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Abstract. We extend the adiabatic limit formula for η-invariants by Bismut–Cheeger and Dai to
Seifert fibrations. Our formula contains a new contribution from the singular fibres that takes the
form of a generalised Dedekind sum.

As an application, we compute the Eells–Kuiper and t-invariants of certain cohomogeneity one
manifolds that were studied by Dearricott, Grove, Verdiani, Wilking, and Ziller. In particular, we
determine the diffeomorphism type of a new manifold of positive sectional curvature.
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Manifolds of positive sectional curvature are a rare phenomenon, and the differential topo-
logical conditions for the existence of positive sectional curvature metrics are not yet fully
understood. For this reason, one is still interested in finding new examples of positive sec-
tional curvature metrics. Most known examples are quotients or biquotients of compact
Lie groups. Cohomogeneity one manifolds constitute another potential source of exam-
ples. By work of Grove, Wilking and Ziller [17], there are only two families (Pk), (Qk) of
seven-dimensional manifolds, which possibly allow cohomogeneity one metrics of pos-
itive sectional curvature and contain new examples. The space R mentioned there does
not admit a positive sectional curvature metric by [27]. Dearricott [10] and Grove, Ver-
diani, and Ziller [16] have succeeded in constructing a positive sectional curvature metric
on P2, the first nontrivial member of the family (Pk). This manifold is homeomorphic to
the unit tangent bundle T 1S4 of the four-dimensional sphere. In this paper, we will spec-
ify among other things an exotic sphere 6 such that P2 is diffeomorphic to the connected
sum of T 1S4 and 6.

The manifolds Pk are highly connected with a finite cyclic cohomology groupH 4(Pk)
∼= π3(Pk) ∼= Z/kZ. By Crowley’s work [6], it suffices to compute the Eells–Kuiper in-
variant µ(Pk) and a certain quadratic form q on H 4(Pk) to determine their diffeomor-
phism types. These two invariants are classically defined using an oriented spin mani-
fold N bounding Pk , but it is not clear how to construct such a manifold N directly. On
the other hand, by results of Donnelly [11], Kreck and Stolz [21], and Crowley and the
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author [8], both invariants can equivalently be expressed as linear combinations of η-
invariants of certain Dirac operators and Cheeger-Chern-Simons correction terms on Pk
itself. Having computed these invariants, one can write the spaces Pk as connected sums
of exotic spheres and S3-bundles over S4 using the computations for these bundles in [7].
In order to determine the necessary η-invariants, we write the spaces Pk as Seifert fibra-
tions as indicated in [17]. That is, the spaces Pk are fibered by compact manifolds over
some base orbifold B.

The process of blowing up the base space of a fibration M → B by a factor ε−1 is
called the adiabatic limit. It has been shown by Bismut and Cheeger [3] and Dai [9] that
the η-invariants of a family of compatible Dirac operatorsDM,ε converge in the adiabatic
limit ε → 0, if the kernels of the associated vertical Dirac operators DX form a vector
bundle H → B. This result can be generalised to Seifert fibrations M → B. Thus, we
consider adiabatic families of Dirac operators (DM,ε)ε as in Definition 1.6. In particu-
lar, we assume that H = ker(DX) is a vector orbibundle on B. Let 3B be the inertia
orbifold of B and let Â3B(T B,∇T B) ∈ �•(3B; 3̃B ⊗ o(3B)) denote the orbifold
Â-form as in Kawasaki’s index theorem [20] (see Section 1.b). Let A denote Bismut’s
Levi-Civita superconnection associated with DM,ε. In Definition 1.7, we construct orb-
ifold η-forms η3B(A) ∈ �•(3B; 3̃B) as in [3] and [13]. In Definition 1.8, we define the
effective horizontal operator Deff

B of the family DM,ε, which acts on sections of H → B.
Let (λν(ε))ν denote the finite family of very small eigenvalues of DM,ε (see Section 1.c).
In [25, Theorem 8.6], Rochon proved a special case of the following theorem where B is
a very good orbifold and the fibrewise operator is invertible.

Theorem 0.1 (cf. [3], [9], [25]). Let p : M → B be a Seifert fibration and (DM,ε)ε an
adiabatic family of Dirac operators over M as in Definition 1.6. For ε0 > 0 sufficiently
small, we have

lim
ε→0

η(DM,ε) =

∫
3B

Â3B(T B,∇
T B) 2η3B(A)+ η(Deff

B )+
∑
ν

sign(λν(ε0)).

With this result, one can compute the Eells–Kuiper invariant and the quadratic form q and
hence determine the diffeomorphism type of each space Pk .

Theorem 0.2. The Eells–Kuiper invariant of Pk is given by

µ(Pk) = −
4k3
− 7k + 3

25 · 3 · 7
∈ Q/Z. (1)

The quadratic form q on H 4(Pk) ∼= Z/kZ is given by

q(`) =
`(`− k)

2k
∈ Q/Z. (2)

By comparing these values with the corresponding values for S3-bundles over S4 in [7]
and [8], one can construct manifolds that are diffeomorphic to Pk .
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Theorem 0.3. Let Ek,k → S4 denote the principal S3-bundle with Euler class k ∈
H 4(S4) ∼= Z, and let 67 denote the exotic seven sphere with µ(67) = 1/28. Then there
exists an orientation preserving diffeomorphism

Pk ∼= Ek,k #6#(k−k3)/6
7 .

In particular, Pk and Ek,k are homeomorphic.

More generally, let Ep,n denote the unit sphere bundle of a four-dimensional real spin
vector bundle over S4 with Euler class n and half Pontryagin class p ∈ H 4(S4) ∼= Z.

Corollary 0.4. For the space Pk , there exists an S3-bundle Eak,k → S4 that is

(1) oriented diffeomorphic to Pk if and only if k is odd or 8 | k, with

a2k ≡
7k − 4k3

3
mod 224Z;

(2) orientation reversing diffeomorphic to Pk if and only if

(a) k is not divisible by 7,
(b) k ≡ 1 mod 4, or k ≡ 2, 10 mod 32, and
(c) −1 is a quadratic remainder mod k,

with

a2k ≡ 2−
7k − 4k3

3
mod 224Z.

Some of the Pk are discussed in greater detail in Example 3.12.
The article is organised as follows. In Section 1, we introduce Seifert fibrations and

define all the ingredients of Theorem 0.1. Its proof is given in Section 2. In Section 3,
we introduce the family (Pk) as a subfamily of the larger family (M(p−,q−),(p+,q+)) that
was also considered in [17]. The quadratic forms qM(p−,q−),(p+,q+)

for some of those man-
ifolds are given in Theorem 3.3, and their Eells–Kuiper invariants in Theorem 3.7. For
the spaces Pk , we obtain the simplified formulas of Theorem 0.2 and prove Theorem 0.3
and Corollary 0.4. Finally, Section 4 contains the computations of η-invariants needed to
prove Theorems 3.3 and 3.7.

1. An adiabatic limit theorem for η-invariants of Seibert fibrations

A Seifert fibration is a map from a smooth manifold to an orbifold that becomes a proper
fibration over the smooth covering of each orbifold chart. Each Seifert fibration is thus a
Riemannian foliation with compact leaves. The leaves over singular points of the orbifolds
are quotients of the generic leaf over a regular point.

We extend the adiabatic limit theorem of Bismut–Cheeger and Dai to Seifert fibra-
tions. We have to take care of additional terms arising at the singular locus of the orbifold.
In some special cases, these extra terms give rise to Dedekind sums.
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1.a. Orbifolds, orbibundles and Seifert fibrations

We recall the definition of an orbifold. By Remark 1.3 below, we may assume that the
base orbifold B is effective. This will be assumed for the rest of the paper and makes
some constructions a lot easier.

Definition 1.1. Let G be a compact Lie group together with an action on Rn. An n-
dimensional smooth G-orbifold is a second countable Hausdorff space B with the fol-
lowing additional structure.

(1) For each point b ∈ B there exists a neighbourhood U ⊂ B of b, an open sub-
set V ⊂ Rn invariant under the action of a finite group 0 via ρ : 0 ↪→ G →

GL(n,R), and a homeomorphism

ψ : ρ(0)\V → U with ψ(0) = b.

We call ψ an orbifold chart, and we call ρ the isotropy representation and 0 the
isotropy group of b in B. Let ψ̄ : V → U be the obvious map.

(2) If b ∈ U ⊂ B and ψ : ρ(0)\V → U are as above, if b′ ∈ U , and
if ψ ′ : ρ′(0′)\V ′ → U ′ are chosen analogously for b′, then there exists an open
embedding ϕ : ψ̄ ′−1(U)→ V and a group homomorphism ϑ : 0′→ 0 such that

ϕ ◦ ρ′γ ′ = ρϑ(γ ′) ◦ ϕ for all γ ′ ∈ 0′, and ψ(ρ(0)ϕ(v′)) = ψ ′(ρ′(0′)v′).

We call ϕ a coordinate change and ϑ an intertwining homomorphism.

An oriented orbifold is an SO(n)-orbifold where all coordinate changes are orientation
preserving.

We will say n-orbifold briefly for O(n)-orbifold, and we will drop ρ from the no-
tation when the action of 0 is clear from the context. If ϕ is a coordinate change with
intertwining homomorphism ϑ as above, then ργ ◦ ϕ is another coordinate change with
intertwining homomorphism γ ′ 7→ γϑ(γ ′)γ−1 for each γ ∈ 0. If B is effective, we do
not have to impose any further condition (like a cocycle condition) on the choices of co-
ordinate changes and intertwining homomorphisms. See [26, Section 13.2] for a general
definition.

Definition 1.2. Let B be a G-orbifold and let X be a smooth manifold. An orbibundle
with fibreX is a map p from a topological spaceM toB with the following extra structure.

(1) For each b ∈ B, there exists an orbifold chart ψ : ρ(0)\V → U ⊂ B around b,
a fibre-preserving action σ of 0 by diffeomorphisms on V × X covering ρ and a
homeomorphism ψ̄ : σ(0)\(V ×X)→ p−1(U) such that the diagram

V ×X −−−−→ σ(0)\(V ×X)
ψ̄

−−−−→ p−1(U)y y yp
V −−−−→ ρ(0)\V

ψ
−−−−→ U

commutes.
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(2) If ψ : ρ(0)\V → U and ψ ′ : ρ′(0′)\V ′ → U ′ are orbifold charts as in Defini-
tion 1.1(2) with coordinate change ϕ and intertwining homomorphism ϑ , and σ , σ ′

and ψ̄ , ψ̄ ′ are as above, then there exists a diffeomorphism ϕ̄ : ψ ′−1(U)×X→ V×X

such that
ϕ̄ ◦ σ ′γ ′ = σϑ(γ ′) ◦ ϕ̄

for all γ ′ ∈ 0′, and such that the diagram

ψ ′−1(U)×X −−−−→ σ ′(0′)\(ψ ′−1(U)×X)
ψ̄ ′

−−−−→ p−1(U ∩ U ′)

ϕ̄

y y y
V ×X −−−−→ σ(0)\(V ×X)

ψ̄
−−−−→ p−1(U)

commutes.

If all actions σ are free, then M carries the structure of a smooth manifold, and we
call p : M → B a Seifert fibration. If X is a vector space and all actions σ and all
diffeomorphisms ϕ̄ are fibrewise linear, then we call p : M → B a vector orbibundle.
If X = G is a Lie group and all σ and all ϕ̄ commute with the right action of G on X,
then G acts on M , and we call p : M → B a G-principal orbibundle.

Remark 1.3. Alternatively, a Seifert fibration with compact fibres is a connected mani-
fold M with a Riemannian foliation F such that all leaves are compact. To see this, we
pick a holonomy invariant metric on M and let B = M/F denote the space of leaves
and p : M → B the quotient map.

Let L be a leaf with normal bundle NL → L. By compactness, there exists r > 0
such that the normal exponential map expL is an injective local diffeomorphism from the
disc bundle Nr to M . We use expL to construct an orbifold chart for B and an orbibundle
chart for M around L. Fix ` ∈ L and let ρ̃L,` : π1(L, `)→ O(N`) denote the holonomy
representation. Then ρ̃L,` induces a representation

ρL,` : 0L,` = π1(L, `)/ker(ρ̃L,`)→ O(N`),

and DrN` is a bundle chart for B around L with isotropy group 0L,` and isotropy rep-
resentation ρL,`. The transition maps and intertwining homomorphisms are not hard to
construct either.

Moreover, let L̃ denote the universal covering space of L, so L = π1(L, `)\L̃.
Then 0L,` acts on

XL,` = ker(ρ̃L,`)\L̃,

and because M is connected, all XL,` are diffeomorphic. This way, we can construct
orbibundle charts and transition maps as in Definition 1.2.

If B is an orbifold, then there is a natural tangent orbibundle T B → B. There is a
natural notion of a Riemannian metric on B, and such metrics always exist.

If p : M → B is a Seifert fibration, then there exists a natural map dp : TM → T B

and a well-defined vertical subbundle TX = ker dp ⊂ TM . If gTM is a Riemannian
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metric on M , let T HM = (T X)⊥→ M denote the horizontal subbundle. Then gTM is a
submersion metric if there exists a Riemannian metric gT B on B such that dp|T HM is a
fibrewise isometry.

Remark 1.4. Whitney sums, Whitney tensor products, dual bundles and exterior pow-
ers can be defined for vector orbibundles over a base orbifold B. However, because in
general not all “fibres” of a vector orbibundle are vector spaces, one cannot apply these
constructions fibrewise. Instead, one has to perform the respective constructions fibrewise
with the bundle charts and transition maps of Definition 1.2. By functoriality, the result-
ing collection of bundle charts and transition maps define another vector orbibundle on B.
Similarly, there is a natural notion of a Dirac orbibundle over an orbifold in analogy with
the notion of a Dirac bundle (see Section 1.b).

If W → B is a vector orbibundle with fibre kr , the space of sections is given locally
in a chart V → 0\V ∼= U as a space of 0-invariant maps

0(W |U ) ∼= C∞(V ;kr)0.

After these preparations, we may now write

�•(B;W) = 0(3•T ∗B ⊗W).

If W is graded, the tensor product is understood in the graded sense.
Let M → B be a Seifert fibration with fibre X, let T HM denote a horizontal sub-

bundle, and let V → M be a vector bundle. Let �•(M/B;W)→ B denote the infinite-
dimensional vector orbibundle with fibre �•(X;W |X). Then

�•(M;W) ∼= �
•(B;�•(M/B;W)),

and this isomorphism depends explicitly on the choice of T HM . This follows by regard-
ing the pullback of the local situation to bundle charts.

In particular, all constructions of local family index theory such as adiabatic limits
and Getzler rescaling are still well-defined for Seifert fibrations.

1.b. The inertia bundle and characteristic classes

Kawasaki’s index theorem for orbifolds has been formulated for general elliptic differ-
ential operators. The topological index is formulated in terms of characteristic classes of
symbols. For the task at hand, we need to specialise these classes to the case of twisted
Dirac operators.

We recall the definition of the inertia orbifold 3B of B in [20, p. 137], where it is
called 6B = 3B \ B. Its points are given as pairs (p, (γ )), where p ∈ B and (γ ) is the
0-conjugacy class of an element of the isotropy group 0 of p. If ψ : 0\V → U is an
orbifold chart for B around p = ψ(0), we obtain an orbifold chart

ψ(γ ) : C0(γ )\V
γ
→ ψ(V γ )× {(γ )} ⊂ 3B (1.1)
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by restriction, where V γ denotes the fixpoint set of γ and C0(γ ) is the centraliser of γ
in 0. In general, the inertia orbifold is no longer effective. Hence, let

m(γ ) = #{ϑ ∈ C0(γ ) | ρϑ |V γ = idV γ } (1.2)

denote the multiplicity of (p, (γ )) ∈ 3B. Then m(γ ) defines a locally constant function
on 3B.

Let Nγ → V γ denote the normal bundle to V γ in V , and let RNγ be the curvature of
the connection onNγ induced by the pullback of the Levi-Civita connection. Let γ̃ denote
a lift of the action of γ on Nγ to the spin group under the natural projection Spin(Nγ )→
SO(Nγ ). If B is a spin orbifold, such a lift is part of the orbifold spin structure. Otherwise,
the lift γ̃ is determined uniquely up to sign. Hence, the inertia orbifold has a natural
double cover

3̃B = {(p, (γ̃ )) | γ̃ lifts γ } → 3B. (1.3)

As in (1.1), one constructs charts for 3̃B by

ψ(γ̃ ) : C0(γ )\V
γ
→ ψ(V γ )× {(γ̃ )} ⊂ 3̃B. (1.4)

The equivariant Chern character form of a Hermitian vector bundle (E,∇E) with
connection, equipped with a parallel fibrewise automorphism g, is classically defined as

chg(E,∇E) = tr(ge−(∇
E)2/2πi). (1.5)

There exists a local spinor bundle SNγ → V γ for Nγ . Given a local orientation of Nγ ,
there is a natural local splitting SNγ = S

+Nγ ⊕ S
−Nγ . Using RNγ and a lift γ̃ of γ as

above, we can define the equivariant Â-form on V γ by

Âγ̃ (T V,∇
T V ) = (−1)(rkNγ )/2

Â(T V γ ,∇T V
γ
)

chγ̃ (S+Nγ − S−Nγ ,∇SNγ )
. (1.6)

Remark 1.5. This construction of Âγ̃ (T V,∇T V ) has the following properties.

(1) Because 1 is not an eigenvalue of γ |Nγ , the denominator is invertible in �•(V γ ). In
fact, as explained in [2, Section 6.4], one has

chγ̃ (S+Nγ − S−Nγ ,∇SNγ ) = ±i(rkNγ )/2 detNγ (id− γ e
−(∇Nγ )2/2πi)1/2.

(2) The form Âγ̃ (T V,∇
T V ) only depends on the conjugacy class of γ̃ .

