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Abstract. We show that any diffeomorphism of a compact manifold can be C1 approximated by
diffeomorphisms exhibiting a homoclinic tangency or by diffeomorphisms having a partial hyper-
bolic structure.
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1. Introduction

1.1. Characterization of partial hyperbolicity

We are interested in describing the dynamics of a large class of diffeomorphisms of a
compact manifold M . This goal was achieved in a satisfactory way about 40 years ago
for hyperbolic diffeomorphisms. These are the systems f admitting a filtration, i.e. a finite
collection of open sets ∅ = U0 ⊂ U1 ⊂ · · · ⊂ Us = M satisfying f (Ui) ⊂ Ui , such
that the maximal invariant set 3i in each level Ui \ Ui−1 is hyperbolic: there exists a
splitting of the tangent bundle into two invariant linear subbundles, T3iM = Es

⊕ Eu,
such that Es and Eu are respectively strictly contracted and expanded by a forward iterate
of f . These systems have many nice properties. For instance, they possess a spectral
decomposition: for a finer filtration the sets 3i are transitive. Moreover, they are stable
under perturbations, they can be coded, etc.

We are far from well understanding the dynamics beyond hyperbolicity and one would
like to extend the previous properties to weaker forms of hyperbolicity. This paper deals
with the following version of partial hyperbolicity.
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Definition 1.1. An invariant set 3 of a diffeomorphism f is partially hyperbolic if its
tangent bundle splits into invariant linear subbundles:

T3M = E
s
⊕ Ec

1 ⊕ · · · ⊕ E
c
k ⊕ E

u,

such that each central bundleEc
i is one-dimensional and considering a Riemannian metric

on M there exists a forward iterate fN which satisfies:

• ‖DfN .v‖ ≤ 1/2 for each unitary v ∈ Es (one says Es is (uniformly) contracted).
• ‖Df−N .v‖ ≤ 1/2 for each unitary v ∈ Eu (one says Eu is (uniformly) expanded).
• ‖DfNx .u‖ ≤ (1/2)‖Df

N
x .v‖ for each x ∈ 3, each i = 0, . . . , k and any unitary vectors

u ∈ Es
⊕ · · · ⊕ Ec

i , v ∈ E
c
i+1 ⊕ · · · ⊕ E

u in TxM .

A diffeomorphism f is partially hyperbolic if there exists a filtration ∅ = U0 ⊂ U1 ⊂

· · · ⊂ Us = M such that the maximal invariant set 3i in each level Ui \ Ui−1 is partially
hyperbolic.

The type of the decomposition can be different on each piece 3i . We allow k = 0: in this
case the piece is hyperbolic. We also allow Es and/or Eu to be trivial. Different notions
of partial hyperbolicity appear in the literature; the decomposition of the central part into
one-dimensional central bundles here provides a good control of the tangent dynamics.
In particular, this gives a symbolic description and the existence of equilibrium states for
these systems (see the discussion in Section 1.4).

The set of partially hyperbolic diffeomorphisms is open in the space Diff1(M) of
diffeomorphisms endowed with the C1-topology. It is well known that there exist diffeo-
morphisms that cannot be approximated by hyperbolic ones (see for instance [S]). Also
the partially hyperbolic diffeomorphisms are not dense in Diff1(M) when dim(M) ≥ 3
(on surfaces this is an open problem): from [BD1], for an open set of diffeomorphisms
each filtration contains a piece 3i whose tangent dynamics has no non-trivial invariant
continuous subbundle. The lack of partial hyperbolicity in these examples is related to the
following obstruction.

Definition 1.2. A diffeomorphism f : M → M exhibits a homoclinic tangency if there
is a hyperbolic periodic orbit whose invariant manifolds W s(O) and W u(O) have a non-
transverse intersection.

Homoclinic tangencies generate interesting dynamical instabilities (see for instance [PT]).
Our goal is to provide a dichotomy between these two notions.

Main Theorem. Any diffeomorphism f can be approximated in Diff1(M) by diffeomor-
phisms which exhibit a homoclinic tangency or by partially hyperbolic diffeomorphisms.

This result gives a complete obstruction to partial hyperbolicity and decomposes the set
of diffeomorphisms into two parts: on one of them, the global dynamics is quite well de-
scribed, on the other one, the systems exhibit rich dynamical instabilities through local
bifurcations. One thus obtains an example of decomposition by phenomenon and mecha-
nism as discussed in [CP].
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In fact, our result was motivated by a conjecture of Palis [Pa] which proposes to
characterize the lack of hyperbolicity by homoclinic tangencies and heterodimensional
cycles. Several previous papers are related to our work.

• [PuS] solved the Palis conjecture on surfaces and implied our result in this case.
• [W1] and [G2] showed that for diffeomorphisms far from tangencies, the tangent bundle

splits on the closure of the hyperbolic periodic orbits of a given stable dimension.
• The previous results imply the theorem for tame diffeomorphisms, i.e. those which do

not admit filtrations with an arbitrarily large number of non-trivial levels (see [BDPR,
ABCDW]). For the same reason, the theorem holds in the conservative setting.
• [GYW] gave a local version of the theorem: far from homoclinic tangencies, any min-

imally non-hyperbolic set is partially hyperbolic.
• [C3] proved the theorem above for diffeomorphisms that are not approximated by dif-

feomorphisms exhibiting a heterodimensional cycle; this was used in [CP] to obtain
partial results on the Palis conjecture.
• [Y2] obtained the partial hyperbolicity on aperiodic pieces of generic diffeomorphisms

far from homoclinic tangencies.

In view of [W1], one could hope to generalize our result and obtain a positive answer to
the following question.

Problem 1.3. Is it equivalent for a diffeomorphism to be non-partially hyperbolic and to
be a limit in Diff1(M) of diffeomorphisms exhibiting a homoclinic tangency?

1.2. Precise statement

When one studies the global dynamics of a homeomorphism f of a compact metric
spaceM , one splits the dynamics into pieces that cannot be further decomposed by filtra-
tions. Let us define on M the following relation: x ∼ y if and only if for any ε > 0 there
exists a periodic ε-pseudo-orbit which contains both x and y. Then the chain-recurrent
set R(f ) is the set of points x ∈ M satisfying x ∼ x. On this set, ∼ becomes an equiv-
alence relation which defines a compact invariant decomposition of R(f ) into its chain-
recurrence classes. A chain-transitive set of f is an invariant compact set K ⊂ M such
that the restriction f|K has a single chain-recurrence class.

For any hyperbolic periodic orbitO of a diffeomorphism, the closure of the transverse
intersections between the stable and the unstable manifolds of O is called the homoclinic
class of O and denoted by H(O). In [BC] it is proved that for a dense Gδ subset of
Diff1(M) the chain-recurrence classes which contain periodic points are the homoclinic
classes. The other ones are called aperiodic classes.

In the following we denote by HT ⊂ Diff1(M) the closure of the set of diffeomor-
phisms exhibiting a homoclinic tangency. Recall also that if µ is an invariant probability
measure and if E is a continuous invariant one-dimensional bundle over the support of µ,
then one can define the Lyapunov exponent of µ along E as

∫
log ‖Df|E‖dµ by consid-

ering any Riemannian metric on M .
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Theorem 1.1. Every diffeomorphism f in a denseGδ subset G ⊂ Diff1(M)\HT has the
following properties:

1. Any aperiodic class C is partially hyperbolic with a one-dimensional central bundle.
Moreover, the Lyapunov exponent along Ec of any invariant measure supported on C
is zero.

2. Any homoclinic class H(p) has a partially hyperbolic structure

TH(p)M = E
s
⊕ Ec

1 ⊕ · · · ⊕ E
c
k ⊕ E

u.

Moreover the minimal stable dimension of periodic orbits of H(p) is dim(Es) or
dim(Es) + 1. Similarly the maximal stable dimension of periodic orbits of H(p) is
dim(Es)+k or dim(Es)+k−1. For every i with 1 ≤ i ≤ k there exist periodic points
in H(p) whose Lyapunov exponent along Ec

i is arbitrarily close to 0.

One obtains the Main Theorem from Theorem 1.1 by proving that any diffeomorphism
f ∈ G is partially hyperbolic. We first recall the following properties:

• If a chain-recurrence class C is partially hyperbolic, then the same holds on the maximal
invariant set in a neighborhood of C.
• Any limit of a sequence of chain-recurrence classes for the Hausdorff topology is con-

tained in a chain-recurrence class.

By compactness of the space of compact subsets of M , one deduces from Theorem 1.1
that there exists a finite family of open sets V1, . . . , V` such that the maximal invariant set
in each of them is partially hyperbolic and any chain-recurrence class is contained in one
of the Vi . As a consequence, considering a filtration U1, . . . , Us such that the maximal
invariant set in each level set Ui \ Ui−1 is contained in one of the open sets Vj , one gets
the partial hyperbolicity of f . This gives the Main Theorem.

Remark 1.4. • As we said, the first item of Theorem 1.1 was already obtained in [Y2].
• From [ABCDW], the set of stable dimensions of periodic orbits in a homoclinic class

is an interval of {0, . . . , dim(M)}.
• For a homoclinic class H(p) whose minimal stable dimension of periodic points is

dim(Es) + 1, the bundle Es
+ Ec

1 has some weak hyperbolicity property (see Sec-
tion 8.1).
• From [C3, Section 2.4], for aperiodic classes the extremal bundles Es and Eu are both

non-degenerate.

Theorem 1.1 answers partially [ABCDW, Conjecture 1], but other questions remains:
for diffeomorphisms as in Theorem 1.1, are homoclinic classes the only possible chain-
recurrence classes? does the minimal stable dimension of periodic orbits in a homoclinic
class coincide with dim(Es)? One would get positive answers if a spectral decomposition
holds:

Conjecture 1 (Bonatti [Bon]). There exists a dense Gδ subset in Diff1(M) \ HT of dif-
feomorphisms having only finitely many chain-recurrence classes.
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Consider now the case where the minimal stable dimension of the periodic orbits con-
tained in the homoclinic class H(p) in Theorem 1.1 is larger than dim(Es). Since Ec

1 is
not uniformly contracted, there should exist in any neighborhood of H(p) some periodic
orbits of stable dimension dim(Es), contradicting the previous conjecture. We can thus
formulate the following weaker conjecture.

Conjecture 2. There exists a dense Gδ subset in Diff1(M) \ HT of diffeomorphisms
whose homoclinic classes have a partially hyperbolic structure TH(p)M = Es

⊕Ec
⊕Eu,

where dim(Es) and dim(Es
⊕Ec) are the minimal and maximal stable dimensions of pe-

riodic orbits in H(p).

One can also wonder if a local version of Theorem 1.1 holds for homoclinic classes:

Problem 1.5. Does there exist a denseGδ subset of Diff1(M) of diffeomorphisms f such
that for any homoclinic class H(O), either

• H(O) is partially hyperbolic, or
• there exists a periodic orbit O ′ ⊂ H(O) and diffeomorphisms arbitrarily close to f in

Diff1(M) exhibiting a homoclinic tangency associated to O ′?

1.3. Linking periodic orbits to a class

Let us explain the main difficulty in obtaining Theorem 1.1. We consider a chain-recur-
rence class C of a diffeomorphism f which belongs to a denseGδ subset of Diff1(M)\HT.

From [C1], the class C is the Hausdorff limit of a sequence of periodic orbits.
From [W1], one gets an integer N ≥ 1 and an invariant splitting TCM = E ⊕ F on
C which is N -dominated: for each x ∈ C and any unitary vectors u ∈ Ex , v ∈ Fx one has
‖DfNx .u‖ ≤ (1/2)‖Df

N
x .v‖.

We thus have to analyze non-uniform bundles and try to split them with one-dimen-
sional central bundles. From a selecting lemma of Liao, if a bundle E is not uniform,
one can find in C an invariant compact subset K with an invariant splitting of its tangent
bundle of the form TKM = Es

⊕ Ec
⊕ Eu, where Ec is one-dimensional and neither

uniformly contracted nor expanded. By Mañé’s ergodic closing lemma, one can find in
any neighborhood of K some periodic orbits O−,O+ of stable dimensions dim(Es) and
dim(Es)+ 1 respectively. If one can prove that there exist other periodic orbits Ô−, Ô+

with the same stable dimensions as O−,O+ and which approximate C in the Hausdorff
topology, then one deduces again from [W1] that there exists a splitting TCM = E′ ⊕

Ec
⊕ F ′ which coincides with TKM = Es

⊕ Ec
⊕ Eu on K , giving a one-dimensional

central bundle on C as required.
One way to obtain this property is to prove that the periodic orbits O−,O+ are con-

tained in the class C. Indeed, by [BC] one would conclude that C coincides with the
homoclinic classes H(O−) and H(O+). Proving that O− and O+ are contained in C
is the main difficulty in this subject, and so it is also for the Palis conjecture. If all the
chain-recurrence classes are isolated in R(f ) (their number is finite, and the dynamics
is said to be tame), this problem does not appear; the same holds when the dynamics is
conservative.
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This difficulty is addressed by the following technical local result. When O is a peri-
odic orbit of a diffeomorphism f and U is an open set containing O, we define the local
homoclinic class H(O,U) as the closure of the set of transverse homoclinic orbits be-
tween the stable and the unstable manifolds ofO that are contained in U . It is a transitive
invariant compact set contained in U .

Theorem 1.2. Let f be a diffeomorphism in a denseGδ subset of Diff1(M) and let3 be
a compact invariant chain-transitive set with a dominated splitting T3M = Es

⊕Ec
⊕F .

Assume also that:

• Es is uniformly contracted.
• Ec is one-dimensional and it is not uniformly contracted.
• There exists an ergodic measure µ supported on 3 whose Lyapunov exponent along
Ec is non-zero.

Then one of the following holds:

1. For any neighborhood U0 of 3, there exists a local homoclinic class H(O,U0) con-
taining 3 where the stable dimension of O equals dim(Es).

2. For any θ > 0 and any neighborhood U0 of 3, there exists a periodic orbit O ⊂ U
such that:

• The Lyapunov exponent of O along Ec belongs to (−θ, θ).
• 3 is contained in the local homoclinic class H(O,U0).

We point out that the above theorem does not require the diffeomorphism to be far from
homoclinic tangencies.

The goal to link a set having a non-uniform central bundle to weak periodic orbits con-
tained in a neighborhood is very similar to Liao’s and Mañé’s selecting lemmas (see for
instance [W2] or [M2]). For instance, with these techniques [BGY] proved the following:

Let f be a C1-generic diffeomorphism and let H(O) be a homoclinic class with domi-
nated splittingEs

⊕F whereEs is uniformly contracted, the stable dimension ofO equals
dim(Es) and F is not uniformly expanded. Then for any δ there are periodic orbits in H
whose minimal Lyapunov exponent in F belongs to (0, δ).

Our proof however is very different. As in [C3], it is obtained by analyzing the dynamics
along the central bundle and by using the central models introduced in [C2]. The fact that
we do not forbid heterodimensional cycles changes however the philosophy and increases
the difficulty. We need to develop two new strategies presented in Sections 6 and 7.

Organization of the paper. Section 2 recalls genericity results and Section 4 presents
the central models. The proof of Theorem 1.2, using results from Sections 6 and 7, is
given in Section 5. The proof of Theorem 1.1 (and hence of the Main Theorem) appears
in Section 3. The consequences that are presented in Section 1.4 are obtained in Section 8.
Note that the first item of Theorem 1.1 about aperiodic classes can be proved in a shorter
way (independently of Sections 6 and 7)—see Section 8.2.
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1.4. Consequences. Dynamics far from homoclinic tangencies

Our result allows us to solve, for diffeomorphisms far from homoclinic tangencies, several
problems stated for C1-diffeomorphisms. In the following, we will say that a property
holds for C1-generic diffeomorphisms if it is satisfied on a dense Gδ subset of Diff1(M).

Symbolic extensions. The dynamics on partially hyperbolic sets where the central
bundle has a dominated splitting into one-dimensional subbundles has a nice symbolic
description. It is obtained through the property of entropy expansiveness, introduced by
Bowen [Bow1].

