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Abstract. Let g be a simple Lie algebra and Abo the poset of non-trivial abelian ideals of a fixed
Borel subalgebra of g. In [8], we constructed a partition Abo =

⊔
µ Abµ parameterised by the long

positive roots of g and studied the subposets Abµ. In this note, we show that this partition is com-
patible with intersections, relate it to the Kostant–Peterson parameterisation and to the centralisers
of abelian ideals. We also prove that the poset of positive roots of g is a join-semilattice.
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Introduction

Let g be a complex simple Lie algebra with a triangular decomposition g = u⊕ t⊕ u−.
Here t is a fixed Cartan subalgebra and b = u⊕t is a fixed Borel subalgebra. Accordingly,
1 is the set of roots of (g, t), 1+ is the set of positive roots corresponding to u, and 5 is
the set of simple roots in 1+. Write θ for the highest root in 1+.

A subspace a ⊂ u is an abelian ideal (of b) if [b, a] ⊂ a and [a, a] = 0. The
set of abelian ideals of b is denoted by Ab. In the landmark paper [7], Kostant elabo-
rated on Dale Peterson’s theory of abelian ideals (in particular, the astounding result that
#Ab = 2rkg) and related abelian ideals with problems in representation theory. Since
then, abelian ideals have attracted a lot of attention: see e.g. [2, 3, 4, 8, 11, 12, 15]. We
think of Ab as a poset with respect to inclusion. As a ∈ Ab is a sum of certain root spaces,
we may (and will) identify such an a with the corresponding subset I = Ia of 1+.

Let Abo = Abo(g) denote the set of non-zero abelian ideals and 1+l the set of long
positive roots. In the simply-laced case, all roots are assumed to be long. In [8, Sect. 2],
we defined a surjective mapping τ : Abo → 1+l and studied its fibres. If a ∈ Abo and
τ(a) = µ, then µ is called the rootlet of a, also denoted by rt(a) or rt(Ia). Letting Abµ =
τ−1(µ), we get a partition of Abo parameterised by 1+l . Each fibre Abµ is regarded as
a subposet of Ab. It is known that, for any µ ∈ 1+l , Abµ has a unique minimal and
unique maximal element [8, Sect. 3]. Regarding abelian ideals as subsets of1+, we write
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I (µ)min (resp. I (µ)max) for the minimal (resp. maximal) element of Abµ. We also say
that I (µ)min is the µ-minimal and I (µ)max is the µ-maximal ideal. Various properties of
the µ-minimal ideals are obtained in [8, Sect. 4]. For instance, if ( , ) is a Weyl group
invariant scalar product, then

• #I (µ)min = (ρ, θ
∨
− µ∨)+ 1, where ρ = 1

2
∑
γ∈1+ γ and µ∨ = 2µ/(µ,µ);

• I = I (µ)min for some µ ∈ 1+l if and only if I ⊂ H := {γ ∈ 1+ | (γ, θ) 6= 0};
• I (µ)min ⊂ I (µ

′)min if and only if µ′ 4 µ, where ‘4’ is the usual root order on 1+.
• I (µ)min = I (µ)max if and only if (µ, θ) = 0 [8, Thm. 5.1].

If rt(I ) 6∈ 5, then there is I ′ ∈ Ab such that I ′ ⊃ I , #I ′ = #I + 1 and rt(I ′) ≺ rt(I ).
This is implicit in [8, Thm. 2.6] (cf. also Proposition 1.1). This implies that the (glob-
ally) maximal ideals of Ab are precisely the maximal elements of the posets Abα for
α ∈ 5 ∩ 1+l =: 5l (see [8, Cor. 3.8]). A closed formula for the dimension of all max-
imal abelian ideals is proved in [4, Sect. 8], [15]. In this paper, we elaborate on further
properties of the partition

Abo =
⊔
µ∈1+l

Abµ (0.1)

and related properties of abelian ideals and root systems.
In Section 2, we show that partition (0.1) behaves well with respect to intersections.

Theorem 0.1. Let µ,µ′ ∈ 1+l .

(i) If I ∈ Abµ and I ′ ∈ Abµ′ , then I ∩ I ′ belongs to Abν , where ν does not depend on
the choice of I and I ′. Actually, ν is the unique smallest long positive root such that
ν < µ and ν < µ′. In particular, such a ν always exists.

(ii) Furthermore, I (µ)min ∩ I (µ
′)min = I (ν)min, I (µ)max ∩ I (µ

′)max = I (ν)max, and
every ideal in Abν occurs as intersection of two ideals from Abµ and Abµ′ .

The root ν occurring in (i) is denoted by µ∨µ′. In our approach, the existence of µ∨µ′

(µ,µ′ ∈ 1+l ) comes up as a byproduct of our theory of the posets Abµ. This prompts the
natural question of whether∨ is well-defined for all pairs of positive roots, not necessarily
long. The corresponding general assertion is proved in the Appendix (see Theorem A.1).
It seems that this property of root systems has not been noticed before.

In Section 3, we give a characterisation of µ-minimal abelian ideals that relates two
different approaches to Ab. We have associated the rootlet rt(I ) ∈ 1+l to a non-zero
abelian ideal I . On the other hand, there is a bijection between Ab and certain elements
in the coroot lattice Q∨, which is due to Kostant and Peterson [7]. Namely,

Ab
1:1
←→ Z1 = {z ∈ Q

∨
| −1 ≤ (z, γ ) ≤ 2 for all γ ∈ 1+}.

The element z ∈ Q∨ corresponding to I ∈ Ab is denoted by zI . Our result is

Theorem 0.2. For an abelian ideal I , we have

I = I (µ)min for µ = rt(I ) if and only if rt(I )∨ = zI .
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We also prove that

• an abelian ideal I belongs to Abµ if and only if I ∩H = I (µ)min;
• I (µ)max ⊂ {ν ∈ 1

+
| ν < µ}.

In Section 4, we consider the centralisers of abelian ideals. If a ∈ Ab, then the cen-
traliser zg(a) is a b-stable subspace of g. However, zg(a) is not always contained in b.
We give criteria for zg(a) to be a nilpotent subalgebra or a sum of abelian ideals. We also
prove

Theorem 0.3. Let a ∈ Ab. Then zg(a) is again an abelian ideal if and only if rt(a) ∈ 5l .
In particular, zg(a) = a if and only if a is a maximal ideal in Ab.

