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Abstract. Let D be a simply connected, smooth enough domain of R2. For L > 0 consider the
continuous time, zero-temperature heat bath dynamics for the nearest-neighbor Ising model on Z2

with initial condition such that σx = −1 if x ∈ LD and σx = +1 otherwise. It is conjectured [23]
that, in the diffusive limit where space is rescaled by L, time by L2 and L → ∞, the boundary
of the droplet of “−” spins follows a deterministic anisotropic curve-shortening flow, where the
normal velocity at a point of its boundary is given by the local curvature times an explicit function
of the local slope. The behavior should be similar at finite temperature T < Tc, with a different
temperature-dependent anisotropy function.

We prove this conjecture (at zero temperature) when D is convex. Existence and regularity
of the solution of the deterministic curve-shortening flow is not obvious a priori and is part of our
result. To our knowledge, this is the first proof of mean-curvature-type droplet shrinking for a model
with genuine microscopic dynamics.
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1. Introduction

Consider a thermodynamic system with two coexisting phases and imagine to prepare it
in an initial condition where a droplet of one phase is immersed in the other phase. If the
system undergoes a dynamics that does not conserve the order parameter, it is well under-
stood phenomenologically [20] that the droplet will shrink in order to decrease its surface
tension until it eventually disappears, and that (roughly speaking) the normal speed at a
point of its boundary will be proportional to the local mean curvature. Deriving such be-
havior from first principles, i.e. from a microscopic model undergoing a local (stochastic)
dynamics, is a much harder task and this program was started only rather recently [23].
More precisely, what one expects is that, if the initial droplet is of diameter L, it will
“disappear” within a time of order L2 (this behavior is sometimes referred to as “Lifshitz
law”). Moreover, in the “diffusive limit” where L → ∞ and at the same time space is
rescaled by L (so that the initial droplet is of sizeO(1)) and time is accelerated by L2, the
droplet evolution should become deterministic and follow some anisotropic version of a
mean curvature flow. Anisotropy (i.e. the fact that the normal velocity will also depend
on the local orientation of the droplet boundary) is expected when the underlying model
is defined on a lattice, as will be the case for us.

Up to now, mathematical progress on this issue has been rather modest, the main
difficulty being that it is not clear how to implement the idea that the fast modes related
to relaxation inside the two pure phases should decouple from slow modes related to the
interface motion, which are responsible for the diffusive L2 time scaling.

A fairly well understood situation is when the interface can be described by a height
function and the bulk structure of the two phases is disregarded. This is possible (by def-
inition) for the so-called “effective interface models” or Ginzburg–Landau ∇φ interface
models: for models with continuous heights and strictly convex potential undergoing a
Langevin-type dynamics, Funaki and Spohn [10] derived the full mean curvature motion
in the diffusive scaling. Another well-studied case is that of models with Kac-type po-
tentials: in this case, mean curvature motion can be proven to emerge [5, 6, 15] in a limit
where interaction range is taken to infinity at some stage, but in this limit there is no sharp
interface separating the phases and the system becomes very close to mean field.

As for true lattice models, results are much more scarce. For instance, for the two-
dimensional nearest-neighbor Ising model below the critical temperature, the best known
upper bound on the “disappearance time” for a droplet of “− phase” immersed in the
“+ phase” is of order Lc(T ) logL [22], very far from the expected L2 scaling. Recently,
a weak version of the Lifshitz law was proven for the three-dimensional Ising model at
zero temperature: the disappearance time of a “−” droplet is of order L2 (upper and lower
bounds), up to multiplicative logarithmic (in L) corrections [2]. When the dimension is
higher than three (always at zero temperature), an upper bound for the disappearance time
of order L2(logL)c, for some constant c, was proven in [18].

In this work, we concentrate on the two-dimensional nearest-neighbor Ising model
on the infinite square lattice. The dynamics takes a very simple form: each spin is up-
dated with rate one and after the update it takes the same value as the majority of its
neighbors, or the value ±1 with equal probabilities if exactly two neighbors are “+”
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and two are “−”. In this case, the disappearance time of a large “−” droplet should be
asymptotically given by half its volume (number of “−” spins). Moreover, in the diffusive
scaling limit the droplet boundary should be given by a deterministic curve γ (t) whose
normal speed is given by the local (signed) curvature, times a function a(θ) where θ is
the angle of the local normal vector. The function a(·) is explicitly known (see (2.4)).
In this two-dimensional setting, it is more natural to refer to such flow as “(anisotropic)
curve-shortening flow” (rather than “mean curvature flow”).

Our main result (Theorem 2.2) is a proof of the curve-shortening conjecture (and, as
a byproduct, of the Lifshitz law) when the initial droplet is convex.

There are some previous partial results available on this problem. The scaling limit
of the evolution when initially spins are “−” in the first quadrant of Z2 (infinite corner)
and “+” elsewhere is described in [16, Section 4.2] (with the language of exclusion pro-
cesses rather than spin systems). This is a simple situation because the interface motion
is mapped to symmetric simple exclusion and is described by the associated height func-
tion at all times. In [23], Spohn described the scaling limit of the interface motion in a
situation that more or less corresponds to the zero-temperature Ising model in an infinite
vertical cylinder, with an initial condition such that the interface separating “+” from “−”
spins can be globally described by a height function at all times (in particular, this cannot
describe a droplet, and implicitly he has to modify the dynamics to guarantee that droplets
do not appear later in the evolution). In [4], Chayes et al. proved the Lifshitz law (but not
the curve-shortening conjecture) for a modified dynamics where updates which break the
droplet into several droplets are forbidden. In [3], Cerf and Louhichi computed the “drift
at time 0” of the droplet (for the unmodified dynamics), but their result does not yield
information on the evolution for finite time t > 0.

An important building block of our proof of the anisotropic curve-shortening conjec-
ture is that, as was well understood by Spohn [23], locally the interface can be (roughly
speaking) described by the hydrodynamic limit of a certain zero-range process at the
points where the tangent to the boundary is horizontal or vertical, and by the hydrody-
namic limit of the symmetric simple exclusion process elsewhere. However, such corre-
spondence is not exact due to updates that split the droplet into more than one connected
component (see for instance Figure 4). In other words, the interface is not (even locally)
the graph of a function. Also, it is a non-trivial task to patch together the various pieces
of “local analysis” to control globally the evolution of the droplet. Both problems will be
tamed by a sequence of monotonicity arguments, which are allowed because the dynamics
conserves the stochastic ordering among configurations.

In order to prove Theorem 2.2, we also need to know that a classical solution to the
anisotropic curve-shortening flow exists up to the time where the droplet disappears, and
(crucially) that the solution is sufficiently regular in space and time (i.e. that the curvature
is a Lipschitz function of the angle and a continuous function of time). To our surprise,
we found that the existing literature on curve-shortening flows does not provide global (in
time) results for the flow associated to the zero-temperature 2D Ising model. The reason
is that the anisotropy function a(·) is not smooth (its derivative has jumps, reflecting the
singularities of the surface tension at zero temperature), while the existing results assume
that a(·) is at least C2 (cf. [11, 12]). To prove existence, uniqueness and regularity of
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the solutions (cf. Theorem 2.1), we will regularize the function a(·) and then analyze the
regularized flow following the ideas of [11, 12]. Of course, it will be crucial to guarantee
that all the estimates we need are uniform in the regularization parameter, which tends to
zero in the end.

The case where the initial “−” droplet is non-convex will be considered in future
work. The additional difficulties are two-fold. First of all, from the analytic point of view,
available global existence and regularity results for the solution of curve-shortening flows
with non-convex initial condition seem to be limited to the isotropic case where a(·) ≡ 1
[14]. Secondly, due to the fact that the droplet will move at the same time outwards and
inwards at different locations according to the sign of the curvature, various monotonicity
arguments we use in the rest of the paper will not work.

2. Model and results

2.1. Glauber dynamics and expected limiting evolution

Set Z∗ := Z + 1/2 := {x + 1/2 : x ∈ Z}. We consider the zero-temperature stochastic
Ising model on (Z∗)2 with its usual lattice structure (x and y are linked if |x − y| = 1
for the l1 norm). This is a continuous time Markov chain (σ (t))t≥0 on the space of spin
configurations on (Z∗)2, � := {−1, 1}(Z

∗)2 . We write σ(t) = (σx(t))x∈(Z∗)2 and for
simplicity we write σx = − (resp. σx = +) instead of σx = −1 (resp. σx = +1).

The transition rules are the following: for each site x ∈ (Z∗)2, the value σx of the spin
at x is updated independently with rate one. When the spin at a site is updated, it takes
the same value as the spin of the majority of its neighbors, or the values ±1 with equal
probabilities 1/2 if two neighbors have “+” spins and the other two have “−” spins. That
these rules yield a well-defined Markov chain even in infinite volume is a standard fact
(cf. [21]). In what follows (cf. (2.1)), we will consider only initial conditions where the
number of “−” spins is finite. It is easy to realize that the spins outside the smallest square
containing all the initial “−” spins stay “+” forever, so that in reality we have a dynamics
on a finite volume and the question of existence of the process is trivial.

We are interested in the evolution of the set of “−” spins for this Markov chain when
the initial condition σ(0) is a large droplet, i.e. a finite connected set of “−” spins sur-
rounded by “+” spins. In that case, almost surely, after a finite time τ+, all the “−” spins
have turned into “+” and the dynamics will stay forever in the all “+” configuration
(which is an absorbing state). Our aim is to describe the evolution of the shape of the
rescaled “−” droplet on a proper (diffusive) time scale. In the next section we make that
aim more precise.

We consider a compact, simply connected subset D ⊂ [−1, 1]2 whose boundary is a
closed smooth curve. Given L ∈ N we consider the Markov chain described above with
initial condition

σx(0) =

{
−1 if x ∈ (Z∗)2 ∩ LD,
+1 otherwise.

(2.1)
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In order to see a set of “−” spins as a subset of R2, each vertex x ∈ (Z∗)2 may be
identified with the closed square of side-length one centered at x,

Cx := x + [−1/2, 1/2]2. (2.2)

One defines
AL(t) :=

⋃
{x: σx (t)=−1}

Cx, (2.3)

which is the “− droplet” at time t for the dynamics. The boundary of AL(t) is a union of
edges of Z2 (this is the only reason why we defined the Ising model on (Z∗)2).

What was conjectured by Lifshitz [20] on heuristic grounds for the low temperature
Ising model is that AL(t) should follow an anisotropic curve-shortening motion: after
rescaling space by L and time by L2 and letting L tend to infinity, the motion of the inter-
face between AL(t) and its complement should be deterministic and the local drift of the
interface should be proportional to the curvature, with an anisotropic correction to reflect
anisotropy of the underlying lattice. More precisely, one can formulate this conjecture as
follows [23]: Let γ (t, L) denote the boundary of the (random) set (1/L)AL(L

2t). Then,
for L → ∞, γ (t, L) should converge to a deterministic curve γ (t) and the evolution of
(γ (t))t≥0 should be such that the normal velocity at a point x ∈ γ (t) is given by the
curvature at x, times an anisotropic factor a(θx), where θx is the slope of the outwards
directed normal to γ (t) at x. The velocity is directed inwards at points where γ (t) is con-
vex and outwards at points where it is concave. The function a(·) should have the explicit
expression

a(θ) :=
1

2(|cos(θ)| + |sin(θ)|)2
. (2.4)

In particular, the curve γ (t) should shrink to a point in a finite time

t0 =
Area(D)∫ 2π

0 a(θ) dθ
=

Area(D)
2

.

Note that the function a(·) is symmetric around 0 and π/2-periodic, which reflects
the discrete symmetries of the lattice (Z∗)2. It is important to note that a(·) is C∞ except
at θ = jπ/2, j = 0, . . . , 3, where it is only continuous and its first derivative has a jump:
indeed, a(θ) ∼ 1/2− |θ − iπ/2| for θ close to iπ/2, i = 0, . . . , 3.

2.2. Results

2.2.1. Convex initial droplet. We prove the anisotropic curve-shortening conjecture in
the case where the initial droplet is convex and suitably smooth. Given a strictly convex
smooth domain D in R2 and letting γ = ∂D be its boundary, we parameterize it following
a standard convention of convex geometry (cf. e.g. [12] and Figure 1). For θ ∈ [0, 2π ] let
v(θ) be the unit vector forming an anticlockwise angle θ with the horizontal axis and let

h(θ) = sup{x · v(θ) : x ∈ γ }

with · the usual scalar product in R2.
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Fig. 1. A graphic description of the support function h. Given θ , consider the point x(θ) of γ that
maximizes x · v(θ) (it is unique if the curve is strictly convex). Then h(θ) = x(θ) · v(θ), and k(θ)
is the norm of the curvature vector of γ (bold vector) at x(θ). If the tangent to γ at x exists it is
normal to v(θ) and |h(θ)| is the distance between the tangent and the origin. We emphasize that
this construction works equally well when the origin is not inside γ .

Sometimes, we abusively say that γ is a convex curve if the domain D it encloses is
convex, and we identify γ with D.

The function θ 7→ h(θ) (called the support function) uniquely determines γ :

D =
⋂

0≤θ≤2π

{x ∈ R2
: x · v(θ) ≤ h(θ)}.

With this parameterization, the anisotropic curve-shortening evolution reads{
∂th(θ, t) = −a(θ)k(θ, t),

h(θ, 0) = h(θ),
(2.5)

where, for a convex curve γ , k(θ) ≥ 0 is the curvature at the point x(θ) ∈ γ where
the outward normal forms an anticlockwise angle θ with the horizontal axis and the
t-derivative is taken at constant θ (see [12, Lemma 2.1] for a proof of (2.5)). Of course
h(·) is the support function of ∂D.

In general, even proving the existence of a solution of (2.5) with a(·) given in (2.4)
is non-trivial, since a(·) has points of non-differentiability and the existing literature (e.g.
[11, 12]) usually assumes that a(·) is at least C2.

Our first result is

Theorem 2.1. Let D ⊂ [−1, 1]2 be strictly convex and assume that its boundary γ = ∂D
is a curve whose curvature [0, 2π ] 3 θ 7→ k(θ) defines a positive, 2π -periodic, Lipschitz
function. Then there exists a unique flow of convex curves (γ (t))t with curvature defined
everywhere, such that γ (0) = γ and that the corresponding support function h(θ, t)
solves (2.5) for t ≥ 0 and satisfies the correct initial condition h(θ, 0) = h(θ). The curve
γ (t) shrinks to a point xf ∈ R2 at time tf = Area(D)/2. For t < tf , γ (t) is a smooth
curve in the following sense: its curvature function k(·, t) is Lipschitz and bounded away
from 0 and infinity on any compact subset of [0, tf ).
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We let D(t) denote the convex closed set enclosed by γ (t) (of course, D(0) = D). Also,
we use the convention that D(t) = {xf } if t ≥ tf .

For δ > 0 let B(x, δ) denote the ball of radius δ centered at x, and for any compact
set C ⊂ R2 define

C(δ) :=
⋃
x∈C

B(x, δ), C(−δ) :=
(⋃
x /∈C

B(x, δ)
)c
. (2.6)

Note that D(t)(δ) = B(xf , δ) and D(t)(−δ) = ∅ if t ≥ tf .
An event BL is said to occur with high probability (w.h.p.) if limL→∞ P(BL) = 1.

Theorem 2.2. Under the same assumptions on D as in Theorem 2.1, for any δ > 0 one
has w.h.p.

D(−δ)(t) ⊂
1
L
AL(L

2t) ⊂ D(δ)(t) for every 0 ≤ t ≤ tf + δ, (2.7)

AL(L
2t) = ∅ for every t > tf + δ.

In particular, one has the following convergence in probability:

lim
L→∞

τ+

L2 Area(D)
=

1
2
. (2.8)

The reason why in Theorems 2.1 and 2.2 we do not content ourselves with, say, initial
C∞ curves is that, as we see in the next section, there is a very natural initial condition
whose curvature function is only Lipschitz and not C1 (and stays so at later times).

Theorem 2.2 does not apply directly if one considers D = [0, 1]2 or any other non-
smooth or non-strictly-convex convex set. However, approximating D from above and
below by smooth compact sets and using monotonicity (cf. Section 2.3), one sees easily
that (2.8) holds in any case. In particular, the disappearance time of an L × L square
droplet is with high probability (L2/2)(1+ o(1)).

Theorems 2.2 and 2.3 tell us that for our choices of initial configuration, the disap-
pearance time of the minus droplet is non-random at first order. This implies that the
variation distance of our Markov chain from equilibrium (which is concentrated on the
all-plus configuration) drops abruptly from 1 to 0 around time L2 tf within a time window
of width o(L2) � L2 tf (we conjecture that the correct order of the window should be
O(L3/2)). This is a particular instance of a phenomenon called cut-off (cf. [7] and [19]).

2.2.2. Scale-invariant droplet. A particular case of Theorem 2.2 is when the initial con-
dition is scale invariant, i.e. the limiting evolution (γ (t))t is a homothetic contraction.
Consider the function

f0 : [−1/
√

2, 1/
√

2] 3 x 7→ f0(x) = β

{
4αx

∫ x

0
e2αt2dt − e2αx2

}
, (2.9)

where α is the unique positive solution of

4
√

2αe−α
∫ 1/

√
2

0
e2αt2dt = 1
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and
β = −

√
2 e−α < 0.

Note that f0 isC∞, positive, concave, symmetric around 0 and increasing on [−1/
√

2, 0].
We denote by (e1, e2) the canonical basis of R2 and (f1, f2) =

( e1−e2√
2
,

e1+e2√
2

)
the image

of (e1, e2) by the rotation of angle −π/4. We also define the curve γ1 to be the graph of
f0 in the coordinate system (f1, f2), i.e.

γ1 := {xf1 + f0(x)f2 : x ∈ [−1/
√

2, 1/
√

2]}.

If S1 (resp. S2) denotes the symmetry with respect to the axis e1 (resp. e2), one defines
the closed curve γ by

γ = γ1 ∪ (S1γ1) ∪ (S2γ1) ∪ ((S1 ◦ S2)γ1).

In what follows, D denotes the compact, convex set enclosed by γ (see Figure 2).

Fig. 2. The curve γ = ∂D and the coordinate systems (e1, e2) and (f1, f2).