Definition 1.6. A homeomorphism f of a compact metric space X is entropy expansive
if there exists ε > 0 such that for any x ∈ X, the set

B(x, ε, f ) = {y ∈ X : for any n ∈ Z, d(f n(x), f n(y)) ≤ ε}

has zero entropy.

Recall that a (not necessarily invariant) set B ⊂ X has zero entropy when the entropy
of B at any scale δ is zero: if we denote by N(B, δ, f, n) the minimal number of points
x1, . . . , xN in B such that any x ∈ B stays δ-close to some xi during n iterations, then
N(B, δ, f, n) growths subexponentially with n for any δ.

Remark 1.7. We provide some remarks from [Bow1].

1. This notion is weaker than expansiveness, which assumes that the dynamical ball
B(x, ε, f ) reduces to x.

2. In the definition, one can also replace B(x, ε, f ) by the forward dynamical ball

B+(x, ε, f ) = {y ∈ X : for any n ∈ N, d(f n(x), f n(y)) ≤ ε}.

3. One can also introduce the ball

Bn(x, ε, f ) = {y ∈ X : for any 0 ≤ k ≤ n, d(f k(x), f k(y)) ≤ ε}.

A map is entropy expansive if for ε > 0 small the following quantity is zero for any
x ∈ X:

h∗f (ε) = lim
δ→0

lim sup
n→∞

1
n

logN(Bn(x, ε, f ), δ, f, n).

4. If f is entropy expansive, then there exists ε > 0 such that the topological entropy
of f coincides with the topological entropy at scale ε defined as

hf (ε) = lim sup
n→∞

1
n

logN(X, ε, f, n).

5. If the restriction of f to the non-wandering set �(f ) is entropy expansive, then so
is f .
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From the last remark, any entropy expansive system admits equilibrium states
(see [Bow2, Proposition 2.19]): more precisely, for any continuous map ϕ : X → R,
there exists a measure that realizes the following maximum over all invariant probability
measures µ:

Pf (ϕ) = max
µ

{
hf (µ)+

∫
ϕ dµ

}
,

where hf (µ) denotes the entropy of µ for f .
In [BFF] it is shown that any entropy expansive system admits a principal symbolic

extension, i.e. there exists a compact invariant set Y of a full subshift ({1, . . . , k}Z, σ ) and
a continuous semiconjugacy π : Y → X such that for any invariant measure µ of (Y, σ ),
the entropies of µ for σ and of π∗(µ) for f are the same.

In [CY, DFPV], it is shown that the restriction of a diffeomorphism to a compact
invariant set which is partially hyperbolic and whose central bundle has a dominated
splitting into one-dimensional subbundles is entropy expansive. This result together with
remark 5 above and the Main Theorem implies the following.

Corollary 1.3. Any diffeomorphism f in an open and dense subset of Diff1(M) \ HT
is entropy expansive. In particular, it admits principal symbolic extensions. Also, any
continuous map ϕ : M → R has an equilibrium state.

At the time of finishing this paper, we learned that Liao, Viana and Yang [LVY] proved
the entropy expansiveness for any diffeomorphism C1-far from homoclinic tangencies.
Their result uses the uniform dominated splitting over the support of ergodic measures
for diffeomorphisms C1-far from homoclinic tangencies. In our case, we do not have a
uniform version of Theorem 1.1 that holds for general diffeomorphisms in Diff1(M)\HT.

Lack of hyperbolicity and weak periodic points. The stability of diffeomorphisms has
been related to hyperbolicity (see [M2]). This goal has been achieved by considering
star diffeomorphisms, i.e. systems whose periodic orbits do not bifurcate under small
C1-perturbation. We propose here to address a local version of this question.

For a homoclinic class H(O) of f , if for any δ > 0, there is a hyperbolic periodic
point q such that:

• q (and its orbit) is homoclinically related to O, i.e. its stable and unstable manifolds
intersect those of O transversally.
• q has one Lyapunov exponent in (−δ, δ),

then one says that H(O) contains weak periodic orbits related to p.

Problem 1.8. Is it true that for generic f ∈ Diff1(M), and any homoclinic class H(O),
either

• H(O) is hyperbolic, or
• H(O) contains weak periodic orbits related to O?

Let us discuss how to solve this problem. If H(O) does not contain weak periodic orbits
related toO, then by a genericity argument, one can prove thatH(O) admits a dominated
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splitting TH(O)M = E ⊕ F , where dim(E) equals the stable dimension of O, and one
can get a uniform estimate for contraction and expansion at the period along the invariant
bundles of periodic orbits related to O (see [GY]). By a variation of Mañé’s work, one
can thus answer the problem when E is uniformly contracted: [BGY] shows that F is
uniformly expanded in this case.

For diffeomorphisms far from homoclinic tangencies we have:

Corollary 1.4. For generic f ∈ Diff1(M) \ HT, and any homoclinic class H(O), either

• H(O) is hyperbolic, or
• H(O) contains weak periodic orbits related to O.

Palis conjecture. If f has two hyperbolic periodic orbits O1 and O2 with different
stable dimension and whose invariant manifolds intersect (i.e. W s(O1) ∩ W

u(O2) and
W s(O2) ∩ W

u(O1) are non-empty), then we say that f has a heterodimensional cycle.
One can generalize this definition: a robust heterodimensional cycle is a pair of transitive
hyperbolic setsK,L having different stable dimensions such that for any diffeomorphism
C1-close to f the stable and unstable sets of the continuations of K and L intersect.

Conjecture 3 (Palis). Every robustly non-hyperbolic diffeomorphism f can be approx-
imated by diffeomorphisms exhibiting either a homoclinic tangency or a heterodimen-
sional cycle.

The following corollary of Theorem 1.1 was the main theorem of [C3].

Corollary 1.5. For generic f ∈ Diff1(M) which cannot be approximated by diffeomor-
phisms exhibiting a homoclinic tangency or a heterodimensional cycle, any homoclinic
class H(O) admits a partially hyperbolic splitting

TH(0)M = E
s
⊕ Ec

1 ⊕ E
c
2 ⊕ E

u,

where dim(Ec
i ) = 0 or 1, for i = 1, 2 and dim(Es

⊕ Ec
1) coincides with the stable

dimension of O.

Lyapunov stable classes. One sometimes focuses the study of a system on its attrac-
tors, since they can describe the forward behavior of most orbits. We will say that a
chain-recurrence class is Lyapunov stable if it admits arbitrarily small neighborhoods U
satisfying f (U) ⊂ U . It is known [BC] that for C1-generic diffeomorphisms, the forward
orbit of points in a dense Gδ subset of M accumulates on a Lyapunov stable class.

On restriction to these classes, the Palis conjecture holds [CP]. Combining this result
with ours we get the following statement, which was suggested to us by Yi Shi.

Corollary 1.6. For generic f ∈ Diff1(M) \ HT, if C is a Lyapunov stable chain-recur-
rence class, then either

• C is hyperbolic, or
• C contains a robust heterodimensional cycle.
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For generic diffeomorphisms in Diff1(M) \ HT, more is known about Lyapunov stable
chain-recurrence classes. By [Y1] they are homoclinic classes and by [BGLM] they are
residual attractors, i.e. for each of them there exists a neighborhood U such that the
forward orbit of any point in a dense Gδ subset of U accumulates on the class.

When M is connected, the bi-Lyapunov stable classes of a generic diffeomorphism
far from homoclinic tangencies, i.e. the chain-recurrence classes that are Lyapunov
stable both for f and f−1, coincide with the whole manifold (see [Po] and previous
works [ABD, PoS]). In particular, if a chain-recurrence class has non-empty interior, then
M is transitive.

Bound on the number of classes. Conjecture 1 asserts that for a generic diffeomorphism
f ∈ Diff1(M) \ HT the number of chain-recurrence classes is finite. From the Main
Theorem, the classes are partially hyperbolic and the number of central bundles may be
large. One can bound the number of classes having a central bundle of dimension ≥ 2.

Corollary 1.7. For generic f ∈ Diff1(M) \ HT, there exist only finitely many chain-
recurrence classes having more than one non-uniform one-dimensional central bundle.

Index completeness. As we explained in Section 1.3, it is sometimes important to know
the stable dimensions of the periodic orbits contained in a given neighborhood of a set K
or which approximate a set for the Hausdorff topology. [ABCDW] discussed this problem
of index completeness for chain-transitive sets of generic diffeomorphisms and proved
that homoclinic classes have some “inner-index-completeness” property.

For a chain-transitive set 3 of f , one defines ind(3) as the set of integers i such that
3 is the Hausdorff limit of a sequence of hyperbolic periodic orbits of stable dimension i.
If ind(3) is an interval of Z, then one says that 3 is index complete.

Problem 1.9. Are chain-transitive sets of C1-generic f index complete?

We obtain a positive answer far from homoclinic tangencies.

Corollary 1.8. For generic f ∈ Diff1(M) \ HT and for any chain-transitive set 3:

1. 3 is index complete. Moreover, 3 admits a partially hyperbolic splitting

T3M = E
s
⊕ Ec

1 ⊕ · · · ⊕ E
c
k ⊕ E

u,

where dim(Ec
i ) = 1 and ind(3) = {dim(Es), . . . , dim(Es)+ k}.

2. There exists a neighborhood U of 3 such that ind(3) coincides with the set of stable
dimensions of hyperbolic periodic orbits contained in U .

Ergodic closing lemma inside homoclinic classes. The ergodic closing lemma of
Mañé [M1] asserts that for C1-generic diffeomorphisms any ergodic probability measure
µ is the weak limit of a sequence (On) of periodic orbits. As mentioned in Section 1.3,
it is important to know if in some cases one can choose the periodic orbits On in the
chain-recurrence class supporting µ. This corresponds to [Bon, Conjecture 2].

We obtain a positive answer in a very particular case.
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Corollary 1.9. For any generic diffeomorphism f ∈ Diff1(M) \ HT, let H(p) be a ho-
moclinic class and let i be the minimal stable dimension of its periodic orbits. Then, for
any ergodic measure µ supported on H(p) and whose ith Lyapunov exponent is zero,
there exist periodic orbits On contained in H(p) whose associated measures converge
to µ in the weak topology.

Note that Conjecture 2 asserts that there should not exist such µ on homoclinic classes of
generic diffeomorphisms in Diff1(M) \ HT.

2. Preliminary definitions and results

For the sake of completeness, in this section we recall some definitions and results that are
useful in our context. The reader may skip this section and return to it when referenced.

2.1. General definitions

Let f be a diffeomorphism of M .
The positive and negative orbits of a point, {f n(x) : n ≥ 0} and {f−n(x), n ≥ 0}, are

denoted by Orb+(x) and Orb−(x).
The chain-stable setW ch-s

U (K) of a (not necessarily f -invariant) compact setK inside
a set U that contains K is the set of points x ∈ M that can be joined to a point of K by
an ε-pseudo-orbit contained in U for any ε > 0. When U = M we denote W ch-s(K) =

W ch-s
U (K).

The local stable set W s
η(x) of size η > 0 of a point x ∈ M is the set of points y ∈ M

such that the distance between f n(x) and f n(y) for n ≥ 0 remains smaller than η and
goes to 0 as n→∞.

The (stable) index of a hyperbolic periodic point is its stable dimension.
Two hyperbolic periodic orbits O1 and O2 contained in an open set U are homo-

clinically related in U if there exist transverse intersection points in W s(O1) ∩W
u(O2)

and W u(O1) ∩W
s(O2) whose orbits are contained in U . This implies that H(O1, U) =

H(O2, U).

2.2. Genericity results

We recall some properties that hold for diffeomorphisms in a denseGδ subset of Diff1(M).

Weak periodic points. The Franks lemma [F] allows us to change the index of a periodic
orbit having a weak Lyapunov exponent by aC1-small perturbation. With a classical Baire
argument, one gets the following.

Lemma 2.1. Let f be a diffeomorphism in a dense Gδ subset of Diff1(M) and consider
a sequence (On) of hyperbolic periodic orbits of stable index i > 0 which converges in
the Hausdorff topology to a set 3. Assume also that the ith Lyapunov exponent λi(On)
of On goes to zero as n → ∞. Then there exist hyperbolic periodic orbits of index
i − 1 arbitrarily close to 3 in the Hausdorff topology whose ith Lyapunov exponent is
arbitrarily close to zero.
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Connecting lemmas. We need the following lemmas for connecting orbits.

Theorem 2.2 ([H]). For any f and any C1 neighborhood U of f , there is L = L(U)
∈ N such that any non-periodic point z ∈ M has two arbitrarily small neighborhoods
Bz ⊂ B̂z with the following property.

Let x, y /∈ UL,z :=
⋃L−1
i=0 f

i(B̂z) have iterates f nx (x) and f−ny (y) in Bz with
nx, ny ≥ 1. Then there exists g ∈ U such that:

• g = f on M \ UL,z.
• y belongs to the forward g-orbit of x: there is N ≤ nx + ny such that gN (x) = y.
• The orbit segment {x, g(x), . . . , gN (x)} is contained in the union of the orbit segments
{x, f (x), . . . , f nx (x)}, {f−ny (y), . . . , y} and UL,z.

This allows one to compare local homoclinic classes (the argument is similar to [GW,
Lemma 4.2]).

Corollary 2.3. Let f be a diffeomorphism in a dense Gδ subset of Diff1(M), let p, q be
hyperbolic periodic points and let U,V be open sets satisfying U ⊂ V .

• If H(p,U) contains q and if p, q have the same index, then the orbits of p, q are
homoclinically related in V .
• If H(p,U) and H(q,U) intersect, then H(p, V ) contains H(q,U).

The connecting lemma for pseudo-orbits proved in [BC] can be restated in the following
way (see [C1]):

Theorem 2.4 ([BC]). Let f be a diffeomorphism in a dense Gδ subset of Diff1(M), let
K be a compact set, and x, y ∈ K such that y ∈ W ch-u

K (x). Then, for any neighborhoods
Ux of x, Uy of y and UK of K , there are z ∈ Ux and n ∈ N such that f n(z) ∈ Uy and
{z, f (z), . . . , f n(z)} ⊂ UK .

Using Theorem 2.4, one can improve Corollary 2.3 about local homoclinic classes and
get the following (see also [BC, Section 1.2.3]).

Corollary 2.5. Let f be a diffeomorphism in a dense Gδ subset of Diff1(M). Then, for
any hyperbolic periodic point p, any compact sets 3,1 such that 3 is contained in the
local chain-stable and chain-unstable sets of p inside 1, and any neighborhood U of 1,
the local homoclinic class H(p,U) contains 3.

In particular, the homoclinic classes of aC1-generic diffeomorphism are chain-recurrence
classes. Also considering a hyperbolic periodic orbit O and two chain-transitive compact
sets K ⊂ 3 contained in an open set U such that K ⊂ H(O,U), the class H(O,V )
contains 3 for any open neighborhood V of U .

The following global connecting lemma allows one to control the support of orbit
segments.
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Theorem 2.6 ([C1]). For any diffeomorphism f in a dense Gδ subset of Diff1(M) and
for any δ > 0, there exists ε > 0 such that for any ε-pseudo-orbit segment X =
{z0, z1, . . . , zn}, one can find an orbit segment O = {x, f (x), . . . , fm(x)} which is
δ-close to X for the Hausdorff distance.

Moreover if X is a periodic pseudo-orbit (i.e. zn = z0), then x can be chosen m-
periodic. In particular chain-transitive sets are Hausdorff limits of periodic orbits.

Dominated splitting far from homoclinic tangencies. The existence of dominated
splitting far from homoclinic tangencies was obtained in [PuS] in the two-dimensional
setting and in [W1] in the general case. The basic idea is that periodic orbits may have at
most one Lyapunov exponent close to zero.

Theorem 2.7 ([W1, W2]). Let f ∈ Diff1(M) \ HT and let i ∈ {1, . . . , dim(M) − 1}.
Then the tangent bundle above the set of hyperbolic periodic points with index i has a
dominated splitting E ⊕ F such that dim(E) = i.

