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Abstract. We start with a small paradigm shift about group representations, namely the observa-
tion that restriction to a subgroup can be understood as an extension-of-scalars. We deduce that,
given a group G, the derived and the stable categories of representations of a subgroup H can be
constructed out of the corresponding category for G by a purely triangulated-categorical construc-
tion, analogous to étale extension in algebraic geometry.

In the case of finite groups, we then use descent methods to investigate when modular represen-
tations of the subgroup H can be extended to G. We show that the presheaves of plain, derived and
stable representations all form stacks on the category of finite G-sets (or the orbit category of G),
with respect to a suitable Grothendieck topology that we call the sipp topology.

WhenH contains a Sylow subgroup ofG, we use sipp Čech cohomology to describe the kernel
and the image of the homomorphism T (G)→ T (H), where T (−) denotes the group of endotrivial
representations.
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1. Introduction

For the whole paper, G is a group, k a commutative ring and p a prime number.

1.1. Notation. We denote by C(G) either one of the following categories:

(1) C(G) = kG-Mod the category of left kG-modules, or
(2) C(G) = D(kG) its derived category, assuming k a field, or
(3) C(G) = kG-Stab its stable category, assuming k a field and G finite.

Let H ≤ G be a subgroup. Our initial observation is that, in all three cases, restriction
ResGH : C(G) → C(H) is an extension-of-scalars! This slogan seems ludicrous at first
sight but makes sense if we understand “extension-of-scalars” in the appropriate way. In
this vein, Theorems 3.18 and 4.4 give us:

1.2. Theorem. Suppose that H ≤ G is a subgroup of finite index. Then there exists a
commutative separable ring object A = AGH in the symmetric monoidal category C(G)

and a canonical equivalence 9 = 9GH : C(H)
∼
−→ A-ModC(G) between the category

C(H) and the category A-ModC(G) of A-modules in C(G), under which the restriction
functor ResGH becomes isomorphic to the extension-of-scalars functor FA = A⊗− with
respect to A, i.e. the diagram

C(G)

ResGH
~~

FA
$$

C(H)
∼=

9 // A-ModC(G)

commutes up to isomorphism. Under this equivalence, (co)induction C(H)→ C(G) be-
comes isomorphic to the functor A-ModC(G) → C(G) which forgets A-actions. Explic-
itly, the ring object AGH is the usual kG-module k(G/H) with multiplication given by
γ · γ = γ and γ · γ ′ = 0 for every γ 6= γ ′ in G/H (see Definition 3.14).

This result relies in an essential way on the use of A-modules in the category C(G), à la
Eilenberg–Moore [EM65] (see Section 2). This half-a-century old concept of modules in
a category is the obvious generalization of ordinary modules in the category of abelian
groups and we expect most readers to feel comfortable with it.

Instead of an Alpine hypothyroid proof, we present in Section 2 a more urbane ap-
proach, which also leads to nice generalizations. For instance, Theorems 3.5 and 4.3 give
us the very same statement for arbitrary subgroups H ≤ G, of possibly infinite index, at
the cost of replacing the ring objectA in C(G) by a “ring functor” A : C(G)→ C(G), bet-
ter known as a monad. A similar theorem holds for a so-called “cyclic shifted subgroup”
of an elementary abelian group (see Theorem 4.8).

If the reader prefers category-theory language, these theorems actually establish
monadicity of various restriction-coinduction adjunctions (see Remark 2.8).

Beyond its counter-intuitive simplicity, Theorem 1.2 is particularly remarkable in
cases (2) and (3), for derived and stable categories, because we really mean here “mod-
ules in the homotopy category” and not “homotopy category of modules”! In other words,
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these triangulated categories C(H) can be obtained via a purely triangulated-categorical
construction applied to C(G) (see [Bal11]). To put things in perspective, let us draw an
analogy with algebraic geometry.

For a noetherian schemeX (say, a variety), the functor on derived categories D(X)→
D(U) induced by restriction to an open subscheme U ⊂ X is a categorical localization.
However, when C(G) is the derived or the stable category of a finite group G, no lo-
calization of C(G) comes anywhere close to C(H), in general. The point we make here
is that this passage from G to H is obtained via separable monads. (Note that localiza-
tions are very special monads.) In algebraic geometry, allowing separable monads in-
stead of just localizations is basically the same thing as allowing étale covers instead of
just Zariski covers. Hence, transposing étale extensions to representation theory is much
richer than transposing only localizations. In fact, it is an open question whether there is
more “étale topology” in modular representation theory beyond restriction to subgroups
(see Remark 4.6).

This being said, the main motivation for Theorem 1.2 is the change of paradigm that it
suggests. Indeed, since C(H) turns out to be the category ofA-modules in C(G), the prob-
lem of extending representations from H to G now becomes a descent problem in C(G)

with respect to the ring A = AGH . In algebraic geometry, descent has been systematically
studied by Grothendieck and the Diadochi and applies to many frameworks, including
monads; see Mesablishvili [Mes06]. Descent is pretty well-behaved for triangulated cat-
egories too, as explained in [Bal12], which allows us to discuss descent in derived and
stable categories. The critical condition for descent to hold is that AGH should be faithful,
which amounts to the index [G :H ] being invertible in k (see Remark 4.11).

One could then try to express descent with respect to A by means of A-modules
equipped with gluing isomorphisms in A⊗2-modules satisfying cocycle conditions in
A⊗3-modules. We explain in the same Remark 4.11 that this strategy collapses in an
imbroglio of Mackey formulas and an overdose of non-natural choices. To master these
technicalities, it is convenient to replace subgroups of G by G-orbits. This leads us in
Part II to a Grothendieck topology and to stacks, as we now explain.

For simplicity, we assume for the rest of this introduction that G is finite and that k is
a field of characteristic p. Transposing 1.1 to G-sets, we get:

1.3. Notation. For every finite G-set X, we write D(X) for the following category:

(1′) D(X) = Rep(X) the category of representations of X, in case (1),
(2′) D(X) = D(Rep(X)) its derived category, in case (2),
(3′) D(X) = Stab Rep(X) its stable category, in case (3).

The category Rep(X) = (k-Vect)GnX is defined via the action groupoid GnX.

This standard material is recalled in the short Section 6 for the reader’s convenience.
Among these categories D(X), we find our original categories C(H) for H ≤ G as
in 1.1, simply by considering orbits. Indeed, C(H) ∼= D(G/H). This idea roots back to
Dress [Dre73]. Since G-maps from G/H1 to G/H2 are given by elements of G which
normalize H1 into H2, these functors D(−) allow us to treat simultaneously conjugation
and restriction to subgroups. Hence D(−) might be apprehended as a categorification of
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ordinary Mackey functors (see Webb [Web00]). In other words, D(−) is a presheaf of
categories on the category of finite G-sets. Descent will tell us something more, namely
that D(−) is in fact a sheaf in the appropriate sense.

As in algebraic geometry, we use the notion of stack to formalize the above heuris-
tical “sheaf of categories” (see Section 7). The central Theorem 7.9 tells us that these
presheaves of representations D(−) define stacks on the category of finite G-sets with
respect to a suitable Grothendieck topology, called the sipp topology. By the above dis-
cussion, we expect a subgroup H ≤ G to “cover” G if its index [G : H ] is prime
to p = char(k). Translated in terms of the associated G-map on orbits G/H�G/G,
we want stabilizers to have index prime to p, hence the name sipp topology. For clarity,
we describe this topology onG-sets in Section 5, at the start of Part II, before even speak-
ing ofG-set representations. Alternatively, we could restrict the sipp topology to the orbit
category Or(G) and the theory would go through. It is more convenient to work with the
whole category of G-sets because its has pull-backs, whereas Or(G) does not, but this
choice is mostly cosmetic.

Turning to applications in Part III, we want to use descent to extend modular repre-
sentations from a subgroup H to the group G when [G :H ] is prime to p. In other words,
we want to apply the methods of Part II to the stable categories of (3) & (3′). Once we un-
derstand U := G/H as a sipp-cover of X := G/G, the descent property involves gluing
isomorphisms on the “intersection” U ×X U and cocyle conditions on the “double inter-
section” U ×X U ×X U . If we try to translate this in terms of subgroups, we bump into
Mackey formulas again. So where was the gain? The answer is a standard (Grothendieck-
ian) trick: First, accept all choices and then deal with the excess of information. The
first step of this strategy is best implemented with representations of G-sets and leads us
to the hybrid Theorem 8.6 which still involves Stab Rep(−) but is free of any Mackey-
formulaic choices. The next step, in Section 9, is to restore usual stable categories k?-Stab
of subgroups instead of all the Stab Rep(G/?) in sight. This turns Theorem 8.6 into the
following plug-and-play result (Theorem 9.9), which can be used without any knowledge
of stacks and Grothendieck topology:

1.4. Theorem. Let H ≤ G be a subgroup of index prime to p. Let W be a kH -module.
For every g ∈ G, let σg : W↓H [g]

∼
−→

gW↓H [g] be an isomorphism in the stable category
kH [g]-Stab, where H [g] stands for H g

∩H and where gW↓H [g] is g-twisted restriction
(see Notation 9.4 if needed), with the following hypotheses:

(I) If h ∈ H (so H [h] = H ), assume that the given isomorphism σh and the canonical

isomorphism h· : W
∼=
−→

hW , w 7→ hw, are equal in kH -Stab.
(II) For every g1, g2 ∈ G, consider the subgroup H [g2, g1] := H g2g1 ∩ H g1 ∩ H and

assume that the following diagram commutes in kH [g2, g1]-Stab:

W↓H [g2,g1]
σg1

vv
σg2g1

))
g1W↓H [g2,g1]

σg2 // g2g1W↓H [g2,g1]
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Then W extends to G, i.e. there is a kG-module V and an isomorphism f : V↓H
∼
−→ W

in kH -Stab such that for every g ∈ G the following commutes in kH [g]-Stab:

V↓H [g]
f

'
//

g· ∼=
��

W↓H [g]

σg'

��
gV↓H [g]

f

'
// gW↓H [g]

Moreover, the pair (V , f ) is unique up to unique isomorphism, in the obvious sense.

To measure the importance of this application, note that it constitutes a substantial gen-
eralization of the main result of [Bal13], where we treated the special case of the trivial
representation W = k, in order to compute the kernel of the restriction homomorphism
T (G) → T (P ), where P is a Sylow p-subgroup of G and where T (G) is the group of
endotrivial kG-modules. The general Theorem 1.4 above gives a criterion to extend arbi-
trary representations W and is therefore important beyond endotrivial ones. Interestingly,
even for endotrivial representations, it also allows us to improve on [Bal13] and describe
the image of T (G)→ T (P ). The non-specialist will find in [Bal13, Bou06, CT04, CT05]
further references on the central role played by endotrivial modules in modular represen-
tation theory.

Carlson–Thévenaz [CT04, CT05] classified the groups T (P ) for all p-groups P . For
arbitrary finite groups G, the invariant T (G) is not given by a simple formula and no
classification is expected to exist in general. So the problem is to describe as explicitly
as possible the kernel and the image of the restriction homomorphism T (G) → T (P ),
for P ≤ G a Sylow p-subgroup, knowing that the actual computation for every
given group will remain difficult. Note that the group T (G) is nothing but the Picard
group of ⊗-invertible objects in the stable category: T (G) = Pic(kG-stab). Unlike its
algebro-geometric counterpart, this representation-theoretic Picard group T (G) is not an
H1(−,Gm) in any known way. However, although neither T (G) nor T (P ) are cohomol-
ogy groups, we prove here that Ker(T (G)→ T (P )) and Im(T (G)→ T (P )) are related
to the first and second Čech cohomology groups of the sipp sheaf of units Gm, which is
just the constant sheaf associated to the abelian group of units k×. Indeed, if we consider
the sipp-cover U := {G/P → G/G}, Theorem 10.6 gives a canonical isomorphism

Ker(T (G)→ T (P )) ∼= Ȟ1(U,Gm).

This formula recovers and conceptualizes the main result of [Bal13], which was more
down-to-earth. On the other hand, the result about the image is new and reads

Im(T (G)→ T (P )) ∼= Ker
(
Ȟ0(U,Pic)

z
−→ Ȟ2(U,Gm)

)
for an explicit group homomorphism z : Ȟ0(U,Pic) → Ȟ2(U,Gm) (see Theorem 10.7).
These Čech cohomology groups give an ideal solution to the problem of determining
T (G) for all groups G, because they basically only involve the action of G on its p-sub-
groups (see Definition 10.1). In particular, they do not involve any representations, nor
any stable categories. Although most probably possible, the “numerical” determination of
these groups for specific groups G is left to more computer-savvy people than the author.
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Part I. Restriction via separable extension-of-scalars

2. Categories of modules and monadicity

2.1. Remark. An additive category C is idempotent-complete (or karoubian) if every
idempotent morphism e = e2

: X→ X in C yields a decomposition X = im(e)⊕ ker(e).
Any additive category can be idempotent-completed C ↪→ C\ by an elegant well-known
construction due to Karoubi. An additive functor F : C → D is an equivalence up to
direct summands if the induced functor F \ : C\→ D\ is an equivalence. This is the same
as saying that F : C→ D is fully faithful and that every object in D is a direct summand
of the image by F of some object of C.

We now recall the concept of monad on a category C (see [ML98]). In short, a monad
on C is a monoid in the category of endofunctors.

2.2. Definition. A monad (A, µ, η) on C is an endofunctor A : C → C with a natural
transformation µ : A2

→ A, called the multiplication, such that µ ◦ (Aµ) = µ ◦ (µA) :
A3
→ A (associativity) and with a natural transformation η : IdC → A, called the

two-sided unit, such that µ ◦ (Aη) = µ ◦ (ηA) = idA : A→ A.
An A-module in C is a pair (X, %) where X is an object of C and % : A(X) → X is

a morphism in C, called the A-action, such that % ◦ (A%) = % ◦ µX : A2(X) → X and
% ◦ ηX = idX : X → X. These replace the usual a · (b · x) = (ab) · x and 1 · x = x

for ordinary modules. Morphisms of A-modules f : (X, %) → (X′, %′) are morphisms
f : X → X′ in C such that %′ ◦ A(f ) = f ◦ % : A(X) → X′ (A-linearity), replacing
a · f (x) = f (a · x). We denote by A-ModC the category of A-modules in C and we have
the so-called Eilenberg–Moore [EM65] adjunction

FA : C� A-ModC : UA

where the left adjoint is extension-of-scalars, FA(Y ) = (A(Y ), µY ) and FA(f ) = A(f ),
and the right adjoint is the forgetful functor UA(X, %) = X and UA(f ) = f . The
A-module FA(Y ) is also called the free A-module over Y .