One can check that the curvature function θ 7→ k(θ) of ∂D is Lipschitz and bounded
away from zero, but not differentiable at θ = iπ/2, i = 0, 1, 2, 3. In this case, Theorem
2.2 can be formulated as follows.

Theorem 2.3. Assume that D = D . For any η > 0, w.h.p.,

(
√

1− 2αt − η)D ⊂
1
L
AL(tL

2) ⊂ (
√

1− 2αt + η)D for every t ≥ 0 (2.10)

where we follow the convention that
√
x = 0 for x ≤ 0 and xD = ∅ for x < 0. Moreover,

one has the following convergence in probability:

lim
L→∞

τ+

Area(LD)
= α lim

L→∞

τ+

L2 =
1
2
. (2.11)
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It is easy to check, using Lemma 3.6 below and a couple of integrations by parts, that
Area(D) = 1/α, yielding the first equality in (2.11). The expression (2.9) for the invariant
shape also appears, although with different notation, in the recent work [17].

2.3. Graphical construction of the dynamics and monotonicity

Before starting the proofs, we wish to give a construction of the Markov process (some-
times called the graphical construction) that yields nice monotonicity properties. We
consider a family (τ x)x∈(Z∗)2 of independent Poisson clock processes. More precisely,
to each site x ∈ (Z∗)2 one associates a random sequence (independently from other sites)
(τ xn )n≥0 of times such that τ x0 = 0 and (τ xn+1− τ

x
n )n≥0 are IID exponential variables with

mean one. One also defines random variables (Un,x)n≥0, x ∈ (Z∗)2, that are IID Bernoulli
variables of parameter 1/2, with values ±1.

Then given an initial configuration ξ ∈ {−1, 1}(Z
∗)2 one constructs the dynamics

σ ξ (t) starting from σ ξ (0) = ξ as follows:
• (σx(t))t≥0 is constant on all intervals of the type [τ xn , τ

x
n+1).

• σx(τ
x
n ) is chosen to be±1 if a strict majority of the neighbors of x satisfy σy(τ xn ) = ±1,

and Un,x otherwise (this definition makes sense as, almost surely, two neighbors will
not update at the same time).

This construction gives a simple way to define simultaneously the dynamics for all ini-
tial conditions (we denote by P the associated probability). Moreover this construction
preserves the natural order on {−1,+1}(Z

∗)2 , given by

ξ ≥ ξ ′ ⇔ ξx ≥ ξ
′
x for every x ∈ (Z∗)2

(this order is just the opposite of the inclusion order for the set of “−” spins, which is
therefore also preserved). Indeed, if ξ ≥ ξ ′, with the above construction, one has P -a.s.

∀t > 0, σ ξ (t) ≥ σ ξ
′

(t).

3. Local interface dynamics

One problem one has to deal with when proving mean curvature motion for the whole
droplet is that even though initially the interface between “+” and “−” (i.e. the geometric
boundary of the set AL(0)) is a simple curve, it can later split to form several loops. In fact,
as a byproduct of our results, we will see that, with large probability, only very small extra
loops can be created. We will tackle this problem by introducing some auxiliary dynamics
that do not allow creation of new loops and stochastically compare to the original one.

A second problem is that the interface that one has to control is not exactly the graph
of a function, for which it would be easier to describe the macroscopic motion using par-
tial differential equations. We begin by studying two dynamics for which the interface is
indeed a graph, and which have locally the same large-scale behavior as the true evolu-
tion. It is more natural to introduce these dynamics as dynamics on interfaces rather than
dynamics on spins. Our task will then consist in glueing together the “local results” of
Theorems 3.2 and 3.4 to get Theorems 2.2 and 2.3.
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3.1. Local dynamics away from the poles and the simple exclusion process

The first auxiliary dynamics is used to control the evolution of the boundary of
(1/L)AL(tL

2) away from the points (the poles) where the tangent to the deterministic
curve γ (t) is either horizontal or vertical. The evolution near the poles will be analyzed
via a second auxiliary dynamics (see Section 3.2).

Given two positive natural numbers M,N consider the state space �M,N of nearest-
neighbor directed paths of length L := M +N with M steps up and N steps down:

�M,N =
{
(hx)x∈{0,...,M+N} ∈ ZM+N+1 ∣∣ |hx+1 − hx | = 1, h0 = 0;hM+N = M −N

}
.

Given h ∈ �M,N and x ∈ {1, . . . , L − 1}, we denote by h(x) the path with a corner
“flipped” at x defined by h(x)y = hy for all y 6= x and

h(x)x :=


hx − 2 if hx±1 = hx − 1,
hx + 2 if hx±1 = hx + 1,
hx if |hx+1 − hx−1| = 2.

(3.1)

The dynamics on �M,N we consider is the one that flips every corner with rate 1/2.
More precisely, it is the Markov chain whose generator L is defined as

Lf (h) :=
1
2

L−1∑
x=1

(f (h(x))− f (h)), ∀f : �M,N → R. (3.2)

We denote by (h(t))t≥0 the trajectory of the Markov chain started from the initial
condition h(0) := h0

∈ �M,N .

Remark 3.1. Note that this dynamics is in one-to-one correspondence with the Ising
dynamics on a rectangle N ×M with “+” boundary conditions on two adjacent sides and
“−” boundary conditions on the two opposite sides, provided that the initial configuration
is such that the length of the −/+ boundary is M + N (i.e. minimal possible). More
precisely (see Figure 3) the correspondence is obtained by taking the graph of h, rotating

Fig. 3. One-to-one correspondence between the dynamics in a rectangle with mixed boundary con-
ditions and the corner-flip dynamics on paths. A possible spin update together with the equivalent
corner-flip are represented.
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it by π/4 and rescaling space by a factor of
√

2 (so that squares have side-length one on the
left-hand side picture). Note that we are implicitly identifying an element h ∈ �M,N with
a continuous function F : [0,M+N ] → R such that F(x) = hx for x = 0, 1, . . . ,M+N
and F(·) is affine on intervals (n, n+ 1) with integer n.

This corner-flip dynamics has been widely studied (see e.g. [24]) and can be mapped
to the symmetric simple exclusion process (SSEP) on a finite interval (just say that there
is a particle at x = 0, . . . ,M +N − 1 if and only if hx+1 − hx = +1, and check that the
dynamics in terms of particles coincides with that of SSEP). From hydrodynamic-limit
results, it is quite clear that the rescaled version of h when M,N tends to infinity should
satisfy the heat equation (see [16, Section 4.2] for an account of hydrodynamic equations
for the exclusion process). However, we have not found in the literature a proof of the
following precise statement we need (we give a concise proof of it in Section 7):

Theorem 3.2. Given a 1-Lipschitz function φ0
: [0, 1]→R with φ0(0)=0, let (h(t))t≥0

be the dynamics starting from the initial condition h0
∈ �ML,NL given by

h0
x :=

{
2bLφ0(x/L)/2c for x even,
2b(Lφ0(x/L)− 1)/2c + 1 for x odd

(ML and NL are implicitly fixed by L and φ0(1)). For all T ≥ 0 and ε > 0, w.h.p.,

sup
t∈[0,T ], x∈[0,1]

1
L
|hbxLc(L

2t)− Lφ(x, t)| ≤ ε

where φ : [0, 1] × R+→ R is the solution of the Cauchy problem
∂tφ(x, t) =

1
2∂

2
xφ(x, t), ∀t > 0, ∀x ∈ (0, 1),

φ(0, t) = 0, φ(1, t) = φ0(1), ∀t > 0,
φ(x, 0) = φ0(x), ∀x ∈ (0, 1).

(3.3)

Here, bxc denotes the integer part of x, and the fact that h0 does belong to �ML,NL is an
easy consequence of φ0 being 1-Lipschitz.

3.2. Local dynamics around the poles and a zero-range process

For the definition of the second auxiliary dynamics, we use the same notation as in the
previous section, but no confusion should arise as the proofs will be given in two inde-
pendent sections. The state space is

�L :=
{
h : {−L, . . . , L+ 1} → Z

}
. (3.4)

For h ∈ �L and x ∈ {−L+ 1, . . . , L} define h+,x (resp. h−,x) as the configuration such
that h+,xy = hy if y 6= x and h+,xx = hx + 1 (resp. h−,xx = hx − 1). We consider the
Markov chain (h(t))t≥0 started from some h0

∈ �L and with generator L defined by

Lf (h) =
1
2

L∑
x=−L+1

[c+,x(h)(f (h+,x)− f (h))+ c−,x(h)(f (h−,x)− f (h))] (3.5)
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where

c+,x(h) = 1{hx+1>hx } + 1{hx−1>hx },

c−,x(h) = 1{hx+1<hx } + 1{hx−1<hx }.

Note that the values h−L and hL+1 are fixed in time and should be considered as boundary
conditions.

Remark 3.3. This dynamics corresponds to the motion of the interface for a modified
Ising dynamics in a vertical strip of width 2L with the following boundary condition:
spins on the left (resp. right) boundary of the system are “+” if and only if their vertical
coordinate is larger than h−L (resp. hL+1). The dynamics is modified in the sense that
updates are discarded if after the update the boundary between the “−” and “+” domain
is not a simple (open) curve (see Figure 4). It is at times more convenient to identify
h ∈ �L with a càdlàg function H : [−L− 1/2, L+ 3/2] → Z which equals identically
hn on intervals [n− 1/2, n+ 1/2) for integer n.

Fig. 4. An example of spin update that splits the interface into two disconnected components. The
interface dynamics presented in this section does not allow this kind of move.

Another way to interpret this dynamics [23] is to look at the gradients ηx = hx+1−hx :
one recognizes then a zero-range process with two type of particles (if ηx = n > 0 we say
there are n particles of type A at x, if ηx = −n < 0 we say there are n type-B particles).
Each particle performs a symmetric simple random walk with jump rate 1/(2n) (with
n the occupation number of the site where the particle sits) to either left or right, and
particles of different type annihilate instantaneously when they are at the same site. See
Figure 5.

Fig. 5. Correspondence between interface dynamics and zero-range process. Arrows represent pos-
sible motions for the interface and their representation in terms of particle moves. When an A
particle jumps on a B particle (green arrow), both annihilate.
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In [23, Appendix A], this dynamics was considered, but in a periodized setup.
A scaling limit result was given but the proof there is somewhat sketchy. Here we adapt
the proof to the non-periodic case and write it in full detail.

Consider a C2 function φ0
: [−1, 1] → R with φ0(1) = φ0(−1) = 0. We further as-

sume that φ0 has a finite number of changes of monotonicity. Define80 : {−L, . . . , L+1}
→ R as

80(x) := Lφ
0(x/L) (3.6)

and h0
: {−L, . . . , L+ 1} → Z by

h0
x := b80(x)c. (3.7)

We define 8 : {−L, . . . , L + 1} × R+ → R as the solution of the following Cauchy
problem: 

∂t8(x, t) =
1
2 [σ(qx(t))− σ(qx−1(t))],

8(L+ 1, t) = 8(−L, t) = 0,
8(x, 0) = 80(x),

(3.8)

for every t ≥ 0 and x ∈ {−L, . . . , L+ 1}, where σ(u) = u/(1+ |u|) and

qx(t) := 8(x + 1, t)−8(x, t).

The result we state now is slightly weaker than Theorem 3.2 as it allows one to control
the profile h only at a fixed time and not on a whole time interval.

Theorem 3.4. Given φ0 as above, consider the dynamics (h(t))t≥0 described by (3.5)
with initial condition h0 as in (3.7). Then for any t , the following convergence in proba-
bility holds:

lim
L→∞

max
x∈{−L,...,L+1}

1
L
|hx(L

2t)−8(x,L2t)| = 0. (3.9)

It is quite intuitive that one should have 1
L
8(bLxc, L2t)→ φ(x, t) for any x ∈ [−1, 1],

where φ : [−1, 1] × R+→ R is the solution of
∂tφ(x, t) =

1
2

∂2
xφ(x, t)

(1+ |∂xφ(x, t)|)2
,

φ(1, t) = φ(−1, t) = 0,
φ(x, 0) = φ0(x),

for t ≥ 0 and x ∈ (−1, 1). The particular form of the non-linearity of this PDE makes the
convergence question non-trivial, but fortunately Theorem 3.4 together with a comparison
with the heat equation (cf. Section A.5) turns out to be sufficient for our purposes. Indeed,
define φ̄ : [−1, 1] × R+→ R to be the solution of

∂t φ̄(x, t) =
1
2∂

2
x φ̄(x, t),

φ̄(1, t) = φ̄(−1, t) = 0,
φ̄(x, 0) = φ0(x).
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Corollary 3.5. Let φ0 be as above, and assume further that it is concave with ‖∂xφ0
‖∞

≤ η. For every t ≥ 0 and every ε > 0 the following inequality holds w.h.p.:

φ̄(x/L, t)−ε ≤
1
L
hx(L

2t) ≤ φ̄(x/L, (1+η)−2t)+ε for every x ∈ {−L, . . . , L+1}.

Proof. The result follows by combining Theorem 3.4, Proposition A.9, and by taking lim-
its of rescaled versions of 81 and 82 in (A.12) when L tends to infinity (cf. Lemma 7.1).

ut

3.3. About the scale-invariant shape

Now that we know how the interface should evolve locally (from Theorems 3.2 and 3.4),
it is possible to explain why D should be scale invariant. By symmetries of the problem
and the fact that motion is driven by curvature, the scale-invariant shape should be convex
symmetric around the axes Re1, Re2. Therefore it is enough to consider the boundary of
the intersection of D with the first quadrant.

From Theorem 3.2, if f is a Lipschitz function and ∂D is the graph of f in the coor-
dinate system (f1, f2), the initial drift in the f2 direction is (1/4)∂2

xf, where the factor 1/4
(instead of 1/2) is due to the fact that in the correspondence between Ising dynamics and
dynamics of nearest-neighboring paths, space has to be rescaled by

√
2, cf. Remark 3.1).

One the other hand, the homothetic contraction of a shape D of initial velocity α gives an
initial drift of the interface in the f2 direction

α(−f + x∂xf ).

That leads to the partial differential equation

∂2
xf = 4α(−f + x∂xf ). (3.10)

Next we impose the correct boundary conditions on f :

• We fix the scaling by imposing that the point (1, 0) (and therefore also (0, 1), (−1, 0),
(0,−1)) belongs to ∂D . This gives

f (±1/
√

2) = 1/
√

2. (3.11)

• To guarantee that the curvature of ∂D is well defined at the point (0, 1) we have to
impose

∂xf (−1/
√

2) = −∂xf (1/
√

2) = 1. (3.12)

We finally notice

Lemma 3.6. The function f0 defined in (2.9) is the unique solution of the Cauchy prob-
lem (3.10)–(3.12) for x ∈ (−1/

√
2,+1/

√
2). For other values of α the above problem

has no solution.

Proof. Uniqueness of the solution is standard from the theory of ordinary differential
equations. The rest is just a matter of checking. ut
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3.4. Organization of the paper

Instead of proving directly Theorem 2.2 and then deducing Theorem 2.3 as a corollary, we
decided for pedagogical reasons to give first the proof in the case of the scale-invariant
droplet and then to point out what needs to be modified in the more general case of
a convex droplet. The reason is that, this way, we can easily separate the question of
comparing the stochastic evolution with the deterministic one (which works more or less
the same in the two cases but is simpler for the invariant droplet, due to its symmetries)
from the analytic, PDE-type issues which appear only in the general case.

The paper is therefore organized as follows:

• In Section 4, we show that to prove Theorem 2.3 it is sufficient to have a good control
on the continuity of the interface motion (Proposition 4.2) and a result on the evolution
after an “infinitesimal time” εL2 (Proposition 4.1). Such crucial results are proven in
Sections 4.3 and 4.4.
• In Section 5 we first prove Theorem 2.1 on the existence of a solution to (2.5), and then

we prove Theorem 2.2 via a suitable generalization of Propositions 4.2 and 4.1.
• Finally, the hydrodynamic limit results of Theorems 3.2 and 3.4 are proven in detail in

Section 7 and Appendix A respectively.

4. Proof of Theorem 2.3: evolution of the scale-invariant droplet

4.1. Reducing to an “infinitesimal” time interval

We decompose the proof of Theorem 2.3 into two propositions. The first (and the main
one) says that after a time εL2 the droplet looks very much the same but contracted by a
factor of 1− αε + o(ε).

Proposition 4.1. For all δ > 0 there exists ε0(δ) > 0 such that for all 0 < ε < ε0(δ),
w.h.p.,

AL(L
2ε) ⊂ (1− ε(α − δ))LD, (4.1)

AL(L
2ε) ⊃ (1− ε(α + δ))LD . (4.2)

The second proposition controls continuity in time of the rescaled motion:

Proposition 4.2. For every δ > 0, w.h.p.,

AL(L
2t) ⊂ (1+ δ)LD for every t ≥ 0. (4.3)

Moreover, for every δ > 0 there exists ε > 0 such that w.h.p.,

AL(L
2t) ⊃ (1− δ)LD for every t ∈ [0, ε]. (4.4)
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Proof of Theorem 2.3 assuming Propositions 4.1 and 4.2. Given η fix δ small enough and
ε < ε0(δ). Then using (4.1) one finds that w.h.p.,

AL(L
2ε) ⊂ (1− (α − δ)ε)LD . (4.5)

Let (A(1)
L (L

2t))t≥0 denote the evolution of the set of “−” spins for the dynamics started
from initial condition “−” on (1 − ε(α − δ))LD and “+” elsewhere. Then using
the Markov property and monotonicity of the dynamics, one can couple the dynamics
(AL(L

2(ε + t)))t≥0 and (A(1)
L (L

2t))t≥0 in such a way that on the event (4.5),

AL(L
2(ε + t)) ⊂ A(1)

L (L
2t) for every t ≥ 0.

Therefore, after conditioning on the event in (4.5) and using (4.1) for (1 − (α − δ)ε)L
instead of L, one deduces that w.h.p.,

AL(L
2ε(1+ (1− (α − δ)ε)2)) ⊂ A(1)

L (L
2(1− (α − δ)ε)2ε) ⊂ (1− (α − δ)ε)2LD .