Moreover, there exist δ, C > 0, σ ∈ (0, 1) and an integer N ≥ 1 such that if O is a
hyperbolic periodic orbit of period τ and if E ⊕ Ec

⊕ F is the splitting over TOM into
the characteristic spaces whose Lyapunov exponents belong to (−∞, δ], (−δ, δ), [δ,∞),
then:

• Ec has dimension at most one.
• The splitting is N -dominated.
• For any x ∈ O we have

[τ/N ]−1∏
k=0

‖Df|E(f
kN (x))‖ ≤ Cσ τ ,

[τ/N ]−1∏
k=0

‖Df−1
|F (f

−kN (x))‖ ≤ Cσ τ . (2.1)

The last result induces dominated splitting over homoclinic classes.

Corollary 2.8. For any f in a dense Gδ subset of Diff1(M) \HT there exists δ such that
any homoclinic class H(O) satisfies the following.

If O has no Lyapunov exponent in (−δ, δ), then H(O) has a dominated splitting
E ⊕ F where dim(E) coincides with the stable index of O.

If O has a Lyapunov exponent in (−δ, δ), then H(O) has a dominated splitting E ⊕
Ec
⊕F where Ec is one-dimensional and the Lyapunov exponent of O along Ec belongs

to (−δ, δ).

Proof. The set of hyperbolic periodic points with Lyapunov exponents close to those ofO
is dense in H(O) by [BCDG, Lemma 4.1]. By Theorem 2.7 the result follows. ut

The following is a consequence of Theorem 2.7 and Liao’s selecting lemma. The proof is
exactly the same as in [C3, Theorem 1]; the statement we give now is more local.

Theorem 2.9 ([C3, Theorem 1]). Let f ∈ Diff1(M) \ HT and let K0 be a compact
invariant set having a dominated splitting E ⊕ F. If E is not uniformly contracted, then
for any neighborhood U of K0 one of the following occurs:
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1. K0 intersects a local homoclinic class H(O,U) associated to a periodic orbit O
whose stable index is strictly less than dim(E).

2. K0 intersects local homoclinic classes H(On, U) associated to periodic orbits On
whose stable index is equal to dim(E) and which contain weak periodic orbits: for
any δ > 0 there exists a sequence of hyperbolic periodic orbits On that are homoclin-
ically related in U , converge in the Hausdorff topology to a compact subset K of K0,
have stable index equal to dim(E), and have maximal Lyapunov exponent along E
belonging to (−δ, 0).

3. There exists an invariant compact setK ⊂ K0 which has partially hyperbolic structure
Es
⊕Ec
⊕Eu. Moreover, dim(Es) < dim(E), the central bundleEc is one-dimensional

and any invariant measure supported on K has Lyapunov exponent along Ec equal
to 0.

Theorems 2.7 and 2.4 allow one to extend the dominated splitting over a chain-transitive
set to larger sets.

Proposition 2.10 ([C3, Proposition 1.10]). Let f be a diffeomorphism in a denseGδ set
GExt ⊂ Diff1(M)\HT and letK be a chain-transitive set which has a partially hyperbolic
splitting Es

⊕ Ec
⊕ Eu such that Ec is one-dimensional and such that any invariant

measure supported on K has Lyapunov exponent along Ec equal to 0. Then, for any
chain-transitive set A that strictly contains K there exists a chain-transitive set A′ ⊂ A
that strictly contains K and there exists a dominated decomposition E1⊕E

c
⊕E3 on A′

that extends the partially hyperbolic structure ofK . Moreover, the set A′ is the Hausdorff
limit of periodic orbits of stable index dim(Es) whose Lyapunov exponent along Ec is
arbitrarily close to zero.

Indices of a homoclinic class. We now state a result from [ABCDW, Corollaries 2
and 3]:

Theorem 2.11 ([ABCDW, Corollaries 2 and 3]). Let f be a diffeomorphism in a dense
Gδ subset of Diff1(M) \ HT and let H be a homoclinic class having hyperbolic saddles
of stable indices α and β with α < β. Then:

1. H contains periodic points of stable index j for every α ≤ j ≤ β.
2. For every j ∈ {α+1, . . . , β} there exist periodic orbits inH of stable index j −1 and
j whose j th Lyapunov exponent is arbitrarily close to 0.

Remark 2.1. The last theorem is also valid for local homoclinic classes (with the same
proof): ifH = H(p,U) is a local homoclinic class containing hyperbolic periodic points
of indices α < β, then for any neighborhood V of U , the local homoclinic classH(p, V )
contains hyperbolic periodic points of any index i ∈ {α, . . . , β}.

Heterodimensional cycles. Robust heterodimensional cycles can be obtained from pe-
riodic points with different indices contained in the same chain-recurrence class.

Theorem 2.12 ([BDK]). For any diffeomorphism f in a dense Gδ subset of Diff1(M),
if H(p) is a homoclinic class containing hyperbolic periodic points of different indices,
then H(p) contains a robust heterodimensional cycle.
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2.3. Dominated splitting, hyperbolic times

In this section we consider an invariant set 3 with a dominated splitting T3M = E ⊕ F .

Extension to the closure. The following property is classical.

Lemma 2.13. An N -dominated splitting T3M = E⊕F over an invariant set3 extends
uniquely onto the closure of 3 as an invariant N -dominated splitting.

Adapted norm. Using [G1], one can replace the Riemannian norm by another one which
is adapted to the domination: for this norm, there exists λ ∈ (0, 1) such that for any point
x ∈ 3 and any unitary vectors vE ∈ Ex and vF ∈ Fx we have

‖Df.vE‖ ≤ λ‖Df.vF ‖.

Generalization to forward invariant sets. Consider a small neighborhood U of 3 and
consider the set 3+ of points whose forward f -orbit is contained in U . Similarly 3−

denotes the set of points whose backward f -orbit is contained in U . The bundle E on
3 extends uniquely as a forward invariant continuous bundle that is tangent to a center-
stable cone. The bundle E is also characterized in the following way: for any x ∈ 3+ and
any vectors u ∈ Ex \ {0} and v ∈ TxM \ Ex , we have

lim sup
n→∞

1
n

log ‖Df n(x).u‖ < lim inf
n→∞

1
n

log ‖Df n(x).v‖.

Hyperbolic points. Let 3 be a compact invariant set and E be a continuous invariant
bundle over 3. For any C > 0 and σ ∈ (0, 1), we say that a point x ∈ 3 is (C, σ,E)-
hyperbolic for f if for any n ∈ N,

n−1∏
i=0

‖Df |E(f i (x))‖ ≤ Cσ
n.

For any x ∈ 3, if f n(x) is (C, σ,E)-hyperbolic for f , then n is called a (C, σ,E)-
hyperbolic time of x for f .

Note that the definition of (C, σ,E)-hyperbolic points extends to the set 3+ intro-
duced above. One defines similarly the (C, σ,E)-hyperbolic times for f−1. When there
is no ambiguity between f and f−1, we just say that a point is (C, σ,E)-hyperbolic.

The next lemma gives the existence of (1, σ, E)-hyperbolic points, which is a weak
version of the well-known Pliss lemma.

Lemma 2.14. Let 3 be an invariant set, E be a continuous invariant bundle on 3 and
σ ∈ (0, 1). Then for any x ∈ 3 with

lim sup
n→∞

n−1∑
i=0

1
n

log ‖Df |E(f i (x))‖ < log σ,

there is a (1, σ, E)-hyperbolic point y for f in the forward orbit of x.
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Proof. Let ϕ : 3 → R be the function defined by ϕ(x) = log ‖Df |E(x)‖ − log σ so
that lim supn→∞

1
n

∑n−1
i=0 ϕ(f

i(x)) < 0. If 1
n

∑n−1
i=0 ϕ(f

i(x)) < 0 for all n ≥ 1 then x is
(1, σ, E)-hyperbolic. Otherwise, there exists n0 ≥ 1 such that:

•
1
n0

∑n0−1
i=0 ϕ(f i(x)) ≥ 0.

•
1
n

∑n−1
i=0 ϕ(f

i(x)) < 0 for all n > n0.

This implies that y = f n0(x) is (1, σ, E)-hyperbolic. Indeed, for any n ≥ 1,

1
n

n−1∑
i=0

ϕ(f i(y)) =
1
n

(n+n0−1∑
i=0

ϕ(f i(x))−

n0−1∑
i=0

ϕ(f i(x))
)
.

By the above equalities, the first sum on the right hand side is less than 0 and the second
is not. So the difference is negative and y is (1, σ, E)-hyperbolic. ut

We are interested by finding (C, σ,E)-hyperbolic points for f and (C, σ, F )-hyperbolic
points for f−1 that are close.

Lemma 2.15. Consider a set3 and a constant λ ∈ (0, 1) as above. Consider also σ, ρ ∈
(0, 1) such that λ < ρσ and a sequence (yk) in 3 such that one of the following two
conditions holds:

lim sup
n→∞

n−1∑
i=0

1
n

log ‖Df−1
|E(f−i (yk))

‖ < log(ρ−1),

lim sup
n→∞

n−1∑
i=0

1
n

log ‖Df−1
|F(f−i (yk))

‖ < log σ.

Then one of the following properties holds:

• There exists C > 0 such that infinitely many yk are (C, σ, F )-hyperbolic for f−1.
• For each k ≥ 0, there exists a backward iterate zk of yk which is (1, σ, F )-hyperbolic

for f−1 and any accumulation point of (zk) is (1, ρ, E)-hyperbolic for f .

Proof. Note that under the first condition, the domination between E and F gives, for
each k,

lim sup
n→∞

n−1∑
i=0

1
n

log ‖Df−1
|F(f−i (yk))

‖ < log λ+ log(ρ−1) < log σ,

so that the second condition holds. Thus, by Lemma 2.14, one can get a (1, σ, F )-hyper-
bolic point f−`k (yk) for f−1 in the backward orbit of yk . Let zk be the last one (corre-
sponding to the smallest `k ≥ 0). After taking a subsequence if necessary, two cases are
possible:

(1) There is N0 ∈ N such that `k ≤ N0.
(2) limk→∞ `k = ∞.
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For case (1), we take

C = max
x∈3, 1≤n≤N0

{n−1∏
i=0

‖Df−1
|F(f−i (x))‖

}
.

It is clear that any yk is (C, σ, F )-hyperbolic and the first case of the lemma occurs.
For case (2), we claim that for each k and for any m ∈ [0, `k] ∩ N,

m∏
i=1

‖Df−1
|F(f i (zk))

‖ ≥ σm.

This is proved by induction (the casem = 0 being clear). Assume that it holds up to some
integer m ∈ [0, `k − 1] ∩N and that it is not satisfied for m+ 1. For each 0 ≤ n ≤ m we
have

m+1∏
i=n+1

‖Df−1
|F(f i (f−`k (yk)))

‖ < σm+1−n.

Since f−`k (yk) is (1, σ, F )-hyperbolic, this shows that fm+1−`k (yk) is also (1, σ, F )-
hyperbolic, contradicting the maximality of −`k . Hence the claim holds.

Any limit point z of the sequence (zk) thus satisfies, for each m ≥ 0,
m∏
i=1

‖Df−1
|F(f i (z))‖ ≥ σ

m.

The domination between E and F implies
m−1∏
i=0

‖Df |E(f i (z))‖ ≤ σ
−mλm ≤ ρm,

proving that z is (1, ρ, E)-hyperbolic. ut

Local manifolds. A (locally invariant) plaque family tangent toE is a continuous map D
from the linear bundle E over 3 into M satisfying:
• For each x ∈ 3 the induced map Dx : Ex → M is a C1-embedding that is tangent

to Ex at the point Dx(0) = x.
• The family (Dx)x∈3 of C1-embeddings is continuous.
• The plaque family is locally forward invariant, i.e., there exists a neighborhood U of

the zero section in E such that for each x ∈ 3, the image of Dx(Ex ∩ U) by f is
contained in Df (x)(Ef (x)).

This definition extends to locally forward invariant plaque families tangent to E over the
set 3+. In a symmetric way, one can consider plaque families tangent to F over 3−,
which are locally backward invariant. In the following, Dx will also denote the image of
the embedding Dx .

Plaque families tangent to E over an invariant set 3 always exist by [HPS]; the same
proof gives locally forward invariant plaque families over 3+.

The following lemma ensures the existence of a local stable manifold at (C, σ,E)-
hyperbolic points. The proof is classical (see for instance [ABC, Section 8.2]).
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Lemma 2.16. Let D be a locally forward invariant plaque family tangent to E over 3+.
Then, for any constants C > 0, σ < σ ′ < 1, there exist C′, r > 0 such that for any
(C, σ,E)-hyperbolic point x ∈ 3+, the ball BE(x, r) in Dx is contracted by forward
iterations. More precisely, for each r ′ ∈ (0, r) and n ≥ 0, the image f n(BE(x, r ′)) is
contained in Df n(x) and has diameter smaller than C′(σ ′)nr ′.

The stable and unstable manifolds ofE-hyperbolic and F -hyperbolic points that are close
intersect:

Lemma 2.17. Consider plaque families DE,DF tangent to E,F over the sets 3+,3−

respectively. For any C > 0 and σ ∈ (0, 1), there exists r > 0 such that if y ∈ 3−

is (C, σ, F )-hyperbolic for f−1 and x ∈ 3+ is (C, σ,E)-hyperbolic for f , and if the
distance between x, y is smaller than r , then the local stable manifold at x and the local
unstable manifold at y intersect.

Proof. For x ∈ 3+ and y ∈ 3− that are close, the plaques DE
x andDFy intersect at a point

z close to x, y. By the previous lemma, this point belongs to the local stable manifold at
x and the local unstable manifold at y. ut

If 3 has a splitting T3M = E′ ⊕ Ec
⊕ F , the following result allows one to get inter-

sections between stable manifolds tangent toE′ and unstable manifolds tangent to F . The
argument is the same as for [BGW, Theorem 13] and [C2, Proposition 3.7].

Lemma 2.18. Assume that3 has a dominated splitting T3M = E⊕F = (E′⊕Ec)⊕F

where Ec is one-dimensional, and consider plaque families DE′ ,DF tangent to E′, F
over 3+,3− respectively. Assume also that 3+ contains a curve I tangent to E and
transverse to E′. For any interior point x of I there exists r > 0 with the following
property.

For any y ∈ 3− that is r-close to x, the plaque DF
y intersects DE′

x′
for some x′ ∈ I . In

particular for any C > 0 and σ ∈ (0, 1), if r is small enough, Lemma 2.16 implies that
if y is (C, σ, F )-hyperbolic for f−1 and all points of I are (C, σ,E′)-hyperbolic for f ,
then the local unstable manifold of y and the local stable manifold of x′ intersect.

Remark 2.2. In the setting of the previous lemma, if E′ = Es is uniformly contracted,
then any point in I is (C, σ,E′)-hyperbolic for f .

A weak shadowing lemma for measures. We now state a result regarding hyperbolic
measures whose Oseledets splitting is dominated. The argument is classical [C3, Propo-
sition 1.4]. The version we state now is local but the proof is the same.

Proposition 2.19. Let f be aC1 diffeomorphism andµ be an ergodic measure which has
no zero Lyapunov exponent and whose Oseledets splitting Es

⊕ Eu is dominated. Then
µ is supported on a homoclinic class. Indeed, for any neighborhood U of the support
of µ, there is a sequence of hyperbolic periodic orbits On of index dim(Es) that are
homoclinically related in U , converge to the support of µ in the Hausdorff topology and
the invariant measures supported on the On converge to µ in the weak-∗ topology.
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3. Theorem 1.2 implies Theorem 1.1

In this section we prove Theorem 1.1 assuming that Theorem 1.2 holds. The proof will be
based on several results stated in Section 2. Before we go into details, we give a general
idea of the argument.

Since we are far from homoclinic tangencies, we know from the results in Section 2
that any chain-recurrence class C has a dominated splitting. We distinguish the cases when
C is an aperiodic or a homoclinic class. In the first case we know that C is the Hausdorff
limit of periodic orbits and that any ergodic measure on C has vanishing Lyapunov expo-
nent, so we manage to get a dominated splitting with a one-dimensional central bundle.
If C is a homoclinic class and if a bundle E is not uniformly contracted, then E decom-
poses over a subset 3 ⊂ C and 3 satisfies the conditions of Theorem 1.2, so E can be
decomposed over the whole class C.

