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Abstract. We prove a new finiteness result for the Hofer–Zehnder capacity of certain unit disk
cotangent bundles. It is proved by a computation of the pair-of-pants product on Floer homology of
cotangent bundles, combined with the theory of spectral invariants. The computation of the pair-of-
pants product is reduced to a simple computation of the Chas–Sullivan loop product.
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1. Introduction

1.1. Hofer–Zehnder capacity

The study of periodic orbits of Hamiltonian systems is a fundamental problem in symplec-
tic geometry and Hamiltonian dynamics. Hofer and Zehnder ([HZ1], [HZ2]) introduced a
remarkable invariant of a symplectic manifold, which reflects behaviors of periodic orbits
of Hamiltonian systems on the manifold. This invariant is called Hofer–Zehnder capacity,
and we will recall its precise definition below.

If one can show that a given symplectic manifold has finite Hofer–Zehnder capacity,
or succeeds in computing the capacity, it often gives strong consequences. For example,
on every symplectic manifold with finite Hofer–Zehnder capacity, we have a very strong
existence theorem about periodic orbits of Hamiltonian systems (see [HZ2, Chapter 4,
Theorem 4]). Moreover, quantitative estimates of the Hofer–Zehnder capacity have appli-
cations in symplectic embedding problems (see [HZ2, Chapter 2]).

Thus it is an important task to understand the behavior of the capacity. However,
even to prove its finiteness is hard in general. In particular, very little is known about the
Hofer–Zehnder capacity of cotangent bundles, although they are the most basic examples
of symplectic manifolds. In this paper, we try to add a new result on this problem, based
on computations of Floer homology of cotangent bundles due to [AS1], [AS2].

First we recall the formal definition of the Hofer–Zehnder capacity. In fact we intro-
duce a refined version, taking into account homotopy classes of periodic orbits. Let (X, ω)
be a symplectic manifold without boundary. For anyH ∈ C∞(X), its Hamiltonian vector
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field XH is defined by ω(XH , · ) = −dH( · ). Let π ′1(X) be the set of homotopy classes
of free loops onX. For any P ⊂ π ′1(X),H ∈ C

∞(X) is called Hofer–Zehnder admissible
with respect to P if the following hold:

• H(x) ≤ 0 for any x ∈ X.
• Any nonconstant periodic orbit γ of XH satisfying [γ ] ∈ P has a period > 1.
• There exists a nonempty open set U such that H |U ≡ minH .
• suppH is a compact, proper subset of X.

Then, we define the quantity

cHZ(X, ω : P) := sup{−minH | H is Hofer–Zehnder admissible with respect to P },

and call it the Hofer–Zehnder capacity with respect to P . The quantity cHZ(X, ω) :=

cHZ(X, ω : π
′

1(X)) is the usual Hofer–Zehnder capacity (see e.g. [HZ2]).

Remark 1.1. Throughout this paper, all manifolds are assumed to be connected. There-
fore for any manifoldX, there is a unique element in π ′1(X)which consists of contractible
loops. We denote it as cX.

1.2. Main result

To explain our main result, we fix some notation. LetM be a closed Riemannian manifold.

• 3M denotes the Hilbert manifold of free loops S1(:= R/Z) → M of Sobolev
class L1,2 (i.e. loops with square integrable derivatives).
• For any α ∈ π ′1(M), 3

α
M := {γ ∈ 3M | [γ ] = α}.

• For any γ ∈ 3M , γ̄ denotes its inverse, i.e. γ̄ (t) := γ (1 − t). For any α ∈ π ′1(X),
ᾱ ∈ π ′1(X) is defined as ᾱ := [γ̄ ] ([γ ] = α).
• DT ∗M denotes the unit disk cotangent bundle of M , i.e.

DT ∗M := {(q, p) ∈ T ∗M | |p| ≤ 1}.

• πM denotes the natural projection map T ∗M → M , (q, p) 7→ q. The differential
forms λM ∈ �1(T ∗M) and ωM ∈ �2(T ∗M) are defined as

λM(ξ) := p(dπM(ξ)) ((q, p) ∈ T ∗M, ξ ∈ T(q,p)(T
∗M)),

ωM := dλM .

Our main result is the following:

Theorem 1.2. LetM be a closed Riemannian manifold, and α ∈ π ′1(M)\ {cM}. Suppose
that the evaluation map ev : 3αM → M , γ 7→ γ (0), has a continuous section s (i.e.
s : M → 3αM such that ev ◦ s = idM). Then

cHZ(intDT ∗M,ωM : {cM , α, ᾱ}) <∞.

The following corollary is immediate from Theorem 1.2.
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Corollary 1.3. Let M be a closed Riemannian manifold. Suppose that M admits a
smooth S1 action such that the S1 orbit γp : S1

→ M , t 7→ t · p, is not contractible
for any p ∈ M . Then cHZ(DT

∗M,ωM) <∞.

Proof. [γp] ∈ π ′1(M) \ {cM} does not depend on p ∈ M; denote it α. Now s : p 7→ γp is
a continuous section of ev : 3αM → M , thus Theorem 1.2 completes the proof. ut

Corollary 1.3 is proved in [I] in a different way.

1.3. Outline of the proof

We give an outline of the proof of Theorem 1.2, dividing it into three steps. We use several
technical terms without explanations. We recall their definitions later.

Step 1: Hofer–Zehnder capacity and the pair-of-pants product. For any Liouville
domain (X, λ) and α ∈ π ′1(X), we define a Z2-module HFα(X, λ), Floer homology.
(We do not need grading. As a matter of fact, Floer homology carries only Z2-grading
in our context.) Let us denote HF(X, λ) :=

⊕
α∈π ′1(X)

HFα(X). There exists a natural

homomorphism ι :
⊕

i H
i(X) → HF(X). Moreover, HF(X) carries the pair-of-pants

product, which is denoted as ∗. We prove the following result:

Theorem 1.4. Let (X, λ) be a Liouville domain and α ∈ π ′1(X) \ {cX}. Suppose there
exist x ∈ HFα(X, λ) and y ∈ HFᾱ(X, λ) such that x ∗ y = ι(1). Then

cHZ(intX, dλ : {cX, α, ᾱ}) <∞.

Remark 1.5. Suppose that X is a Liouville domain which satisfies the assumption of
Theorem 1.4. Let X̃ be a Liouville domain which is obtained by a subcritical handle
attachment to X. Then the homomorphism HF(X̃) → HF(X) constructed in [V1] is
isomorphic by [Cie], and it is possible to show that the homomorphism preserves the
pair-of-pants product. Hence X̃ also satisfies the assumption of Theorem 1.4, unless
π ′1(X)→ π ′1(X̃) maps α to the trivial class.

The proof of Theorem 1.4 is based on the theory of spectral invariants, in particular
their subadditivity with respect to the pair-of-pants product.

