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Abstract. We prove upper bounds for sums of Kloosterman sums against general arithmetic weight
functions. In particular, we obtain power cancellation in sums of Kloosterman sums over arithmetic
progressions, which is of square-root strength in any fixed primitive congruence class up to bounds
towards the Ramanujan conjecture.
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1. Introduction

The distribution of values of complete exponential sums is of central interest in number
theory and arithmetic geometry. In particular, many arithmetic problems can be trans-
formed into bounding sums of Kloosterman sums. While Weil’s bound gives the best
possible estimate for individual Kloosterman sums S(m, n, c), one can often use the
Bruggeman–Kuznetsov formula to obtain additional savings from the sum over the mod-
ulus c. Starting with the ground-breaking work of Deshouillers–Iwaniec [4], this has been
a recurring theme in analytic number theory—see e.g. [3, 5, 8] for some spectacular ex-
amples. Using the Bruggeman–Kuznetsov formula for the congruence subgroup 00(q),
one can require additional divisibility conditions on the modulus c. It is a routine exercise
to obtain non-trivial bounds for sums of the type∑

c≡0 (q)

S(m, n, c)

c1/2 f∞

(
c

X

)
, (1.1)

where f∞ : (0,∞) → C is an appropriate fixed weight function, m, n are positive
integers, and X is a large parameter. It is much less of a routine exercise to obtain results
of the same quality when the congruence condition c ≡ 0 (mod q) is replaced with c ≡ a
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(mod q) for some (a, q) = 1. The difficulty here lies in the fact that there is no obvious
subgroup of SL2(Z) where the set of lower left entries of its elements is the set of c ≡ a
(mod q), and it is also not obvious how to use different cusps of 00(q) to encode the
congruence condition. It is therefore not clear if spectral theory can provide any non-
trivial information even for a fixed progression such as c ≡ 2 (mod 5). In this article we
show that nevertheless the problem can be solved in full generality in the framework of
certain congruence subgroups 01(Q) (more precisely, for some divisors Q of q2).

In fact, we will consider the following more general setup. Let q be an arbitrary posi-
tive integer. For a function f : (Z/qZ)∗→ C we denote by f̂ its q-Mellin transform

f̂ (χ) =
1

φ(q)1/2

∑
∗

c (q)

χ̄(c)f (c)

where χ is a Dirichlet character modulo q. It satisfies the inversion formula

f (c) =
1

φ(q)1/2

∑
χ (q)

f̂ (χ)χ(c). (1.2)

We write ‖f̂ ‖1 :=
∑
χ (q) |f̂ (χ)|, and we lift f to a function on integers c ∈ Z with

(c, q) = 1 in the obvious way. We think of f as an arithmetic weight function against
which we want to sum Kloosterman sums. The original problem of Linnik [20] is con-
cerned with the magnitude of a variant of (1.1) with q = 1 and f∞ a sharp cutoff function
(see [18], [21]). Weighting contributions of various S(m, n, c) by an arithmetic weight
f (c) is the natural adelic counterpart of this question, with various moduli c entering
with weights according to their position relative to various p-adic neighborhoods in ad-
dition to the archimedean ones. See [7] for a very interesting discussion of arithmetic
weights in a different context.

Our principal result is the following theorem.

Theorem 1. Let m, n, q be positive integers and X ≥ 1. Let f : (Z/qZ)∗ → C, and
let f∞ : (0,∞) → C be a smooth, compactly supported function. Then uniformly in
mn ≤ X2 one has∑

(c,q)=1

S(m, n, c)

c1/2 f (c)f∞

(
c

X

)
�f∞,ε X

1/2+2θ
‖f̂ ‖1(mnq)

ε (1.3)

for any ε > 0 and any admissible exponent θ for the Generalized Ramanujan Conjecture
for the places dividing mn and the archimedean place.

The large rangemn ≤ X2 of uniformity, also known as the “Linnik range” [21], is natural
and will become apparent in (4.2) below. One can also treat the complementary range,
but then the analysis of the relevant integral transforms changes. We remark that, if one
assumes the Selberg eigenvalue conjecture, then the factor X2θ in Theorem 1 can be re-
placed with (mn)θ . Currently, the best available result toward the Generalized Ramanujan
Conjecture is θ = 7/64, due to Kim and Sarnak [17].



Kloosterman sums in residue classes 53

The norm ‖f̂ ‖1 that appears in Theorem 1 satisfies a general (and generally sharp)
estimate ‖f̂ ‖1 ≤ φ(q)1/2‖f ‖2 by the Cauchy–Schwarz inequality. A particularly in-
teresting class of arithmetic weights f (for q prime) comes from algebraic geometry
(e.g. as Frobenius trace functions of perverse l-adic sheaves [7]); see [16] for bounds
on various norms of the corresponding f̂ in terms of the “conductor” of the associated
sheaf.

In the proof of Theorem 1 we develop a generalized version of the Kuznetsov formula
which encodes an additional arithmetic weight and furnishes an exact spectral decomposi-
tion of the left-hand side of (1.3). We state this spectral formula in Section 6 as Theorem 4
after we have developed the necessary notation. Several important ingredients in the proof
of Theorem 1 may be noteworthy, including the encoding of arbitrary arithmetic weights
using twisted Kloosterman sums in Section 2, a more general treatment of newforms
along the lines of [15] in Section 3, and a completely explicit computation of the Fourier
coefficients (also at ramified places) of Eisenstein series of general central character in
Section 5.

As a particular application of Theorem 1, we can choose f to be the characteristic
function of the arithmetic progression c ≡ a (mod q), where (a, q) = 1, and obtain the
following variant of (1.1), a version of Linnik’s conjecture [20] in arithmetic progressions:

Corollary 2. Under the same assumptions as in Theorem 1 one has∑
c≡a (q)

S(m, n, c)

c1/2 f∞

(
c

X

)
�f∞,ε X

1/2+2θq1/2(mnq)ε.

