D with `(R) = `(Q) and such that R ∩ (px)−1(suppψs+Q) 6= ∅ for all s ∈
Q0
Y (Q). By assuming b∗ small enough, we are going to show that for someQ0(x,Q) ∈ D

as in statement (c) and all s ∈ Q0
Y (Q) we have

‖1
ψ
Q,shx‖2 .

( ∑
R∈D:Q0⊂R⊂C2D

αµ(C2R)+
dist(x, LD)
`(D)

)
`(Q)n/2. (82)

As before, Lemma 5.20(c) will follow by averaging over s ∈ Q0
Y (Q), and noting that

‖ms∈Q0
Y (Q)

(1
ψ
Q,shx)‖2 ≤ ms∈Q0

Y (Q)
‖1

ψ
Q,shx‖2 by Minkowski’s integral inequality.

Take Q ∈ J1 ∩ Tr. Let C2 be some large constant which will be fixed later on, and let
Q0 ∈ D be a minimalµ-cube such thatC2Q0 contains suppµ∩(px)−1(suppψs+Q∩LxD)
for all s ∈ Y (Q). We can assume that Q0 ⊂ C2D if C2 is large enough and, by (65),
we may also suppose that

∑
R∈D:Q0⊂R⊂C2D

αµ(C2R) is small enough. Hence, if LQ0

is a minimizing n-plane for β∞,µ(C2Q0), the angle between LQ0 and LxD is also small
enough, since it is bounded by

∑
R∈D:Q0⊂R⊂C2D

αµ(C2R) (see [To4, Lemma 5.2] for a
related argument). It is not hard to show that then

diam(0 ∩ (px)−1(Q ∩ LxD)) . `(Q). (83)

Let LQ0 and σQ0 := cQ0Hn
LQ0

be a minimizing n-plane and measure for αµ(C2Q0),
respectively. Fix zQ0 ∈ LQ0 ∩ BC2Q0 and let Lr be an n-plane parallel to LxD which
contains zQ0 . Finally, define the measures σr := cQ0Hn

Lr
and σ ′ := cQ0Hn

LxD
.

Since σ ′ is a multiple of Hn
LxD

, similarly to (76) and using the triangle inequality,

‖1
ψ
Q,shx‖2`(Q)

n/2+1 . distBQ(νx, σ
′)

≤ distBQ(νx, p
x
] σQ0)+ distBQ(p

x
] σQ0 , p

x
] σr)+ distBQ(p

x
] σr , σ

′), (84)

where we have set BQ := B(zQ, 3`(Q)) ⊂ Rd (for these computations, we may also
assume that `(Q) is small enough in comparison with `(D)).

Arguing as in (79), if C2 is large enough, we have

distBQ(νx, p
x
] σQ0) = distBQ(p

x
]µ,p

x
] σQ0) . αµ(C2Q0)`(Q)

n+1, (85)

and

distBQ(p
x
] σQ0 , p

x
] σr) . distBC2Q0

(σQ0 , σr) . distH(LQ0 ∩ BC2Q0 , Lr ∩ BC2Q0)`(Q)
n.

Let γ be the angle between Lr and LQ0 (which is the same as the one between LD and
LQ0 ). Since zQ0 ∈ LQ0 ∩ Lr ∩ BC2Q0 , we have distH(LQ0 ∩ BC2Q0 , Lr ∩ BC2Q0) .
sin(γ )`(Q), and it is not difficult to show that sin(γ ) .

∑
R∈D:Q0⊂R⊂C2D

αµ(C2R).
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Thus,
distBQ(p

x
] σQ0 , p

x
] σr) .

∑
R∈D:Q0⊂R⊂C2D

αµ(C2R)`(Q)
n+1. (86)

Let us estimate the last term on the right hand side of (84). Since cQ0 . 1, we have
distBQ(p

x
] σr , σ

′) . distBQ(p
x
]H

n
Lr
,Hn

LxD
). Let h be a 1-Lipschitz function supported

in BQ and such that

distBQ(p
x
]H

n
Lr
,Hn

LxD
) ≈

∣∣∣∣∫ h d(px]H
n
Lr
−Hn

LxD
)