Now we give the precise proof of Theorem 1.1. It uses the following lemma. The
generic set in Diff1(M) \ HT that appears in the statements of both Lemma 3.1 and The-
orem 1.1 is the set of diffeomorphisms satisfying Theorem 1.2 and all the generic results
of Section 2.

Lemma 3.1. Let f be a diffeomorphism which belongs to a dense Gδ subset of
Diff1(M) \ HT and let C be a chain-recurrent class of f such that:

• C has a dominated splitting TCM = E ⊕ F .
• C is the Hausdorff limit of periodic orbits of index dim(E).
• C does not contain any periodic point whose index is less than dim(E).
• E is not uniformly contracted.

Then there exists a dominated splitting TCM = E′ ⊕ Ec
⊕ F ′ where dim(Ec) = 1 and

dim(E′) < dim(E) and C is the Hausdorff limit of periodic orbit of index dim(E′).

Proof. Since E is not uniformly contracted, Theorem 2.9 applies. By our assumptions,
the first case in the conclusion does not occur.

If the second case of Theorem 2.9 occurs, then by Corollary 2.5, for any δ > 0 small,
C is the homoclinic class of a periodic orbit whose maximal Lyapunov exponent along E
belongs to (−δ, 0). Then C is the Hausdorff limit of periodic orbits of index dim(E)− 1,
and by Corollary 2.8, the class has a dominated splitting TCM = E′⊕Ec

⊕F , as required.
We thus assume that C contains a minimal set K with a partially hyperbolic splitting

TKM = Es
⊕ Ec

⊕ Eu satisfying the third case of Theorem 2.9. We can take such
K with least dim(Es): for any other minimal set K ′ ⊂ C having a dominated splitting
TK ′M = F

s
⊕F c

⊕F u and such that any invariant probability measure supported on K ′

has zero Lyapunov exponent along F c, we have dim(Es) ≤ dim(F s).
Consider the following family F of compact invariant chain-transitive subsets of C,

say 3, such that:

• 3 contains K.
• T3M = E

′
⊕ Ec

⊕ F ′ dominated with dim(E′) = dim(Es) and dim(Ec) = 1.
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• 3 is the Hausdorff limit of periodic orbits O whose Lyapunov exponent along Ec

is arbitrarily weak (i.e., for any δ > 0 there exists a sequence On of periodic orbits
converging in the Hausdorff topology to3 such that the Lyapunov exponent of each On

along Ec belongs to (−δ, δ)).

Notice that the last condition makes sense since every periodic orbit near3 has a splitting
E′ ⊕ Ec

⊕ F ′. Note also that K belongs to F by Theorem 2.6. Order the family F by
inclusion, that is, 31 ≤ 32 if 31 ⊂ 32. We will apply Zorn’s Lemma to get a maximal
set within F . Let {3α : α ∈ 0} be a totally ordered chain and consider

3∞ =
⋃
α∈0

3α.

It follows that3∞ is the Hausdorff limit of periodic orbits whose (dimE′+1)th Lyapunov
exponent is arbitrarily weak. Thus, by Theorem 2.7, the splitting along these periodic
orbits extends to the closure and so 3∞ has a dominated splitting E′ ⊕ Ec

⊕ F ′. Thus,
3∞ is an upper bound set of {3α : α ∈ 0}. Now, Zorn’s Lemma yields a maximal set
3 ∈ F with respect to the order.

In the case 3 = C we immediately obtain the conclusion of the lemma. Now assume
that3 6= C. By the maximality of3, Proposition 2.10 implies that there exists a measure
supported on3 whose Lyapunov exponent along Ec is not zero. Note also that the bundle
E′ is uniformly contracted since otherwise Theorem 2.9 would contradict the minimality
of dim(E′) = dim(Es) for K . Theorem 1.2 can thus be applied.

By our assumptions, the first property of Theorem 1.2 does not happen. The sec-
ond property holds and implies that C is the Hausdorff limit of periodic orbits whose
(dim(E′) + 1)th Lyapunov exponent is arbitrarily close to zero. By Theorem 2.7 and
Lemma 2.13, the splitting T3M = E′ ⊕ Ec

⊕ F ′ on 3 extends as a dominated splitting
on C. By Lemma 2.1, C is the Hausdorff limit of periodic orbit of index dim(E′), ending
the proof. ut

Let C be a chain-recurrent class of f . Assume first that C is aperiodic. By Theorem 2.6 it is
the Hausdorff limit of a sequence of periodic orbits. By Theorem 2.7, we get a dominated
splitting TCM = E⊕F such that dim(E) coincides with the index of the periodic orbits.
Since C is aperiodic, it is not a hyperbolic set, hence either E is not uniformly contracted
or F is not uniformly expanded. Assume for instance that the former holds. One can then
apply Lemma 3.1 above. This gives another dominated splitting TCM = E′ ⊕ Ec

⊕ F ′

such that C is the Hausdorff limit of periodic orbits of index dim(E′) < dim(E). If E′

is not uniformly contracted, the lemma applies again. Applying the lemma inductively,
one can assume that C has a splitting TCM = Es

⊕ Ec
⊕ Ecu where Es is uniformly

contracted and Ec has dimension 1 and is not uniformly contracted. Since C is aperiodic,
the conclusion of Theorem 1.2 does not occur. Consequently, for any invariant probability
measure supported on C, the Lyapunov exponent along Ec is zero. By domination, this
implies that Ecu is uniformly expanded, as in Theorem 1.1.

We assume now that C is a homoclinic class H(p). By Theorems 2.11 and 2.7, there
exists a dominated splitting

TH(p)M = F
cs
⊕ F c

1 ⊕ · · · ⊕ F
c
s ⊕ F

cu
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such that each bundle F c
i is one-dimensional, dim(F cs) is equal to the minimal index

of periodic orbits of H(p), and dim(M) − dim(F cu) is equal to the maximal index of
periodic orbits of H(p). Moreover for each i, there exist periodic orbits in H(p) whose
Lyapunov exponent along F c

i is arbitrarily close to zero.
If the bundle F cs is not uniformly contracted, then Lemma 3.1 applies. As before, by

induction we get a dominated splitting TH(p)M = Es
⊕ Ec

⊕ Ecu such that dim(Es) <

dim(F cs), the bundle Ec is one-dimensional and not uniformly contracted, and Es is
uniformly contracted. Since H(p) contains hyperbolic periodic points, there exists an
invariant measure supported on H(p) whose Lyapunov exponent along Ec is not zero;
hence Theorem 1.2 can be used. The first case of the conclusion does not happen since
dim(Es) is smaller than the minimal index of periodic points in H(p). The second case
is thus satisfied: the minimal index dim(F cs) coincides with dim(Es) + 1 so that F cs

=

Es
⊕ Ec. Moreover there exist periodic points whose Lyapunov exponent along Ec is

arbitrarily close to zero.
The same holds for the bundle F cu, giving the conclusion of Theorem 1.1.

4. Central models and some consequences

When dealing with sets having a dominated splitting where one bundle is one-dimen-
sional, the first author developed a tool, known as “Central Models”, which proved to
be useful in this context (see [C2], [C3]). We will recall the main classification result
regarding these central models.

4.1. Definition of central models

Let K be a compact invariant set with a dominated splitting of the form TKM = E1 ⊕

Ec
⊕ E3 where Ec is one-dimensional. Consider a locally invariant plaque family Dc

tangent to Ec. It always exists: using a result of [HPS] recalled in Section 2.3, one can
consider center-stable and center-unstable plaque families Dcs,Dcu tangent to the bundles
E1 ⊕ E

c and Ec
⊕ E3 respectively and choose Dc such that for each x ∈ K , the image

of Dc
x is contained in the intersection of the images of Dcs

x and Dcu
x .

Plaque families tangent toEc is a way to introduce central manifolds for points x ∈ K .
When such a family Dc is fixed and η > 0 small is given, one defines the central manifold
of size η at x ∈ K as

W c
η (x) = Dc

x(−η, η).

The above properties of the central plaque family allow one to lift the dynamics of f
as a fibered dynamics f̂ on the bundle Ec that is locally defined in a neighborhood of
the (invariant) zero section of Ec. (See [C2] and [C3] for details.) First, one notices that
the action induced by f on the unitary bundle associated to Ec is the union of one or
two chain-recurrence classes. We denote by K̂ one of these classes: it can be viewed as a
collection of central half-plaques of Dc. These half-plaques can be parameterized, giving
a projection map π : K̂×[0,∞)→ M such that π({x̂}× [0,∞)) ⊂ Dc

x and π(x̂, 0) = x
for each x̂ ∈ K̂ above a point x ∈ K . Since the plaque family Dc is locally invariant,
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the map f can be lifted as a map f̂ defined on a neighborhood of K̂ × {0} which is fiber
preserving and locally invertible. The set K̂ × [0,∞) endowed with the map f̂ is called
a central model of (K, f ) for the bundle Ec.

Sometimes it is useful to consider central models associated to smaller plaques. When
η > 0 is given we say that the central model is associated to the plaques W c

η if for each
x̂ ∈ K̂ the projection π({x̂} × [0,∞)) is contained in W c

η (x) where x = π(x̂, 0).
Two cases can occur when K is chain-transitive:

• Either the action induced by f on the unitary bundle associated to Ec has only one
chain-recurrence class. Equivalently, there is no continuous orientation ofEc preserved
by the action of Df . In this case K̂ is a two-fold covering of K . Moreover if x̂−, x̂+

in K̂ are the two lifts of x ∈ K , then π({x̂−} × [0,∞))∪ π({x̂+} × [0,∞)) contains a
uniform neighborhood of x in Dc

x .
• Or the unitary bundle associated to Ec is the union of two chain-recurrence classes
K̂−, K̂+. In this case, K̂−, K̂+ are copies of K . Consider any two central models
π± : K̂± × [0,∞)→ M . Then for any lifts x̂± ∈ K̂± of x ∈ K , the union π({x̂−} ×
[0,∞)) ∪ π({x̂+} × [0,∞)) contains a uniform neighborhood of x in Dc

x .

4.2. Classification of central dynamics

Let us consider a central model f̂ : K̂ × [0, 1] → K̂ × [0,∞). We introduce some
definitions used to describe its dynamics.

Definition 4.1. (a) When Ẑ is a subset of K̂ , we define the chain-unstable set of Ẑ for
the dynamics of the central model, Ŵ ch-u(Ẑ), as the set of points y ∈ Ẑ × [0,∞) such
that for any ε > 0, there exists a sequence {x0, . . . , xn} in Ẑ and a sequence {y0, . . . , yn}

in Ẑ × [0, 1] satisfying:

• yk ∈ {xk} × [0, 1] for each k ∈ {0, . . . , n}.
• y0 = (x0, 0) and yn = y.
• yk and f̂ (yk−1) are ε-close for each k ∈ {1, . . . , n}.

We define the chain-stable set of Ẑ similarly. Note that we do not assume that Ẑ is com-
pact or invariant.

(b) A point x̂ ∈ K̂ has a chain-recurrent central segment if there exists a > 0 such
that {x̂} × [0, a] is contained in the chain-stable and chain-unstable sets of K̂ × {0}.

(c) We say that the dynamics of f̂ is thin trapped if there exists arbitrarily small open
neighborhoods U of K̂ × {0} such that f̂ (U) ⊂ U and U ∩ ({x̂} × [0,∞)) is an interval
for each x̂ ∈ K̂ .

The next classification results are the basis of this theory. They restate [C2, Section 2]
and [C3, Proposition 2.2].

Theorem 4.1. Let (K̂ × [0,∞), f̂ ) be a central model and assume that K is chain-
transitive. Then:

1. The dynamics of f̂ is not thin trapped if and only if the chain-unstable set of K̂ contains
a non-trivial interval {ŷ} × [0, a], a > 0.
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2. The dynamics of f̂ and f̂−1 are not thin trapped if and only if there is a chain-recurrent
central segment.

3. If the dynamics of f̂ is thin trapped and the dynamics of f−1 is not thin trapped then
there is a neighborhood of K̂ × {0} contained in the chain-stable set of K̂ × {0}.

Proof. Let us explain the first item:

• If the chain-unstable set of K̂ × {0} is reduced to K̂ × {0}, we apply [C2, Lemma 2.7]
(the ε-chain-unstable sets of K̂×{0} are arbitrarily small trapped strips): the dynamics
is thin trapped.
• If the chain-unstable set of K̂ × {0} contains a point (ŷ, a) with a > 0, it also contains

the interval {ŷ} × [0, a]. Clearly, the dynamics cannot be thin trapped.

The second item is [C2, Proposition 2.5]. For the third item: if the dynamics of f̂ is thin
trapped and the dynamics of f−1 is not, then there is no chain-recurrent central segment
and by the first item the chain-stable set of K̂ × {0} is not trivial. By [C2, Lemma 2.8],
there is a neighborhood of K̂ × {0} contained in the chain-stable set of K̂ × {0}. ut

We now come back to the manifold M and discuss the central dynamics of K .

Definition 4.2. (a) K has a chain-recurrent central segment if in some central model of
(K, f ), there exists a chain-recurrent central segment. More precisely, a point x ∈ K
has a chain-recurrent central segment with respect to a central model of (K, f ) if in this
central model there exists a chain-recurrent central segment {x̂} × [0, a], a > 0, where x̂
lifts x.

(b) The central dynamics is thin trapped if there exist one or two central models
(K̂ × [0,∞), f̂ ) or (K̂±× [0,∞), f̂±) that are thin trapped and K̂ or K̂− ∪ K̂+ contain
the whole unitary bundle associated to Ec.

From the classification result, if K is chain-transitive and has no central model with non-
trivial chain-unstable set, then the central dynamics of K is thin trapped. Moreover, this
does not depend on the choice of the central models:

Lemma 4.2. Assume that K is chain-transitive and that its central dynamics is thin
trapped. Then, for any central model (K̂×[0,∞), f̂ ) ofK , the dynamics is thin trapped.

Proof. This is contained in [C3, proof of Lemma 2.5]. ut

4.3. Dynamics with a chain-recurrent central segment

For the next result we need a preliminary lemma.

Lemma 4.3. Let f be a diffeomorphism, 3 be a compact invariant chain-transitive set
with a dominated splitting E ⊕ Ec

⊕ F where Ec is one-dimensional, and (W c(x)) be a
locally invariant plaque family tangent to Ec over 3. There is θ0 > 0 such that for any
small neighborhood U3 of 3, any η > 0 small, and any arc I satisfying:

• there exists x ∈ 3 satisfying f k(I ) ⊂ W c
η (f

k(x)) for all k ≥ 0,
• I ⊂ W ch-s

Uλ
(3),
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• there exists a sequence of periodic points pn whose orbit O(pn) is contained in U3,
whose central exponent belongs to (−θ0, θ0) and such that pn converge to an interior
point y of I ,

then for some n large enough and any neighborhood U ′3 of U3 we have

W u
η (O(pn)) ∩W ch-s

U ′3
(3) 6= ∅.

Proof. Assume that the Riemannian norm is adapted to the domination (E ⊕ Ec) ⊕ F

and that λ ∈ (0, 1) is a constant as in Section 2.3.
Let ε > 0 be small. Since all the curves f k(I ), k ≥ 0, have length smaller than η,

choosing η small enough we have, for each z ∈ I ,

‖Df k
|Ec(z)‖ ≤

length(f k(I ))
length(I )

eεk.

Withe the domination, this implies that there exist CE > 0 and σE ∈ (0, 1) such that any
point z ∈ I is (CE, σE, E)-hyperbolic for f .

We choose ρ, σF ∈ (0, 1) such that λ < ρσF and set θ0 = log(ρ−1). We then apply
Lemma 2.15 to the sequence (pn) and discuss the two cases of the conclusion.

In the first case, taking a subsequence, the points (pn) are (CF , σF , F )-hyperbolic for
f−1 and some constant CF > 0. We then set C = sup(CE, CF ) and σ = sup(σE, σF , ρ).
From Lemma 2.18, for n large the local unstable manifold of pn in the plaque tangent to
F at pn intersects the local stable manifold of some point zn ∈ I close to y in the plaque
tangent to E at yn. The result follows in this case.

