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Abstract. Let 3 be a subgroup of an arithmetic lattice in SO(n+ 1, 1). The quotient Hn+1/3 has
a natural family of congruence covers corresponding to ideals in a ring of integers. We establish a
super-strong approximation result for Zariski-dense 3 with some additional regularity and thick-
ness properties. Concretely, this asserts a quantitative spectral gap for the Laplacian operators on
the congruence covers. This generalizes results of Sarnak and Xue (1991) and Gamburd (2002).
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1. Introduction

Let n > 1, F a totally real number field with a fixed infinite place, and G = SO(F n+2, q)

the closed F -subgroup of GLn+2 which preserves a quadratic form q defined over F . We
require G(R) ∼= SO(n+ 1, 1) at the fixed place and compact at the other real places. Let
OF be the ring of integers of F and 0 = G(F )∩GLn+2(OF ). Ideals I in OF give a level
structure by defining

0(I) = {γ ∈ 0 : γ ≡ I mod I}, (1.1)

the principal congruence subgroup at level I. Let3 be a subgroup of 0 which is Zariski-
dense in G(C). We also assume that the traces of 3 in the adjoint representation generate
the ring OF . Then 3 inherits a level structure by defining

3(I) = 3 ∩ 0(I). (1.2)

The groups 0, 3, 3(I) act by isometries on hyperbolic space Hn+1. On the one hand,
3 can be thin in 0 as it is possibly infinite index, but on the other hand it is thick enough
(Zariski-dense with large trace field) so that the group structure does not degenerate. We
further require that 3 is geometrically finite. This means that any Dirichlet fundamental
domain for 3 in Hn+1 is finitely faced, and implies that 3 is finitely generated.1

Adding this geometric regularity gives us a further gauge of thickness. For a point
o ∈ Hn+1 the orbit 3o accumulates on a subset of the boundary Sn∞ of Hn+1. This is
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called the limit set of 3 and denoted L(3). This set is Cantor-like and has an associated
Hausdorff dimension δ(L(3)). The motif of this paper is that if δ(L(3)) is large enough,
that is, we have ‘sufficient thickness’, then there is a ‘super-strong’ approximation state-
ment for the congruence quotients 3/3(I). Concretely, this asserts the existence of a
spectral gap.

The congruence quotients 3/3(I) act as deck transformations on the quotient space
X(I) ≡ Hn+1/3(I) and induce a locally isometric covering

πI : X(I)→ X ≡ Hn+1/3. (1.3)

We make some extra assumptions on 3 to ease exposition. By Selberg’s lemma [Se1],
which states that any finitely generated matrix group has a normal subgroup of finite
index without torsion, we can pass to a finite index normal subgroup without elliptic or
orientation reversing elements. In addition we may need to pass to a subgroup which is the
kernel of the spinor norm at a localization of OF ; we deal with this subtlety in Section 2.
Any analysis will then occur on finite coverings of the initial X and X(I).

It follows in Section 2 from the work of Weisfeiler [Weis] that away from finitely
many primes the natural inclusion 3/3(I) ↪→ 0/0(I) is onto some large subgroup2

(0/0(I))′. In other words, if we choose a set S = {A1, . . . , Ak} of generators for 3 and
consider the Cayley graph HI ≡ H(S0(I), (0/0(I))′) then this graph is connected.
This is the initial strong approximation statement which is to be strengthened.

A natural such strengthening is to insist that these graphs be ‘highly connected’, a
concept which can be made precise by defining the expansion coefficient of a k-regular
graph H to be

c(H) = inf
{
|N(W)|/|W | : |W | < 1

2 |H|
}

(1.4)

whereW runs over subsets of the vertex set of H andN(W) denotes its set of neighbours.
The Cayley graphs in question have associated discrete Laplacians which are neighbour-
averaging operators on functions on the vertices. As in [Lu], the spectral theory of these
operators is related to the expansion coefficients of the graphs. The highly-connectedness
will then be a property of a family of graphs (in our case HI ), we say that HI are a family
of expanders if there exists C real such that

lim inf
|OF /I|→∞

c(HI) ≥ C > 0. (1.5)

Suitably reinterpreted, this asserts a spectral gap for the graph Laplacians. It is a fairly
direct consequence3 of Fell’s continuity of induction [F] that by passing through rep-
resentation-theoretic descriptions of the action of the Laplacians (graph-theoretic and
diffeo-geometric), it is sufficient to prove a spectral gap result ‘up above’ to establish
the expansion property for the Cayley graphs HI . To summarize, the spectral gap for
the manifolds X(I) would imply a connectedness property which naturally goes beyond
strong approximation, hence ‘super-strong’ approximation.