∣∣∣∣.
Set d := dist(zQ0 , L

x
D). Since Q ∈ J1 ⊂ J and `(Q) ≤ C`(D), if C is small enough

then dist(x, BQ) & `(D). Without loss of generality, we may assume that x = 0 and that
LxD = Rn×{0}d−n, so Lr = zQ0+Rn×{0}d−n. Thus, if we set z′Q0

:= (zn+1
Q0

, . . . , zdQ0
),

we see that d = |z′Q0
| and px restricted to Lr ∩ BQ can be written in the following

manner: px : y = (y1, . . . , yn, z′Q0
) 7→ (F (y1, . . . , yn), 0), where F : Rn \ {0}n → Rn

is defined by

F(y) = y

√
|y|2 + d2

|y|
= y

√
1+

d2

|y|2
.

Therefore,
∫
h d(px]H

n
Lr
)=
∫
h◦px dHn

Lr
=
∫
Rn(h◦p

x)(y, z′Q0
) dy=

∫
Rn h(F (y), 0) dy,

and we also have
∫
h dHn

LxD
=

∫
Rn h((y, 0)) dy =

∫
Rn h(F (y), 0)J (F )(y) dy by a

change of variables, where J (F ) denotes the Jacobian of F . Hence∣∣∣∣∫ h d(px]H
n
Lr
−Hn

LxD
)

∣∣∣∣ . ∫
Rn
|h(F (y), 0)| |1− J (F )(y)| dy. (87)

Notice that, because of the assumptions on supph(F (·), 0) and since zQ0 ∈ BC2Q0 and
Q0 ⊂ C2D, we have d . |y| for all y ∈ supph(F (·), 0). If Fi denotes the ith coordinate
of F , it is straightforward to check that ∂yjFi(y) = −d

2yiyj |y|−3(|y|2+d2)−1/2 if i 6= j
and ∂yiFi(y) = (1+ d

2/|y|2)1/2 − d2(yi)2|y|−3(|y|2 + d2)−1/2. Thus, we easily obtain

|1− J (F )(y)| . d/|y| . d/`(D) (88)

for all y ∈ supph(F (·), 0). Since diam(supph(F (·), 0)) . `(Q) and h((F (·), 0)) is
Lipschitz, using (88) and taking the supremum in (87) over all such functions h, we
have distBQ(p

x
]H

n
Lr
,Hn

LxD
) . `(Q)n+1d/`(D). Finally, by [To4, Remark 5.3] and since

zQ0 ∈ LQ0 ,

d . dist(zQ0 , LD)+ dist(LD, LxD) .
∑

R∈D:Q0⊂R⊂C2D

αµ(C2R)`(R)+ dist(x, LD),

and thus

distBQ(p
x
]H

n
Lr
,Hn

LxD
)

.
∑

R∈D:Q0⊂R⊂C2D

αµ(C2R)`(Q)
n+1
+

dist(x, LD)
`(D)

`(Q)n+1. (89)

Finally, (82) follows by applying (85), (86), and (89) to (84). ut
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Proof of Lemma 5.20(d). As remarked just before (60), this is the key point where tak-
ing averages of dyadic lattices with respect to the parameter s is necessary. Given Q in
J1 ∩ Stp, we have to show that ‖ms∈Q0

Y (Q)
(1̃

ψ
Q,shx)‖1 . `(Q)n. Unlike (a)–(c), the es-

timate in (d) does not hold for a particular choice of s in general but, as we will see, it
holds on average. Recall that, for a fixed s ∈ Q0

Y (Q),

1̃
ψ
Q,shx =

∑
R∈P :R⊂Q

1
ψ
R,shx

=

∑
R∈P : suppψR∩Q 6=∅

`(R)≤`(Q)

χs+Q1
ψ
R,shx −

∑
R∈P : suppψR∩Q 6=∅
`(R)≤`(Q),R 6⊂Q

χs+Q1
ψ
R,shx

+

∑
R∈P :
R⊂Q

χ(s+Q)c 1
ψ
R,shx =: Is + IIs + IIIs .