Step 2: Floer homology of cotangent bundles. As a next step, we make use of the fol-
lowing result, which enables us to compute the pair-of-pants product on Floer homology
of cotangent bundles via the Chas–Sullivan loop product:

Theorem 1.6 ([V2], [SW], [AS1], [AS2]). For any closed Riemannian manifold M , the
following statements hold:

(1) For each α ∈ π ′1(M), there exists a natural isomorphism

9α : HFα(DT ∗M,λM)→
⊕
i

Hi(3
α
M).

9 : HF(DT ∗M)→
⊕

i,α Hi(3
α
M) denotes the direct product of (9α)α∈π ′1(M).
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(2) Define c : M → 3M by c(p) := constant loop at p. Then 9(ι(1)) = c∗[M], where
[M] denotes the fundamental homology class of M , and 1 denotes the canonical
element in H 0(DT ∗M).

(3) The isomorphism 9 intertwines the pair-of-pants product on HF(DT ∗M,λM) with
the Chas–Sullivan loop product on

⊕
i Hi(3M).

There are several remarks on Theorem 1.6:

Remark 1.7. • Theorem 1.6(1) is due to [V2], [SW], [AS1]. The author is not sure if
one can identify the isomorphisms constructed in those papers in natural ways. In the
following, we adopt the isomorphism constructed in [AS1].
• The definition of Floer homology of cotangent bundles in [AS1], [AS2] is slightly

different from ours, which will be given in Section 2. We follow [V1], and consider
Hamiltonians which grow linearly at ends. On the other hand, the authors of [AS1],
[AS2] consider Hamiltonians which grow quadratically at ends. It is not hard to check
that there exists a natural isomorphism between Floer homologies defined by these two
definitions; we omit the details.
• Theorem 1.6(2) is not made explicit in [AS1]. However, it is not hard to prove it from

the construction of the isomorphism in [AS1]; we omit the details.
• Theorem 1.6(3) is due to [AS2]. In [AS2], it is assumed that M is oriented. This as-

sumption is necessary when we define the loop product over Z. However, we do not
need to assume that M is oriented, since we are working with Z2 coefficients.

Step 3: A key computation on the loop product. The following lemma is a key ingre-
dient in the proof of Theorem 1.2:

Lemma 1.8. Let M be a closed manifold. Suppose s : M → 3M satisfies ev ◦ s = idM ,
and let s̄ : M → 3M be defined by s̄(p) := s(p). Then

s∗[M] ◦ s̄∗[M] = c∗[M],

where ◦ denotes the loop product on H∗(3M).

We now deduce Theorem 1.2 from Theorem 1.4, Theorem 1.6, and Lemma 1.8. Take
s : M → 3M as in the assumption in Theorem 1.2, and consider x := 9−1(s∗[M]) ∈

HFα(DT ∗M) and y := 9−1(s̄∗[M]) ∈ HFᾱ(DT ∗M). Then we get

x ∗ y = 9−1(s∗[M] ◦ s̄∗[M]) = 9
−1(c∗[M]) = ι(1)

from Theorem 1.6 and Lemma 1.8. Hence cHZ(intDT ∗M,ωM : {cM , α, ᾱ}) < ∞ by
Theorem 1.4.

1.4. Previous work

When a domain in a symplectic manifold (with some mild conditions) is Hamiltonian
displaceable, its Hofer–Zehnder capacity is finite (see e.g. [HZ2], [Schl], [U]). Hence, it
is natural to study the case of Hamiltonian nondisplaceable domains. Unit disk cotangent
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bundles are the most basic examples here. However, as far as the author knows, very
little is known concerning their Hofer–Zehnder capacity. The following proposition is an
immediate consequence of the Weinstein neighborhood theorem and finiteness of Hofer–
Zehnder capacity of standard symplectic balls:

Proposition 1.9. Let M be an n-dimensional closed Riemannian manifold. If Cn with
the standard symplectic structure admits a closed Lagrangian submanifold diffeomorphic
to M , then cHZ(intDT ∗M,ωM) <∞.

M. Jiang [J] extends this observation, and proves a good upper bound of
cHZ(intDT ∗M,ωM) when M is the flat torus. The following remarkable result is an im-
mediate consequence of R. Ma’s [Ma, Theorem 1.3] (note that this result can be deduced
from Corollary 1.3 when N is compact):

Theorem 1.10 ([Ma]). Let N be any Riemannian manifold, and M := N × S1 with the
product metric. Then cHZ(intDT ∗M,ωM) <∞.

L. Macarini [Mac, Corollary 1.4] also proved finiteness of the Hofer–Zehnder capacity of
the unit disk cotangent bundle under the assumption that the base manifold admits a free
circle action satisfying some conditions.

J. Weber [W] introduced the Biran–Polterovich–Salamon (BPS) capacity, based on
the work of P. Biran, L. Polterovich and D. Salamon [BPS]. The BPS capacity can be
considered to be a variant of the Hofer–Zehnder capacity, which detects noncontractible
periodic orbits of Hamiltonian systems on cotangent bundles. Weber computed the BPS
capacity completely [W, Theorem 4.3], improving results in [BPS]. For other related re-
sults concerning nonconstant periodic orbits of Hamiltonian systems, especially on non-
contractible orbits, consult [W, introduction], [BPS, Section 1.2] and references therein.

1.5. Organization of the paper

In Section 2, we recall Floer theory on Liouville domains. We define truncated Floer
homology of Liouville domains, and the pair-of-pants product on Floer homology. In
Section 3, we prove Theorem 1.4 by using the theory of spectral invariants. In Section 4,
we recall the definition of the Chas–Sullivan loop product, and prove Lemma 1.8.

2. Floer theory on Liouville domains

In this section, we recall Floer theory on Liouville domains. In Section 2.1, we recall
basic objects (Liouville domains, Hamiltonians, almost complex structures) and prove a
convexity result for solutions of the Floer equations (Lemma 2.2). In Section 2.2, first we
define truncated Floer homology of (admissible) Hamiltonians. Then we define truncated
Floer homology of Liouville domains. In Section 2.3, we define the pair-of-pants product
on truncated Floer homology.
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2.1. Preliminaries

2.1.1. Liouville domains. A Liouville domain is a pair (X, λ), where X is a 2n-dimen-
sional compact manifold with boundary and λ ∈ �1(X) is such that dλ is a symplectic
form on X, and λ∧ (dλ)n−1 > 0 on ∂X. The Liouville vector field Z is defined implicitly
by the equation iZ(dλ) = λ. It is easy to show that Z points strictly outwards on ∂X. For
any Liouville domain (X, λ), (∂X, λ) is a contact manifold. We define

Spec(X, λ) :=
{∫

γ

λ

∣∣∣∣ γ is a periodic Reeb orbit on (∂X, λ)
}
.

Obviously, Spec(X, λ) ⊂ (0,∞). Moreover, it is well-known that Spec(X, λ) is closed
and nowhere dense in R.