Here we have used the fact that A(1)
L (t) has the same law as AL(1−αε)(t). Using this

argument repeatedly one concludes that, w.h.p., for all k ∈ [1, ε−3/2
],

AL(L
2tk) ⊂ (1− (α − δ)ε)kLD

where tk is defined by

tk := ε

k−1∑
i=0

(1− (α − δ)ε)2i = ε
1− (1− (α − δ)ε)2k

1− (1− (α − δ)ε)2
.

Here and below we assume ε−3/2 to be in N. The value ε−3/2 could equally well be
replaced by any number kf much larger than 1/ε; the only thing that matters is that tkf is
close to 1/(2(α − δ)). One remarks that for all values of k,

(1− (α − δ)ε)k =

√
1−

tk(1− (1− (α − δ)ε)2)
ε

=

√
1− 2(α − δ)tk + tkO(ε).

As (tk)k≥0 is bounded above, there exists C > 0 such that for every k ∈ [1, ε−3/2
],

AL(L
2tk) ⊂ (

√
1− 2(α − δ)tk + Cε)LD ⊂ (

√
1− 2αtk + η/2)LD (4.6)

w.h.p., where the second inclusion holds provided that ε and δ are small enough. Com-
bining (4.6), Proposition 4.2 and stochastic coupling, one finds that w.h.p., for every
k ∈ [0, ε−3/2

] and t ∈ (tk, tk+1),

AL(L
2t) ⊂ (

√
1− 2αtk + 3η/4)LD ⊂ (

√
1− 2αt + η)LD,

and w.h.p., for every t ≥ tε−3/2 ,

AL(L
2t) ⊂ (

√
1− 2αtε−3/2 + 3η/4)LD ⊂ ηLD . (4.7)
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This ends the proof of the upper inclusion in (2.10) (note that tε−3/2 approaches 1/(2α)
for ε, δ small). Moreover, (4.7) and stochastic domination imply that, for some constantC,
w.h.p.,

τ+ ≤
L2

2α
(1+ Cη2).

Indeed, it is known from [9] that a droplet of minus spins of linear size ηL disappears
within a time τ+ which w.h.p. is upper bounded by Cη2L2.

The lower inclusion in (2.10) and the lower bound on τ+ are proved in an analogous
way using (4.2) instead of (4.1) and (4.4) instead of (4.3). Note that using (4.4) we have
to take care to choose ε small enough, but this is possible as tk − tk−1 is a non-increasing
function of k and 1/ε. ut

4.2. Strategy of the proof of Proposition 4.1

Our aim is to use Theorem 3.2 to control the motion of the interface away from the
“poles”, and Theorem 3.4 (or more precisely Corollary 3.5) to control the motion of the
interface close to the “poles”. It is therefore crucial to compare the local SSEP or the
zero-range dynamics introduced in Sections 3.1 and 3.2 with the true evolution of the
boundary between “+” and “−” spins.

As we have already discussed at the beginning of Section 3, however, there exists no
exact mapping between the evolution of the height function associated to the two particle
processes and the evolution of the+/− boundary, since the original “−” droplet can break
into more droplets and, strictly speaking, the interface cannot be described, even locally,
as a height function. The way out is that, thanks to monotonicity arguments and to the
a priori “continuity” information provided by Proposition 4.2, we can remove certain
updates of the Markov chain, e.g. freeze certain spins to their initial value. This way, we
can show that locally the interface can be stochastically compared to the height function
associated to the SSEP (or to the zero-range process close to the poles). Of course, the
details of the “update removal procedure” are quite different according to whether we
want to prove an upper or a lower bound on the “− domain”. For instance, if we want an
upper bound we are allowed to freeze “−” spins or to change some “+” into “−” spins
in the initial condition (this is fine thanks to monotonicity), and at the same time we can
freeze the spins outside (1 + δ)LD to “+” (this is not allowed directly by monotonicity,
but (4.3) guarantees that such spins stay “+” for all time anyway, w.h.p.). If the “update
removal procedure” is performed suitably, the effect is that the various portions of the
+/− interface (away from and close to the poles) then become independent and evolve
exactly like the height functions of the SSEP/zero-range process.

The approach outlined here will also be used in Section 6 in the case of a general
convex initial condition (the generalization of Proposition 4.1 is Proposition 6.2).

4.3. Upper bound: proof of (4.1) and (4.3)

The inclusion (4.1) can be rewritten in the following manner, which is more convenient
for the proof: for any positive δ and all ε small enough, w.h.p.,

σx(εL
2) = + for every x ∈ [(1− ε(α − δ))LD]c. (4.8)
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Fig. 6. The light-colored (resp. dark-colored) zones correspond to M(ε, ξ) (resp. N(ε, ξ)) and its
rotations. Together, they form a partition of the complement of (1 − ε(α − δ))D (white central
region).

Given δ, we fix a value of ξ which is small enough (depending on δ in a way that is
specified in Section 4.3.2) and set (cf. Figure 6)

M(ε, ξ) := {(x, y) ∈ R2
: x ≥ ξ and y ≥ ξ} \ [(1− ε(α − δ))D],

N(ε, ξ) := {(x, y) ∈ R2
: y ≥ 0 and −ξ ≤ x ≤ ξ} \ [(1− ε(α − δ))D].

(4.9)

Note that for any ε > 0, M,N and their successive images by rotation of angle π/2, π ,
3π/2 form an 8-piece cover of the complementary set [(1− ε(α − δ))D]c.

As the dynamics and the initial shape are invariant under these same rotations, (4.8)
is proved if we can show that for ε small enough, w.h.p.,

σx(εL
2) = + for every x ∈ LM(ε, ξ), (4.10)

σx(εL
2) = + for every x ∈ LN(ε, ξ). (4.11)

The above new formulation of (4.1) is very convenient as it allows one to consider sepa-
rately the dynamics close to the poles and away from them.

4.3.1. Proof of (4.10). For any L > 0, we consider the dynamics which has initial con-
dition with “−” spins in LD and “+” otherwise, and the same generator as the original
dynamics except that spins on the sites in V1 := {±1/2}× {−L+ 1/2, . . . , L− 1/2} and
on V2 := {−L+ 1/2, . . . , L− 1/2}× {±1/2} are “frozen to−”. (The construction of the
dynamics is the same as in Section 2.3, except that there is no update for these sites.) We
denote by (σ (1)L (t))t≥0 the evolution of this dynamics and define

A(1)
L (t) :=

⋃
{x: σ

(1)
x (t)=−1}

Cx . (4.12)
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The graphical construction of Section 2.3 gives a natural coupling of σ and σ (1):

AL(t) ⊂ A(1)
L (t) for every t ≥ 0. (4.13)

The advantage of the “freezing procedure” is that the evolution in the four quadrants of
(Z∗)2 then becomes independent. The reason is that the spins on sites ({±1/2}×Z∗)\V1
and (Z∗ × {±1/2}) \ V2 are “+” for all time (recall that the spins outside the smallest
square containing the initial “−” droplet stay “+” forever), so the boundary spins of all
four quadrants are frozen.

The set A(1)
L (t) ∩ R2

+ is a Young diagram (i.e. a collection of vertical columns of
width 1 and non-negative integer heights, with heights non-increasing from left to right)
for all t ≥ 0 and we can thus consider ∂A(1)

L (t)∩R
2
+ as the graph of a (random) piecewise

affine function in the coordinate system (f1, f2), which we denote by FL(·, t). Equation
(4.10) is thus proved (for any choice of ξ ) if one proves that for any ν < 2−1/2 and any ε
small enough, w.h.p.,

FL(x, εL
2) ≤ Lf (x/L, (α − δ)ε) for every x ∈ (−νL, νL), (4.14)

where f (·, t) is the function whose graph in the coordinate system (f1, f2) is given by the
intersection of the boundary of (1− t)D with the half-plane {(x, y) ∈ R2

: (x, y)·f2 ≥ 0}
(the domain of definition of f (·, t) depends on t but includes [−2−1/2, 2−1/2

] for t small
enough). By definition of D , one has f (·, 0) = f0(·) (recall the definition of f0 in (2.9)).

In practice, to prove (4.10) one has to prove (4.14) with ν such that 1/
√

2 − ν =
ξ/
√

2 + o(ξ) for ξ small (with ξ as in (4.9)). The reason is that the point of ∂D with
horizontal coordinate ξ and positive vertical coordinate (in the coordinate system (e1, e2))
has horizontal coordinate −(1− ξ)/

√
2+ o(ξ) in the (f1, f2) coordinate system.

As explained in Remark 3.1 and in Figure 3, the function FL(·, t), up to space rescal-
ing (by a factor of

√
2) undergoes the corner-flip dynamics of Theorem 3.2. Thus the

scaling limit of FL satisfies the heat equation, or more precisely we have the following
convergence in probability for every fixed T > 0:

lim
L→∞

sup
x∈[−1/

√
2,1/
√

2]
sup
t≤T

∣∣∣∣ 1
L
FL(xL, tL

2)− g(x, t)

∣∣∣∣ = 0 (4.15)

where g is the solution for t ≥ 0 and x ∈ (−1/
√

2, 1/
√

2) of
∂tg(x, t) =

1
4∂

2
xg(x, t),

g(·, 0) = f0(·),

g(−1/
√

2, t) = g(1/
√

2, t) = 1/
√

2.
(4.16)

Note that the above result plus (4.13), plus the fact that g is decreasing in t (since
it stays concave through time) gives (4.3) of Proposition 4.2 for every t ≤ T < ∞.
Moreover, according to [9, Theorem 1.3], the disappearance time τ+ of the minus-droplet
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is O(L2) with high probability, so that (4.3) also holds for t > T provided that T was
chosen large enough. As a byproduct, we have proven (4.3).

Concerning (4.10), in order to prove (4.14) it remains to show that for every ν ∈
(0, 1/

√
2) and every x ∈ (−ν, ν),

g(x, ε) < f (x, (α − δ)ε). (4.17)

This is a consequence of the way f0 was determined (see (3.10) and discussion in Section
3.3). First we notice that the time derivative of g is uniformly continuous away from the
boundary points ±1/

√
2:

Lemma 4.3. For any 0 < ν < 1/
√

2,

lim
t→0

sup{|∂tg(x, s)− ∂tg(x, 0)| : s ∈ [0, t] and x ∈ [−ν, ν]} = 0. (4.18)

Proof. This is well known but we sketch a probabilistic proof for the sake of complete-
ness. Let (Bt )t≥0 denote a standard Brownian motion starting at x ∈ [−2−1/2, 2−1/2

]

(with the associated expectation denoted by Ex) and let T denote the hitting time of
{±1/
√

2}. One has
∂2
xg(x, t) = Ex[∂

2
xf0(Bt )1{t<T }]. (4.19)

We can thus rewrite (4.18) as

lim
t→0

sup{|Ex(∂2
xf0(Bs)− ∂

2
xf0(x))| : s ∈ [0, t] and x ∈ [−ν, ν]} = 0 (4.20)

and we can conclude using the uniform continuity of ∂2
xf0 on [−1/

√
2, 1/
√

2] and well-
known continuity properties of the Brownian motion. Note that (4.18) would not hold
with ν = 1/

√
2 because of boundary effects: for t > 0 one sees that ∂2

xg(x, t) approaches
zero as x approaches ±1/

√
2, since Px(T > t)→ 0 when x →±1/

√
2. ut

Therefore, for every η > 0 arbitrarily small we have for all x in (−ν, ν), if ε is small
enough,

g(x, ε) < f0(x)+ ε

(
1
4
∂2
xf0(x)+ η

)
.

We are left with the task of proving that for ε small enough and x in (−ν, ν),

f0(x)+ ε

(
1
4
∂2
xf0(x)+ η

)
< f (x, (α − δ)ε).

From the definition of f (·, t) as the graph in (f1, f2) of the boundary of (1− t)D , we
deduce that if ε is small enough, then uniformly for all x ∈ (−ν, ν),

f (x, (α − δ)ε) = [1− (α − δ)ε]f
(

x

1− (α − δ)ε
, 0
)

= f0(x)+ (α − δ)ε(x∂xf0(x)− f0(x))+O(ε
2).
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Now recall that f0 satisfies equation (3.10), so it suffices to check that for all x ∈ (−ν, ν),

η + δ(x∂xf0(x)− f0(x)) = η +
δ

4α
∂2
xf0 < 0,

which holds provided η = η(δ) is small, since ∂2
xf0(·) is negative and uniformly bounded

away from zero. Equation (4.10) is proven. ut

4.3.2. Proof of (4.11). The method is similar to the one we used for (4.10), the main
difference being that, via a chain of monotonicity arguments, we analyze the evolution
of the portion of interface near the “poles” by comparing it to the interface dynamics of
Section 3.2 (which coincides with the height function of the zero-range process with two
types of particles) instead of the “corner-flip dynamics”.

Denote by h(·, t) the function whose graph in the coordinate system (e1, e2) is given
by the intersection of (1− t)∂D with the upper half-plane R× R+, and h0(·) = h(·, 0).
Note that h0 is C∞ on (−1, 0) and on (0,+1) by the definition of D . The boundary
condition (3.12) ensures continuity of the first derivative of h0 at zero (∂xh0(0) = 0); the
reader can check that h0 also has continuous second derivative and

∂2
xh0(0) =

1

2
√

2
∂2
xf0(−1/

√
2) = −2α, (4.21)

but the third derivative exhibits a discontinuity at 0.
Recall that ξ is the positive constant appearing in (4.9). We set h̄ : [−4ξ, 4ξ ] → R to

be the function defined by the following conditions: h̄ ≡ h0 on [−2ξ, 2ξ ], h̄ is affine on
[−4ξ,−2ξ ] and on [2ξ, 4ξ ] and the derivative ∂x h̄(·) is continuous on (−4ξ, 4ξ). Since
h0(·) is strictly convex, we have h0(x) ≤ h̄(x) with strict inequality outside [−2ξ, 2ξ ].
Define also the following subsets of R2 (cf. Figure 7):

J 1
:= [4ξ,∞)× [h̄(4ξ),∞), J 2

:= (−∞,−4ξ ] × [h̄(4ξ),∞). (4.22)

To avoid notational complications with integer parts, we assume that Lh̄(4ξ) and 4Lξ
belong to Z∗.

Fig. 7. In the set L( J 1
∪ J 2) spins are frozen to “+” while in the dashed region they are frozen to

“−”. The initial condition is “+” in the dark-colored region and “−” in the light-colored one. The
boundary separating the dark/light regions is determined by the function h̄(·).
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First of all, observe that, thanks to (4.3), we can freeze the spins in L(J 1
∪J 2) to their

initial value “+” and, w.h.p., the dynamics will be identical for all times to the original
one.

Next, we employ a chain of monotonicities, based on the graphical construction of
Section 2.3. Since we are after an upper bound on the set of minus spins, we can freeze
to “−” all spins whose vertical coordinate is below Lh̄(4ξ). Therefore, we have just a
dynamics in the set

Y := [−4Lξ + 1, 4Lξ − 1] × [Lh̄(4ξ),∞).

In principle, its initial condition is such that the spin at site (x1, x2) ∈ Y is “−” if and
only if x2 ∈ [Lh̄(4ξ), Lh0(x1/L)]. The problem is however that the function x 7→
max(h̄(4ξ), h0(x)) is not concave, which precludes applying Corollary 3.5 directly later.
By monotonicity, we can modify such an initial condition by adding extra “−” spins:
we therefore stipulate that at time t = 0 the spin at site (x1, x2) is “−” if and only if
x2 ∈ [Lh̄(4ξ), Lh̄(x1/L)]. Recall that h̄(x) ≥ h0(x), so monotonicity goes in the correct
direction. With some abuse of notation, we still denote by (σ (t))t≥0 the dynamics thus
modified and by AL(t) the set of minus spins. We need a final step in order to map the evo-
lution into the zero-range process. Note that, at time t = 0, the boundary of AL(t = 0),
intersected with the strip [−4Lξ + 1/2, 4Lξ − 1/2]×R, can be identified with the graph
of a càdlàg function

HL(·, 0) : [−4Lξ + 1/2, 4Lξ − 1/2] → [Lh̄(4ξ)− 1/2,∞) ∩ Z,

which is constant on intervals [n, n + 1) with n ∈ Z and takes boundary values
Lh̄(4ξ) − 1/2 at the two endpoints (HL(x, 0) is just a discretized version of Lh̄(x/L)).
However, for time t > 0 it is not true in general that the boundary of AL(t) is still the
graph of a function, simply because the set AL(t)may be disconnected (see Figure 4). Let
(σ (2)(t))t≥0 be the dynamics obtained by erasing all the updates that would make AL(t)

disconnected. It is easy to realize that since HL(·, 0) has a single change of monotonicity
(from non-decreasing to non-increasing, recall that h̄(·) is concave), such erased updates
can only correspond to a “−” spin turning into a “+” spin (see again Figure 4). Therefore,
the set of minus spins of the dynamics (σ (2)(t))t≥0 stochastically dominates AL(t); more
precisely, we have shown that the coupling given by the graphical construction implies
that, w.h.p. and for all t ≥ 0,

AL(t) ⊂ A(2)
L (t) :=

⋃
{x: σ

(2)
x (t)=−}

Cx . (4.23)

We let
HL(·, t) : [−4Lξ + 1/2, 4Lξ − 1/2] → [Lh̄(4ξ)− 1/2,∞) ∩ Z

denote the piecewise constant (random) function whose graph in the usual coordinate
system (e1, e2) is the intersection between ∂A(2)

L (t) and the strip [−4Lξ+1/2, 4Lξ−1/2]
× R. Note that HL(−4Lξ + 1/2, t) = HL(4Lξ − 1/2, t) = Lh̄(4ξ)− 1/2.