We are going to estimate Is , IIs , and IIIs separately. For the case of Is , we have

χs+Q hx = χs+Q
∑

R∈Dn,0
x : `(R)>`(Q)

1
ψ
R,shx + χs+Q

∑
R∈Dn,0

x : `(R)≤`(Q)

1
ψ
R,shx

= χs+Q I
′
s + Is,

where we have set I ′s :=
∑
R∈Dn,0

x : `(R)>`(Q)
1
ψ
R,shx . On the one hand, sinceQ ∈ J1∩Stp,

(65) holds. Thus, using
∑
R∈D:P(RQ)⊂R, `(R)≤`(D) αµ(10R) < b∗, one can show that

‖χs+Q hx‖1 . `(Q)n (90)

(see above (83) for a related argument). On the other hand, since ‖χs+Q hx‖1 . `(Q)n,
it is known that then ‖χs+QI ′s‖1 . `(Q)n (see [Da, Part I], in particular pay attention
to the last sum in equation (46) of Part I). Combining these estimates, we conclude that
‖Is‖1 . `(Q)n.

Let us now deal with IIs . First of all, we split IIs into different scales, that is,∑
R∈P : suppψR∩Q6=∅
`(R)≤`(Q),R 6⊂Q

χs+Q1
ψ
R,shx =

∑
k≥Y (Q)

∑
R∈P : suppψR∩Q 6=∅
`(R)=2−k, R 6⊂Q

χs+Q1
ψ
R,shx .

Observe that if k ≥ Y (Q), suppψR ∩Q 6= ∅, `(R) = 2−k , and R 6⊂ Q, then s + R ⊂
UC2−k (s + ∂Q), where C > 1 is some fixed constant and UC2−k (s + ∂Q) := {z ∈ L

x
D :

dist(z, s + ∂Q) < C2−k}. Hence, using Definition 5.16(e) and the definition of hx , we
get

‖IIs‖1 ≤
∑

k≥Y (Q)

∑
R∈P : suppψR∩Q 6=∅
`(R)=2−k, R 6⊂Q

‖1
ψ
R,shx‖1 .

∑
k≥Y (Q)

νx(UC2−k (s + ∂Q)).



2314 Albert Mas, Xavier Tolsa

The case of IIIs can be dealt with using very similar techniques, and one obtains the
same estimate. Therefore,

‖ms∈Q0
Y (Q)

(1̃
ψ
Q,shx)‖1 = ‖ms∈Q0

Y (Q)
(Is + IIs + IIIs)‖1 ≤ ms∈Q0

Y (Q)
‖Is + IIs + IIIs‖1

. `(Q)n +ms∈Q0
Y (Q)

( ∑
k≥Y (Q)

νx(UC2−k (s + ∂Q))
)
. (91)

Using Fubini’s theorem, it is not difficult to show that

ms∈Q0
Y (Q)

νx(UC2−k (s + ∂Q))) . 2−k`(Q)−1νx(CQ) (92)

for all k ≥ Y (Q) (see [To2, Lemma 7.5] for example, for a related argument). Since
Q ∈ Stp, (65) holds, and so, as in (90), we have νx(CQ) . `(Q)n, thus

ms∈Q0
Y (Q)

( ∑
k≥Y (Q)

νx(UC2−k (s + ∂Q))
)
. `(Q)n.

If we combine this last estimate with (91), we are done. ut

5.3.6. Final estimates. From Lemmas 5.4, 5.10, and 5.14, we obtain

∑
S∈Trs

∑
D∈S

∫
D

∑
m∈SD(x)

∣∣∣ ∑
R∈V (D)

∑
Q∈Tr(R)

(Kχ εmεm+1
∗ (1Qf )µ)(x)

∣∣∣2 dµ(x)
+

∑
S∈Trs

∑
D∈S

∫
D

∑
m∈SD(x)

∣∣∣ ∑
R∈V (D)

∑
Q∈Stp(R)

(Kχ εmεm+1
∗ (1̃Qf )µ)(x)

∣∣∣2 dµ(x)
+

∑
S∈Trs

∑
D∈S

∫
D

∑
m∈SD(x)

∣∣∣ ∑
R∈V (D)

(Kχ εmεm+1
∗ (m

µ
Rf )χRµ)(x)

∣∣∣2 dµ(x) . ‖f ‖2
L2(µ)

.

Combining this estimate with (39), we deduce

∑
S∈Trs

∑
D∈S

∫
D

∑
m∈SD(x)

|(Kχ εmεm+1
∗ (fµ))(x)|2 dµ(x) . ‖f ‖2

L2(µ)
.