Using Weil’s bound |S(m, n, c)| ≤ τ(c)(m, n, c)1/2c1/2 [14, Corollary 11.12] individu-
ally, one obtains an upper bound�m,n X

ε(1 + X/q) in the situation of Corollary 2. We
see that, for fixed m, n, Corollary 2 is non-trivial for q � X(1−4θ)/3−ε, the quality of
cancellation obtained being uniform across all primitive classes a (mod q).

The dependence on f∞ in Theorem 1 is completely explicit in the proof (see (4.9)–
(4.11) below), but it is somewhat convoluted, so that we decided not to display it in the
main theorem. Suffice it to say that Theorem 1 is a very close non-archimedean analogue
of the classical situation where f is trivial, but f∞ is oscillating, and our method puts the
archimedean and non-archimedean aspects on an equal footing. In particular the appear-
ance of norms of f̂ on the right-hand side of (1.3) is rather natural as a comparison with
(4.9) shows.

As an example of this parallelism in Theorem 1, if we take f∞ fixed and f (c) =
e(ac/q) for some (a, q) = 1 and q prime, then ‖f̂ ‖1 = q + O(1). On the other hand,
if we take q = 1, but a similarly oscillating weight function f∞(x) = w(x)e(qx)

for some fixed, smooth, compactly supported weight function w and some real num-
ber q > 1, then a stationary phase computation shows that the (usual) Mellin transform
of f∞ satisfies f̂∞(c + it) �c q−1/2(1 + |t |/q)−10, and hence (4.9) gives the bound
X1/2+2θq(mnq)ε.

An equally robust analogy can be observed in Corollary 2, in which the Kloosterman
sums S(m, n, c) are summed over moduli c in a non-archimedean ball away from 0. The
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archimedean analogue of Corollary 2 is the situation q = 1, but with a smooth test func-
tion f∞ with support in a short interval [1, 1 + q−1

]. Then f∞ satisfies f̂∞(c + it) �c

q−1(1+|t |/q2)−10, and (4.9) returns the boundX1/2+2θq1/2(mnq)ε, in complete analogy
with Corollary 2. This conclusion should be contrasted with a sum over the progression
c ≡ 0 (mod q), whose analogue would be the substantially easier case of the support of
f∞ in [0, q−1

] (or, equivalently, having X/q in place of X). The (perhaps at first coun-
terintuitive) phenomenon that a thinner or shorter sequence gives rise to a harder estima-
tion problem away from the zero class is not uncommon; compare e.g. an application of
Voronoi summation to obtain bounds for

∑
n≡a (q) λf (n)w(n/X) for a fixed cusp form f

and q > X1/2.
The deeper reason for the analogy between the archimedean and non-archimedean

aspect is that the spectral decomposition of the sum in (1.3) using the Bruggeman–
Kuznetsov formula gives rise to a spectral sum of Maaß forms of a comparable number of
terms in both cases: in slightly simplified terms, we obtain in the non-archimedean case a
sum with bounded spectral parameter for the group 01(q) (of covolume � q2 in Weyl’s
law), while in the archimedean case we obtain a sum with spectral parameter of size up to
q (containing� q2 terms by Weyl’s law) for SL2(Z). In other words, we are expanding in
different directions of the full automorphic spectrum of GL2(Q)\GL2(AQ). In both cases
we estimate the spectral sum trivially and therefore obtain results of comparable quality.

We note that, as a direct consequence (see [22]) of Corollary 2, we obtain the fol-
lowing equidistribution result for the Dedekind sums s(d, c). For a real number x, let 〈x〉
denote the fractional part of x.

Corollary 3. Let q be a natural number, and let a be an integer coprime to q. Then the
set

{〈12 · s(d, c)〉 : d (mod c), c ≤ x, c ≡ a (mod q)}
becomes equidistributed in [0, 1) as x →∞.

Many variations of the present approach are possible. Depending on the application, one
can include additional divisibility conditions on c in (1.3) and thereby relax the condi-
tion (a, q) = 1 in Corollary 2, one can take m and n to be of opposite sign (using the
“opposite sign” Kuznetsov formula), or, perhaps most interestingly, one can sum over m
and n and prove large sieve type inequalities as in [4]. An investigation of (4.9) and in
particular the dependence on f∞ in (1.3) makes it also possible to replace the smooth
summation condition by a sharp cutoff condition c ≤ X. Finally, the dependence on θ in
Theorem 1 can be improved slightly in certain ranges of m, n, q,X using density results
for exceptional eigenvalues as in [14, (16.61)]; see also [14, (16.75)]. We leave these and
other extensions to the interested reader.

For the rest of paper, implicit constants may depend on ε (whose numerical value may
change from line to line), but all other dependencies are explicitly specified.

2. Encoding arithmetic weights

Let χ1 be a primitive Dirichlet character modulo q1, let m, δ ∈ N be positive integers
satisfying (mδ, q1) = 1, and let h : N→ C be a function such that |h(c)| � c−3/2−η for
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some η > 0. For every c with q1 | c, let

Sχ1(m, n, c) =
∑
∗

d (c)

χ1(d)e

(
md + nd̄

c

)
be the twisted Kloosterman sum, where ∗ denotes summation restricted to primitive
residue classes. By Möbius inversion, we have∑

(c,q1)=1

Sχ1(m, nq
2
1 , q1δc)h(δc) =

∑
d|q1

µ(d)
∑
dq1|c

Sχ1(m, nq
2
1 , δc)h(δc/q1). (2.1)

On the other hand, if c is such that (q1, δc) = 1, by twisted multiplicativity of Kloos-
terman sums (see [14, (1.59)]; our case is obtained mutatis mutandis) we have

Sχ1(m, nq
2
1 , q1δc) = S(mq̄1, nq1, δc)Sχ1(mδc, 0, q1) = S(m, n, δc)χ̄1(m)χ1(δc)τ (χ1)

where τ(χ1) is the Gauß sum, and x̄ in one of the first two arguments of a Kloosterman
sum denotes the multiplicative inverse of x to the respective modulus. Substituting into
(2.1), we obtain∑

c

χ1(δc)S(m, n, δc)h(δc) =
χ1(m)

τ(χ1)

∑
d|q1

µ(d)
∑
dq1|c

Sχ1(m, nq
2
1 , δc)h(δc/q1).