Equation (4.11) is proved if one shows that for any ε small enough, w.h.p.,

1
L
HL(x, εL

2) ≤ h(x/L, (α − δ)ε) for every x ∈ (−ξL, ξL). (4.24)
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It is clear from Remark 3.3 that the function HL(·, ·) follows the dynamics described in
Section 3.2, with generator (3.5) (here we identify the function HL(·, t) with an element
of �4ξL−1/2, see (3.4)). According to Corollary 3.5 one has for arbitrarily small η > 0,
w.h.p, for all x ∈ (−ξL, ξL),

1
L
HL(x, εL

2) ≤ φ̄(x/L, (1+ ‖∂x h̄‖∞)−2ε)+ η (4.25)

where ‖∂x h̄‖∞ = sup[−4ξ,4ξ ] |∂x h̄(x)| and φ̄(x, L2t) is the solution of
∂t φ̄(x, t) =

1
2∂

2
x φ̄(x, t),

φ̄(−4ξ, t) = φ̄(4ξ, t) = h̄(4ξ),
φ̄(x, 0) = h̄(x) for every x ∈ [−4ξ, 4ξ ].

(4.26)

Thus (4.24) will be proved if we show that

φ̄(x, (1+ ‖∂x h̄‖∞)−2ε) < h(x, (α − δ)ε) for every x ∈ [−ξ, ξ ]. (4.27)

Note that by Lemma 4.3 (which is applicable because the second derivative of h̄(·) =
h0(·) is uniformly continuous in (−2ξ, 2ξ)) one has, uniformly on [−ξ, ξ ],

φ̄(x, (1+ ‖∂x h̄‖∞)−2ε) = φ̄(x, 0)+ 1
2ε(1+ ‖∂x h̄‖∞)

−2∂2
x φ̄(x, 0)+ o(ε)

= h0(x)+
1
2 (1+ ‖∂x h̄‖∞)

−2(∂2
xh0(0)+ r(x))ε + o(ε)

(4.28)

where r(x) tends to 0 for x → 0. Finally, using (4.21), if ξ is chosen small enough so that
both r(x) and ‖∂x h̄‖∞ are sufficiently smaller than δ,

φ̄(x, (1+ ‖∂x h̄‖∞)−2ε) ≤ h0(x)− (α − δ/4)ε. (4.29)

On the other hand h(x, (α − δ)ε) ≥ h0(x)− (α − δ/2)ε, which ends the proof of (4.11).
ut

4.4. Lower bound: proof of (4.4) and (4.2)

The proofs follow the same ideas as those of Section 4.3: we need to control the dynamics
for different portions of the interface separately (around the poles and away from them)
using the scaling limit results provided by Theorems 3.4 and 3.2.

4.4.1. Proof of (4.4). The inclusion (4.4) is absolutely crucial to start the proof of (4.2)
and quite independent of the rest. The proof is very similar to that of [2, Theorem 2], so
we only sketch the main steps. Set

D := {x ∈ (Z∗)2 : d(x, (1− δ)LD) ≤ 1}, D′ := (Z∗)2 ∩ ((1+ δ3)LD)c
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and consider a modified dynamics (σ̃ (t))t≥0 (whose law is denoted P̃), with the same
initial condition as (σ (t))t≥0 and the rules that: (i) after each update, any “−” spin which
has more than two “+” neighbors is turned into “+”, and the operation is repeated as long
as such spins exist; (ii) the dynamics stops at τ̃D,D′ , the first time when there is either a
“+” spin in D or a “−” spin in D′. We also define τ̃D to be the first time when there is a
“+” spin inD, and τD,D′ , τD to be the analogous random times for the original dynamics.

Note that, by (4.3), w.h.p. τD,D′ = τD . Note also that the two dynamics can be coupled
in such a way that τD,D′ = τD implies τ̃D,D′ = τ̃D ≤ τD (thanks to (i) above, since before
τ̃D,D′ the modified dynamics has fewer “−” spins than the original one). Therefore,

P(τD ≤ εL2) = P(τD ≤ εL2
; τD,D′ = τD)+ o(1) ≤ P̃(τ̃D ≤ εL2

; τ̃D,D′ = τ̃D)+ o(1)

and it suffices to prove for instance that

P̃(τ̃D,D′ ≤ εL2
; τ̃D = τ̃D,D′) ≤ exp(−γL)

for some ε = ε(δ), γ > 0. For this, one first observes (as in [2, (8.6)]) that when τ̃D,D′ =
τ̃D the difference between the number of “+” spins at time τ̃D and the number of “+”
spins at time 0 is at least cδ2L2 deterministically, for some c > 0.

Finally, (as in [2, (8.10)]) one proves that

P̃
(
|{x : σ̃x(εL

2) = +}| − |{x : σ̃x(0) = +}| ≥ cδ2L2)
≤ exp(−γL)

if ε = ε(δ) is small enough. This is based on the fact (cf. [2, Lemma 8.5]) that, for times
smaller than τ̃D,D′ , the rate of increase of the number of “+” spins is uniformly bounded
by a constant.

4.4.2. Scheme of the proof of (4.2). Given some fixed δ > 0, we want to prove that for
ε > 0 small enough, w.h.p.,

(1− (α + δ)ε)LD ⊂ AL(εL
2), (4.30)

or equivalently

σx(εL
2) = − for every x ∈ (1− (α + δ)ε)LD . (4.31)

Given ξ small enough (depending on δ) and ν small enough (depending on ξ ), we define
(cf. Figure 8)

U := (1− ν)D,

A1(ε) := [((1− (α + δ)ε)D) \ U ] ∩ [ξ,+∞)2,

B1(ε) := [((1− (α + δ)ε)D) \ U ] ∩ ([−ξ, ξ ] × R+),
(4.32)

and Ai, Bi , i = 2, 3, 4, as the images of A1(ε), B1(ε) by the rotation of angle (i−1)π/2.
One has

(1− (α + δ)ε)D = U ∪
( 4⋃
i=1

Ai

)
∪

( 4⋃
i=1

Bi

)
,



Curve-shortening evolution for the 2D Ising model 2581

Fig. 8. The large droplet is D and (1−ε(α+δ))D is obtained by removing the external dark layer.
The white central region U together with A1, B1 and its rotations (deformed rectangular regions)
form a partition of (1− ε(α + δ))D .

and hence (using rotational symmetries), to prove (4.30), it is sufficient to prove that for
ε small enough, w.h.p.,

LU ⊂ AL(εL
2), (4.33)

LA1(ε) ⊂ AL(εL
2), (4.34)

LB1(ε) ⊂ AL(εL
2). (4.35)

The first line is a direct consequence of (4.4) provided that ε is chosen small enough (how
small depends on ν). Actually, one has the following stronger statement that will be useful
for what follows: if ε is small then w.h.p.,

LU ⊂ AL(tL
2) for every t ≤ ε. (4.36)

The main work is thus to prove (4.34) and (4.35).

4.4.3. Proof of (4.35). This is similar to the proof of (4.11), except that monotonicities
will be needed in the opposite direction.

Let h̄ : [−2ξ, 2ξ ] → R be a concave, twice differentiable, even function such that

h̄(x) = h0(x), ∀x ∈ [−ξ, ξ ],

h̄(x) < h0(x), ∀x ∈ [−2ξ,−ξ) ∪ (ξ, 2ξ ],

where h0(·) was defined in Section 4.3.2 to be the graph of ∂D ∩ (R×R+) in the (e1, e2)

coordinate system. Once ξ is fixed, we choose ν and h̄ such that the point (2ξ, h̄(2ξ)) lies
in the interior of U .

Using (4.36), we can freeze the spins with vertical coordinate Lh̄(2ξ) and horizontal
coordinate in (−2Lξ, 2Lξ) (we assume for notational convenience that 2Lξ and Lh̄(2ξ)
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Fig. 9. The sites in the dashed vertical lines are frozen to “+” and those of the horizontal bold
segment to “−” so that the dynamics in the colored infinite rectangle is independent of the rest of
the system. At time t = 0 the sites in the dark-colored region (whose upper boundary is determined
by h̄(·)) are “−”, while those of the light-colored one are “+”. The function h̄(·) is such that the
base of the dark-colored region is in LU .

are in Z∗) to their initial value “−”, and w.h.p., the dynamics we obtain is identical to the
original one up to time εL2.

Next we use a chain of monotonicities based on the graphical construction of Section
2.3. Since we are after a lower bound on the set of minuses, we can freeze to “+” all the
spins with horizontal coordinate ±2Lξ and vertical coordinate larger than Lh̄(2ξ). Once
this is done, we are reduced to considering the dynamics restricted to the set

Y2 := [−2Lξ + 1, 2Lξ − 1] × [Lh̄(2ξ)+ 1,∞),

as spins on its boundary are fixed. In principle, the initial condition one should consider
is such that (x1, x2) ∈ Y2 has spin “−” iff x2 ∈ [Lh̄(2ξ) + 1, Lh0(x1/L)], but again by
monotonicity, we can add extra “+” spins: we stipulate that, at time t = 0, (x1, x2) has
spin “−” iff x2 ∈ [Lh̄(2ξ) + 1, Lh̄(x1/L)]. With some abuse of notation, the dynamics
thus modified is still called (σ (t))t≥0.

As for the proof of (4.11), we need a final step to map the dynamics onto the interface
dynamics of Theorem 3.4, the problem being exactly the same as then: it is not true that
the boundary of AL(t) stays connected for all t . The solution adopted in the previous
section (leading to the dynamics (σ (2)(t))t , see discussion before (4.23)) does not work
here as we are now looking for a lower bound.

Let (σ (3)(t))t be the dynamics that evolves like (σ (t))t except that any spin that has
three “+” neighbors is turned instantaneously into “+” (see Figure 10). The coupling
given by the graphical construction implies that⋃

{x: σ
(3)
x (t)=−}

Cx =: A(3)
L (t) ⊂ AL(t). (4.37)

Moreover our choice of initial condition guarantees that A(3)
L (t) stays connected for all

time, since the set D is convex.
We denote by HL(·, t) the càdlàg function [−2ξ, 2ξ ] → R whose graph corresponds

to the intersection between ∂A(3)
L (t) and the vertical strip [−2Lξ +1/2, 2Lξ − 1/2]×R.

Note that HL(·, t) can be visualized as a collection of columns of width 1 and integer
height. With this notation and (4.37), the inclusion (4.35) is proved if one has, w.h.p.,

1
L
HL(x, L

2ε) ≥ h(x/L, (α + δ)ε) for every x ∈ (−ξL, ξL). (4.38)
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Fig. 10. Light-colored (resp. dark-colored) squares denote “−” (resp. “+”) spins. In our modified
dynamics σ (3), when a spin has three “+” neighbors, it is instantaneously turned into “+”. On the
figure, if spin at A is updated and turns into “+”, then the spin B has three “+” neighbors and
therefore also turns instantaneously to “+”.

Now we want to relate the dynamics of HL to that of Theorem 3.4. The relation is
almost identical to that discussed in Remark 3.3, except for a slight difference in the
way particles of types A and B annihilate in the zero-range process. Given Z 3 x =
−2Lξ + 1/2, . . . , 2Lξ − 1/2, we say again that there are n > 0 particles of type A at
time t at site x if limy→x+ HL(y, t) − limy→x− HL(y, t) = n, and that there are n > 0
particles of type B if the same difference equals −n. Then it is easy to realize that, under
the dynamics (σ (3)(t))t≥0, each particle performs a symmetric simple random walk with
jump rate 1/(2n) both to the right and to the left (with n the occupation number of the site
where the particle is), and that particles of different type annihilate immediately if they
are at sites of distance 1 (and not at the same site): this is the effect of flipping instanta-
neously “−” spins with more than two “+” neighbors. Note also that, due to convexity
of h̄(·), particles of type A are always to the left of particles of type B. Therefore, if we
take HL(·, t) and we eliminate one of the columns of maximal height (see Figure 11)
(note that there are always at least two such), the modified height function thus obtained
follows exactly the evolution of Theorem 3.4.

Fig. 11. Left: the height function associated to the “+/−” boundary for the dynamics σ (3)(t).
Right: the same height function, with one of the highest columns removed; this follows the same
evolution as in Theorem 3.4. The fact that the new interface is one step shorter makes no difference
in the macroscopic limit.

Of course, the erased column does not change the scaling limit so that one can apply
Theorem 3.4 and Corollary 3.5 and get for any t and η > 0, w.h.p.,

1
L
HL(x, L

2t) ≥ φ̄(x/L, t)− η for every x ∈ {−2ξL, . . . , 2ξL},

where 
∂t φ̄(x, t) =

1
2∂

2
x φ̄(x, t),

φ̄(2ξ, t) = φ̄(−2ξ, t) = h̄(2ξ),
φ̄(x, 0) = h̄(x) for every x ∈ [−2ξ, 2ξ ].
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Therefore, (4.38) is proved if one can check that φ̄(x, ε) > h(x, (α + δ)ε) for every
x ∈ [−ξ, ξ ]. This is proved is the same manner as (4.27): one just needs to choose ξ
small enough. ut

4.4.4. Proof of (4.34). First of all, one freezes to “−” all the spins on the cross-shaped
region of sites in LU (cf. (4.32)) such that at least one of their coordinates is ±1/2.
The inclusion (4.36) guarantees that if ε is chosen small enough, w.h.p. the dynamics so
obtained coincides with the original one up to time εL2 if ε is small enough.

Then one defines (σ (4)(t))t≥0 as the dynamics obtained by changing the initial con-
dition in the following manner: all spins (x, y) ∈ LD with either |x| ≥ L(1 − ν) or
|y| ≥ L(1 − ν) are changed from “−” to “+” (recall that ν is the constant that enters
the definition of U in (4.32)) and therefore they stay “+” forever, since they have at least
three “+” neighbors. Note that, this way, the evolution in each quadrant of (Z∗)2 is inde-
pendent. By monotonicity, we get, w.h.p., for every t ≤ εL2,⋃

{x: σ
(4)
x (t)=−}

Cx =: A(4)
L (t) ⊂ AL(t),

and therefore (4.34) is proved if one can show that

LA1(ε) ⊂ A(4)
L (εL

2). (4.39)

Next, note that ∂A(4)
L (t)∩R

2
+ in the coordinate system (f1, f2) is the graph of a random

piecewise affine function

FL : [−(1− ν)L/
√

2, (1− ν)L/
√

2] → R

which follows the corner-flip dynamics described in Theorem 3.2 (apart from space re-
scaling by a factor of

√
2). For this reason one gets, w.h.p.,

lim
L→∞

sup
x∈[−(1−ν)/

√
2,(1−ν)/

√
2]

sup
t≤ε

∣∣∣∣ 1
L
FL(xL, tL

2)− g(x, t)

∣∣∣∣ = 0 (4.40)

where 
∂tg(x, t) =

1
4∂

2
xg(x, t),

g(−(1− ν)/
√

2, t) = g((1− ν)/
√

2, t) = (1− ν)/
√

2,
g(x, 0) = f̄ (x) for every x ∈ [−(1− ν)/

√
2, (1− ν)/

√
2],

and f̄ is the profile of the initial condition, i.e.

f̄ (x) := min(f0(x), (1− ν)
√

2− |x|)). (4.41)

Let P (resp. P1) be the point on ∂D whose coordinates (x, y) (resp. (x1, y1)) in the
coordinate system (e1, e2) satisfy x > 0, y = 1 − ν (resp. x1 > 0, y1 = h0(ξ)). Denote
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by −d < 0 (resp. −d1 < 0) the horizontal coordinate of P (resp. of P1) in the coordinate
system (f1, f2) .

In view of (4.40) and of the definition of A1(ε) in (4.32), the inclusion (4.39) is satis-
fied if

g(x, ε) > f (x, (α + δ)ε) for every x ∈ (−d1, d1).

The proof of this is very similar to that of (4.17) provided that f̄ coincides with f0 in a
domain strictly containing (−d1, d1) (this guarantees for instance that ∂2

x f̄ (·) is uniformly
continuous in a domain containing (−d1, d1), so that the drift ∂tg is continuous in time,
cf. Lemma 4.3). For this to hold, it is enough to assume that d > d1, i.e. that ν in (4.32)
has been chosen sufficiently small as a function of ξ so that 1− ν > h0(ξ). ut

5. Proof of Theorem 2.1: existence of anisotropic curve-shortening flow with
convex initial condition

Let us first recall some properties of the support function h(·) of a convex curve γ . First
of all, if γ is contained in the convex set bounded by γ ′ then h(θ) ≤ h′(θ) for every θ .
Next, the support function is related to the curvature and to the length L(γ ) of γ by (cf.
[12, Lemma 1.1])

∂2
θ h(θ)+ h(θ) =

1
k(θ)

, (5.1)

L(γ ) =

∫ 2π

0
h(θ) dθ =

∫ 2π

0

1
k(θ)

dθ. (5.2)

Also (cf. [13, Lemma 4.1.1], with the warning that what they call θ is θ −π/2 for us), the
Cartesian coordinates (x(θ), y(θ)) of the point of γ where the outward directed normal
forms an anticlockwise angle θ with the positive horizontal axis can be expressed as

x(θ) = h(0)−
∫ θ

0

sin(s)
k(s)

ds, (5.3)

y(θ) = h(π/2)+
∫ θ

π/2

cos(s)
k(s)

ds. (5.4)

Under the flow (2.5), the time derivatives of area and length are (cf. [12, Lemma 2.1])

d

dt
Area(γ (t)) = −

∫ 2π

0
a(θ) dθ, (5.5)

d

dt
L(γ (t)) = −

∫ 2π

0
a(θ)k(θ, t) dθ. (5.6)

For the moment these are formal statements since we do not know yet that the flow exists.
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5.1. Proof of Theorem 2.1

Uniqueness of the flow is trivial, so we concentrate on existence. First of all, we need to
regularize the functions a(·) and k(·). Given 0 < w < 1 we define a(w)(·) to be a family
of smooth approximations of the anisotropy function a(·). More precisely:

Assumption 5.1.

(1) a(w)(·) is 2π -periodic and C∞;

(2) a(w)(θ)
w→0
−→ a(θ) uniformly in θ ;

(3) for fixed θ , the function w 7→ a(w)(θ) is non-increasing;
(4) the function a(w)(·) is Lipschitz, uniformly in w > 0 (this is possible because the

function a(·) itself is 1-Lipschitz);
(5) the functions w 7→ ‖∂2

θ a
(w)
‖∞ := maxθ |∂2

θ a
(w)(θ)| and w 7→ ‖∂3

θ a
(w)
‖∞ are

bounded, uniformly for w in any compact subset of (0, 1).