Denote by A-FreeC the full subcategory of A-ModC on free A-modules. Equivalently
but more accurately, A-FreeC is taken to have the same objects as C and morphisms
of associated free modules. The Eilenberg–Moore adjunction restricts to the so-called
Kleisli [Kle65] adjunction FA : C� A-FreeC : UA (see (2.6)).

Dually for comonads, comodules, etc. (see [Bal12, App. A] if needed).

2.3. Example. If the category C is monoidal with tensor ⊗ : C × C → C and unit 1,
a ring object (A,µ, η) in C is an object A ∈ C with morphisms µ : A ⊗ A → A and
η : 1 → A such that A ⊗ − becomes a monad on C. Then A-modules are pairs (X, %)
where X is an object of C and % : A ⊗ X → X is a morphism in C, which satisfies the
above relations. When C = Z-Mod, this yields ordinary rings and modules.

2.4. Remark. If C is additive (resp. idempotent-complete) and the monad A is an addi-
tive functor, then A-ModC is additive (resp. idempotent-complete) as well.

2.5. Remark. Every adjunction L : C � D : R with unit η : IdC → RL and counit
ε : LR → IdD gives rise to a monad on C, defined by A = RL, η = η and µ = RεL.
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One says that the adjunction (L,R, η, ε) realizes the monad (A, µ, η). The Kleisli and
Eilenberg–Moore adjunctions of Definition 2.2 are respectively initial and final among
adjunctions realizing A (see [ML98, Chap. VI]). That is, if an adjunction L : C� D : R

realizes a monad A then there exist unique functors K : A-FreeC → D and E : D →
A-ModC as in the following diagram:

(2.6)

C
FA

vv
L
�� FA ((

A ��

A-FreeC
K

//
UA

66

y�
fully faithful

33D

R

OO

E
// A-ModC

UA

hh

such thatK ◦FA = L, R◦K = UA,E◦L = FA and UA◦E = R. Explicitly,K is defined
by K(FA(Y )) = L(Y ) on objects and by the isomorphism HomA-FreeC(FA(Y ), FA(Y

′))
∼= HomC(Y,A(Y ′)) ∼= HomD(L(Y ), L(Y

′)) on morphisms. In particular, K is always
fully faithful. On the other hand, we have

(2.7) E(Z) = (R(Z), R(εZ)) and E(f ) = R(f )

for every object Z and every morphism f in D. Note also that E ◦K is the fully faithful
inclusion of A-FreeC into A-ModC.

An adjunction L : C � D : R is called monadic when the Eilenberg–Moore functor
E : D→ (RL)-ModC of (2.6) is an equivalence of categories. Dually, it is comonadic if
the Eilenberg–Moore functor C→ (LR)-ComodD is an equivalence.

2.8. Remark. There is a famous Monadicity Theorem of Beck [Bec03] which we do not
use here for various reasons. First, in our case the proof is much simpler. Lemma 2.10 be-
low has all the monadicity we need and is considerably faster to state, prove and use than
Beck’s result. Most important, we need to extend our results to triangulated categories,
where we should avoid colimits, like coequalizers. Yet Lemma 2.10 easily extends to tri-
angulated categories and also gives separability of A = RL, which is crucial to put a
triangulation on A-ModC, by [Bal11, §4].

2.9. Definition. A monad A : C→ C is called a separable monad if µ : A2
→ A admits

an “A-bilinear section”, i.e. a natural transformation σ : A→ A2 such that µ ◦ σ = idA
and (Aµ) ◦ (σA) = σ ◦ µ = (µA) ◦ (Aσ) : A2

→ A2.

2.10. Lemma. Let L : C � D : R be an adjunction of functors between additive
categories. Suppose that the counit ε : LR → IdD has a natural section, i.e. there is a
natural transformation ξ : IdD→ LR such that ε ◦ ξ = id. Then:

(a) The induced monad A = RL on C is separable.
(b) The Kleisli and Eilenberg–Moore comparison functors K : A-FreeC → D and

E : D→ A-ModC of (2.6) are equivalences up to direct summands.
(c) If we assume moreover that C and D are idempotent-complete then E : D

∼
−→

A-ModC is an equivalence, i.e. the adjunction is monadic.
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Proof. All this is standard but we sketch the proof for the reader’s convenience. First
verify that σ := RξL : A = RL → RLRL = A2 is a section of µ = RεL and
that σ is “A-bilinear” by naturality of ε and ξ . This gives (a). When A is separable with
section σ of µ, one can verify that for every A-module (X, %) the A-linear morphism
% : FA(X)→ X, from the free A-module FA(X) toX, admits an A-linear retraction given
by A(%) σ ηX : X → FA(X) (see [BV07, Prop. 6.3]). Consequently, the fully faithful
inclusion A-FreeC ↪→ A-ModC is an equivalence up to direct summands (Remark 2.1).
Since this inclusion coincides with E ◦K , it suffices to prove (b) forK to get both. Recall
that K : A-FreeC → D is fully faithful already. Now, for every D ∈ D, we have by
hypothesis εD ◦ξD = idD : D→ LR(D)→ D, which shows thatD is a direct summand
of LR(D) = K(FA(R(D))). Hence K is essentially surjective up to direct summands.
This finishes (b). Finally (c) is a direct consequence of the equivalence E\ : D\ ∼

−→

A-ModC\ of (b), since both D and A-ModC are idempotent-complete (Remark 2.4). ut

An ancestor of our Theorem 1.2 is the following application of Lemma 2.10:

2.11. Theorem. Let ` : D → C be a homomorphism of (ordinary) rings, which admits
a homomorphismm : C → D of (D,D)-bimodules withm◦` = idD . Consider the usual
restriction-coinduction adjunction on categories of left modules:

(2.12)

C := C-Mod

Res`∼=C⊗C−
��

D := D-Mod

CoInd`=HomD(C,−)

OO

(a) The counit ε : Res` CoInd`→ IdD admits a natural section.
(b) Adjunction (2.12) is monadic (Remark 2.5), i.e. for the monad A = CoInd` Res`

on C, the functor E : D→ A-ModC of (2.6) is an equivalence turning Res` into the
extension-of-scalars functor FA and CoInd` into the forgetful UA.

Proof. By Lemma 2.10, it suffices to show (a). Recall that for a (D,D)-bimodule B, the
abelian groups HomD(B, ?) are leftD-modules via right action on B, that is, (d ·f )(b) :=
f (bd). Therefore, a homomorphism k : B → B ′ of (D,D)-bimodules induces a natural
transformation k∗ : HomD(B

′, ?) → HomD(B, ?), f 7→ f ◦ k, of endofunctors on D.
Apply this to k = ` and k = m. Under the identification IdC ∼= HomD(D, ?), the counit
ε : Res`(CoInd`(?)) = HomD(C, ?) → HomD(D, ?) ∼= IdD(?) of adjunction (2.12) is
simply given by ε = `∗. Hence a section ξ of ε is given by ξ = m∗ since εξ = `∗m∗ =
(m`)∗ = id. ut

3. Restriction of group representations

In this section, H ≤ G is a subgroup, without any finiteness assumption at first.

3.1. Remark. Consider adjunction (2.12) for ` : kH ↪→ kG the inclusion:

(3.2)

kG-Mod

ResGH
��

kH -Mod

CoIndGH=HomkH (kG,−)

OO
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We abbreviate Res = ResGH and CoInd = CoIndGH when no confusion can occur. Explic-
itly, the unit ηV : V → CoInd(Res(V )) = HomkH (kG,V ) for V in kG-Mod and the
counit εW : HomkH (kG,W) = Res(CoInd(W)) → W for W in kH -Mod are given for
every v ∈ V , x ∈ kG and f ∈ HomkH (kG,W) by the formulas

(3.3) (ηV (v))(x) = x · v and εW (f ) = f (1).

3.4. Remark. Applying Remark 2.5 to the restriction-coinduction adjunction (3.2), we
obtain a monad A = AGH on kG-Mod given by A = CoIndGH ◦ResGH , that is, A(V ) =
HomkH (kG,V ) for every V in kG-Mod. The left kG-action on HomkH (kG,V ) is via
right action on kG. The unit η : Id → A is exactly the one of (3.3). Multiplication
µ : A2

→ A is µ = CoInd ε Res, where ε : Res CoInd→ Id is the counit given in (3.3).
So, for every V in kG-Mod, we explicitly give

µV : A2(V ) = HomkH (kG,HomkH (kG,V ))→ HomkH (kG,V ) = A(V )

by (µV (f ))(x) = (f (x))(1), for every f ∈ A2(V ) and every x ∈ kG.

We temporarily denote by C(G) = kG-Mod the category of left kG-modules.

3.5. Theorem. Let H ≤ G be an arbitrary subgroup. Let A = AGH be the monad on
C(G) induced by the restriction-coinduction adjunction. By Eilenberg–Moore (see (2.6)),
we have the following diagram in which E ◦ Res = FA and UA ◦ E = CoInd:

C(G)

Res

yy FA ''
C(H)

CoInd

99

E
// A-ModC(G)

UA
gg

Then E is an equivalence. In words, the category C(H) is equivalent to A-modules in
C(G) in such a way that restriction coincides with extension-of-scalars with respect to A
and coinduction coincides with the functor which forgets A-actions.

Proof. To apply Theorem 2.11, it suffices to show that ` : kH ↪→ kG has a retraction
m : kG→ kH as (kH, kH)-bimodule. For every g ∈ G, define m(g) = g if g ∈ H and
m(g) = 0 if g /∈ H and extend it k-linearly to get the wanted m : kG→ kH . ut

3.6. Remark. By (2.7), for every kH -moduleW , the A-moduleE(W) = (V , %) is given
by V := CoIndGH (W) = HomkH (kG,W) with A-action % in C(G)

A(V ) = HomkH (kG,HomkH (kG,W))
%:=CoInd(εW ) // HomkH (kG,W) = V

given by (%(f ))(x) = (f (x))(1), for every f ∈ A(V ) and every x ∈ kG.

* * *

For the rest of the section, we further assume that the index [G :H ] is finite.
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3.7. Remark. We can now replace coinduction by induction and get the adjunction

(3.8)

C(G) = kG-Mod

ResGH
��

C(H) = kH -Mod

IndGH=kG⊗kH−

OO

The unit η′V : V → Ind(Res(V )) = kG ⊗kH V for V in kG-Mod and the counit
ε′W : kG⊗kH W = Res(Ind(W))→ W for W in kH -Mod are given by the formulas

(3.9) η′V (v) =
∑

[x]H ∈G/H

x ⊗ x−1v and ε′W (g ⊗ w) =

{
g · w if g ∈ H,
0 if g /∈ H,

for every v ∈ V , g ∈ G and w ∈ W . (We write [x]H for xH everywhere.) We denote by
A′ = Ind Res the monad on C(G) associated to this adjunction (Remark 2.5).

3.10. Corollary. With the above notation, adjunction (3.8) is monadic, i.e. the associ-
ated Eilenberg–Moore functor E′ : C(H)→ A′-ModC(G) is an equivalence.

Proof. Since [G : H ] < ∞, we have the well-known isomorphism Ind
∼
−→ CoInd

(see [Ben98, §I.3.3]). We already know that the Res/CoInd adjunction is monadic by
Theorem 3.5, then so is the isomorphic Res/Ind adjunction. Alternatively, one can apply
Lemma 2.10 and prove directly that the counit ε′ has a natural section ξ ′ : IdC(H) →
Res Ind given for every kH -module W by ξ ′W (w) = 1⊗ w. ut

3.11. Remark. Recall that kG-Mod is symmetric monoidal via V1 ⊗ V2 = V1 ⊗k V2
with diagonal G-action. Also recall the natural isomorphism of kG-modules

ϑV : A′(V ) = kG⊗kH V
∼
−→ k(G/H)⊗k V

for every V in kG-Mod, where the G-action on A′(V ) is on kG only, whereas the
G-action on k(G/H)⊗k V is the diagonal one. This isomorphism ϑV is given by

(3.12) ϑV (g ⊗ v) = [g]H ⊗ gv

for every g ∈ G and v ∈ V . Its inverse is given for every γ ∈ G/H and v ∈ V by

(3.13) ϑ−1
V (γ ⊗ v) = g ⊗ g−1v for any choice of g ∈ γ.

Consequently, the monad A′ = Ind Res is isomorphic, as a functor, to A ⊗ − for A =
k(G/H) and the latter will inherit a structure of ring object. However, this does not imply
that ϑ is an isomorphism of monads! So, let us be precise.

3.14. Definition. Define the kG-module A = AGH to be the free k-module k(G/H)
with basis G/H with obvious left G-action on the k-basis: g · [x]H = [gx]H . As in the
Introduction, we define a kG-linear morphism

µ : AGH ⊗k A
G
H → AGH

by µ(γ ⊗ γ ) = γ and µ(γ ⊗ γ ′) = 0 if γ 6= γ ′ in G/H . Since H ≤ G has finite index,
we define the kG-linear map η : 1→ AGH , i.e. η : k→ k(G/H), by 1 7→

∑
γ∈G/H γ .
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3.15. Remark. Ignoring G-actions, this ring would be silly (just [G : H ] copies of k)
and its category of plain modules would consist of the direct sum of [G : H ] copies of
the category of k-modules. Again, it is important to consider the ring object A in C(G),
that is, to keep track of the G-action on A, and to consider the category A-ModC(G) of
A-modules in the category C(G), as emphasized already.

3.16. Proposition. Let H ≤ G be a finite-index subgroup. Then:

(a) The triple (A,µ, η) of Definition 3.14 is a commutative ring object in the symmetric
monoidal category kG-Mod (also finite-dimensional over k).

(b) The ring object A is separable (Definition 2.9), i.e. there exists a section σ : A →
A⊗ A of µ satisfying (A⊗ µ) ◦ (σ ⊗ A) = σ ◦ µ = (µ⊗ A) ◦ (A⊗ σ).

(c) The monad A⊗− on kG-Mod is isomorphic to the monad A′ = Ind Res associated
to the restriction-induction adjunction (3.8). The explicit natural isomorphism ϑ :

A′ ∼−→ A⊗− is given in Remark 3.11 above.