(3) Replacing the lift γ̃ of γ by the lift −γ̃ changes the sign of Âγ̃ (T V,∇T V ).
(4) If one changes the orientation on V γ but keeps the orientation of the total tangent

space T V |V γ , then the orientation of Nγ changes as well, and the subbundles S+Nγ
and S−Nγ are swapped. Hence the form Âγ̃ (T V,∇

T V ) changes its sign. On the other
hand, its integral over the corresponding stratum of 3B then does not depend on the
orientation chosen on V γ , only on the orientation of V .
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Let us introduce the notation

�•(3B; 3̃B) = {α ∈ �•(3̃B) | α|(p,(−γ̃ )) = −α|(p,(γ̃ ))},

and let us denote by�•(3B; 3̃B⊗o(3B)) the space of forms that change sign depending
on the choice of a local orientation of 3B. We assume that B is an oriented orbifold.
By (2)–(4), the forms Âγ̃ (T V,∇T V ) in local coordinates can be used to construct a well-
defined form Â3B(T B,∇

T B) ∈ �•(3B; 3̃B ⊗ o(3B)) with

ψ∗(γ̃ )Â3B(T B,∇
T B) =

1
m(γ )

Âγ̃ (T V,∇
T V ), (1.7)

where m(γ ) is the multiplicity of (1.2). With the choice of γ̃ given by a spin structure,
this corresponds to the integrand in Kawasaki’s orbifold index theorem [20, p. 139] when
specialised to untwisted Dirac operators.

Recall that by [22, Definition II.5.2], a Dirac bundle over a Riemannian mani-
fold (M, g) consists of a complex vector bundle E → M with Hermitian metric gE ,
compatible connection ∇E , and a Clifford action of TM on E that is skew-symmetric
with respect to gE and satisfies a Leibniz rule with respect to ∇E and the Levi-Civita
connection on TM . There is an analogous natural notion of a Dirac orbibundle over a
Riemannian orbifold.

Let (E,∇E, gE, c) denote a Dirac orbibundle over V , and let γE be a compatible
action of γ on E. Then γ̃E/S = γE · γ̃−1 commutes with Clifford multiplication and has
the same sign ambiguity as γ̃ . If we write E = SM ⊗W locally, thenW carries a natural
connection ∇W with curvature RW = RE/S , called the twisting curvature in [2, Propo-
sition 3.43]. We can regard γ̃E/S as acting only on W , and we can define the equivariant
twist Chern character form

chγ̃ (E/S,∇E) = chγ̃E/S (W,∇
W ).

Then Âγ̃ (T V,∇T V ) chγ̃ (E/S,∇E) is the integrand in the local Atiyah–Segal–Singer
equivariant index theorem. Berline, Getzler and Vergne propose a particular choice of the
lift γ̃ in [2, Section 6.4].

Because chγ̃ (E/S,∇E) only depends on the conjugacy class and the sign of the lift γ̃ ,
there exists a well-defined class ch3B(E/S,∇E) ∈ �•(3B; 3̃B) such that

ψ∗(γ̃ ) ch3B(E/S,∇E) = chγ̃ (E/S,∇E).

Then Â3B(T B,∇T B) ch3B(E/S,∇E) ∈ �•(3B; o(3B)) is the integrand in Kawasa-
ki’s index theorem for orbifolds when specialised to twisted Dirac operators. In particular,
the integral over 3B does not depend on the choices above. In the special case of an
untwisted Dirac operator, we have E = S, and γE is itself a lift of γ . In this case, we
simply have chγ̃ (E/S,∇E) = 1 if we take γ̃ = γE , and chγ̃ (E/S,∇E) = −1 otherwise.
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1.c. Adiabatic limits

If M → B is a Seifert fibration and gTM is a submersion metric as in Section 1.a,
we obtain a family (gTMε )ε>0 of submersion metrics with the same horizontal bundle
T HM → M such that gTMε |TX = gTM |TX and gTMε |T HM = ε−2gTM |T HM . The
limit ε→ 0 is called the adiabatic limit.

Let e1, . . . , en and f1, . . . , fm−n be local orthonormal frames of TX and T B. The
horizontal lift of a vector field v on B will be denoted by v̄. Then a local orthonormal
frame of TM for gε is given by

eε1 = e1, . . . , e
ε
n = en, eεn+1 = εf̄1, . . . , e

ε
m = εf̄m−n. (1.8)

Definition 1.6. An adiabatic family of Dirac bundles for p : M → B consists of a Her-
mitian vector bundle (E, gE), a Clifford multiplication c : TM → EndE, and a fam-
ily (∇E,ε)ε≥0 of connections such that

(1) The quadruple (E,∇E,ε, gE, cε) is a Dirac bundle on (M, gTMε ) for all ε > 0, where
the Clifford multiplication cε is given by cε(eεI ) = c(e

1
I ).

(2) The connection ∇E,ε is analytic in ε around ε = 0.
(3) The kernels of the fibrewise Dirac operators

DX =

n∑
i=1

c(ei)∇
E,0
ei

acting on E|p−1(b) form a vector orbibundle H → B.

We will call the associated family (DM,ε)ε>0 with

DM,ε =

m∑
I=1

cε(eεI )∇
E,ε
eεI

an adiabatic family of Dirac operators for p.

We consider the infinite-dimensional vector orbibundle p∗E→ B with

p∗E|b = 0(E|p−1(b))

for all regular points b ∈ B0. It carries a fibrewise L2-metric gp∗E
L2 that is independent

of ε.
Associated to (E,∇E,0, gE, c) is Bismut’s Levi-Civita superconnection

At = t1/2A0 + A1 + t
−1/2A2, (1.9)

on p∗E→ B for t > 0 (see [2, Proposition 10.15], [3, Definition 4.29]). Here, A0 = DX
is the fibrewise Dirac operator of (3) above. The part A1 = ∇

p∗E,0 is the unitary connec-
tion on p∗E that is induced by

∇
E,0
−

1
2h, (1.10)
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where h : T HM → R is the mean curvature of the fibres of p, and A2 is an endomorphism
of E→ M with coefficients in 32T ∗B.

Let γ ∈ 0 be an element of the isotropy group of b ∈ B; then γ acts on p∗E.
If SB → V γ denotes a local spinor bundle on B, then there exists a fibrewise Dirac
bundle W → M such that as vector bundles, locally,

E ∼= p
∗SB ⊗W → p−1(V γ ) and p∗E ∼= SB ⊗ p∗W → V γ . (1.11)

After choosing a lift γ̃ ∈ Spin(Nγ ) of the action of γ on Nγ as in (1.3), we can split γ =
γ̃W ◦ γ̃ (see (2.20) below). Over V γ , we consider the equivariant η-form

ηγ̃ (A) =
∫
∞

0

1
√
π
(2πi)−N

V γ /2 trp∗W

(
γ̃W

∂At
∂t
e−A

2
t

)
dt ∈ �•(V γ ) (1.12)

as in [13, Remark 3.12], where NV γ denotes the number operator on �•(V γ ). Again, the
sign of ηγ̃ (A) depends on the choice of γ̃ ; if B is a spin orbifold, then this choice is nat-
ural. Note that in contrast to [13], we already eliminate 2πi-factors inside the differential
form ηγ (A) and not after integration. By assumption (3) above, the integral converges
uniformly near t = ∞ because the operators DX have a uniform spectral gap around the
possible eigenvalue 0. If γ̃ = e is the neutral element, then ηγ̃ (A) = η(A) is the η-form
of Bismut and Cheeger, and the integral in (1.12) also converges near t = 0 by [3, (4.32)].
Otherwise, γ acts freely on the fibres, and small time convergence is not an issue.

Definition 1.7. The orbifold η-form η3B(A) ∈ �•(3B; 3̃B) is defined such that in the
orbifold charts of (1.4),

ψ∗(γ̃ )η3B(A) = ηγ̃ (A). (1.13)

This is well-defined because ηγ̃ (A) only depends on the conjugacy class and the sign
of γ̃ . Moreover, the integrand Â3B(T B,∇T B)2η3B(A) ∈ �•(3B; o(3B)) in the first
term on the right hand side of Theorem 0.1 depends only on the orientation of the fibres
of p : M → B; in particular, the integral over 3B only depends on the global orientation
ofM by Remark 1.5(4). Note the different normalisation of η-forms and η-invariants. The
component of 2ηγ (A) of degree 0 in �•(3B) is the equivariant η-invariant of the fibre.
This explains the additional factor 2 in the integrand in Theorem 0.1.

Locally, there exists a unique family of spinor bundles (SM,∇SM,ε, gSM , c)ε
on (M, gTMε ), and the Dirac bundle E splits as E ∼= SM ⊗ W . There exists a locally
uniquely defined family of connections ∇E/S,ε = ∇W,ε such that ∇E,ε is the tensor prod-
uct connection induced by ∇SM,ε and ∇W,ε. Note that for the family of odd signature
operators BM,ε, we cannot assume that ∇E/S,ε is independent of ε. We obtain globally
well-defined endomorphism-valued differential forms

∇
E/S,ε

−∇
E/S,0

∈ �1(M;EndE) and RE/S,ε ∈ �2(M;EndE) (1.14)

that commute with Clifford multiplication. Both ∇E/S,ε − ∇E/S,0 and RE/S,ε depend
analytically on ε around ε = 0 by assumption (2) above.

Let PX : p∗E→ H denote the L2-orthogonal projection onto H = kerDX.
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Definition 1.8. The effective horizontal operator of an adiabatic family of Dirac
bundles (E,∇E,ε, gE, c) is defined as

Deff
B = PX ◦

(m−n∑
α=1

c(f̄α)∇
p∗E,0
fα

+

n∑
i=1

c(ei)
d

dε

∣∣∣∣
ε=0
∇
E/S,ε
ei

)
◦ PX.

The operator Deff
B is selfadjoint. Its η-invariant is further investigated in Proposi-

tion 2.4. If the base space is even-dimensional, we will see in Section 1.d that in important
special cases, the η-invariant of the effective horizontal operator vanishes.

Again by assumption (2) above, there exists ε0 > 0 such that the kernel of DM,ε has
constant dimension for all ε ∈ (0, ε0). By [9, Theorem 1.5] and Section 2.g below, there
are finitely many eigenvalues λν(ε) of DM,ε (counted with multiplicity), called the “very
small eigenvalues”, such that

λν(ε) = O(ε
2) and 0 6= λν(ε) for all ε ∈ (0, ε0). (1.15)

We have now defined all ingredients of Theorem 0.1. Its proof is deferred to Section 2.

1.d. Special cases of the adiabatic limit theorem

We consider fibres of positive scalar curvature, and the signature operator.
We assume first thatM andB are spin. Then the vertical tangent bundle of p : M → B

also carries a spin structure. By abuse of notation, we write η3B(DM/B) instead
of η3B(A) for the orbifold η-form associated to the untwisted Dirac operator.

If the fibres of M → B have positive scalar curvature, then for the untwisted Dirac
operator DM,ε, the fibrewise operator is invertible, hence H = 0 and there is neither
an effective horizontal operator nor are there very small eigenvalues. In particular, DM,ε
satisfies the conditions of Dai’s theorem. The same still holds for the Dirac operatorDp

∗W
M,ε

that is twisted by the pullback of an orbibundle W → B with connection ∇W .

Corollary 1.9. If the fibration M → B and B are spin, the fibres of M → B have
positive scalar curvature, and if W → B is an orbibundle, then

lim
ε→0

η(D
p∗W
M,ε ) =

∫
3B

Â3B(T B,∇
T B) ch3B(W,∇W ) 2η3B(DM/B).

Proof. If W is trivial, then the corollary follows from Theorem 0.1 by the considerations
above. If W → B is an orbibundle, then the result follows from Remark 2.13. ut

The odd signature operator BM,ε on M also satisfies the conditions of Dai’s theorem.
Here, the bundle H → B corresponds to the fibrewise cohomology, regarded as a Z2-
graded vector bundle. In contrast to [9], we regard BM,ε as an operator on �even(M), not
on all forms. Note that the twisting curvature depends on ε.

There is a natural notion of a differentiable Leray–Serre spectral sequence ofM → B,
and by Dai [9, Theorem 0.2] (see also [24]) the very small eigenvalues (λν(ε))ν of BM,ε
are related to its higher differentials. The effective horizontal operator Beff

B is related to
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the E1-term of this sequence by results of Dai [9, Section 4.1]. Dai also constructs a
signature τr ∈ Z on the r-th term Er of this spectral sequence for all r ≥ 2.

Let NB denote the number operator on �•(B), then the rescaled L-class

L̂(T B,∇T B) = Â(T B,∇T B) ch(SB,∇SB) = 2(dimB−NB )/2L(T B,∇T B)

has a natural general equivariant generalisation leading to L̂3B(T B,∇T B) ∈ �•(3B).
Finally, let us write η3B(BM/B) instead of η3B(A) in this setting.

Corollary 1.10 (see Dai [9, Theorem 0.3]). If the fibration M → B is oriented, then

lim
ε→0

η(BM,ε) =

∫
3B

L̂3B(T B,∇
T B) 2η3B(BM/B)+ η(Beff

B )+

∞∑
r=2

τr .

Moreover, if dimB is even, then η(Beff
B ) = 0.

Proof. This follows from Theorem 0.1 as in Dai’s paper [9]. The first term again arises
because of Remark 2.13. The vanishing of η(Beff

B ) for even-dimensional base orbifolds
follows from Proposition 2.5. ut

1.e. Seifert fibrations with compact structure group

We assume that the fibres of the map p : M → B are totally geodesic submanifolds ofM .
Assume for the moment that B is a connected Riemannian manifold and

that p : M → B is an ordinary Riemannian submersion. Each path in B induces a par-
allel transport between the fibres over its endpoints. By a result of Hermann [19, The-
orem 1], all these parallel translations are isometries if and only if the fibres of p are
totally geodesic. In this case, let X be isometric to a fibre of p and let G denote the
isometry group of X acting from the left. Then there is a natural G-principal bundle

P = {f : X→ M | f is an isometry onto a fibre of p}

with a natural right G-action, and we have M = P ×G X.
If we are given an adiabatic family (E,∇E,ε, gE, c) of Dirac bundles as in Defini-

tion 1.6, then we assume further that the parallel transport between fibres lifts to isomor-
phisms between the restrictions of (E,∇E,ε, gE, c) to the fibres of p. In this case, let G
denote the automorphism group of

((E,∇E,ε, gE, c)|X)→ (X, gX).

Then the family p : M → B is still associated to a G-principal bundle P → B. In this
case, we say that the adiabatic family (E,∇E,ε, gE, c) has compact structure group G.

Let b ∈ B and identify p−1(b) with X and Ep−1(b) with E|X → X. Then for
v,w ∈ TbB, the fibre bundle curvature [v,w] − [v̄, w̄] together with its natural action
on E is described by an element �(v,w) ∈ g. Different identifications of E → X

with E|p−1(b) give elements of g in the same AdG-orbit.
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By [13, Lemma 1.14], there exists an AdG-invariant formal power series ηg(DX) in
C[[g]], the infinitesimally equivariant η-invariant, such that

2η(A) = η�/2πi(DX). (1.16)

Here,DX is the component of A of degree 0, regarded as an operator on a bundleW → X

such that locally, E ∼= W ⊗ p∗SB. This invariant has been computed for the untwisted
Dirac operator and the signature operator on S3 in [13, Theorem 3.9]. A more general
formula for quotients of compact Lie groups with normal metrics can be found in [14,
Section 2.4].

Now, let p : M → B be a Seifert fibration with generic fibre X and assume again that
all fibres are totally geodesic. Then the construction above still applies to bundle charts as
in Definition 1.2. If we trivialise p over V by parallel translation along radial geodesics
in V , then the isotropy group 0 acts on V ×X by

σγ (v, x) = (ργ (v), σγ (x))

with σγ ∈ G for all γ ∈ 0. Thus, we obtain a G-principal orbibundle

P = {f : X→ M | f is a local isometry onto a fibre of p},

and again we have M = P ×G X → B. Moreover, for γ ∈ 0, the restricted curva-
ture �|T V γ takes values in the Adγ -invariant part of g. Thus, if (p, (γ )) ∈ 3B \ B,
let ψ(γ ) : C0(γ )\V γ → 3B be an orbifold chart for 3B around (p, (γ )) as in (1.1). We
regard the pullback of M → B restricted to V γ and identify γ with σγ ∈ G acting on X
and E. Then �|V γ takes values in the Lie algebra c(σγ ) of the centraliser CG(σγ ) of σγ
in G.

Theorem 1.11. Let p : M → B be a Seifert fibration, and let (E,∇E,ε, gE, c) be an
adiabatic family with compact structure group G. For each (p, (γ )) ∈ 3B, there exists a
formal power series

ηg,c(σγ )(DX) ∈ R[[c(σγ )]]

such that the orbifold η-form is given in an orbifold chart ψ(γ̃ ) around (p, (γ )) as

ψ∗(γ̃ )η3B(A) = ησγ ,�/2πi(DX).

If γ = id, then ηg,c(σγ )(DX) = ηg(DX) is the infinitesimally equivariant η-invariant. If γ
acts freely on the typical fibre X, then ηγ,c(σγ )(DX) is the formal power series expansion
of the classical equivariant η-invariant ησγ e−4(DX) at 4 = 0 ∈ c(σγ ).

Proof. If γ = id, this is just [13, Lemma 1.14]. If γ 6= id, then γ acts freely on the
fibre X because p : M → B is a Seifert fibration, and the result is explained and proved
in [13, Remark 3.12]. ut

Note that over each singular stratum of B, the fibres of p are finite quotients of X, so that
we are in a situation similar to [13, Lemma 3.11].
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2. A proof of the adiabatic limit theorem

In this section, we sketch a proof of Theorem 0.1. We will omit most of the details, in
particular those explained by Bismut and Cheeger [3] and Dai [9]. The proof is based on
the well-known formula

η(DM,ε) =

∫
∞

0

1
√
πt

tr
(
DM,εe

−tD2
M,ε
)
dt.