Now, let χ be an arbitrary Dirichlet character modulo q, induced by a primitive char-
acter χ1 modulo q1 | q, let (m, q1) = 1, and let h be as above. Then∑
(c,q)=1

χ(c)S(m, n, c)h(c) =
∑
δ|q

(δ,q1)=1

µ(δ)
∑
c

χ1(δc)S(m, n, δc)h(δc)

=

∑
δ|q

(δ,q1)=1

µ(δ)
χ1(m)

τ(χ1)

∑
d|q1

µ(d)
∑
δdq1|c

Sχ1(m, nq
2
1 , c)h(c/q1).

We can collapse the double sum over d and δ to a single sum getting an equality∑
(c,q)=1

χ(c)S(m, n, c)h(c) =
χ1(m)

τ(χ1)

∑
d|q

µ(d)
∑
dq1|c

Sχ1(m, nq
2
1 , c)h(c/q1), (2.2)

valid for every m with (m, q1) = 1 (and so a fortiori whenever (m, q) = 1).
For general m, we put m′ = m/(m, q∞) and n′ = n(m, q∞). Since S(m, n, c) =

S(m′, n′, c) for (c, q) = 1, (2.2) holds without the condition (m, q) = 1 if we replace m
and n by m′ and n′ on the right-hand side; note that χ(m′) = χ1(m

′). We thus obtain the
more general equality∑

(c,q)=1

χ(c)S(m, n, c)h(c) =
χ(m′)

τ (χ1)

∑
d|q

µ(d)
∑
dq1|c

Sχ1(m
′, n′q2

1 , c)h(c/q1), (2.3)
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valid for any positive integers m, n, c and any Dirichlet character χ modulo q. Here, note
that mn = m′n′.

Equality (2.3) is at the heart of our argument. We think of the left-hand side of this for-
mula as an average of Kloosterman sums in the usual sense (as a smooth sum over c) but
additionally weighted with a special arithmetic weight, namely an arbitrary multiplicative
character modulo c. Our equality expresses such a twisted average in terms of twisted
Kloosterman sums, which we can analyze using spectral theory of automorphic forms
for 00(dq1) and character χ1, i.e. a character of the quotient 01(dq1)\00(dq1). In this
sense, as remarked in the introduction, we solve the problem of bounding Kloosterman
sums with arithmetic weights modulo q (with arbitrary weights in the next paragraph) in
the framework of suitable congruence subgroups 01(dq1), where d, q1 | q. Recall that the
additional factor d was inherited simply from Möbius inversion; it will turn out to be of
little relevance in the forthcoming asymptotic analysis.

Finally, we encode an arbitrary arithmetic weight f : (Z/qZ)∗→ C and a long-range
archimedean cutoff. With f and f∞ as in the statement of Theorem 1, we use (2.3) with
h(c) = f∞(c/X)/c

1/2, multiply by f̂ (χ), sum over all Dirichlet characters χ modulo q,
and use the inversion formula (1.2). Thus we obtain the basic identity

∑
(c,q)=1

S(m, n, c)

c1/2 f (c)f∞

(
c

X

)

=
1

φ(q)1/2

∑
χ (q)

χ(m′)f̂ (χ)

τ (χ1)

∑
d|q

µ(d)
∑
dq1|c

q
1/2
1
c1/2 Sχ1(m

′, n′q2
1 , c)f∞

(
c

q1X

)
. (2.4)

Our identity relates the sum of Kloosterman sums against both a finite and an archimedean
test function (essentially an almost arbitrary smooth, compactly supported function on
Q× \ A×Q) to sums which may be treated by the Kuznetsov trace formula for the group
00(dq1). Here we can also see the underlying motivation for the sums appearing in (2.1).

This prepares ground for our principal application, Theorem 1. In the following sec-
tions, we will prove that

6χ1(m, n, d, q,X) :=
∑
dq1|c

1
c1/2 Sχ1(m

′, n′q2
1 , c)f∞

(
c

q1X

)
�f∞ q

1/2
1 X1/2+2θ (mnq)ε, (2.5)

uniformly in mn ≤ X2 and across all d, q1 | q and all primitive characters χ1 modulo q1.
Taking this for granted, Theorem 1 follows from trivial estimates. We note that, if one is
not interested in uniformity with respect to m, n, q, then [9, Theorem 1] shows directly
that

6χ1(m, n, d, q,X)�m,n,q,f∞ X
1/2+2θ+ε.

Remark 1 in [9] gives some explicit polynomial dependence on m, n, q, but consider-
ably weaker than required for (2.5). If χ1 is trivial, one can also read off uniform bounds
for (2.5) from [14, (16.72), (16.75)]. Modulo the Ramanujan–Petersson conjecture, these
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bounds have an extra factor (n(m, q∞)q1)
1/4 compared to (2.5). In the following section

we will make systematic use of newform theory in order to optimize the dependence on
n,m and q1. Our general treatment of newforms and Eisenstein series and correspond-
ing bounds, in particular (3.8) and Lemma 1 below, as well as Theorem 4, may be of
independent interest.

3. Fourier coefficients of automorphic forms

In this section, which can be read independently of Section 2, we collect facts and con-
ventions about (holomorphic and Maaß) cusp forms and Eisenstein series and present
estimates for their Fourier coefficients which will be used in the estimation of 6χ1 in
Section 4.

Let χ1 be a primitive character modulo q1, let κ = 0 if χ1 is even and κ = 1 if
χ1 is odd, and let d be a square-free integer. (In our application to (2.5), q1 and d will
have the same meaning as in the rest of the paper.) For a positive integer k ≥ 2 satisfying
k ≡ κ (mod 2), let Ak(dq1, χ1) = Sk(00(dq1), χ1) denote the finite-dimensional space
of holomorphic weight k cusp forms of level dq1 and character χ1. Here and on, for
any r with q1 | r | dq1, χ1 in the notation for a space such as Ak(r, χ1) (or a basis such
as Bk below) stands, strictly speaking, for the induced character χ1χ0, where χ0 is the
principal character modulo r . For simplicity, we suppress χ0 from notation (but not from
computation) as no confusion will arise. Let Aκ(dq1, χ1) = L2

cusp(00(dq1)\G,χ1,κ)
denote the space of non-holomorphic weight κ cusp forms on G = SL2(R) of level
dq1 and character χ1, and, for every t ∈ (R ∪ [−i/2, i/2])/{±1}, let Aκ(dq1, χ1, t) ⊂

Aκ(dq1, χ1) denote the finite-dimensional space of forms in Aκ(dq1, χ1) of Laplacian
eigenvalue 1/4+ t2.