In fact, Theorem 0.3 is closely related to the following interesting observation. For any
S ⊂ 1+, let min(S) and max(S) denote the sets of minimal and maximal elements of S,
respectively.

Theorem 0.4. For every α ∈ 5l , there is a one-to-one correspondence between
min(I (α)min) and max(1+ \ I (α)max). Namely, if ν ∈ min(I (α)min), then θ − ν is in
max(1+ \ I (α)max); and vice versa. In particular, max(1+ \ I (α)max) ⊂ H.

An analogous statement for arbitrary long roots (in place of α ∈ 5l) is not true. However,
there is a modification of Theorem 0.4 that applies to the connected subsets of 5l (see
Theorem 4.9).

We refer to [1, 5] for standard results on root systems and (affine) Weyl groups.

1. Preliminaries on abelian ideals and minuscule elements

Throughout this paper,1 is the root system of (g, t)with positive roots1+ corresponding
to u, simple roots 5 = {α1, . . . , αn}, and Weyl group W . Set 5l := 5 ∩1+l . We equip
1+ with the usual partial ordering 4. This means that µ 4 ν if ν − µ is a non-negative
integral linear combination of simple roots. Write µ ≺ ν if µ 4 ν and µ 6= ν.

If a is an abelian ideal of b, then a is a sum of certain root spaces in u, i.e., a =⊕
γ∈Ia

gγ . The relation [b, a] ⊂ a is equivalent to I = Ia being an upper ideal of the
poset (1+,4), i.e., if ν ∈ I , γ ∈ 1+, and ν 4 γ , then γ ∈ I . The property of being
abelian means that γ ′ + γ ′′ 6∈ 1+ for all γ ′, γ ′′ ∈ I . We often work in the setting of root
systems, so that a b-ideal a ⊂ u is being identified with the corresponding subset I of
positive roots.

The theory of abelian ideals relies on the relationship, due to Peterson, between the
abelian ideals and the so-called minuscule elements of the affine Weyl group of1. Recall
the necessary setup.

We have the vector space V =
⊕n

i=1 Rαi , the Weyl group W generated by simple
reflections s1, . . . , sn, and aW -invariant inner product ( , ) on V . Let V̂ = V ⊕Rδ⊕Rλ.
We extend the inner product ( , ) on V̂ so that (δ, V ) = (λ, V ) = (δ, δ) = (λ, λ) = 0
and (δ, λ) = 1. Set α0 = δ − θ , where θ is the highest root in 1+. Then
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• 1̂ = {1+ kδ | k ∈ Z} is the set of affine (real) roots;
• 1̂+ = 1+ ∪ {1+ kδ | k ≥ 1} is the set of positive affine roots;
• 5̂ = 5 ∪ {α0} is the corresponding set of affine simple roots;
• µ∨ = 2µ/(µ,µ) is the coroot corresponding to µ ∈ 1̂;
• Q =

⊕n
i=1 Zαi is the root lattice and Q∨ =

⊕n
i=1 Zα∨i is the coroot lattice in V .

For each αi ∈ 5̂, let si denote the corresponding reflection in GL(V̂ ). That is, si(x) =
x − (x, αi)α

∨

i for any x ∈ V̂ . The affine Weyl group, Ŵ , is the subgroup of GL(V̂ )
generated by the reflections s0, s1, . . . , sn. The extended inner product ( , ) on V̂ is
Ŵ -invariant. The inversion set of w ∈ Ŵ is N(w) = {ν ∈ 1̂+ | w(ν) ∈ −1̂+}.

Following Peterson, we say that w ∈ Ŵ is minuscule if N(w) = {−γ + δ | γ ∈ Iw}
for some subset Iw ⊂ 1. One then proves that (i) Iw ⊂ 1+, (ii) Iw is an abelian ideal,
and (iii) the assignment w 7→ Iw yields a bijection between the minuscule elements of Ŵ
and the abelian ideals (see [7], [2, Prop. 2.8]). Accordingly, if I ∈ Ab, then wI denotes
the corresponding minuscule element of Ŵ . Obviously, #I = #N(wI ) = `(wI ), where `
is the usual length function on Ŵ .

Using minuscule elements of Ŵ , one can assign an element of Q∨ to any abelian
ideal [7]. In fact, one can associate an element of Q∨ to any w ∈ Ŵ . The following
appears in [9, Sect. 2] in a more comprehensive form.

Recall that Ŵ is a semidirect product of W and Q∨, and it can also be regarded as
a group of affine-linear transformations of V [5, 4.2]. For any w ∈ Ŵ , there is a unique
decomposition

w = v · tr , (1.1)

where v ∈ W and tr is the translation of V corresponding to r ∈ Q∨, i.e., tr ∗ x = x + r
for all x ∈ V . Then we assign the element v(r) ∈ Q∨ to w ∈ Ŵ . An alternative way
for doing so, which does not explicitly use the semidirect product structure, is based on
the relation between the linear Ŵ -action on V̂ and decomposition (1.1). Given w ∈ Ŵ ,
define the integers ki , i = 1, . . . , n, by the formula w−1(αi) = µi + kiδ (µi ∈ 1).
Then v(r) ∈ Q∨ is determined by the conditions that (v(r), αi) = ki . The reason is that
w−1
= v−1

· t−v(r) and the linear Ŵ -action on V̂ satisfies the following relation:

w−1(x) = v−1(x)+ (x, v(r))δ ∀x ∈ V ⊕ Rδ. (1.2)

It suffices to verify that tr(x) = x − (x, r)δ.
If w = wI is minuscule, then we also write zI for the resulting element of Q∨.

By [7, Theorem 2.5], the mapping I 7→ zI ∈ V sets up a bijection between Ab and
Z1 = {z ∈ Q

∨
| (z, γ ) ∈ {−1, 0, 1, 2} ∀γ ∈ 1+}. A proof of this result is given in [11,

Appendix A].
Given I ∈ Abo and the corresponding non-trivial minuscule element wI ∈ Ŵ , the

rootlet of I is defined by

rt(I ) = wI (α0)+ δ = wI (2δ − θ).