A possible choice is
a(w)(θ) = (a ∗ g(w))(θ)+ εw

where g(w) is a centered Gaussian of variance w2. In the convolution it is understood
that a(·) is seen as a 2π -periodic function on R and εw is chosen so that a(w)(·) satisfies
the monotonicity condition with respect to w. It is easy to check that one can choose
εw = −Cw for some suitably large C. Indeed, monotonicity in w is guaranteed if for
w′ < w one has

εw′ − εw ≥ ‖a ∗ (g
(w)
− g(w

′))‖∞.

On the other hand, since a(·) is Lipschitz, one sees easily that ‖a ∗ (g(w) − g(w
′))‖∞ =

O(w − w′).
Also, we approximate γ with a sequence of convex curves (γ (w))0<w<1 that have the

following properties:

Assumption 5.2.

(1) γ (w) ⊃ γ (w
′)
⊃ γ or equivalently h(w)(·) ≥ h(w

′)(·) ≥ h(·) if 0 < w′ < w;
(2) limw→0 h

(w)(·) = h(·) uniformly in θ , so that γ is the limit of γ (w) in the Hausdorff
distance;

(3) the Lipschitz constant L(k(w)) of the curvature function k(w)(·) is finite uniformly
in w, k(w)(·)→ k(·) uniformly and lim supw→0 L(k(w)) ≤ L(k);

(4) the first three derivatives with respect to θ of k(w)(θ) are uniformly bounded for w in
any compact subset of (0, 1).

(Just as for the regularization of a(·) into a(w)(·), a possible construction of h(w)(·) is
obtained by convolving h(·) with a Gaussian of variance w2 and adding a suitable con-
stant εw.)

For the regularized mean curvature motion, it follows from [12] that the equation{
∂th

(w)(θ, t) = −a(w)(θ)k(w)(θ, t),

h(w)(θ, 0) = h(w)(θ),
(5.7)
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admits a solution corresponding to a flow of curves (γ (w)(t))t≥0 which remain convex
and shrink to a point in a finite time

t̃f := t
(w)
f = Area(γ (w)(0))/

∫ 2π

0
a(w)(θ) dθ

(cf. (5.5) with a(·) replaced by a(w)(·)). To lighten notation, we will often write h̃(·, ·),
γ̃ (t), ã(·), etc. for the regularized quantities h(w)(·, ·), γ (w)(t), a(w)(·), etc. Thanks to
Assumption 5.1, we have

∫ 2π
0 a(w)(θ) dθ →

∫ 2π
0 a(θ) dθ = 2 as w → 0 and therefore

t
(w)
f = tf (1+ o(1)) when w→ 0, with tf defined in Theorem 2.1.

From (5.1) and (5.7) one can check that the curvature satisfies the parabolic equation{
∂t k̃ = k̃

2∂2
θ (ãk̃)+ ãk̃

3,

k̃(θ, 0) = k̃(θ).
(5.8)

Also, following [13] it is possible to see that the curvature function stays C∞ until t̃f
(since ã is C∞). However, estimates on the regularity will not be necessarily uniform in
the regularization parameter w and we will need to be very careful on this point.

For fixed t , set

γ (t) := lim
w→0

γ (w)(t) (5.9)

where convergence is in the Hausdorff metric. A posteriori, since we will see that (γ (t))t
provides the (unique) solution to our curve-shortening equation, it follows that the limit
(5.9) does not depend on the choice of regularization. Existence of the limit (in the Haus-
dorff metric) along subsequences is guaranteed by the Blaschke selection theorem [8,
Th. 32] which says that a family of convex subsets of a bounded subset of Rn admits a
subsequence converging to a non-empty convex set. Uniqueness of the limit follows from
the fact that γ (w

′)(t) ⊂ γ (w)(t) if w′ < w and t < t
(w′)
f (because a(w)(θ) is decreasing

in w and the curve is smooth at all times). One has to use the fact that convergence in the
Hausdorff distance also holds for the boundary curves.

Since volume is continuous in the topology induced by the Hausdorff metric [8, Ch. 4]
we also see that Area(γ (t)) = Area(γ )− t

∫ 2π
0 a(θ) dθ = Area(γ )− 2t ; for t → tf the

curve γ (t) shrinks to a point (its diameter shrinks to zero). We will prove

Theorem 5.1. The flow of curves (γ (t))t<tf defined in (5.9) is a classical solution of the
anisotropic curve-shortening flow (2.5) for 0 ≤ t < tf .

Definition 5.2. For t < t̃f let k̃max(t) (resp. k̃min(t)) be the maximal (resp. minimal)
curvature of γ̃ (t). We let k̃max := k̃max(0) and ãmax := maxθ ã(θ), and similarly for k̃min
and ãmin. Also, kmin(max) and amin(max) are defined similarly to k̃min(max), ãmin(max) but
with k̃(·), ã(·) replaced by k(·), a(·).

It is crucial that k̃max(t) stays bounded, uniformly for w small, as long as the disap-
pearance time is not approached:
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Proposition 5.3 (Regularity estimate). Assume that the curvature function k(·) is Lip-
schitz. There exists w0 > 0 such that, for all b > 0, t < tf (1− b), and 0 < w ≤ w0,

k̃max(t) ≤ C1, (5.10)

max
θ
|∂θ (ã(θ)k̃(θ, t))| ≤ C2(L(k)+ 1), (5.11)

where L(k) is the Lipschitz constant of k(·). The constants C1 and C2 depend only b and
on kmax.

Proof. The proof is based on ideas of [12]. However, it is important to make sure that
estimates are uniform in w ≤ w0 (in [12] the anisotropy function a(·) is assumed to
be C2, so there was no need to regularize it).

Fix w > 0. First we get a lower bound on k̃min(t). Note first of all that at time zero
the minimal curvature is bounded away from zero (uniformly in w): indeed, using (5.2)
and the fact that the curvature function is L(k)-Lipschitz, one has

L(γ (0)) =
∫ 2π

0

1
k(θ)

dθ ≥ 2
∫ π

0

1
kmin + L(k)θ

dθ =
2

L(k)
log

L(k)π + kmin

kmin
. (5.12)

Then, since the length of γ (0) is finite, kmin must be positive.
Set for simplicity

g = g(θ, t) = ã(θ)k̃(θ, t).

Formula (5.8) gives

∂tg =
1
ã
(g2∂2

θ g + g
3) =: g(θ, t)u(θ, t). (5.13)

This, together with the fact that ã(·) and k̃(·, t) are smooth, implies that

d

dt
min
θ
g ≥

minθ g3

ãmax
≥ 0

(at the minimum point the second derivative is positive) so that

k̃min(t) ≥
ãmin

ãmax
k̃min ≥ Ckmin > 0 (5.14)

with C independent of w (say for w ≤ w0) thanks to the uniform convergence a(w)(·)→
a(·) and k(w)(·)→ k(·).

Next the real work: bounding k̃max(t) uniformly inw. From (5.13) one sees that, since
ã(·) and k̃(·, t) are smooth,

d

dt
max
θ
g ≤

1
ãmin

(max
θ
g)3. (5.15)

From this one immediately sees that k̃max(t) is upper bounded uniformly in w ≤ w0, up
to some time t1 depending only on kmax. However the solution of ẋ = x3 explodes in
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finite time, and certainly before the time t̃f when the curve shrinks to a point, so we need
to do better.

For this, we define z(t) = minθ u(θ, t) (cf. (5.13)). Then, taking the derivative of u
with respect to t shows (cf. [12, Lemma 4.2] for details) that

d

dt
z(t) ≥ 2z(t)2,

so that if z(0) ≥ 0 we get z(t) ≥ 0, while if z(0) ≤ 0 we get z(t) ≥ −(1/|z(0)| + 2t).
Altogether,

u(θ, t) ≥ −
1
2t

uniformly in θ and w ≤ w0. Now we use this to get a uniform bound on ‖∂θg‖∞ in terms
of k̃max(t). Without loss of generality suppose that there exists θ1 such that ∂θg(θ1, t) =

‖∂θg‖∞ (if this is not the case one can still find θ1 such that ∂θg(θ1, t) = −‖∂θg‖∞ and
apply the same method). Let also θ2 > θ1 be such that ∂θg(θ2, t) = 0 (such an angle
exists since g is periodic). Then, from the definition (5.13) of u,

‖∂θg‖∞ = −

∫ θ2

θ1

∂2
θ g dθ = −

∫ θ2

θ1

(
u(θ, t)

k̃(θ, t)
− ã(θ, t)k̃(θ, t)

)
dθ

≤
1
2t

∫ θ2

θ1

dθ

k̃(θ, t)
+ (θ2 − θ1)ãmaxk̃max(t) ≤

L(γ (0))
t

+ C4k̃max(t).

In the last inequality we used (5.2) and then (5.6), which says that L(γ̃ (t)) ≤ L(γ̃ (0)) ≤
2L(γ (0)). Since g = ãk̃ and by assumption ã is C∞ and Lipschitz uniformly in w, one
deduces that

‖∂θ k̃‖∞ ≤ L(γ (0))/t + C5k̃max(t) ≤ C6(t)k̃max(t) (5.16)

and C6 can be chosen to be decreasing in t . From this it is trivial to see that, if θ0 is such
that k̃(θ0, t) = k̃max(t), one has

k̃(θ, t) ≥ k̃max(t)/2 whenever |θ − θ0| ≤ α(t) (5.17)

for some α(t) increasing in t (it could vanish for t → 0). Next, one proves that for
t < (1− b)tf ,

E(t) :=

∫ 2π

0
ã(θ) log(g(θ, t)) dθ ≤ C7 (5.18)

where C7 depends only on amax and on b and on the maximal curvature kmax of the initial
curve γ (0). Indeed, (5.18) is obvious for t = 0, since the initial curvature is bounded by
assumption. To get the control for t > 0, one observes (cf. [12, Propositions 5.3 and 5.4])
that

d

dt
E(t) ≤ 2ãmax

L(γ̃ (0))
Area(γ̃ ((1− b)tf ))

(
−
d

dt
L(γ̃ (t))

)
.
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The prefactor is bounded since b > 0 and the time integral of the time derivative of the
length gives at most L(γ̃ (0)). At this point we are almost done: by (5.17),

C7 ≥

∫ 2π

0
ã(θ) log(g(θ, t)) dθ

≥ 2α(t)ãmin log(ãmink̃max(t)/2)+ 2πãmax log[min(1, ãmink̃min(t))], (5.19)

and this (recall that k̃min(t) ≥ Ckmin > 0, cf. (5.14)) gives us an upper bound on k̃max(t)

uniformly in w ≤ w0 and t < (1 − b)tf : up to t1 one uses the upper bound which
comes from (5.15), and after t1 the one from (5.19); inequality (5.10) is proven. When
t approaches the disappearance time t̃f (i.e. when b approaches zero), the upper bound
diverges (because C7 diverges), as it should.

Now (5.16) says that the curvature function is Lipschitz with a Lipschitz constant C
that depends on t, b and L(0) but not on w. This is not yet the desired (5.11) because the
bound diverges for t → 0. To prove (5.11) remark that, by (5.13),

∂t∂θg = ∂θ

(
g2

ã
∂2
θ g +

g3

ã

)
= −

∂θ ã

ã2 (g
2∂2
θ g + g

3)+
1
ã
(2g∂θg∂2

θ g + g
2∂3
θ g + 3g2∂θg).

At the point where ∂θg is maximized, ∂2
θ g cancels and ∂3

θ g is non-positive. This, together
with the boundedness of g uniformly in w ≤ w0, θ ∈ [0, 2π ] and t < (1− b)tf , implies

∂t max
θ
∂θg(θ, t) ≤ C8

(
1+max

θ
∂θg(θ, t)

)
.

where C8 just depends on kmax and b. Integrating with respect to time, one gets

max
θ
∂θg(θ, t) ≤ C9

[
max
θ
∂θ (a

(w)(θ)k(w)(θ))+ 1
]

with C9 depending only on C8. Also, observe that

∂θ (a
(w)(θ)k(w)(θ)) ≤ 3

4 |∂θk
(w)(θ)| + C10 ≤

3
4L(k

(w))+ C10

with C10 a constant depending on kmax, since for w small a(w)max < 3/4 and
a(w) is uniformly Lipschitz. Finally, from Assumption 5.2(3), we can conclude that
∂θ (a

(w)(θ)k(w)(θ)) ≤ C10 + L(k) for w small. An analogous lower bound can be found
on ∂t minθ ∂θg(θ, t), and this gives (5.11). ut

Following [13] it is possible to prove that, once we have bounds on the curvature and
on ‖∂θg(·, t)‖∞, for every n ≥ 2 and t < tf (1 − b) the derivatives ∂nθ g(θ, t) are also
bounded. The bounds we get are in general not uniform inw but this is not very important
for our purposes. Indeed, we will need only:
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Proposition 5.4. Fix b > 0. There exists a function c(w), which is non-increasing with
respect to w ∈ (0, w0], such that for t < (1− b)tf ,

max
θ
|∂2
t h̃(θ, t)| ≤ c(w). (5.20)

Proof. Recall (5.7) and (5.13):

∂2
t h̃ = −

1
ã
(g2∂2

θ g + g
3). (5.21)

Thus we just have to bound ∂2
θ g, since we have already proved that g itself is bounded.

For this, we adapt the method used by Gage and Hamilton [13] for the special case of the
isotropic curve-shortening flow where a ≡ 1. What they observed [13, Lemma 4.4.2] is
that, if the curvature and its θ -derivative are bounded (which we proved in Proposition
5.3), the t-derivative of 8(t) :=

∫ 2π
0 [∂

2
θ g(θ, t)]

4 dθ can be upper bounded by a constant
times 8(t) itself, and then one can integrate the inequality with respect to t to get a
bound on 8(t) in terms of 8(0). In our case, with a similar computation, we find that
(d/dt)8(t) is upper bounded by 8(t) times a constant depending on ‖∂θa(w)‖∞, which
is finite uniformly for w ≤ 1. Since 8(0) is also bounded for w in compact subsets of
(0, 1) (cf. Assumptions 5.1(5) and 5.2(4)), we get 8(t) ≤ c1(w) for w ∈ (0, 1) and
t < (1− b)tf , and we can choose c1 to be decreasing. In general, c1 will diverge when w
approaches zero.

A similar computation (cf. [13, Lemma 4.4.3] when a(θ) ≡ 1) shows that

9(t) :=

∫ 2π

0
[∂3
θ g(θ, t)]

2 dθ ≤ c2(w)

with c2(·) decreasing in (0, 1). Then one uses the fact that for a smooth, 2π -periodic
function f one has (cf. [13, Corollary 4.4.4])

‖f ‖2∞ ≤ C

∫ 2π

0
(f 2
+ (∂θf )

2) dθ

for some universal constant C, applied with f (·) = ∂2
θ g(·, t), to get ‖∂2

θ g‖∞ ≤ c3(w) as
we wished. ut

Proof of Theorem 5.1. We are now ready to prove that (γ (t))t provides a classical so-
lution of (2.5). This is based on the following easy consequence of the Arzelà–Ascoli
Theorem:

Lemma 5.5. Let f (n) be a sequence of periodic C1 functions on [0, 2π ] such that both
sequences f (n) and ∂xf (n) are uniformly bounded and equicontinuous. If f (n) → f as
n → ∞, then f is C1 and ∂xf = limn ∂xf

(n), where the convergence is uniform and
does not require subsequences.

First of all, we note that h̃(·, t) does converge (for w → 0) to h(·, t) for every fixed
t < tf . This just follows from the fact that γ̃ (t) converges to γ (t) in the Hausdorff
distance. Furthermore, convergence is uniform in t < tf (1 − b) for every fixed b. This
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is true because the area difference between γ̃ (t) and γ (t) ⊂ γ̃ (t) tends to zero when
w does (uniformly in t) and the curvature is uniformly bounded: then, if h̃(θ, t)− h(θ, t)
were larger than some δ independent of w for some (θ, t), necessarily the area difference
would be larger than some c(δ) at that time.

Applying Lemma 5.5 and recalling (5.1), we find that, for t fixed, ∂θ h̃(θ, t) and k̃(θ, t)
converge to ∂θh(θ, t) and k(t, θ) respectively and this convergence is uniform in θ (know-
ing that the curvature is Lipschitz is important here). Note by the way that k(·, t) is Lip-
schitz, since ‖∂θ k̃(·, t)‖∞ is uniformly bounded.

Then applying dominated convergence (which is allowed in view of Proposition 5.3),
one gets

h(θ, t)− h(θ, s) = −

∫ t

s

a(θ)k(θ, u) du,

which is an integrated version of (2.5). To get the stronger statement (2.5), we need to
prove that k(θ, t) is continuous as a function of t .

First of all, we prove that one can find a function ε : (0, 1) 3 w 7→ ε(w) ∈ R+,
increasing and going to zero as w→ 0 such that for all θ and t ≤ (1− b)tf ,

|k̃(θ, t)− k(θ, t)| ≤ ε(w). (5.22)

If this were not the case then, thanks to k̃(·, t) and k(·, t) being uniformly Lipschitz, we
would have, say, for arbitrarily small w and for some ε > 0 and t < tf (1− b),

k̃(θ, t)− k(θ, t) ≥ ε

for θ ∈ [θ̄ , θ̄ + ε] for some θ̄ ∈ [0, 2π ]. But since (cf. (5.1))

(∂2
θ + 1)(h(θ, t)− h̃(θ, t)) =

1
k(θ, t)

−
1

k̃(θ, t)
,

this would contradict the uniform convergence of h̃(·, ·) to h(·, ·).
On the other hand, from Proposition 5.4, for all θ and t, s ≤ (1− b)tf ,

|k̃(θ, t)− k̃(θ, s)| ≤ c(w)|t − s|.

Together with (5.22) this implies that

|k(θ, t)− k(θ, s)| ≤ inf
w
(2ε(w)+ c(w)|t − s|). (5.23)

The right-hand side clearly tends to zero with |t − s| (choose a sequence {wk} tending
to zero; if c(wk) does not diverge we are done; otherwise, compute the right-hand side
for w = wk with the largest value of k such that c(wk) ≤ |t − s|−1/2). This shows that
t 7→ k(θ, t) is continuous away from tf , and the proof is complete. ut
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6. Proof of Theorem 2.2: evolution of a convex droplet

The proof is very similar to that of Theorem 2.3 in the scale-invariant case (Section 4),
and therefore it will only be sketched. We will also try to use the same notation as in
Section 4 as much as possible.