We normalize Hecke operators for both holomorphic and non-holomorphic cusp
forms so that the Ramanujan–Petersson conjecture states that the eigenvalues λf (p) of Tp
are bounded by 2 in absolute value (i.e. [6, (6.1)] for Maaß forms and [15, (2.15)] for
holomorphic forms of weight k).

With respect to the standard inner product

〈f, g〉 =

∫
00(dq1)\h

f (z)ḡ(z)y`
dx dy

y2 (3.1)

of level dq1, where ` = k in the space Ak(dq1, χ1) and ` = 0 in each of the spaces
Aκ(dq1, χ1), we construct specific orthonormal bases Bk(dq1, χ1) and Bκ(dq1, χ1) of
these spaces as follows. For every r satisfying q1 | r | dq1, let A∗k(r, χ1) denote the space
of holomorphic forms orthogonal to all oldforms of level r and character χ1. By Atkin–
Lehner theory (in particular the multiplicity one principle), we can choose an orthonormal
basis B∗k (r, χ1) of A∗k(r, χ1) consisting of newforms, i.e. eigenforms for all Hecke oper-
ators Tn (n ≥ 1) with eigenvalue λf (n), say (see [14, Section 14.7]). For f ∈ B∗k (r, χ1),
let Adq1/r(f ) be the space spanned by the set of shifts Sdq1/r(f ) := {f (bz) : b | dq1/r}.
Then we have (again by multiplicity one) an orthogonal decomposition

Ak(r, χ1) =
⊕

q1|r|dq1

⊕
f∈B∗k (r,χ1)

Adq1/r(f ).
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One can obtain an orthonormal basis of Adq1/r(f ) by orthonormalizing the set Sdq1/r(f );
below, we will specify an explicit orthonormal basis S�

dq1/r
(f ) = {f(b)(z) : b | dq1/r}.

We obtain the requisite orthonormal basis Bk(dq1, χ1) of the entire space Ak(dq1, χ1) by
taking the union of all these sets:

Bk(dq1, χ1) :=
⊔

q1|r|dq1

⊔
f∈B∗k (r,χ1)

S�
dq1/r

(f ).

We construct an orthonormal basis Bκ(dq1, χ1, t) of the space Aκ(dq1, χ1, t) analo-
gously and write

Bκ(dq1, χ1) =
⊔
t

Bκ(dq1, χ1, t),

the union being taken over the spectral resolution of Aκ(dq1, χ1).
We write the Fourier expansion of a modular form f as

f (z) =
∑
n≥1

ρf (n)n
k/2e(nz) for f ∈ Ak(dq1, χ1),

f (z) =
∑
n 6=0

ρf (n)W n
|n|

κ
2 ,itf

(4π |n|y)e(nx) for f ∈ Aκ(dq1, χ1, tf ),
(3.2)

where Wα,β is the Whittaker function. Let f be a newform of level r and character χ1.
The Fourier coefficients are related to the Hecke eigenvalues as

√
n ρf (n) = ρf (1)λf (n) (3.3)

for all n ∈ N. Moreover, if f is L2-normalized with respect to (3.1), then we have the
following bounds that are essentially due to Hoffstein and Lockhart (upper bound) and
Iwaniec (lower bound):

|ρf (1)|2 =


cosh(πtf )

dq1(1+ |tf |)κ
(dq1(1+ |tf |))o(1), f ∈ A∗κ(r, χ1, tf ),

(4π)k−1

dq10(k)
(kdq1)

o(1), f ∈ A∗k(r, χ1)

(3.4)

(see [11, (30)–(31)], [12]). (Compare the slightly different normalization in [11, Section
2.2].) We recall the Hecke relations

λf (p
α+1)=λf (p)λf (p

α)−χ1(p)χ0(p)λf (p
α−1) for all primes p and integers α≥1,

χ1(p)λ̄f (p)=λf (p) for primes p - r
(3.5)

(see e.g. [14, p. 371] or [6, p. 520]), as well as the bounds

|λf (p)| ≤

{
pθ + p−θ , p - r,
1, p | r;

(3.6)

cf. [19, Theorem 1.1 ii) and iii)] (as well as our normalization (3.2) and (3.3)) for the
latter bound, which holds verbatim for Maaß forms.
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For our principal estimation in the next section, we want to be completely explicit in
our construction of the basis S�

dq1/r
(f ) and compute the Fourier coefficients of the vari-

ous f(b). For notational simplicity we consider only the holomorphic case; the Maaß case
is identical upon replacing k with 0 throughout the argument. We follow closely the argu-
ment in [15, Section 2] (see also [1, Section 3]), which requires only minor modification.
Let f ∈ B∗k (r, χ1) and recall that dq1/r (and thus each of its divisors b) is squarefree.
Define the arithmetic function

ν(b) := b
∏
p|b

(
1+

χ0(p)

p

)
where χ0 is the principal character modulo r , and write f |b(z) := bk/2f (bz). Starting
from the expression

〈E(·, s)f (b1 · ), f (b2 · )〉 =

∫
00(dq1)\h

E(z, s)f (b1z)f̄ (b2z)y
k dx dy

y2

where E(z, s) is the standard weight 0 non-holomorphic Eisenstein series of level dq1,
unfolding using (3.5) to explicitly evaluate multiplicatively shifted convolution L-series
as a product of Euler factors

∞∑
α=0

λf (p
α+1)λ̄f (p

α)p−αs = λf (p)(1+ χ0(p)p
−s)−1

∞∑
α=0

|λf (p
α)|2p−αs,

and evaluating residues at s = 1, we find as in [15, Lemma 2.4] that

〈f |b1 , f |b2〉 =
λ̄f (b

′)λf (b
′′)

ν(b′)ν(b′′)
(b′b′′)1/2〈f, f 〉, b′ =

b1

(b1, b2)
, b′′ =

b2

(b1, b2)
.