By [8, Prop. 2.5], we have rt(I ) ∈ 1+l . The next result describes a procedure for ex-
tensions of abelian ideals. Namely, if the rootlet of I = Iw is not simple, then one can
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construct a larger ideal I ′ such that #I ′ = #I + 1 and rt(I ′) = sα(rt(I )) ≺ rt(I ) for some
α ∈ 5.

Proposition 1.1. Let w ∈ Ŵ be minuscule and µ = rt(Iw). Suppose that µ 6∈ 5 and
take any α ∈ 5 such that (α, µ) > 0. Then sαw is again minuscule. Moreover, the only
root in Isαw \ Iw belongs to H.

Proof. Set µ′ = sα(µ) = sαw(2δ − θ) and µ′′ = µ− α. (Note that µ′ = µ′′ if and only
if α ∈ 5l .) Then w(2δ − θ) = µ′′ + α and w−1(µ′′)+ w−1(α) = 2δ − θ . Therefore,{

w−1(µ′′) = kδ − µ1,

w−1(α) = (2− k)δ − µ2,
where µ1, µ2 ∈ 1 and µ1 + µ2 = θ .

This clearly implies that both µ1 and µ2 are positive and hence µ1, µ2 ∈ H. Further-
more, since w is minuscule, both w−1(µ′′) and w−1(α) must be positive. [Indeed, if, say,
w−1(µ′′) is negative, then k ≤ 0. Hence w(µ1) = kδ − µ

′′ is negative and µ1 ∈ N(w),
which contradicts the definition of minuscule elements.] Therefore, one must have k = 1.
Then w(δ − µ2) = α ∈ 5. Since N(sαw) = N(w) ∪ {w−1(α)}, we then conclude that
sαw is minuscule and the corresponding abelian ideal is Isαw = Iw ∪ {µ2}.

Note also that rt(Isαw) = µ
′
≺ µ. ut

2. Intersections of abelian ideals and posets Abµ

In this section, we prove that taking intersection of abelian ideals is compatible with
partition (0.1).

First of all, we notice that for any collection of non-empty abelian ideals (subsets
of 1+) their intersection is non-empty, since all these ideals contain the highest root θ .
In particular, if µ1, . . . , µs ∈ 1

+

l , then

I =

s⋂
i=1

I (µi)min

is again an abelian ideal. Since I (µi)min ⊂ H for all i, we have I ⊂ H, and therefore
I = I (µ)min for certain µ ∈ 1+l [8, Thm. 4.3]. Since I (µ)min ⊂ I (µi)min, we conclude
that µ < µi [8, Cor. 3.3].

On the other hand, if γ ∈ 1+l and γ < µi for all i, then I (γ )min ⊂ I (µi)min
[8, Thm. 4.5]. Therefore, I (γ )min ⊂ I (µ)min, i.e., γ < µ. Thus, we have proved

Theorem 2.1. For any collection µ1, . . . , µs ∈ 1
+

l ,

(i) there exists a unique long root µ such that µ < µi for all i, and if γ ∈ 1+l and
γ < µi for all i, then γ < µ;

(ii)
⋂s
i=1 I (µi)min = I (µ)min.

The root µ occurring in part (i) is denoted by µ1 ∨ · · · ∨µs =
∨s
i=1 µi . We also say that

µ is the least upper bound or join of µ1, . . . , µs .
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Remark 2.2. Clearly, the operation ∨ is associative, and it suffices to describe the least
upper bound for only two (long) roots. In Appendix A, we prove directly that the join
exists for all pairs of roots, not necessarily long ones, and give an explicit formula for it.

We are going to play the same game with arbitrary ideals in Abµi . To this end, we
need an analogue of [8, Thm. 4.5] for the µ-maximal ideals (see Corollary 2.4(i) below).
This can be achieved as follows.

Proposition 2.3. Let µ,µ′ be long roots such that µ′ ≺ µ. Then

(i) for every I ∈ Abµ, there exists I ′ ⊂ Abµ′ such that I ′ ⊃ I and #I ′ = #I +
(ρ, µ∨ − µ′

∨
);

(ii) moreover, if I = I0 ⊂ I1 ⊂ · · · ⊂ Im = I ′ is any chain of ideals with m =
(ρ, µ∨ − µ′

∨
) and #Ij = #Ij−1 + 1, then rt(Ij ) 6= rt(Ij−1) for all j .

Proof. If µ 6∈ 5l and α ∈ 5 with (α, µ) > 0, then a direct calculation shows that
(ρ, µ∨ − sα(µ)

∨) = 1. [Use the relations (ρ, α∨) = 1 and (α, µ∨) = 1.]
(i) Arguing by induction, one readily proves that if µ,µ′ are both long and µ′ ≺ µ,

then µ′ can be reached from µ by a sequence of simple reflections:

µ = µ0 → sγ1(µ0) = µ1 → sγ2(µ1) = µ2 → · · · → sγm(µm−1) = µm = µ
′,

where γi ∈ 5 and (γi, µi−1) > 0. The number of steps m equals (ρ, µ∨ − µ′∨). If
I ∈ Abµ is arbitrary and wI is the corresponding minuscule element, then the repeated
application of Proposition 1.1 shows that w′ := sγ1 · · · sγmwI is again minuscule and
I ′ = Iw′ is the required ideal.

(ii) Let wj ∈ Ŵ be the minuscule element corresponding to Ij . Then wj = sijwj−1
for a sequence (αi1 , . . . , αim) of affine simple roots. The corresponding sequence of
rootlets is

µ = µ0 → si1µ0 = µ1 → si2µ1 = µ2 → · · · → µm = µ
′.

If ij = 0, i.e., the j -th step is the reflection with respect to α0 = δ − θ , then µj−1 = µj
(see [8, Prop. 3.2]). For the steps corresponding to αij ∈ 5, the value of (ρ, µ∨j ) is
reduced by at most 1. Consequently, the sequence (αi1 , . . . , αim) does not contain α0 and
the value of (ρ, µ∨j ) decreases by 1 at each step, i.e., all these rootlets are different. ut

Corollary 2.4. If µ,µ′ are long roots such that µ′ 4 µ, then

(i) I (µ)max ⊂ I (µ
′)max;

(ii) #Abµ′ ≥ #Abµ.