Proof. (a): Associativity, two-sided unit and commutativity are easy exercises. Part (b)
will follow from (c) and the separability of A′ ' A but we can also provide σ : A →
A ⊗ A explicitly as σ(γ ) = γ ⊗ γ for every γ ∈ G/H . For (c), we need to show that
ϑ : A′ ∼−→ A⊗− respects multiplications and units. The latter means ϑV ◦ η′V = η⊗ 1V
for every V ∈ kG-Mod and is easy to verify using (3.9), (3.12) and Definition 3.14.
For compatibility with multiplication, we need to check commutativity of the following
square for every kG-module V :

(3.17)

A′2(V ) = kG⊗kH (kG⊗kH V )
ϑ
(2)
V

//

µ′V
��

k(G/H)⊗ k(G/H)⊗ V = A⊗2
⊗ V

µ⊗idV
��

A′(V ) = kG⊗kH V
ϑV // k(G/H)⊗k V = A⊗ V

The above morphism ϑ
(2)
V : A′ ◦ A′(V ) → A ⊗ A ⊗ V is by definition ϑ applied twice

in any order, that is, ϑ (2)V = (A ⊗ ϑV ) ◦ ϑA′(V ) = ϑA⊗V ◦ A′(ϑV ). (These coincide by
naturality of ϑ applied to the morphism ϑV .) In cash, for every g, g′ ∈ G and every v ∈ V
we have

ϑ
(2)
V (g ⊗ g′ ⊗ v) = [g]H ⊗ [gg

′
]H ⊗ gg

′v.

Finally, we need to make the multiplication µ′ : A′ ◦ A′ → A′ more explicit. By Re-
mark 2.5, it is given by µ′V = Ind(ε′ResV ) : kG ⊗kH (kG ⊗kH V ) → kG ⊗kH V .
By (3.9), for every g, g′ ∈ G and v ∈ V we have

µ′V (g ⊗ g
′
⊗ v) =

{
g ⊗ g′v = gg′ ⊗ v if g′ ∈ H,
0 if g′ /∈ H.

With all morphisms and all actions being now explicit, it is direct to check commutativity
of (3.17). We leave this computation to the reader. (For verification, the two compositions
send g ⊗ g′ ⊗ v to [g]H ⊗ gg′v if g′ ∈ H and to 0 otherwise.) ut
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We can now replace the monad A′ = IndGH ResGH on C(G) = kG-Mod by the ring object
AGH = k(G/H). This actually changes slightly the result in that Res is not equal to
extension-of-scalars on the nose but only naturally isomorphic to it.

3.18. Theorem. Let H ≤ G be a finite-index subgroup and recall the ring object A =
AGH of Definition 3.14. Then there is an equivalence of categories 9 : C(H)

∼
−→

A-ModC(G) making the following diagram commute up to isomorphism:

C(G)

Res
~~

FA

$$
C(H)

∼=

9
// A-ModC(G)

Explicitly, the functor 9 is given as follows. For every kH -module W , we have

9(W) = (V ′, %′W )

for V ′ := IndGH (W) = kG⊗kH W , equipped with the following A-action %′W in C(G):

%′W : A⊗ V
′
= k(G/H)⊗k (kG⊗kH W)→ kG⊗kH W = V

′

given for every γ ∈ G/H , g ∈ G and w ∈ W by

%′W (γ ⊗ g ⊗ w) =

{
g ⊗ w if g ∈ γ,
0 otherwise.

The isomorphism 9 ◦Res
∼
−→ FA of functors from C(G) to A-ModC(G) is given for every

kG-module V by the classical isomorphism ϑV of (3.12) as follows:

9 ◦ Res(V ) = Ind Res(V ) = kG⊗kH V
∼
−→
ϑV

k(G/H)⊗k V = A⊗ V = FA(V ).

Proof. Contemplate the following diagram:

C(G)

Res

vv
FA′
��

FA

))
C(H)

∼=

E′ //

∼=

9

66
A′-ModC(G) ∼=

2 // A-ModC(G)

Here E′ is the Eilenberg–Moore functor associated to the Res/Ind adjunction (3.8). We
have seen in Corollary 3.10 that E′ is an equivalence and we know that E′ ◦ Res = FA′ .
On the other hand, we have seen in Proposition 3.16(c) that the monad A′ is isomorphic,
as a monad, to A⊗− via ϑ : A′ ∼−→ A⊗−. This induces an obvious isomorphism on the
categories of modules 2 := (ϑ−1)∗ : A′-ModC

∼
−→ A-ModC,

2(X, % : A′(X)→ X) := (X, % ◦ ϑ−1
X : A⊗X→ X).

The natural isomorphism ϑV : A′(V ) ∼−→ A ⊗ V , for V ∈ C(G), defines a natural
isomorphism ϑ : 2 ◦ FA′

∼
−→ FA of functors from C(G) to A-ModC(G), using that ϑ is

an isomorphism of monads (Proposition 3.16). We now define 9 := 2 ◦ E′ to get the
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result. In particular, 9 ◦ Res = 2 ◦ E′ ◦ Res = 2 ◦ FA′
∼
−→
ϑ
FA. The explicit formula for

9 = 2 ◦ E′ given in the statement is immediate from the definition of E′ (see (2.7) in
Remark 2.5), the formula for ε′W in (3.9), the above formula for2 and finally the formula
for ϑ−1 in (3.13). The verification is now pedestrian. ut

4. Variations on the theme and comments

The results of Section 3 are not specific to the category kG-Mod and hold for the derived
D(kG-Mod) and the stable kG-Stab ones as well. But let us be careful, as the following
example should warn us: We cannot naively “derive” monadicity.

4.1. Remark. Consider an adjunction F : A � B : G of abelian categories whose
counit ε : FG → IdB is naturally split and such that the derived adjunction LF :
D(A) � D(B) : RG exists. Then it is not true in general that this derived adjunction
has split counit, nor that it is monadic. For example, take I ⊂ B an ideal of a commuta-
tive ring B such that ι∗ : D(B/I)→ D(B) is not faithful (e.g. B = Z and I = 4Z). On
modules, the adjunction B/I ⊗B − : B-Mod � (B/I)-Mod : ι∗ has split counit (even
an isomorphism). However Rι∗ = ι∗ is not faithful, which means the derived adjunction
cannot be monadic (the forgetful functor is faithful) and in particular the derived counit
cannot be split (Lemma 2.10).

The problem is the following. Assume for simplicity, as in the above example, that G
is exact, so RG = G is just G degreewise. For every W• ∈ D(B) choose an F -acyclic
complex P• and a quasi-isomorphism P•

s
−→ G(W•) in A. Then the counit of the derived

adjunction at W• is given by the composite ε ◦ F(s):

LF ◦ RG(W•) = LF(G(W•)) = F(P•)
F(s) // FG(W•)

ε //
??

ff W•
∃

ee

where the last morphism is the original counit ε applied degreewise. So, we see that if the
original counit ε has a natural section, then we can use this section degreewise to split the
last morphism above but we cannot split F(s) in general.

In our case, it is therefore essential that we do not need to left-derive ResGH but can
simply use it degreewise on complexes. In that case, the above F(s) is an isomorphism
(the identity) and the derived counit is as split as the original one. Actually, all functors
Res, Ind, CoInd (and ⊗k when k is a field) are exact here.

The above counter-example explains the importance of the following easy result:

4.2. Lemma. Let F : A � B : G be an adjunction of exact functors between abelian
categories (resp. Frobenius abelian categories), whose counit has a natural section. Then
the induced adjunction F : D(A) � D(B) : G on derived (resp. F : A � B : G

on stable) categories also has a naturally split counit. Dually, if the unit has a natural
retraction then so does the derived (resp. stable) unit.



202 Paul Balmer

Proof. The derived functors F and G are simply defined as F and G degreewise and so
are the unit and counit of the derived adjunction. Therefore, we can define the section of
the counit degreewise as well. The case of the stable categories is even simpler once we
observe that F (resp. G), as left (resp. right) adjoint of an exact functor, will preserve
projective (resp. injective) objects. ut

We therefore obtain the derived and stable analogues of Theorem 3.5:

4.3. Theorem. Let H ≤ G be an arbitrary subgroup. Let us change notation and set
C(G) := D(kG-Mod) the derived category of kG-modules. Then the statement of Theo-
rem 3.5 holds verbatim, i.e. restriction to H becomes extension-of-scalars with respect to
the monad A = CoInd Res on C(G). The same result holds if C(G) stands for kG-Stab
when G is finite and k is a field.

Proof. Same proof as for Theorem 3.5: The counit of the derived or stable adjunctions
remains naturally split (Lemma 4.2) and we can then apply Lemma 2.10. ut

Similarly, when [G :H ] <∞ and k is a field, the ring object A = AGH of Definition 3.14
will exist in every new tensor category which receives kG-Mod. Hence we obtain ana-
logues of Theorem 3.18, like for instance:

4.4. Theorem. LetH ≤G be a finite-index subgroup, k a field and C(G)=D(kG-Mod).
Consider A = AGH in C(G), as a complex concentrated in degree zero. There exists
an equivalence of categories 9 : C(H)

∼
−→ A-ModC(G) making the following diagram

commute up to isomorphism:

C(G)

Res
{{

FA

&&
C(H)

∼=

9 // A-ModC(G)

The same result holds if C(G) stands for kG-Stab, when G is finite.

Proof. The proof of Theorem 3.18 holds verbatim with the new C(G). Again, all functors
being exact, we can apply all (plain) isomorphisms in sight degreewise to obtain the
necessary isomorphisms at the derived level. ut

4.5. Remark. The same results hold for finitely generated modules and bounded com-
plexes as well, when they make sense, i.e. when the restriction-(co)induction adjunction
preserves those categories. In particular, for G finite, we have

kH -stab ∼= A-ModkG-stab.

4.6. Remark. Let G be a finite group and X a finite left G-set. Consider the ring object
AX := kX in kG-mod with all x ∈ X being orthogonal idempotents (x · x = x and x · x′

= 0 for x 6= x′). This ring object is isomorphic to the sum of our AGHi (Definition 3.14)
for the decomposition of X ' G/H1 t · · · t G/Hn into G-orbits. These commutative
separable ring objects AX migrate to any ⊗-category receiving kG-mod, like kG-stab.
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Beyond these, every finite separable field extension k′/k, with trivial G-action, would
also define such commutative separable ring objects.

So, assume for simplicity that k is a separably closed field. Up to isomorphism,
the only commutative separable ring objects A in the plain category kG-mod are the
above AX. This remark was first made with Serge Bouc and Jacques Thévenaz. Indeed,
since k is separably closed, the underlying k-algebra of A is isomorphic to k × · · · × k
= kX for a set X of orthogonal primitive idempotents. But G acts on A by ring automor-
phisms, hence it permutes idempotents, i.e. X inherits a G-action and therefore A ' AX.
It is tempting to ask whether the same holds in kG-stab:

4.7. Question. Let k be separably closed and A ∈ kG-stab be a commutative separable
ring object. Is there a finite G-set X such that A ' kX in kG-stab?

This problem is important, for it asks whether the “étale topology” which appears in
modular representation theory is richer than what is produced by subgroups.

* * *
We now give another example of a restriction functor which also satisfies monadicity. For
this, let k be a field of characteristic p > 0 and G an elementary abelian p-group, i.e.
a product G ' Cp × · · · × Cp of copies of the cyclic group Cp of order p. A cyclic
shifted subgroup of G is a ring homomorphism ` : kCp → kG such that kG is flat (i.e.
free) as kCp-module via `. Cyclic shifted subgroups originate in Carlson’s work on rank
varieties (see [Car83]). Consider the stable category C(G) = kG-Stab and the adjunction
Res` : C(G) � C(Cp) : CoInd` as in (2.12). As in Section 2, this adjunction induces a
monad A` = CoInd` ◦Res` on C(G).

4.8. Theorem. Let ` : kCp → kG be a cyclic shifted subgroup as above. Then the
Eilenberg–Moore functor E : C(Cp) → A`-ModC(G) is an equivalence such that `∗ =
Res` coincides with the extension-of-scalars FA` : C(G)→ A`-ModC(G).

Proof. By Theorem 2.11(a), we simply need to prove that ` : kCp → kG has a retrac-
tion as kCp-bimodule since the induced section of the counit passes from categories of
modules to stable categories, where we can then apply Lemma 2.10. Now, both rings are
commutative, so it is enough to show that ` has a section as kCp-module. By Nakayama,
the k-vector space kG/Rad(kCp) admits a k-basis starting with the class of 1 (otherwise
kG = 0), and a lift of that basis in the free kCp-module kG gives a kCp-basis starting
with 1 = `(1). Define m : kG → kCp by kCp-linear projection onto 1 and we have
m ◦ ` = id as wanted. ut

4.9. Remark. By the above proof, the counit of the monad A` on kG-Stab is separ-
able. So, kCp-Stab can be obtained out of kG-Stab and A` by the purely triangulated-
categorical method of [Bal11]. Now, the very simple category kCp-Stab might be con-
ceptually understood as a field in tensor triangular geometry although it is not yet clear
what tensor-triangular fields exactly are, nor how to construct them in general (see [Bal10,
§4.3]). Also, the monad A` on kG-Stab does not come from a ring object in kG-Stab (un-
less ` is a plain subgroup). So, even in the study of finite groups, one should not discard
monads in favor of ring objects.
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4.10. Remark. This result about cyclic shifted subgroups of elementary abelian groups
probably extends to π -points of finite group schemes à la Friedlander–Pevtsova [FP07],
at the cost of additional technicalities left to the interested readers.

* * *

4.11. Remark. Mostly as a motivation for Part II, we discuss the attempt to use Theo-
rem 1.2 to unfold descent in its simplest form (see Knus–Ojanguren [KO74] or [Bal12,
§3]). Let H ≤ G be a finite-index subgroup and A = AGH = k(G/H) the associated
ring object in kG-Mod as in Definition 3.14. Suppose that the index [G :H ] is invertible
in k. Then A satisfies descent in kG-Mod. Similarly, if k is a field, thenA satisfies de-
scent in D(kG-Mod) and Db(kG-Mod). When moreoverG is finite, A satisfies descent in
kG-mod, kG-Stab, kG-stab, Db(kG-mod).

Indeed, define ζ : A = k(G/H)→ k by ζ(γ ) = [G :H ]−1 for every γ ∈ G/H . This
ζ is a retraction of the unit η : 1→ A. Consequently, we can apply [Mes06, Cor. 2.6] or
the dual of Lemma 2.10 to get descent, i.e. comonadicity. In the triangulated cases, one
can also use [Bal12, §3]. This proves the above claim.