The Maaß case is identical except that slightly different special functions occur in the
unfolding step (see [6, Section 19]). With this at hand, proceeding as in [15, p. 75], we
find that the forms

f(b)(z) =

{
b
∏
p|b

(
1−

p|λf (p)|
2

(p + χ0(p))2

)−1}1/2 ∑
c`=b

µ(c)λ̄f (c)

ν(c)
`(k−1)/2f (`z) (3.7)

form an orthonormal basis of Adq1/r(f ); this is the basis S�
dq1/r

(f ) of our choice. (Taking
inverses in the product above is justified by (3.6) with any θ < 1/2.) Hence for every
f ∈ B∗k (r, χ1) or f ∈ B∗κ(r, χ1, t), every n ∈ N and every b | dq1/r , and with f(b) as in
(3.7), we have

√
n ρf(b)(n) =

{
b
∏
p|b

(
1−

p|λf (p)|
2

(p + χ0(p))2

)−1}1/2 ∑
c`=b

µ(c)λ̄f (c)

ν(c)
ρf (1)λf

(
n

`

)

� bε
∑
`|b

` |λf (b/`)|

b1/2

∣∣∣∣ρf (1)λf(n`
)∣∣∣∣, (3.8)

with the convention that λf (x) = 0 for x 6∈ N. Here, we have only used so far that (3.6)
holds with any θ < 1/2, and |ρf (1)| can be further estimated by (3.4).
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We proceed to a discussion of the Eisenstein spectrum, which is parametrized by
singular cusps a. Write Q = dq1. Recall that a cusp a for a group 0 is called singular
with respect to a multiplier system ϑ on 0 if ϑ(γ ) = 1 for all γ in the stabilizer 0a ⊂ 0.
For a cusp a for the group 0 = 00(Q), denoting by σa a scaling matrix (that is, a matrix
such that σ−1

a 0aσa =
{
±
(

1 k
0 1

)
: k ∈ Z

}
), a is a singular cusp for a character χ modulo a

divisor of Q if1

χ

(
σa

(
1 1

1

)
σ−1
a

)
= 1.

As usual, we interpret χ as a character on 00(Q) via χ(γ ) = χ(d) = χ̄(a) for γ =
(
a b
c d

)
.

For a singular cusp a, we consider the weight κ Eisenstein series

Ea,χ1(z, s) =
∑

γ∈0a\0

χ̄1(γ )jσ−1
a γ

(z)−κ=(σ−1
a γ z)s

=

∑
τ∈0∞\σ

−1
a 0

χ̄1(σaτ)jτ (z)
−κ
=(τz)s, (3.9)

where jτ (z) = (c̃z+ d̃)/(|c̃z+ d̃|) for τ =
(
ã b̃

c̃ d̃

)
is the usual multiplier, and τ = σ−1

a γ .
This series converges absolutely for <s > 1, and it has a meromorphic extension to all
of C. Eisenstein series have a Fourier expansion similar to Maaß forms, which at the point
1/2+ it is given by

Ea,χ1(z, 1/2+ it) = Ca,χ1,t (z)+
∑
n 6=0

ρa,χ1(n, t)W n
|n|

κ
2 ,it
(4π |n|y)e(nx). (3.10)

In Section 5, we specify a full list of inequivalent singular cusps a in (5.1), explicitly
compute the Fourier coefficients ρa,χ1(n, t) of the Eisenstein series Ea,χ1(z, 1/2+ it) in
(5.3), and prove the following uniform upper bound, which will be used in our principal
estimation in the next section.

Lemma 1. Let m, n,Q be positive integers, let χ1 be a character modulo Q, let t be a
real number, and let κ ∈ {0, 1}. Let Q̃ be the smallest positive integer such that Q | Q̃2.
Then, for every cusp a of 0 = 00(Q) singular for the character χ1, the Fourier coef-
ficients ρa,χ1(n, t) in the expansion (3.10) of the weight κ Eisenstein series Ea,χ1(z, s)

defined by (3.9) satisfy

E(m, n, t) :=
∑

a singular

√
mn

cosh(πt)
ρa,χ1(m, t) ρa,χ1(n, t)

�
1

(1+ |t |)κ
(m, Q̃)1/2(n, Q̃)1/2

Q̃
(Qmn(1+ |t |))ε.

1 See [13, p. 44]; compare with [6, (4.43)]. It is tempting to think of the two elements
±σa

( 1 1
1
)
σ−1
a as playing the same role, but this is not quite so, due to the presence of the fac-

tor jτ (z)−κ in the multiplier.
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We note that the second fraction does not exceed 1 and that Q̃ ≥ Q1/2. We postpone this
more detailed discussion of the Eisenstein series and the proof of Lemma 1 to the end of
the paper. We will not concern ourselves with the constant term Ca,χ1,t (z) since it does
not enter our estimates.

4. Application of the Kuznetsov formula

In this section, we use the Kuznetsov trace formula and the estimates from Section 3,
including (3.8) and Lemma 1, to prove our claim (2.5). With notation from Section 2, set

g(x) :=

(4π
√
m′n′q2

1

x

)1/2

f∞

(
4π
√
m′n′

xX

)
. (4.1)

Then g(x) is a smooth function compactly supported on an interval of x satisfying

x � 4 :=
√
mnX−1

≤ 1 (4.2)

and such that ‖g‖∞ � (q1X)
1/2
‖f ‖∞, and we have

c1/2f∞

(
c

q1X

)
= g

(4π
√
m′n′q2

1

c

)
.

Substituting into the left-hand side of (2.5), we have

6χ1(m, n, d, q,X) =
∑
dq1|c

1
c
Sχ1(m

′, n′q2
1 , c)g

(4π
√
m′n′q2

1

c

)
.