Proof. (i) This readily follows from Proposition 2.3(i) applied to I = I (µ)max.
(ii) Argue by induction onm = (ρ, µ∨−µ′∨). Form = 1, the assertion follows from

Proposition 1.1. ut

Theorem 2.5. For any set {µ1, . . . , µs} ⊂ 1
+

l and µ =
∨s
i=1 µi , we have

(i)
⋂s
i=1 I (µi)max = I (µ)max;

(ii) if Ii ∈ Abµi for i = 1, . . . , s, then
⋂s
i=1 Ii ∈ Abµ;

(iii) for every I ∈ Abµ, there exist Ii ∈ Abµi such that I =
⋂s
i=1 Ii .



Abelian ideals and root systems 2699

Proof. (i) Consider the abelian ideal I =
⋂s
i=1 I (µi)max. Since I ⊂ I (µi)max, we have

rt(I ) < µi for all i, hence rt(I ) <
∨s
i=1 µi = µ. We also have I ⊃

⋂s
i=1 I (µi)min =

I (µ)min, hence rt(I ) 4 µ by [8, Cor. 3.3]. It follows that rt(I ) = µ and I ⊂ I (µ)max.
Since µ < µi , by Corollary 2.4(i), we have I (µ)max ⊂ I (µi)max for all i, and

I (µ)max ⊂ I .
Thus, I = I (µ)max.
(ii) It follows from Theorem 2.1(ii) and part (i) that I (µ)min ⊂

⋂s
i=1 Ii ⊂ I (µ)max.

By [8, Thm. 3.1(iii)], the intermediate ideal
⋂s
i=1 Ii also belongs to Abµ.

(iii) Given I ∈ Abµ, we construct the ideals Ii ∈ Abµi , i = 1, . . . , s, as prescribed
in Proposition 2.3(i). Then I ⊂

⋂s
i=1 Ii =: J and rt(J ) =

∨s
i=1 µi = µ. That is,

rt(I ) = rt(J ). By Proposition 2.3(ii), this is only possible if J = I . ut

Combining Theorems 2.1 and 2.5 yields Theorem 0.1 in the Introduction.
For any γ ∈ 1+, set I 〈<γ 〉 = {ν ∈ 1+ | ν < γ }. We also say that I 〈<γ 〉 is the

principal upper ideal of 1+ generated by γ . It is not necessarily abelian.

Example 2.6. Let α1, . . . , αs be the set of all long simple roots. Then
∨s
i=1 αi =∑s

i=1 αi = |5l | and {I (αi)max | i = 1, . . . , s} is the set of all maximal abelian ideals in
Ab. Hence

⋂s
i=1 I (αi)max is an ideal with rootlet |5l |. Inspecting the list of root systems,

we notice that the ideal
⋂s
i=1 I (αi)min = I (|5l |)min has a nice uniform description. For

any γ =
∑n
i=1 aiαi ∈ 1

+, we set [γ /2] =
∑n
i=1[ai/2]αi . Then I (|5l |)min is the upper

ideal of 1+ generated by the root θ − [θ/2]. (It is true that θ − [θ/2] is always a root
in H.)

In the A-D-E case, we have |5l | = |5| and hence (θ, |5l |) 6= 0. In fact, (θ, |5l |) 6= 0
for all simple Lie algebras except those of type Cn, n ≥ 2. The condition (θ, |5l |) 6= 0
implies that #Ab|5l | = 1 [8, Thm. 5.1], i.e., I (|5l |)min = I (|5l |)max if g is not of
type Cn.

Remark 2.7. The interest in [θ/2] is also justified by the following observations. As in
[10], we say that γ ∈ 1+ is commutative if the b-submodule of g generated by gγ is
an abelian ideal; equivalently, if the upper ideal I 〈<γ 〉 is abelian. Let 1+com denote the
set of all commutative roots. Clearly, 1+com =

⋃
αi∈5l

I (αi)max. It was noticed in [10,
Thm. 4.4] that 1+ \ 1+com has a unique maximal element, and this maximal element is
[θ/2].

For any γ ∈ 1+, it appears to be true that [γ /2] ∈ 1+ ∪ {0} and γ − [γ /2] ∈ 1+. It
would be interesting to have a conceptual explanation for this.

3. Some properties of the posets Abµ

Let I ⊂ 1+ be an abelian ideal and wI = v · tr ∈ Ŵ the corresponding minuscule
element. Recall that v ∈ W and r ∈ Q∨. We have associated two objects to these data:
the rootlet rt(I ) = wI (2δ − θ) ∈ 1+l ⊂ Q and the element zI := v(r) ∈ Q∨.

Theorem 3.1. For an abelian ideal I , the following conditions are equivalent:

(i) rt(I )∨ = zI ;
(ii) I = I (µ)min for µ = rt(I ).
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Proof. 1) Suppose that I = I (µ)min. By [8, Thm. 4.3], wI = vµs0, where vµ ∈ W is the
unique element of minimal length such that vµ(θ) = µ. Here `(vµ) = (ρ, θ∨ − ν∨). It
is easily seen that for w = s0 decomposition (1.1) is s0 = sθ · t−θ∨ , where sθ ∈ W is the
reflection with respect to θ . Hence the linear part of wI is vµsθ and r = −θ∨. Therefore,
vµsθ (−θ

∨) = vµ(θ
∨) = µ∨, as required.

2) Conversely, if rt(I ) = µ and I 6= I (µ)min, then zI 6= zI (µ)min . By the first part, we
have zI (µ)min = µ

∨. Thus, zI 6= rt(I )∨. ut

Applying formulae (1.1) and (1.2) to an arbitrary minuscule wI , we obtain

wI (2δ − θ) = v · tr(2δ − θ) = v(2δ + (θ, r)δ − θ) = −v(θ)+ (2+ (θ, r))δ.

As we know that rt(I ) ∈ 1+, one must have (θ, r) = −2 and −v(θ) ∈ 1+. Therefore,
the equality rt(I )∨ = zI is equivalent to v(r) = −v(θ∨), i.e., r = −θ∨.