Finally, using (35) and (36), we conclude that

‖(VS
ρ ◦ T µ)f ‖2

L2(µ)
.
∑
D∈D

∫
D

∑
m∈SD(x)

|(Kχ εmεm+1
∗ (fµ))(x)|2 dµ(x) . ‖f ‖2

L2(µ)
.

This finishes the proof of Theorem 5.1.
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6. If Vρ ◦Rµ
: L2(µ)→ L2(µ) is a bounded operator, then µ is a uniformly

n-rectifiable measure

Let Cµ > 0 be the AD regularity constant of an AD regular measure µ, that is, C−1
µ rn ≤

µ(B(x, r)) ≤ Cµr
n for all x ∈ suppµ and 0 ≤ r < diam(suppµ). For simplicity of

notation, we may assume that diam(suppµ) = ∞ (the general case follows by minor
modifications in our arguments). As before, we denote by D the dyadic lattice of µ-cubes
introduced in Subsection 2.3.

In this section, we set K(x) = x|x|−n−1 for x 6= 0. Recall that, given ε > 0, a Radon
measure µ, and f ∈ L1(µ), we have set Rµf := {R

µ
ε f }ε>0, where

Rµε f (x) =

∫
|x−y|>ε

K(x − y)f (y) dµ(y).

In order to prove the main theorem of this section (Theorem 6.8), we need first to
introduce some notation and state some preliminary results.

Definition 6.1 (Special truncation of the Riesz transform). For ε > 0, let ϕε be as in
Definition 2.1. Given m ∈ Z and a Radon measure µ in Rd , we set

Smµ(x) :=

∫
(ϕ2−m−1(x − y)− ϕ2−m(x − y))K(x − y) dµ(y).

Lemma 6.2 ([DS1, Lemma 5.8]). GivenQ ∈ D, there exist n+1 points x0, . . . , xn inQ
(and thus in suppµ) such that dist(xj , Lj−1) ≥ C`(Q), where Lk denotes the k-plane
passing through x0, . . . , xk , and where C depends only on n and Cµ.

Lemma 6.3 ([To4, Lemma 7.4 and Remark 7.5]). Let Q ∈ D and x0, . . . , xn ∈ Q be
as in Lemma 6.2. Denote r = diam(Q), and let m,p ∈ Z be such that t ≥ s > 4r for
t = 2−p and s = 2−m. Suppose that A(x0, 2−m−1/2, 2−m+1/2) ∩ suppµ 6= ∅. Then any
point xn+1 ∈ 3Q satisfies

dist(xn+1, L0) . s

n+1∑
j=1

m∑
k=p

|Skµ(xj )− Skµ(x0)| +
r2

s
+
rs

t
, (93)

where L0 is the n-plane passing through x0, . . . , xn.

The following proposition is a direct consequence of the techniques used in the last sec-
tion of [To4]. We give the proof for completeness.

Proposition 6.4. Given ε0 > 0, there exist δ0 > 0 and m0, k0 ∈ N depending on ε0, n,
and Cµ such that, for all i ∈ Z and allQ ∈ Di with β1,µ(Q) > ε0, there exist k ∈ Z with
|k| ≤ k0 and P ∈ Di+k+m0 such that P ⊂ 4Q and |Si+kµ(x)| ≥ δ0 for all x ∈ P .
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Proof. Fix ε0 > 0. Let Q ∈ Di be such that β1,µ(Q) > ε0. Take x0, . . . , xn in Q as in
Lemma 6.2, denote r = diamQ, and let m ∈ Z (to be fixed below) be such that 4r <
2−m =: s and A(x0, 2−m−1/2, 2−m+1/2) ∩ suppµ 6= ∅ (we assume diam(suppµ) = ∞).
By Lemma 6.3, for t := 2−p ≥ s to be fixed below and all xn+1 ∈ 3Q,

dist(xn+1, L0) . s

n+1∑
j=1

m∑
k=p

|Skµ(xj )− Skµ(x0)| +
r2

s
+
rs

t

. s

m∑
k=p

n+1∑
j=0

|Skµ(xj )| +
r2

s
+
rs

t
.

Then by integrating over xn+1 ∈ 3Q, for some constant C1 > 0 depending only on n
and Cµ we have

ε0 < β1,µ(Q) ≤
1

`(Q)n

∫
3Q

dist(xn+1, L0)

`(Q)
dµ(xn+1)

≤ C1

(
s

r

m∑
k=p

(
1

`(Q)n

∫
3Q
|Skµ(xn+1)| dµ(xn+1)+

n∑
j=0

|Skµ(xj )|

)
+
r

s
+
s

t

)
.