Let I : ∂X × (0, 1] → X be the embedding defined by

I (z, 1) = z, ∂rI (z, r) = r
−1Z(I (z, r)).

It is easy to check that I ∗λ(z, r) = rλ(z) for any (z, r) ∈ ∂X × (0, 1].
Define a manifold X̂ by

X̂ := X ∪I ∂X × (0,∞),

and λ̂ ∈ �1(X̂) by

λ̂(x) :=

{
λ(x) (x ∈ X),

rλ(z) (x = (z, r) ∈ ∂X × (0,∞)).

(X̂, λ̂) is called the completion of (X, λ); dλ̂ is a symplectic form on X̂. For each r > 0,
X(r) denotes the bounded domain in X̂ with boundary ∂X × {r}, i.e.

X(r) :=

{
X ∪ ∂X × [1, r] (r ≥ 1),
X \ ∂X × (r, 1] (r < 1).

Example 2.1. When M is a closed Riemannian manifold, (DT ∗M,λM) is a Liouville
domain. There exists a unique diffeomorphism ϕ : D̂T ∗M→T ∗M such that ϕ∗λM= λ̂M
and ϕ|DT ∗M is the inclusion DT ∗M → T ∗M . Hence we identify (T ∗M,λM) with the
completion of (DT ∗M,λM).

2.1.2. Hamiltonians. For H ∈ C∞(S1
× X̂), Ht ∈ C∞(X̂) is defined by Ht (x) :=

H(t, x), and P(H) denotes the set of 1-periodic orbits of (XHt )t∈S1 , i.e.

P(H) := {x : S1
→ X̂ | XHt (x(t)) = ∂tx(t)}.

H is nondegenerate when all orbits in P(H) are nondegenerate; H is linear at∞ when
there exist aH > 0, bH ∈ R and r0 ≥ 1 such that Ht (z, r) = aH r + bH for any t ∈ S1,
z ∈ ∂X, r ≥ r0; andH is admissible when it is nondegenerate and linear at∞. We denote
the set of admissible Hamiltonians by Had(X, λ). Notice that anyH ∈ Had(X, λ) satisfies
aH /∈ Spec(X, λ), since otherwise P(H) contains infinitely many degenerate orbits.
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2.1.3. Almost complex structures. Let J be an almost complex structure on X̂. It is com-
patible with dλ̂ when

gJ : TM ⊗ TM → R, v ⊗ w 7→ dλ̂(v, Jw),

is a Riemannian metric (we will denote gJ (v, v)1/2 as |v|J ). Let J (X̂, λ̂) denote the set
of almost complex structures on X̂ which are compatible with dλ̂.

Let I ⊂ (0,∞) be a nonempty interval. A family (Ja)a∈A of almost complex struc-
tures is of contact type on ∂X × I when each Ja satisfies dr ◦ Ja(z, r) = −λ(z) for any
(z, r) ∈ ∂X× I . If (Ja)a∈A is of contact type on ∂X× (r0,∞) for some r0, then (Ja)a∈A
is of contact type at∞.

2.1.4. Convexity. The following convexity result is necessary to develop Floer theory
on Liouville domains. Although it is well-known, we include its proof for the sake of
completeness.

Lemma 2.2. Let (X, λ) be a Liouville domain, (Hs,t )(s,t)∈R×S1 be a family of Hamilto-
nians on X̂, and (Js,t )(s,t)∈R×S1 be a family of elements in J (X̂, λ̂). Suppose that there
exists r0 > 0 such that the following hold:

• There exist a, b ∈ C∞(R) such that Hs,t (z, r) = a(s)r + b(s) on ∂X × [r0,∞), and
a′(s) ≥ 0 for any s ∈ R.
• (Js,t )(s,t)∈R×S1 is of contact type on ∂X × [r0,∞).

Under these assumptions, if u : R×S1
→ X̂ satisfies the Floer equation ∂su−Js,t (∂tu−

XHs,t (u)) = 0 and u−1(∂X × (r0,∞)) is bounded, then u(R× S1) ⊂ X(r0).

Proof. If u(R×S1) is not contained inX(r0), then there exists r1 > r0 such that u(R×S1)

is not contained inX(r1), and u is transversal to ∂X×{r1}. ThenD := u−1(∂X×[r1,∞))

is a compact surface with boundary, and

0 <
∫
D

|∂su|
2
Js,t
ds dt =

∫
D

dλ̂(∂tu−XHs,t (u), ∂su) ds dt

=

∫
D

dHs,t (∂su) ds dt − u
∗(dλ̂).

On the other hand, if u(s, t) ∈ ∂X × [r0,∞),

dHs,t (∂su) = a(s)∂sr(s, t) ≤ a(s)∂sr(s, t)+ a
′(s)r(s, t) = ∂s(a(s)r(s, t))

= ∂s(λ̂(XHs,t (u))).

Hence we get∫
D

dHs,t (∂su) ds dt − u
∗(dλ̂) ≤

∫
D

∂s(λ̂(XHs,t (u))) ds dt − u
∗(dλ̂)

=

∫
∂D

λ̂(XHs,t (u) dt − du).
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We can compute the right hand side as follows (j denotes the complex structure on R×S1

which is defined by j (∂s) = ∂t ):∫
∂D

λ̂(XHs,t (u) dt − du) =

∫
∂D

λ̂(Js,t ◦ (XHs,t (u) dt − du)) ◦ j

= r1

∫
∂D

dr(XHs,t (u) dt − du) ◦ j.

The first equality follows from the Floer equation, while the second holds since Js,t is of
contact type on ∂X × [r0,∞) and u(∂D) ⊂ ∂X × {r1}. Finally,∫

∂D

dr(XHs,t (u) dt − du) ◦ j < 0.

This is because dr(XHs,t ) = 0 on ∂X × {r1}, and dr(du(jV )) > 0 when V is a vector
tangent to ∂D, positive with respect to the boundary orientation. Hence we get a contra-
diction. ut

2.2. Truncated Floer homology of Liouville domains

In Section 2.2.1, we define truncated Floer homology of admissible Hamiltonians, and
introduce monotonicity homomorphisms. In Section 2.2.2, we define truncated Floer ho-
mology of Liouville domains, by taking a direct limit with respect to monotonicity ho-
momorphisms. Throughout this paper, we work in Z2-coefficient homology.

2.2.1. Truncated Floer homology of admissible Hamiltonians. Let (X, λ) be a Liouville
domain, H ∈ Had(X, λ), α ∈ π ′1(X), and I ⊂ R be a nonempty interval. CFI,α(H)
denotes the free Z2-module generated by

{x ∈ P(H) | AH (x) ∈ I, [x] = α},

where AH (x) is defined by

AH (x) :=

∫
S1
(x∗λ̂−Ht (x(t))) dt.

CFα(H) abbreviates CFR,α(H).
Let J = (Jt )t∈S1 be a family of elements in J (X̂, λ̂) which is of contact type at∞.