Conversely, for descent to hold, the index [G :H ] must be invertible in k, at least for
triangulated categories, like Db(kG-mod) and beyond. Indeed, it is necessary that A⊗−
be faithful. Now choose a distinguished triangle ·

χ
−→ 1

η
→ A → · featuring η. Since

η is retracted after applying A ⊗ − (by µ : A ⊗ A → A), the morphism χ satisfies
A ⊗ χ = 0, hence is zero, by faithfulness of A ⊗ −. In a triangulated category, this
forces η to be retracted. A kG-linear retraction ζ : A = k(G/H) → k = 1 must be
given by γ 7→ u for all γ ∈ G/H , for some fixed u ∈ k. Since η(1) =

∑
γ , we have

1 = ζ ◦ η(1) = u · |G/H |. Hence |G/H | ∈ k×.
Descent for a commutative ring object A in a tensor category C asserts that C is equiv-

alent to the descent category DescC(A). The latter is described in terms of A-modules X
equipped with a gluing isomorphism γ : A ⊗ X

∼
−→ X ⊗ A as A⊗2-modules satisfying

the cocycle condition “γ2 = γ3 ◦ γ1” in the category of A⊗3-modules. Here γi means
“γ tensored with idA in position i”. See [Bal12, §3] for details. In the case of the cate-
gory C = C(G) depending on a group G (in any sense used above) and of the ring object
A = AGH , we know by Theorem 1.2 that the category of A-modules in C(G) is equivalent
to the category C(H). Using the Mackey formula, one can decompose A⊗2 as a sum of
AH g∩H for g in a chosen set of representatives ofH\G/H . Hence, by Theorem 1.2 again,
the category of A⊗2-modules in C(G) is equivalent to the coproduct of the correspond-
ing categories C(H g

∩ H). As usual, this suffers from the choice of representatives for
H\G/H . A similar, even less natural description can be made for A⊗3-modules in C(G)

in terms of categories of the form C(H g2 ∩H g1 ∩H) by a third application of our Theo-
rem 1.2 together with a double layer of Mackey formulas and more choices. However, the
Mackey formulas become really messy when dealing with three factors and most annoy-
ingly the (three) extensions from A⊗2-modules to A⊗3-modules cannot be all controlled
by one such set of choices. The reader without experience with those issues is invited to
try for himself!

These technicalities require a more efficient formalism, as in Part II below.
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Part II. Stacks of representations

From now on, G is assumed to be a finite group.

5. A Grothendieck topology on finite G-sets

For Grothendieck topologies, we follow Mac Lane–Moerdijk [MLM94, Chap. III]. See
also SGA 4 [AGV73], Kashiwara–Schapira [KS06, Chap. 16] or Vistoli [Vis05].

5.1. Notation. Let G-sets be the category of finite left G-sets, with G-equivariant maps
(“G-maps” for short).

5.2. Remark. The category G-sets has finite limits, in particular pull-backs

{(x, y) ∈ X × Y | α(x) = β(y)} = X ×Z Y
pr2 //

pr1 ��

Y

β
��

X
α // Z

where G acts diagonally on X× Y and X×Z Y . If X '
∐n
i=1Xi in G-sets (for instance,

if X1, . . . , Xn are the G-orbits of X) then X ×Z Y '
∐n
i=1(Xi ×Z Y ).

5.3. Notation. As usual, we denote by gh = ghg−1 and hg = g−1hg the conjugates of
h ∈ G by g ∈ G and similarly for gH and H g for a subgroup H ≤ G.

We shall need a couple of Mackey formulas, in the following generality:

5.4. Proposition (Mackey formula). LetK1,K2 ≤ H ≤ G be subgroups. Let S ⊂ H be
a set of representatives of K1\H/K2, meaning that the composite S ↪→ H�K1\H/K2
is bijective. Then we have a bijection of G-sets

(5.5)

∐
t∈S

G/(K t
1 ∩K2)

∼
−→ (G/K1)×G/H (G/K2),

[z]K t1∩K2
7→ ([zt−1

]K1 , [z]K2),

where the notation [−] indicates classes in the relevant cosets (as in Part I).

Proof. This is well-known. Use the surjection (G/K1)×G/H (G/K2)�K1\H/K2 given
by ([z1]K1 , [z2]K2) 7→ K1 [z

−1
1 z2]K2 and show that the fiber of each K1 [t]K2 is exactly

given by G/(K t
1 ∩K2) via the above map. ut

5.6. Corollary. Let H be a finite group. Let H ′,K ≤ H be two subgroups such that the
index [H : K] is prime to p. For any set of representatives S ⊂ H of K\H/H ′, there
exists t ∈ S such that the index [H ′ :K t

∩H ′] is also prime to p.

Proof. Let v ∈ N be such that pv divides [H :H ′] but pv+1 does not. Applying (5.5) for
G = H , K1 = K and K2 = H

′ and counting elements on both sides gives∑
t∈S

[H :K t
∩H ′] = [H :K] · [H :H ′].
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Since [H : K] is prime to p, the right-hand side is not divisible by pv+1. Hence pv+1

cannot divide all the left-hand terms. Hence there exists t ∈ S such that pv+1 does not
divide [H :K t

∩ H ′]. Now, for that t , contemplate the tower of subgroups K t
∩ H ′ ≤

H ′ ≤ H . We see that pv+1 does not divide [H :K t
∩H ′] but pv divides [H :H ′]. Hence

[H ′ :K t
∩H ′] is prime to p, as wanted. ut

5.7. Notation. The stabilizer of x ∈ X ∈ G-sets is StG(x) := {g ∈ G | gx = x}. For
every G-map f : Y → X and every y ∈ Y , we have StG(y) ≤ StG(f (y)) in G.

5.8. Definition. Let X be a finite G-set.

(a) An arbitrary (possibly infinite) family {Ui
αi
−→ X}i∈I of G-maps in G-sets is a sipp-

covering if for every x ∈ X there exist i ∈ I and u ∈ Ui such that αi(u) = x and the
index [StG(x) :StG(u)] is prime to p.

(b) A single morphism U
α
−→ X in G-sets is a sipp-cover if {U → X} is a covering, i.e.

for every x ∈ X there exists u ∈ α−1(x) with [StG(x) : StG(u)] prime to p:

U
α ����

3 u_

��

StG(u)
|
∧

index prime to p

X 3 x StG(x)

After Theorem 5.11, we shall call this (the basis of) the sipp topology on G-sets.1

5.9. Remark. A family {Ui → X}i∈I is a sipp-covering if and only if there exists U ∈
G-sets and U →

∐
i∈I Ui such that the composite U → X is a sipp-cover.

5.10. Example. Let K ≤ H be subgroups of G. Then the projection G/K�G/H is
a sipp-cover if and only if the index [H : K] is prime to p. For a family Ki ≤ H ,
{G/Ki�G/H }i∈I is a sipp-covering if and only if some [H : Ki] is prime to p.

5.11. Theorem. The sipp-coverings of Definition 5.8 form a basis of a Grothendieck
topology on G-sets, namely they satisfy all the following properties:

(a) Every isomorphism U
∼
−→ X is a sipp-cover.

(b) If {αi : Ui → X}i∈I is a sipp-covering of X and if β : Y → X is a G-map, then the
pull-backs define a sipp-covering {pr2 : Ui ×X Y → Y }i∈I of Y .

(c) If {αi : Ui → X}i∈I is a sipp-covering of X and if {βij : Vij → Ui}j∈Ji is a sipp-
covering of Ui for every i ∈ I , then the composite family {αiβij : Vij → X}i∈I,j∈Ii
is a sipp-covering of X.

In words, G-sets becomes a site (a category equipped with a Grothendieck topology).

Proof. Parts (a) and (c) are easy exercises. Let us prove (b). Using (a) and distributivity
of pull-back with coproducts (Remark 5.2), it suffices to prove the following special case:

1 In the tradition of the fppf- and fpqc-topologies, the acronym “sipp” really stands for the
French: “stabilisateurs d’indice premier à p”.
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LetH be a subgroup ofG andK,H ′ ≤ H two subgroups ofH such that [H :K] is prime
to p. Consider the right-hand square of G-sets below:∐

t∈S G/(K
t
∩H ′)

'

(5.5)
// G/K ×G/H G/H ′

pr2 //

��

G/H ′

β
��

G/K
α // G/H

Here α is the sipp-cover and β is the other map. We need to prove that pr2 is a sipp-
cover. The left-hand isomorphism is Mackey’s formula (5.5) for any S ⊂ H such that
S
∼
−→ K\H/H ′. Composing this isomorphism with pr2 gives us the G-map∐

t∈S

G/(K t
∩H ′)

∐
αt
−−→ G/H ′

where αt : G/(K t
∩ H ′)�G/H ′ is the projection associated to K t

∩ H ′ ≤ H ′. This is
now a sipp-cover if at least one of the indices [H ′ :K t

∩H ′] is prime to p (Example 5.10),
and this is exactly what was established in Corollary 5.6. ut

5.12. Remark. An objectX ∈ G-sets is sipp-local (meaning that for every sipp-covering
of X, one of its morphisms admits a section) if and only if X is an orbit whose stabilizer
is a p-subgroup of G, i.e. X ' G/H with H a p-group. Indeed, suppose that |H | is a
power of p and that {Ui

αi
−→ G/H }i∈I is a sipp-covering. By Example 5.10, some orbit

of some Ui must be isomorphic to G/K with K ≤ H of index prime to p, which forces
K = H . Conversely, suppose that X is sipp-local. Then X is connected (if X = X1 tX2,
use the covering {Xi ↪→ X}i=1,2), hence X ' G/H for some H ≤ G. Let K ≤ H be a
Sylow p-subgroup of H and consider the cover G/K�G/H . This has a section, hence
K = H and H is a p-group.

5.13. Remark. With this Grothendieck topology, we can now speak of sipp-sheaves on
G-sets. A presheaf of sets, i.e. a functor P : G-setsop

→ Sets, is a sheaf if for every
covering {Ui → X}i∈I the following usual sequence of sets is an equalizer:

(5.14) P(X) //
∏
i P(αi ) // ∏

i∈I P(Ui)

∏
j,k P(pr1)◦prj //∏
j,k P(pr2)◦prk

//
∏
(j,k)∈I×I P(Uj ×X Uk)

This means that restriction s 7→ (α∗i (s))i∈I yields a bijection between P(X) and the
subset of those (si)i∈I ∈

∏
i P(Ui) such that pr∗1(sj ) = pr∗2(sk) for every j, k ∈ I , where

pr1 : Uj×XUk → Uj and pr2 : Uj×XUk → Uk are the two projections. Here α∗i = P(αi)
and pr∗i = P(pri) are the “restriction” maps for the presheaf P .

5.15. Remark. The sipp topology is quasi-compact, in the sense that for every sipp-
covering {Ui → X}i∈I , there exists J ⊆ I finite such that {Ui → X}i∈J is a covering
too. Hence, it suffices to check sheaf conditions (5.14) for finite coverings {Ui

αi
−→ X}ni=1.

Furthermore, G-sets has finite coproducts
∐n
i=1 Ui and finite coverings as above induce

covers U :=
∐n
i=1 Ui

∐
i αi
−−−→ X. Hence it suffices to verify sheaf conditions for sipp-

covers α : U → X. This reduction from coverings {Ui → X}i∈I to a single morphism
U → X is a well-known flexibility of Grothendieck topologies.
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5.16. Remark. We do not use but simply indicate that our sipp topology is subcanonical,
i.e. every represented presheaf HomG-sets(−, Z) : G-setsop

→ Sets is a sheaf, for every
Z ∈ G-sets. This follows from surjectivity of sipp-covers U�X.

5.17. Proposition. Let P : G-setsop
→ Sets be a presheaf. Then it is a sheaf if and only

if the following conditions are satisfied:

(i) Whenever X = X1 t X2, the natural map P(X) → P(X1) × P(X2) is an isomor-
phism. Also P(∅) is one point.

(ii) For every pair of subgroups K ≤ H in G such that [H : K] is prime to p, the sheaf
condition (5.14) holds for the sipp-cover G/K�G/H .

Proof. These conditions are easily seen to be necessary. Conversely, suppose that (i)
holds; then we can reduce the verification of the sheaf condition for all covers U → X

(Remark 5.15) to covers of the orbits of X, so we can assume that X = G/H for some
subgroup H ≤ G. In that case, the cover admits a refinement of the form G/K → G/H

where we have [H :K] prime to p and we can apply condition (ii). ut

Here is an amusing and yet useful example. For every X ∈ G-sets, let X := {Gx |
x ∈ X, p divides |StG(x)|} be the set of G-orbits of points of X with stabilizer of order
divisible by p. Then (−) is a well-defined functor fromG-sets to finite sets, sinceG-maps
only enlarge stabilizers and preserve G-orbits.

5.18. Proposition. Let A be an abelian group. Define the abelian group A(X) to be
AX = MorSets(X,A) for every X ∈ G-sets and the homomorphism A(α) : A(X) →

A(Y ) to be Aα = α∗ = − ◦ α for every G-map α : Y → X. Then the presheaf A :
G-setsop

→ Z-Mod is a sheaf of abelian groups for the sipp topology.

Proof. To check that A is a sheaf, by Proposition 5.17, it suffices to verify the sheaf
condition for covers of the form U = G/K�G/H = X with K ≤ H of index prime
to p. This is clear, for then U = X and the two maps U ×X U ⇒ U are equal. ut

5.19. Remark. Indeed, A is the sipp-sheafification of the constant presheaf A. We call
it the constant sheaf associated to A. For every X ' G/H1 t · · · t G/Hn we have
A(X) = Am where m = #{1 ≤ i ≤ n | p divides |Hi |}. The behavior of A(−) on
G-maps is rather obvious and only involves 0 or idA on each component A.

6. Plain, derived and stable representations of G-sets

Recall that G is a finite group. We want to define the category of representations Rep(X)
for every finiteG-setX in such a way that Rep(G/H) is equivalent to kH -mod. The prob-
lem with using kH -Mod directly is that “twisted” restriction g(−)↓HK from H to K does
depend on the choice of the representative g in its left H -class H [g] ∈ H\NG(K,H) ∼=
HomG-sets(G/K, G/H). The standard trick around this indeterminacy is to use the asso-
ciated “action groupoids” as follows.
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6.1. Definition. LetX be a (finite)G-set. Define the action groupoidGnX to be the cat-
egory whose objects are the elements of X with morphisms MorGnX(x, x′) := {g ∈ G |
gx = x′}, being subsets of G. Composition is defined by multiplication in G. Clearly,
every morphism inGnX is an isomorphism, i.e.GnX is a groupoid. For everyG-map
α : X → Y , the functor G n α : G n X → G n Y is simply α on objects and the
“inclusion” on morphisms (as subsets of G).