Thus,

r

s

(
ε0

C1
−
r

s
−
s

t

)
≤

m∑
k=p

(∫
3Q

|Skµ(xn+1)|

`(Q)n
dµ(xn+1)+

n∑
j=0

|Skµ(xj )|

)
.

We can easily choose s and t large enough (depending on r , ε0, and C1) such that, for
some constant ε1 > 0 depending only on ε0, n and Cµ,

0 < ε1 ≤

m∑
k=p

(∫
3Q

|Skµ(xn+1)|

`(Q)n
dµ(xn+1)+

n∑
j=0

|Skµ(xj )|

)
. (94)

Notice that, since t = 2−p and s = 2−m were chosen depending on r ≈ 2−i , the sum on
the right hand side of (94) has a finite number of terms which only depends on ε0, n and
Cµ. Therefore, there exist k0 ∈ N and C2 > 0 depending only on ε0, n and Cµ such that,
for some negative integer k with |k| ≤ k0 and some j = 0, . . . , n,

ε1 ≤ C2

(
1

`(Q)n

∫
3Q
|Si+kµ| dµ+ |Si+kµ(xj )|

)
,

which implies that there exist C3 (depending on C2) and z ∈ 3Q such that ε1 ≤

C3|Si+kµ(z)|.
Given x ∈ suppµ, if |x − z| ≤ 2−i−k , then

|Si+kµ(x)− Si+kµ(z)| ≤

∫
|y−z|.2−i−k

‖∇(ϕi+kK)‖∞|x − z| dµ(y)

. 2(i+k)(n+1)
|x − z|

∫
|y−z|.2−i−k

dµ(y) . 2i+k|x − z|.
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Hence if |x−z| ≤ C42−i−k withC4 > 0 small enough, we haveC3|Si+kµ(x)−Si+kµ(z)|

≤ ε1/2, so ε1/2 ≤ C3|Si+kµ(x)|. Therefore, there exist m0 ∈ N depending on C4 (and
thus on ε0, n, and Cµ) and P ∈ Di+k+m0 such that ε1/2 ≤ C3|Si+kµ(x)| for all x ∈ P .
We can also assume that P ⊂ 4Q by taking C4 small enough, and since |k| ≤ k0 we have
`(P ) ≈ `(Q). The proposition follows by setting δ0 := ε1/(2C3) > 0. ut

Definition 6.5. Given ε0 > 0, let δ0, m0 > 0 be as in Proposition 6.4. Set

B := {Q ∈ D : β1,µ(Q) > ε0}, B̃ :=
⋃
k∈Z
{Q ∈ Dk+m0 : |Skµ(x)| ≥ δ0 for all x ∈ Q}.

Given P,R∈D with P ⊂R, we set FRP =
∑
Q∈B̃:P⊂Q⊂R χQ and FR=

∑
Q∈B̃:Q⊂R χQ.

Lemma 6.6. Let ρ > 0. Assume that there exists C0 > 0 such that, for all R ∈ D,∫
R

(FR)2/ρ dµ ≤ C0µ(R). (95)

Then there exists C > 0 such that
∑
Q∈B̃:Q⊂R µ(Q) ≤ Cµ(R) for all R ∈ D.

Proof. Let M > 1 be large enough (it will be fixed below). For R ∈ D, set

Tree(R) := {Q ∈ B̃ : Q ⊂ R, χQFRQ ≤ MχQ},

Top0(R) := {P ∈ B̃ : P ⊂ R, χPFRP > MχP , and χQFRQ ≤ MχQ

for all Q ∈ B̃ such that P ( Q ⊂ R}.

Form ≥ 1, set Topm(R) :=
⋃
P∈Topm−1(R)

Top0(P ), and Top(R) :=
⋃
m≥0 Topm(P ).