The sum on the right-hand side can now be readily transformed with the Kuznetsov for-
mula for the group 00(dq1) and character χ1, which we quote from Blomer–Harcos–
Michel [2]. We use the usual weight 0 or the weight 1 formula according as χ1 is even or
odd. We define the following integral transforms:

ġ(k) = ik
∫
∞

0
Jk−1(x)g(x)

dx

x
, k ∈ N,

g̃(t) =
itκ

2 sinh(πt)

∫
∞

0

(
J2it (x)− (−1)κJ−2it (x)

)
g(x)

dx

x
, t ∈ R ∪ [−i/2, i/2].

The power series expansion of the Bessel functions [10, 8.440] together with (4.2) yields

ġ(k)� ‖g‖∞0(k)
−1 (4.3)

and

g̃(t)�


|t |κ

(
|̂g(2it)| + |̂g(−2it)|

|t |1/2
+
|̂g(2+ 2it)| + |̂g(2− 2it)|

|t |3/2
+
‖g‖∞

|t |5/2

)
,

|t | ≥ 1,

‖g‖∞4
−2θ , t ∈ (−1, 1) ∪ [−iθ, iθ].

(4.4)
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Here ĝ denotes the Mellin transform of g, and by (4.1) we have

ĝ(s) = (q1X)
1/2
(

4π
√
mn

X

)s
f̂∞(1/2− s). (4.5)

The following spectral summation formula holds [2, p. 705]:

∑
dq1|c

1
c
Sχ1(m

′, n′q2
1 , c)g

(4π
√
m′n′q2

1

c

)
= H+M+ E, (4.6)

where

H =
∑∑

k≡κ (2), k>κ
f∈Bk(dq1,χ1)

ġ(k)
(k − 1)!

√
m′n′q2

1

π(4π)k−1 ρf (m′) ρf (n
′q2

1 ),

M =
∑

f∈Bκ(dq1,χ1)

g̃(tf )
4π
√
m′n′q2

1

cosh(πtf )
ρf (m′) ρf (n

′q2
1 ),

E =
∑

a singular

∫
∞

−∞

g̃(t)

√
m′n′q2

1

cosh(πt)
ρa,χ1(m

′, t) ρa,χ1(n
′q2

1 , t) dt.

In comparison with [2], note that we are using the classical parametrization of the
Eisenstein spectrum in terms of singular cusps. The formula (4.6) is purely spectral
in that Bk(dq1, χ1) and Bκ(dq1, χ1) can be arbitrary orthonormal bases of the spaces
Ak(dq1, χ1) and Aκ(dq1, χ1), respectively. However, we will from now on assume that
these bases have been chosen as in Section 3, which will allow us to efficiently estimate
the terms on the right-hand side.

We start by bounding M, the contribution of the Maaß spectrum. Each summand
in M corresponds to a basis vector of the form f(b) for some newform f ∈ B∗κ(r, χ1),
with q1 | r | dq1 and b | dq1/r .

Since (m′, q) = (m′, dq1) = 1, (3.6) and (3.8) imply

√
m′ ρf(b)(m

′)� b−1/2+ε
|ρf (1)λf (m′b)| � (m′)θ+εbθ−1/2+ε

|ρf (1)|.

On the other hand, writing b0 = (b, r∞), b1 = b/b0, n′0 = (n′q2
1 , r
∞), and n′1 =

n′q2
1/n
′

0, we have

√
n′q2

1 ρf(b)(n
′q2

1 )� b−1/2+ε
|ρf (1)|

∑
`0|(b0,n

′

0)

∑
`1|(b1,n

′

1)

`0`1

(
b1

`1

)θ+ε(n′1
`1

)θ+ε
� (n′1)

θ+εb−1/2+εb0b
1−θ
1 |ρf (1)| � (n′)θ+εb1/2+ε

|ρf (1)|.
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Combining these estimates with (3.4), we obtain the following bound for any individual
term occurring in the sum for M:

4π
√
m′n′q2

1

cosh(πtf )
ρf(b)(m

′) ρf(b)(n
′q2

1 )�
(mnb)θ

dq1(1+ |tf |)κ−ε
(qmn)ε

�
(mn)θ

r(1+ |tf |)κ−ε
(qmn)ε. (4.7)

(Note that we can afford to let go of a factor of b1−θ .) Next we use the well-known fact
that

#{f ∈ B∗κ(r, χ1) : |tf | ≤ T } � (rT 2)1+ε (4.8)
for any r with q1 | r . This weak but very uniform version of Weyl’s law follows for in-
stance by combining (3.4) with [14, (16.56)] in the special case n = 1.

Collecting (4.2), (4.4), (4.5), (4.7) and (4.8), denoting by τ(·) the divisor function,
and using summation by parts, we conclude that

M� q
1/2
1 X1/2+2θ (mnq)ε

∑
q1|r|dq1

τ(dq1/r)

r

[
#{f ∈ B∗κ(r, χ1) : |tf | < 1} · ‖f∞‖∞

+

∑
f∈B∗κ(r,χ1)
|tf |≥1

(
|f̂∞(1/2± 2itf )|
|tf |1/2−ε

+
|f̂∞(−3/2± 2itf )|
|tf |3/2−ε

+
‖f∞‖∞

|tf |5/2−ε

)]

�f∞ q
1/2
1 X1/2+2θ (mnq)ε, (4.9)

as required for (2.5).
For the Eisenstein spectrum we replace (4.7) with the bound given in Lemma 1 for

Q = dq1. Recalling that (m′, dq1) = 1, we obtain a slightly stronger estimate

E =
∫
∞

−∞

g̃(t)E(m′, n′q2
1 , t) dt

�
q

1/2
1 X1/2

(dq1)1/4
(mnq)ε

(
‖f∞‖∞ +

∫
|t |≥1

|f̂∞(1/2− 2it)|
|t |1/2−ε

dt

)
�f∞

q
1/2
1 X1/2

(dq1)1/4
(mnq)ε. (4.10)

The bound for the holomorphic spectrum H is along the same lines with (4.3) instead of
(4.4), giving

H� ‖f∞‖∞ · q1/2
1 X1/2(mnq)ε. (4.11)

This completes the proof of Theorem 1.