We can now speak of representations, as usual.

6.2. Definition. Let A be a fixed “base” additive category (e.g. A = k-Mod for a com-
mutative ring k). For every G-set X, denote by

Rep(X) = AGnX

the category of functors fromGnX to A. We call it the (plain) category of representations
of X (in A). See Remark 6.3 for a more elementary approach.

Assume moreover that A is abelian. Then so is Rep(X). Let then D(Rep(X)) be the
derived category of representations, whose objects are complexes in Rep(X) and mor-
phisms are morphisms of complexes with quasi-isomorphisms inverted.

If we assume that k is a field and A = k-Mod =: k-Vect, then we claim that Rep(X)
is a Frobenius category, meaning that injective and projective objects coincide and there
are enough of both. We can therefore construct the stable category of representations
Stab Rep(X) = Rep(X)/Proj(Rep(X)) as the additive quotient by the projective objects.
It has the same objects as Rep(X) but any two morphisms whose difference factors via a
projective are identified.

Both D(Rep(X)) and Stab Rep(X) are well-known triangulated categories.

6.3. Remark. Removing groupoids from the picture, an object V of Rep(X) consists of
the data of objects Vx in A, for every x ∈ X, together with isomorphisms Vg : Vx

∼
−→ Vgx

in A, for every g ∈ G, subject to the rule that V1 = id and Vg2g1 = Vg2 ◦Vg1 . A morphism
f : V → V ′ in Rep(X) consists of a collection fx : Vx → V ′x of morphisms in A, for
every x ∈ X, such that V ′g ◦fx = fgx ◦Vg from Vx to V ′gx , for every g ∈ G. Composition
is the obvious (f ′ ◦ f )x = f ′x ◦ fx .

6.4. Example. Let H ≤ G be a subgroup and G/H ∈ G-sets the associated orbit.
Then the groupoid BH = H n ∗ (with one object ∗ and H as automorphism group) is
equivalent to Gn (G/H) via ιH : BH ↪→ Gn (G/H), ∗ 7→ [1]H . Let A = k-Mod for
a commutative ring k. Then we have an equivalence of categories

(6.5) ι∗H : Rep(G/H)
∼
−→ kH -Mod

given by V 7→ V[1]. In particular, when k is a field, Rep(G/H) is a Frobenius abelian cat-
egory and, since Rep(X1tX2) ∼= Rep(X1)⊕Rep(X2), the category Rep(X) is Frobenius
for every finite G-set X (as claimed in Definition 6.2).

Let us clarify the functoriality of Rep(X) in the G-set X.



210 Paul Balmer

6.6. Definition. Let α : Y → X be a morphism of G-sets. Let α∗ : Rep(X)→ Rep(Y )
be the functor AGnα

= − ◦ (Gn α). For every representation V ∈ Rep(X), we can give
α∗V ∈ Rep(Y ) as in Remark 6.3: For every y ∈ Y and g ∈ G, we have

(α∗V )y = Vα(y) and (α∗V )g = Vg.

Similarly, for every f : V → V ′ over X, we have (α∗f )y = fα(y) for every y ∈ Y .

6.7. Remark. The above functor α∗ : Rep(X) → Rep(Y ) is exact when A is abelian,
and preserves projective objects when A = k-Vect (Example 6.4). This induces well-
defined functors on derived and stable categories, still denoted

α∗ : D(Rep(X))→ D(Rep(Y )) and α∗ : Stab Rep(X)→ Stab Rep(Y ).

6.8. Proposition. We have a strict contravariant functor Rep(−) : G-setsop
→ Add

from G-sets to the category of additive categories. Similarly, when A is abelian (resp.
when A = k-Vect for a field k) then D(Rep(−)) : G-setsop

→ Add (resp. Stab Rep(−) :
G-setsop

→ Add) is also a strict contravariant functor.

Proof. Easy verification. The new functors α∗ are given by the same formula as above,
applied objectwise. Note in particular that we do not need to derive α∗. ut

6.9. Remark. For Z
β
−→ Y

α
−→ X, we have (β ◦ α)∗ = α∗ ◦ β∗ on the nose, not up to

isomorphism. Hence Rep(−), D(Rep(−)) and Stab Rep(−) are strict functors, not mere
pseudo-functors. Of course, having only pseudo-functors would not be a big problem,
since stack theory is tailored for pseudo-functors (or fibered categories), but this nice fact
reduces the amount of technicalities below.

We now unfold the right adjoints α∗ to the above functors α∗.

6.10. Definition. Let α : Y → X be a G-map. Let W ∈ Rep(Y ) be a representation
of Y . As in Remark 6.3, define a representation α∗W over X by

(6.11) (α∗W)x =
∏

y∈α−1(x)

Wy and (α∗W)g =
∏

y∈α−1(x)

Wg (diagonally)

for every x ∈ X and every g ∈ G. For a morphism f : W → W ′ over Y , we define
α∗f : α∗W → α∗W

′ by (α∗f )x =
∏
y∈α−1(x) fy (diagonally) for every x ∈ X.

6.12. Remark. The above product is simply a direct sum, since A is assumed additive.
However, the product is the right concept here if we drop the assumption that our G-sets
are finite. In that case, one should assume that A has small products.

6.13. Proposition. Let α : Y → X be a G-map. Then we have three adjunctions

Rep(X)
α∗

��

D(Rep(X))
α∗

��

Stab Rep(X)
α∗

��
Rep(Y )

α∗

OO

D(Rep(Y ))

α∗

OO

Stab Rep(Y )

α∗

OO
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For the plain one, the unit η(α) : IdRep(X)→ α∗α
∗ is given by the formula

(η
(α)
V )x : Vx →

∏
y∈α−1(x)

Vx = (α∗α
∗V )x, v 7→ (v)y∈α−1(x) (constant),

for every V ∈ Rep(X) and x ∈ X, whereas the counit ε(α) : α∗α∗ → IdRep(Y ) is given
for every W ∈ Rep(Y ) and y ∈ Y by

(ε
(α)
W )y : (α

∗α∗W)y =
∏

y′∈α−1(α(y))

Wy′ → Wy, (wy′)y′∈α−1(α(y)) 7→ wy .

The derived one (supposing A abelian) and the stable one (supposing A = k-Vect for a
field k) are induced by the plain one objectwise.

Proof. Verify the unit-counit relations, namely here ε(α)α∗V ◦ α
∗(η

(α)
V ) = idα∗V and

α∗(ε
(α)
W ) ◦ η

(α)
α∗W
= idα∗W (see [ML98, Chap. IV] if necessary). For the derived and stable

versions, the functors α∗ and α∗ are exact and we apply Lemma 4.2. ut

7. Beck–Chevalley property and descent

Recall that G is a finite group. In Section 6, we recalled the functor Rep(−) :
G-setsop

→ Add of plain representations, together with the derived D(Rep(−)) and stable
Stab Rep(−) versions. Each of them is a presheaf of categories on our site G-sets. These
constructions did not involve the sipp topology of Section 5. Saying that these presheaves
of categories are stacks heuristically means that they are sheaves for the Grothendieck
topology. To make this precise, we recall the basics of Grothendieck’s descent formalism.
A detailed reference is Vistoli [Vis05].

7.1. Remark. The following definition is usually given for pseudo-functors but we do
not need this generality here as we have seen in Remark 6.9. This happy simplification
explains the word “strict” below. Also, by Remark 5.15, we restrict attention to covers
U = {U → X}, i.e. coverings with a single map.

7.2. Definition. Let U = {U
α
−→ X} be a cover of X in a site G with pull-backs and

let D : Gop
→ Cat be a (strict) contravariant functor from G to the category Cat of

small categories. We denote U (n) := U ×X · · · ×X U (n factors). The (strict) descent
category for the cover U, denoted DescD(U), is defined as follows. Its objects are the
(strict) descent data, i.e. pairs (W, s) where W is an object of D(U) and s is a so-called
gluing isomorphism

s : pr∗2 W
∼
−→ pr∗1 W

in D(U (2)), where pri : U
(2)
= U ×X U → U , i = 1, 2, are the two projections, subject

to the so-called cocycle condition:

pr∗13(s) = pr∗12(s) ◦ pr∗23(s)
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in D(U (3)), where prij : U
(3)
= U ×X U ×X U → U (2) denotes projection on the

ith and j th factors. A morphism of descent data f : (W, s) → (W ′, s′) is a morphism
f : W → W ′ in D(U) such that pr∗1(f ) ◦ s = s

′
◦ pr∗2(f ) in D(U (2)).

There is a comparison functor Q : D(X) → DescD(U) mapping an object V of
D(X) to α∗V ∈ D(U) together with the identity s = id : pr∗2 α

∗V = pr∗1 α
∗V as gluing

isomorphism in D(U (2)). On morphisms, we set of course Q(f ) = α∗(f ).

7.3. Definition. We say that the presheaf D : Gop
→ Cat satisfies strict descent with

respect to the cover U of X if the comparison functor Q : D(X) → DescD(U) is an
equivalence of categories. We say that G is a strict stack over the site G if it satisfies strict
descent with respect to every cover U of every object X in G.

7.4. Remark. The descent property of D : Gop
→ Cat with respect to a cover U of

X means two things: First Q : D(X) → DescD(U) is fully faithful and second it is
essentially surjective. Full faithfulness roughly says that morphisms in D(X) are sipp-
sheaves, and essential surjectivity says that every descent datum (W, s) has a solution,
i.e. an object V ∈ D(X) with an isomorphism f : α∗(V )

∼
−→ W in D(U), compatible

with the gluing isomorphisms on the “intersection”U (2). Such a solution V is then unique
up to unique isomorphism in D(X).

The following property is the key to reducing descent problems to comonadicity.

7.5. Definition. Let G be a category with pull-backs and let D : Gop
→ Cat be a con-

travariant functor. Denote by α∗ : D(X) → D(Y ) the functor associated to α : Y → X

in G. Suppose that each α∗ has a right adjoint α∗ : D(Y )→ D(X). Then, we say that D
has the Beck–Chevalley property if for every pull-back square

Y ′
β ′ //

α′

��

Y

α

��
X′

β // X

in G, we have a base-change formula, β∗α∗ ' α′∗β
′∗, more precisely the morphism

(7.6) β∗α∗
η(α
′)

// α′∗α
′∗β∗α∗

(βα′=αβ ′)
α′∗β
′∗α∗α∗

ε(α) // α′∗β
′∗

is an isomorphism. (We use that D(−) is a strict functor but again the notion makes sense
for pseudo-functors, replacing the middle identity by an isomorphism.)

7.7. Theorem (Bénabou–Roubaud [BR70]). Let G be a site with pull-backs and let D :
Gop
→ Cat be a functor with the Beck–Chevalley property. Let α : U → X be a cover. The

adjunction α∗ : D(X) � D(U) : α∗ defines a comonad L := α∗α∗ : D(U) → D(U)

and we can compare D(X) with the category of L-comodules in D(U), via an Eilenberg–
Moore functor E as in Remark 2.5 ( for the dual):
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D(X)

α∗ ++

E //

Q

))

L-ComodD(U)forget
rr

D(U)

α∗
kk

free

22

L

XX

DescD(U
α
−→ X)

'

∃B

AA

Then there exists an equivalence B : DescD(U
α
−→ X)

∼
−→ L-ComodD(U) such that

B ◦ Q ∼= E. Consequently, D satisfies descent with respect to α : U → X (Q is an
equivalence) if and only if the adjunction α∗/α∗ is comonadic (E is an equivalence).

7.8. Remark. We shall not prove this classical result but, since [BR70] gives little detail,
we quickly indicate why this holds. Consider the pull-back square

U (2) = U ×X U
pr2 //

pr1
��

U

α

��
U

α // X

and consider a gluing datum (W, s) in the descent category DescD(U
α
−→ X) as in Def-

inition 7.2. The gluing isomorphism s : pr∗2 W
∼
−→ pr∗1 W in D(U (2)) defines, by the

pr∗2 /pr2∗ adjunction, a morphism W → (pr2)∗ pr∗1 W . By the Beck–Chevalley property
applied to the above pull-back, we have (pr2)∗ pr∗1 = α

∗α∗ which is the comonad L. This
new morphismW → L(W)makesW into an L-comodule and this assignment yields the
functor B. Note that the original source [BR70] is stated dually, using the existence of left
adjoints to α∗ (somewhat unfortunately denoted α∗ instead of the now common α!) and
monads instead of comonads. Of course, our statement is a formal consequence of that
one, via opposite categories.

We can now use the above technique to prove the fundamental result of the paper. We
denote by Z(p) = {a/b ∈ Q | b is prime to p} the local ring of Z at p.

7.9. Theorem. Let A be an idempotent-complete additive category over Z(p), e.g. A =
k-Mod for k a (commutative local ring with residue) field of characteristic p. Then we
have strict stacks G-setsop

→ Add in the sense of Definition 7.3:

(a) The functor of plain representations Rep(−) = AGn− of Definition 6.2 is a strict
stack on G-sets for the sipp topology (Definition 5.8).

(b) If A is moreover abelian, then the functor of derived categories D(Rep(−)) is a strict
stack on G-sets for the sipp topology.

(c) If A = k-Vect for a field k of characteristic p, then the functor of stable categories
Stab Rep(−) is a strict stack on G-sets for the sipp topology.

Proof. The strategy of the proof is the following. First, in Lemma 7.10, we prove the
Beck–Chevalley property. This reduces descent to comonadicity, by Theorem 7.7. Then,
we prove comonadicity in Lemma 7.13.
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7.10. Lemma. The functor Rep(−) : G-setsop
→ Add of plain representations satisfies

the Beck–Chevalley property of Definition 7.5. So does the derived one D(Rep(−)) :
G-setsop

→ Add when A is abelian and the stable one Stab Rep(−) : G-setsop
→ Add

when A = k-Vect for k a field.

Proof. We start with the plain one Rep(−). Consider a pull-back in G-sets:

Y ′
β ′ //

α′ ��

Y

α
��

X′
β // X

Note that being a pull-back implies that for every x′ ∈ X′ we have a bijection

(7.11) (α′)−1(x′)
∼
−→ α−1(βx′) given by y′ 7→ β ′y′.