2 The kernel of a spinor norm at a finite semilocal ring.
3 This argument appears in detail in [G].
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To see the asserted spectral gap, we consider the Laplacian operators1X,1X(I), and
in particular, their L2 spectra denoted �(X), �(X(I)) respectively. The bottom of the
spectrum was characterized by Sullivan [Sul], and Lax and Phillips [LP] established a
finiteness property. These results can be summed up as follows.

Theorem 1.1 (Sullivan, Lax and Phillips). Suppose δ > n/2. The following hold:

(i) The bottom of the L2 spectrum of the Laplacian on X (resp. X(I)) is an eigenvalue
of multiplicity one at λ0 = δ(n− δ).

(ii) The L2 spectrum in the range [δ(n − δ), n2/4) consists of finitely many discrete
eigenvalues.

The hypothesis of our main theorem will imply δ > n/2.
The Hausdorff dimension of the limit set L(X(I)) is the same for all I, so this result

gives us the bottom of the spectrum at all levels. Moreover any eigenfunction of 1X lifts
to an eigenfunction of 1X(I) with the same eigenvalue, so by the finiteness statement in
the previous theorem we know that at level I the discrete spectrum of 1X(I) in (0, n2/4)
consists of that of 1X in addition to finitely many new eigenvalues. Our main theorem
gives an explicit range in which there can be no new eigenvalues (for I avoiding finitely
many primes). Together with the finiteness of the spectrum in (0, n2/4) for X and at each
of the finitely many excluded levels, this implies the existence of a spectral gap.

Before stating our main theorem we give some history of the spectral gap. Our starting
point is Selberg’s seminal paper [Se2] where the following is proved:

Theorem 1.2 (Selberg). Let 0(N) be the principal congruence subgroup of SL2(Z) at
level N , and 0′ ⊃ 0(N). Then letting X′(N) = H2/0′ and writing λ1(X

′(N)) for the
first nonzero eigenvalue of 1X′(N) we have, for any N ≥ 1,

λ1(X
′(N)) ≥ 3/16. (1.6)

It was conjectured by Selberg at the same time that in fact, with notation as before,

λ1(X
′(N)) ≥ 1/4. (1.7)

Selberg’s 3/16 result is no longer the state of the art;4 however, the conjectured 1/4
remains unattained. This is a fundamental open problem of modular forms. The reader
can read Sarnak’s note [Sa2] for a friendly exposition of the subject, as well as the notes
of Sarnak [Sa3] for more recent developments.

Theorem 1.2 was generalized to three dimensions by Sarnak [Sa1] where it was
proved that if E is any quadratic imaginary number field and OE the ring of integers
then

λ1(H3/SL2(OE)) ≥ 3/4. (1.8)

4 Luo, Rudnick and Sarnak [LRS] proved λ1(X
′(N)) ≥ 171/784 by using properties of

GL3 Rankin–Selberg L-functions. Shortly after this Iwaniec [I2] proved the slightly weaker
λ1(X

′(N)) ≥ 10/49 by using only the GL2 theory. Kim and Shahidi [KiSh] proved λ1(X
′(N)) ≥

66/289 via the existence of the functorial symmetric cube for GL2. After some further develop-
ments along these lines (functorial powers) Kim and Sarnak [KiSa] proved the current best result,
which says λ1(X

′(N)) ≥ 975/4096.
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The method used there is very much in the spirit of Selberg’s proof of (1.6). It extends to
congruence subgroups of SL2(OE). This was further extended to arbitrary dimension by
Elstrodt, Grunewald and Mennicke [EGM] and Cogdell, Li, Piatetski-Shapiro and Sarnak
[CLPS] independently. Both these papers prove that if Q is a quadratic form of signature
(1, n + 1), n > 1, Q isotropic over Q, and 0 a congruence subgroup of SO0

n+2(Z,Q)
then

λ1(Hn+1/0) ≥ (2n− 1)/4. (1.9)
Work of Burger and Sarnak [BS] gave further progress by allowing one to link the Lapla-
cian spectrum of congruence hyperbolic manifolds to the automorphic spectrum of GL2.
Together with results of Blomer and Brumley [BB] this lifting argument shows that when
G and 0 are as in our setup and 0(I) is a congruence subgroup,

λ1(Hn+1/0(I)) >
25
32

(
n−

25
32

)
. (1.10)

Recently, following the proof of the fundamental lemma by Ngô [N] and the weighted
fundamental lemma by Chaudouard and Laumon [CL1, CL2], certain conditional results
of Arthur appearing in [A] have become fact. Using these results of Arthur, Bergeron and
Clozel [BC] proved the following result on the spectrum of the Laplacian.