We define a spectral projection Pε onto the sum of the eigenspaces for the very small
eigenvalues in Section 2.f, which commutes with DM,ε for each ε > 0. We also find a
small constant α > 0 and write

η(DM,ε) =

∫ εα−2

0

1
√
πt

tr
(
DM,εe

−tD2
M,ε
)
dt

+

∫
∞

εα−2

1
√
πt

tr
(
(1− Pε)DM,εe

−tD2
M,ε
)
dt

+

∫
∞

εα−2

1
√
πt

tr
(
PεDM,εe

−tD2
M,ε
)
dt.

The three terms on the right hand side give rise to the three expressions on the right hand
side of Theorem 0.1 by Propositions 2.12, 2.10 and 2.11, respectively, which will be stated
and proved below. Thus, Theorem 0.1 follows from the results of this section.

2.a. Local computations

We will use small Roman indices in {1, . . . , n} referring to coordinates of the fibres, small
Greek indices in {n + 1, . . . , m} referring to coordinates of the base, and capital indices
in {1, . . . , m}. Let ∇TM,ε denote the Levi-Civita connection with respect to the bundle-
like metric gε = gTX ⊕ ε−2p∗gT B .

Let ∇T B denote the Levi-Civita connection on the orbibundle T B → B. By [3,
Section 4(a)], there exists a connection ∇TX on TX → M , a symmetric tensor S :
TX ⊗ TX → T HM and an antisymmetric tensor T : T HM ⊗ T HM → TX, with
coefficients sijγ and tαβk , such that

∇
TM,ε
ei

ej = ∇
TX
ei
ej + ε

∑
γ

sijγ e
ε
γ ,

∇
TM,ε
eα

ej = ∇
TX
eα
ej − ε

∑
β

tαβj e
ε
β ,

∇
TM,ε
ei

eεβ = −ε
∑
k

sikβek − ε
2
∑
γ

tβγ ie
ε
γ ,

∇
TM,ε
eα

eεβ = (p
∗
∇
T B)eαe

ε
β + ε

∑
k

tαβkek,
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with eα = e1
α = f̄α−n. We identify the tangent bundles (TM, gε) orthogonally for differ-

ent ε > 0 by sending (e1, . . . , em) at ε = 1 to the gε-orthonormal frame of (1.8). With
respect to this identification, we obtain the limit connection

∇
TM,0

= lim
ε→0
∇
TM,ε

= ∇
TX
⊕ p∗∇T B . (2.1)

Note that this differs from the geometric limit of Levi-Civita connections described for
example in [2, Section 10.1].

Let us assume for the moment that the base B and the map p are spin, which is always
true locally on M , and let SX → M be a spinor bundle for TX → M . Then we have an
isomorphism of vector bundles

SM ∼= SX ⊗ p
∗SB

independent of ε, and the connection ∇SM,0 induced by ∇TM,0 is the tensor product
connection. To define Clifford multiplication cI by eεI on SM for all I = 1, . . . , m,
the tensor product is understood in a Z2-graded sense. The connections ∇TM,ε induce
connections ∇SM,ε on the spinor bundle SM → M for all ε ≥ 0. We have

∇
SM,ε
ei

= ∇
SM,0
ei
+
ε

2

∑
j,γ

sijγ cj cγ −
ε2

4

∑
α,β

tαβicαcβ ,

∇
SM,ε
eα

= ∇
SM,0
eα
−
ε

2

∑
i,β

tαβicicβ .

(2.2)

Let (E,∇E,ε, gE, c)ε>0 be an adiabatic family of Dirac bundles on M as in Defini-
tion 1.6. We can now define a vertical and a horizontal Dirac operator by

DX =
∑
i

ci∇
E,0
ei

and DB,ε =
1
ε
(DM,ε −DX). (2.3)

Let ∇E/S,ε −∇E/S,0 denote the one-form of (1.14). Then

DB,ε =
∑
α

cα

(
∇
E,0
eα
+

1
2

∑
i,j

sijαcicj −
ε

4

∑
i,β

tαβicicβ

)
+

∑
i

ci
1
ε
(∇E/S,ε −∇E/S,0)ei +

∑
α

cα(∇
E/S,ε

−∇
E/S,0)eα

=

∑
α

cα

(
∇
E,0
eα
−

1
2
hα

)
+

∑
i

ci
1
ε
(∇E/S,ε −∇E/S,0)ei

+ ε
∑
α

cα

(
1
ε
(∇E/S,ε −∇E/S,0)eα −

1
4

∑
i,β

tαβicicβ

)
,

(2.4)

where h ∈ T HM denotes the mean curvature vector of the fibres in (M, g), and hα
denotes its component in the direction of α. Note that the connection ∇E,0 − 1

2 〈h, · 〉



2514 Sebastian Goette

for ε = 0 in the above expression for DB,ε is not unitary on E → M in gen-
eral, but it induces a unitary connection ∇p∗E,0 on the infinite-dimensional vector orbi-
bundle p∗E→ B.

Lemma 2.1. Let (E,∇E,ε, gEε )ε>0 be family of Dirac bundles on the family (M, gTMε )ε>0
of Riemannian manifolds. Decompose the associated family of Dirac operators DM,ε =
DX+εDB,ε as above. Then the anticommutator ofDX andDB,ε is the sum of a fibrewise
differential operator of order one and an endomorphism of E.

We write supercommutators as [ · , · ].

Proof. BecauseDX is of order one and involves only fibrewise differentiation, supercom-
mutators of DX with a zero order operator satisfy the assertion above. Hence, it suffices
to consider∑

α

[DX,∇
E,0
eα
] =

∑
i,α

(
cic(∇

TM,0
ei

eα)∇
E,0
eα

+ cicα(∇
E,0)2ei ,eα + cicα∇

E,0
[ei ,eα]

+ cαc(∇
TM,0
eα

ei)∇
E,0
ei

)
.

Because eα is the horizontal lift of a vector field on B, we have ∇TM,0ei eα = (p
∗
∇
T B)ei eα

= 0, and [ei, eα] is a vertical vector field. Our claim follows. ut

2.b. The effective horizontal operator

We regard the infinite-dimensional bundle p∗E → B. Together with the connec-
tion ∇p∗E,0 of (1.10), it becomes an infinite-dimensional Dirac orbibundle on B.

Let PX ∈ End(p∗E) denote the fibrewiseL2-projection on kerDX. By assumption (3)
in Definition 1.6, H = kerDX = imPX is a finite rank vector orbibundle over B. Note
that PX does not necessarily commute with the connection ∇p∗E,0. We define a connec-
tion ∇H on H by

∇
H
= PX ◦ ∇

p∗E,0 ◦ PX = PX ◦
(
∇
E,0
−

1
2 〈h, · 〉

)
◦ PX.

Proposition 2.2. Let PX and H be as above.

(1) The operator PX is a fibrewise smoothing operator of finite rank that commutes
with DX and with Clifford multiplication with horizontal vectors.

(2) The orbibundle H → B, equipped with the restriction of the fibrewise L2-metric and
the connection ∇H , becomes a finite-dimensional Dirac orbibundle on B.

Proof. The projection PX commutes with DX by construction, and with cα because DX
anticommutes with cα .

The connection ∇p∗E,0 respects the L2-scalar product, so its contraction ∇H onto H
respects the induced scalar product. Because PX commutes with cα , we obtain a Dirac
orbibundle. ut
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Remark 2.3. By Definition 1.8, the effective horizontal operator is a Dirac operator if
the family of local twist connections ∇W,ε considered in the previous section is constant
in ε. This is not the case for the odd signature operator BM,ε on (M, gTMε ), as explained
in [9, Section 4.1]. The local twist bundle W is now given by (SM,∇SM,ε). Hence, by
equation (2.2), we have

d

dε

∣∣∣∣
ε=0
∇
E/S,ε
ei =

1
2

∑
j,γ

sijγ cj cγ .

This term only depends on the second fundamental form of the fibres, in particular, for
totally geodesic fibrations the effective horizontal operator is in fact the Dirac operator on
the Dirac bundle (H, gH ,∇H ) of Proposition 2.2(2) above.

Proposition 2.4. The η-invariant of Deff
B is given by a convergent integral,

η(Deff
B ) =

∫
∞

0

1
√
πt

tr
(
Deff
B e
−t (Deff

B )
2)
dt.

Proof. Convergence for t → ∞ is clear because we assumed that B is compact, and
hence Deff

B has discrete spectrum.
For small-time convergence, we adapt the proof of [4, Section II]. We put

A = Deff
B −D

H
B =

∑
i

PX ◦

(
ci
d

dε

∣∣∣∣
ε=0
∇
E/S,ε
ei

)
◦ PX.

Because cα commutes with PX, we find thatA anticommutes with Clifford multiplication,

[cα, A] = PX ◦
∑
i

[
cα, ci

d

dε

∣∣∣∣
ε=0
∇
E/S,ε
ei

]
◦ PX = 0.

In particular,
(Deff

B )
2
= (DHB )

2
+

∑
α

cα[∇
H
fα
, A] + A2.

We introduce an exterior variable z that anticommutes with the Clifford multiplica-
tion cα and is parallel with respect to ∇H . Consider the connection

∇
H,z
= ∇

H
−
z

2
c( · ) (2.5)

on the Dirac bundle H of Proposition 2.2. Then instead of the usual Bochner–Lichnero-
wicz–Weitzenböck formula, one has

(Deff
B )

2
+ zDeff

B = ∇
H,z,∗
∇
H,z
+
κ

4
+

1
4

∑
α,β

cαcβF
H/S
fα,fβ

+

∑
α

cα[∇
H
fα
, A] + A2

+ zA. (2.6)
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If P , Q are endomorphisms of a vector space, define trz(P + zQ) = tr(Q), then

tr
(
Deff
B e
−t (Deff

B )
2)
=

1
t

trz
(
e−t ((D

eff
B )

2
−zDeff

B )
)
. (2.7)

We want to compute the heat kernel of e−t ((D
eff
B )

2
−zDeff

B ) using Getzler rescaling. To
see that this is possible, we have to distinguish two cases.

If dimB is even, only even elements of the Clifford algebra contribute to the trace.
Hence, in the asymptotic expansion of the heat kernel, only terms involving the operatorA
an odd number of times will contribute. ButA acts as τ⊗A′, where τ denotes the Clifford
volume element and A′ commutes with Clifford multiplication. Hence, we may replace A
formally by A′ and the trace by a supertrace, so Getzler rescaling is appropriate.

On the other hand, let dimB be odd. Then dimX is even, and the bundle H splits
as H+ ⊕H−. The splitting is preserved by DHB , but A exchanges the summands. Hence,
in the asymptotic expansion of the heat kernel, only terms involving the operator A an
even number of times will contribute, so we have to take the trace on the odd part of the
Clifford algebra, and Getzler rescaling is again appropriate.

Either way, we perform Getzler rescaling of the Clifford variables cα , and A is not
affected. Then the additional terms in the second line of (2.6) cause no trouble because A
and [∇Hfα , A] do not involve Clifford multiplication at all. Hence, small time convergence
follows as in [4]. ut

Proposition 2.5. If dimB is even, the effective horizontal operator of the adiabatic fam-
ily of odd signature operators (BM,ε)ε on M has vanishing η-invariant.

Proof. The effective horizontal operator Beff
B acts on �•(B;H) and exchanges even and

odd forms by [9, Section 4.1]. Thus, the odd heat kernelBeff
B e
−t (Beff

B )
2

also exchanges even
and odd forms, and so its trace is zero. Hence, the integrand in Proposition 2.4 vanishes.

ut

2.c. The Dirac operator as a matrix

The following sections are inspired by work of Bismut and Lebeau [5, Chapter 9] and
Ma [23, Chapter 5]. We will write operators acting on p∗E = kerDX⊕imDX as matrices
of the form

Y =

(
PXYPX PXY (1− PX)

(1− PX)YPX (1− PX)Y (1− PX)

)
=

(
Y1 Y2
Y3 Y4

)
,

in particular

1
ε
DM,ε = ε

−1
(
DM,ε,1 DM,ε,2
DM,ε,3 DM,ε,4

)
=

(
DB,ε,1 DB,ε,2
DB,ε,3 ε−1DX +DB,ε,4

)
.

Proposition 2.6. As ε→ 0,

(1) the operator DB,ε,1 −Deff
B is an endomorphism of H → B of magnitude O(ε), and

(2) the operators DB,ε,2 and DB,ε,3 are uniformly bounded fibrewise smoothing opera-
tors of finite rank.
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Proof. The first claim follows from the Definition 1.8 of the effective horizontal operator
and equation (2.4).

The projection PX is a fibrewise smoothing operator of finite rank. It commutes with
Clifford multiplication cα by horizontal vectors. We conclude from (2.4) that the commu-
tator [DB,ε, PX] is again a fibrewise smoothing operator of finite rank. Now (2) follows
because

DB,ε,2 = PX ◦DB,ε ◦ (1− PX) = −[DB,ε, PX] ◦ (1− PX),
DB,ε,3 = (1− PX) ◦DB,ε ◦ PX = (1− PX) ◦ [DB,ε, PX]

are uniformly bounded fibrewise smoothing operators of finite rank. ut

2.d. A resolvent estimate

Let λB denote the smallest absolute value of a nonzero eigenvalue of the effective hori-
zontal operator Deff

B , and let 0 < c < λB/2. Let 0 = 0+ ∪̇ 00 ∪̇ 0− denote a contour
in C, where 0± goes around ±[λB ,+∞] at distance c, and 00 is a circle around 0 with
radius c. We choose ε0 > 0 such that Proposition 2.7 is satisfied and such that all eigen-
values of ε−1DM,ε lie inside the area enclosed by 0 for all ε > 0.

−λB λB
c

000− 0+

For λ /∈ spec(DM,ε,4), we consider the resolvent

Rε(λ) =
1− PX

λ− ε−1DM,ε,4
.

We regard the family of Schatten norms on operators acting on L2(E), given by

‖A‖p = tr((A∗A)p/2)1/p

for 1 ≤ p <∞, and let ‖A‖∞ denote the operator norm.

Proposition 2.7. There exist constants C, ε0 > 0 such that for all p > dimM , all ε in
(0, ε0) and all λ ∈ 0, one has

‖Rε(λ)‖∞ ≤ C, (1)
‖Rε(λ)‖∞ ≤ Cε|λ|, (2)
‖Rε(λ)‖p ≤ C|λ|. (3)
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Proof. For σ ∈ im(1− PX), we have

‖(i − ε−1DM,ε,4)σ‖
2
L2 = 〈(1+ ε−2D2

X + ε
−1
[DX,DB,ε,4] +D

2
B,ε,4)σ, σ 〉. (2.8)

The operator D2
B,ε,4 is selfadjoint with nonnegative spectrum.

The operator D2
X|im(1−PX) is a fibrewise differential operator of order 2, hence its

spectrum is contained in [λ0,∞) for some λ0 > 0. Let 1X denote the fibrewise connec-
tion Laplacian acting on E → M , and let RX denote the curvature term in the classical
Bochner–Lichnerowicz–Weitzenböck formula for DX. Write A ≥ B if A − B is a non-
negative selfadjoint operator. Because D2

X ≥ λ2
0 > 0, we find a parameter s > 0 such

that

D2
X − s1X = (1− s)D

2
X + s

(
κX

4
+RX

)
≥

1− s
2

D2
X +

(1− s)λ2
0

2
− s

∥∥∥∥κX4 +RX

∥∥∥∥
∞

≥
1− s

2
D2
X ≥

(1− s)λ2
0

2
> 0.

(2.9)

By Lemma 2.1, the anticommutator

[DX,DB,ε,4] = (1− PX)(DXDB,ε +DB,εDX)(1− PX)

is the projection of a fibrewise differential operator of order 1. Write

[DX,DB,ε] =
∑
ν

aν∇Vν + b,

where the Vν are vertical vector fields, and b and the aν are endomorphisms of E → M

depending on ε. Note that Vν , aν and b are uniformly bounded as ε → 0. Be-
cause [DX,DB,ε] is selfadjoint,∑

ν

aν∇Vν =
(∑
ν

aν∇Vν

)∗
= −

∑
ν

(
a∗ν∇Vν + [∇Vν , a

∗
ν ] + (divVν)a∗ν

)
.

Consider the nonnegative generalised fibrewise Laplace operator

0 ≤ s
(
ε−1
∇ +

1
2s

∑
ν

〈Vν, · 〉a
∗
ν

)∗(
ε−1
∇ +

1
2s

∑
ν

〈Vν, · 〉a
∗
ν

)
= sε−21X +

1
4s

∑
µ,ν

〈Vµ, Vν〉aµa
∗
ν

−
1
2ε

∑
ν

(
(a∗ν − aν)∇Vν + (divVν)a∗ν + [∇Vν , a

∗
ν ]
)

= sε−21X + ε
−1([DX,DB,ε] − b)+

1
4s

∑
µ,ν

〈Vµ, Vν〉aµa
∗
ν .
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Because b acts as a fibrewise endomorphism on E→ M , we conclude that

sε−21X + ε
−1
[DX,DB,ε] ≥ −ε

−1C. (2.10)

A similar conclusion still holds if we replace DB,ε by DB,ε,4 because

[DX,DB,ε] − [DX,DB,ε,4] = DXDB,ε,3 +DB,ε,2DX

is a fibrewise smoothing operator of finite rank by Proposition 2.6(2).
If we put (2.8)–(2.10) together, we see that

1+ ε−2D2
M,ε,4 ≥ 1+

1− s
2ε2 D2

X +
λ2

0
4ε2 −

C

ε
+D2

B,ε,4. (2.11)

We immediately find that

‖Rε(i)‖∞ ≤ Cε.

Hence there exists ε0 > 0 such that for all ε ∈ (0, ε0), the spectrum of ε−1DM,ε,4
is contained in R \ ε−1(−c′, c′) for some constant c′ > 0. The first estimate (1) follows
from our choice of 0.