In the second case, there exist points qn in the orbit of pn that are (1, σF , F )-hyper-
bolic for f−1 and which converge to some point z such that:
• z belongs to the maximal invariant set in U3.
• z is (1, ρ, Ec)-hyperbolic for f .
• z ∈ W ch-s

U3
(3).

By Lemma 2.17, for n large the points z and pn are close, hence the local stable manifold
at z and the local unstable manifold at pn intersect. Since z ∈ W ch-s

U3
(3), one deduces that

pn ∈ W
ch-s
U ′3

(3). ut

Applying Lemma 4.3 to f and f−1, one gets the following corollary.

Corollary 4.4. Let f be a diffeomorphism,3 be a compact invariant chain-transitive set
with a dominated splitting E ⊕ Ec

⊕ F where Ec is one-dimensional and D be a plaque
family tangent to Ec. There is θ0 > 0 such that for any small neighborhood U3 of 3 and
any η > 0 small and considering:
• a chain-recurrent central segment I of K associated to some central model and to the

plaques W c
η ,

• a sequence (pn) of periodic points, which converge to an interior point y of I , whose
orbit is contained in U3, and whose central Lyapunov exponent belongs to (−θ0, θ0),

then for any neighborhood U ′3 of U3 and some n large, the point pn belongs to the
chain-stable and chain-unstable sets W ch-s

U ′3
(3) and W ch-u

U ′3
(3).
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4.4. Thin trapped central dynamics

When K is hyperbolic, it is contained in a local homoclinic class. The following result is
analogous in the case the central dynamics is thin trapped.

Proposition 4.5. Let f be a diffeomorphism and 3 be a compact invariant chain-transi-
tive set. Assume that:

• There exists a compact invariant set K ⊂ 3 having a partial hyperbolic structure
TKM = E

s
⊕ Ec

⊕ Eu with Ec one-dimensional.
• The central dynamics of K is thin trapped.
• There are a neighborhood U3 of3, a locally invariant plaque family Dc tangent to Ec

over K and a plaque Dc
x , x ∈ K , contained in the chain-stable set W ch-s

U3
(3).

Then, for any neighborhoods U ′3, UK of U3 and K there exists a periodic point p such
that:

• The whole orbit of p is contained in UK .
• p is contained in both the local chain-stable and chain-unstable sets of 3 in U ′3.

Proof. Note first that one can assume that any plaque Dc
y is contained in the local chain-

stable set W ch-s
U3

(3). Indeed, if (z0, . . . , zn) is an ε-pseudo-orbit between z0 = y and
zn = x with ε > 0 small enough, then, since the plaque family D is trapped, f (Dzk ) is
contained in a small neighborhood of Dzk+1 for each k. This implies that any point of Dy
can be joined to Dx by a pseudo-orbit.

Note also that we can always replace K by a minimal subset, so that one can assume
that K is chain-transitive. Let U be a small neighborhood of K , so that the partially
hyperbolic structure Es

⊕ Ec
⊕ Eu on K extends to the maximal invariant set in U .

This allows us to introduce some locally invariant plaque families (W cs(x)) and (W c(x))

tangent to Es
⊕Ec and Ec over this maximal invariant set. We may assume thatW c(x) ⊂

W cs(x) for each x.
By assumption and Lemma 4.2, for any central model (K̂ × [0,∞), f̂ ) over K as-

sociated to the plaque family (W c(x)), the dynamics is thin trapped. We claim that there
exists a continuous map δ : K̂ → (0,∞) such that for each x̂ ∈ K̂ , we have

f̂ ({x̂} × [0, δ(x̂)]) ⊂ {f̂ (x̂)} × [0, δ(f̂ (x̂))). (4.1)

Indeed, since the dynamics is thin trapped, there exists an open neighborhood V of K̂×{0}
in the central model such that f̂ (V ) ⊂ V . Let S be the union of the intervals {x̂} × [0, a]
contained in V . Since V is open, this is an open set of the form {{x̂} × [0, a(x̂))}, where
a : K̂ → (0,∞) is lower semicontinuous. The image of S by f̂ is contained inU . Since it
is a union of segments {x̂}×[0, a], it is contained in S. One deduces that f̂ (S) is a compact
set of the form {{x̂}× [0, b(x̂)]}, where b : K̂ → (0,∞) is upper semicontinuous. Hence,
there exists a continuous map δ : K̂ → (0,∞) such that b(x) < δ(x) < a(x) at every
point (such a map exists locally and can be obtained globally by a partition of unity). The
claim follows.
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The property (4.1) above shows that one can reduce the plaques W c(x) so that for
each x ∈ K we have

f (W c(x)) ⊂ W c(f (x)).

Note that this property extends to any point in the maximal invariant set in a small neigh-
borhood U ′ of K . We will use the following properties.

1. By [C2, Lemma 3.11], there exists ε > 0 such that for any periodic orbit O ⊂ U ′, any
point in the ε-neighborhood of W c(q) inside the plaque W cs(q) for q ∈ O belongs to
the stable manifold of a periodic point p ∈ W c(q). Having chosen U ′ and the plaques
W c(x) small enough, such a periodic point p is arbitrarily close to some point z ∈ K .

2. Since the central dynamics of K is thin trapped, for any z ∈ K , any point inside
the plaque Dc

z belongs to K+. When p is close enough to z ∈ K one can apply
Lemma 2.18 and Remark 2.2: the strong unstable manifold of p meets the strong
stable manifold of a point z′ ∈ Dc

z close to z. Since by assumption z′ belongs to the
chain-stable set of 3 inside U3, the periodic point p belongs to the chain-stable set of
3 inside U ′3.

By [C3, Lemma 2.9] any partially hyperbolic set K whose central bundle is one-dimen-
sional and thin trapped satisfies the shadowing lemma:1 for any δ > 0, there exists ε > 0
such that any ε-pseudo-orbit in K is δ-shadowed by an orbit in M . This implies that
there exists a periodic orbit O contained in an arbitrarily small neighborhood of K . In
particular, there exists y ∈ K such that the local strong unstable manifold of y meets the
ε-neighborhood ofW c(q) inside the plaqueW cs(q) for some q ∈ O. By the first property
above, this implies that there is a periodic point p ∈ W c(q) which belongs to the local
chain-unstable set of 3. By the second property, p belongs to the local chain-stable set
of 3 inside U ′3, as required.

Note that when the bundle Es (or Eu) is trivial the local strong stable (or unstable)
manifold of any point x is reduced to x but the proof is unchanged. When Eu is trivial,
we can also apply [C3, Proposition 2.7], which shows that K contains a periodic orbit,
hence gives the conclusion of Proposition 4.5. ut

Remark 4.3. The following stronger statement does not require the uniform expansion
along Eu.

Let 3 be a compact invariant chain-transitive set. Assume that:

• There is a compact invariant setK ⊂ 3 and a dominated splitting TKM = Es
⊕Ec
⊕F

with Ec one-dimensional and Es uniformly contracted.
• The central dynamics of K is thin trapped.
• There exists a (C, σ, F )-hyperbolic point for f−1 in K , for some constants C, σ .
• There are a neighborhood U3 of3, a locally invariant plaque family Dc tangent to Ec

over K and a plaque Dc
x contained in the chain-stable set W ch-s

U3
(3).

1 We stated Proposition 4.5 in a general setting. In case f belongs to a dense Gδ subset of
Diff1(M), the argument could be simplified since any chain-recurrence set is the limit in the Haus-
dorff topology of a sequence of periodic orbits.
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Then, for any neighborhoods U ′3, UK of U3 and K there exists a periodic point p such
that:

• The whole orbit of p is contained in UK .
• p is contained in both the local chain-stable and chain-unstable sets of 3 in U ′3.

We will use this result only in the alternative proof of Proposition 8.2, in Section 8.2. For
this reason, we only sketch the proof. Assume that the Riemannian norm is adapted to the
domination (Es

⊕ Ec)⊕ F and consider λ ∈ (0, 1) as in Section 2.3. As in the proof of
Proposition 4.5, any plaque of the family Dc is contained in W ch-s

U3
(3).

IfK supports an ergodic measure which is hyperbolic (i.e. all its Lyapunov exponents
are non-zero) and whose stable spaces have dimension dim(Es) or dim(Es

⊕Ec), then the
conclusion follows. Indeed, the Oseledets splitting is dominated and by Proposition 2.19,
there exists a sequence of hyperbolic periodic orbits that converge to a subset of K and
are homoclinically related in a small neighborhood of K .

If Ec is uniformly contracted, since there exists a (C, σ, F )-hyperbolic point for f−1,
there exists an ergodic measure µ0 supported on K such that the integral of log ‖Df−1

|F ‖

is smaller than σ . Such a measure is hyperbolic, has stable dimension dim(Es
⊕Ec) and

we are done.
If K supports an ergodic measure µ whose central Lyapunov exponent is non-zero

and larger than log λ, then by domination, all the exponents of µ along F are positive, the
measure is hyperbolic, has stable dimension dim(Es) or dim(Es

⊕ Ec) and we are done
too.

If for some invariant compact set K ′ ⊂ K , any invariant probability measure on K ′

has central Lyapunov exponent zero, then Proposition 4.5 can be applied and the conclu-
sion follows. One deduces that Ec is not uniformly contracted on K and for any compact
invariant setK ′ ⊂ K , there exists a measure whose central Lyapunov exponent is smaller
than log λ.

Liao’s selecting argument thus applies (see [W2, Lemma 3.8]): again, there exists a
sequence of hyperbolic periodic orbits that converge to a subset of K and are homoclini-
cally related together in a small neighborhood of K , concluding the proof.

As for the proof of Proposition 4.5, the argument is simpler in the generic setting:
since there exists a (C, σ, F )-hyperbolic point for f−1, one may find an invariant mea-
sure µ supported on K such that all the Lyapunov exponents along the bundle F are
positive. By Mañé’s ergodic closing lemma [M1], there exists a sequence of periodic or-
bits whose associated invariant measures converge to µ in the weak-* topology. The rest
of the argument is similar to the end of the proof of Proposition 4.5.

5. Proof of Theorem 1.2

In this section we reduce the proof to some technical propositions (Propositions 5.4
and 5.5) that will be proved in later sections. Let 3 be as in the hypothesis of Theorem
1.2 with a dominated splitting Es

⊕ Ec
⊕ F with Ec one-dimensional and Es uniformly

contracted. We consider a small neighborhood U0 of 3 and a small constant θ , and we
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have to show that the conclusion of Theorem 1.2 is satisfied by U0 and θ . We also fix a
locally invariant family of central plaques Dc over 3. All the central manifolds W c

η (x)

and all central models that we will consider are taken from this plaque family.
Let us give the idea of the arguments contained in this section. Recall that Ec is

not uniformly contracted but there exists an ergodic measure supported on 3 with non-
vanishing central Lyapunov exponent. If there exist ergodic hyperbolic measures on 3
with arbitrarily weak central Lyapunov exponent, we are done. In the other case any mea-
sure has a zero Lyapunov exponent or all its Lyapunov exponents are bounded away from
zero. From that we deduce that the set X of points with good central contraction is non-
empty and there exist compact invariant sets K supporting only invariant measures with
vanishing central Lyapunov exponent. Combining these with the analysis of the central
models we split the proof into two cases (Propositions 5.4 and 5.5) discussed in the next
two sections.

5.1. Generic assumption

Let U,V be open sets in M and θ > 0. We define O(U, V, θ) as the set of diffeomor-
phisms of M having a hyperbolic periodic orbit O contained in U which meets V and
whose (dim(Es)+ 1)th Lyapunov exponent belongs to (−θ, θ).

Let B0 be a countable basis of open sets in M and B the open sets in M that are finite
union of elements of B0. The set B has the following properties: it is countable and for
each compact set K ⊂ M and each open set V ⊂ M containing K , there exists U ∈ B
such that K ⊂ U ⊂ V .

We then define the dense Gδ set

G =
⋂

(U,V,θ)∈B×B×Q+

(
O(U, V, θ) ∪ (Diff1(M) \O(U, V, θ))

)
. (5.1)

The denseGδ subset of Diff1(M) given by Theorem 1.2 is the set of diffeomorphisms
whose periodic orbits are hyperbolic and contained in the intersection of the denseGδ sets
given by Theorem 2.4 (consequences of the connecting lemma for pseudo-orbits), The-
orem 2.6 (approximation of pseudo-orbits by orbits in the Hausdorff topology), Corol-
lary 2.5 (coincidence between chain-recurrence classes with periodic points and homo-
clinic classes and local version of it) and of G defined above.

5.2. Measures supported on 3

For an ergodic measure µ supported on 3 we denote by Lc(µ) the Lyapunov exponent
of µ along Ec. Note that this also defines the Lyapunov exponent Lc(O) along Ec of a
periodic orbit O ⊂ U0.

We know that there exists an ergodic measure µ such that Lc(µ) 6= 0. If Lc(µ) > 0
then by the domination on F and since Es is uniformly contracted we see that µ is a
hyperbolic measure whose Oseledets splittingEs

µ⊕E
u
µ coincides a.e. withEs

⊕(Ec
⊕F).

Now, Proposition 2.19 yields the first option of Theorem 1.2.
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Thus, assume from now on that for any ergodic measure µ in 3 we have Lc(µ) ≤ 0.
The next lemma says that if there are ergodic measures with negative central Lyapunov
exponent arbitrarily close to zero we can conclude the proof.

Lemma 5.1. Assume that for every ε > 0 there exists an ergodic measure µ in 3 such
that Lc(µ) ∈ (−ε, 0). Then the second option of Theorem 1.2 holds.

Proof. Let µ be an ergodic measure supported on 3 with Lc(µ) ∈ (−ε, 0). By domina-
tion between E and F , if ε is sufficiently small, any Lyapunov exponent of µ along F is
positive. On the other hand, since Es is uniformly contracted, any Lyapunov exponent of
µ along Es is negative. Therefore, µ is a hyperbolic measure whose Oseledets splitting
Es
µ⊕E

u
µ coincides a.e. with (Es

⊕Ec)⊕F. Proposition 2.19 yields a sequence of hyper-
bolic periodic orbits On that are homoclinically related in U0 and such that the invariant
probability measures supported on the On converge to µ in the weak-∗ topology. In par-
ticular the central exponents of all On belong to (−ε, 0). By Corollary 2.5, H(On, U0)

contains 3. So assuming moreover ε < θ , we get the second option of Theorem 1.2. ut

Continuing with the proof we have to handle the following situation that we shall assume
from now on:

(∗) There exists ε0 such that any ergodic measure µ in 3 satisfies

Lc(µ) /∈ (−ε0, 0).

Moreover there exists an ergodic measure µ0 such that Lc(µ0) ≤ −ε0.

5.3. 0-CLE sets K

A zero central Lyapunov exponent set (or briefly a 0-CLE set) is a compact invariant
chain-transitive set K ⊂ 3 such that Lc(µ) = 0 for any ergodic measure supported
on K .

Theorem 2.9 can be restated as:

Lemma 5.2. Assume that (∗) holds. Then one of the following holds:

1. The first or second option of Theorem 1.2 is true.
2. There exists a 0-CLE set K ⊂ 3.

Proof. Let us apply Theorem 2.9 to the dominated splitting E ⊕ F = (Es
⊕ Ec) ⊕ F

on 3. The first two cases of Theorem 2.9 give the two options of Theorem 1.2. The third
case gives a 0-CLE set K ⊂ 3. ut

Therefore, in order to prove our theorem, by the above lemma we will restrict ourselves
to the following case:

(∗∗) There exists a 0-CLE set K ⊂ 3.
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5.4. The set X of hyperbolic points

As explained in Section 2.3, one can change the Riemannian norm and assume that there
exists λ ∈ (0, 1) such that for any x ∈ 3 and any unitary vectors vcs

∈ Es
x ⊕ E

c
x and

vF ∈ Fx we have

‖Df.vcs
‖ ≤ λ‖Df.vF ‖.