For any distinct x, y ∈ P(H), define (with u(s) denoting S1
→ X̂, t 7→ u(s, t))

M̂(x, y) :=
{
u : R× S1

→ X̂

∣∣∣ ∂su− Jt (∂tu−XHt (u)) = 0,

lim
s→−∞

u(s) = x, lim
s→∞

u(s) = y
}
.

Notice that one can define a natural R action on M̂(x, y) by shifting trajectories in the
s-variable. Let M(x, y) denote the quotient M̂(x, y)/R. For generic J = (Jt )t∈S1 ,
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M(x, y) is a smooth manifold. Denote by M0(x, y) the 0-dimensional component of
M(x, y). Then M0(x, y) is compact (hence a finite set). Moreover,

∂H,J : CFα(H)→ CFα(H), [x] 7→
∑
y

]M0(x, y) · [y],

satisfies ∂2
H,J = 0. These claims are proved by the usual transversality and glueing argu-

ments, combined with aC0-estimate for solutions of the Floer equation (Lemma 2.2). The
homology group of (CFα(H), ∂H,J ) does not depend on J , and is denoted by HFα(H). It
is called Floer homology of H .

It is easy to check that for any x, y ∈ P(H) and u ∈ M̂(x, y),

AH (x)−AH (y) =

∫
R×S1
|∂su(s, t)|

2
Jt
ds dt ≥ 0.

In particular, M(x, y) 6= ∅ ⇒ AH (x) ≥ AH (y). Hence for any nonempty interval
I ⊂ R, (CFI,α(H), ∂H,J ) is a chain complex. Its homology group HFI,α(H) is called
truncated Floer homology of H . We introduce some abbreviations:

HF<a,α(H) := HF(−∞,a),α(H), HFI (H) :=
⊕
α

HFI,α(H), HF(H) := HFR(H).

We define I+, I− ⊂ R as I+ := (−∞, inf I ] ∪ I and I− := I+ \ I . The following
statements are immediate from the definitions:

• For any nonempty intervals I, I ′ ⊂ R such that I± ⊂ I ′±, there exists a natural homo-
morphism 8II

′

H : HFI,α(H)→ HFI
′,α(H).

• For any −∞ ≤ a < b < c ≤ ∞, we have the exact triangle

HF[a,c)(H)

&&
HF[a,b)(H)

88

HF[b,c)(H)∂oo

Next we introduce the monotonicity homomorphism.

Proposition 2.3. Let H,H ′ ∈ Had(X, λ) and assume that aH ≤ aH ′ . Notice that

1 :=

∫
S1

max(Ht −H ′t ) dt <∞.

Let I, I ′ ⊂ R be nonempty intervals which satisfy I±+1 ⊂ I ′±, and let α ∈ π ′1(X). Then
there exists a natural homomorphism 8II

′

HH ′
: HFI,α(H) → HFI

′,α(H ′). Moreover, the
following properties hold:

• When H = H ′, 8II
′

HH coincides with 8II
′

H .
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• Suppose that H,H ′, H ′′ ∈ Had(X) satisfy aH ≤ aH ′ ≤ aH ′′ , and let I, I ′, I ′′ ⊂ R
be nonempty intervals. Then the following diagram commutes if the homomorphisms
8II

′

HH ′
, 8II

′′

HH ′′
, 8I

′I ′′

H ′H ′′
are defined:

HFI
′,α(H ′)

8I
′I ′′

H ′H ′′

&&
HFI,α(H)

8II
′

HH ′

88

8II
′′

HH ′′ // HFI
′′,α(H ′′)

Proof. The proof is almost the same as in the case of closed aspherical symplectic man-
ifolds (see [Schw, pp. 431]). The only difference is that we need a C0-estimate for Floer
trajectories, and it follows from Lemma 2.2. ut

The homomorphism 8II
′

HH ′
defined in Proposition 2.3 is called the monotonicity homo-

morphism. The following corollary is immediate from Proposition 2.3.

Corollary 2.4. Let (X, λ) be a Liouville domain, α ∈ π ′1(X), and H,H ′ ∈ Had(X, λ).

(1) If aH = aH ′ , then there exists a natural isomorphism 8HH ′ : HFα(H)→ HFα(H ′).
(2) IfHt ≤ H ′t for every t ∈ S1, then there exists a natural homomorphism HFI,α(H)→

HFI,α(H ′) for any nonempty interval I .

2.2.2. Truncated Floer homology of Liouville domains. Let (X, λ) be a Liouville do-
main, α ∈ π ′1(X), and I ⊂ R be a nonempty interval. Setting Hneg

ad (X, λ) := {H ∈

Had(X, λ) | H |S1×X < 0}, we define

HFI,α(X, λ) := lim
−→

H∈Hneg
ad (X,λ)

HFI,α(H),

where the right hand side is a direct limit with respect to the monotonicity homomor-
phisms of Corollary 2.4(2). If two nonempty intervals I, I ′ satisfy I± ⊂ I ′±, then there
exists a natural homomorphism HFI,α(X, λ) → HFI

′,α(X, λ). We prove the following
useful lemma.

Lemma 2.5. For any H ∈ Had(X, λ), there exists a natural isomorphism 9H : HFα(H)
→ HF<aH ,α(X, λ). Moreover, if H−, H+ ∈ Had(X, λ) satisfy aH− ≤ aH+ , then the
following diagram commutes:

HFα(H−)
9H− //

8H−H+

��

HF<aH− ,α(X, λ)

��
HFα(H+)

9H+ // HF<aH+ ,α(X, λ)

Proof. First we construct 9H : HFα(H) → HF<aH ,α(X, λ). It is not hard to check that
the following natural homomorphisms are all isomorphisms:
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HFα(H)→ lim
−→

G∈Had
aG≤aH

HFα(G),

lim
−→

G∈Hneg
ad

aG≤aH

HFα(G)→ lim
−→

G∈Had
aG≤aH

HFα(G),

lim
−→

G∈Hneg
ad

aG≤aH

HF<aH ,α(G)→ lim
−→

G∈Hneg
ad

aG≤aH

HFα(G),

lim
−→

G∈Hneg
ad

aG≤aH

HF<aH ,α(G)→ lim
−→

G∈Hneg
ad

HF<aH ,α(G) = HF<aH ,α(X, λ).

By composing the above isomorphisms and their inverses, we get an isomorphism 9H :

HFα(H)→ HF<aH ,α(X, λ). This proves the first assertion. The second assertion follows
from the above construction. ut

It is a standard fact that for any δ ∈ (0,min Spec(X, λ)), there exists a natural isomor-
phism (see [V1, Proposition 1.4])⊕

i

H i(X) ∼= HF<δ,cX (X, λ) ∼= HF<δ(X, λ).