We need to check that the morphism (7.6) β∗α∗V → α′∗β
′∗V is an isomorphism over X′

for every representation V over Y . Unfolding the definitions of η(α
′) and of ε(α) given in

Proposition 6.13, we obtain for every x′ ∈ X′ the morphisms

(β∗α∗V )x′
η(α
′)

// (α′∗α
′∗β∗α∗V )x′ = (α

′
∗β
′∗α∗α∗V )x′

ε(α) // (α′∗β
′∗V )x′∏

y∈α−1(β x′) Vy
∏
y′∈α′−1(x′)

∏
y∈α−1(βx′) Vy

∏
y′∈α′−1(x′) Vβ ′(y′)

(vy)y
� // (vy)y′,y , (vy′,y)y′,y

� // (vy′,β ′(y′))y′

(vy)y
� // (vβ ′(y′))y′

and this composition is indeed an isomorphism by the bijection (7.11). For the derived
and stable ones, just observe that the units and counits are defined (degreewise) by the
plain ones and a plain isomorphism trivially remains an isomorphism in the derived and
stable categories (see Lemma 4.2). ut

7.12. Lemma. Let F : D � D : G be an adjunction of idempotent-complete additive
categories. Suppose that the unit η : IdC → GF has a natural retraction. Then the
adjunction is comonadic.

Proof. This is the dual of Lemma 2.10(c). ut

So far, we did not use the assumptions about the prime p but here it comes:

7.13. Lemma. Let α : U → X be a cover in the sipp topology (Definition 5.8). Then
the adjunction α∗ : Rep(X)� Rep(U) : α∗ is comonadic. Again, the same is true for the
derived and stable adjunctions, when they make sense.

Proof. Since A is idempotent-complete then so are Rep(X) = AGnX and Rep(U) =
AGnU . To apply Lemma 7.12, we claim that the unit η(α) : IdRep(X) → α∗α

∗ admits a
natural retraction, that is, there exists a natural transformation π : α∗α∗→ IdRep(X) such
that π ◦ η(α) = id. By additivity in the base X, i.e. Rep(X1 tX2) = Rep(X1)tRep(X2),
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we can assume that X is an orbit, say X = G/H . By additivity in U and the fact that a

natural transformation

(
η1
...
ηn

)
: Id→ F1 ⊕ · · · ⊕ Fn is retracted as soon as one of the ηi

is, it suffices to show the claim for the restriction of α to some orbit of U . Since U →
X = G/H is a sipp-cover, there is one orbit of U whose stabilizer has index prime to p
in H , so we choose that one. We are now reduced to the case where α : G/K → G/H is
the projection associated to a subgroup K ≤ H of index prime to p. Note that for every
x ∈ X = G/H , we now have |α−1(x)| = [H : K], which is prime to p hence invertible
in A. We can therefore define πV : α∗α∗V → V for ever V ∈ Rep(X) by the formula

(πV )x : (α∗α
∗V )x =

∏
u∈α−1(x)

Vx → Vx, (vu)u∈α−1(x) 7→
1

[H : K]

∑
u∈α−1(x)

vu,

for every x ∈ X and verify that this is a well-defined natural transformation with the
wanted property π ◦ η(α) = id. The sum gives G-invariance of πV , using the bijection
g· : α−1(x)

∼
−→ α−1(gx). Hence the result for plain representations Rep(−).

For the derived version (recall Remark 4.1), we invoke Lemma 4.2 to see that the
derived and stable units are still retracted and then apply Lemma 7.12. ut

This finishes the proof of Theorem 7.9, as explained before 7.10. ut

Part III. Applications

Recall that G is assumed to be a finite group.

8. Taming Mackey formulas

Our Stack Theorem 7.9 for a sipp-cover U → X involves gluing isomorphisms over U (2)

and cocycle conditions over U (3). Unfolding this data in the case of an elementary sipp-
cover of the form G/H�G/G for a subgroup H of index prime to p hits the problems
explained in Remark 4.11, related to the Mackey formulas for U (2) = G/H ×G/H and
the “higher” Mackey formulas for U (3) = G/H × G/H × G/H . Our strategy around
this problem is to study U (2) by accepting all intersections H g

∩H instead of just those
for g in a chosen set S of representatives of H\G/H , and similarly for U (3). This creates
excessive information which is harmless for U (3) and which can be trimmed for U (2).

8.1. Notation. Let H,K ≤ G be subgroups and let g, g1, g2 ∈ G be elements.

(a) Suppose that gK ≤ H . Consider the basic G-map, already used above,

βg : G/K → G/H given by [x]K 7→ [xg
−1
]H .

Note that for g = 1, i.e. whenK ≤ H , theG-map β1 is the projectionG/K�G/H .
There is a slight ambiguity since notation βg does not display the subgroupsK andH
but we will always make them clear in what follows.
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(b) Mackey’s formula (5.5) involved G-maps that we now denote γg := βg × β1:

γg : G/H [g] → G/H ×G/H, [x]H [g] 7→ ([xg−1
]H , [x]H ),

using g(H [g]) ≤ H and 1(H [g]) ≤ H . Recall that H [g] := H g
∩H .

(c) Recall that H [g2, g1] := H
g2g1 ∩H g1 ∩H . Define δg2,g1 := βg2g1 × βg1 × β1 by

δg2,g1 : G/H [g2, g1] → (G/H)× (G/H)× (G/H),

[x]H [g2,g1] 7→
(
[x(g2g1)

−1
]H , [xg

−1
1 ]H , [x]H

)
,

using g2g1(H [g2, g1]) ≤ H and g1(H [g2, g1]) ≤ H and 1(H [g2, g1]) ≤ H .

8.2. Lemma. With the above notation, we have, for every g ∈ G ≥ H ,

(8.3) pr1 ◦ γg = βg and pr2 ◦ γg = β1

where pr1, pr2 : G/H ×G/H → G/H are the projections. Also, for every h ∈ H ,

(8.4) γhg = γg and γgh = γgβh

as morphisms from G/H [g] to (G/H)2 and from G/H [gh] to (G/H)2, respectively.

Proof. Direct from the above definitions. ut

8.5. Lemma. Let H ≤ G be a subgroup and g1, g2 ∈ G. Then, using Notation 8.1, the
following three diagrams of G-sets commute “separately” (i.e. using on each side only
the left, only the middle or only the right vertical maps, respectively)

G/H [g2, g1]
δg2,g1 //

βg1 ��
β1 ��

β1 ����

(G/H)× (G/H)× (G/H)

pr12

��

pr13

��

pr23

��

G/H [g2] , G/H [g2g1] , G/H [g1]

ιg2 ��
ιg2g1 ��

ιg1 ��∐
g∈G G/H [g]

∐
g γg // (G/H) × (G/H)

Here ιg denotes the inclusion into the term indexed by g ∈ G.

Proof. For instance, the two compositions in the “left-maps diagram” are:

[x]
� δg2,g1 //

_
ιg2βg1��

([x(g2g1)
−1
], [xg−1

1 ], [x])_
pr12��

[xg−1
1 ] in term H [g2]

� γg2 // ([xg−1
1 g−1

2 ], [xg
−1
1 ]) = ([x(g2g1)

−1
], [xg−1

1 ])

The other two verifications are similarly direct from the definitions. ut

We now unfold descent of Section 7. Note that this statement holds for any strict sipp-
stack and avoids all non-canonical choices from Mackey formulas.
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8.6. Theorem. Let D : G-setsop
→ Add be a strict stack onG-sets for the sipp topology

(e.g. those of Theorem 7.9). Let H ≤ G be a subgroup of index prime to p. Let α :
G/H�G/G be the associated G-map. Recall Notation 8.1. Then we have:

(a) Let V, V ′ ∈ D(G/G). Then f0 7→ α∗(f0) defines a bijection between the morphisms
f0 : V → V ′ in D(G/G) and those morphisms f : α∗V → α∗V ′ in D(G/H) such
that β∗1 (f ) = β

∗
g (f ) in D(G/H [g]) for every g ∈ G.

(b) Suppose given an object W ∈ D(G/H) and isomorphisms sg : β∗1W
∼
−→ β∗gW

in D(G/H [g]) for every g ∈ G, for the G-maps β1, βg : G/H [g] → G/H , and
satisfying properties (i) and (ii) below:

(i) For every h ∈ H (in which case H [h] = H and β1 = βh = idG/H and therefore
β∗1W = W = β

∗

hW), assume that sh = idW in D(G/H).
(ii) For every g1, g2 ∈ G, assume the following equality in D(G/H [g2, g1]):

β∗1 (sg2g1) = β
∗
g1
(sg2) ◦ β

∗

1 (sg1)

for β1 : G/H [g2, g1] → G/H [g2g1], βg1 : G/H [g2, g1] → G/H [g2] and
β1 : G/H [g2, g1] → G/H [g1] respectively.

Then there exists an object V ∈ D(G/G) and an isomorphism f : α∗V
∼
−→ W in

D(G/H) such that β∗g (f ) = sg ◦ β
∗

1 (f ) in D(G/H [g]) for every g ∈ G. Moreover,
the pair (V , f ) is unique up to unique isomorphism of such pairs.

Proof. Since the index [G : H ] is prime to p, we have a sipp-cover U := G/H
α
�

G/G =: X. Since we assume that D is a stack, we have an equivalence of categories

D(X)
∼
−→ DescD(U → X).

We want to describe the right-hand category. Recall from Definition 7.2 that its objects are
pairs (W, s) where W ∈ D(U) = D(G/H) and s : pr∗2 W

∼
−→ pr∗1 W is an isomorphism

in D(U (2)) = D(G/H ×G/H) satisfying the cocycle relation

(8.7) pr∗13(s) = pr∗12(s) ◦ pr∗23(s)

in D(U (3)) = D(G/H ×G/H ×G/H). Using Notation 8.1, consider the functor

(8.8) F (2) :=
∏
g∈G

γ ∗g : D((G/H)
2)→

∏
g∈G

D(G/H [g])

induced by all the G-maps γg : G/H [g] → (G/H)2. Similarly, the G-maps δg2,g1 :

G/H [g2, g1] → (G/H)3 induce a functor that we denote

(8.9) F (3) :=
∏

g2,g1∈G

δ∗g2,g1
: D((G/H)3)→

∏
g2,g1∈G

D(G/H [g2, g1]).

Choosing a representative set S ⊂ G for H\G/H and post-composing the functor F (2)

with the projection prS :
∏
g∈G . . . →

∏
g∈S . . . we obtain an equivalence, by the

Mackey formula (5.5). Similarly, if we choose moreover, for every t ∈ S, a represen-
tative set St ⊂ G for (H t

∩ H)\G/H and if we post-compose F (3) with the projection∏
g2,g1∈G

. . .→
∏
g2∈S, g1∈St

. . . we also obtain an equivalence, by two layers of Mackey
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formulas. In particular, both functors F (2) and F (3) are faithful. For F (2) we can describe
the image on morphisms more precisely (“trimming”):

Claim A. Given two objects W ′ and W ′′ in the source category D((G/H)2) of F (2), a
morphism (fg)g∈G from F (2)(W ′) to F (2)(W ′′) in the category

∏
g∈GD(G/H [g]) be-

longs to the image of F (2) if and only for every h ∈ H and g ∈ G we have

fhg = fg and fgh = β
∗

h(fg).(8.10)

Here βh : G/H [gh] → G/H [g] is as in Notation 8.1 using the relation h(H [gh]) ≤

H [g]. These conditions are necessary by (8.4). Conversely, assume that (fg)g∈G satis-
fies (8.10). Since the composition of F (2) with the projection onto those factors indexed
by a representative set S ⊂ G of H\G/H is an equivalence (Mackey formula), we can
find f : W ′→ W ′′ in D((G/H)2) such that at least

(8.11) ft = γ
∗
t (f ) for all t ∈ S.

Let now g ∈ G be arbitrary. We need to show that fg = γ ∗g (f ) as well, which gives
F (2)(f ) = (fg)g∈G. There exist h1, h2 ∈ H and t ∈ S with g = h1 th2 and then

fg = fth2 = β
∗

h2
(ft ) = β

∗

h2
γ ∗t (f ) = γ

∗

th2
(f ) = γ ∗g (f )

using in turn: (8.10), (8.11), and the fact that γtβh2 = γth2 = γh1th2 = γg by (8.4) again.
This proves Claim A.

Let us prove (a). The property that the functor D(X) → DescD(U
α
−→ X) is fully

faithful means that for every V, V ′ ∈ D(X), the map f0 7→ α∗(f0) is a bijection between
MorD(X)(V , V ′) and the set of those morphisms f : α∗V → α∗V ′ in D(G/H) such
that pr∗2(f ) = pr∗1(f ) in D((G/H)2). Since F (2) is faithful, the latter is equivalent to
F (2)(pr∗2(f )) = F

(2)(pr∗1(f )). By (8.8), F (2)(pr∗2(f )) = (γ
∗
g pr∗2(f ))g∈G = (β

∗

1 (f ))g∈G

using pr2 γg = β1 from (8.3). Similarly, F (2)(pr∗1(f )) = (γ
∗
g pr∗1(f ))g∈G = (β

∗
g (f ))g∈G.

Therefore pr∗2(f ) = pr∗1(f ) if and only if β∗1 (f ) = β∗g (f ) for all g ∈ G, which is the
condition of (a).

Let us now prove the more juicy part (b). Assume given the object W ∈ D(G/H)

and the isomorphisms sg : β∗1W
∼
−→ β∗gW in D(G/H [g]), satisfying (i) and (ii). Unique-

ness of (V , f ) up to unique isomorphism will follow from (a), so we only need to prove
existence of V and f : α∗V

∼
−→ W as announced.

Claim B. For every h ∈ H and g ∈ G, we have

shg = sg in D(G/H [hg]) = D(G/H [g]),(8.12)
sgh = β

∗

h(sg) in D(G/H [gh]) for βh : G/H [gh] → G/H [g].(8.13)

To prove (8.13), use condition (ii) for g2 = g and g1 = h, the fact that sh = id by (i)
and finally that β1 : G/H [g2, g1] → G/H [g2g1] is the identity in that case. Similarly,
(8.12) follows from (ii) for g2 = h and g1 = g, the same facts (sh = id and β1 = id) as
above and the additional fact that β1 : G/H [g2, g1] → G/H [g1] is also the identity in
this case. This proves Claim B.
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Consider the two objects W ′,W ′′ ∈ D((G/H)2) given by W ′ = pr∗2(W) and W ′′ =
pr∗1(W). By (8.8) and (8.3) we have F (2)(W ′) = (γ ∗g pr∗2 W)g∈G = (β∗1W)g∈G and
F (2)(W ′′) = (γ ∗g pr∗1 W)g∈G = (β∗gW)g∈G. By Claim B, the morphism (sg)g∈G from
F (2)(W ′) to F (2)(W ′′) in

∏
g∈GD(G/H [g]) satisfies conditions (8.10). Then Claim A

gives the existence of a unique morphism s : pr∗2 W → pr∗1 W such that

(8.14) γ ∗g (s) = sg in D(G/H [g])

for every g ∈ G. This s is necessarily an isomorphism by the same reasoning for the s−1
g .