Notice that if R ∈ B̃ then R ∈ Tree(R), because M > 1. Notice also that

{Q ∈ B̃ : Q ⊂ R} = Tree(R) ∪
⋃

P∈Top(R)

Tree(P ), (96)

and the union is disjoint.
Fix R ∈ D. Then by (96),∑

Q∈B̃:Q⊂R
µ(Q) =

∑
Q∈Tree(R)

µ(Q)+
∑

P∈Top(R)

∑
Q∈Tree(P )

µ(Q)

=

∫
R

∑
Q∈Tree(R)

χQ dµ+

∫
R

∑
P∈Top(R)

∑
Q∈Tree(P )

χQ dµ. (97)

Given x ∈ R and P ∈ D such that P ⊂ R, by the definition of Tree(P ), we have∑
Q∈Tree(P )

χQ(x) ≤ MχP (x).



2318 Albert Mas, Xavier Tolsa

Therefore, by (97),∑
Q∈B̃:Q⊂R

µ(Q) ≤ Mµ(R)+

∫
R

∑
P∈Top(R)

MχP dµ = M
(
µ(R)+

∑
m≥0

∑
P∈Topm(R)

µ(P )
)
.

(98)
We are going to prove that, if M is large enough,∑

P∈Topm(R)

µ(P ) ≤ 2−mµ(R) (99)

for all m ≥ 0, and then, by (98), we will finally obtain∑
Q∈B̃:Q⊂R

µ(Q) ≤ Mµ(R)+M
∑
m≥0

2−mµ(R) ≤ 3Mµ(R),

and the lemma will be proven.
Notice that, if P, P ′ ∈ Top0(R) are different, then P ∩ P ′ = ∅ because of the last

condition in the definition of Top0(R). So, to verify (99), it is enough to show that, for all
m ≥ 0, ∑

P∈Topm+1(R)

µ(P ) <
1
2

∑
P∈Topm(R)

µ(P ). (100)

We have ∑
P∈Topm+1(R)

µ(P ) =
∑

P∈Topm(R)

∑
Q∈Top0(P )

µ(Q) (101)

and
∑
Q∈Top0(P )

χQ = χU , where U :=
⋃
Q∈Top0(P )

Q ⊂ P . If x ∈ U , there exists Q ∈
Top0(P ) such that x ∈ Q, so 1 = χQ(x) < M−2/ρ(FPQ (x))

2/ρ
≤ M−2/ρ(FP (x))2/ρ ,

and then using (95) we have∑
Q∈Top0(P )

µ(Q) =

∫
P

∑
Q∈Top0(P )

χQ dµ

=

∫
U

1 dµ < M−2/ρ
∫
P

(FP )2/ρ dµ ≤
C0

M2/ρ µ(P ),

which, in combination with (101), yields (100) by taking M > (2C0)
ρ/2. ut

Lemma 6.7. Assume that, for some C1 > 0,
∑
Q∈B̃:Q⊂R µ(Q) ≤ C1µ(R) for all R ∈

D. Then there exists C2 > 0 such that
∑
Q∈B:Q⊂R µ(Q) ≤ C2µ(R) for all R ∈ D.

Proof. Given Q ∈ B, by Proposition 6.4, there exists PQ ∈ Dk+m0 for some k ∈ Z such
that PQ ⊂ 4Q, µ(PQ) ≥ C0µ(Q), and |Skµ(x)| ≥ δ0 for all x ∈ PQ, where C0 > 0 is
some small constant. Thus, in particular, PQ ∈ B̃ for all Q ∈ B. Since PQ ⊂ 4Q and
µ(PQ) ≥ C0µ(Q) for all Q ∈ B, given P ∈ B̃ there are finitely many µ-cubes Q ∈ B
such that PQ = P , and the number of such µ-cubes is bounded above by a constant



Variation for the Riesz transform and uniform rectifiability 2319

depending only on n, C0, and Cµ. Hence, since 4R is contained in the union of a bounded
number of µ-cubes with side length `(R), we have∑

Q∈B:Q⊂R
µ(Q) ≤ C−1

0

∑
Q∈B:Q⊂R

µ(PQ) .
∑

P∈B̃:P⊂4R

µ(P ) ≤ C1µ(R)

for all R ∈ D, as desired. ut

Theorem 6.8. Let ρ > 0. Given an n-dimensional AD regular measure µ, if Vρ ◦Rµ is
a bounded operator in L2(µ), then µ is uniformly n-rectifiable.