5. Proof of Lemma 1

It remains to prove Lemma 1. To this end we compute explicitly the Fourier coefficients
√
n ρa,χ1(n, t). This is in principle straightforward, but a bit tedious.
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We follow [4], which treats the case when χ1 is trivial. We first describe a set of
(inequivalent) singular cusps. Given a divisor w |Q and a primitive residue class r mod-
ulo wQ := (w,Q/w), we can always find a residue class u (modw) such that u ≡ r

(modwQ) and (u,w) = 1 (since the coprimality condition (u, p) = 1 is automatic from
u ≡ r (modwQ) for primes p |wQ and can be imposed by the Chinese Remainder The-
orem by requiring, for example, that u ≡ 1 (modp) for p - wQ). Let Uw be a full set of
representatives u of primitive residue classes modulo wQ chosen so that (u,w) = 1 for
every u ∈ Uw. Then a full set of inequivalent cusps for the group 0 = 00(Q) is given by
all fractions a = u/w, where w |Q and u ∈ Uw (see [4, Lemma 2.3]). A possible scaling
matrix for a cusp a is given by (see [4, p. 247])

σa =

(
u
√
Q/(w2,Q) 0

w
√
Q/(w2,Q) 1

u
√
Q/(w2,Q)

)
.

We compute that, for every k ∈ Z,

σa

(
1 k

1

)
σ−1
a =

(
1− kuwQ/(w2,Q) ku2Q/(w2,Q)

−kw2Q/(w2,Q) 1+ kuwQ/(w2,Q)

)
.

Hence the singular cusps a = u/w for the character χ1 of conductor q1 are given by the
condition

(w,Q/w)

∣∣∣∣ Qq1
⇔ q1 | [w,Q/w]. (5.1)

This description of the set of equivalence classes of singular cusps can also be found in
[13, Lemma 13.5].

Recall the definition (3.9) of the Eisenstein series at a singular cusp a = u/w as above.
A convenient parametrization of the sum on the right-hand side of (3.9) is as follows. For
γ =

(
a b
c d

)
∈ 0, we have

σ−1
a γ = σ−1

a

(
a b

c d

)
=

( a

u
√
Q/(w2,Q)

b

u
√
Q/(w2,Q)

(uc − wa)
√
Q/(w2,Q) (ud − wb)

√
Q/(w2,Q)

)
=:

(
∗ ∗

−Cw
√
Q/(w2,Q) D

√
Q/(w2,Q)

)
,

where Cw = −uc + wa and D = ud − wb satisfy γ−1
· u/w = D/Cw. In particular,

as γ runs through 0a\0, the point D/Cw precisely traverses the orbit of the cusp u/w
in 0. By [4, Lemma 3.6] the set of pairs (Cw,D) is characterized by

(Cw,D) = 1, (C,Q/w) = 1, CD ≡ u (mod (w,Q/w)).

Pairs of integers (C,D) with these properties come in couples ±(C,D). To each such
pair (C,D) with C > 0 thus corresponds a unique class γ ∈ 0a\0; its representatives(
a b
c d

)
clearly satisfy a ≡ C (mod Q/w) and d ≡ ūD (mod w).

By (5.1), the character χ1 can be induced from the product ψ1ψ2, where ψ1 is a
primitive character of some conductor r1 |w and ψ2 is a primitive character of some
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conductor r2 |Q/w; in particular, χ1(d) = ψ1(ūD)ψ2(C̄). Proceeding as in [4, p. 247]2

or [6, p. 526] we conclude that for n > 0 the n-th Fourier coefficient of Ea,χ1(z, 1/2+ it)
is given by

√
n ρa,χ1(n, t) =

iκπ sns−1/2

0(s + κ/2)

(
(w,Q/w)

wQ

)s
×

∑
(C,Q/w)=1

ψ2(C)

C2s

∑
∗

D (Cw)
CD≡u ((w,Q/w))

ψ1(uD̄)e

(
−
nD

Cw

)
, (5.2)

where s = 1/2+ it .
We transform this expression further into a form which will be convenient for our pur-

poses. We detect the congruence condition in the innermost sum by Dirichlet characters ρ
modulo wQ, getting

∑
∗

D (Cw)
CD≡u (wQ)

ψ1(uD̄)e

(
−
nD

Cw

)
=
ψ1(u)

φ(wQ)

∑
ρ (wQ)

ρ(ūC)
∑
∗

D (Cw)

ψ̄1ρ(D)e

(
−
nD

Cw

)
.

Let Qw be the product of all prime factors p |Q such that p - (Q/w). The condition that
(C,Q/w) = 1 is equivalent to the statement that C = C1C2, where (C1,Q) = 1 and
C2 |Q

∞
w (with the correspondence being that C2 = (C,Q) and C1 = C/C2). Recalling

that the conductor of ψ̄1ρ is a divisor of w, the innermost sum over D above equals

∑
∗

d1 (C2w)

∑
∗

d2 (C1)

ψ̄1ρ(C1d1 + C2wd2)e

(
−
n(C1d1 + C2wd2)

C1C2w

)
= rC1(n)ψ̄1ρ(C1)Sψ̄1ρ

(−n, 0, C2w),

where rC1(n) =
∑
∗

d (C1)
e(−nd/C1) is the Ramanujan sum. Substituting, the double sum

over C and D in (5.2) equals

ψ1(u)

φ(wQ)

∑
ρ (wQ)

ρ(ū)
∑

(C1,Q)=1

ρψ2(C1)

C2s
1

∑
C2|Q∞w

ρψ2(C2)

C2s
2

rC1(n)ψ̄1ρ(C1)Sψ̄1ρ
(−n, 0, C2w).