Then, for any 0 < a ≤ ∞, one can define a natural homomorphism

ιa :
⊕
i

H i(X) ∼= HF<δ,cX (X, λ)→ HF<a,cX (X, λ)

by taking sufficiently small δ > 0. The homomorphism ι∞ coincides with ι which ap-
pears in Section 1.3 (Step 1). Using ιa , we define an important homology class Fa ∈
HF<a,cX (X, λ) by Fa := ιa(1), where 1 denotes the canonical element in H 0(X).

For any H ∈ Had(X, λ), we define FH ∈ HF(H) by FH := 9−1
H (FaH ). The second

assertion in Lemma 2.5 shows that for any H−, H+ ∈ Had(X, λ) with aH− ≤ aH+ , we
have 8H−H+(FH−) = FH+ .

2.3. Product structure

First we define the pair-of-pants Riemann surface 5. The following definition is taken
from [AS2, pp. 1602–1603]. In the disjoint union R× [−1, 0] t R× [0, 1], we consider
the identifications

(s,−1) ∼ (s, 0−), (s, 0+) ∼ (s, 1) (s ≤ 0),

(s, 0−) ∼ (s, 0+), (s,−1) ∼ (s, 1) (s ≥ 0),

and define 5 to be the quotient. We take the standard complex structure at every point
of 5 other than P := (0, 0) ∼ (0,−1) ∼ (0, 1). On a neighborhood of P , we define a



2488 Kei Irie

complex structure by the following holomorphic coordinate:

{ζ ∈ C | |ζ | < 1/
√

2} → 5,

ζ = σ + τ i 7→


(σ 2
− τ 2, 2στ) (σ ≥ 0),

(σ 2
− τ 2, 2στ + 1) (σ ≤ 0, τ ≥ 0),

(σ 2
− τ 2, 2στ − 1) (σ ≤ 0, τ ≤ 0).

(?)

j5 denotes the complex structure on 5. We need the following convexity result:

Lemma 2.6. Let (Hs,t )(s,t)∈5 be a family of Hamiltonians on X̂, and (Js,t )(s,t)∈5 be a
family of elements in J (X̂, λ̂). Suppose that there exists r0 > 0 such that the following
hold:
• There exist a, b ∈ C∞(R) such that Hs,t (z, r) = a(s)r + b(s) on ∂X × [r0,∞), and
a′(s) ≥ 0 for any s ∈ R.
• (Js,t )(s,t)∈5 is of contact type on ∂X × [r0,∞).

If u : 5→ X̂ satisfies the Floer equation

∂su− Js,t (∂tu−XHs,t (u)) = 0 (at (s, t) 6= P),

JP ◦ du ◦ j5 − du = 0 (at P),

and u−1(∂X × (r0,∞)) is bounded, then u(5) ⊂ X(r0).

Remark 2.7. The Floer equation in Lemma 2.6 may look strange at first. In a neighbor-
hood of P , it is written as ∂σu−J∂τu+(2σJ−2τ)XH (u) = 0, by using the holomorphic
coordinate (?) (we omit subscripts for J and H ).
Proof. If u(5) is not contained in X(r0), then there exists r1 > r0 such that u(5) is
not contained in X(r1), u is transversal to ∂X × {r1} and u(P ) /∈ ∂X × {r1}. Then
D := u−1(∂X × [r1,∞)) is a compact surface with boundary, and P /∈ ∂D.

The rest of the proof is almost the same as that of Lemma 2.2, after replacing D with
D \ {P }. The only delicate point is that we have to check∫

D\{P }

∂s(λ̂(XHs,t (u))) ds dt − u
∗(dλ̂) =

∫
∂D

λ̂(XHs,t (u) dt − du),

where we cannot apply Stokes’s theorem (when P ∈ intD, D \ {P } is not compact).
It is enough to consider the case P ∈ intD. Take a complex chart (?) near P , and set
Dε := {ζ ∈ C | 0 ≤ |ζ | ≤ ε}. Then the above identity is proved as follows:∫
D\{P }

∂s(λ̂(XHs,t (u))) ds dt − u
∗(dλ̂) = lim

ε→0

∫
D\Dε

∂s(λ̂(XHs,t (u))) ds dt − u
∗(dλ̂)

= lim
ε→0

∫
∂Dε∪∂D

λ̂(XHs,t (u) dt − du) =

∫
∂D

λ̂(XHs,t (u) dt − du).

The last equality holds since the norm of λ̂(XHs,t (u) dt −du) is bounded on any compact
neighborhood of P , and the length of ∂Dε goes to 0 as ε→ 0. ut

Let H,K ∈ Had(X, λ). Suppose that the following holds:
(P0) ∂rt H |t=0 = ∂

r
t K|t=0 for any integer r ≥ 0. In particular, aH = aK .
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We define H ∗K ∈ C∞(S1
× X̂) by

(H ∗K)t :=

{
2H2t (0 ≤ t ≤ 1/2),
2K2t−1 (1/2 ≤ t ≤ 1).

Suppose also that:

(P1) H ∗K ∈ Had(X),
(P2) x(0) 6= y(0) for any x ∈ P(H) and y ∈ P(K).

Let (Jt )−1≤t≤1 be a family of elements in J (X̂, λ̂) which is of contact type at ∞ and
∂rt Jt |t=−1 = ∂

r
t Jt |t=0 = ∂

r
t Jt |t=1 for any integer r ≥ 0. For any x ∈ P(H), y ∈ P(K)

and z ∈ P(H ∗K), let M(x, y : z) denote the set of u : 5→ X̂ which satisfy

∂su− Jt (∂tu−
1
2X(H∗K)(t+1)/2(u)) = 0 (at (s, t) 6= P),

JP ◦ du ◦ j − du = 0 (at P),

with boundary conditions

lim
s→−∞

u(s, t) = y(t) (0 ≤ t ≤ 1),

lim
s→−∞

u(s, t) = x(t + 1) (−1 ≤ t ≤ 0),

lim
s→∞

u(s, t) = z((t + 1)/2) (−1 ≤ t ≤ 1).

For generic (Jt )−1≤t≤1, M(x, y : z) is a smooth manifold. Its 0-dimensional component
M0(x, y : z) is compact (hence a finite set). Moreover,

CF(H)⊗ CF(K)→ CF(H ∗K), [x] ⊗ [y] 7→
∑
z

]M0(x, y : z) · [z],

is a chain map. These claims are proved by the usual transversality and glueing argu-
ments, combined with a C0-estimate for Floer trajectories, which follows from Lemma
2.6. Hence we can define the pair-of-pants product on Floer homology of Hamiltonians:

HF(H)⊗ HF(K)→ HF(H ∗K), α ⊗ β 7→ α ∗ β.

Simple computations show that for any x ∈ P(H), y ∈ P(K), z ∈ P(H ∗ K) and
u ∈M(x, y : z),

AH (x)+AK(y)−AH∗K(z) =

∫
5\{P }

|∂su|
2
Jt
ds dt ≥ 0.