We obtain (2) from (1) and

‖Rε(λ)‖ ≤ ‖Rε(i)− Rε(i)(λ− i)Rε(λ)‖ ≤ Cε(1+ |λ− i|C).

Moreover, (2.11) implies that there exists an ε0 > 0 such that for all ε ∈ (0, ε0),
the operator 1+ (ε−1DX +DB,ε,4)

2 differs from a fixed selfadjoint second order elliptic
operator by some selfadjoint operator with nonnegative eigenvalues. By the variational
characterisation of eigenvalues and the definition of the p-norm, we conclude that

‖Rε(i)‖p = ‖(i − (ε
−1DX +DB,ε,4))

−1
‖p ≤ C

for all ε ∈ (0, ε0) and all p > dimM . By a similar argument, the proposition follows for
all λ ∈ 0. ut

In particular, the resolvent Rε(λ) is uniformly bounded and of orderO(ε|λ|) for all λ ∈ 0
as ε → 0. We write Rε(λ) = O(1, ε|λ|). In particular, we may extend this operator by 0
for ε = 0.

2.e. The Schur complement

To compute the full resolvent of ε−1DM,ε, we consider the Schur complement Mε(λ)

of λ − ε−1DM,ε,4 in the matrix representation of Section 2.c. The Schur complement is
given by

Mε(λ) = λ−DB,ε,1 −DB,ε,2 ◦ Rε(λ) ◦DB,ε,3.



2520 Sebastian Goette

Proposition 2.8. There exists ε0 > 0 small such that for all ε ∈ (0, ε0) and all λ ∈ 0, the
operator Mε(λ) is invertible. Moreover, there exists C > 0 such that for all p > dimM ,

‖Mε(λ)
−1
‖∞ ≤ C, (1)

‖Mε(λ)
−1
− (λ−Deff

B )
−1
‖∞ ≤ Cmin(1, ε|λ|), (2)

‖Mε(λ)
−1
‖p ≤ C|λ|, (3)

‖(λ−Deff
B )
−1
‖p ≤ C|λ|. (4)

Proof. By Propositions 2.6 and 2.7,

Mε(λ) = λ−D
eff
B +O(1, ε|λ|).

As DB,ε,1 + DB,ε,2 ◦ Rε(λ) ◦ DB,ε,3 is a selfadjoint operator, its spectrum is contained
in R, and Mε(λ) is invertible with ‖Mε(λ)‖ ≤ 1/c for all λ ∈ 0 with Im λ = ±ic.

The remaining λ ∈ 0 satisfy |λ| ≤ 2λB , so the remainder term Mε(λ) − λ + D
eff
B

is a bounded endomorphism of H with operator norm uniformly of order O(ε). Then in
particular, the series

Mε(λ)
−1
=

1

λ−Deff
B

∞∑
k=0

((
(λ−Deff

B )−Mε(λ)
) 1

λ−Deff
B

)k
(2.12)

converges if ε > 0 is small enough. This proves invertibility of Mε(λ). Together with the
above, we obtain (1).

We deduce (2) from (1) and our choice of 0 in Section 2.d because

Mε(λ)
−1
− (λ−Deff

B )
−1
= (λ−Deff

B )
−1((λ−Deff

B )−Mε(λ))Mε(λ)
−1
= O(1, ε|λ|).

For (3), we use that ‖(i −Deff
B )
−1
‖p ≤ C. Moreover

‖Mε(λ)
−1
‖p = ‖(i−D

eff
B )
−1
−(i−Deff

B )
−1(Mε(λ)−(i−D

eff
B ))Mε(λ)

−1
‖p

≤ ‖(i−Deff
B )
−1
‖p+‖(i−D

eff
B )
−1
‖p‖Mε(λ)−(i−D

eff
B )‖∞‖Mε(λ)

−1
‖∞

≤ C(1+(|λ− i|+O(1, ε|λ|))C).

The last estimate (4) is similar. ut

We can now write the resolvent of ε−1DM,ε as

1
λ− ε−1DM,ε

=

(
Mε(λ)

−1 Mε(λ)
−1DB,ε,2Rε(λ)

Rε(λ)DB,ε,3Mε(λ)
−1 Rε(λ)+ Rε(λ)DB,ε,3Mε(λ)

−1DB,ε,2Rε(λ)

)
=

(
1

λ−Deff
B

0

0 Rε(λ)

)
+O(1, ε|λ|).

The remainder terms consist of the resolvent of Deff
B and one or more of the following

finite-rank endomorphisms of p∗E:

((λ−Deff
B )−Mε(λ))

1

λ−Deff
B

, DB,ε,2Rε(λ), Rε(λ)DB,ε,3,

the behaviour of which is described in Propositions 2.6–2.8.
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We summarise the results of this section.

Proposition 2.9. There exist constants C, ε0 > 0 such that for all p > dimM , all ε ∈
(0, ε0), and all λ ∈ 0, one has

‖(λ− ε−1DM,ε)
−1
‖∞ ≤ C, ‖(λ−Deff

B )
−1
‖∞ ≤ C, (1)

‖(λ− ε−1DM,ε)
−1
‖p ≤ C|λ|, ‖(λ−Deff

B )
−1
‖p ≤ C|λ|, (2)

‖(λ− ε−1DM,ε)
−1
− (λ−Deff

B )
−1
‖∞ ≤ Cε|λ|. (3)

In particular, the resolvent of ε−1DM,ε converges to the resolvent of the effective hori-
zontal operator Deff

B in a certain precise sense.

2.f. Long time convergence

Define a spectral projection Pε on 0(p∗E) by

Pε =
1

2πi

∫
00

dz

z− ε−1DM,ε
.

Then Pε obviously commutes with DM,ε. By Proposition 2.9(3) and our choice of c
and 00, we find that P0 = limε→0 Pε is the projection onto the kernel of the effective
horizontal operator Deff

B . In particular, imPε is of constant finite dimension for all ε > 0
sufficiently small.

Proposition 2.10. There exists α > 0 such that

lim
ε→0

∫
∞

εα−2

1
√
πt

tr
(
(1− Pε) ◦

(
DM,εe

−tD2
M,ε
)
◦ (1− Pε)

)
dt = η(Deff

B ).

Proof. By Proposition 2.4, we may write

η(Deff
B ) =

∫
∞

0

1
√
πt

tr
(
(1− P0) ◦D

eff
B e
−t (Deff

B )
2
◦ (1− P0)

)
dt,

because P0 projects onto the kernel of Deff
B .

We rewrite the integral on the left hand side in the proposition as∫
∞

εα−2

1
√
πt

tr
(
(1− Pε) ◦

(
DM,εe

−tD2
M,ε
)
◦ (1− Pε)

)
dt

=

∫
∞

εα

1
√
πt

tr
(
(1− Pε) ◦

(
ε−1DM,εe

−tε−2D2
M,ε
)
◦ (1− Pε)

)
dt.

Using dominated convergence, we will show that this integral converges to η(Deff
B ) as

ε→ 0.
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For t > 0 and each integer k ≥ 0, we define two holomorphic functions
F+k,t , F

−

k,t : C→ C with

dk

dzk
F±k,t (z) = ze

−tz2
and lim

z→±∞
F±k,t (z) = 0.

Then obviously
F±k,t (z) = t

−(k+1)/2F±k,1(
√
t z). (2.13)

By holomorphic functional calculus,

(1− Pε) ◦
(
ε−1DM,εe

−tε−2D2
M,ε
)
◦ (1− Pε) =

1
2πi

∫
0+∪̇0−

ze−tz
2

z− ε−1DM,ε
dz

=
1

2πik!

∫
0+

F+k,t (z)(z−ε
−1DM,ε)

−k−1 dz+
1

2πik!

∫
0−

F−k,t (z)(z−ε
−1DM,ε)

−k−1 dz.

(2.14)
A similar expression holds for

Deff
B e
−t (Deff

B )
2
= (1− P0) ◦

(
Deff
B e
−t (Deff

B )
2)
◦ (1− P0).

By the Hölder inequality, ‖Xp‖1 ≤ ‖X‖
p
p . We choose k > dimM + 1. Let µ denote

the arc length measure on 0. By Proposition 2.9(2) & (3), there exist constants C varying
from line to line such that∥∥∥∥ 1

2πik!

∫
0±

F±k,t (z)
(
(z− ε−1DM,ε)

−k−1
− (z−Deff

B )
−k−1) dz∥∥∥∥

1

≤ C

∫
0±

|F±k,t (z)|

k∑
j=0

‖(z− ε−1DM,ε)
−1
‖
j
k

· ‖(z− ε−1DM,ε)
−1
− (z−Deff

B )
−1
‖∞‖(z−D

eff
B )
−1
‖
k−j
k dµ(z)

≤ Cε

∫
0±

∣∣F±k,t (z)∣∣ |z|k+1 dµ(z). (2.15)

This clearly implies

lim
ε→0

tr
(
(1− Pε) ◦

(
ε−1DM,εe

−tε−2D2
M,ε
)
◦ (1− Pε)

)
= tr

(
Deff
B e
−t (Deff

B )
2)
. (2.16)

Using (2.13) and (2.15), we estimate∥∥(1− Pε) ◦ (ε−1DM,εe
−tε−2D2

M,ε
)
◦ (1− Pε)−

(
Deff
B e
−t (Deff

B )
2)∥∥

1

≤ Cε

∫
0±
|F±k,t (z)z

k+1
| dµ(z)

≤ Cεt−k−1
∫
0±
|F±k,1(

√
tz) · (

√
tz)k+1

| dµ(z)

≤ Cεt−k−3/2
∫
√
t 0±
|F±k,1(z)z

k+1
| dµ(z) ≤ Cεt−k−3/2e−ct . (2.17)
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Choose 0 < α < 1/(k + 2). For εα ≤ t , (2.17) implies

1
√
t

∥∥(1− Pε) ◦ (ε−1DM,εe
−tε−2D2

M,ε
)
◦ (1− Pε)−

(
Deff
B e
−t (Deff

B )
2)∥∥

1

≤ Ct1/α−k−2e−ct .

Because t occurs with positive exponent in the last line, the integral of the right hand side
above over (0,∞) converges, and we may apply dominated convergence and (2.16) to
complete the proof. ut

2.g. The very small eigenvalues

We now want to estimate the contribution of the finite-dimensional vector space imPε.
The operator Pε ◦ ε−1DM,ε ◦ Pε depends holomorphically on ε, so its eigenvalues are
given by analytic functions λν in ε. In particular, we may choose ε0 in Section 2.c such
that

dim ker(Pε ◦ ε−1DM,ε ◦ Pε) = dim kerDM,ε

is constant for all ε ∈ (0, ε0]. By Proposition 2.6(1), we have λν(ε) = O(ε), and by the
above, the sign of λν(ε) does not change on (0, ε0].

Proposition 2.11. For 0 < ε < ε0, we have

lim
ε→0

∫
∞

εα−2

1
√
πt

tr
(
Pε ◦

(
DM,εe

−tD2
M,ε
)
◦ Pε

)
dt =

dim kerDeff
B∑

ν=1

sign(λν(ε)).

Proof. We have∫
∞

εα−2

1
√
πt

tr
(
Pε ◦

(
DM,εe

−tD2
M,ε
)
◦ Pε

)
dt

=

∫
∞

εα

1
√
πt

tr
(
Pε ◦

(
ε−1DM,εe

−tε−2D2
M,ε
)
◦ Pε

)
dt

=

dim kerDeff
B∑

ν=1

∫
∞

εα

λν(ε)
√
πt
e−tλν (ε)

2
dt =

dim kerDeff
B∑

ν=1

sign(λν(ε))+O(εα/2). ut

2.h. Short time convergence

Let α > 0 denote the constant introduced in Proposition 2.10 and consider∫ εα−2

0

1
√
πt

tr
(
DM,εe

−tD2
M,ε
)
dt.

We treat the limit of this integral as ε→ 0 as in [3] and [9]. Over the singular strata of B,
we get additional contributions involving equivariant η-forms (see Definition 1.7 of the
orbifold η-forms).
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Proposition 2.12. For α > 0 sufficiently small, we have

lim
ε→0

∫ εα−2

0

1
√
πt

tr
(
DM,εe

−tD2
M,ε
)
dt =

∫
3B

Â3B(T B,∇
T B) 2η3B(A).

Proof. We introduce an exterior variable z that anticommutes with the Clifford multipli-
cation c and is parallel with respect to ∇E,ε for all ε. In analogy with (2.5), consider the
connection

∇
E,ε,z
= ∇

E,ε
− zc( · ).

We will use the gTMε -orthonormal frame eεI of (1.8). Then as in (2.6), the Bochner–
Lichnerowicz–Weitzenböck formula implies

D2
M,ε + 2zDM,ε = ∇E,ε,z,∗∇E,ε,z +

κ

4
+

1
4

∑
I,J

cI cJF
E/S

eεI ,e
ε
J
.

Define trz as in the proof of Proposition 2.4. Then as in (2.7),

tr
(
DM,εe

−tD2
M,ε
)
=

1
t

trz
(
e
−t (D2

M,ε−zDM,ε)
)
. (2.18)

From now on, we assume that t ≤ εα−2 for some small α > 0. We fix q ∈ B and
choose an orbifold chart ψ : ρ(0)\V → U ⊂ B with q = ψ(0) and a local trivialisa-
tion ψ̄ : 0\(V ×X)→ p−1(U) as in Definition 1.2. We assume that ψ defines geodesic
coordinates, and that ψ̄ is the trivialisation by horizontal lifts of radial geodesics. By par-
allel transport along these geodesics with respect to ∇E,ε, we also identify the pullback
of E|p−1(U) to V ×X with E|X × V .

As explained in [9, Section 3.1], to compute the z-trace of the heat kernel over q, we
may assume that V = Rm−n, and that outside a suitably large compact subset, the metric
on V is flat and the geometry of the fibration is of product type. It is possible to perform
all these modifications in a 0-invariant way.

Let v denote the V -coordinates of a point in V × X. As in [3, (4.58), (4.64)], we
consider the operator

Hε,t =

(
1+

zc(v)

2ε
√
t

)
(tD2

M,ε + 2z
√
t DM,ε)

(
1−

zc(v)

2ε
√
t

)
.

In the trivialisations above, let

k̃ε,t ((v, x), (v
′, x′)) : Ex′ → Ex

denote the heat kernel of the operator e−Hε,t on V ×X. The corresponding heat kernel kε,t
on 0\(V ×X) then lifts to

kε,t ([v, x], [v
′, x′]) =

∑
γ∈0

k̃ε,t ((v, x), γ (v
′, x′)) ◦ γ : Ex′ → Ex .

Thus, we have

trz(kε,t ([v, x], [v, x])) =
∑
γ∈0

trz
(
k̃ε,t ((v, x), γ (v, x)) ◦ γ

)
.
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We will consider the contribution of each γ ∈ 0 over V to the overall trace of
e
−t (D2

M,ε+zDM,ε) separately in the limit ε→ 0. Moreover,∫
0\(V×X)

trz(kε,t ([v, x], [v, x])) d(v, x)

=
1

#0

∫
V×X

∑
γ∈0

trz
(
k̃ε,t ((v, x), γ (v, x)) ◦ γ

)
d(v, x) (2.19)

because each point [v, x] ∈ 0\(V ×X) has #0 different preimages in V ×X.
For a fixed γ ∈ 0, let Vγ ⊂ V denote the fixpoint set of γ , which is a linear subspace

of V . Let Nγ denote its orthogonal complement. Because we have assumed that B is
orientable, dimNγ is even. Put

mγ = m− dimNγ .

The action of γ on E|X can be decomposed as

γ = γ̃E/SB ◦ γ̃ SB (2.20)

such that γ SB is an element in the Clifford algebra of Nγ and γE/SB commutes with
Clifford multiplication by horizontal vectors, and this decomposition is unique up to sign.

As ε → 0, we will rescale v ∈ V by a factor ε
√
t . We will apply Getzler rescaling

by ε
√
t only to Clifford multiplication with elements of Vγ , whereas Clifford multipli-

cation with elements of Nγ and TX will not be rescaled. Let us denote the complete
rescaling by Gγ,ε. In particular, the action of γ commutes with Gγ,ε.

We choose the basis in Section 2.a such that fn+1, . . . , fmγ are tangent to Vγ . Let εα

denote exterior multiplication with dvα . For I ∈ {1, . . . , m}, define

µI =

{
cI if 1 ≤ I ≤ n or mγ < I ≤ m,
t−1/2εI if n < I ≤ mγ .

Bismut’s Levi-Civita superconnection can be defined as the operator

At =
√
t DX +∇

p∗E,0 −

√
t

4

∑
iαβ

tαβiµiµαµβ .

Then as in [3, (4.68), (4.70)], the limit of the rescaled operator Hε,t becomes

lim
ε→0

Gγ,ε(Hε,t ) = −t

(
∇ei +

1
4

mγ∑
J,K=1

siJKµIµJ − t
−1/2zci

)2

−

(
∂

∂α
+

1
8
〈RB |Vγ eα, v〉

)2

+

mγ∑
I,J=1

tR
E/S,0
eI ,eJ µIµJ + t

κX

4

=

(
A2
t + tz

dAt
dt

)
−

(
∂

∂α
+

1
8
〈RB |Vγ eα, v〉

)2

. (2.21)
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Both operators on the right hand side have coefficients in 3•(V γ )∗. The operator A2
t +

tz dAt
dt

acts on 0(E → X) and commutes with Clifford multiplication by horizontal vec-
tors, while ( ∂

∂α
+

1
8 〈R

B
|Vγ eα, v〉)

2 acts on �•(V ).
Let SB be a local spinor bundle on V . Then there exists a fibrewise Dirac bundle

W → M as in (1.11). We continue as in [3], using the heat kernel proof of the equivariant
index theorem in order to conclude that on V ×X,

lim
ε→0

∫
V×X

trz
(
k̃ε,t ((v, x), γ (v, x)) ◦ γ

)
d(v, x)

=

∫
V

trSB(kV (v, γ v) ◦ γ̃ SB)(2πi)−N
V γ /2 trp∗W

(
2t
dAt
dt
eA

2
t γ̃E/SB

)
dv

=

∫
V γ
Âγ̃ SB (T V,∇

T V )(2πi)−N
V γ /2 trp∗W

(
2t
dAt
dt
eA

2
t γ̃E/SB

)
.