This can be summarised as follows:
If wI = v · tr ∈ Ŵ is minuscule, then (θ, r) = −2. Moreover, rt(I )∨ = zI if and only

if r = −θ∨, i.e., r is the shortest element in the affine hyperplane {x ∈ V | (x, θ) = −2}.
The theory developed in [8, Sect. 4] yields, in principle, a very good understanding

of µ-minimal ideals. In particular, an abelian ideal I is minimal in some Abµ if and only
if I ⊂ H = {ν ∈ 1+ | (ν, θ) 6= 0} [8, Thm. 4.3]. The other ideals in Abµ can be
characterised as follows.

Proposition 3.2. For µ ∈ 1+l and I ∈ Ab, we have I ∈ Abµ if and only if I ∩ H =

I (µ)min.

Proof. (⇒) Since I (µ)min ⊂ H, we have I (µ)min ⊂ I∩H. Moreover, I∩H = I (µ′)min
for some µ′ ∈ 1+l . Then we have I (µ)min ⊂ I (µ

′)min ⊂ I . By [8, Cor. 3.3], this yields
opposite inequalities for the rootlets, i.e., µ < µ′ < µ.

(⇐) If µ′ = rt(I ), then I ∩ H = I (µ′)min according to the previous part. Hence
µ′ = µ. ut

This implies that all ideals in Abµ can be obtained from I (µ)min by adding suitable
roots outside H. In particular, I (µ)max is maximal among all abelian ideals having the
prescribed intersection, I (µ)min, with H.

For future use, we provide a property of the ideals I (α)min with α ∈ 5l . Recall that
the integer 1 + (ρ, θ∨) = h∗ is called the dual Coxeter number of 1. By [14, Prop. 1],
#H = 2h∗−3. If γ ∈ H \ {θ}, then θ−γ ∈ H \ {θ} as well. Hence H can be represented
as the disjoint union of θ and h∗ − 2 pairs of the form {γi, θ − γi}. By [8, Theorem 3.1],
we have #I (α)min = (ρ, θ

∨
− α∨)+ 1 = (ρ, θ∨) = h∗ − 1. Because I (α)min ⊂ H, we

see that I (α)min must contain θ and exactly one element from each pair {γi, θ − γi} (cf.
[4, Prop. 7.2]). In particular,

Lemma 3.3. For α ∈ 5l and γ ∈ H \ {θ}, we have

γ ∈ I (α)min if and only if θ − γ 6∈ I (α)min.

Our next goal is to compare the upper ideals I 〈<µ〉 and I (µ)max (µ ∈ 1+l ). This will
be achieved in two steps.
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Proposition 3.4. For any µ ∈ 1+l , we have I (µ)min ⊂ I 〈<µ〉.

Proof. As above, vµ ∈ W is the element of minimal length such that vµ(θ) = µ and
w = vµs0 is the minuscule element for I (µ)min. Then we have I (µ)min = {γ ∈ 1

+
|

−γ + δ ∈ N(w)} and N(w) = {α0} ∪ s0(N(vµ)). Therefore, if γ ∈ I (µ)min, then either
γ = θ , or −γ + δ ∈ s0(N(vµ)), i.e., θ − γ ∈ N(vµ). Clearly, N(v−1

µ ) = −vµ(N(vµ)).
Hence θ − γ ∈ N(vµ) if and only if −vµ(θ − γ ) = vµ(γ )−µ ∈ N(v−1

µ ). Consequently,

γ ∈ I (µ)min & γ 6= θ ⇔ vµ(γ )− µ ∈ N(v−1
µ ).

Set ν = vµ(γ )−µ. Then γ = v−1
µ (ν+µ) = θ + v−1

µ (ν). Hence our goal is to prove that

θ + v−1
µ (ν) < µ for any ν ∈ N(v−1

µ ). (∗)

We will argue by induction on `(vµ) = (ρ, θ∨ −µ∨). For the induction step, assume
that µ 6∈ 5l and (∗) is satisfied. Take any α ∈ 5 such that (α, µ) > 0 and set µ′ :=
sα(µ) ≺ µ. Consider vµ′ = sαvµ, which corresponds to the minuscule element w′ =
sαw = vµ′s0 (Proposition 1.1) and the larger abelian ideal I (µ′)min. Then

N(v−1
µ′
) = {α} ∪ sα(N(v

−1
µ )).

Thus, to prove the analogue of (∗) for ν′ ∈ N(v−1
µ′
), we have to handle two possibilities:

a) ν′ = sα(ν) for ν ∈ N(v−1
µ ).

Then θ + v−1
µ′
(ν′) = θ + v−1

µ (ν) < µ � µ′, as required.

b) ν′ = α.

We have to prove here that θ + v−1
µ′
(α) = θ − v−1

µ (α) < µ′ = sα(µ). To this end, take a
reduced decomposition v−1

µ = sγk · · ·sγ1 , where {γ1, . . . , γk} is a multiset of simple roots.
Recall that v−1

µ (µ) = θ and k = (ρ, θ∨ − µ∨). Since (ρ, sα(ν)∨ − ν∨) ∈ {−1, 0, 1} for
any ν ∈ 1+l and α ∈ 5, the chain of roots

µ0 = µ, µ1 = sγ1(µ), µ2 = sγ2sγ1(µ), . . . , µk = θ,

has the property that µi ≺ µi+1 and each simple reflection sγi increases the “level”
(ρ, (·)∨) by 1. Then we must have θ = µ+

∑k
i=1 niγi , where

ni =

{
1 if γi is long,
||long||2/||short||2 if γi is short.

We also have sα(µ) = µ− (µ, α∨)α and v−1
µ (α) 4 α +

∑k
i=1 niγi , whence

v−1
µ (α)+ sα(µ) 4 µ+

k∑
i=1

niγi + (1− (µ, α∨))α 4 θ.

This completes the induction step and the proof of the proposition. ut
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Theorem 3.5. For any µ ∈ 1+l , we have I (µ)max ⊂ I 〈<µ〉. In particular, if I ∈ Abµ,
then I ⊂ I 〈<µ〉.

Proof. Suppose that γ ∈ I (µ)max. In particular, γ is a commutative root.
If γ ∈ 1+l , then the ideal I (γ )min is well-defined and

I (γ )min ⊂
Prop. 3.4

I 〈<γ 〉 ∩H ⊂ I (µ)max ∩H =
Prop. 3.2

I (µ)min.