First we present two statements that are analogous to Propositions 4.2 and 4.1:

Proposition 6.1. Let D be convex with a bounded curvature function. For every α > 0,
w.h.p.,

AL(L
2t) ⊂ LD(α) for every t ≥ 0 (6.1)

(recall definition (2.6)). Moreover, for every α > 0 there exists ε1(α, kmax) > 0 such that
w.h.p.,

AL(L
2t) ⊃ LD(−α) for every t ∈ [0, ε1]. (6.2)

Proof. The proof of (6.1) is essentially identical to that of (4.3), so we give no details. As
for (6.2), given α it is possible to find a finite collection {Di}i such that:

• each Di is an open convex subset of R2, obtained from (the interior of) the invariant
shape D via a suitable translation and shrinking;
• Di ⊂ D for every i;
•
⋃
i Di ⊃ D(−α/2).

Given η > 0, thanks to Proposition 4.2 there exists ε > 0 such that, w.h.p., for every
t < ε,

AL(L
2t) ⊃

⋃
i

LD
(−η)
i .

Here we use monotonicity (because Di ⊂ D) and the fact that the union of a finite num-
ber of events which occur w.h.p. still has probability tending to 1. Note that the choice
of ε depends on η but also on the diameter of the smallest set in the collection {Di}i

and consequently on kmax. Then, if η is small enough (depending on α) it is clear that⋃
i D

(−η)
i ⊃ D(−α) (recall that the Di are open sets, so every x ∈ D(−α) is contained in

the interior of at least one Di). ut

Proposition 6.2. Let D be a convex set whose curvature function is L(k)-Lipschitz and is
bounded away from zero and infinity. For all δ > 0 there exists ε0(δ, kmin, kmax,L(k)) > 0
such that for all 0 < ε < ε0, w.h.p.,

AL(L
2ε) ⊂ LD(ε(1− δ)), (6.3)

AL(L
2ε) ⊃ LD(ε(1+ δ)), (6.4)

where we recall that D(t) is the set enclosed by the curve γ (t).

Proof of Theorem 2.2 assuming Propositions 6.2 and 6.1. It is enough to prove (2.7)
for t < (1 − b)tf and arbitrary b > 0. Then the statement for t ≥ (1 − b)tf and also
(2.8) follow from the fact that the disappearance time of a droplet of diameter ` is w.h.p.
O(`2) (recall that γ (t) shrinks to a point when t → tf in the sense that its diameter
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converges to zero). Define k∗min > 0 (resp. k∗max,L∗k < ∞) to be the infimum (resp.
maximum) of kmin(s) (resp. kmax(s),L(k(s))) on [0, (1 − b)tf ]. Fix δ′ small and let ε <
ε0(δ

′, k∗min, k
∗
max,L∗k) and ε < ε1(δ/2, k∗max) with ε0, ε1 defined in Propositions 6.1 and

6.2. Using the Markov property and the monotonicity of our process we get, w.h.p., for
any k such that εk < (1− b)tf ,

AL(L
2kε) ⊂ LD(kε(1− δ′)). (6.5)

From (6.5) and Proposition 6.1 we deduce that w.h.p., for every t ≤ (1− b)tf ,

AL(L
2t) ⊂ L[D(bt/εcε(1− δ′))](δ/2) ⊂ L[D((t − ε)(1− δ′))](δ/2).

Setting ε′ = tf δ′ + ε this implies that w.h.p.,

AL(L
2t) ⊂ L[D(t − ε′)](δ/2) for every t ≤ (1− b)tf .

Finally observe (this follows from (2.5)) that the Hausdorff distance between D(t−ε′) and
D(t) is at most ε′k∗max maxθ |a(θ)|, so that if ε′ is chosen such that ε′k∗max maxθ |a(θ)| <
δ/2 we get (2.7).

The lower bound is proven similarly; here one has to use the assumption ε <

ε1(δ/2, k∗max). ut

6.1. Upper bound: proof of (6.3)

Definition 6.3. Define (Pi(t))4i=1 to be the four “poles” of D(t), where the tangent vector
is either horizontal or vertical (recall that D(t) is strictly convex at all times under our
assumptions, cf. discussion after (5.12), so that the four poles are distinct and uniquely
defined). P1(t) denotes the “north pole” and the others are numbered in clockwise order.
Denote by (x(Pi(t)), y(Pi(t))) (resp. (u(Pi(t)), v(Pi(t)))) the coordinates of Pi(t) in the
coordinate system (f1, f2) (resp. (e1, e2)). When t = 0 we omit the time coordinate.

An equivalent formulation of (6.3) is: for all δ > 0 and ε small enough, w.h.p.,

σx(εL
2) = + for every x ∈ L[D(ε(1− δ))]c. (6.6)

Given some small ξ we divide [D(ε(1 − δ))]c into eight pieces (Mi)
4
i=1 and (Ni)4i=1 as

follows (this is analogous to the definition (4.9) in the scale-invariant case, cf. Figure 6):

M1(ε, ξ) := ([u(P1)+ ξ,∞)× [v(P2)+ ξ,∞)) \D(ε(1− δ)),

while N1(ε, ξ) is the infinite component of ([u(P1)− ξ, u(P1)+ ξ ] × R) \D(ε(1− δ))
which contains P1. The sets Mi, Ni are defined analogously for i = 2, 3, 4, so that
[D(ε(1 − δ))]c =

⋃4
i=1(Mi ∪ Ni). Equation (6.6) is proved if one can prove that for

every i, and ε small enough, w.h.p.,

σx(εL
2) = + for every x ∈ LMi(ε, ξ), (6.7)

σx(εL
2) = + for every x ∈ LNi(ε, ξ). (6.8)

Of course one can focus on i = 1, the other cases being obtained by a permutation of
coordinates.
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Fig. 12. The larger convex set is D and the smaller one is D(ε(1 − δ)). The poles Pi of D are
marked with black dots (for convenience we have chosen P1 on the vertical axis and P2 on the
horizontal one). The graph in (f1, f2) of the anticlockwise portion of ∂D between A and B is
f (·, 0) and the graph in (e1, e2) of the portion of ∂D between P4 and P2 is h(·, 0). For the proof
of (6.7), boundary spins to the left of `1 are set to “−” below P1 and to “+” above; boundary spins
below `2 are set to “−” to the left of P2 and to “+” to the right.

6.1.1. Proof of (6.7). We use the notation f (·, t) for the function whose graph in the
coordinate system (f1, f2) is the portion of ∂D(t) which goes in the anticlockwise direc-
tion from point A where the tangent forms an angle π/4 with the horizontal axis (cf.
Figure 12) to point B where the angle is (5/4)π . The domain of definition of f (·, t) de-
creases with time (because D(t) shrinks) but for t small enough it includes [x(P1), x(P2)].
Let D1 be the “triangular-shaped” region bounded by ∂D, by the vertical line `1 passing
through P1 and by the horizontal line `2 passing through P2 (note that D1 may not be
included in D).

We consider a modified dynamics in the north-east quadrant [Lu(P1),∞) ×

[Lv(P2),∞) bounded by the lines L`1, L`2. All the spins are initially “−” in LD1 and
“+” otherwise. As for boundary spins, the spins at distance at most 1 to the left of L`1 are
frozen to “−” if they are below LP1 and to “+” if they are above. The spins at distance
at most 1 below L`2 are frozen to “−” if they are to the left of LP2 and to “+” otherwise
(see Figure 12). In the quadrant under consideration, this dynamics dominates the origi-
nal one (for the inclusion order of the set of “−” spins). Let FL(·, t) denote the function
whose graph in (f1, f2) is the interface between “−” and “+” spins for this dynamics.
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Using exactly the same argument as in (4.15) we get

lim
L→∞

sup
x∈[x(P1),x(P2)]

sup
t≤T

∣∣∣∣ 1
L
FL(xL, tL

2)− g(x, t)

∣∣∣∣ = 0

in probability, where g is the solution for t ≥ 0 and x ∈ (x(P1), x(P2)) of
∂tg(x, t) =

1
4∂

2
xg(x, t),

g(·, t) = f (·, 0),
g(x(P1), t) = y(P1) and g(x(P2), t) = y(P2).

Thus it remains to prove that for every x̃1, x̃2 satisfying x(P1) < x̃1 < x̃2 < x(P2)

and every x ∈ (x̃1, x̃2),
g(x, ε) < f (x, (1− δ)ε). (6.9)

Lemma 4.3 (which is valid also in this case, since the curvature is Lipschitz and therefore
∂2
xf (·, 0) is uniformly continuous) allows us to write that for any fixed η, and ε small

enough,
g(x, ε) ≤ f (x, 0)+

ε

4
(∂2
xf (x, 0)+ η). (6.10)

We are left with the task of estimating the right-hand side of (6.9). For any θ ∈
(0, π/2) and s > 0 define x(θ, s) to be the f1 coordinate, in the (f1, f2) coordinate system,
of the point of γ (s)where the outward normal vector forms an anticlockwise angle θ with
the horizontal vector e1. Note that for s ≥ 0, x(·, s) defines a bijective function. We denote
by θ(·, s) its inverse.

It is more practical for the purposes of this section to rewrite the curve-shortening
flow in the (f1, f2) coordinate system. Using the explicit expression (2.4) of a(θ), some
trigonometry and the expression |f ′′(x)|/(1 + (f ′(x))2)3/2 for the absolute value of the
curvature at the point (x, f (x)) of the curve given by the graph of a function x 7→ f (x),
one finds that for θ ∈ (0, π/2),

a(θ)k(θ, s) = −
1
4
∂2
xf (x(θ, s), s) cos(θ − π/4)

and
∂tf (x, s) = −

a(θ(x, s))k(θ(x, s), s)

cos(θ(x, s)− π/4)
=

1
4
∂2
xf (x, s), (6.11)

so that

f (x, (1− δ)ε) = f (x, 0)+
∫ (1−δ)ε

0

1
4
∂2
xf (x, s) ds.

We need therefore to prove time regularity of ∂2
xf (·, s):

Lemma 6.4. One has

sup{|∂tf (x, s)−∂tf (x, 0)| : s ∈ [0, t] and x ∈ [x(P1), x(P2)]} ≤ 9(t, kmax, kmin,L(k))
(6.12)

where 9 tends to zero with the first argument.
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Proof. Recall from Section 5 that the curvature function k(θ, s) is jointly continuous in
(θ, s) and that its modulus of continuity depends only on kmax, kmin,L(k). Thus using
(6.11) it is sufficient to prove that θ(x, s) is a continuous function in s uniformly in x:

sup{|θ(x, s)− θ(x, 0)| : s ∈ [0, t] and x ∈ [x(P1), x(P2)]} ≤ 92(t, kmax, kmin,L(k))

where again 92 tends to zero as t → 0. This comes from the continuity of x(θ, ·):

sup{|x(θ, s)− x(θ, 0)| : s ∈ [0, t] and θ ∈ [0, π/2]} ≤ 93(t, kmax, kmin,L(k)),

and from the fact that x(·, s) is strictly monotone: for t ≥ 0,

inf{|∂θx(θ, s)| : s ≤ t, θ ∈ [0, π/2]} > c(kmin) > 0.

Both properties are consequences of

x(θ, t) = x(π/4, t)−
∫ θ

π/4

cos(θ ′ − π/4) dθ ′

k(θ ′, t)
,

which is easily derived from (5.3)–(5.4). ut

We finally see that for x ∈ (x(P1), x(P2)) and ε small enough (as a function of
kmin, kmax,L(k)),

f (x, (1− δ)ε) ≥ f (x, 0)+ (1− δ)
ε

4
(∂2
xf (x, 0)− η).

Thus, combining this with (6.10), we see that (6.9) is proved if one has

∂2
xf (x, 0)+ η < (1− δ)(∂2

xf (x, 0)− η),

i.e. 2η+ δ∂2
xf (x, 0) ≤ 0. For this it is sufficient to have η small enough, since (cf. (6.11))

sup{∂2
xf (x, 0) : x ∈ [x(P1), x(P2)]} can be upper bounded by a negative constant times

the minimal curvature kmin, which is strictly positive. ut

6.1.2. Proof of (6.8). Set h(·, t) to be the continuous concave function whose graph in
the (e1, e2) coordinate system is the portion of γ (t) which goes from P2(t) to P4(t)

with the anticlockwise orientation. Given a small η choose ξ small enough so that
sup{|∂xh(x, 0)| : u(P1)− ξ ≤ x ≤ u(P1)+ ξ} ≤ η.

Consider the C1 function h̄(·) equal to h(·, 0) on [u(P1)− 2ξ, u(P1)+ 2ξ ] and affine
outside. Assume for definiteness that h̄(u(P1) − 4ξ) ≤ h̄(u(P1) + 4ξ). Define ξ− =
u(P1) − 4ξ and ξ+ = inf{x > u(P1) : h̄(x) = h̄(ξ

−)}. We consider the restriction of h̄
to [ξ−, ξ+] and still call it h̄. Define

J 1
:= [ξ+,∞)× [h̄(ξ+),∞), J 2

:= (−∞, ξ−] × [h̄(ξ+),∞).

We consider the same chain of monotonicities as in the scale-invariant case (Section 4.3.2)
and we end up with a dynamics in the half-strip [Lξ−, Lξ+]× [Lh̄(ξ+),∞) with bound-
ary spins frozen to “+” inL(J 1

∪J 2) and to “−” in Z∗×(−∞, Lh̄(ξ+)] and an initial con-
dition with “−” spins under the graph of Lh̄(·/L). Also, the dynamics thus obtained does
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not allow moves that make the interface disconnected. Calling this dynamics (σ2(t))t≥0,
we see that (4.23) is satisfied.

Define HL : [Lξ−, Lξ+] → Z to be the function whose graph in (e1, e2) is the
interface between “+” and “−” spins. We have to prove

1
L
HL(Lx, εL

2) ≤ h(x, (1− δ)ε) for every x ∈ (u(P1)− ξ, u(P1)+ ξ). (6.13)

Following the same steps as in (4.25) to (4.28) (recall that ∂2
xh(·, 0) is uniformly contin-

uous by the Lipschitz curvature assumption) one finds that the left-hand side of (6.13) is
upper bounded w.h.p. by

h(x, 0)+
ε

2
(1+ η)−2(∂2

xh(u(P1), 0)+ r(x,L(k))
)
+ o(ε), (6.14)

where r(x,L(k)) tends to 0 when x → u(P1).
To estimate the r.h.s. of (6.13), one remarks that, in analogy with (6.11),

∂sh(x, s) = −a(θ(x, s))k(θ(x, s), s)/sin(θ(x, s)), (6.15)

so that ∂th(x, t) is continuous in x and t (since θ is around π/2, sin(θ(x, s)) is bounded
away from zero). Moreover

∂th(u(P1), 0) =
1
2
∂2
xh(u(P1), 0), (6.16)

which can be obtained directly from a(0) = 1/2 and from the fact that the curvature of D
at the north pole P1 equals minus the second derivative of h(x, 0) computed at x = u(P1).
Thus for every x ∈ (u(P1)− ξ, u(P1)+ ξ),

h(x, (1− δ)ε) ≥ h(x, 0)+ (1− δ)
ε

2
(1+ η)∂2

xh(u(P1), 0), (6.17)

and (6.13) is proven (by combining (6.14) and (6.17)) if one chooses η and ξ small
enough.

6.2. Lower bound: proof of (6.4)

We are confident that the reader is by now convinced that the proof of Theorem 2.2 is
essentially identical to that in the scale-invariant case, modulo the fact that the definitions
of the various subsets of R2 needed to define the regions where spins are frozen to “−” or
“+” (U, J 1, J 2, etc.) have to be adapted in the obvious way due to the lack of discrete-
rotation symmetry of the general initial droplet D. We will therefore skip the proof of
(6.4) altogether and limit ourselves to indicating the only point where some (minor) care
has to be taken.

The definition of the set U in (4.32) is replaced by U := D(−ν) (cf. (2.6)). Let s1
be the vertical segment obtained by moving downwards from the “north pole of U” up
to the point c where s1 meets s2, the horizontal segment obtained by moving to the left
from the “east pole” of U until c is reached. To prove the analog of (4.34), mimicking
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Fig. 13

the proof given in Section 4.4.4, one would like to apply (6.2) in order to freeze to “−”
all the spins along the two rescaled segments Ls1, Ls2. This is however not allowed in
general, because nothing guarantees that they are entirely contained in LU , i.e., that c ∈
U (this problem does not occur for the invariant shape D , where c is the origin). The
solution however is simple (cf. Figure 13): one just freezes to “−” all the spins along
the portions of Ls1, Ls2 which are inside LU , and along the shorter portion of L∂U
which connects them (call this portion 0). The point is that in this situation the +/−
interface between north and east poles follows again the corner dynamics and Theorem
3.2 is applicable. The freezing of “−” spins along 0 is equivalent to putting a hard-wall
constraint in the corner dynamics (the interface is not allowed to cross a zig-zag path
which approximates 0), but this is irrelevant: since 0 is at distance of order L away from
the linear profile the corner dynamics approaches for long times, the probability that the
interface even feels the hard-wall constraint within the diffusive times of order L2 we are
interested in goes to zero with L (this again can be seen via Theorem 3.2). Other than
that, the proof of (6.4) is identical to that in the D = D case.