From (2.19) and the above, we obtain

lim
ε→0

∫
0\(V×X)

trz(kε,t ([v, x], [v, x])) d(v, x)

=
1

#0

∑
γ∈0

∫
V γ
Âγ̃ SB (T V,∇

T V )(2πi)−N
V γ /2 trp∗W

(
2t
dAt
dt
eA

2
t γ̃E/SB

)
=

∑
(γ )

1
#C0(γ )

∫
V γ
Âγ̃ SB (T V,∇

T V )(2πi)−N
V γ /2 trp∗W

(
2t
dAt
dt
eA

2
t γ̃E/SB

)

=

∑
(γ )

∫
C0(γ )\V γ

ψ∗(γ )Â3B(T B,∇
T B)(2πi)−N

V γ /2 trp∗W

(
2t
dAt
dt
eA

2
t γ̃E/SB

)

in analogy with the index computations in [20]. By (2.18) and the above, we have the
global formula

lim
ε→0

tr
(√
t DM,εe

−tD2
M,ε
)

=

∫
3B

Â3B(T B,∇
T B) 2(2πi)−N

V γ /2 trp∗W

(
dAt
dt
eA

2
t γ̃E/SB

)
.

By [9, Theorem 3.1], we have uniform convergence as ε → 0. By (1.12) and Defini-
tion 1.7,

lim
ε→0

∫ εα−2

0

1
√
πt

tr
(
DM,εe

−tD2
M,ε
)
dt =

∫
3B

Â3B(T B,∇
T B) 2η3B(A). ut

Remark 2.13. We replace the vector bundle E by E ⊗ p∗W , where W → B is a vector
orbibundle. We also assume that the twist connection ∇(E⊗p

∗W)/S,0 splits as the tensor
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product connection of ∇E/S,0 and p∗∇W in the limit ε → 0. A relevant special case is
the case of the signature operator on M , where the (local) spinor bundle of B plays the
role of W . In this case, equation (2.21) becomes

lim
ε→0

Gγ,ε(Hε,t ) =

(
A2
t + tz

dAt
dt

)2

−

(
∂

∂α
+

1
8
〈RB |Vγ eα, v〉

)2

+ p∗RW .

This implies that now,

lim
ε→0

∫ εα−2

0

1
√
πt

tr
(
DM,εe

−tD2
M,εγ

)
dt

=

∫
3B

Â3B(T B,∇
T B) 2η3B(A) ch3B(W,∇W ).

3. The spaces Pk and M(p−,q−),(p+,q+)

We consider the family M(p−,q−),(p+,q+) of manifolds with a cohomogeneity one ac-
tion of G = Sp(1) × Sp(1) that are described in [17, Chapter 13]. This family con-
tains the spaces Pk = M(1,1),(2k−1,2k+1) as well as the Berger space SO(5)/SO(3) =
M(3,1),(1,3). The manifolds M(p−,q−),(p+,q+) are two-connected with finite cyclic third
homotopy group, so by [6, Theorem A] and [8, Theorem 2.2], it suffices to compute
the Eells–Kuiper invariants and the modified Kreck-Stolz invariants for quaternionic line
bundles of [8, Definition 1.4] to determine the diffeomorphism type.

3.a. Construction as manifolds of cohomogeneity one

Let (p+, q+) and (p−, q−) be two pairs of relatively prime positive odd integers. We
consider the subgroup

H =
{
±(1, 1),±(i, (−1)(q−−p−)/2i),±(j, (−1)(q+−p+)/2j),

± (k, (−1)(q−+q+−p−−p+)/2k)
}
⊂ G = Sp(1)× Sp(1), (3.1)

which is isomorphic (in fact conjugate) to the diagonal subgroup 1Q, with

Q = {±1,±i,±j,±k} ⊂ Sp(1).

If a ∈ S2
⊂ H is an imaginary unit quaternion and p, q are relatively prime odd

integers as above, we consider the subgroup

Ca(p,q) = {(e
apϑ , eaqϑ ) | ϑ ∈ R} ⊂ G = Sp(1)× Sp(1),

which is isomorphic to S1. For an odd integer 2l+ 1, we have ea(2l+1)π/2
= (−1)la. This

implies that
{±(a, (−1)(p−q)/2a),±(1, 1)} ⊂ Ca(p,q).
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We put
K− = C

i
(p−,q−)

·H and K+ = C
j

(p+,q+)
·H ⊂ G. (3.2)

Then in particular H = K− ∩K+, and we have isomorphisms

K− = C
i
(p−,q−)

∪ (j, (−1)(q+−p+)/2j)Ci(p−,q−)
∼= Pin(2),

K+ = C
j

(p+,q+)
∪ (i, (−1)(q−−p−)/2i)Cj(p+,q+)

∼= Pin(2).

The actions of K± on S1 ∼= K+/H ∼= K−/H are R-linear.
We now consider the cohomogeneity one manifolds M(p−,q−),(p+,q+) with group dia-

gram
G

↗ ↖

K− ∼= Pin(2) ∼= K+

↖ ↗

H

(3.3)

Thus, the genericG-orbit takes the formG/H ∼= S3
×RP 2/(Z/2Z)2, and the two singu-

lar orbits are of the form M± = G/K±. We will study the geometry of M(p−,q−),(p+,q+)

in Section 4.

Theorem 3.1 ([17, Theorem 13.1]). The manifolds M = M(p−,q−),(p+,q+) are two-
connected. If p−q+ = ±p+q−, then H 3(M) = H 4(M) = Z, otherwise H 3(M) = 0
and H 4(M) = Z/kZ with k = (p2

−q
2
+ − p

2
+q

2
−)/8.

3.b. The t-invariant

In this section, we want to determine the homeomorphism type of the spaces Pk .
In [6], Crowley has constructed a quadratic form qM : H

4(M) → Q/Z for all two-
connected closed topological seven-manifolds with finite H 4(M) satisfying

lkM(a, b) = qM(a + b)− qM(a)− qM(b), lkM

(
a,
p1

2
(TM)

)
= qM(a)− qM(−a),

for all a, b ∈ H 4(M), where p1/2 denotes the natural refinement of the first Pontryagin
class p1 for spin manifolds. Note that two quadratic forms with the properties above
differ by the pairing with an element of H4(M;Z/2Z). Crowley has then proved that two
such manifolds M0, M1 are homeomorphic (in fact almost diffeomorphic) if and only
if (H 4(M0), qM0) and (H 4(M1), qM1) are isomorphic.

In analogy with the Kreck–Stolz invariants s2 and s3 of [21], Crowley and the au-
thor have defined an invariant tM(E) ∈ Q/Z for a two-connected smooth closed seven-
manifold M and a quaternionic line bundle E→ M , such that

qM(c2(E)) = 12tM(E).
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For each cohomology class a ∈ H 4(M) of such a manifold M , there exist quaternionic
line bundles E→ M with c2(E) = a. We will thus compute tM(E) for sufficiently many
quaternionic line bundles E → M in order to determine the diffeomorphism type of the
spaces M = Pk .

Let us recall the intrinsic definition of tM(E) in [8]. We assume that E carries a
quaternionic Hermitian metric gE and a quaternionic Hermitian connection ∇E . Then
there is a natural representative c2(E,∇

E) ∈ �4(M) of the class c2(E). If H 3
dR(M) =

H 4
dR(M) = 0, there exists a differential form ĉ2(E,∇

E) ∈ �3(M) such that

dĉ2(E,∇
E) = c2(E,∇

E) ∈ �4(M),

and ĉ2(E,∇
E) is unique up to an exact form. Let D and DE denote the untwisted

Dirac operator on M and the Dirac operator twisted with (E, gE,∇E), and let h(D) =
dim kerD.

Definition 3.2 ([8, Definition 1.4]). For a quaternionic line bundle E → M on a com-
pact oriented seven-dimensional spin manifold M with H 4

dR(M) = 0, put

tM(E) =
η + h

4
(DEM)−

η + h

2
(DM)

−
1

24

∫
M

(
p1

2
(TM,∇TM)+ c2(E,∇

E))ĉ2(E,∇
E) ∈ Q/Z.

Theorem 3.3. Assume that p− and p+ are relatively prime. Then there exists an isomor-
phism H 4(M(p−,q−),(p+,q+))

∼= Z/kZ and a family of quaternionic line bundles E` →
M(p−,q−),(p+,q+)) with c2(E`) = ` ∈ Z/kZ such that

tM(E`) = `
p2
− − p

2
+ + `p

2
−p

2
+

24k
+
`

24
∈ Q/Z.

This theorem will be proved in Section 4.i.

Remark 3.4. More generally, suppose that a = (p2
−, p

2
+) and b = (q2

−, q
2
+) are the

greatest common divisors. Because p− and q− are relatively prime, so are a and b. More-
over, clearly a | k and b | k.

The proof of Theorem 3.3 gives a formula for qM(`) if a | ` ∈ H 4(M) by identifying
the class ` with a class pulled back from the base of the Seifert fibration p : M → B

considered in Proposition 4.1. Swapping the roles of the ps and qs gives an analogous
formula for qM(`) if b | ` ∈ H 4(M).

To see that these two formulas determine qM uniquely, for each ` ∈ H 4(M) ∼= Z/nZ
we find x, y ∈ Z such that

` = xa2
+ yb2.

Because q refines the linking form, we have

qM(`) = qM(xa
2
+ yb2) = qM(xa

2)+ qM(yb
2)+ a2b2 lk(x, y)

= qM(xa
2)+ qM(yb

2)+ qM(ab(x + y))− qM(abx)− qM(aby),

and each of the terms on the right hand side is computable. The main difficulty consists
in determining the respective classes in the two base orbifolds.
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Example 3.5. We consider the special case Pk = M(1,1),(2k−1,2k+1) and obtain

qM(`) = `
4k(1− k)+ `(2k − 1)2

2k
+
`

2
=
`(`+ k)

2k
modZ. (3.4)

We compute
lk(i, j) = qM(i + j)− qM(i)− qM(j) = ij/k, (3.5)

which proves that the linking form on H 4(Pk) is standard and that the class represented
by ` = 1 is a generator. We also see that p1

2 (T Pk) = 0 because

lk
(
p1

2
(TM), `

)
= qM(−`)− qM(`) = ` = 0 modZ. (3.6)

3.c. The Eells–Kuiper invariant

The Eells–Kuiper invariant µ has first been defined in [12] for certain manifolds using
zero bordisms. It distinguishes all exotic spheres in dimension 7. Crowley [6] has shown
that two homeomorphic two-connected closed smooth seven-manifolds with finiteH 4 are
diffeomorphic if and only if their Eells–Kuiper invariants agree.

We will use the intrinsic description of µ(M) by Donnelly [11] and Kreck and
Stolz [21]. Let M be an oriented spin Riemannian seven-manifold with H 3

dR(M) =

H 4
dR(M) = 0, and let DM denote the untwisted Dirac operator on M . Let BM denote

the odd signature operator, acting on �evenM . Let p1(TM,∇
TM) denote the first Pon-

tryagin form of M . Then there exists a form p̂1(TM,∇
TM) ∈ �3(M) such that

dp̂1(TM,∇
TM) = p1(TM,∇

TM),

and p̂1(TM,∇
TM) is uniquely determined up to an exact form. Following [21], the Eells–

Kuiper invariant of M can be computed as

µ(M) =
η + h

2
(DM)+

η

25 · 7
(BM)−

1
27 · 7

∫
M

(p1 ∧ p̂1)(TM,∇
TM) ∈ Q/Z. (3.7)

We will use Theorem 0.1 to compute the η-invariants in (3.7). Again, we make use
of the Seifert fibration M → B discussed in Proposition 4.1 below. In analogy with the
classical Dedekind sums occurring in the study of quadratic forms, we consider a partic-
ular family of sums over rational functions in sines and cosines. These sums represent the
contribution of the twisted sectors of B to µ(M(p−,q−),(p+,q+)).

Definition 3.6. If p, q ∈ N are odd and relatively prime, define the generalised Dedekind
sums

D(p, q) =

p−1∑
a=1

( 14 cos 4πa
p
+ cos2 qπa

p

24 · 7p2 sin2 4πa
p

sin2 qπa
p

+

q cos qπa
p

(
14+ cos 4πa

p

)
25 · 7p2 sin 4πa

p
sin3 qπa

p

)
.

We will give explicit formulas for some of these sums in the next subsection.
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Theorem 3.7. We have

µ(M(p−,q−),(p+,q+)) =
sign(q2

−p
2
+ − q

2
+p

2
−)

25 · 7
+D(p−, q−)−D(p+, q+)

−
(p2
+ − p

2
−)

2

22 · 7p2
−p

2
+(q

2
−p

2
+ − q

2
+p

2
−)
−

24(p2
+ − p

2
−)+ (q

2
−p

2
+ − q

2
+p

2
−)

28 · 7p2
−p

2
+

.

This theorem will be proved in Section 4.h.

Corollary 3.8. Assume that p and q are odd and relatively prime. Then there is a duality
of generalised Dedekind sums

D(p, q)+D(q, p)−
26
+ 24(p2

+ q2)+ (p4
+ q4)

28 · 7p2q2 +
7
27 ∈ Z.

Proof. Swapping the ps and qs in both pairs (p±, q±) corresponds to changing the ori-
entation on M , hence the Eells–Kuiper invariant changes its sign. Let A(p, q) denote the
expression in the corollary. Then by Theorem 3.7,

A(p−, q−)− A(q+, p+) = µ(M(p−,q−),(p+,q+))+ µ(M(q−,p−),(q+,p+)) ∈ Z.

Because we can choose the pairs (p−, q−) and (p+, q+) independent of each other, sub-
ject only to the relation p−/q− 6= p+/q+, it is enough to check thatA(1, 1) = 0 ∈ Z. ut

3.d. Some examples

Some of the manifolds M(p−,q−),(p+,q+) are diffeomorphic to well-known spaces by
Grove, Wilking and Ziller [17]. In this subsection, we make sure that our computations
above agree with other computations of the invariants.

Let us denote by Ep,n the unit sphere bundle of a four-dimensional real vector bun-
dle V → S4 with Euler class n = e(V ) and half Pontryagin class p = p1

2 (V ) ∈ Z ∼=
H 4(S4). Such a bundle exists if and only if n and p are of the same parity, and is unique
up to isomorphism in this case. It is known that p1

2 (T Ep,n) ≡ p ∈ Z/nZ ∼= H 4(Ep,n).
The bundles Ep,n and E−p,n are oriented diffeomorphic, and E±p,n and E±p,−n are ori-
entation reversing diffeomorphic. By [8, Proposition 2.6] and [7, Section 3.1], we know
that

qEp,k (`) =
`(p + `)

2k
and µ(Ep,k) =

p2
− k

25 · 7k
. (3.8)

Note that Crowley and Escher use the parameters n = k and m = (p − k)/2.

Example 3.9. If p+ = p− = 1, then the base B is the manifold S4, represented as the
unit sphere in the space of real trace-free symmetric endomorphisms of R3 with its natural
SO(3)-action by conjugation. The manifold M is a principal S3-bundle over S4, and the
induced R4-bundle V → B has Euler number

e(V )[B] = k =
q2
− − q

2
+

8
∈ Z

by (4.21) below.
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BecauseM is a principal bundle, we also have p = p1
2 = ±k. By [8, Proposition 2.6],

the q-invariant is given by

qM(`) =
`(k + `)

2k
,

which agrees with Theorem 3.3.
The formula for the Eells–Kuiper invariant reduces to

µ(M(1,q−),(1,q+)) =
sign(q2

− − q
2
+)

25 · 7
−
q2
− − q

2
+

28 · 7
=

sign e(V )[B] − e(V )[B]
25 · 7

,

which agrees with the computations by Crowley and Escher [7].

Example 3.10. By [17], the spaceM(3,1),(1,3) is diffeomorphic to the Berger space B7
=

SO(5)/SO(3). Kitchloo, Shankar and the author [15] computed the Eells–Kuiper invariant
of this space and obtained

µ(B7) = −
27

1120
,

which agrees with Theorem 3.7.
In [15], we concluded that M with reversed orientation is diffeomorphic to an

S3-bundle over S4 with Euler number 10 and half Pontryagin number 8. By Theorem 3.3,
we find

qM(3,1),(1,3)(`) =
`(2+ 9`)

20
≡
`(2+ 9`)

20
−
`(`+ 1)

2
= −

`(8+ `)
20

modZ,

which agrees with [8, Proposition 2.6] (see (3.8) above).

3.e. The spaces Pk

It is shown in [17, Theorem A] that among the various manifolds M(p−,q−),(p+,q+), only
the Berger space M(3,1),(1,3) and the spaces

Pk = M(1,1),(2k−1,2k+1)

can carry a cohomogeneity one metric of positive sectional curvature. So far, such metrics
have been found on P1 ∼= S

7, the manifold P2, and the Berger space. In this section, we
determine the diffeomorphism type of the Pk . In particular, we prove Theorems 0.2, 0.3
and Corollary 0.4.

We start by evaluating the Dedekind sums of Definition 3.6. For q = p + 2, we
have cos qπa

p
= (−1)a cos 2πa

p
and similarly sin qπa

p
= (−1)a sin 2πa

p
. Hence these sums
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simplify as follows:

D(p, p + 2) =
p−1∑
a=1

( 14 cos 4πa
p
+ cos2 2πa

p

24 · 7p2 sin2 4πa
p

sin2 2πa
p

+

(p + 2) cos 2πa
p

(
14+ cos 4πa

p

)
25 · 7p2 sin 4πa

p
sin3 2πa

p

)

=
1

24 · 7p2

p−1∑
a=1

(
15

4 sin4 2πa
p

−
14

sin2 4πa
p

)

+
p + 2

25 · 7p2

p−1∑
a=1

(
15

2 sin4 2πa
p

−
2

2 sin2 2πa
p

)

=
15(p + 3)
26 · 7p2

p−1∑
a=1

1

sin4 2πa
p

−
p + 30
25 · 7p2

p−1∑
a=1

1

sin2 2πa
p

.