In particular, M(x, y : z) 6= ∅ ⇒ AH (x) +AK(y) ≥ AH∗K(z). Hence for any −∞ ≤
a, b ≤ ∞, one can define the pair-of-pants product on truncated Floer homology of
Hamiltonians:

HF<a(H)⊗ HF<b(K)→ HF<a+b(H ∗K).

By using Lemma 2.6, it is easy to show that it commutes with monotonicity homomor-
phisms:
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Lemma 2.8. Suppose that H,K, H̄ , K̄ ∈ Had(X, λ) satisfy the following:

(1) H and K satisfy (P0), (P1), (P2).
(2) H̄ and K̄ satisfy (P0), (P1), (P2).
(3) Ht ≤ H̄t , Kt ≤ K̄t for every t ∈ S1.

Then the following diagram commutes for any −∞ ≤ a, b ≤ ∞:

HF<a(H)⊗ HF<b(K) //

8HH̄⊗8KK̄
��

HF<a+b(H ∗K)

8H∗K,H̄∗K̄
��

HF<a(H̄ )⊗ HF<b(K̄) // HF<a+b(H̄ ∗ K̄)

By Lemma 2.8, one can define the pair-of-pants product on truncated Floer homology of
Liouville domains: HF<a(X, λ)⊗ HF<b(X, λ)→ HF<a+b(X, λ).

Moreover, the isomorphism in Lemma 2.5 commutes with products. More precisely,
ifH,K ∈ Had(X, λ) satisfy (P0), (P1), (P2), then the following diagram commutes (a :=
aH = aK ):

HF(H)⊗ HF(K) //

9H⊗9K

��

HF(H ∗K)

9H∗K
��

HF<a(X, λ)⊗ HF<a(X, λ) // HF<2a(X, λ)

3. Spectral invariants and Hofer–Zehnder capacity

The goal of this section is to prove Theorem 1.4. The proof depends on the theory of
spectral invariants, which has been developed by several authors (see [FGS], [MS, Sec-
tion 12.4] and references therein). In Section 3.1, we define the spectral invariants and
summarize their basic properties. In Section 3.2, we prove Theorem 1.4.

3.1. Spectral invariants

Let (X, λ) be a Liouville domain, and H ∈ Had(X, λ). For any a ∈ R, there exists an
exact triangle

HF(H)
ja

%%
HF<a(H)

ia
99

HF≥a(H)∂aoo

Recall that there exists a natural isomorphism 9H : HF(H)→ HF<aH (X, λ). Then, for
any x ∈ HF<aH (X, λ), we define the spectral invariant ρ(H : x) by

ρ(H : x) := inf{a ∈ R | 9−1
H (x) ∈ Im ia} = inf{a ∈ R | ja(9−1

H (x)) = 0}.

Notice that ρ(H : 0) = −∞.
In Lemma 3.1 below, we summarize basic properties of the spectral invariant. First

we introduce some notation:
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• For H ∈ C∞(S1
× X̂) and α ∈ π ′1(X), we define

Pα(H) := {x ∈ P(H) | [x] = α}, Specα(H) := {AH (x) | x ∈ Pα(H)},
Spec(H) := {AH (x) | x ∈ P(H)}.

Suppose that H ∈ C∞(S1
× X̂) is linear at∞ and aH /∈ Spec(X, λ). Then it is easy to

see that Specα(H),Spec(H) ⊂ R are closed, nowhere dense sets.
• ForH ∈ C∞0 (S

1
× X̂) (C∞0 denotes the set of compactly supported smooth functions),

its Hofer norm is defined as

‖H‖ :=

∫
S1
(maxHt −minHt ) dt.

Lemma 3.1. (1) For any H ∈ Had(X, λ) and x ∈ HF<aH ,α(X, λ) \ {0},

ρ(H : x) ∈ Specα(H).

(2) Suppose H,K ∈ Had(X, λ) are such that supp(H − K) is compact. Then, for any
x ∈ HF<aH (X, λ) \ {0},

|ρ(H : x)− ρ(K : x)| ≤ ‖H −K‖.

(3) Suppose H,K ∈ Had(X, λ) satisfy (P0), (P1), (P2) of Section 2.3. Then, for any
x, y ∈ HF<aH (X, λ),

ρ(H ∗K : x ∗ y) ≤ ρ(H : x)+ ρ(K : y).

Proof. (1) Suppose ρ(H : x) /∈ Specα(H). We abbreviate ρ(H : x) as ρ. Since x 6= 0,
we have ρ 6= −∞. Since Specα(H) is closed, there exists ε > 0 such that [ρ−ε, ρ+ε]∩
Specα(H) = ∅. Hence HF[ρ−ε,ρ+ε),α(H) = 0, and so HF<ρ−ε,α(H) → HF<ρ+ε,α(H)
is an isomorphism. Hence we get

Im
(
HF<ρ−ε,α(H)→ HFα(H)

)
= Im

(
HF<ρ+ε,α(H)→ HFα(H)

)
.

However, the definition of the spectral invariant implies that9−1
H (x) /∈ Im(HF<ρ−ε,α(H)

→ HFα(H)) and 9−1
H (x) ∈ Im(HF<ρ+ε,α(H)→ HFα(H)), hence a contradiction.

(2) By Proposition 2.3, for any a ∈ R there exists a monotonicity homomorphism
HF<a(H) → HF<a+‖H−K‖(K). The commutativity of the diagram (horizontal arrows
are monotonicity homomorphisms)

HF<a(H) //

ia

��

HF<a+‖H−K‖(K)

ia+‖H−K‖

��
HF(H) // HF(K)

shows that ρ(K : x) ≤ ρ(H : x)+‖H −K‖. A similar argument shows that ρ(H : x) ≤
ρ(K : x)+ ‖H −K‖, hence (2) is proved.

(3) follows from the fact that the isomorphism in Lemma 2.5 commutes with products
(see the last paragraph of Section 2.3). ut
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Using Lemma 3.1(2), we can define spectral invariants for a larger class of Hamiltonians.
Suppose H ∈ C∞(S1

× X̂) is linear at ∞ and aH /∈ Spec(X, λ), but P(H) may con-
tain degenerate orbits. Take a sequence (Hj )j=1,2,... of admissible Hamiltonians such that
supp(Hj −H) is compact for any j and limj→∞ ‖Hj −H‖ = 0. Define

ρ(H : x) := lim
j→∞

ρ(Hj : x).

By Lemma 3.1(2), the right hand side exists and does not depend on the choices of (Hj )j .
The following lemma is immediate from Lemma 3.1 and the above definition.

Lemma 3.2. Suppose H ∈ C∞(S1
× X̂) is linear at∞ and aH /∈ Spec(X, λ).

(1) For any x ∈ HF<aH ,α(X, λ) \ {0}, ρ(H : x) ∈ Specα(H).
(2) For any K ∈ C∞(S1

× X̂) such that supp(H − K) is compact and for any x ∈
HF<aH (X, λ) \ {0},

|ρ(H : x)− ρ(K : x)| ≤ ‖H −K‖.