Fix ε ∈ (0, ε0) where ε0 is defined by (∗) and assume that e−ε > λ1/2. Let X be the
set of points that are (1, e−ε, Ec)-hyperbolic for f , that is,

X = {x ∈ 3 : ‖Df n
|Ec
x
‖ ≤ e−nε ∀n ≥ 0}.

Notice that X is compact. The next lemma and (∗) show that it is non-empty.

Lemma 5.3. For any invariant ergodic measure µ such that Lc(µ) < 0 the sets X and
supp(µ) intersect.

Proof. The continuous function ϕ : supp(µ) → R defined by ϕ(x) = log ‖Df|Ec(x)‖

satisfies Lc(µ) =
∫
ϕ dµ, and Lc(µ) < −ε by (∗). By Birkhoff’s theorem and Lem-

ma 2.14, the orbit of a.e. point x meets X. ut

In particular any compact invariant chain-transitive set K ⊂ 3 that is disjoint from X is
a 0-CLE set.

5.5. The chain-unstable case

We will now consider two cases depending on whether or not there exist a 0-CLE set K
and a point y ∈ 3 with α(y) ⊂ K such that the chain-unstable set Ŵ ch-u(K̂ ∪ Orb−(ŷ))
contains a non-trivial segment {ŷ} × [0, a], a > 0, in some central model where K̂ :=
α(ŷ). When such K and y exist we apply the following proposition that will be proved in
Section 6.

Proposition 5.4. Assume that there is a 0-CLE set K ⊂ 3 and y ∈ 3 such that
α(y) ⊂ K and for some central model Ŵ ch-u(K̂ ∪ Orb−(ŷ)) contains a non-trivial seg-
ment {ŷ} × [0, a], a > 0, where ŷ is a lift of y in the central model. Then for any θ > 0
and any neighborhood U3 of 3, there is η > 0 with the following property.

Considering the dynamics in a central model associated to the plaques W c
η , there is

x ∈ 3 having a chain-recurrent central segment I . Moreover, for any z ∈ Int(I ) and for
any neighborhood Vz of z, there is a periodic point p ∈ Vz such that

• Orb(p) ⊂ U3,
• Lc(p) ∈ (−θ, θ).

One can thus apply Corollary 4.4. This shows that the second case of Theorem 1.2 holds.
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5.6. The thin trapped case

We now consider the other case, i.e. the assumption of Proposition 5.4 does not hold. The
following proposition, to be proved in Section 7, applies.

Proposition 5.5. Assume that for any 0-CLE set K0 and any point y ∈ 3 such that
α(y) ⊂ K0 we have, for any central model and any lift ŷ of y,

Ŵ ch-u(K̂0 ∪ Orb−(ŷ)) ∩
(
{ŷ} × [0,∞)

)
= {(ŷ, 0)}.

Then, for any neighborhood U3 of 3, there exists a 0-CLE set K ⊂ 3 and η > 0 such
that the plaques W c

η (x) for x ∈ K are contained in the chain-stable set W ch-s
U3

(3).

Let K be the set provided by Proposition 5.5. If one considers a central model (K̂ ×
[0,∞), f̂ ) associated to (K, f ), the chain-unstable set of K̂×{0} contains no non-trivial
interval {ŷ}×[0, a], a > 0, by our assumptions. The classification Theorem 4.1(1) implies
that (K̂ × [0,∞), f̂ ) is thin trapped. This proves that the central dynamics of K is thin
trapped.

The assumptions of Proposition 4.5 are now satisfied by the set K: there exists a pe-
riodic orbit contained in an arbitrarily small neighborhood of K and in both the local
chain-stable and chain-unstable sets of 3 inside a small neighborhood U ′3 of 3. Since K
is a 0-CLE set, the central exponents of p are contained in (−θ, θ). By Corollary 2.5, the
local homoclinic class H(p,U0) contains 3. This shows that the second case of Theo-
rem 1.2 holds for U0 and θ .

This completes the proof of Theorem 1.2, assuming Propositions 5.4 and 5.5, to be
proved in the next sections.

6. The chain-unstable case: proof of Proposition 5.4

Fix θ > 0 and a small neighborhood U3 of3. By assumption, there exist a central model
(f̂ , 3̂), a point ŷ ∈ 3̂ and a compact invariant set K̂ ⊂ 3̂ such that:

• K̂ contains α(ŷ) and projects by π : 3̂× [0,∞)→ M onto a 0-CLE set K ⊂ 3 of f .
• The chain-unstable set of ŷ is non-trivial: Ŵ ch-u(K̂ ∪ Orb−(ŷ)) \ {ŷ} 6= ∅.

We have to show the existence of η > 0 and of x ∈ 3 having a chain-recurrent central
segment I such that for any z ∈ Int(I ) and any neighborhood Vz of z there exists a
periodic point p ∈ Vz satisfying:

• Orb(p) ⊂ U3.
• Lc(p) ∈ (−θ, θ).

We will first select η, x and I . We then construct for any z ∈ Int(I ) and Vz a periodic
point p as required by a perturbation argument (see Lemma 6.2); since f belongs to the
generic set G, the periodic point p already exists for f .
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6.1. Selection of η, x and I

Here we get the chain-recurrent central segment.

Choice of η. Let us choose η > 0 small. One can always reduce the central model
to a neighborhood of 3̂ × {0} such that it becomes a central model associated to the
plaques W c

η . By a conjugacy of the form (x̂, t) 7→ (x̂, c.t), one can “normalize” the
central model so that f̂ is defined from 3̂× [0, 1] to 3̂× [0,∞).

Let X̂ be the set of points of 3̂ whose projection by π belongs to X. There exists κ
such that for each x ∈ X we have

f k(W c
κ (x)) ⊂ W

c
η (f

k(x)) for each k ≥ 0,

W c
κ (x) is contained in the stable set of x.

(6.1)

This implies the existence of a > 0 such that for any x̂ ∈ X̂ one has:

• f̂ k({x̂} × [0, a]) ⊂ {f̂ k(x̂)} × [0, 1] for each k ≥ 0.
• The length of f̂ k({x̂} × [0, a]) goes to 0 as k→∞.

Since the chain-unstable set of ŷ is non-trivial, one can reduce a > 0 so that

Ŵ ch-u(K̂ ∪ Orb−(ŷ)) ⊃ {ŷ} × [0, a]. (6.2)

Choosing η small, one can also require that the η-neighborhood of 3 is contained in U3
and for any x ∈ 3 and z ∈ W c

η (x) we have∣∣log ‖Df|Ec(x)‖ − log ‖Df|TzW c
η (x)

(z)‖
∣∣ < θ/4. (6.3)

The point x and the segment I . They are obtained by combining the following proper-
ties: the existence of a non-trivial chain-unstable set at ŷ, the uniform contraction along
Ec at points of X and the chain-transitivity of 3. This is done in the following lemma.

Lemma 6.1. There exists a sequence (x̂n) in 3̂ such that for each n:

• α(x̂n) projects by π onto a 0-CLE set.
• {x̂n} × [0, a] is contained in the chain-unstable set of 3̂× {0}.
• {x̂n} × [0, a] is contained in the 1/n-chain-stable set of 3̂× {0}.

In particular for each k ≥ 0, we have

f̂−k({x̂n} × [0, a]) ⊂ {f̂−k(x̂n)} × [0, 1].

Proof. If ŷ ∈ X̂, it is enough to take x̂n = ŷ for any n ≥ 0 by properties (6.1) and (6.2).
So we can assume ŷ 6∈ X̂.

For n ≥ 1, let Ûn be the 1/n-neighborhood of X̂. We can assume that ŷ 6∈ Ûn. Fix
n ≥ 1. For any ` ≥ 1, consider a 1/`-pseudo-orbitO` = {p0, . . . , pn`} in 3̂ from ŷ = p0

to a point z` := pn` in the closure of Ûn such that O` \ {z`} does not intersect the interior
of Ûn. One can define some continuous maps s 7→ tk(s) for each 0 ≤ k ≤ n` such that
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t0(s) = s and for each s > 0 small, the sequence (pk, tk(s)) is a 1/`-pseudo-orbit in
3̂× [0, 1] between (p0, s) and (pn` , tn`(s)).

When s increases from 0 to a, for some k the parameter tk(s) becomes equal to a
(defined in the previous paragraph). We denote x̂n,` := pk . By construction {x̂n,`}×[0, a]
is in the 1/`-chain-unstable set of {ŷ} × [0, s], hence of 3̂× {0} by (6.2). It is also in the
1/`-chain-stable set of {z`} × [0, tn`(s)] ⊂ {z`} × [0, a]. Since z` is 1/n-close to X̂, the
set {x̂n,`} × [0, a] is in the 1/n-chain-stable set of X̂ × [0, a], hence of 3̂× {0} by (6.1).

Let x̂n be a limit of x̂n,` as `→∞. After passing to the limit, {x̂n} × [0, a] is in the
chain-unstable set of 3̂× {0} and in the 1/n-chain-stable set of 3̂× {0}. By construction
the set α(x̂n) is disjoint from the interior of Ûn. Thus its projection K by π is a chain-
transitive compact invariant set disjoint from X. So it is a 0-CLE set. ut

We define x̂ ∈ 3̂ as a limit of the points x̂n. We set x = π(x̂), which is the limit of
xn := π(x̂n). The segment I is the projection by π of {x̂} × [0, a]. By construction, it is
a chain-recurrent central segment of x for the central model we considered.

6.2. A perturbation result

We now fix a point z ∈ Int(I ) and a neighborhood Vz. Note that it is enough to prove
Proposition 5.4 for a dense subset of points z ∈ I . Since f is C1-generic, its periodic
orbits are hyperbolic (see Section 5.1) and f has at most countably many periodic points.
Hence one can assume that z is not periodic. The next lemma constructs the periodic point
p by perturbation of f .

Lemma 6.2. For any C1-neighborhood U of f , there exists g ∈ U having a periodic
orbitO ⊂ U3 which meets Vz and whose (dim(Es)+ 1)th Lyapunov exponent belongs to
(−θ, θ).

Recall that by the construction of x and I and the choice of z, one can find for each n a
point zn ∈ W c

η (xn) (where xn has been defined in the previous step) such that:

• The sequence (zn) converges to z.
• For each k ≥ 0, the point f−k(zn) belongs to W c

η (f
−k(xn)).

• zn belongs to the chain-unstable set of 3 in the η-neighborhood of 3.

Lemma 6.2 is now a consequence of the following two results.

Lemma 6.3. For any C1-neighborhood U of f , there exists n0 ≥ 0 such that for any
ρ ∈ (0, 1), δ > 0 and any neighborhood UA of A := α(zn0), there exists g ∈ U having a
periodic orbit O ⊂ U3 which meets Vz and satisfies:

• The C0-distance between the restrictions of f and g to UA is less than δ.
• O contains a point δ-close to A.
• O contains an orbit segment {w, g(w), . . . , gs(w)} which is contained in UA and

whose proportion in O is larger than ρ.
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Lemma 6.4. There exists a C1-neighborhood U0 of f with the following property. For
any n0 ≥ 0, there exist ρ ∈ (0, 1), δ > 0 and a neighborhood UA of A := α(zn0) such
that for any diffeomorphism g ∈ U0 and any periodic orbit O ⊂ U3 of g satisfying
the conclusion of Lemma 6.3, the (dim(Es) + 1)th Lyapunov exponent of O belongs to
(−θ, θ).

The conclusion of Lemma 6.2 is obtained by considering a small C1-neighborhood U of
f contained in the neighborhood U0 given by Lemma 6.4. We thus get from Lemma 6.3 an
integer n0 and by Lemma 6.4 we obtain constants ρ ∈ (0, 1), δ > 0 and a neighborhood
UA of A := α(zn0). Lemma 6.3 now provides us with the diffeomorphism g and the
periodic orbit O whose central Lyapunov exponent is controlled by Lemma 6.4.

6.3. The perturbation argument: proof of Lemma 6.3

First we can assume that there is r0 > 0 such that α(zn) ∩ B(z, r0) = ∅ for any n and
in particular zn /∈ α(zn) for n large. For otherwise the fact that f is C1-generic implies
(see Section 5.1 and Theorem 2.6) that α(zn) can be accumulated by periodic orbits in
the Hausdorff topology. Thus, the lemma is satisfied in this case.

We then explain how to choose n0. From the Connecting Lemma (Theorem 2.2) we
get an L ∈ N associated to U and two perturbation neighborhoods Bz ⊂ B̂z of z small
enough such that:

• B̂z ⊂ Vz.
• UL,z :=

⋃L−1
i=0 f

i(B̂z) is disjoint from α(zn) for any n ∈ N (using that α(zn) ∩
B(z, r0) = ∅).
• UL,z ⊂ U3.

Now, we let n0 be such that zn0 ∈ Bz and set A := α(zn0). We know that A is disjoint
from UL,z. Let UA be any neighborhood of A such that UA ∩ UL,z = ∅ and UA ⊂ U3.

The strategy. In order to perform the required perturbation we would like to be in the
following setting (see Figure 1):

• a is a point in A and b in UA\A outside the backward orbit of zn0 .

• Bb ⊂ B̂b are perturbation neighborhoods of b such that UL,b :=
⋃L−1
i=0 f

i(B̂b) is
contained in UA and disjoint from the backward orbit of zn0 and from A.

• {yn1 , . . . , f
ln1 (yn1)} is an orbit segment U3 connecting Bz to Bb.

• Ba ⊂ B̂a are arbitrarily small perturbation neighborhoods of a such that UL,a :=⋃L−1
i=0 f

i(B̂a) is contained in UA and is disjoint from UL,b and from the orbit segment
above.
• {f ln2 (yn2), . . . , f

kn2 (yn2)} is an orbit segment in UA connecting Bb to Ba .

Once we have this setting we perform a connecting argument using the Connecting Lem-
ma (Theorem 2.2) three times.

Choice of connecting segments. Let us obtain the above setting.
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Fig. 1. The connecting orbits.

The points a and b. Since z and 3 are in the same chain-transitive set contained in U3
and since A = α(zn0) is in the local chain-unstable set of 3 in the η-neighborhood of 3,
together with the fact that f is C1-generic (see Section 5.1 and Theorem 2.4), there is a
sequence of orbit segments

{yn, f (yn), . . . , f
kn(yn)}n∈N ⊂ U3

such that:

• (yn) converges to z.
• (f kn(yn)) converges to some a ∈ A.

Let us consider a smaller neighborhoodU ′A ofAwhose closure is contained in the interior
of UA. For each n, define ln ∈ [0, kn] ∩ N such that:

• f ln−1(yn) /∈ U
′

A.
• fm(yn) ∈ U

′

A for any ln ≤ m ≤ kn.

By taking a subsequence if necessary, one can assume that:

• (f ln(yn)) converges to some point b ∈ U ′A.
• the forward iterations of b are all contained in UA (and different from zn0 ).

The perturbation domain at b and the connecting orbit between z and b. By Theorem
2.2, there are two neighborhoods Bb ⊂ B̂b of b small enough such that:

• The connected components of UL,b each have diameter smaller than δ.
• UL,b ⊂ UA.
• UL,b is disjoint from A and from the backward orbit of zn0 .
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We then choose n1 such that yn1 ∈ Bz and f ln1 (yn1) ∈ Bb. We also choose m1 ≥ 1 such
that the backward orbit of f−m1(zn0) is contained in UA, and disjoint from UL,b.

The perturbation domain at a and the connecting orbit between b and a. By Theorem
2.2, there are two neighborhoods Ba ⊂ B̂a of a small enough such that:

• The connected components of UL,a each have diameter smaller than δ.
• UL,a ⊂ UA.
• UL,a is disjoint from UL,b.

We then choose n2 such that f ln2 (yn2) ∈ Bb and f kn2 (yn2) ∈ Ba . The orbit segment
{f ln2 (yn2), . . . , f

kn2 (yn2)} is contained in UA.
It is important to note that the two neighborhoods Ba ⊂ B̂a can be chosen arbitrarily

small after choosing the integers ln1 and m1.