We now need to prove that s satisfies the cocycle condition (8.7) in D((G/H)3). This can
be tested by applying the faithful functor F (3) given in (8.9). On the other hand, it follows
from Lemma 8.5 and the above (8.14) that

F (3)(pr∗12(s)) = (β
∗
g1
(γ ∗g2

(s)))g2,g1 = (β
∗
g1
(sg2))g2,g1 ,

F (3)(pr∗13(s)) = (β
∗

1 (γ
∗
g2g1

(s)))g2,g1 = (β
∗

1 (sg2g1))g2,g1 ,

F (3)(pr∗23(s)) = (β
∗

1 (γ
∗
g1
))g2,g1 = (β

∗

1 (sg1))g2,g1 .

Hence the image by the faithful functor F (3) of the cocycle condition (8.7) pr∗13(s) =

pr∗12(s) ◦ pr∗23(s) becomes β∗1 (sg2g1) = β
∗
g1
(sg2) ◦ β

∗

1 (sg1) for every g1, g2 ∈ G, and this

is precisely condition (ii). By essential surjectivity of D(X) → DescD(U
α
−→ X), there

exists V ∈ D(X) and an isomorphism f : α∗V
∼
−→ W in D(U) such that s◦pr∗2 f = pr∗1 f

in D(U (2)). A last application of F (2) together with (8.3) and (8.14) turns this last equality
into the wanted sg ◦ β∗1 (f ) = β

∗
g (f ) for all g ∈ G. ut

9. Extending modular representations

Let k be a local commutative ring over Z(p) and A = k-Mod. When dealing with stable
categories, we assume without further mention that k is a field.

Recall Notations 1.1 and 1.3:

9.1. Notation. Let D : G-setsop
→ Add be any of the three sipp-stacks that we have

considered in Section 7 and correspondingly for C(H) whenH ≤ G is a subgroup: either
(1) plain categories D(X) = Rep(X) = k-ModGnX and C(H) = kH -Mod, or
(2) derived categories D(X) = D(Rep(X)) and C(H) = D(kH), or
(3) stable categories D(X) = Stab Rep(X) and C(H) = kH -Stab.

9.2. Remark. Recall from Example 6.4 the equivalence of groupoids ιH : BH
∼
−→

G n (G/H), ∗ 7→ [1]H , which induces the equivalence on “plain” representations ι∗H :
Rep(G/H)

∼
−→ kH -Mod of (6.5). Like every equivalence, ι∗H is exact and preserves pro-

jective objects, hence it induces equivalences on derived and stable categories, which we
still denote ι∗H . In short, for every subgroup H ≤ G we have

(9.3) ι∗H : D(G/H)
∼
−→ C(H).

We now want to transpose some of the functorial behavior of D(−) to C(−).
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9.4. Notation. Let H,K ≤ G be subgroups and let g ∈ G be such that gK ≤ H .
Then every kH -module W has a g-twisted restriction from H to K , denoted gResHK (W)
(or gW↓K for brevity, as in the Introduction), which is defined as the same k-module
W but with K-action k · w := gkw. This is restriction along the group monomorphism
g(−) : K → H given by conjugation. Note that when h ∈ H then W

h·
−→ W , w 7→ hw,

defines a natural isomorphism of kK-modules that we denote

(9.5) τh : ResHK W
∼
−→

hResHKW.

Note also that g2g1Res = g1Res ◦ g2Res, which expresses contravariance of restriction
together with g2g1(−) = g2(−) ◦ g1(−). These structures gResHK and τh pass to the derived
categories D(k?-Mod) degreewise and to the stable categories k?-Stab.

9.6. Lemma. Let H ≤ G. Let K1 ≤ G be a subgroup and x1 ∈ G with x1K1 ≤ H .

(a) Let βx1 : G/K1 → G/H be the G-map of Notation 8.1, given by βx1([g]K1) =

[g x−1
1 ]H . Then in diagram (9.7) below, the left-hand square commutes up to the

isomorphism ω(x1) : ι∗K1
β∗x1

∼
−→

x1ResHK1
ι∗H given for each V ∈ Rep(G/H) by

ω
(x1)
V := Vx1 : V[x−1

1 ]

∼
−→ V[1]. Similarly for derived and stable categories, where

the natural transformation ω(x1) is defined objectwise.

(9.7)

D(G/H)
(βx1 )

∗

//

ι∗H
��

D(G/K1)

ι∗K1
��

(βx2 )
∗

//

ω(x1)

'

rz

D(G/K2)

ι∗K2
��ω(x2)qy

C(H)
x1 ResHK1

// C(K1)
x2 Res

K1
K2

// C(K2)

(b) IfK2 ≤ G is another subgroup and x2 ∈ G is such that x2K2 ≤ K1, then, considering
the right-hand square in the above diagram, the horizontal composition of the natural
transformations ω(x1) ◦ ω(x2) coincides with ω(x1x2), under the identities β∗x2

◦ β∗x1
=

β∗x1x2
and x2ResK1

K2
◦
x1ResHK1

=
x1x2ResHK2

.

Proof. Let V ∈ Rep(G/H). Compute ι∗K1
(βx1)

∗V = Vβx1 [1]K1
= V

[x−1
1 ]H

with action of
k ∈ K1 given by Vk , using that k ∈ H x1 = AutGnG/H ([x

−1
1 ]H ). On the other hand,

x1ResHK1
ι∗HV = V[1]H with action of k ∈ K1 given by Vx1k , using that x1k ∈ H =

AutGnG/H ([1]H ). It is now a direct computation to see that ω(x1) = Vx1 : V[x−1
1 ]

∼
−→ V[1]

is K1-linear. The second part is a direct verification. Recall that the horizontal composi-
tion ω(x1) ◦ ω(x2) is defined as the composition

ι∗K2
◦ β∗x2

◦ β∗x1

ω(x2)β∗x1 // x2ResK1
K2
◦ ι∗K1

◦ β∗x1

x2 Res
K1
K2
ω(x1)

// x2ResK1
K2
◦
x1ResHK1

◦ ι∗H

and use that Vx1 ◦ Vx2 = Vx1x2 . Finally, all functors in sight are exact and preserve pro-
jective objects, so they pass to derived and stable categories on the nose (in particular
without deriving them in the former case); see Lemma 4.2. ut



Stacks of group representations 221

9.8. Remark. Lemma 9.6(a) for x1 = 1 gives in particular an equality ResHK ◦ ι
∗

H =

ι∗Kβ
∗

1 when K ≤ H and β1 : G/K�G/H is the projection, for then ω(1) = id.

We are now ready to prove Theorem 1.4, which we state in more general form:

9.9. Theorem. Let C(−) be as in Notation 9.1. LetH ≤ G be a subgroup of index prime
to p. Recall that H [g] = H g

∩H and that H [g2, g1] = H
g2g1 ∩H g1 ∩H .

(A) Let V ′, V ′′ ∈ C(G). Then f0 7→ ResGH (f0) induces a bijection between the mor-
phisms f0 : V

′
→ V ′′ in C(G) and those morphisms f : ResGH (V

′) → ResGH (V
′′)

such that gResHH [g](f ) ◦ τg = τg ◦ ResHH [g](f ) in C(H [g]) for all g ∈ G.
(B) Suppose given an object W ∈ C(H) and for every g ∈ G an isomorphism σg :

ResHH [g]W
∼
−→

gResHH [g]W in C(H [g]). Suppose further that:

(I) For every h ∈ H we have σh = τh in C(H), where τh is as in (9.5).
(II) For every g1, g2 ∈ G, the following diagram commutes in C(H [g2, g1]):

(9.10)

ResHH [g2,g1]
W

Res
H [g1]
H [g2,g1]

(σg1 )

vv

Res
H [g2g1]
H [g2,g1]

(σg2g1 )

))
g1ResHH [g2,g1]

W
g1 Res

H [g2]
H [g2,g1]

(σg2 )

// g2g1ResHH [g2,g1]
W

Then there exists an object V ∈ C(G) with an isomorphism f : ResGH V
∼
−→ W in

C(H) such that the following square commutes in C(H [g]) for every g ∈ G:

ResGH [g] V
ResHH [g] f

'
//

τg '

��

ResHH [g]W

σg'

��
gResGH [g]V

gResHH [g]f

'
// gResHH [g]W

Moreover, the pair formed by the object V in C(G) and the isomorphism f in C(H)

is unique up to unique isomorphism of such pairs, in the obvious sense.

Proof. We “push” Theorem 8.6 along the equivalences ι∗K : D(G/K)
∼
−→ C(K) of (9.3)

for all subgroupsK in sight. We leave (A) as an exercise and focus on (B). First, the result
is independent of W up to isomorphism in C(H). So, we can assume that W = ι∗H Ŵ for
some Ŵ ∈ D(G/H). Let g ∈ G. Consider the left-hand square below, coming from
Lemma 9.6 applied with K1 := H [g] and x1 = g:

Ŵ ∈_

��

D(G/H)
(βg)

∗

//

ι∗H '

��

D(G/H [g])

ι∗H [g]'

��ω(g)

'

rz

β∗gŴ3
_

��

β∗1 Ŵ
'

∃ sg

oo
_

��
W ∈ C(H)

gResHH [g]

// C(H [g]) ι∗H [g]β
∗
gŴ3

'

ω
(g)

Ŵ

// gResHH [g]W ResHH [g]W
'

σg
oo
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involving the isomorphism ω(g) : ι∗H [g] ◦ β
∗
g

∼
−→

gResHH [g] ◦ ι
∗

H . By Remark 9.8, we have

ι∗H [g] ◦ β
∗

1 = ResHH [g] ◦ι
∗

H , hence ι∗H [g] ◦ β
∗

1 (Ŵ ) = ResHH [g]W . Since β∗1 Ŵ and β∗gŴ
are both in D(G/H [g]) and since ι∗H [g] is fully faithful, there exists an isomorphism

sg : β
∗

1 Ŵ
∼
−→ β∗gŴ in D(G/H [g]) such that ι∗H [g](sg) = (ω

(g)

Ŵ
)−1
◦ σg , that is,

(9.11) ω
(g)

Ŵ
◦ ι∗H [g](sg) = σg

in C(H [g]). We claim that the collection of sg : β∗1 Ŵ
∼
−→ β∗gŴ , for all g ∈ G, satisfies

conditions (i) and (ii) of Theorem 8.6. For (i), let g = h ∈ H . In that case βh = id :
G/H [h] → G/H and ω(h)

Ŵ
: ι∗H Ŵ = W → hResHH ι

∗

H Ŵ =
hW is simply Ŵh = τh.

By (I), σh = τh as well. Hence ι∗H (sh) = (ω
(h)

Ŵ
)−1σh = τ

−1
h τh = idW and sh = id

Ŵ
as

wanted. For (ii), let g1, g2 ∈ G and let K = H [g2, g1]. We need to prove β∗1 (sg2g1) =

β∗g1
(sg2) ◦ β

∗

1 (sg1) in D(G/K). Since ι∗K : D(G/K)
∼
−→ C(K) is faithful, it suffices to

prove
ι∗K ◦ β

∗

1 (sg2g1) = (ι
∗

K ◦ β
∗
g1
(sg2)) ◦ (ι

∗

K ◦ β
∗

1 (sg1))

in C(K). This is the outer commutativity of the following diagram in C(K):

ι∗Kβ
∗

1 Ŵ
ι∗Kβ
∗

1 (sg2g1 )

++

ι∗Kβ
∗

1 (sg1 )

tt
ι∗Kβ
∗

1β
∗
g1
Ŵ ResHK W

Res
H [g1]
K (σg1 )

��
Res

H [g2g1]
K (σg2g1 )

��

Res
H [g1]
K ι∗H [g1]

(sg1 )

yy

Res
H [g2g1]
K ι∗H [g2g1]

(sg2g1 )

''

(9.10)

ι∗Kβ
∗
g1
β∗g2
Ŵ

ResH [g1]
K ι∗H [g1]

β∗g1
Ŵ

Res
H [g1]
K ω

(g1)
Ŵ

��

(9.11)

ResH [g2g1]
K ι∗H [g2g1]

β∗g2g1
Ŵ

Res
H [g2g1]
K ω

(g2g1)
Ŵ

��

(9.11)

g1ResHKW
g1 Res

H [g2]
K (σg2 ) //

g1 Res
H [g2]
K ι∗H [g2]

(sg2 )

%%

g2g1ResHKW

ι∗Kβ
∗
g1
β∗1 Ŵ

ι∗Kβ
∗
g1
(sg2 )

))

'

ω
(g1)
β∗1 Ŵ

<<

g1ResH [g2]
K β∗g2

Ŵ

g1 Res
H [g2]
K ω

(g2)
Ŵ

77

(♥)

(9.11)

ι∗Kβ
∗
g2g1

Ŵ

'

ω
(g2g1)
Ŵ

ee

(♣)

ι∗Kβ
∗
g1
β∗g2
Ŵ

ω
(g1)
β∗g2 Ŵ

'

OO

The “key” triangles marked (9.11) commute by (9.11) applied to g = g1, g2 and g2g1

(anti-clockwise from left), to which we apply ResH [g1]
K , g1ResH [g2]

K , and ResH [g2g1]
K , re-

spectively. The central triangle commutes by hypothesis (9.10) in (II). The “square”
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marked (♥) commutes by naturality of ω(g1)

Ŵ
for the map sg2 . The “square” marked (♣)

commutes by part (b) of Lemma 9.6. The unmarked squares commute via easy identifi-
cations, as in Lemma 9.6(b) but with x1 or x2 equal to 1.