For the second equation, we have used the double-angle formulae for sine and cosine.
For the last equation, we have substituted 2πa

p
for 4πa

p
in one of the sums; this is possible

because p is odd.
The following route of computation was suggested by Zagier. Let µp ⊂ C denote the

group of p-th roots of unity, let z = e4πia/p
∈ µp \ {1}, and consider

f (z) =
(−4z)`

(z− 1)2`
=

(2i)2`

(
√
z− 1/

√
z)2`
=

1

sin2` 2πa
p

.

The rational function

g(z) =
p

zp − 1
·

1
z

has simple poles at µp ∪ {0}. The residue at each ζ ∈ µp equals 1 because

Resz=ζ g(z) =
p

ζ

∏
ζ ′∈µp\{ζ }

1
ζ − ζ ′

=
p

ζp

∏
ζ ′∈µp\{1}

1
1− ζ ′

,

moreover ∏
ζ ′∈µp\{1}

(1− ζ ′) =
zp − 1
z− 1

∣∣∣∣
z=1
= (zp−1

+ · · · + z+ 1)|z=1 = p.

Hence

Resz=ζ (f (z)g(z)) = f (ζ )

for all ζ ∈ µp \ {1}.
The function f (z)g(z) has poles only along µp for ` ≥ 1, and it vanishes at z = ∞.

Using once more that p is odd to substitute ζ ∈ µp \ {1} for e4πia/p in the sum below, we
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obtain

p−1∑
a=1

1

sin2` 2πa
p

=

∑
ζ∈µp\{1}

Resz=ζ

(
(−4z)`

(z− 1)2`
·

p

zp − 1
·

1
z

)

= −Resz=1

(
(−4)`

(z− 1)2`+1 ·
pz`−1(z− 1)
zp − 1

)
.

For ` = 1 and 2, we obtain

p−1∑
a=1

1

sin2 2πa
p

=
p2
− 1
3

,

p−1∑
a=1

1

sin4 2πa
p

=
p4
+ 10p2

− 11
45

.

We combine the above and find that

D(p, p + 2) =
15(p + 3)
26 · 7p2 ·

p4
+ 10p2

− 11
45

−
p + 30
25 · 7p2 ·

p2
− 1
3

=
(p2
− 1)(p3

+ 3p2
+ 9p − 27)

26 · 3 · 7p2 .

Proof of Theorem 0.2. Using Theorem 3.7 and the above, we compute

µ(M(1,1),(p,p+2)) =
sign(p2

− (p + 2)2)
25 · 7

+D(1, 1)−D(p, p + 2)

−
(p2
− 1)2

22 · 7p2(p2 − (p + 2)2)
−

24(p2
− 1)+ (p2

− (p + 2)2)
28 · 7p2

= −
1

25 · 7
−
(p2
− 1)(p3

+ 3p2
+ 9p − 27)

26 · 3 · 7p2

+
(p2
− 1)(p − 1)
24 · 7p2 −

4(p2
− 1)− (p + 1)
26 · 7p2

= −
p3
+ 3p2

− 4p
26 · 3 · 7

∈ Q/Z.

With p = 2k − 1, we have

µ(Pk) = µ(M(1,1),(2k−1,2k+1)) = −
4k3
− 7k + 3

25 · 3 · 7
∈ Q/Z.

We also compute tPk and qPk using Theorem 3.3 as

tPk (E`) =
`(k + `)

24k
+
`(`− 1)(k − 1)

6
and qPk (`) =

`(k + `)

2k
∈ Q/Z. ut

Having computed the Eells–Kuiper invariant and Crowley’s quadratic form q, we can now
compare the spaces Pk with the principal S3-bundles Ek,k over S4.
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Proof of Theorem 0.3. By [6, Theorem A], highly connected seven-manifolds are clas-
sified up to oriented diffeomorphism by their Eells–Kuiper invariants and the quadratic
function q onH 4. These invariants have been computed forEk,k in [7] and [8] (see (3.8)).

By Theorem 0.2(2) and (3.8), the quadratic forms qPk and qEk,k are isomorphic.
Hence, the spaces Pk and Ek,k are homeomorphic, and even almost diffeomorphic, which
means that there is a homeomorphism that is a diffeomorphism outside a single point.

Comparing the value of µ(Pk) from Theorem 0.2(1) with (3.8), we find

µ(Pk)− µ(Ek,k) = −

4k3
−7k
3 + 1
25 · 7

−
k − 1
25 · 7

=
4 k−k

3

3
25 · 7

=
k − k3

6
·

1
28

with (k − k3)/6 ∈ Z. Because both q and µ are additive under connected sums and q67

is trivial whereas µ(67) = 1/28, we conclude again by [6] that Pk and Ek,k #6#(k−k3)/6
7

are oriented diffeomorphic. ut

Remark 3.11. Grove, Verdiani and Ziller [16] have already observed that P2 is homeo-
morphic to the unit tangent bundle T1S

4 of S4. The group Sp(1) acts with isolated fix-
points on S4, so this action induces a free action on T1S

4, hence T1S
4 is diffeomorphic

to E2,2. Of course, this fits with our result above.

Proof of Corollary 0.4. We start with case (1). We already know that Crowley’s form q

for Pk is the quadratic form of the principal sphere bundle Ek,k → S4. This implies
that the Pontryagin number of a sphere bundle Ep,k homeomorphic to Pk must be of the
form p = ak with a odd if k is even (see (3.8)).

It thus remains to solve µ(Pk) = µ(Eak,k) ∈ Q/Z depending on p = ak. By [7], we
know that

µ(Eak,k)− µ(Pk) ≡
a2k2
− k

25 · 7 · k
−

7k−4k3

3 − 1
25 · 7

=
a2k − 7k−4k3

3
25 · 7

modZ.

In other words,

a2k ≡
7k − 4k3

3
mod 224Z.

It suffices to solve this equation modulo 7 and 32.
Modulo 7, the equation is trivial if 7 | k. Otherwise, we can clearly solve

a2
≡

7− 4k2

3
≡ k2 mod 7Z.

Modulo 32, we start with the case that k is odd. Because 3 · 11 ≡ 1, we have to solve

a2
≡

7− 4k2

3
≡ 77− 44k2

≡ 13− 12k2 mod 32Z.

The right hand side equals 1 modulo 8 and hence is a quadratic remainder modulo 32.
Next, if k is even but not divisible by 8, then we would have at least

a2
≡ 77 ≡ 5 mod 8Z,
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but 5 is not a quadratic remainder modulo 8. Finally, if 8 | k, we can clearly solve

a2
≡ 1 mod 4Z.

In particular, if k is even then a will be odd, so the quadratic forms q agree as well. This
settles (1).

In case (2), let n = k be as above. Then p = ak because we still have

lkPk (b, p) = qPk (b)− qPk (−b) = 0 ∈ Q/Z

by Theorem 0.2(1). We will first try to solve µ(Pk)+µ(Eak,k) = 0 ∈ Q/Z. We find that

224(µ(Eak,k)+ µ(Pk)) = a2k +
7k − 4k3

3
− 2 mod 224Z.

Modulo 7, there is no solution if 7 | k. On the other hand, a case-by-case check reveals
that

2
k
−

7− 4k2

3
≡

2
k
− k2 mod 7Z

is a quadratic remainder for k ∈ {1, . . . , 6} modulo 7. Thus, a solution modulo 7 exists if
and only if (2) is satisfied.

Modulo 32, if k is odd, we have k3
≡ k mod 8. Hence we have to solve

a2k ≡ 2− 13k + 12k3
≡ 2− k mod 32Z.

The inverse of k = 4`± 1 modulo 16 is −4`± 1, hence we obtain

a2
≡ −8`± 2− 1 mod 32Z,

which is a quadratic remainder if and only if k = 4` + 1 ≡ 1 mod 4. If k = 2` is even,
then 12k3

≡ 0 mod 32, and we are left with

a2` ≡ 1− 13` ≡ 1+ 3` mod 16Z,

and ` has to be odd. The inverse of ` = ±1+ 4m is ±1− 4m, and

a2
= ±1− 4m+ 3

is a square if and only if ` = 1 + 4m ∈ {1, 5} modulo 16, hence k ∈ {2, 10} modulo 32.
This gives (2).

Finally, we have
− lkEak,k = lkPk (b · , b · )

for some b ∈ Z/kZ if and only if b2
≡ −1 mod k. Because the half Pontryagin forms

vanish and the topological Eells–Kuiper invariants satisfy 28µ(Pk) + 28µ(Eak,k) ∈ Z
by the above, it follows from [6] that then the quadratic forms q are isomorphic as well.
Thus by [6], there exists an orientation reversing diffeomorphism Eak,k → Pk if and only
if the conditions (2) hold. ut
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Example 3.12. (1) We have P1 = S7, which of course fibres over S4, independent of
the orientation. More precisely, P1 is diffeomorphic to Ea,1 if and only if

a2
− 1

224
≡ 0 ∈ Q/Z,

that is, if and only if a ∈ {±1,±15} mod 112.
(2) There is an orientation reversing diffeomorphism from P2 to E4,2. Indeed,

qP2(1) =
3
4
= −qE4,2(1) ∈ Q/Z and µ(P2) = −

1
32
= −µ(E4,2) ∈ Q/Z.

More generally, P2 is orientation reversing diffeomorphic to E2a,2 if and only if a ≡
±2 mod 28.

(3) There is an orientation preserving diffeomorphism of P3 with E51,3 because

µ(P3) = −
15
112
≡

433
112
= µ(E51,3) ∈ Q/Z.

More generally, P3 is oriented diffeomorphic to E3a,3 if and only if a ≡ ±17, ±31
mod 112.

(4) For k = 4, there exists no diffeomorphic sphere bundle, regardless of the orientation.
(5) For k = 5, we have oriented diffeomorphisms with E5a,5 if and only if a ≡ ±33,
±47 mod 112. We also have orientation reversing diffeomorphisms with E5a,5 if and
only if a ≡ ±11, ±53 mod 112. For example,

µ(P5) = −
156
224
≡

5444
224
= µ(E165,5)

≡ −
604
224
= −µ(E55,5) modZ.

Because −1 ≡ 22 is a quadratic remainder modulo 5, we can compare the quadratic
forms in the latter case and find that

qP5(2`) =
2`(2`− 5)

10
≡ −

`(`− 55)
10

= −qE55,5(`) modZ.

4. Computation of the invariants

We write the spaces M(p−,q−),(q−,q+) as Seifert fibrations so that we can apply Theo-
rem 0.1 to compute their Eells–Kuiper invariants and t-invariants.

4.a. Description as a Seifert fibration

Recall the construction of the spaces M = M(p−,q−),(p+,q+) as manifolds of cohomo-
geneity one with group diagram (3.3), with the groups H and K± ⊂ G = Sp(1)× Sp(1)
described in (3.1) and (3.2).
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The subgroups Sp(1)×{e} and {e}×Sp(1) ⊂ G act freely from the left on the generic
orbit G/H . We focus on the group L = {e} × Sp(1) and consider the quotient map

M → B = L\M.

The group L acts on the singular orbits G/K± with finite stabilizer

LgK± = L ∩ gK±g
−1
= g0±g

−1
⊂ L

at the point gK± ∈ G/K±, where

0− = 〈γ−〉 ∼= Z/p−Z with γ− = (1, e2πiq−/p−) ∈ K−,

0+ = 〈γ+〉 ∼= Z/p+Z with γ+ = (1, e2πjq+/p+) ∈ K+.
(4.1)

The quotientL\M has a cohomogeneity one action by the group SO(3)∼=Sp(1)/{±1}.
It is induced by the action of Sp(1)× {e} ⊂ G on M , with group diagram

SO(3)

↗ ↖

p1K− ∼= O(2) ∼= p1K+

↖ ↗

p1H

(4.2)

Here p1 denotes the projection

G = Sp(1)× Sp(1)→ (Sp(1)/{±1})× {e} ∼= SO(3).

In particular, p1H ∼= Q/{±1} ∼= (Z/2Z)2 is the subgroup of diagonal matrices in SO(3).
If a is an imaginary unit quaternion, let S1

a ⊂ Sp(1) denote the one-parameter sub-
group generated by a. Because

p1K− = (S
1
i ∪ jS

1
i )/{±1} ∼= O(2) and p1K+ = (S

1
j ∪ iS

1
j )/{±1} ∼= O(2),

the singular orbits of B are given by

B± = L\M± ∼= SO(3)/O(2) ∼= RP 2.

We want to understand the geometry of p : M → B near the singular orbits. The
action of K− on S1 ∼= K−/H extends to C ⊃ S1 by

(eip−ϑ , eiq−ϑ )z = e4iϑz and (eip−ϑj, (−1)(q−−p−)/2eiq−ϑj)z = e4iϑ z̄, (4.3)

and there is a similar action of K+ on C. Thus, the singular orbits M± = G/K± have
neighbourhoods M \M∓ diffeomorphic to the normal bundles

N± = G×K± C→ G/K±. (4.4)

For the generator γ± ∈ 0± of (4.1), we have the angle ϑ = 2π/p± in (4.3). So γ± acts
on the fibre of N± by multiplication with e8πi/p± ∈ µp± , where µp± denotes the group
of p±-th roots of unity.
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Projecting down to B, neighbourhoods of B± are given by

B \ B∓ ∼= SO(3)×O(2) C/µp± , (4.5)

where at B−, the action of O(2) ∼= (S1
i ∪ jS

1
i )/{±1} on C/µp− is given by

±eiϑ : z 7→ e4iϑz and ±eiϑj : z 7→ e4iϑ z̄. (4.6)

We fix an origin o = (p1K−) in B− and consider a path gt from g0 = e to g1 =

{±j} ∈ O(2). Then gto describes a nontrivial loop in B− ∼= RP 2. The stabiliser of gto ∈
B− is given by g0−g−1, and we get a path of generators γ−,t = gtγ−g−1

t from γ− = γ−,0
to

γ−,1 = (1, je2πiq−/p−(−j)) = γ−1
−,0.

We conclude that the twisted sectors of B are diffeomorphic to the universal covering
spaces B̃± ∼= S2 of B±. Let us summarise our results so far.

Proposition 4.1. The map p : M → B = L\M is a Seifert fibration and a left Sp(1)-
principal orbibundle. The inertia orbifold 3B of the base orbifold B is diffeomorphic
to

3B = B t

(
B̃− ×

{
1, . . . ,

p− − 1
2

})
t

(
B̃+ ×

{
1, . . . ,

p+ − 1
2

})
. (1)

Elements (p, (γ k±)) ∈ 3B \B are represented by (p, `) ∈ B̃±×{`} with±k ≡ `modp±
and ` ∈ {1, . . . , (p± − 1)/2}. The components B̃± × {k} have multiplicity

m(γ k±) = #0± = p±. (2)

In a suitable orbifold chart around p, the element γ k± acts by

ρ(γ k±) =

(
1 0
0 e8πik1/p±

)
∈ U(2), (3)

and the fibrewise action on S3 is conjugate to

e2πikq±/p± ∈ Sp(1). (4)
Proof. From the discussion above, it is clear that p is both a Seifert fibration and an
Sp(1)-principal orbibundle, where the group L ∼= Sp(1) acts from the left. Assertion (1)
follows from the considerations above, and (2) follows from the definition of multiplicity
in (1.2).

We construct an orbifold chart by taking a neighbourhood of p in B± ∼= RP 2 that is
diffeomorphic to C with trivial action of γ k±. The normal bundle of B± in B is represented
by another copy of C on which γ k± acts as in (4.6). This proves (3). Finally, the action
of γ k± on S3 follows from (4.1) and is conjugate to the expression in (4). ut

4.b. The geometry of the Seifert fibration

We want to study the metric structure on M and B. In particular, we want to derive
formulas for the curvature of the horizontal and vertical tangent bundles of the Seifert
fibration M → B.
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Recall that as a cohomogeneity one manifold, we may write

M = ([−1, 1] ×G/H)/∼.

Let τ : M → [−1, 1] denote the natural projection, and define a curve c : [−1, 1] → M

joining G/K− to G/K+ by
c(t) = [t, eH ].

We define G-invariant vector fields e1, e2, e3 and f0, . . . , f3 on M \ (M+ ∪ M−) =
τ−1(−1, 1) by specifying them along c. Therefore put f0(c(t)) = ċ(t) and

f1(c(t)) =
d

dt

∣∣∣∣
t=0
(eit , 1)(c(t)), e1(c(t)) =

d

dt

∣∣∣∣
t=0
(1, eit )(c(t)),

f2(c(t)) =
d

dt

∣∣∣∣
t=0
(ej t , 1)(c(t)), e2(c(t)) =

d

dt

∣∣∣∣
t=0
(1, ej t )(c(t)),

f3(c(t)) =
d

dt

∣∣∣∣
t=0
(ekt , 1)(c(t)), e3(c(t)) =

d

dt

∣∣∣∣
t=0
(1, ekt )(c(t)).

(4.7)

We regard the vector fields e1, e2, e3 as vertical and f0, . . . , f3 as horizontal fields with
respect to the Seifert fibration M → B. All Lie brackets between these vector fields
vanish except

[e1, e2] = 2e3, [e2, e3] = 2e1, [e3, e1] = 2e2,

[f1, f2] = 2f3, [f2, f3] = 2f1, [f3, f1] = 2f2.
(4.8)

Let ϕ : [0, 1] denote a cutoff function with ϕ|[0,ε) = 0 and ϕ|(1−ε,1) = 1 for some
small ε > 0. For x ∈ M , let t = τ(x), and define functions h, k : τ−1((−1, 0])→ R by

h =
4+ 4τ · ϕ(−τ)

4+ (p− − 4) · ϕ(−τ)
and k =

q−

4
h′. (4.9)

These functions satisfy

h|(−1,ε−1) =
4
p−
(1+ τ), h|(−ε,0] = 1,

k|(−1,ε−1) =
q−

p−
, k|(−ε,0] = 0.