By [8, Thm. 4.5], we conclude that γ < µ. (This completes the proof in the A-D-E case!)
If γ is short and γ ∈ H, then γ ∈ I (µ)min ⊂ I 〈<µ〉 by Propositions 3.2 and 3.4.
The remaining possibility is that γ is short and γ 6∈ H. But no such commutative roots

exist for Bn,F4,G2. (For Bn, the only short commutative root is ε1 and θ = ε1 + ε2.)
For Cn, such commutative roots are of the form γ = εi + εj with 2 ≤ i < j ≤ n.
Here H = {ε1 ± εj | 2 ≤ j ≤ n} ∪ {2ε1} and I 〈<εi + εj 〉 ∩H = I 〈<ε1 + εj 〉. Then
Proposition 3.2 shows that rt(I 〈<εi + εj 〉) = 2εj . Clearly, we have εi + εj < 2εj . (As
usual, the simple roots of Cn are ε1 − ε2, . . . , εn−1 − εn, 2εn.) ut

Remark 3.6. If g is of type An or Cn, then I (µ)max = I 〈<µ〉 for all µ ∈ 1+l . For other
types, this is not always the case.

4. Centralisers of abelian ideals

In this section, we mostly regard abelian ideals as subspaces a of u. Accordingly, for
µ ∈ 1+l , the minimal and maximal elements of Abµ are denoted by a(µ)min and a(µ)max,
respectively.

If c ⊂ g is a subspace, then zg(c) denotes the centraliser of c in g. If c is b-stable, then
so is zg(c). If a ∈ Ab, then zg(a) is a b-stable subalgebra of g and zg(a) ⊃ a. However,
zg(a) may contain semisimple elements and/or it may happen that zg(a) 6⊂ b.

Consider the following properties of abelian ideals:

(P1): zg(a) ⊂ u; (P2): zg(a) is a sum of abelian ideals; (P3): zg(a) is an abelian ideal.

Clearly, (P3)⇒(P2)⇒(P1).
We say that a is of full rank if Ia contains n linearly independent roots (n = rk g).

Lemma 4.1. Let a ∈ Ab. Then zg(a) ⊂ u if and only if a is of full rank.

Proof. If a is not of full rank, then zg(a)∩t 6= 0. If a is of full rank, then zg(a)∩t = 0 and
zg(a) is b-stable. Therefore, zg(a) cannot contain root spaces corresponding to negative
roots. ut

Lemma 4.2. zg(a) is a sum of abelian ideals if and only if a is of full rank and θ −[θ/2]
is in Ia.



Abelian ideals and root systems 2703

Proof. The root space g[θ/2] is contained in zg(a) if and only if θ − [θ/2] 6∈ Ia. The rest
follows from the fact that [θ/2] is the unique maximal non-commutative root. ut

Recall that {a(α)max | α ∈ 5l} is the complete set of maximal abelian ideals. For any
a ∈ Ab, zg(a) contains the sum of all maximal abelian ideals that contain a. Therefore, if
zg(a) is an abelian ideal, then zg(a) = a(α)max for some α ∈ 5l and a(α)max is the only
maximal abelian ideal containing a.

Lemma 4.3. An abelian ideal a is contained in a unique maximal abelian ideal if and
only if there is a unique α ∈ 5l such that rt(a) < α. In particular, in the simply-laced
case, the last condition means precisely that rt(a) ∈ 5l .

Proof. Follows from the fact that the inclusion a ⊂ ã implies that rt(a) < rt(ã) (see [8,
Cor. 3.3]; cf. also [8, Thm. 2.6(3)]). ut

Note that if a is a maximal abelian ideal, then zg(a) = a and in particular zg(a) is an
abelian ideal. Indeed, if zg(a) ) a and γ is a maximal element in Izg(a) \ Ia, then a⊕ gγ
would be a larger abelian ideal! To get a general answer, we need some preparatory re-
sults.

Lemma 4.4. For any α ∈ 5l , the ideal a(α)min is of full rank.

Proof. By [8, Thm. 4.3], the corresponding minuscule element w ∈ Ŵ equals vαs0,
where vα ∈ W is the unique element of minimal length taking θ to α. Since vα(θ) = α,
any reduced decomposition of vα contains all simple reflections corresponding to5\{α}.
Therefore w contains reflections corresponding to n = #5 linearly independent roots.
This easily implies that the inversion set N(w) contains n linearly independent affine
roots. Hence a(α)min is of full rank. ut

Lemma 4.5. For any α ∈ 5l , we have max(1+ \ I (α)max) ⊂ H \ {θ}.

Proof. If γ ∈ max(1+ \ I (α)max), then I (α)max ∪ {γ } determines a b-stable subspace
of u, which is no longer abelian. That is, there exists ξ ∈ I (α)max such that ξ + γ ∈ 1+.
Then there are ξ ′ < ξ and γ ′ < γ such that ξ ′+ γ ′ = θ (see [8, p. 1897]). Since I (α)max
is abelian, this clearly implies that γ ′ = γ , hence γ ∈ H \ {θ}. ut

Theorem 4.6. Let a ∈ Ab. The following conditions are equivalent:

(1) zg(a) is an abelian ideal;
(2) zg(a) = a(α)max for some α ∈ 5l;
(3) rt(a) ∈ 5l .

Proof. (1)⇒(2): See the paragraph preceding Lemma 4.3.
(2)⇒(1): Obvious.
(2)⇒(3): Here a(α)max is the only maximal abelian ideal that contains a. Therefore,

in the simply-laced case, the assertion follows from Lemma 4.3.
For the non-simply-laced case, assume that rt(a) = γ 6∈ 5l , but still γ majorises a

unique long simple root. Then γ also majorises a short simple root, whence γ 64 |5l |.
We claim that θ − [θ/2] 6∈ Ia, and so zg(a) is not a sum of abelian ideals, in view of
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Lemma 4.2. Indeed, assume that θ − [θ/2] ∈ Ia. Then Ia contains the upper ideal of 1+

generated by θ−[θ/2], which is exactly
⋂
α∈5l

I (α)min = I (|5l |)min (see Example 2.6).
Then the inclusion Ia ⊃ I (|5l |)min implies that γ = rt(a) 4 |5l |, a contradiction.