We can therefore apply Theorem 8.6 to Ŵ and (sg)g∈G to obtain an object V̂ ∈
D(G/G) and an isomorphism f̂ : α∗V̂

∼
−→ Ŵ in D(G/H), where α : G/H�G/G is

the sipp-cover. This gives an object V := ι∗GV̂ in C(G/G) and an isomorphism f :=

ι∗H f̂ : ResGH V
∼
−→ W in C(G/H), using that ResGH ◦ ι

∗

G = ι
∗

H ◦ α
∗ by Remark 9.8. ut

9.12. Remark. Isomorphisms {σg}g∈G as in Theorem 9.9 must exist for W to extend
toG (forW = ResGH (V ), take σg = g · = τg). Along those lines, this result is not thrilling
when C(?) = k?-Mod is the plain category of representations, for, given W ∈ kH -Mod
and (σg)g∈G as in the statement, we can equip the “underlying” k-module V := ResH1 W
with the action g · v := σg(v) for every g ∈ G. So, Theorem 9.9 is particularly inter-
esting for derived categories, where σg is only an isomorphism in the derived category
(i.e. a fraction of quasi-isomorphisms) but even more so for stable categories as stated
in Theorem 1.4 in the Introduction. Indeed, for stable categories, the trick of getting an
“underlying” object by restriction to the trivial subgroup breaks down completely since
k1-Stab = 0. There is no “fiber functor” on stable categories! The subtlety of the stable-
category version resides in the vanishing of the stable category for groups of order prime
to p. In this vein, σg is trivial when H [g] has order prime to p and condition (II) is void
whenH [g2, g1] has order prime to p. This illustrates how stable categories can actually be
more flexible than plain ones. This flexibility may also be observed with⊗-invertible ob-
jects: In kG-Mod, only one-dimensional representations are ⊗-invertible but in kG-Stab
there are much more ⊗-invertible (indeed, precisely the endotrivial kG-modules).

9.13. Remark. In Theorem 9.9, if W is finitely generated then so is V . Similar state-
ments apply with bounded complexes, etc. There are two proofs of this. Either note that
the above proof works as soon as D(−) is idempotent-complete and preserved by the
α∗/α∗ adjunction, or prove directly, using that η : IdC(G) → CoIndGH ResGH is split, that
if ResGH V is finitely generated then so is V .

9.14. Remark. Let H ≤ G with index prime to p. Suppose that H is strongly p-
embedded in G, in the sense that H [g] has order prime to p whenever g ∈ G is not
in H . Then it is well-known that ResGH : kG-Stab

∼
−→ kH -Stab is an equivalence. This is

compatible with Theorem 9.9 because the isomorphisms σg are completely forced in that
case: (I) treats the case g ∈ H , and kH [g]-Stab = 0 when g /∈ H .

9.15. Remark. Let H E G be a normal subgroup of index prime to p. Let 0 = G/H .
Then Theorem 9.9 is essentially formalizing the idea that kG-Stab is the 0-invariant part
(kH -Stab)0 of kH -Stab. This is compatible with the paradigm proposed in Theorem 1.2,
where restriction kG-Stab→ kH -Stab is viewed as a separable extension of scalars, for
arbitrary subgroups H ≤ G. In the normal case of H E G this separable extension is
moreover galoisian with Galois group 0 = G/H .
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10. Endotrivial modules, from local to global

For this section, k is a field of characteristic p dividing the (finite) order of G.

10.1. Definition. Let B be an abelian category (e.g. B = Z-Mod). Let P : Gop
→ B

be a B-valued presheaf on a site G and let U = {U → X} be a cover in G. The Čech
cohomology of U with coefficients in P , denoted Ȟ•(U, P ) ∈ B, is the cohomology of the
following Čech complex Č•(U, P ) in B:

(10.2)

0 // P(U)
d0
// P(U (2))

d 1
// · · · // P(U (n))

dn−1
// P(U (n+1))

dn // P(U (n+2)) // · · ·

with Čn(U, P ) = P(U (n+1)) in degree n ≥ 0, with U (n) = U ×X · · · ×X U (n fac-
tors) and where the differential dn is the usual alternate sum of the maps induced by the
(n+ 2) projections U (n+2)

→ U (n+1). The map P(X)→ P(U) induces an obvious map
P(X)→ Ȟ0(U, P ), which is an isomorphism when P is a sheaf.

10.3. Example. Let Gm : G-setsop
→ Ab be the presheaf of abelian groups given by the

stable automorphisms of the trivial representation, i.e. for every X ∈ G-sets,

Gm(X) = AutStab Rep(X)(1)

where 1 ∈ Stab Rep(X) is given by 1x = k for all x ∈ X and 1g = idk for every
g ∈ G. Of course, for Y

α
−→ X, Gm(α) is the restriction α∗ using that α∗1 = 1. When

X = G/H then ι∗H (1) = 1kH -stab is the usual ⊗-unit and its automorphism group is
k× when H has order divisible by p and is trivial otherwise (for then kH -stab = 0). In
other words, Gm = k× is the constant sipp-sheaf associated to the abelian group k× as in
Proposition 5.18.

10.4. Remark. For everyX ∈ G-sets, we can equip Stab Rep(X)with a tensor by letting
(V ⊗ V ′)x := Vx ⊗k V ′x for every x ∈ X and similarly for morphisms. The above
representation 1 is the ⊗-unit. We can consider the group of isomorphism classes of ⊗-
invertible objects Pic(Stab Rep(X)) which is an abelian group for ⊗ as usual. For every
G-map α : Y → X, the functor α∗ : Stab Rep(X) → Stab Rep(Y ) is a ⊗-functor. It
therefore induces a homomorphism α∗ : Pic(Stab Rep(X)) → Pic(Stab Rep(Y )). This
yields a presheaf of abelian groups, simply denoted

Picst
: G-setsop

→ Ab.

When X = G/H , the equivalence ι∗H : Stab Rep(G/H)
∼
−→ kH -Stab is a (strict) ⊗-

functor and yields an isomorphism Picst(G/H)
∼
−→ Pic(kH -stab) =: T (H) with the

group of isomorphism classes of⊗-invertible objects in kH -stab, also known as the group
of stable isomorphism classes of endotrivial kH -modules. We denote by

T (G,H) := Ker
(
ResGH : T (G)→ T (H)

)



Stacks of group representations 225

the kernel of restriction. Whenever gK ≤ H , the following diagram commutes:

(10.5)

Picst(G/H)
'

ι∗H

//

β∗g
��

T (H)

gResHK
��

Picst(G/K)
'

ι∗K // T (K)

by Lemma 9.6(a), where βg : G/K → G/H is the usual map [x] 7→ [xg−1
] as in

Notation 8.1. In particular ι∗G : Picst(G/G)
∼
−→ T (G) induces an isomorphism

Ker
(
Picst(G/G)

α∗

−→ Picst(G/H)
) ∼
−→ T (G,H)

where α = β1 : G/H�G/G is the only G-map.

10.6. Theorem. Let H ≤ G be a subgroup of index prime to p and let U be the as-
sociated sipp-cover G/H�G/G in G-sets. Then there exists a canonical isomorphism
T (G,H) ∼= Ȟ1(U,Gm).

Proof. Let D = Stab Rep : G-setsop
→ Add be the sipp-stack of stable categories, es-

tablished in Theorem 7.9(c). It is a general fact for U = {U → X} that Ȟ1(U,Gm) is iso-
morphic to the set of isomorphism classes of those V ∈ D(X) which become isomorphic
to 1 in D(U). Indeed, a 1-cocycle in the Čech complex Č•(U,Gm) of (10.2) is nothing
but a gluing isomorphism for the object W = 1 ∈ D(G/H) with respect to our cover U.
Also note that d 0 is trivial in that case since Gm(pr1) = Gm(pr2) for pri : U

(2)
→ U the

two projections (see Remark 5.19). ut

10.7. Theorem. Let H ≤ G be a subgroup of index prime to p. Let U = G/H and
consider the associated sipp-cover U = {U

α
−→ G/G} in G-sets. Then:

(a) The image of the homomorphism α∗ : Picst(G/G) → Picst(U) is contained in
Ȟ0(U,Picst) = Ker(pr∗1− pr∗2 : Picst(U)→ Picst(U (2))).

(b) Let w ∈ Ȟ0(U,Picst). Choose W ∈ Stab Rep(U) such that w = [W ]'. Choose
an isomorphism ξ : pr∗2 W

∼
−→ pr∗1 W in Stab Rep(U (2)). Define ζ := pr∗13(ξ)

−1
◦

pr∗12(ξ) ◦ pr∗23(ξ) ∈ Gm(U
(3)). Then ζ is a 2-cocycle in the Čech complex Č•(U,Gm)

of (10.2). Moreover, the class of ζ in Ȟ2(U,Gm) only depends on w but neither on
the choice of ξ , nor on that of W as above.

(c) Construction (b) yields a well-defined group homomorphism

z : Ȟ0(U,Picst)→ Ȟ2(U,Gm), w 7→ [ζ(W, ξ)].

(d) Im(Picst(G/G)
α∗

−→ Picst(U)) = Ker(Ȟ0(U,Picst)
z
−→ Ȟ2(U,Gm)).

(e) The isomorphism ι∗H : Picst(G/H)
∼
−→ T (H) restricts to a canonical isomorphism

Ker(Ȟ0(U,Picst)
z
−→ Ȟ2(U,Gm))

∼
−→ Im(T (G)→ T (H)).
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Proof. We abbreviate D = Stab Rep the sipp-stack of Theorem 7.9(c). Part (a) is clear
since Picst is a presheaf and α ◦ pr1 = α ◦ pr2. Part (b) contains a slight abuse of notation,
since pr∗13(ξ)

−1
◦ pr∗12(ξ) ◦ pr∗23(ξ) is an automorphism of pr∗3 W :

pr∗3 W = pr∗23 pr∗2 W
pr∗23(ξ) //

ζ⊗pr∗3 W
��

pr∗23 pr∗1 W = pr∗2 W = pr∗12 pr∗2 W

pr∗12(ξ)

��
pr∗3 W = pr∗13 pr∗2 W

pr∗13(ξ) // pr∗13 pr∗1 W = pr∗1 W = pr∗12 pr∗1 W

where pr3 : U
(3)
→ U is the projection on the third factor. But since W is ⊗-invertible,

so is pr∗3 W . Therefore, like for every ⊗-invertible object, any automorphism of pr∗3 W
is given by ζ ⊗ pr∗3 W for a unique automorphism ζ ∈ Aut(1) = Gm(U

(3)) of the unit.
Note also that since ⊗ is symmetric the automorphisms of the unit act centrally on every
morphism. The verification that d2(ζ ) = 0 is a direct computation. Now, if we replace ξ
by another isomorphism ξ ′ : pr∗2 W

∼
−→ pr∗1 W then it will differ from ξ by a central unit

u ∈ AutD(U (2))(1) = Gm(U
(2)). It is then a direct computation to see that ζ(ξ) and ζ(ξ ′)

differ by d1(u) in Gm(U
(3)), that is, the class of ζ is unchanged in Ȟ2(U,Gm). Finally,

if W ′ is another ⊗-invertible isomorphic to W in D(U) then choose an isomorphism
v : W ′

∼
−→ W and use as ξ ′ for W ′ the composite pr∗1(v)

−1ξ pr∗2(v). Then v cancels out in
the computation of ζ , that is, ζ(ξ ′,W ′) is ζ(ξ,W) . This proves (b). Part (c) is a standard
exercise.

Part (d) is where we use the stack property. The inclusion ⊆ is easy. Indeed, if
W = α∗V then one can take the identity as ξ , hence ζ is trivial. Conversely, if [W ]
in Ȟ0(U,Picst) is such that, with the above notation, [ζ(W, ξ)] = 0 in Ȟ2(U,Gm) then
ζ is a boundary, i.e. ζ = d1(u) for some u ∈ Gm(U

(2)). One can then modify the cho-
sen isomorphism ξ : pr∗2 W

∼
−→ pr∗1 W into u ⊗ ξ (or u−1

⊗ ξ , depending on the sign
convention in d1) so that the new ζ(W, ξ) is 1. This means that this new ξ satisfies the
cocycle condition, and therefore W can be descended to some V ∈ D(G/G) as wanted.
One needs to check that V is ⊗-invertible but this is formal: Either use that W⊗−1 also
descends, or use that D(G/G) → D(U) is a faithful ⊗-exact functor between closed
⊗-triangulated categories, so it detects ⊗-invertibility.

Part (e) follows by compatibility of Picst(−) and T (−); see (10.5) for g = 1. ut

Let us give the expected interpretation of Ȟ0(U,Picst) in classical terms.

10.8. Proposition. Let H ≤ G be a subgroup of index prime to p and let U =

{G/H�G/G} be the associated sipp-cover. Then, under the isomorphism ι∗H :

Picst(G/H)
∼
−→ T (H), the subgroup Ȟ0(U,Picst) of Picst(G/H) becomes equal to

{w ∈ T (H) | ResHH [g](w) =
gResHH [g](w) in T (H [g]) for all g ∈ G}.

Proof. Choose a set S ⊂ G of representatives S
∼
−→ H\G/H . Since for every

kH -module W , we have W ' hW for all h ∈ H , the above condition “ ResHH [g](w) =
gResHH [g](w) for all g ∈ G ” is equivalent to the same condition for all g ∈ S only. The
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result then follows from compatibility of Picst and T , as in (10.5), together with the iso-
morphism

∐
(βg × β1) :

∐
g∈S G/H [g]

∼
−→ (G/H)(2) from (5.5). ut

10.9. Example. Following up on Remark 9.15, when H E G is normal then G/H acts
on T (H) and Proposition 10.8 gives Ȟ0(U,Picst) ∼= T (H)G/H .

10.10. Remark. The condition “w belongs to Ȟ0(U,Gm)” is the naive condition for
extension to G. Descent with respect to the sipp-cover U gives the critical obstruction
z(w) in Ȟ2(U,Gm), whose vanishing really guarantees extension to G. If H = P is the
Sylow p-subgroup of G, then all the subgroups P [g] ≤ P are p-groups and all T (P [g])
are known by the classification [CT04, CT05]. So Proposition 10.8 allows a complete
description of the subgroup Ȟ0(U,Picst) of T (P ).

10.11. Remark. The Čech cohomology groups Ȟ1(U,Gm) and Ȟ2(U,Gm) which ap-
pear in Theorems 10.6 and 10.7 can be made more explicit. Indeed, for i = 1, one
exactly recovers the description of the kernel T (G,H) is terms of so-called “weak H -
homomorphisms”G→ k× as given in [Bal13]. The case of Ȟ2(U,Gm) is more technical
but the complex Či(U,Gm) around i = 2 only involves finitely many copies of k×, in-
dexed by components of U (2), U (3) and U (4). This explicit description of Ȟ2(U,Gm) is
left to the interested reader. In the author’s opinion, it becomes preferable to use Čech
cohomology per se and not to obsess oneself with a direct computation from the defini-
tion. Instead, for specific groups H ≤ G, one might try to use cohomological methods
to compute Ȟ•(U,Gm) or its torsion. Such developments are interesting challenges for
future research.
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Jacques Thévenaz and Peter Webb for several helpful discussions.

This research was supported by NSF grant DMS-0969644.

References

[AGV73] Artin, M., Grothendieck, A., Verdier, J.-L.: Théorie des topos et cohomologie
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