(4.10)

Let gTM be a G-invariant metric such that for t ≤ 0, the vectors e2, e3, f0, f2 and f3
are orthonormal and perpendicular to the subspace spanned by e1, f1, and such that on
this subspace, gTM is given by the matrix

gTM |span{e1,f1} =

(
1 −k

−k h2
+ k2

)
. (4.11)

This metric extends to a smooth metric around G/K− = τ−1(−1) by [16, Theorem 6.1].
The orbits of L = {e}×Sp(1) are all quotients of round spheres with the standard metric.
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A gTM -orthonormal frame on τ−1(−1, 0] is given by (ē1, . . . , f̄3), where ēi = ei
and f̄i = fi except

f̄1 =
k

h
e1 +

1
h
f1. (4.12)

By (4.8), the Lie brackets between the vector fields f̄0, . . . , ē3 vanish except

[f̄0, f̄1] =
k′

h
ē1 −

h′

h
f̄1, [f̄1, ē2] =

2k
h
ē3, [f̄1, ē3] = −

2k
h
ē2,

[f̄1, f̄2] =
2
h
f̄3, [f̄2, f̄3] = 2hf̄1 − 2kē1, [f̄3, f̄1] =

2
h
f̄2,

[ē1, ē2] = 2ē3, [ē2, ē3] = 2ē1, [ē3, ē1] = 2ē2.

(4.13)

For t ≥ 0, we can proceed similarly. We extend h and k to τ−1
[0, 1) by

h =
4− 4τ · ϕ(τ)

4+ (p+ − 4) · ϕ(τ)
and k = −

q+

4
h′, (4.14)

so that

h|[0,ε) = 1, h|(1−ε,1) =
4
p+
(1− τ),

k|[0,ε) = 0, k|(1−ε,1) =
q+

p+
.

(4.15)

We then modify the metric similarly, to obtain a gTM -orthonormal frame f̄0, . . . , ē3 that
differs from f0, . . . , e3 only by

f̄2 =
k

h
e2 +

1
h
f2.

Again, this metric extends smoothly over τ−1
[0, 1], and it is also compatible along τ−1(0)

with the metric chosen above on τ−1
[−1, 0].

4.c. Orbifold characteristic numbers of the base space

The base orbifold B = L\M has a principal cohomogeneity one action by SO(3)
(see (4.2)). We define τ : B → [−1, 1] similarly to the above. Then we can de-
scribe τ−1(−1, 1) as a product (−1, 1) × Sp(1)/Q. The projection M → B be-
comes a Riemannian submersion with respect to an invariant Riemannian metric gT B

on (−1, 1)× Sp(1)/Q that degenerates over {−1, 1}.
By abuse of notation, let f̄0, . . . , f̄3 also denote the projection of the vector fields

above to B. Then these vector fields form a gT B -orthonormal frame everywhere, and
their nonzero Lie brackets on τ−1

[−1, 0] are completely described by

[f̄0, f̄1] = −
h′

h
f̄1, [f̄1, f̄2] =

2
h
f̄3, [f̄2, f̄3] = 2hf̄1, [f̄3, f̄1] =

2
h
f̄2.
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The Christoffel symbols of the Levi-Civita connection on B with respect to these
fields over τ−1((−1, 0]) ⊂ B are given by

01
10 = −0

0
11 =

h′

h
, 03

12 = −0
2
13 =

2
h
− h,

01
23 = −0

3
21 = h, 02

31 = −0
1
32 = h;

those 0kij not listed above vanish. The Riemannian curvature tensor as a 4 × 4-matrix is
given by

R =

 0 −
h′′

h
f̄ 01
+2h′f̄ 23 h′f̄ 13

−h′f̄ 12

h′′

h
f̄ 01
−2h′f̄ 23 0 −h′f̄ 03

+h2f̄ 12 h′f̄ 02
+h2f̄ 13

−h′f̄ 13 h′f̄ 03
−h2f̄ 12 0 2h′f̄ 01

+(4−3h2)f̄ 23

h′f̄ 12
−h′f̄ 02

−h2f̄ 13
−2h′f̄ 01

−(4−3h2)f̄ 23 0

 , (4.16)

with f̄ ij shorthand for f̄ i ∧ f̄ j . Over τ−1
[0, 1), the matrix looks similar, but with the

matrix indices and the form indices 1, 2, 3 permuted cyclically.
The Pontryagin and Euler forms are thus given by

p1(T B,∇
T B) =

1
8π2 tr(R2) =

1
π2

(
h′h′′

h
+ 4h′h2

− 4h′
)
f̄ 0123,

e(T B,∇T B) =
1

4π2 Pf(R) =
1

4π2

(
6h′2 + 3h′′h−

4h′′

h

)
f̄ 0123.

(4.17)

The fibre RP 3/(Z/2Z)2 over t has volume π2

4 h(t). By (4.10), (4.15), and (4.17), we get
the orbifold characteristic numbers∫

B

p1(T B,∇
T B) =

h′(t)2 + 2h(t)4 − 4h(t)2

8

∣∣∣∣1
t=−1
=

2
p2
+

−
2
p2
−

,∫
B

e(T B,∇T B) =
3h′(t)h(t)2 − 4h′(t)

16

∣∣∣∣1
t=−1
=

1
p−
+

1
p+
.

(4.18)

4.d. Characteristic numbers of the Seifert S3-fibration

The Seifert fibration M → B is a principal orbibundle with structure group Sp(1).
Let TX = kerp∗ denote the vertical tangent bundle.

A connection ω ∈ Hom(TM, TX) acts as the identity on TX and is Sp(1)-invariant.
It is uniquely described by its horizontal bundle T HM = kerω. We define ω such that

T HM = span{f̄0, f̄1, f̄2, f̄3}.

Then by (4.13), its curvature � is given by

� =

{(
−
k′

h
f̄ 01
+ 2kf̄ 23)ē1 for t ∈ [−1, 0],(

−
k′

h
f̄ 02
− 2kf̄ 13)ē2 for t ∈ [0, 1].

(4.19)

The Seifert fibration M → B is the unit sphere orbibundle of the vector orbibundle

V = M ×Sp(1) H→ B.
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The vectors ē1, ē2 correspond to the elements i, j ∈ sp(1) ⊂ H. These act on H ∼= R4

with Pfaffian Pf(i) = Pf(j) = 1, hence the Euler form of the connection ∇V on V
induced by ω is given by

e(V,∇V ) = −
k′k

π2h
f̄ 0123. (4.20)

As in (4.18), integration over B gives the characteristic number∫
B

e(V,∇V ) = −

∫ 1

−1

k′(t)k(t)

4
dt = −

k(t)2

8

∣∣∣∣1
t=−1
=

q2
−

8p2
−

−
q2
+

8p2
+

. (4.21)

With these computations, we can now compute the first term in the adiabatic limit of
formula (3.7) for the Eells–Kuiper invariant. Recall that B ∼= B × {e} ⊂ 3B.

Proposition 4.2. For the Seifert fibration p : M(p−,q−),(p+,q+)→ B, we have

1
2

∫
B

Â3B(T B,∇
T B) 2η3B(DS3)+

1
25 · 7

∫
B

L̂3B(T B,∇
T B) 2η3B(BS3)

= −
1

27 · 7

∫
B

e(V,∇V ) =
1

210 · 7

(
q2
+

p2
+

−
q2
−

p2
−

)
.

Proof. Let V → B be the induced vector bundle with connection ∇V as above. The
η-form of the untwisted fibrewise Dirac operator and the fibrewise signature operator
are given by

2η3B(DS3)|B = η�/2πi(DS3) = −
1

960
e(V,∇V ),

2η3B(BS3)|B = η�/2πi(BS3) = −
1

30
e(V,∇V ) ∈ �4(B),

by Theorem 1.11 and [13, Theorem 3.9].
Because both η-forms are homogeneous of degree 4, we only need the degree zero

components of Â and L̂, which are given by

Â(T B,∇T B)[0] = 1 and L̂(T B,∇T B)[0] = 2(dim T B)/2
= 4.

From the above and (4.21), we obtain our result because

1
2

∫
B

Â(T B,∇T B)η�/2πi(DS3) =
1

210 · 3 · 5

(
q2
+

p2
+

−
q2
−

p2
−

)
,

1
25 · 7

∫
B

L̂(T B,∇T B)η�/2πi(BS3) =
1

27 · 3 · 5 · 7

(
q2
+

p2
+

−
q2
−

p2
−

)
. ut

4.e. The contributions from the twisted sectors

To compute the contribution from3B \B, we need some equivariant characteristic num-
bers and the equivariant η-forms of the pullback of M to B̃±. Let (p, (γ a±)) ∈ 3B \ B,
let N± → B± be the normal bundle of B± ∼= RP 2 in B, and let Ñ± denote its pullback
to B̃± ∼= S2.
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In an orbifold chart, the elements γ a± for a = 1, . . . , (p± − 1)/2 act on Ñ± by mul-
tiplication with e8πia/p± ∈ S1 ∼= SO(2) (see Proposition 4.1(3)). Because 0± ∼= Z/p±Z
is an odd cyclic group, this action has a unique lift to Spin(2), represented by

γ̃ a± = e
4πia/p± ∈ S1 ∼= Spin(2).

This lift provides us with a unique section of the bundle 3̃B → 3B of (1.3). All forms
in �•(3B; 3̃B) and in �•(3B; 3̃B ⊗ o(3B)) will be computed with respect to this lift
and with respect to the orientation of B̃± ∼= S2 with volume form f̄ 23 or f̄ 31, respectively.

The curvature RÑ− can be computed as the limit of 〈Rf̄0, f̄1〉|span{f̄2,f̄3}
as t → −1,

so by (4.16) and (4.10) we have

RÑ− =

(
0 2h′f̄ 23

−2h′f̄ 23 0

)
= −

8i
p−
f̄ 23

with f̄1 = if̄0. The induced curvature of the spinor bundle at the origin is

RS
±Ñ− = ∓

4i
p−
f̄ 23

and similarly for Ñ+. By (1.5)–(1.7), the orbifold Â-form on B̃− × {a} ⊂ 3B is repre-
sented by

Â3B(T B,∇
T B) = −

Â(T B−,∇
T B−)

m(γ̃ a−) chγ̃ a−(S
+Ñ− − S−Ñ−,∇

SÑB− )

= −
1

p− · 2i sin
( 4
p−

(
πa +

f̄ 23

2πi

)) ∈ �•(B̃−). (4.22)

A similar computation gives the orbifold L̂-form

L̂3B(T B,∇
T B) = Â3B(T B,∇

T B) ch3B(S+B− + S−B−,∇SB−)

=
2i
p−

cot
(

4
p−

(
πa +

f̄ 23

2πi

))
∈ �•(B̃−). (4.23)

We also need the equivariant η-forms ofG|B± → B±. We know by Proposition 4.1(4)
that γ a± act on the fibres S3 as

γ a− = e
2πiaq−/p− and γ a+ = e

2πjaq+/p+ ,

and the curvatures at B± are given by (4.10) and (4.19) as

�− = −
2q−
p−

f̄ 23ē1 and �+ = −
2q+
p+

f̄ 31ē2.

We note that both the curvature and the action of 0± are L-invariant, so both act from the
same side on the generic fibre S3 ∼= Sp(1).
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We compute the mixed equivariant η-invariant, from which we derive the orbifold
η-form of Definition 1.7 using Theorem 1.11. We use the formulas for the equivariant
η-invariants of the untwisted Dirac operator DS3 in [18] and of the odd signature opera-
tor BS3 in [1, proof of Proposition 2.12]. On B̃− × {a} ⊂ 3B, we obtain in particular

2η3B(DS3) = ηγ̃ a−e
−�−/2πi (DS3) = −

1

2 sin2( q−
p−

(
πa +

f̄ 23

2πi

)) ,
2η3B(BS3) = ηγ̃ a−e

−�−/2πi (BS3) = − cot2
(
q−

p−

(
πa +

f̄ 23

2πi

))
.

(4.24)

We can now compute the contribution from the singular orbits M± to the adiabatic
limit of the η-invariants and the Eells–Kuiper invariant and relate it to the generalised
Dedekind sums D(p, q) of Definition 3.6.

Proposition 4.3. The singular orbits M± contribute to the Eells–Kuiper invariant by the
generalised Dedekind sums∫

B̃−×{1,...,(p−−1)/2}

(
1
2
Â3B(T B,∇

T B)2η3B(DS3)

+
1

25 · 7
L̂3B(T B,∇

T B) 2η3B(BS3)

)
= D(p−, q−),∫

B̃+×{1,...,(p+−1)/2}

(
1
2
Â3B(T B,∇

T B)2η3B(DS3)

+
1

25 · 7
L̂3B(T B,∇

T B) 2η3B(BS3)

)
= −D(p+, q+).

Proof. The twisted sectors B̃± × {a} are spheres of sectional curvature 4 by (4.16), in
particular their volume is π . We combine (1.7) and (1.13) with (4.22)–(4.24) and find that∫
B̃−×{a}

(
1
2
Â3B(T B,∇

T B)2η3B(DS3)+
1

25 · 7
L̂3B(T B,∇

T B)2η3B(BS3)

)
=

∫
B̃−

(
1

p− · 8i · sin
( 4
p−

(
πa +

f̄ 23

2πi

))
· sin2( q−

p−

(
πa +

f̄ 23

2πi

))
−

i

24 · 7p−
· cot

(
4
p−

(
πa +

f̄ 23

2πi

))
· cot2

(
q−

p−

(
πa +

f̄ 23

2πi

)))
=

d

dx

∣∣∣∣
x=πa

(
1

8ip− sin 4x
p−

sin2 q−x
p−

−
i

24 · 7p−
cot

4x
p−

cot2
q−x

p−

)∫
B̃−

f̄ 23

2πi

=

14 cos 4πa
p−
+ cos2 q−πa

p−

23 · 7p2
− sin2 4πa

p−
sin2 q−πa

p−

+

q− cos q−πa
p−

(
14+ cos 4πa

p−

)
24 · 7p2

− sin 4πa
p−

sin3 q−πa
p−

.

To obtain the first equation above, we note that the summands for a and p− − a in Defi-
nition 3.6 are identical. The second equation is proved similarly. ut
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4.f. The secondary Pontryagin term

For the computation of the Eells–Kuiper invariant µ(M(p−,q−),(p+,q+)) using formula
(3.7), it remains to compute the correction term in the adiabatic limit.

If we regard the limit of the Levi-Civita connections on (M, gε) as in (2.1), we find
that

lim
ε→0

p1(TM,∇
TM,ε) = p1(T X,∇

TX)+ p∗p1(T B,∇
T B).

The form p1(T B,∇
T B) has already been determined in (4.17). By the variation formula

for Chern–Weil classes, it is clear that

lim
ε→0

∫
M

(p1 ∧ p̂1)(TM,∇
TM,ε)

=

∫
M

(
p1(T X,∇

TX)+ p∗p1(T B,∇
T B)

)
∧
(
p̂1(T X,∇

TX)+ p̂1(p
∗T B,∇p

∗T B)
)
, (4.25)

where again

dp̂1(T X,∇
TX) = p1(T X,∇

TX), dp̂1(p
∗T B,∇p

∗T B) = p∗p1(T B,∇
T B).

Note that since H 4
dR(B) 6= 0, we cannot expect to construct p̂1(T B,∇

T B) ∈ �3(B).
We start by computing p1(T X,∇

TX). The connection ∇TX is defined as the com-
pression of the Levi-Civita connection ∇TM onM to TX. Hence, we can compute it with
respect to the basis ē1, ē2, ē3 of TX using (4.13). Its connection one-form is given by

ωTX =

 0 −ē3 ē2

ē3 0 −
2k
h
f̄ 1
− ē1

−ē2 2k
h
f̄ 1
+ ē1 0

 .
The corresponding curvature is then given by

�TX = dωTX + ωTX ∧ ωTX

=

 0 ē12 ē13

−ē12 0 −
k′

h
f̄ 01
+ 2kf̄ 23

+ ē23

−ē13 k′

h
f̄ 01
− 2kf̄ 23

− ē23 0

 .
Note that since the group G = SO(3)× SO(3) does not act freely on τ−1

{−1, 1}, the
basis (ē1, ē2, ē3) does not extend over M±. Hence, the form ωTX and its curvature �TX

are not necessarily smooth at t = ±1. Nevertheless, the Pontryagin form p1(T X,∇
TX)

will be smooth. It is given by

p1(T X,∇
TX) =

1
8π2 tr((�TX)2) =

1
4π2

(
4kk′

h
f̄ 0123

+
2k′

h
f̄ 01ē23

− 4kf̄ 23ē23
)
.

(4.26)
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The forms p1(T X,∇
TX) and p∗p1(T B,∇

T B) are clearly G-invariant. We will
now construct G-invariant forms p̂1(T X,∇

TX) and p̂1(p
∗T B,∇p

∗T B). The complex
of smooth G-invariant forms on M can be described as

�•(M)G = (C∞([−1, 1])⊗3•R7) ∩�•(M),

where R7 is spanned by the dual basis ē1, . . . , f̄ 3 to the basis ē1, . . . , f̄3 of Section 4.b.
Smoothness at the singular orbits gives boundary conditions. In particular, functions
on [−1, 1] extend to smooth G-invariant functions if and only if they are even at ±1, and
among others, the monomials hf̄ 0, hf̄ 1, f̄ 01, f̄ 23, ē1, ē23 are smooth at M−, and hf̄ 0,
hf̄ 2, f̄ 02, f̄ 31, ē2, ē31 are smooth at M+.