(3)⇒(2): It suffices to prove that the centraliser of a(α)min equals a(α)max for any α
in 5l . To this end, we have to check that:

(i) zg(a(α)min) contains no semisimple elements of g (i.e., a(α)min is of full rank), and
(ii) the nilpotent subalgebra zg(a(α)min) cannot be larger than a(α)max, i.e., for every

γ ∈ max(1+ \ I (α)max), there exists a ν ∈ I (α)min such that γ + ν ∈ 1+.

For (i): This is Lemma 4.4.
For (ii): If γ ∈ max(1+ \ I (α)max), then γ ∈ H \ {θ} (Lemma 4.5). Consequently,

θ − γ ∈ I (α)min in view of Lemma 3.3. ut

Theorem 4.7. For α ∈ 5l , there is a one-to-one correspondence between min(I (α)min)

and max(1+ \ I (α)max). Namely, for every η ∈ max(1+ \ I (α)max), there exists
η′ ∈ min(I (α)min) such that η + η′ = θ ; and vice versa.

Proof. We assume that rk1 > 1, hence θ 6= α, I (α)min 6= {θ}, and H \ {θ} 6= ∅.
1) If η ∈ max(1+ \ I (α)max), then η ∈ H \ {θ} (Lemma 4.5) and also η 6∈ I (α)min.

Hence η′ = θ − η ∈ I (α)min (Lemma 3.3). Actually, η′ is a minimal element of I (α)min:
if ξ ′ ∈ I (α)min and η′ � ξ ′, then θ − ξ ′ � η and hence θ − ξ ′ ∈ I (α)max; as I (α)max∩H

= I (α)min, one would obtain θ − ξ ′ ∈ I (α)min, which contradicts Lemma 3.3.
2) If η′ ∈ I (α)min, then η := θ − η′ ∈ H \ I (α)min. Hence η 6∈ I (α)max. Assume that

η is not maximal in 1+ \ I (α)max and ξ � η with ξ 6∈ I (α)max. Then θ − ξ ≺ η′ and
θ − ξ ∈ I (α)min, which contradicts the choice of η′. ut

Remark. Lemma 4.5 and the above proof of Theorem 4.7 (= Theorem 0.4) are based on
the suggestion of the anonymous referee. This uniform proof replaces our initial case-by-
case considerations.

Example 4.8. We describe the corresponding minimal and maximal elements in the two
extreme cases—the most classical (An) and most exceptional (E8).

As usual, 1+(An) = {εi − εj | 1 ≤ i < j ≤ n+ 1}, and αi = εi − εi+1. Here

min(I (αi)max) = {αi} and H = {εi − εj | i = 1 or j = n+ 1}.

Therefore

max(1+ \ I (αi)max) = {ε1−εi, εi+1−εn+1}, min(I (αi)min) = {εi−εn+1, ε1−εi+1}.

The respective roots in the previous row sum to θ = ε1 − εn+1.

For E8, we use the natural numbering of 5, i.e.,
(

1-2-3-4-5
8

-6-7
)

. The root γ =∑8
i=1 niαi is denoted by n1n2 . . . n8. Here θ = 23456423 and γ ∈ H if and only if

n1 6= 0. The respective maximal and minimal elements are gathered in Table 1.
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Table 1. Data for the root system of type E8

i min(I (αi)max) min(I (αi)min) max(1+ \ I (αi)max)

1 12222101 12222101 11234322

2 12222111 12222111 11234312
01234322 11234322 12222101

3 12222211 12222211 11234212
01234312 11234312 12222111

4 12223211 12223211 11233212
01234212 11234212 12222211

5 12223212 12223212 11233211
12233211 12233211 11223212
01233212 11233212 12223211

6 12333211 12333211 11123212
01223212 11223212 12233211

7 00123212 11123212 12333211

8 01233211 11233211 12223212

Theorem 4.7 is not true for arbitrary long roots in place of α ∈ 5l . However, it can
be extended as follows.

Theorem 4.9. Let S be any connected subset of 5l . Then there is a one-to-one corre-
spondence between min(

⋂
αi∈S

I (αi)min) and max(
⋂
αi∈S

(1+ \ I (αi)max)). Namely, for
every ν ∈ min(

⋂
αi∈S

I (αi)min), there is ν′ ∈ max(
⋂
αi∈S

(1+ \ I (αi)max)) such that
ν + ν′ = θ .

Our proof is based on direct calculations, which are omitted. It would be interesting to
find a conceptual argument.

Example 4.10. For #S = 1, we have Theorem 4.7. At the other extreme, if S = 5l , then⋂
αi∈5l

(1+ \ I (αi)max) = 1
+
\
⋃
αi∈5l

I (αi)max = 1
+
\1+com. Therefore,

max
( ⋂
αi∈5l

(1+ \ I (αi)max)
)
= {[θ/2]}.

Also,
⋂
αi∈5l

I (αi)min = I (|5l |)min and the unique minimal element of this ideal is
θ − [θ/2] (see Example 2.6). Thus, an a priori proof of Theorem 4.9 would provide an
explanation of properties of abelian ideals with rootlet |5l | (cf. Example 2.6 and Re-
mark 2.7).

Appendix A. A property of root systems

Let 1 be a reduced irreducible root system, with a set of simple roots 5 = {α1, . . . , αn}.
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Definition. Let η, β ∈ 1+. The root κ is the least upper bound (or join) of η and β if

• κ < η, κ < β;
• if κ ′ < η, κ ′ < β, then κ ′ < κ .

The join of η and β is denoted by η ∨ β.

Our goal is to prove that η ∨ β exists for all pairs (η, β), i.e., (1+,4) is a join-
semilattice (see [13, 3.3] for lattices). We actually prove a more precise assertion. For any
pair η, β ∈ 1+, we define an element η ∨ β ∈ Q and then prove that it is always a root.
The very construction of η ∨ β will make it clear that this root satisfies the conditions
of the definition above. We also prove that η ∨ β ∈ 1l whenever η, β ∈ 1l , so that
this general setup is compatible with that of Section 2. The argument goes as follows. If
η =

∑n
i=1 aiαi , then ht(η) =

∑
i ai and the support of η is supp(η) = {αi | ai 6= 0}.

We regard supp(η) as a subset of the Dynkin diagram D(1). As is well known, supp(η)
is a connected subset of D(1) for all η ∈ 1 [1, Ch. VI, §1, n. 6]. If β =

∑n
i=1 biαi , then

max{η, β} :=
∑n
i=1 max{ai, bi}αi . In general, it is merely an element of Q.