The inside sum over C1 equals

∑
(C1,Q)=1

ψ̄1ψ2ρ
2(C1)

C2s
1

∑
δ|(C1,n)

µ

(
C1

δ

)
δ =

∑
δ|n

(δ,Q)=1

ψ̄1ψ2ρ
2(δ)

δ2s−1
1

L(Q)(2s, ψ̄1ψ2ρ2)
,

2 There is a small typo in [4, p. 247]: the congruence condition in the rightmost sum in the first
display under Lemma 3.6 should be δγ ≡ u (mod (w, q/w)). Also note the additional factor

√
n in

[2, Section 2.1.3] due to the different weight function compared to [4, (1.17)].
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where L(Q)(s, ψ) =
∏
p-Q(1−ψ(p)p

−s)−1 is the partial L-function. Putting everything
together in (5.2), we find that

√
n ρa,χ1(n, t) =

iκπ1/2+itnit

0
( 1+κ

2 + it
)(wQ
wQ

)1/2+it
ψ1(u)

φ(wQ)

∑
ρ (wQ)

ρ(ū)

L(Q)(1+ 2it, ψ̄1ψ2ρ2)

×

∑
δ|n

(δ,Q)=1

ψ̄1ψ2ρ
2(δ)

δ2it

∑
C2|Q∞w

ρψ2(C2)

C1+2it
2

Sψ̄1ρ
(−n, 0, C2w). (5.3)

With this explicit computation of the Fourier coefficients
√
n ρa,χ1(n, t) under our

belt, we are now ready to prove Lemma 1. Indeed, we have

E(m, n, t) =
∑
w|Q

q1|[w,Q/w]

∑
u∈Uw

√
mn

cosh(πt)
ρu/w,χ1(m, t) ρu/w,χ1(n, t).

We insert (5.3), sum over u first, and then estimate trivially, using Stirling’s formula, stan-
dard lower bounds for L(Q)(1+ it, ψ) (including Siegel’s bound if ψ is real and |t | ≤ 1),
and Weil’s bound for Kloosterman sums. Denoting by τ(x) the number of divisors of x,
we see for m, n > 0 that

E(m, n, t)�
(mn)ε

cosh(πt)
∣∣0( 1+κ

2 + it
)∣∣2 ∑

w|Q
q1|[w,Q/w]

wQ

wQφ(wQ)

×

∑
ρ (wQ)

1
|L(Q)(1+ 2it, ψ̄1ψ2ρ2)|2

∑∑
C2,C

′

2|Q
∞
w

|Sψ̄1ρ
(−m, 0, C2w)| |Sψ̄1ρ

(−n, 0, C′2w)|

C2C
′

2

�
(Qmn(1+ |t |))ε

(1+ |t |)κ
∑
w|Q

wQ

Q

∑∑
C2,C

′

2|Q
∞
w

(m,C2w)
1/2(n, C′2w)

1/2τ(C2w)τ(C
′

2w)

C
1/2
2 C′2

1/2

�
(Qmn(1+ |t |))ε

(1+ |t |)κ
∑
w|Q

wQ(m,w)
1/2(n,w)1/2

Q

�
1

(1+ |t |)κ
(m, Q̃)1/2(n, Q̃)1/2

Q̃
(Qmn(1+ |t |))ε,

as desired.

6. A generalized Kuznetsov formula

Combining (2.4), (4.1) and (4.6), we obtain the following new version of the Kuznetsov
formula.
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Theorem 4. Let m, n, q ∈ N, f : (Z/qZ)∗ → C, and f∞ : (0,∞) → C be a smooth,
compactly supported function. We keep the notation developed so far. In particular, for
a character χ modulo q we write κ = 0 if χ is even and κ = 1 if χ is odd, and we
denote by χ1 modulo q1 the underlying primitive character. We write m′ := m/(m, q∞)
and n′ = n(m, q∞). Then

∑
(c,q)=1

S(m, n, c)

c1/2 f (c)f∞(c)

=

∑
d|q

µ(d)
∑
χ (q)

∑
f∈Bκ(dq1,χ1)

4π
√
m′n′q2

1

cosh(πtf )
χ(m′) ρf (m′) ρf (n

′q2
1 )F (χ)F∞(tf )

+

∑
d|q

µ(d)
∑
χ (q)

∑
a singular
level dq1

∫
∞

−∞

√
m′n′q2

1

cosh(πt)
χ(m′) ρa,χ1(m

′, t) ρa,χ1(n
′q2

1 , t)F (χ)F∞(t) dt

+

∑
d|q

µ(d)
∑
χ (q)

∑∑
k≡κ (2), k>κ
f∈Bk(dq1,χ1)

(k − 1)!
√
m′n′q2

1

π(4π)k−1 χ(m′) ρf (m′) ρf (n
′q2

1 )F (χ)F
∗
∞(k)

where

F(χ) =
f̂ (χ)q

1/2
1

τ(χ1)φ(q)1/2
,

F∞(t) =
π1/2i(mn)1/4q

1/2
1 tκ

sinh(πt)

∫
∞

0

(
J2it (x)− (−1)κJ−2it (x)

)
f∞

(
4π
√
mn

x

)
dx

x3/2 ,

F ∗∞(k) = (4π)
1/2ik(mn)1/4q

1/2
1

∫
∞

0
Jk−1(x)f∞

(
4π
√
mn

x

)
dx

x3/2 .

Here Bκ(dq1, χ1) and Bk(dq1, χ1) can be any orthonormal bases of the spaces of non-
holomorphic weight κ (holomorphic weight k, respectively) cusp forms of level dq1 and
character χ1.

We remark that, despite its appearance, the right-hand side of our generalized Kuznetsov
formula is symmetric in m and n. This is especially easy to see for bases Bκ/k(dq1, χ1)

consisting of forms f which are eigenforms of Hecke operators Tm with (m, q) = 1, so
that
√
mρf (mn) = λf (m)ρf (n) whenever (m, nq) = 1; by (3.8), such is the case, in

particular, for the special bases constructed in Section 3. In this case, referring also to
(3.5), we have

χ(m′) ρf (m′) ρf (n
′q2

1 )

=
√
(mn, q∞)/mnλf (m/(m, q

∞))λf (n/(n, q
∞)) ρf (1) ρf ((mn, q∞)q2

1 ).
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Our Eisenstein series are in general not Hecke eigenfunctions, but the statement of The-
orem 4 (being a purely spectral formula) holds also for the basis of Eisenstein series
parametrized by pairs of characters as described in [2]; this basis satisfies the usual Hecke
relations, and the symmetry in the Eisenstein term can be restored by the same argument.
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