From (4.13) and Cartan’s formula for the exterior derivative, we deduce that on
τ−1(−1, 0],

dg = g′f̄ 0, df̄ 0
= 0,

df̄ 1
=
h′

h
f̄ 01
− 2hf̄ 23, dē1

= −
k′

h
f̄ 01
+ 2kf̄ 23

− 2ē23,

df̄ 2
=

2
h
f̄ 13, dē2

=

(
2k
h
f̄ 1
+ 2ē1

)
ē3,

df̄ 3
= −

2
h
f̄ 12, dē3

= −

(
2k
h
f̄ 1
+ 2ē1

)
ē2,

for functions g of τ . Similar formulas with the indices 1, 2, 3 rotated hold over τ−1
[0, 1).

From this we conclude that

d

(
1
h
f̄ 123

)
= 0 and dē123

=

(
−
k′

h
f̄ 01
+ 2kf̄ 23

)
ē23. (4.27)

We also find that over [−1, 0],

d

(
k′

h
f̄ 01
− 2kf̄ 23

− 2ē23
)
= d(−dē1

− 4ē23) = 0,

d

((
k′

h
f̄ 01
− 2kf̄ 23

− 2ē23
)
ē1
)
=

(
k′

h
f̄ 01
− 2kf̄ 23

− 2ē23
)

·

(
−
k′

h
f̄ 01
+ 2kf̄ 23

− 2ē23
)

=
4kk′

h
f̄ 0123.

(4.28)

Similarly over [0, 1], we have

d

((
k′

h
f̄ 02
− 2kf̄ 31

− 2ē31
)
ē2
)
=

4kk′

h
f̄ 0123. (4.29)
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Thus, if we put

p̂1(T X,∇
TX) =

1
4π2

{
k′

h
f̄ 01ē1

− 2kf̄ 23ē1
− 4ē123 on [−1, 0],

k′

h
f̄ 02ē2

− 2kf̄ 31ē2
− 4ē123 on [0, 1],

then the form p̂1(T X,∇
TX) is smooth on M because near τ−1(0), only the term −4ē123

is present, and because k′ vanishes near M±. From (4.26)–(4.29), we immediately find
that

dp̂1(T X,∇
TX) = p1(T X,∇

TX). (4.30)

For the next step, we assume that q+p− 6= q−p+, because H 4(M;R) = 0 in this
case by [17, Theorem 13.1]. Recall that by (4.9) and (4.14), we have

h′(t)h′′(t) =


16
q2
−

k(t)k′(t) if t ∈ [−1, 0],

16
q2
+

k(t)k′(t) if t ∈ [0, 1].

We now consider the form

p̂1(p
∗T B,∇p

∗T B) =
4
π2

p2
+ − p

2
−

q2
−p

2
+ − q

2
+p

2
−

(
k′

h
f̄ 01
− 2kf̄ 23

− 2ē23
)
ē1

+
1

2π2

(
h′2 − 16

p2
+ − p

2
−

q2
−p

2
+ − q

2
+p

2
−

k2
− 16

q2
− − q

2
+

q2
−p

2
+ − q

2
+p

2
−

+ 2h4
− 4h2

)
1
h
f̄ 123

(4.31)

over [−1, 0] and similarly over [0, 1] using (4.29). Using (4.9), (4.10), (4.14) and (4.15),
we can check that the coefficient of f̄ 123 vanishes to first order near ±1, so the form
above is indeed smooth. By (4.17) and (4.27)–(4.29), we conclude that

dp̂1(p
∗T B,∇p

∗T B) =
1
π2

(
h′h′′

h
+ 4h2h′ − 4h′

)
f̄ 0123

= p∗p1(T B,∇
T B). (4.32)

We can now compute the correction term in the Eells–Kuiper invariant.

Proposition 4.4. The adiabatic limit of the secondary Pontryagin term is given by

1
27 · 7

lim
ε→0

∫
M

(p1 ∧ p̂1)(TM,∇
TM,ε)

=
(p2
+ − p

2
−)

2

22 · 7p2
−p

2
+(q

2
−p

2
+ − q

2
+p

2
−)
+

26(p2
+ − p

2
−)+ 3(q2

−p
2
+ − q

2
+p

2
−)

210 · 7p2
−p

2
+

.
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Proof. The forms p1(T X,∇
TX)|τ−1[−1,0] and p∗p1(T B,∇

T B) do not contain the exte-
rior variable ē1 by (4.17) and (4.26). Hence only the terms in p̂1(p

∗T B,∇p
∗T B) contain-

ing the exterior variable ē1 contribute to the integral over τ−1
[−1, 0] ⊂ M . Using (4.25),

we find that

lim
ε→0

∫
τ−1[−1,0]

p1(TM,∇
TM,ε)p̂1(TM,∇

TM,ε)

=

∫
τ−1[−1,0]

1
4π2

((
4h′h′′

h
+ 16h2h′ − 16h′

)
f̄ 0123

∧ (p̂1(p
∗T B,∇p

∗T B)+ p̂1(T X,∇
TX,0))

=

∫
τ−1[−1,0]

1
4π2

((
4h′h′′

h
+ 16h2h′ − 16h′

)
f̄ 0123

+
4kk′

h
f̄ 0123

+
2k′

h
f̄ 01ē23

− 4kf̄ 23ē23
)

·
1

4π2

((
16p2
+ − 16p2

−

q2
−p

2
+ − q

2
+p

2
−

+ 1
)(

k′

h
f̄ 01
− 2kf̄ 23

− 2ē23
)
ē1
− 2ē123

)
,

and a similar formula gives the integral over τ−1
[0, 1]. Recall that the generic fibres

of p have volume vol(S3) = 2π2, and that the slices τ−1(t) ⊂ B have volume
h(t) vol(RP 3/(Z/2Z)2) = h(t)π2/4. Hence we have

vol(τ−1(t)) = h(t)π4/2. (4.33)

Combining this with the above, we obtain

lim
ε→0

∫
M

p1(TM,∇
TM,ε)p̂1(TM,∇

TM,ε)

= −

∫ 1

−1

((
p2
+ − p

2
−

q2
−p

2
+ − q

2
+p

2
−

+
1
8

)
(4h′h′′ + 16h3h′ − 16hh′ + 4kk′)(t)

+

(
p2
+ − p

2
−

q2
−p

2
+ − q

2
+p

2
−

+
1

16

)
(4kk′)(t)

)
dt

= 32
(p2
+ − p

2
−)

2

p2
−p

2
+(q

2
−p

2
+ − q

2
+p

2
−)
+

8
p2
−

−
8
p2
+

+
3q2
−

8p2
−

−
3q2
+

8p2
+

. ut

4.g. The Leray–Serre spectral sequence

The adiabatic limit of the η-invariant of the odd signature operator consists of terms that
correspond to the various terms in the Leray spectral sequence. The E0-term gives the
integral of the η-form of the fibre against a characteristic form on the base. The E1-term
contributes by an η-invariant of the base orbifold. This invariant vanishes here because the
base is even-dimensional. The higher terms contribute by the signs of the corresponding
eigenvalues. There are no similar contributions for η(D) because the fibres have positive
scalar curvature and hence the fibrewise operator does not admit harmonic spinors.
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To see that the Leray spectral sequence does not degenerate at E2, we note that the
fibrewise cohomology forms a trivial bundle over B with generators 1 and ē123, so we
have

E
p,q

2 = E
p,q

3 = E
p,q

4
∼=

{
R if p ∈ {0, 4} and q ∈ {0, 3},

0 otherwise,

whereas E0,3
n = E

4,0
n = 0 for n ≥ 5 if the Euler class of (4.20) does not vanish.

Proposition 4.5. In the adiabatic limit, we have

1
25 · 7

lim
ε→0

∑
λ0=λ1=0

sign λε =
sign(q2

−p
2
+ − q

2
+p

2
−)

25 · 7
.

Proof. From [9, Theorem 0.3], we know that it is sufficient to study the signature of the
quadratic form

〈α, β〉 = (α ∧ d4β)[M]

on E0,3
4 . Since dimE

0,3
4 = 1, we only have to compute the sign of (α ∧ d4α)[M] for

one α ∈ E0,3
4 \ {0}. As a representative of α, we may choose

α =

{
k′

h
f̄ 01ē1

− 2kf̄ 23ē1
− 2ē123 on [−1, 0],

k′

h
f̄ 02ē2

− 2kf̄ 31ē2
− 2ē123 on [0, 1].

By (4.28), we know that

dα =
4kk′

h
f̄ 0123

is of horizontal degree 4 as required. Moreover, integration over the generic fibre
of p : M → B shows that α represents a nontrivial class in E0,3

2
∼= E

0,3
4 .

The proof is completed by the computation of the sign of

∫
M

α dα = −

∫
M

8kk′

h
f̄ 0123ē123

= −

∫ 1

−1
4π4k(t)k′(t) dt

= −2π4k(t)2
∣∣1
t=−1 = 2π4

(
q2
−

p2
−

−
q2
+

p2
+

)
. ut

4.h. The Eells–Kuiper invariant

We combine Propositions 4.2–4.5 and prove Theorem 3.7 by computing the Eells–Kuiper
invariants of the spaces M = M(p−,q−),(p+,q+).
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Proof of Theorem 3.7. Using Donnelly’s formula for the Eells–Kuiper invariant and the
formulas of Bismut–Cheeger and Dai for the adiabatic limit of η-invariants, we find that

µ(M(p−,q−),(p+,q+))

=
η(B)

25 · 7
+
η + h

2
(D)−

1
27 · 7

∫
M

(p1 ∧ p̂1)(TM,∇
TM,0)

=
1

210 · 7

(
q2
+

p2
+

−
q2
−

p2
−

)
+

sign(q2
−p

2
+ − q

2
+p

2
−)

25 · 7
+D(p−, q−)−D(p+, q+)

−
(p2
+ − p

2
−)

2

22 · 7p2
−p

2
+(q

2
−p

2
+ − q

2
+p

2
−)
−

26(p2
+ − p

2
−)+ 3(q2

−p
2
+ − q

2
+p

2
−)

210 · 7p2
−p

2
+

. ut

4.i. Quaternionic line bundles

In this subsection, we will prove Theorem 3.3. We will compute the t-invariant
of [8] for sufficiently many vector bundles on M to determine Crowley’s quadratic
form q : H 4(M) → Q/Z. To keep computations simple, we only consider bun-
dles p∗E → M where E is an honest vector bundle over the base orbifold B, which
becomes trivial after restriction to B− and B+. This will turn out to be sufficient if p−
and p+ are relatively prime.

To construct E, we regard a map B → S4 of degree one, where the coordinate τ
introduced in Section 4.b is mapped to the height function R5

⊃ S4
→ R, and

where B0 ∼= S
3/Q is mapped to the equator S3

⊂ S4 by a map of degree one. In partic-
ular, for each ` ∈ Z, there is a quaternionic bundle E → B, pulled back from S4 by the
map above, such that

c2(E)[B] = `.

We choose a connection ∇E on E that is flat near the singular strata of B.
To compute the class c2(p

∗E), we have to study the map

p∗ : Z ∼= H 4(B)→ H 4(M) ∼= Z/kZ.

We consider the following commutative diagram:

H 3(S3
× S3)

η∗

←−−−− H 3(M0)
δ

−−−−→ H 4(M)

(id,0)
x xp∗0 xp∗

H 3(S3)
η̄∗

←−−−− H 3(B0)
δ̄

−−−−→ H 4(B)

where η : S3
× S3

→ (S3
× S3)/H ∼= M0 and η̄ : S3

→ S3/Q ∼= B0 are quotient maps,
and δ and δ̄ are the connecting homomorphisms from the Mayer–Vietoris sequences for
the decompositions

M = (M \M+) ∪ (M \M−) with (M \M+) ∪ (M \M−) ∼ M0,

B = (B \ B+) ∪ (B \ B−) with (B \ B+) ∪ (B \ B−) ∼ B0.
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From [17, Section 13], we know that η∗ is injective with

im η∗ = {(a, b) | a + b ≡ 0 mod 8} ⊂ Z2 ∼= H
3(S3
× S3).

Similarly,
η̄∗ = 8 · : Z ∼= H 3(B0)→ H 3(S3) ∼= Z.

It follows that η∗ maps imp∗0 to 〈(8, 0)〉. By [17], we also know that δ is surjective with

η∗ ker δ = 〈(−q2
−, p

2
−), (−q

2
+, p

2
+)〉 ⊂ Z2 ∼= H

3(S3
× S3).

Similarly, δ̄ is an isomorphism.
Let us determine the subset imp∗ ⊂ H 4(M). All our computations will be done in

the standard coordinates on H 3(S3
× S3) ∼= Z× Z. Then p∗ maps a generator of H 4(B)

to the image of (8, 0), and δ(8`, 0) = 0 ∈ H 4(M) if and only if

(8`, 0) = a(−q2
−, p

2
−)+ b(−q

2
+, p

2
+).

If c denotes the greatest common divisor of p− and p+, then (8`, 0) ∈ ker δ if and only
if we can choose a = np2

+/c
2 and b = −np2

−/c
2, so

` = n
p2
−q

2
+ − p

2
+q

2
−

8c2 = ±
nk

c2 .

Note that c2 divides k. In particular, the image of p∗ has index c2 in H 4(M) ∼= Z/kZ.
If p− and p+ are relatively prime, then p∗ is the isomorphism referred to in Theorem 3.3.

By [8] (see Definition 3.2),

t (p∗E) =
η + h

4
(D

p∗E
M )−

η + h

2
(DM)

−
1
24

∫
M

(
p1

2
(TM,∇TM)+ c2(p

∗E,∇p
∗E)

)
∧ ĉ2(p

∗E,∇p
∗E).

Because the fibres are of positive scalar curvature, we can apply Corollary 1.9. Hence,

lim
ε→0

(
η + h

4
(D

p∗E
M,ε )−

η + h

2
(DM,ε)

)
=

1
4

∫
3B

Â3B(T B,∇
T B)η3B(A)(ch(E,∇E)− 2) = 0.

Here, the singular strata do not contribute because ch(E,∇E) − 2 vanishes near the sin-
gular strata. Over the regular stratum, the degree 0 part of the η-form is the η-invariant of
the untwisted Dirac operator on the fibre, which vanishes because the fibre is a spin sym-
metric space. Hence both η(A) and ch(E,∇E)−2 are of degree 4, so the whole integrand
vanishes for degree reasons.
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In order to determine ĉ2(p
∗E,∇p

∗E), we first check that∫
B

4`
π2

p2
−p

2
+

p2
−q

2
+ − p

2
+q

2
−

2kk′

h
f̄ 0123

= `
p2
−p

2
+

p2
−q

2
+ − p

2
+q

2
−

∫ 1

−1
2k(t)k′(t) dt

= `
p2
−p

2
+

p2
−q

2
+ − p

2
+q

2
−

(
q2
+

p2
+

−
q2
−

p2
−

)
= `

because vol(τ−1(t)) = h(t)π2/4. Since we have chosen ∇E flat near the singular strata,
we conclude that

c2(E,∇
E) =

4`
π2

p2
−p

2
+

p2
−q

2
+ − p

2
+q

2
−

2kk′

h
f̄ 0123

+ dγ

for some form γ ∈ �3(B) that is supported away from the singular set B− ∪ B+.
By (4.28), we may put

ĉ2(p
∗E,∇p

∗E)|τ−1[−1,0] =
2`
π2

p2
−p

2
+

p2
−q

2
+ − p

2
+q

2
−

(
k′

h
f̄ 01
− 2kf̄ 23

− 2ē23
)
ē1
+ p∗γ,

and similarly on τ−1
[0, 1].

As in the proof of Proposition 4.4, we compute the correction term in the adiabatic
limit ε→ 0. We have computed the Pontryagin forms of T B and TX in (4.17) and (4.26).
Over τ−1(−1, 0), we have(
p1

2
(T X,∇TX)+ p∗

p1

2
(T B,∇T B)+ p∗c2(E,∇

E)

)
· ĉ2(p

∗E,∇p
∗E)

=
1

4π2

((
2h′h′′

h
+ 8h2h′ − 8h′

)
f̄ 0123

+
2kk′

h
f̄ 0123

+
k′

h
f̄ 01ē23

− 2kf̄ 23ē23

+16`
p2
−p

2
+

p2
−q

2
+ − p

2
+q

2
−

2kk′

h
f̄ 0123

+ 4π2p∗dγ

)
·

(
2`
π2

p2
−p

2
+

p2
−q

2
+ − p

2
+q

2
−

(
k′

h
f̄ 01
− 2kf̄ 23

− 2ē23
)
ē1
+ p∗γ

)
= −

2`
π4

p2
−p

2
+

p2
−q

2
+ − p

2
+q

2
−

·

((
h′h′′

h
+ 4h2h′ − 4h′ +

2kk′

h

+16`
p2
−p

2
+

p2
−q

2
+ − p

2
+q

2
−

kk′

h

)
f̄ 0123

+ 2π2p∗dγ

)
ē123.

Over τ−1(0, 1), we obtain the same right hand side. By partial integration and (4.27), we
see that there is no contribution from p∗γ and p∗dγ .
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By (4.33), we compute

t (p∗E) = − lim
ε→0

1
24

∫
M

(
p1

2
(TM,∇TM,ε)+ p∗c2(E,∇

E)

)
· ĉ2(p

∗E,∇p
∗E)

=
`

24
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−p

2
+

p2
−q

2
+ − p

2
+q

2
−

∫ 1

−1

(
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− 4h′h+ 2kk′

+16`
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−p

2
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−q

2
+ − p

2
+q

2
−

kk′
)
(t) dt

=
`

24
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2
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2
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2
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2
−
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8
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8
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+
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+

p2
+

−
q2
−

p2
−

+ 8`
)

=
`

3
p2
− − p

2
+ + `p

2
−p

2
+
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−q

2
+ − p

2
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2
−

+
`

24
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