7. Proof of Theorem 3.2: scaling limit for SSEP

The first step is to discretize (3.3), so that instead of working with φ(·, ·) we get the
solution 8(·, ·) of the analogous discrete Cauchy problem:

∂t8(x, t) =
1
218(x, t),

8L(0, t) = h0
0 = 0,

8L(L, t) = h0
L,

8L(x, 0) = h0
x,

for every t ≥ 0 and x ∈ {1, . . . , L− 1}. Here 1 is the discrete Laplacian operator:

(1f )(x) := f (x + 1)+ f (x − 1)− 2f (x), ∀x ∈ {1, . . . , L− 1}. (7.1)
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Note that 8(x, t) = E[hx(t)], with (h(t))t≥0 the process with generator (3.2), and that
8(0, t)− h0(t) = 8(L, t)− hL(t) = 0. It is a standard result that 8, the solution of the
discrete space heat equation, converges to φ in all reasonable norms when L→∞ in the
diffusive limit. We record this result here:

Lemma 7.1.

lim
L→∞

max
t∈[0,T ]

max
x∈[0,1]

1
L
|8(bxLc, tL2)− Lφ(x, t)| = 0.

By Lemma 7.1, it remains to prove

lim
L→∞

P
[

max
t∈[0,T L2]

max
x∈{1,...,L−1}

|hx(t)−8(x, t)| < εL
]
= 1. (7.2)

Both h·(t) and 8(·, t) are 1-Lipschitz functions (for all t) so that |h·(t) − 8(·, t)| is
2-Lipschitz and{

max
x∈{1,...,L−1}

|hx(t)−8(x, t)| ≥ a
}
⇒

{L−1∑
x=1

[hx(t)−8(x, t)]
2
≥ a3/3

}
.

As a consequence, (7.2) is equivalent to the following L2 convergence statement:

Proposition 7.2. The following convergence in probability holds:

lim
L→∞

sup
t∈[0,L2T ]

1
L3

L−1∑
x=1

[hx(t)−8(x, t)]
2
= 0. (7.3)

Proof. The restriction of the operator 1 to

3L =
{
g : {0, . . . , L} → R : g(0) = g(L) = 0

}
is self-adjoint (for the canonical scalar product on RL−1 denoted henceforth by 〈·, ·〉), and
the family of functions

fk : {0, . . . , L} 3 x 7→
√

2/L sin(kπx/L), k = 1, . . . , L− 1,

forms an orthonormal basis of 3L of 1-eigenfunctions, with respective eigenvalues

−λk := 2 cos(πk/L)− 2 < 0.

As the function x 7→ hx(t) − 8(x, t) is in 3L, it can be decomposed with respect to
this basis. We use the notation H k

t for its k-th coordinate (multiplied by
√
L/2 for conve-

nience):

H k
t :=

L∑
x=0

[hx(t)−8(x, t)] sin(kπx/L).

The quantity one wants to estimate in (7.3) is

sup
t∈[0,L2T ]

2
L4

L−1∑
k=1

(H k
t )

2
≤

2
L4

L−1∑
k=1

sup
t∈[0,L2T ]

(H k
t )

2. (7.4)

We control the right-hand side by controlling each H k
t separately.
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Lemma 7.3. For every L, k ∈ {1, . . . , L− 1} and t > 0 one has deterministically

|H k
t | ≤ 4L2/k. (7.5)

Moreover for any given T , w.h.p.,

|H k
t | ≤ L

7/4 for all k ≤ (logL)1/3 and t ≤ L2T . (7.6)

Proof. The first statement is easy. By summation by parts,

H k
t =

L∑
x=1

(
[hx(t)−8(x, t)] − [hx−1(t)−8(x − 1, t)]

) L∑
y=x

sin(kπy/L).

Then one can check that for every x and k,

|[hx(t)−8(x, t)] − [hx−1(t)−8(x − 1, t)]| ≤ 2,∣∣∣ L∑
y=x

sin(kπy/L)
∣∣∣ ≤ 2L/k,

so that (7.5) follows.
For the second statement, first, one notices that for all k ∈ {1, . . . , L−1}, the functions

Fk : �ML,NL 3 h 7→

L∑
x=0

sin(πkx/L)
[
hx −

hL − h0

L
x

]
are eigenfunctions of L with respective eigenvalues −λk/2. Indeed, Fk is just a linear
combination of the coordinate function Ax : h 7→ hx (plus a constant), and it can be seen
from the very definition (3.2) of the generator L that

L(Ax)(h) = 1
2 (1h)(x) =

1
2 (1h̃)(x)

with the notation h̃x = hx −
hL−h0
L

x. Hence (note that h̃ ∈ 3L)

2LFk(h) =
√
L/2 〈fk,1h̃〉 =

√
L/2 〈1fk, h̃〉 = −λk

√
L/2 〈fk, h̃〉 = −λkFk(h).

As a consequence one can rewrite

H k
t =

L∑
x=0

sin(kπx/L)h̃x(t)− e−λk t/2
L∑
x=0

sin(kπx/L)h̃x(0)

and notice that Mk
t := eλk t/2H k

t is a martingale. Therefore one can get the result by
computing the second moment of Mk

t and using Doob’s inequality.
It is not difficult to bound the quadratic variation of Mk . Notice that

E[(Mk
t )

2
] = E

[∫ t

0
d〈Mk

〉s

]
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and that

d〈Mk
〉s = e

λksd〈H k
〉s = e

λks
L−1∑
k=1

sin2(kπx/L)
(1(h(t))(x))2

4
ds ≤ Leλks ds

so that E[(Mk
t )

2
] ≤ L

∫ t
0 e

λks ds. Therefore (using λk = π2k2/L2(1 + o(1)) uniformly
for all k ≤ (logL)1/3),

P
[

sup
t∈[0,L2T ]

|H k
t | ≥ a

]
≤ P

[
sup

t∈[0,L2T ]

|Mk
t | ≥ a

]
≤ C

L3eλkL
2T

a2k2 .

Using this inequality for a := L7/4 and all k ≤ (logL)1/3 one gets

P
[
∃t ∈ [0, L2T ], ∃k ≤ (logL)1/3, |H k

t | ≥ L
7/4]
≤

∑
k≤(logL)1/3

C

k2
√
L
ek

2π2T .

One can check that the right-hand side above tends to zero when L goes to infinity, which
finishes the proof of Lemma 7.3. ut

We now turn to (7.4):

2
L4

L−1∑
k=1

sup
t∈[0,L2T ]

(H k
t )

2
≤

2
L4

∑
k≤(logL)1/3

sup
t∈[0,L2T ]

(H k
t )

2
+ 32

L∑
k=d(logL)1/3e

k−2.

The second term tends to zero (it is roughly (logL)−1/3). The first one is w.h.p. less than

2
L4

∑
k≤(logL)1/3

L7/2
≤

logL
√
L
.

This completes the proof of Proposition 7.2 and thus also the one of Theorem 3.2. ut

Appendix A. Proof of Theorem 3.4: scaling limit for the zero-range process

This section follows quite closely the computations in Appendix A of [23].

A.1. Particle system and monotonicity

For x ∈ {−L, . . . , L}we denote by ηx := hx+1−hx the discrete gradient of h in x. A con-
figuration h ∈ �L can be alternatively given by η ∈ 2L := {η : {−L, . . . , L} → Z}. It
turns out that the zero-range process description of the dynamics (cf. Section 3.2) is easier
to work with.
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For a more formal description of the dynamics we write its generator explicitly. For
η ∈ 2L and x ∈ {−L, . . . , L− 1}, we define the configuration Eη(x) as

Eη(x)(x) := ηx − sg(ηx),

Eη(x)(x + 1) := ηx+1 + sg(ηx),

Eη(x)(y) := ηy, ∀y /∈ {x, x + 1}.

We define

E

η(x) analogously for x ∈ {−L + 1, . . . , L} replacing x + 1 in the second and
third lines by x − 1. The sign function sg is given by

sg(a) :=


1 if a > 0,
−1 if a < 0,
0 if a = 0.

The generator of the chain seen in the state space 2L is given by

Lf :=
1
2

L−1∑
x=−L

[f (Eη(x))+ f (

E

η(x+1))− 2f (η)]. (A.1)

Note that the dynamics conserves the sum of the η’s, i.e. the value of hL+1.
Before going to the core of the proof, we need to change the initial condition slightly.

In order to compare with the original one, one needs the following monotonicity state-
ment:

Proposition A.1 (Coupling).

(i) There is a canonical way of constructing simultaneously the dynamics with generator
(3.5) from all possible initial configurations h0. It has the following monotonicity
property: given h0 and h̄0 with h0

x ≥ h̄0
x for all x, the dynamics h and h̄ starting

from h0 and h̄0 respectively satisfy hx(t) ≥ h̄x(t) for every t and x. Moreover, the
dynamics started from h0

+a, a ∈ Z, (a vertically translated version of h0, including
the boundary conditions h0 and hL+1) is simply (h(t)+ a)t≥0.

(ii) There is a canonical way of constructing the dynamics with generator (A.1) from all
possible initial configurations η0. It has the following monotonicity property: given
η0 and η̄0 with η0

x ≥ η̄0
x for all x, the dynamics η and η̄ starting from η0 and η̄0

respectively satisfy ηx(t) ≥ η̄x(t) for every t and x.

Proof. The idea of the proof is a canonical construction of the process, similarly to what is
done in Section 2.3. It is quite classic but we perfom it here for the sake of completeness.

• For x ∈ {−L+ 1, L} we define (τn,x)n≥0 and (τ ′n,x)n≥0 to be two IID clock processes,
with τ0,x = 0 and τn+1,x − τn,x IID exponential variables of mean 2.
• The process h(·) is càdlàg and constant in time except at the ringing times of the

clock processes. At time τn,x only hx is modified, as follows: hx(τn,x) = hx(τ−n,x) +
sg(hx−1(τ

−
n,x)−hx(τ

−
n,x)), the other coordinates being left unchanged. At time τ ′n,x only

hx is modified, as follows: hx(τ ′n,x) = hx((τ
′
n,x)
−)+ sg(hx+1((τ

′
n,x)
−)−hx((τ

′
n,x)
−)),

the other coordinates being left unchanged.
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The reader can check that this allows one to couple the dynamics from all possible ini-
tial conditions and that the coupling has the desired properties. This coupling induces a
coupling on η that also has the right properties. ut

A.2. Changing the initial condition

We prove (3.9) working with an initial condition which is not the one, h0, described
in (3.7), which is random and for which the number of particle at a site is given by a
geometric variable. The reason for this change of initial condition will appear in the proof
of (iii) in Lemma A.3. We explain in this section why this implies the result starting
from h0.

Given a continuous function φ0
: [−1, 1] → R with φ0(±1) = 0 and with a finite

number of changes of monotonicity, set (η̂x)x∈{−L,...,L} to be a family of independent
variables with the following distribution: if φ0((x + 1)/L) − φ0(x/L) ≥ 0 then η̂x is
a geometric variable of mean L(φ0((x + 1)/L) − φ0(x/L)), and if (φ0((x + 1)/L) −
φ0(x/L)) < 0 then −η̂x is a geometric variable of mean L(φ0(x/L) − φ0((x + 1)/L))
(with the convention that φ0(1+ 1/L) = 0). One sets

ĥ0
x =

x−1∑
y=−L

η̂y .

Note that for every ε > 0, w.h.p.,

ĥ0
x − L

1/2+ε
≤ h0

x ≤ ĥ
0
x + L

1/2+ε for every x ∈ {−L, . . . , L+ 1}.

Let (h(t))t≥0, (ĥ(t))t≥0 be the dynamics with generator (3.5) started with initial condition
h0, ĥ0 respectively, constructed using the canonical way of Proposition A.1(i). Then with
high probability, for every t > 0 and x ∈ {−L, . . . , L},

ĥx(t)− L
1/2+ε

≤ hx(t) ≤ ĥx(t)+ L
1/2+ε.

Therefore in order to prove (3.9) for h(·), it is sufficient to prove it for ĥ(·). We let η̂x(t) =
ĥx+1(t)− ĥx(t) denote the gradient of ĥ.

A.3. Proof of an L2 statement

For (ĥ(t))t≥0 defined above one has

Proposition A.2. For any t ≥ 0,

lim
L→∞

E
[

1
L3

L+1∑
x=−L

(8(x, L2t)− ĥx(L
2t))2

]
= 0.

This result does not directly imply (3.9) (ĥ may have a priori unbounded gradients), but
it is not to difficult to deduce it from Proposition A.2 (see Section A.4). In the rest of the
section, for ease of notation we write h, η instead of ĥ, η̂.
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Before starting the proof we need some technical statements. First note, recalling the
definition of the generator (3.5), that for every x ∈ {−L+ 1, . . . , L},

2∂tE[hx(t)] = E[sg(ηx(t))− sg(ηx−1(t))],

2∂tE[h2
x(t)] = E

[
2hx(t)(sg(ηx(t))− sg(ηx−1(t)))+ (|sg(ηx(t))| + |sg(ηx−1(t))|)

]
.

(A.2)

Now some remarks:

Lemma A.3. The following properties hold (recall notation in (3.2)):

(i) maxx |qx(t)| is a non-increasing function of t . As a consequence,

∀t > 0, ∀x ∈ {−L, . . . , L}, |qx(t)| ≤ ‖∂xφ
0
‖∞.

(ii) maxx |σ(qx+1(t)) − σ(qx(t))| is a non-increasing function of t (recall that σ(u) =
u/(1+ |u|)). Then, using also (i), for some C(φ0) = C(‖∂xφ

0
‖∞, ‖∂

2
xφ

0
‖∞) <∞

one has

∀t > 0, ∀x ∈ {−L, . . . , L}, |qx+1(t)− qx(t)| ≤ C(φ
0)/L. (A.3)

(iii) For any t , the random vectors (ηx(t))x∈{−L,...,L} and (−ηx(t))x∈{−L,...,L} are
stochastically dominated by 2L+ 1 IID geometric variables with mean ‖∂xφ0

‖∞.

Proof. For (i) it is sufficient to show that Q(t) = maxx qx(t) is non-increasing (by a
similar argument one shows that min qx(t) is non-decreasing). As the maximum over
finitely many differentiable functions, maxx qx(t) possesses a right and a left derivative
everywhere, and the right derivative is equal to

∂+t Q(t) = max
x∈argmax q·(t)

∂tqx(t).

For any x in maxx∈argmax q·(t), one has

2∂tqx(t) = σ(qx+1(t))+ σ(qx−1(t))− 2σ(qx(t)) ≤ 0

(as σ(qx(t)) is maximal), and therefore Q(t) is decreasing.
For (ii): Using the same argument as for (i), we have to note that for any fixed time T

and x0 where maxx[σ(qx+1)− σ(qx)](T ) is attained one has

2[∂t {σ(qx0+1)− σ(qx0)}](T ) = σ
′(qx0+1(T ))[σ(qx0+2(T ))− σ(qx0+1(T ))]

+ σ ′(qx0(T ))[σ(qx0(T ))− σ(qx0−1(T ))]

− [σ ′(qx0+1(T ))+ σ
′(qx0(T ))][σ(qx0+1(T ))− σ(qx0(T ))] ≤ 0.

Therefore,
|σ(qx+1(t))− σ(qx(t))| ≤ C(φ

0)/L.

In order to deduce (A.3), write

σ(qx+1(t))− σ(qx(t)) = σ
′(y)[qx+1(t)− qx(t)]
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for some qx+1(t) ≤ y ≤ qx(t). Since the qx are bounded (point (i)) and σ(·) has uni-
formly positive derivative on bounded intervals, (A.3) follows.

For (iii): One has L(φ0((x + 1)/L) − φ0(x/L)) ≤ ‖∂xφ
0
‖∞ so that the initial con-

figuration η0 is stochastically dominated by η̃0, the configuration given by 2L+1 IID ge-
ometric variables with mean ‖∂xφ0

‖∞. According to Proposition A.1(ii), one can couple
the two dynamics η and η̃ starting from η0 and η̃0 so that η(t) ≤ η̃(t) for all t ≥ 0. For
fixed t the law of η̃(t) is the same as the one of η̃0, as this distribution is stationary for the
dynamics. The other domination is proved in the same way. ut

Proof of Proposition A.2. We estimate the difference between E[L−3∑L+1
x=−L(8(x, L

2t)

− hx(L
2t))2] and the same quantity at time zero, by considering it as the integral of its

time derivative:

E
[

1
L3

L+1∑
x=−L

(8(x, L2t)− hx(L
2t))2

]
− E

[
1
L3

L+1∑
x=−L

(8(x, 0)− hx(0))2
]

=
1
L3

∫ L2t

0

L∑
x=−L+1

∂sE[(8(x, s)− hx(s))2] ds

=
1
L3

L∑
x=−L+1

∫ L2t

0
E
{
(8(x, s)− hx(s))(σ (qx(s))− σ(qx−1(s)))

−8(x, s)(sg(ηx(s))− sg(ηx−1(s)))

+ hx(s)(sg(ηx(s))− sg(ηx−1(s)))+
1
2 (|sg(ηx(s))| + |sg(ηx−1(s))|)

}
ds

=
1
L3

L∑
x=−L

∫ L2t

0
E
[
−qx(s)σ (qx(s))+ ηx(s)σ (qx(s))+ qx(s) sg(ηx(s))

− (|ηx(s)| − |sg(ηx(s))|)
]
ds

−
1
L3

∫ L2t

0
E
[
hL+1(s)(sg(ηL(s))− σ(qL(s)))+ 1

2 (|sg(η−L(s))| + |sg(ηL(s))|)
]
ds.

The second equality is obtained by expanding the product and using (A.2) and (3.8) to
estimate the derivative of each term in the expansion of the square. The third equality is
obtained via summation by parts; it gives a term that is due to the boundary effect (the
second one), which can be bounded as follows:

L−3
∣∣∣∣∫ L2t

0
E
[
hL+1(s)(sg(ηL(s))− σ(qL(s)))+ 1

2 (|sg(η−L(s))| + |sg(ηL(s))|)
]
ds

∣∣∣∣
≤ CL−1(1+ E |hL+1|) = O(L

−1/2).

Indeed, hL+1(t) is constant through time and is the sum of 2L+ 1 independent variables.
The mean of this sum is 0 and the variance of each term is bounded as we have supposed
φ0 to be smooth. The variance of hL+1 is thusO(L). We can also neglect the second term
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in the first line, as

E
[

1
L3

L+1∑
x=−L

(8(x, 0)− hx(0))2
]
=

1
L3

L+1∑
x=−L

Var(hx(0)) = O(L−1),

where the last equality is easy to obtain once we notice that hx is the sum of L + x
independent geometric variables with bounded variance.

Set

A(x, s) := −qx(s)σ (qx(s))+ηx(s)σ (qx(s))+qx(s) sg(ηx(s))− (|ηx(s)|− |sg(ηx(s))|).