The perturbation. We now realize successively three perturbations of f in U supported
in the disjoint domains UL,z, UL,b, UL,a given by Theorem 2.2. The composition of the
three perturbations provides a diffeomorphism g which also belongs to U (see [BC, Re-
mark 4.3]).

The perturbation at z. We apply the Connecting Lemma (Theorem 2.2) to the perturba-
tion domain Bz, B̂z and the points f−m1(zn0) and f ln1 (yn1).

We obtain a diffeomorphism f1 ∈ U (coinciding with f on the complement of UL,z,
hence on UA), a point p ∈ B̂z ⊂ Vz and m, l ≥ 0 such that:

• f−m1 (p) = f−m1(zn0) and f l1(p) = f
ln1 (yn1).

• Any iterate f i1 (p) with −m ≤ i ≤ l belongs to U3.
• The backward f1-orbit of p is disjoint from UL,b.
• The backward f1-orbit of f−m1 (p) is contained in UA, its α-limit is A.
• m ≤ m1 and l ≤ ln1 .

The perturbation at b. We apply Theorem 2.2 to the perturbation domains Bb, B̂b and
the points p and f kn2 (yn2) for the map f1, which coincides with f on UL,b.

We obtain a diffeomorphism f2 ∈ U (coinciding with f on the complement of UL,z∪
UL,b, hence on UL,a) and m, l′, k ≥ 0 such that:

• f−m2 (p) = f−m1(zn0) and f k2 (p) = f
kn2 (yn2).

• Any iterate f i2 (p) with −m ≤ i ≤ k belongs to U3.
• The backward f2-orbit of f−m2 (p) is contained in UA, its α-limit is A.
• The forward f2-orbit of f l

′

2 (p) is contained in UA.
• m ≤ m1 and l′ ≤ ln1 .

The perturbation at a. We apply Theorem 2.2 to the perturbation domains Ba, B̂a and to
the forward and backward orbits of p for the map f2, which coincides with f on UL,a .

We obtain a diffeomorphism f3 ∈ U such that p is periodic. Its orbit O is contained
in U3 and intersects Ûz. Moreover O \ {f−m1(p), . . . , f ln1 (p)} ⊂ UA.
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End of proof of Lemma 6.3. It remains to check that the three properties stated in
Lemma 6.3 are satisfied.

Since the orbitO intersects the set Ûa which meetsA and has diameter smaller than δ,
it contains a point that is δ-close to A.

Since all the perturbation domains UL,b, UL,a ⊂ UA have connected components
with diameter smaller than δ and since UL,z is disjoint from UA, the C0-distance between
f and g in UA is smaller than δ.

Since UL,a can be chosen arbitrarily small after one has built the orbit seg-
ments {f−m1(zn0), . . . , zn0} and {yn1 , . . . , f

ln1 (yn1)}, the period of O can be chosen
arbitrarily large whereas m1, ln1 are fixed. This shows that the orbit segment O \
{f−m1(p), . . . , f ln1 (p)} ⊂ UA has proportion within O close to 1, larger than ρ.

6.4. Control of the central Lyapunov exponent: proof of Lemma 6.4

One first chooses the neighborhood U0 and finds some δ0 > 0 so that for any diffeomor-
phism g ∈ U0, for any point x whose g-orbit is contained in U3 and any point z ∈ 3 such
that x and z are δ0-close, the spaces Ec

x for g and Ec
z for f are close and ‖Dg|Ec(x)‖ and

‖Df|Ec(z)‖ are θ/3-close.
Let us now fix some n0 ≥ 0. We have the following control on the central Lyapunov

exponents of the set α(zn0).

Sublemma 6.5. Any ergodic measure supported on A := α(zn0) has central Lyapunov
exponent in (−θ/3, θ/3) and A does not contain any periodic orbit.

Proof. Consider any ergodic measure µ supported on A. Since the bundle Ec is one-
dimensional, its central Lyapunov exponent is equal to

Lc(µ) =

∫
log(‖Df|Ec‖) dµ.

Recall that each backward iterate f−i(zn0) of zn0 belongs to the central plaque
W c
η (f
−i(xn0)) and that the tangent space of W c

η (f
−i(xn0)) at f−i(zn0) converges as

i → ∞ to the central bundle of A = α(zn0). Hence there exists an orbit segment
{f−`(zn0), . . . , f

−k(zn0)}, with k large and ` > k, such that

1
`− k

log ‖Df `−k
|TW c

η (f
−`(xn0 ))

(f−`(zn0))‖

is close to Lc(µ). By our choice of η (see (6.3)), this last quantity is θ/4-close to

1
`− k

log ‖Df `−k
|Ec (f

−`(xn0))‖,

which is arbitrarily close to zero if k and `− k are large since α(xn0) is a 0-CLE set.
Assume for contradiction that A contains a periodic point p. Observe that there exists

q ∈ α(xn0) such that f−i(p) ∈ W c
η (f
−i(q)) for any i ≥ 0 and the α-limit set of q is a pe-
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riodic orbit contained in the 0-CLE set α(xn0). Such a periodic orbit has a zero Lyapunov
exponent, which contradicts our genericity assumptions made on f in Section 5.1. ut

As a consequence there exists N1 ≥ 1 such that

1
N1

N1−1∑
i=0

log ‖Df |Ec(f i (y))‖ ∈ (−θ/3, θ/3).

There exist δ > 0 and a neighborhood UA of A such that any diffeomorphism g ∈ U0
whose C0-distance to f on UA is smaller than δ has the following property: any orbit
segment {w, g(w), . . . , gN1(w)} ⊂ UA of a point w whose orbit is contained in U3 is
δ0-close to an orbit segment {y, f (y), . . . , fN1(y)} of f in A. In particular by our choice
of U0 we have

1
N1

N1−1∑
i=0

log ‖Dg|Ec(gi (w))‖ −
1
N1

N1−1∑
i=0

log ‖Df |Ec(f i (y))‖ ∈ (−θ/3, θ/3).

From these estimates, for such an orbit segment of g we get

−
2
3
θ <

1
N1

N1−1∑
i=0

log ‖Dg|Ec(gi (w))‖ <
2
3
θ. (6.4)

There exist T ≥ 1 large and a proportion ρ ∈ (0, 1) close to 1 such that any periodic
orbitO satisfying the conclusion of Lemma 6.3 and of period P larger than T , contains an
orbit segment in UA whose length is a multiple of N1 and is comparable to the period P .
From (6.4) one deduces that for p ∈ O,

1
P

P−1∑
i=0

log ‖Dg|Ec(gi (x))‖ ∈ (−θ, θ). (6.5)

Hence the central Lyapunov exponent of O has modulus smaller than θ as required.
Note that δ > 0 can be reduced so that the previous properties still hold with the

same constants T , ρ,N1 and the same neighborhood UA. Since by Sublemma 6.5 the
set A does not contain any periodic orbit for f , if δ is small enough, any periodic orbit
of g containing a point δ-close to A has period larger than T . Hence (6.5) holds for any
periodic orbit as in the statement of Lemma 6.4. ut

6.5. Conclusion of the proof of Proposition 5.4

Note that the neighborhoods U3 and Vz can be chosen in the countable basis B intro-
duced in Section 5.1. For any C1-neighborhood U of f , Lemma 6.2 provides us with a
diffeomorphism g ∈ U having a hyperbolic periodic orbit O ⊂ U3 which meets Vz and
whose (dim(Es) + 1)th Lyapunov exponent belongs to (−θ, θ). Since f belongs to the
denseGδ set G defined at (5.1), the same property holds for f , ending the proof of Propo-
sition 5.4. ut
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7. The thin trapped case: proof of Proposition 5.5

We start with a lemma which allows us to select some 0-CLE sets which are related to the
set X. This comes from the chain-transitivity of 3, the existence of X and the existence
of 0-CLE sets. At this point we do not use the fact that we are in the thin trapped case.

Lemma 7.1. There exist constants C > 0, σ ∈ (0, 1), a sequence (Kn) of 0-CLE sets,
a sequence (zn) of points in 3 and a point x ∈ X such that:

(i) For each n, the α-limit set of zn is Kn.
(ii) The sequence (zn) converges to x.

(iii) For each n, the point zn is (C, σ, F )-hyperbolic for f−1.

Proof. We first construct two sequences (yn) and (Kn) and a point y ∈ X satisfying (i)
and (ii). For that, we will divide the proof into two cases: the non-isolated case and the
isolated case.

• Non-isolated case: there is a sequence (Kn) of 0-CLE sets such that there are yn ∈ Kn
so that y = limn→∞ yn exists and y ∈ X.
• Isolated case: there is a neighborhood U of X such that K ∩ U = ∅ for any 0-CLE

set K .

In the non-isolated case, (i) and (ii) are satisfied by (Kn), (yn) and y.
Now we discuss the isolated case. For any neighborhood U of X, let K3\U =⋂

n∈Z f
n(3 \ U) be the maximal invariant set in 3 \ U . By Lemma 5.3, the central

Lyapunov exponent of any ergodic measure supported on K3\U is 0. Take a sequence of
neighborhoods Un of X such that

⋂
n∈N Un = X and fix n. For any m ∈ N, since 3 is

chain-transitive and3 contains a 0-CLE setK , there is a 1/m-pseudo-orbit fromK to X.
As a consequence, there is a 1/m-pseudo-orbit {za}

b(m)
a=0 such that:

• zb(m) ∈ Un and za /∈ Un for any 0 ≤ a ≤ b(m)− 1.
• z0 is 1/m-close to K . Thus, b(m)→∞ as m→∞.

By taking a subsequence if necessary, one can assume that yn = limm→∞ zb(m) exists
and:

• yn ∈ Un.
• Orb−(yn) ⊂ 3 \ Un. Hence, α(yn) ⊂ 3 \ Un. By the isolated assumption, α(yn) ⊂
K3\Un is a 0-CLE set.

By taking a subsequence if necessary, one can assume that y := limn→∞ yn exists and
belongs to X. This gives (i) and (ii) in the isolated case.

Now, for both cases (non-isolated and isolated), one gets a sequence (Kn) of 0-CLE
sets, a sequence (yn) of points in 3 and y ∈ X such that:

• For each n, the α-limit set of yn is Kn.
• (yn) converges to y.
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In particular, by definition of λ ∈ (0, 1) (see Section 2.3) we have

lim sup
k→∞

k−1∑
i=0

1
k

log ‖Df−1
|Ec(f−i (yn))

‖ < log(λ−1/2).

The same estimate also holds along the bundle E = Es
⊕Ec, hence the first condition of

Lemma 2.15 is satisfied with ρ = λ1/2 and σ ∈ (λ1/2, 1).
We now explain how to get the points (zn) satisfying (iii) from the sequence (yn), by

applying Lemma 2.15. If the first conclusion of Lemma 2.15 is satisfied, the conclusion
of Lemma 7.1 holds directly for zn = yn and x = y.

If the second conclusion of Lemma 2.15 is satisfied, it provides us with a sequence
(zn) of points which

• are (1, σ, F )-hyperbolic for f−1,
• are in the backward orbit of the points yn,
• (on taking a subsequence) converge to a point x that is (1, ρ, Ec)-hyperbolic for f .

Since ρ = λ1/2 < e−ε , the point x belongs to X as required. Thus (zn) satisfies all the
requirements of Lemma 7.1. ut

Now we will discuss the thin trapped case. Let us recall the statement of the proposition.

Proposition 5.5. Assume that for any 0-CLE set K0 and any point y ∈ 3 such that
α(y) ⊂ K0, for any central model and any lift ŷ of y we have

Ŵ ch-u(K̂0 ∪ Orb−(ŷ)) ∩ ({ŷ} × [0,∞)) = {(ŷ, 0)}.

Then, for any neighborhood U3 of 3, there exists a 0-CLE set K ⊂ 3 and η > 0 such
that the plaques W c

η (x) for x ∈ K are contained in the chain-stable set W ch-s
U3

(3).

The idea of the proof is the following. We choose y = zn and K = Kn given by the
previous lemma for n large and we consider the points y′ in a central plaque of y. Two
cases appear.

If the points y′ “escape in the past”: the distance d(f−k(y), f−k(y′)) does not remain
small as k→∞, then K is already thin trapped.

If d(f−k(y), f−k(y′)) remains bounded as k → ∞, the unstable manifold of y′

(tangent to F ) is large and intersects the stable manifold of some x ∈ X (a uniform disk
tangent to Es

⊕Ec). This proves that the α-limit set of y′ is contained in the chain-stable
set 3. Since we are in the thin trapped case, d(f−k(y), f−k(y′)) remains bounded away
from zero, and the union of the α(y′) when y′ varies in the central plaque of y covers the
central plaques of α(y) = K . See Figure 2.

We now give a precise argument.

Proof of Proposition 5.5. First we make some preliminary choices. Lemma 7.1 gives
some constants C > 0 and σ ∈ (0, 1), some sequences (zn), (Kn) and a point x ∈ X.
There exists a curve I in the central plaque of x and containing x in its interior, which
is exponentially contracted by forward iterations. In particular I is contained in 3+ :=⋂
f−k(U3) (see Section 2.3) and Es is uniformly contracted at points of I by forward
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iterations. We choose any σ ′ ∈ (σ, 1) and a constant r > 0 given by Lemma 2.18 adapted
to the constants of hyperbolicity C, σ ′ and to x, I . We choose χ > 0 and work with
central plaques W c

χ . We require several conditions on χ :

• χ < r/2.
• W c

χ (w) ⊂ U3 for any w ∈ 3.
• For any (C, σ, F )-hyperbolic point y ∈ 3 for f−1, any point y′ such that f−k(y′) ∈
W c
χ (f
−k(y)) for each k ≥ 0 is (C, σ ′, F )-hyperbolic for f−1.

By taking n large, the point y := zn and the 0-CLE set K := Kn satisfy:

• α(y) = K .
• d(x, y) < r/2.
• y is (C, σ, F )-hyperbolic for f−1.

Let us consider any central model (f̂ , 3̂×[0,∞)) of3 associated to the plaquesW c
χ and

let ŷ be any lift of y in the central model. Then K̂ = α(ŷ) is a lift of K .
The following claim is the key point of the proof.

Claim. There is δ
K̂
> 0 such that π(K̂ × [0, δ

K̂
]) ∈ W ch-s

U3
(3).

Proof of the claim. One can assume that f̂ is defined from 3̂ × [0, 1] to 3̂ × [0,∞).
There are two possibilities:

(1) There is a sequence {δm} and a sequence {km} ⊂ N such that:

• δm→ 0 as m→∞.
• f−k({ŷ} × [0, δm]) ⊂ {f̂−k(ŷ)} × [0, 1] for any 0 ≤ k ≤ km.
• f̂−km({ŷ} × [0, δm]) = {f̂−km(ŷ)} × [0, 1].

(2) There is δy > 0 such that f̂−k({ŷ} × [0, δy]) ⊂ {f̂−k(ŷ)} × [0, 1] for any k ∈ N.

In case (1), the chain-stable set of K̂ × {0} contains an interval {ẑ} × [0, 1], which is
the limit of f̂−km({ŷ} × [0, δm]). By our assumptions, the chain-unstable set contains no
non-trivial interval {ŵ} × [0, 1] with ŵ ∈ K̂ , hence the central dynamics of K̂ × {0}
is thin trapped by the classification Theorem 4.1(1). Arguing as at the beginning of the
proof of Proposition 4.5, one deduces that there exists a > 0 such that K̂ × [0, a] is in
the chain-stable set of K̂ × {0} in the central model. Since the plaques W c

χ are contained
in U3, the projection π(K̂ × [0, 1]) is contained in W ch-s

U3
(3).

In case (2), the length of f̂−k({ŷ}× [0, δy]), k ≥ 0, is bounded away from zero, since
otherwise {ŷ} × [0, δy] would be contained in the chain-unstable set of K̂ ∪ Orb−(ŷ) in
the central model, which would contradict our assumption that Ŵ ch-u(ŷ) reduces to {ŷ}.
We let δ

K̂
be a lower bound for the length of f̂−k({ŷ} × [0, δy]), k ≥ 0.