(3) Suppose that 2aH /∈ Spec(X, λ). If K ∈ C∞(S1
× X̂) is linear at ∞ and satisfies

∂rt H |t=0 = ∂
r
t K|t=0 for any integer r ≥ 0, then

ρ(H ∗K : x ∗ y) ≤ ρ(H : x)+ ρ(K : y) for any x, y ∈ HF<aH (X, λ).

3.2. Proof of Theorem 1.4

In this subsection, we use the following notation:

• For any H ∈ C∞0 (intX), a ∈ R and ν ∈ C∞([1,∞)), we define Ha,ν : S1
× X̂ → R

by

Ha,ν(t, x) :=

{
aH(x) (x ∈ intX),
ν(r) (x = (z, r) ∈ ∂X × [1,∞)).

• For any K ∈ C∞(S1
× X̂) which is linear at∞ and aK /∈ Spec(X, λ), we abbreviate

ρ(K : FaK ) as ρ(K).

The proof of Theorem 1.4 is based on the following proposition:

Proposition 3.3. Let (X, λ) be a Liouville domain, H ∈ C∞0 (intX), ν ∈ C∞([1,∞)).
Suppose that:

(1) There exists r0 > 1 such that ν(r) ≡ 0 on [1, r0].
(2) There exist r1 > 1 and aν ∈ (0,−minH) \ Spec(X, λ) such that ν′(r) ≡ aν on
[r1,∞).

(3) S(ν) := supr≥1(rν
′(r)− ν(r)) < −minH .

Under these assumptions, if H is Hofer–Zehnder admissible with respect to cX, then
ρ(H1,ν) = −minH .

To prove Proposition 3.3, we need the following lemma:
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Lemma 3.4. Fix r > 1. Suppose that K ∈ Had(X, λ) is time independent, and linear on
∂X × [r,∞). If the C2-norm of K|X(r) is sufficiently small, then ρ(K) = −minK .

Proof. Since K is time independent, we can define k ∈ C∞(X̂) by k(x) := K(t, x). If
the C2-norm of K|X(r) is sufficiently small, the Floer complex of K is identified with the
Morse complex of k, and it induces an isomorphism HF(K) ∼=

⊕
i H

i(X). Since FK ∈
HF(K) corresponds to 1 ∈ H 0(X) in this isomorphism,

∑
q∈CrP0(K)

aq [q] represents FK
if and only if aq = 1 for any q ∈ CrP0(k) := {critical points of k with Morse index 0}.
Hence ρ(K) = maxq∈CrP0(k)−k(q) = −minK . ut

Proof of Proposition 3.3. Suppose H ∈ C∞0 (intX) is Hofer–Zehnder admissible with
respect to cX. For any c > 0, there exists K ∈ C∞0 (intX) which satisfies |H −K|C0 < c

and has the following properties:

• Any nonconstant contractible periodic orbit of XK has period larger than 1.
• minK < minH .
• minK is isolated in the set of critical values of K .
• minK is attained by a unique point pK ∈ X. Moreover, the constant loop at pK is

nondegenerate as an element of P(K).

Therefore it is enough to show ρ(K1,ν) = −minK for any K ∈ C∞0 (intX) which
satisfies the above conditions. We prove this in three steps.

Step 1. There exist 0 < ε0 < 1 and 0 < δ0 < (min Spec(X, λ))/aν such that ρ(Kε,δν) =
−εminK for any ε ∈ (0, ε0] and δ ∈ (0, δ0].

When ε and δ are sufficiently small, the C2-norm of Kε,δν |X(r1) is sufficiently small.
Hence the claim follows at once from Lemma 3.4, by approximating Kε,δν by admissible
time independent Hamiltonians.

Step 2. ρ(K1,δν) = −minK for any 0 < δ < min{δ0, (−ε0 minK)/S(ν)}.

For any ε ∈ (0, 1], PcX (εK) consists of only constant loops at critical points of K ,
since every nonconstant contractible periodic orbit of XK has period larger than 1. On
the other hand, AKε,δν (x) ≤ δS(ν) for any x ∈ P(Kε,δν) which is not contained in X.
Hence SpeccX (Kε,δν) ⊂ (−∞, δS(ν)] ∪ −εCrV(K), where CrV(K) denotes the set of
critical values of K . Since δaν < min Spec(X, λ), we have Fδaν 6= 0. Hence Lemma
3.2(1) shows that ρ(Kε,δν) ∈ (−∞, δS(ν)] ∪ −εCrV(K).

Let I := {ε ∈ [ε0, 1] | ρ(Kε,δν) = −εminK}. Step 1 shows ε0 ∈ I . Lemma
3.2(2) shows that ρ(Kε,δν) depends continuously on ε, hence I is closed. Moreover, since
δS(ν) < −ε0 minK and CrV(K) is nowhere dense, I is open. Hence I = [ε0, 1]. In
particular, ρ(K1,δν) = −minK .

Step 3. ρ(K1,ν) = −minK .

Since S(ν) < −minH < −minK , we have Spec(K1,ν) ⊂ (−∞,−minK]. Hence
ρ(K1,ν) ≤ −minK is clear. Therefore it is enough to prove ρ(K1,ν) ≥ −minK .
Take δ so that 0 < δ < min{δ0, (−ε0 minK)/S(ν)}. Take c > 0 so that CrV(K) ∩
(−∞,minK + c] = {minK} (this is possible since minK is isolated in CrV(K)) and



2494 Kei Irie

S(ν) < −minK − c. Consider the following commutative diagram, where vertical ar-
rows are monotonicity homomorphisms (to be precise, we have to perturbK1,δν andK1,ν
to define HF(K1,δν) and HF(K1,ν); we omit this point) :

HF(K1,δν) //

��

HF≥−minK−c(K1,δν)

��
HF(K1,ν) // HF≥−minK−c(K1,ν)

Since minK is attained at a unique point pK , it follows that CF≥−minK−c(K1,δν) and
CF≥−minK−c(K1,ν) are generated by pK . Moreover,K1,δν |S1×X = K1,ν |S1×X. In partic-
ular, K1,δν and K1,ν coincide near pK . Therefore the right arrow is an isomorphism.

By Step 2, ρ(K1,δν) = −minK . Hence FK1,δν does not vanish under the top arrow.
Since the right arrow is an isomorphism, FK1,ν does not vanish under the bottom arrow,
i.e. ρ(K1,ν) ≥ −minK − c. Since c > 0 is arbitrarily small, ρ(K1,ν) ≥ −minK . ut

Before going to the proof of Theorem 1.4, let us mention the following corollary of Propo-
sition 3.3.

Corollary 3.5. Let (X, λ) be a Liouville domain, and a ∈ (0,∞)\Spec(X, λ). If Fa = 0,
then cHZ(intX, dλ : {cX}) ≤ a.