Say that supp(η) and supp(β) are disjoint if supp(η)∪ supp(β) is disconnected. Then
there is a unique chain in D(1) connecting both supports, since D(1) is a tree. If this
chain consists of simple roots {αi1 , . . . , αis }, then, by definition, the connecting root is
αi1 + · · · + αis . By [1, Ch. VI, §1, n. 6, Cor. 3], it is indeed a root.

Theorem A.1. (i) If supp(η) ∪ supp(β) is a connected subset of D(1), then η ∨ β =
max{η, β}.

(ii) If supp(η) and supp(β) are disjoint, then η ∨ β = η + β + (connecting root).

Proof. 1) Obviously, if κ < η, κ < β, then κ < max{η, β}. Hence it suffices to prove
that here max{η, β} is a root.

If supp(η) ∩ supp(β) = ∅, then max{η, β} = η + β. Since supp(η) ∪ supp(β) is
connected, we have (η, β) < 0. Hence η + β is a root, and we are done.

Assume that supp(η)∩ supp(β) 6= ∅. Without loss of generality, we may also assume
that ht(η) ≥ ht(β). Then we will argue by induction on ht(β).

If ht(β) = 1, then β ∈ supp(η) and max{η, β} = η.
Suppose that ht(β) > 1 and the assertion is true for all pairs of positive roots such

that one of them has height strictly less than ht(β).
Assume that there are different simple roots α′, α′′ such that β − α′, β − α′′ ∈ 1+.

Then max{β − α′, β − α′′} = β, and by the induction assumption

max{η, β} = max
{
max{η, β − α′}, β − α′′

}
∈ 1+.

It remains to handle the case in which there is a unique α ∈ 5 such that β −α ∈ 1+. Let
htα(β) denote the coefficient of α in the expression of β via simple roots. Set 1α(i) =
{ν ∈ 1+ | htα(ν) = i}. By a result of Kostant (see Joseph’s exposition in [6, 2.1]), each
1α(i) is the set of weights of a simple l-module, where l is the Levi subalgebra of g whose
set of simple roots is 5 \ {α}. Therefore, 1α(i) has unique minimal and unique maximal
elements. Clearly, β is the minimal element in 1α(j), where htα(β) = j . This also
implies that if htα(ν) ≥ j , then ν < β. Therefore, if htα(η) ≥ j , then max{η, β} = η.
Hence we may assume that htα(η) ≤ j − 1. Since supp(η) ∪ supp(β) is connected and
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supp(η) ∩ supp(β) 6= ∅, the union supp(η) ∪ supp(β − α) is still connected. Therefore

max{η, β − α} ∈ 1+ and htα(max{η, β − α}) = j − 1.

Hence max{η, β − α}+ α = max{η, β} and our task is to prove that, under these circum-
stances, max{η, β − α} + α is a root.

Since htα(max{η, β−α}) = htα(β−α), we have (max{η, β−α}, α) ≤ (β−α, α). If
||α|| ≥ ||β||, then β −α = sα(β) and (β −α, α) < 0. This implies that max{η, β −α}+α
∈ 1+ (and completes the proof of part (i) if all the roots have the same length!)

Suppose that ||α|| < ||β||. We exclude the obvious case when 1 is of type G2 and
assume that ||β||/||α|| =

√
2. Then sα(β) = β − 2α, β − α is short, and (β − α, α) = 0.

Now, if (max{η, β − α}, α) < (β − α, α), we again conclude that max{η, β − α} +
α ∈ 1+. The other possibility is that (max{η, β − α}, α) = (β − α, α) = 0. Because
htα(max{η, β − α}) = htα(β − α), this means that max{η, β − α} and β − α also have
the same coefficients on the simple roots adjacent to α. That is, max{η, β−α} is obtained
from β − α by adding a sequence of simple roots that are orthogonal to α. Therefore,
arguing by induction on ht(max{η, β − α}) − ht(β − α), we are left with the following
problem:

Suppose that α, α′ are orthogonal simple roots such that ν, ν + α, ν + α′ ∈ 1+, both
ν and α are short, and (ν, α) = 0. Prove that ν + α + α′ ∈ 1+.

Now, if (α′, ν) < 0, then (α′, ν − α) < 0 as well. Hence ν − α + α′ ∈ 1 and
sα(ν − α + α

′) = ν + α + α′ ∈ 1+, as required. The remaining conceivable possibility
is that ν, α, α′ are pairwise orthogonal and short. A quick case-by-case argument shows
that this is actually impossible.

2) In this case, at least one support, say supp(β), is a chain with all roots of the
same length. Therefore, β equals the sum of all simple roots in its support. Hence β̃ =
β + (connecting root) is a root. Then supp(η) ∩ supp(β̃) = ∅ and supp(η) ∪ supp(β̃) is
connected. Hence (η, β̃) < 0 and η + β̃ ∈ 1+.

Obviously, η + β̃ is the minimal root that majorises both η and β. ut

An equivalent formulation of Theorem A.1 is:
The intersection of two principal upper ideals in 1+ is again a principal ideal. That

is, I 〈<η〉 ∩ I 〈<β〉 = I 〈<(η ∨ β)〉.

Corollary A.2. If η, β ∈ 1+l , then η ∨ β is also long.

Proof. Let r be the squared ratio of lengths of long and short roots. (Hence r ∈ {1, 2, 3}.)
Then η =

∑n
i=1 aiαi is long if and only if r divides ni whenever αi is short (see [1,

Ch. VI, § 1, Ex. 20]). Obviously, the formulae of Theorem A.1 preserve this property. ut

Recall that 1α(i) = {ν ∈ 1+ | htα(ν) = i} if α ∈ 5. We regard it as a subposet of 1+.

Corollary A.3. For any α ∈ 5 and i ∈ N, the poset 1α(i) is a lattice.

Proof. The formulae of Theorem A.1 imply that if η, β ∈ 1α(i), then η ∨ β ∈ 1α(i).
Therefore 1α(i) is a finite join-semilattice having a unique minimal element. (The latter
is a part of Kostant’s result referred to above.) Hence1α(i) is a lattice by [13, Prop. 3.3.1].

ut
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