Let (ŵ, a) ∈ K̂ × [0, δ
K̂
] and fix α > 0. By construction, there exists km ≥ 0

arbitrarily large, t ∈ [0, δy] and y′ := π(ŷ, t) such that f−km(y′) is α-close to π(ŵ, a).
Since f̂−k(ŷ, t) are defined for any k ≥ 0, the backward iterates of y′ belong to the
plaques f−k(W c

χ (y)). In particular y′ ∈ 3− :=
⋂
k≥0 f

k(U3) and by our choice of χ
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x

z

y

y′

W cs(x)

w

π(ŵ, a)

f−km(y)

f−km(y′)

f−km(z)

Fig. 2. Second case of the proof of Proposition 5.5.

and y we have d(y′, x) < r and y′ is (C, σ ′, F )-hyperbolic for f−1. So we can apply
Lemma 2.18: the local unstable manifold of y′ and the local stable manifold of x intersect
at some point z whose orbit is contained in U3. See Figure 2.

On the one hand, d(f k(z),3) → 0 as k goes to ∞. On the other hand,
d(f−km(z), f−km(y′)) is exponentially small in km since y′ is (C, σ ′, F )-hyperbolic for
f−1, by Lemma 2.16 applied to f−1. If km has been chosen large enough, f−km(z) is
at distance smaller than 2α from π(ŵ, a). Since α is arbitrarily small, the point π(ŵ, a)
belongs to W ch-s

U3
(3), proving the claim. ut

By changing the lift of ŷ (in case the central dynamics of 3 is non-orientable) or by
changing the central model, we get another lift K̂ and another constant δ′

K̂ ′
such that the

union of the projections π(K̂ × [0, δ
K̂
]) ∪ π(K̂ ′ × [0, δ′

K̂ ′
]) covers the plaques W c

η (x)

with x ∈ K for some η > 0 small. This implies the proposition. ut

8. Consequences

In this section we prove the corollaries stated in the introduction.

8.1. Central bundles of homoclinic classes. Proof of Corollary 1.9

Let us consider a homoclinic class H(p) for a C1-generic diffeomorphism f ∈

Diff1(M) \ HT, and a one-dimensional central bundle Ec. Note that if H(p) contains
periodic orbits such that Ec is stable and others such that Ec is unstable, then the class
contains a chain-transitive central segment associated to Ec. Otherwise, the next result
shows that the central dynamics along the bundle Ec is thin trapped for f or f−1 (im-
plying that Ec has (H)-attracting or (H)-repelling type according to the classification of
[C3, Section 2.2] and that it is “chain-hyperbolic”, according to the definition in [CP,
Definition 7]).
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Proposition 8.1. Let f be a diffeomorphism in a dense Gδ subset of Diff1(M) and let
H(p) be a homoclinic class endowed with a dominated splitting TH(p)M = E⊕Ec

⊕F

such that:

• The minimal index of H(p) equals dim(E ⊕ Ec).
• There exist periodic orbits related to p whose Lyapunov exponent along Ec is arbitrar-

ily close to 0.

Then the central dynamics along Ec is thin trapped. In particular E is uniformly con-
tracted.

Proof. Note that since H(p) contains periodic orbits such that Ec is stable, there is no
central model associated to Ec such that the dynamics is trapped for f̂−1. According to
Theorem 4.1(2) we have to rule out the existence of a chain-recurrent central segment
I for H(p). Since I ⊂ H(p), for any z in the interior of I there exists a sequence of
periodic points pn converging to z and whose central Lyapunov exponent is close to zero.
Since f is C1-generic, by Lemma 2.1 one can choose the points pn with index dim(E).
By Corollary 4.4 the points pn belong to H(p) and we obtain a contradiction. ut

We now prove the result about the ergodic closing lemma.

Proof of Corollary 1.9. By Theorem 1.1, there exists a dominated splitting TH(p)M =
Es
⊕ Ec

⊕ F with dim(Ec) = 1 and dim(Es
⊕ Ec) = i. Moreover, there exist periodic

orbits in H(p) whose Lyapunov exponent along Ec is close to zero. By the previous
lemma the central dynamics along Ec is thin trapped.

By Mañé’s ergodic closing lemma [M1, ABC], there exists a sequence of periodic
orbits Ōn whose associated measures converge to µ. Note that they are contained in an
arbitrarily small neighborhood ofH(p). Consider a plaque family Dcs tangent to Es

⊕Ec

over the maximal invariant set in a small neighborhood of H(p), which is trapped by f
and whose plaques are small. For some σ ∈ (0, 1), there exists a (1, σ, F )-hyperbolic
point x in the support of µ. Its unstable manifold meets the plaque Dcs

q̄n
of some point

q̄n ∈ Ōn for large n. Since the plaques are trapped, it meets the stable manifold of some
hyperbolic periodic point qn ∈ Dcs

q̄n
. This implies that qn belongs to the chain-unstable set

of H(p). Considering smaller plaque families, this construction shows that there exists a
sequence of hyperbolic periodic orbits On whose associated measures converge to µ and
that are contained in the chain-unstable set of H(p).

On the other hand, since the central exponent of On is close to zero, some point
q ′n ∈ On has a uniform unstable manifold tangent to F . One can assume that (q ′n) con-
verges to some point x ∈ H(p). Since the central dynamics along Ec is thin trapped,
Lemma 4.3 implies that the orbits On also lie in the chain-stable set of H(p). As a con-
sequence, H(p) contains periodic orbits whose measures converge to µ. ut

8.2. More arguments about aperiodic classes

We now provide an alternative argument for item (1) of Theorem 1.1 about aperiodic
classes, which is shorter since it does not use Theorem 1.2 (nor Lemma 3.1) and Sec-
tions 5 to 7.
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Proposition 8.2. For any diffeomorphism f in a dense Gδ subset of Diff1(M) \HT, any
aperiodic class C is partially hyperbolic with a one-dimensional central bundle.

Proof. By Theorem 2.6, the class C is the limit of a sequence of hyperbolic periodic
orbit On for the Hausdorff distance.

Assume for contradiction that these periodic orbits do not have a weak Lyapunov
exponent. By Theorem 2.7, this induces a dominated splitting TCM = E ⊕ F where
dim(E) equals the index of the periodic orbits and there exist C > 0, σ ∈ (0, 1) and
N ≥ 1 such that inequalities (2.1) in Theorem 2.7 hold for any point of the orbitsOn. We
will set λ = 1/2 and we can assume that σ 2 > λ = 1/2.

On passing to the limit, this implies that C has a (C, σ,E)-hyperbolic point y for fN .
Consider a sequence of periodic points yk in the union of the orbits On which converges
to y. By Lemma 2.15, one can arrange yk to be (C, σ, F )-hyperbolic for f−N and y to be
(C, σ,E)-hyperbolic for fN . Lemma 2.17 implies that for n large enough, the periodic
orbits On lie in the chain-stable set of C.

The symmetric argument for f−1 shows that for n large enough, the periodic orbitsOn
are in the chain-unstable set of C. This proves that theOn are contained in C, contradicting
the assumption that C is aperiodic.

We have shown that the periodic orbits On have a weak Lyapunov exponent, hence
induce by Theorem 2.7 a splitting E ⊕ Ec

⊕ F on C with dim(Ec) = 1. If the conclu-
sion of Proposition 8.2 does not hold, either F is not uniformly expanded or E is not
uniformly contracted. One can assume for instance that F is not uniform. By domination,
this implies that C contains an Ec-hyperbolic point for f . In particular, for any central
model, the dynamics cannot be thin trapped for f−1. By Corollary 4.4, the set C has no
chain-recurrent central segment. Thus by Theorem 4.1(2), the central dynamics of C is
thin trapped for f . By domination, we conclude that E is uniformly contracted. The ex-
istence of an Ec-hyperbolic point for f in C also implies that there exists a central plaque
of C contained in the chain-stable set of C.

Passing to the limit with the periodic orbits On, we also deduce that there exists a
(C, σ, F )-hyperbolic point for f−N in C. Thus the result stated in Remark 4.3 applies,
showing that C contains a periodic point, which is a contradiction. The proof is now
complete. ut

8.3. Weak periodic points: proof of Corollary 1.4

By Theorem 1.1, for any C1-generic f which is away from ones exhibiting a homoclinic
tangency, every homoclinic class H(p) admits a dominated splitting E ⊕ F such that
dim(E) equals the index of p. If H(p) is not hyperbolic, either E is not uniformly con-
tracted or F is not uniformly expanded. We will assume the former. Theorem 1.1 gives a
dominated splitting E = E′ ⊕ Ec with dim(Ec) = 1.

If there exist periodic points in H(p) of index dim(E′), then by Theorem 2.11 there
exist periodic orbits in H(p) with the same index as p whose Lyapunov exponent along
Ec is arbitrarily weak. By Corollary 2.3, these periodic points are homoclinically related
to p as required.
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Otherwise the index of p coincides with the minimal index of the class. By Theo-
rem 1.1, there exist periodic orbits in H(p) with the same index as p whose Lyapunov
exponent along Ec is arbitrarily weak. We conclude in the same way.

8.4. About the Palis conjecture: proof of Corollary 1.5

For a C1-generic f which is away from ones exhibiting a homoclinic tangency or a het-
erodimensional cycle, Theorem 1.1 applies and any homoclinic classH(p) has a partially
hyperbolic splitting TH(p)M = Es

⊕ Ec
1 ⊕ · · · ⊕ E

c
k ⊕ E

u. If k ≤ 2 we are done, oth-
erwise the class contains periodic points of different indices and Theorem 2.12 gives a
contradiction.

8.5. Lyapunov stable classes: proof of Corollary 1.6

Consider a C1-generic diffeomorphism f in Diff1(M)\HT and a Lyapunov stable chain-
recurrence class C.

Claim ([Y1]). The class C is a homoclinic class.

Indeed, if it is an aperiodic class, by Theorem 1.1 it has a partially hyperbolic decompo-
sition TCM = Es

⊕ Ec
⊕ Eu, and this contradicts Theorem 5 of [BGW].

Claim ([Y1]). If TCM = Es
⊕Ec

1 ⊕ · · · ⊕E
c
k ⊕E

u is the partially hyperbolic structure
on C, then the class C contains periodic points of stable index dim(Es)+ k. In particular
if it is not a sink, the bundle Eu is non-degenerate.

Proof. The proof is by contradiction. Since it is similar to [CP, Corollary 2.3], we only
give the idea. Since f is C1-generic and C contains periodic points of index dim(Es) +

k− 1 with Lyapunov exponent along Ec
k arbitrarily close to zero, Lemma 2.1 implies that

there exist periodic points q of index dim(Es)+k arbitrarily close to C. By Proposition 8.1
the central dynamics along Ec

k is thin trapped by f−1. Hence there exists a (small) plaque
family Dcu tangent to Ecu

= Ec
k ⊕ E

u that is trapped by f−1. Also fix a (small) plaque
family Dcs tangent to Ecs

= Es
⊕ Ec

1 ⊕ · · · ⊕ E
c
k . All the Lyapunov exponents of q

along Ecs are uniformly bounded away from zero. Lemmas 2.14 and 2.16 imply that up
to replacing q by one of its iterates, the stable manifold of q contains Dcs

q . Similarly, C
contains a dense subset of periodic points x whose Lyapunov exponents along Ecu are
uniformly bounded away from zero, implying that Dcu

f k(x)
⊂ W u(f k(x)) for some iterate

f k(x) of x. The trapping property on Dcu implies that also Dcu
x ⊂ W u(x). Since q is

close to C, there exists such a point x ∈ C with Dcs
q intersecting Dcu

x , hence q belongs to
the closure of the unstable set of x. Using that C is Lyapunov stable one deduces that C
contains the periodic point q. This contradicts the fact that C does not contain any periodic
point of index dim(Es)+ k. ut

Proof of Corollary 1.6. Assume that a Lyapunov stable class H(p) has no robust het-
erodimensional cycle. Arguing as in the previous section and using the previous claim,
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we find that H(p) has a dominated splitting TH(p)M = Es
⊕Ec

⊕Es, dim(Ec) ≤ 1, all
its periodic points have index dim(Es

⊕ Ec), and the central dynamics along the bundle
Ec is thin trapped for f . One can thus apply [CP, Theorem 13] and deduce that Ec is
trivial. Hence H(p) is hyperbolic. ut

8.6. Bound on the number of classes: proof of Corollary 1.7

We could argue as in [C3, Section 6, p. 724] but instead we give a different argument.
Assume for contradiction that there exists a countable collection of homoclinic classes
H(pn) having the same dominated splitting TH(pn)M = E⊕E

c
1⊕E

c
2⊕F , such that the

Ec
i are one-dimensional, and there exists for each n a periodic orbits Oi

n homoclinically
related to pn and whose Lyapunov exponent alongEc

i is arbitrarily weak. One can assume
that H(pn) converges to a chain-transitive set 3. We claim that for n large, the set 3 is
contained in the chain-unstable set of H(pn). Arguing similarly, 3 is contained in the
chain-stable set of H(pn), hence all the chain-recurrence classes H(pn) contain 3 and
should coincide, giving a contradiction.

Fix σ ∈ (0, 1) close to 1. Domination and the fact that O2
n is weak along Ec

2 imply
that there exists xn ∈ O2

n that is a (1, σ, E⊕Ec
1)-hyperbolic point for f . One can assume

that the sequence (xn) converges to x ∈ 3. One can also consider yn ∈ H(pn)∩W u(O1
n)

arbitrarily close to x. Since O1
n = α(yn) is weak along Ec

1, by Lemma 2.15, we can
assume that there exists C > 0 such that the points yn are (C, σ,Ec

2 ⊕ F)-hyperbolic
point for f−1 and x is (1, σ, E ⊕ Ec

1)-hyperbolic point for f . As a consequence, the
unstable manifold of yn (and of O1

n ⊂ H(pn)) meets the stable manifold of x ∈ 3. This
proves the claim and ends the proof.

8.7. Index completeness: proof of Corollary 1.8

Let 3 be as in the statement of Corollary 1.8. By Theorem 1.1, it has a splitting T3M =
Es
⊕ Ec

1 ⊕ · · · ⊕ E
c
k ⊕ E

u. We fix δ > 0 and want to prove the existence of a periodic
orbit that is δ-close to 3 for the Hausdorff distance and of any index in {dim(Es), . . . ,

dim(Es)+ k}. We fix a neighborhood U0 of 3 contained in the δ-neighborhood U of 3.
If k = 0, the set 3 is hyperbolic and the shadowing lemma shows that ind(3) =

dim(Es).
If k = 1 and all the invariant measures have central Lyapunov exponent zero, then by

Theorem 2.6 the set3 is the Hausdorff limit of a sequence of periodic orbits. Their central
Lyapunov exponent is arbitrarily close to zero, so by Lemma 2.1 both indices dim(Es)

and dim(Es)+ 1 appear, as required.
In the remaining cases, k ≥ 1 and there exists an invariant measure whose exponent

along Ec
1 is non-zero. Then Theorem 1.2 and Lemma 2.1 imply that dim(Es) ∈ ind(3).

Moreover, there exists a periodic point p whose orbit is contained in U0 and is δ-close
to 3 for the Hausdorff distance, whose local homoclinic class H(p,U0) contains 3 and
such that the index of p is dim(Es) or dim(Es)+ 1.
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Similarly, dim(Es) + k ∈ ind(3), and there exists a periodic point q whose orbit is
contained in U0, whose local homoclinic class H(q,U0) contains 3 and such that the
index of q is equal to dim(Es)+ k or dim(Es)+ k − 1.

Choose any i ∈ {ind(p), . . . , ind(q)}. By Corollary 2.3, since H(p,U0) and
H(q,U0) intersect, for any neighborhood U1 ⊂ U of U0, the class H(p,U1) contains q.
Then, by Theorem 2.11 and Remark 2.1, one can choose U2 ⊂ U containing U1 such
that H(p,U2) contains a hyperbolic periodic point z of index i. By Corollary 2.3, the
class H(z,U) contains p and a periodic point x arbitrarily close to p, whose orbit is con-
tained in U and of any index i. By construction this orbit is δ-close to3 for the Hausdorff
distance. Hence 3 is index complete.
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