Proof. If cHZ(intX, dλ : {cX}) > a, then there exists H ∈ C∞0 (intX) which is Hofer–
Zehnder admissible with respect to cX, and −minH > a. Take ν ∈ C∞([1,∞)) which
satisfies (1)–(3) of Proposition 3.3 and aν = a. Then Proposition 3.3 states that ρ(H1,ν) =

−minH . On the other hand, ρ(H1,ν) = −∞ as Fa = 0; a contradiction. ut

Corollary 3.5 implies that any subcritical Weinstein manifold has a finite Hofer–Zehnder
capacity, since Floer homology of such a manifold vanishes (see [Cie]). However, this
result itself is an immediate consequence of the energy-capacity inequality in [Schl]. If
X is the unit disk cotangent bundle of a closed manifold, then one can see immediately
from Theorem 1.6 that Fa 6= 0 for any a > 0. Hence we cannot apply Corollary 3.5 to
prove Theorem 1.2. This is the reason why we have to use the product structure on Floer
homology to prove Theorem 1.2.

Now we prove Theorem 1.4. In fact, we prove the following quantitative result:

Theorem 3.6. Let (X, λ) be a Liouville domain, let a > 0 be such that a, 2a /∈

Spec(X, λ), and let α ∈ π ′1(X) \ {cX}. Suppose there exist x ∈ HF<a,α(X, λ) and
y ∈ HF<a,ᾱ(X, λ) such that x ∗ y = F2a . Then cHZ(intX, dλ : {cX, α, ᾱ}) ≤ 2a.

Proof. Suppose that there exists H ∈ C∞0 (intX) which is Hofer–Zehnder admissible
with respect to {cX, α, ᾱ} and −minH > 2a. Take ν ∈ C∞([1,∞)) which satisfies
(1)–(3) of Proposition 3.3 and aν = 2a. Then Proposition 3.3 yields ρ(H1,ν) = −minH .

Since H is Hofer–Zehnder admissible with respect to α, and α is noncontractible, we
have Pα(H/2) = ∅. On the other hand, for any γ ∈ P(H1/2,ν/2) which is not contained
in X, AH1/2,ν/2(γ )≤S(ν)/2<−minH/2. Hence Specα(H1/2,ν/2)⊂ (−∞,−minH/2).
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By Lemma 3.1(1), ρ(H1/2,ν/2 : x) < −minH/2. By the same arguments, we get
ρ(H1/2,ν/2 : y) < −minH/2. Hence we deduce a contradiction:

−minH = ρ(H1,ν : F2a) ≤ ρ(H1/2,ν/2 : x)+ ρ(H1/2,ν/2 : y) < −minH,

where the first inequality follows from Lemma 3.1(3). ut

Proof of Theorem 1.4. Suppose there exist x ∈ HFα(X, λ) and y ∈ HFᾱ(X, λ) such that
x ∗ y = ι(1) = F∞. Since HF(X, λ) = lima→∞ HF<a(X, λ), for sufficiently large a > 0
there exist x′ ∈ HF<a,α(X, λ) and y′ ∈ HF<a,ᾱ(X, λ) such that x′ ∗y′ = F2a . Now apply
Theorem 3.6. ut

4. The loop product

4.1. Definition of the loop product

First we recall the definition of the loop product, which was introduced in [CS]. The
following exposition is taken from Section 1.2 in [AS2] (although the authors of [AS2]
work on C0(S1,M) rather than L1,2(S1,M)).

First we recall the definition of the Umkehr map. Let X be a Hilbert manifold, Y be
its closed submanifold of codimension n, and i : Y → X be the inclusion map. Let NY
denote the normal bundle of Y . The tubular neighborhood theorem (see [L, IV, Sections
5-6]) states that there exists a unique (up to isotopy) open embedding u : NY → X such
that u(y, 0) = i(y) for any y ∈ Y . Setting U := u(NY), the Umkehr map i! : H∗(X)→
H∗−n(Y ) is defined as

H∗(X)→ H∗(X,X \ Y )
∼=
−→ H∗(U,U \ Y )

(u∗)
−1

−−−→ H∗(NY,NY \ Y )
τ
−→ H∗−n(Y ).

The second arrow is the isomorphism given by excision, the last one is the Thom iso-
morphism associated to the vector bundle NY → Y (although it is not oriented, we can
consider the Thom isomorphism since we are working with Z2-coefficient homology).
The following lemma is immediate from the above definition:

Lemma 4.1. Let X be a Hilbert manifold, Y be its closed submanifold of codimension n,
and i : Y → X be the inclusion map. Let Z be a k-dimensional closed manifold, and
f : Z → X be a smooth map which is transversal to Y . Then i!(f∗[Z]) = f∗[f−1(Y )]

in Hk−n(Y ).

Now we define the loop product. Let M be an n-dimensional manifold. Let us consider
the evaluation map ev × ev : 3M × 3M → M ×M , (γ, γ ′) 7→ (γ (0), γ ′(0)), and the
diagonal 1M := {(x, y) ∈ M ×M | x = y} ⊂ M ×M . Then 2M := (ev× ev)−1(1M)

is an n-codimensional submanifold of 3M × 3M . Let us denote the embedding map
2M → 3M ×3M by e. Moreover, 0 : 2M → 3M denotes the concatenation map, i.e.

0(γ, γ ′)(t) :=

{
γ (2t) (0 ≤ t ≤ 1/2),
γ ′(2t − 1) (1/2 ≤ t ≤ 1).
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Then the loop product

◦ : Hi(3M)⊗Hj (3M)→ Hi+j−n(3M)

is defined as the composition of the following three homomorphisms:

Hi(3M)⊗Hj (3M)
×
−→ Hi+j (3M ×3M)

e!
−→ Hi+j−n(2M)

0∗
−→ Hi+j−n(3M).

The first arrow is the usual cross-product in singular homology. The second one is the
Umkehr map associated to the embedding e : 2M → 3M × 3M , and the last one is
induced by the concatenation map 0.

4.2. Proof of Lemma 1.8

Let s : M → 3αM be a continuous map satisfying ev ◦ s = idM . It is easy to see that s can
be approximated by a smooth map s′ : M → 3αM which satisfies ev ◦ s′ = idM .

Hence, we may assume s is smooth. It is clear that s∗[M]× s̄∗[M] = (s× s̄)∗[M×M].
Moreover, since (ev × ev) ◦ (s × s̄) = idM×M and 2M = (ev × ev)−1(1M), it follows
that s × s̄ : M ×M → 3M × 3M is transversal to 2M . Then Lemma 4.1 shows that
s∗[M] ◦ s̄∗[M] = 0(s, s̄)∗[M].

Hence it is enough to show that two continuous maps 0(s, s̄), c : M → 3M are
homotopic. Define K : M × [0, 1] → 3M by

K(p, t)(τ ) :=

{
s(p)(2tτ ) (0 ≤ τ ≤ 1/2),
s(p)(2t − 2tτ ) (1/2 ≤ τ ≤ 1).

Then K is a homotopy between 0(s, s̄) and c. ut
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