From the previous equations one gets

E
[

1
L3

L∑
x=−L+1

(8(x, L2t)− hx(L
2t))2

]
=

1
L3

∫ L2t

0

L∑
x=−L+1

E[A(s, x)] ds + o(1).
(A.4)

To understand better the rest of the proof, the reader should notice that if
(ηx(s))x∈{−L,...,L} were distributed like geometric variables it would be possible to fac-
torize E[A(x, s)] into a product of negative sign and from equation (A.4) the proof would
be over. Indeed, for q > 0 and η distributed like a geometric variable of mean u > 0 (or
−η distributed like a geometric variable of mean −u > 0),

E
[
−qσ(q)+ ησ(q)+ q sg(η)− (|η| − |sg(η)|)

]
= −(q − u)(σ (q)− σ(u)) ≤ 0

(recall that σ(·) is an increasing function). It is not true in general that the ηx(s) are
geometrically distributed for s > 0 but it is reasonable to think that their distribution is
close to geometric: as the system mixes locally in finite time, what one should observe
on finite but large windows is close to an equilibrium measure, and from [1] it is known
that the only (infinite-volume translation invariant) equilibrium measures for the zero-
range process are convex combinations of products of geometric variables. Most of our
efforts will therefore be focused on proving convergence to the infinite volume measure
for a space-time averaged version of the probability distribution of the ηx(s) (using this
space-time average is somehow crucial for the proof to work).

As the limiting object is an infinite volume measure, it is somewhat more convenient
to consider η(s) as an element of ZZ by periodizing it: for the system of size 2L+ 1 one
sets ηx+k(2L+1) = ηx for every k ∈ Z and x ∈ {−L, . . . , L}. For y ∈ Z one defines θy to
be the shift operator η 7→ θxη defined by

∀x ∈ Z, (θyη)x := ηx+y . (A.5)

We define for each L > 0 the measure µLt on ZZ our space-time averaged measures
by its action on local functions (for K ∈ N we call f (η) a K-local function if f is
bounded and can be written as a function of η|[−K,K]; f is a local function if there exists
a K such that f is K-local):

µLt (f ) := E
[

1
tL2

1
2L+ 1

∫ L2t

0

L∑
y=−L

f (θy(η(s))) ds

]
. (A.6)
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We want to prove that any limit point (when L → ∞) of µLt is an equilibrium and use
this information to bound the right-hand side of (A.4).

We introduce some notation to describe the limiting measure. For u ∈ R define ρu

to be a measure on η = (ηx)x∈Z such that the ηx are IID geometric variables of mean
u if u ≥ 0, while the −ηx are IID geometric variables of mean −u if u < 0. If ν is a
probability measure on R, define

ρν :=

∫
ρu ν(du).

Proposition A.4. Fix t > 0. For any subsequence of (µLnt )n≥0, it is possible to find a

subsubsequence (µL
′
n
t )n≥0 that converges locally to ρν with ν a probability measure on R

with support in [−‖∂xφ0
‖∞, ‖∂xφ

0
‖∞], in the sense that for any local function f ,

lim
n→∞

µ
L′n
t (f ) = ρ

ν(f ). (A.7)

As a consequence, for any local function f ,

lim sup
L→∞

µLt (f ) ≤ max
u∈[−‖∂xφ0‖∞,‖∂xφ0‖∞]

ρu(f ). (A.8)

Remark A.5. Note that the convergence does not hold in the total variation distance:
indeed, the µLt give mass one to L-periodic η whereas these configurations have mass
zero for the limiting measure.

Proof of Proposition A.4. For any fixed K > 0, the sequence of laws of (ηx)x∈[−K,K]
underµLnt is tight by Lemma A.3(iii) and hence we can extract a converging subsequence.
By a diagonal procedure it is possible to extract a subsequence L′n of Ln and a family of

measures (µK)K≥0 on Z[−K,K] such that the law of (ηx)x∈[−K,K] under µL
′
n
t converges

to µK for all K . By construction for H ≥ K , µH projected on Z[−K,K] is equal to µK ,
and by the Kolmogorov extension theorem there exists a measure µ on ZZ such that µ
projected on Z[−K,K] equals µK for all K . Therefore, for every local function f ,

lim
n→∞

µ
L′n
t (f ) = µ(f ).

We have to show that µ can be written as ρν . First one remarks that µLnt is translation
invariant, so that µ is too. A second point to make is that µ-almost surely all the ηx (that
are not equal to zero) have the same sign. Indeed,

µ(∃x, x′ ∈ Z, ηxη′x < 0) = lim
K→∞

µ(∃x, x′ ∈ [−K,K], ηxη
′
x < 0)

= lim
K→∞

lim
n→∞

µ
L′n
t (∃x, x

′
∈ [−K,K], ηxη

′
x < 0)
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and

µLt (∃x, x
′
∈ [−K,K], ηxη

′
x < 0)

=
1

tL2(2L+ 1)

∫ L2t

0

L∑
y=−L

P
[
∃x, x′ ∈ [−K + y,K + y], ηx(s)ηx′(s) < 0

]
ds.

One realizes easily that

L∑
y=−L

1{∃x,x′∈[−K+y,K+y], ηxηx′<0}

is upper bounded by 2K + 1 times the number of sign changes in (ηx)x∈[−L,L+1]. From
the definition of the dynamics, a transition can only lower the number of sign changes.
Its initial value is smaller than the number of changes of monotonicity of φ0 (which is
assumed to be finite) plus one (the “plus one” can come from periodizing). Therefore

L∑
y=−L

P
[
∃x, x′ ∈ [−K + y,K + y], ηx(s)ηx′(s) < 0

]
≤ 2KC(φ0).

A third point is to show thatµ is an invariant measure for the infinite volume dynamics
(the infinite volume version of (A.1); call its generator L∞). For f a K-local function,
one has (for L ≥ K large enough)

µLt (L∞f ) =
1
tL2

1
2L+ 1

∫ L2t

0

L∑
y=−L

EL∞(f ◦ θy)(η(s)) ds.

For y ∈ [−L+K,L−K] the infinite volume generator applied to f has the same effect
as the finite volume generator so that∫ t

0
E[L∞(f ◦ θy)(η(s))] ds =

∫ t

0
∂sE[(f ◦ θy)(η(s))] ds

= E[(f ◦ θy)(η(t))− (f ◦ θy)(η(0))].

Therefore

µLt (L∞f ) =
1
tL2

1
2L+ 1

L−K∑
y=−L+K

E[(f ◦ θy)(η(tL2))− (f ◦ θy)(η(0))]

+
1
tL2

1
2L+ 1

∫ L2t

0

(−L+K−1∑
y=−L

+

L∑
y=L−K+1

)
E[L∞(f ◦ θy)(η(s))] ds = O(1/L).

As a consequence, for any local function f ,

µ(L∞f ) = lim
n→∞

µ
L′n
t (L∞f ) = 0.
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Restricted on the event that the ηx all have the same sign, L∞ is the generator of the zero-
range process with one type of particle and therefore µ is a translation invariant measure
for the zero-range process. From [1, Theorem 1.9] one can write µ = ρν for some ν.
By Lemma A.3(iii), under µ, at time zero, η is dominated by an IID family of geometric
variables of mean ‖∂xφ0

‖∞ and so is −η. This implies the claim on the support of ν.
The second statement of Proposition A.4 is standard; we include its proof for com-

pleteness. Given a local f one can extract a subsequence Ln such that

lim
n→∞

µ
Ln
t (f ) = lim sup

L→∞

µLt (f ).

From Ln one can extract a subsequence L′n such that µL
′
n
t converges to ρν so that

lim
n→∞

µ
Ln
t (f ) = lim

n→∞
µ
L′n
t (f ) =

∫
ρu(f ) ν(du),

which ends the proof. ut

Fix a large integer l. For y ∈ Z set

By := {1+ y, . . . , l + y}. (A.9)

For notational convenience, similarly to η in (A.5), one now considers periodized versions
(qx(s))s∈Z of q(s) and (A(x, s))x∈Z of A(·, s).

Now, one uses Proposition A.4 to control each term in E
∑
A(s, x).

Lemma A.6.

lim
l→∞

lim sup
L→∞

1
L3E

∫ L2t

0

L∑
y=−L

∣∣∣∣1l ∑
x∈By

qx(s) sg(ηx(s))− qy(s)σ
(

1
l

∑
x∈By

ηx(s)

)
ds

∣∣∣∣ = 0.

(A.10)

Proof. Fix l > 0. For L large enough, and all y ∈ {−L, . . . , L− l},

∣∣∣∣1l ∑
x∈By

qx(s) sg(ηx(s))− qy(s)σ
(

1
l

∑
x∈By

ηx(s)

)∣∣∣∣
≤ |qy(s)|

∣∣∣∣1l ∑
x∈By

sg(ηx(s))− σ
(

1
l

∑
x∈By

ηx(s)

)∣∣∣∣+ max
x∈By
|qx(s)− qy(s)|.

Moreover, uniformly in y ∈ {−L, . . . , L− l}, as a consequence of Lemma A.3(ii),

max
y∈{−L,...,L−l}, x∈By , s≥0

|qx(s)− qy(s)| = O(l/L).
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The contribution of y ∈ {L − l + 1, L} to the sum over y in (A.10) is O(l). Therefore
summing over y ∈ {−L, . . . , L}, integrating over s and taking expectation one gets

∣∣∣∣∫ tL2

0
E
[ L∑
y=−L

(
1
l

∑
x∈By

qx(s) sg(ηx(s))
)
− qy(s)σ

(
1
l

∑
x∈By

ηx(s)

)]
ds

∣∣∣∣
≤

(
max
y,s
|qy(s)|

)∣∣∣∣∫ tL2

0
E
[ L∑
y=−L

(
1
l

∑
x∈By

sg(ηx(s))
)
−σ

(
1
l

∑
x∈By

ηx(s)

)]
ds

∣∣∣∣+O(lL2)

=

(
max
y,s
|qy(s)|

)
tL2(2L+1)µLt

(∣∣∣∣1l ∑
x∈B0

sg(ηx)−σ
(

1
l

∑
x∈B0

ηx

)∣∣∣∣)+O(lL2)

where µLt is defined in (A.6). Therefore, the proof will be finished provided we show

lim
l→∞

lim sup
L→∞

µLt

(∣∣∣∣1l ∑
x∈B0

sg(ηx)− σ
(

1
l

∑
x∈B0

ηx

)∣∣∣∣) = 0.

From Proposition A.4 one has

lim sup
L→∞

µLt

(∣∣∣∣1l ∑
x∈B0

sg(ηx)− σ
(

1
l

∑
x∈B0

ηx

)∣∣∣∣)
≤ sup

0≤u≤‖∂xφ0‖∞

ρu
(∣∣∣∣1l ∑

x∈B0

sg(ηx)− σ
(

1
l

∑
x∈B0

ηx

)∣∣∣∣)

and one can check that the right-hand side tends to zero as l → ∞: we note that for
every x one has ρu(sg(ηx)) = σ(u), and the law of large numbers tells us that the two
terms 1

l

∑
x∈By

sg(ηx) and σ
( 1
l

∑
x∈By

ηx
)

have the same limit as l → ∞. However,
because of the sup over u one needs more quantitative estimates than the law of large
numbers to conclude. For instance we can get them by using the second moment method;
we leave the details to the reader. ut

Similarly to Lemma A.6 one shows

Lemma A.7.

lim
l→∞

lim sup
L→∞

1
L3

∫ L2t

0

L∑
y=−L

E(G(η(s))) = lim
l→∞

lim sup
L→∞

t (2L+ 1)
L

µLt (G(η)) = 0

where

G(η) =

∣∣∣∣1l ∑
x∈By

(
|ηx(s)| − |sg(ηx(s))|

)
−

(
1
l

∑
x∈By

ηx(s)

)
σ

(
1
l

∑
x∈By

ηx(s)

)∣∣∣∣.
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Proof. The proof is very similar to that of Lemma A.6, the only additional technical
point being that the function G(η) is not bounded so that one cannot use Proposition A.4
directly. However stochastic domination given by Lemma A.3(iii) allows us to get the
same conclusion by considering the function η 7→ min(G(η),K), and letting K tend to
infinity afterwards. Altogether one gets

lim sup
L→∞

µLt (G) ≤ sup
0≤u≤‖∂xφ0‖∞

ρu(G).

We end the proof in the same way as for the previous lemma, remarking that

ρu(|ηx | − |sg(ηx)|) = uσ(u). ut

Now we are ready to conclude:

L∑
y=−L

A(y, s) =

L∑
y=−L

{
−qy(s)σ (qy(s))+

1
l

∑
x∈By

(
ηx(s)σ (qx(s))

+ qx(s) sg(ηx(s))− (|ηx(s)| − |sg(ηx(s))|)
)}

≤

L∑
y=−L

−qy(s)σ (qy(s)+

(
1
l

∑
x∈By

ηx(s)

)
σ(qy(s))+ qy(s)σ

(
1
l

∑
x∈By

ηx(s)

)

−

(
1
l

∑
x∈By

ηx(s)

)
σ

(
1
l

∑
x∈By

ηx(s)

)
+ R(s, l, L)

= R(s, l, L)−

L∑
y=−L

[
qy(s)−

1
l

∑
x∈By

ηx(s)

][
σ(qy(s))− σ

(
1
l

∑
x∈By

ηx(s)

)]

where

R(s, l, L) = −

L∑
y=−L

1
l

(∑
x∈By

ηx(s)
(
σ(qy(s))− σ(qx(s))

))
+

∣∣∣∣1l ∑
x∈By

qx(s) sg(ηx(s))− qy(s)σ
(

1
l

∑
x∈By

ηx(s)

)∣∣∣∣
+

∣∣∣∣1l ∑
x∈By

(
|ηx(s)| − |sg(ηx(s)|

)
−

(
1
l

∑
x∈By

ηx(s)

)
σ

(
1
l

∑
x∈By

ηx(s)

)∣∣∣∣
and the second term is non-positive (a − b and σ(a)− σ(b) have the same sign).

According to (ii)–(iii) in Lemma A.3 (to control the first term) and Lemmata A.6
and A.7,

lim
l→∞

lim sup
L→0

1
L3

∫ L2t

0
ER(s, l, L) ds = 0.
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This implies

lim sup
L→∞

1
L3

∫ L2t

0

L∑
y=−L

EA(x, s) ds ≤ 0

and therefore the result that we want to prove, from (A.4). ut

A.4. Concluding the proof of Theorem 3.4

It is not hard to transform the L2 statement of Proposition A.2 into the desired “almost
sure” statement:

Proposition A.8. For any ε > 0 and t ≥ 0, w.h.p.,

max
x∈{−L,...,L+1}

1
L
|8(x,L2t)− ĥx(L

2t)| ≤ ε.

Proof. Also here we write h for ĥ. Note that from Lemma A.3(iii) the random vec-
tor (|ηx(t)|)x∈{−L,...,L} is stochastically dominated for every t by a vector of IID time-
independent geometric variables. This implies that there exists a constant C such that for
any t ≥ 0, w.h.p.,

|hx(t)− hy(t)| ≤ C|x − y| if x, y ∈ {−L, . . . , L}, |x − y| ≥ logL (A.11)

(this can be proved by using large deviation estimates and a union bound on x, y ∈
{−L, . . . , L}). Moreover Lemma A.3(i) ensures that 8(·, t) is always Lipschitz so that
(A.11) also holds for 8(·, t)− h·(t).

With (A.11) and L large enough, one has{
max

x∈{−L,...,L+1}
|8(x,L2t)− hx(L

2t)| ≥ εL
}

⊂

{ ∑
x∈{−L,...,L+1}

|8(x,L2t)− hx(L
2t)|2 ≥

ε3L3

10C

}
,

so that the left-hand side event has small probability when L is large, otherwise Proposi-
tion A.2 would be false. ut

A.5. Laplacian bounds

Recall that8(x, t) is the solution of the Cauchy problem (3.8). We want to bound8(x, t)
above and below by the solution of a suitable heat equation. For this, we will suppose that
the function φ0, through which the initial condition 80 for 8(x, t) is defined, is concave
on [−1, 1] (in addition to the assumptions required for Theorem 3.4). One defines the
evolution 81(x, t) as the solution of

∂t81(x, t) =
1
2181(x, t),

81(−L, t) = 8(L+ 1, t) = 0,
81(x, 0) = 80(x),
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for t ≥ 0, x ∈ {−L + 1, L}. Also we define 82(x, t) as the solution of the analogous
equation (with the same boundary values) where the discrete Laplacian is multiplied by
(1/2)σ ′(‖∂xφ0

‖∞) = 1/(1+ ‖∂xφ0
‖∞)

2.

Proposition A.9. For all t ≥ 0 and x ∈ {−L, . . . , L+ 1} one has

81(x, t) ≤ 8(x, t) ≤ 82(x, t). (A.12)

Proof. We prove the upper bound, the lower one being very similar. Suppose that the
result does not hold and set

T := max
{
t : 8(x, s) ≤ 82(x, s) for every s ≤ t and x ∈ {−L, . . . , L+ 1}

}
.

Note that by the property of the heat equation,82(x, t) is a strictly concave function of x
for all positive t (except in the case where one starts from the flat initial condition, but in
that case the statement is trivial). Let x0 be such that

8(x0, T ) = 82(x0, T ).

Then one remarks that qx0(T )− qx0−1(T ) < 0 (by strict concavity of 82(·, T )) and that
by Lemma A.3, maxx |qx(t)| ≤ ‖∂xφ0

‖∞, so that

σ(qx0(T ))− σ(qx0−1(T )) < (qx0(T )− qx0−1(T ))σ
′(‖∂xφ0‖∞)

(since σ ′(·) is decreasing on R+) and hence

2∂t [82 −8](x0, T ) = σ
′(‖∂xφ0‖∞)182(x, t)− σ(qx0(T ))+ σ(qx0−1(T ))

> σ ′(‖∂xφ0‖∞)
[
(82(x + 1, t)+82(x − 1, t))− (8(x + 1, t)+8(x − 1, t))

]
.

Since the last expression is non-negative, one has 8(x, t) < 82(x, t) on an interval
[T , T + ε(x)] for some ε(x) > 0 and every x ∈ {−L, . . . , L+ 1}, and that concludes the
proof since the only possibility is that T = ∞. ut
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