Proof. It is easy to see that, if Vρ ◦Rµ is a bounded operator in L2(µ), then Rµ∗ is also
bounded in L2(µ). By Theorem 1.2 in [DS2, Part III, Chapter 1], in order to show that
µ is uniformly n-rectifiable, it is enough to show that µ satisfies the Weak Geometric
Lemma, i.e., for any ε0 > 0, the set B is a Carleson set. In other words, it suffices to show
that there exists a constant C > 0 depending on ε0 such that

∑
Q∈B:Q⊂R µ(Q) ≤ Cµ(R)

for all R ∈ D. By Lemmas 6.7 and 6.6, this holds if, for some ρ > 0, there exists C > 0
depending on ε0 such that, for all R ∈ D,∫

R

(FR)2/ρ dµ ≤ Cµ(R). (102)

Notice that, for m ∈ Z and f ∈ L1(µ), Sm(fµ) = T
µ
ϕ2−m−1f − T

µ
ϕ2−m

f , where Sm is
introduced in Definition 6.1 and T µϕε is as in Definition 2.1 (remember that nowK denotes
the Riesz kernel), thus ∑

k∈Z
|Sk(fµ)(x)|

ρ
≤ ((Vρ ◦ T µ

ϕ )f (x))
ρ . (103)

We may assume that ρ ≥ 1, since (Vρ̃ ◦ Rµ)f (x) ≤ (Vρ ◦ Rµ)f (x) for ρ̃ ≥ ρ, and
then the L2(µ) boundedness of Vρ ◦Rµ for some ρ > 0 implies the L2(µ) boundedness
of Vρ̃ ◦ Rµ for all ρ̃ ≥ ρ. Since ϕR(22mt2) is a convex combination of the functions
χ{s∈R: s>ε}(t) for ε > 0, using ρ ≥ 1 and Minkowski’s integral inequality it is not hard to
show that the L2(µ) boundedness of Vρ ◦Rµ implies the L2(µ) boundedness of Vρ ◦T µ

ϕ

(see Subsection 5.2, or [CJRW1, Lemma 2.4], for a similar argument). Therefore, for any
M > 0, we have

‖(Vρ ◦ T µ
ϕ )χMR‖

2
L2(µ)

≤ Cµ(MR) ≤ Cµ(R) for all R ∈ D. (104)

Fix ε0 > 0, let δ0, m0 > 0 be as in Proposition 6.4, and let R ∈ D. Given x ∈ R and
k ∈ Z, for anyQ ∈ Dk+m0 ∩ B̃ such that x ∈ Q ⊂ R we have |Skµ(x)| ≥ δ0. Notice that,
since Q ∈ Dk+m0 and Q ⊂ R, there exists M > 1 depending only on n and m0 such that
δ0 ≤ |Skµ(x)| = |Sk(χMRµ)(x)|. Therefore, using (103) and the fact that for each k ∈ Z
there is at most one µ-cube Q ∈ Dk+m0 such that x ∈ Q ⊂ R, we obtain

FR(x) =
∑
k∈Z

∑
Q∈Dk+m0∩B̃: x∈Q⊂R

χQ(x) ≤
∑
k∈Z

∑
Q∈Dk+m0∩B̃: x∈Q⊂R

δ
−ρ
0 |Sk(χMRµ)(x)|

ρ

≤ δ
−ρ
0

∑
k∈Z
|Sk(χMRµ)(x)|

ρ
≤ δ
−ρ
0 ((Vρ ◦ T µ

ϕ )χMR(x))
ρ (105)
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and then, by (104),∫
R

(FR)2/ρ dµ ≤ δ−2
0

∫
R

(
(Vρ ◦ T µ

ϕ )χMR
)2
dµ ≤ δ−2

0 ‖(Vρ ◦ T
µ
ϕ )χMR‖

2
L2(µ)

≤ Cµ(R)

for all R ∈ D. This yields (102), and the theorem follows. ut

Remark 6.9. Let {rm}m∈Z ⊂ (0,∞) be a fixed decreasing sequence defining O. If there
exists C > 0 such that C−1rm ≤ rm− rm+1 ≤ Crm for all m ∈ Z, then the last inequality
in (105) still holds if we replace Vρ by O (by taking ρ = 2 from the beginning). Hence,
Theorem 6.8 still holds after replacing Vρ by O for this particular sequence {rm}m∈Z.
However, we do not know if it holds for any {rm}m∈Z ⊂ (0,∞).
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