Theorem 1.3 (Bergeron, Clozel). Let G be a Q-group obtained by restriction of scalars
from a special orthogonal group (split or quasi-split) over a totally real number field.
Additionally suppose that G does not come from a twisted form 3D4 or 6D4 and that G(R)
is the product of SO(n + 1, 1) with a compact group. For any torsion free congruence
subgroup 0 ⊂ G, the spectrum of the Laplacian on Hn+1/0 is contained in the set⋃

0≤j<n/2

{j (n− j)} ∪

[
n2

4
−

(
1
2
−

1
N2 + 1

)2

,∞

)
, (1.11)

where N = n + 1 if n is odd and N = n + 2 if n is even. In particular, when n ≥ 3 we
have the spectral gap result

λ1(Hn+1/0) ≥ n− 1. (1.12)

This result feeds our main theorem via the work of Kelmer and Silberman [KeSi] relating
the spectral theory to the lattice point count. When n ≥ 3 Theorem 1.3 gives the best
possible input for our method. When n = 2, we use the lattice point of Sarnak and Xue
[SX], which is also the best possible.

The proof of Theorem 1.2, for example, relies essentially on the underlying arithmetic
of the modular group SL2(Z) and associated Kloosterman sums.5 We will not have access
to such rich arithmetic and will rely on a more robust ‘almost geometric’ method devel-
oped by Sarnak and Xue [SX] and extended to the two-dimensional infinite volume case
by Gamburd [G]. Sarnak and Xue proved

5 The estimates for Kloosterman sums come from Weil [Weil] and appeal to the Riemann hy-
pothesis for curves (also proved by Weil). Iwaniec [I1] proved (1.6) using Kloosterman sums but
without relying on Weil’s bound. Gelbart and Jacquet [GJ] proved that 3/16 in (1.6) is not attained
by a very different method to that of Selberg.
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Theorem 1.4 (Sarnak, Xue). Let F be a totally real number field with a fixed infinite
place, and OF the ring of integers of F . Let G be an orthogonal F -subgroup of GL4 with
G(R) ∼= SL2(R) (resp. SL2(C)) at the fixed place and compact at the other real places.
Let 0 be a finite index subgroup of G(F )∩GL4(OF ) which is cocompact in SL2(R) (resp.
SL2(C)). Then for large enough prime ideals P ⊂ OF ,

�(Hn+1/0(P)) ∩ [0, µ) = �(Hn+1/0(1)) ∩ [0, µ)

where n = 1 (resp. 2) and µ = 5/36 (resp. 11/36) in the case of SL2(R) (resp. SL2(C)).

The Sarnak and Xue machine makes use of the fact that if new eigenvalues appear, they
are of high multiplicity. This follows by bounding below the dimension of new irreducible
representations of the factor group 3/3(I). Everything we need in this direction is con-
tained in Section 2. The multiplicities feature on one side of the trace formula, and the
other side can be related to a lattice point count by choosing the right family of automor-
phic kernels to trace. We introduce the necessary kernels and gather some estimates on
the lattice point count and spherical functions in Section 4.

In the cocompact case the lattice point count plays against the multiplicity estimate via
the trace formula to give a contradiction when new eigenvalues appear in a certain range.
This is the approach of Sarnak and Xue. However, in the infinite volume case the trace
formula does not hold as is, and must be reinterpreted as an inequality. Further repairs are
needed and these were made by Gamburd [G] in the two-dimensional (H2) case:

Theorem 1.5 (Gamburd). Let 3 = 〈A1, . . . , Ak〉 be a finitely generated subgroup of
SL2(Z) with δ > 5/6. Let X(p) = H2/3(p). For p large enough,

�(X(p)) ∩ [δ(1− δ), 5/36) = �(X(1)) ∩ [δ(1− δ), 5/36).

The ‘Collar Lemmas’ in [G] form a key part of the generalization of Sarnak and Xue’s
method to infinite volume. Roughly speaking, these state that eigenfunctions correspond-
ing to eigenvalues < 1/4 in X(p) are bounded uniformly through p away from con-
centrating near infinity. The methods used to prove these do not obviously generalize to
higher dimensions. The needed generalization is the thrust of this paper and appears in
Section 3 as Lemma 3.8 along with the prerequisite geometry.

The proof of Lemma 3.8 has a nice heuristic as follows. If one considers classical
motion of a particle on a line under a step potential of height V0, and the conserved
energy E is < V0, then the particle will never enter the region covered by the step. This
is due to E = K + V and K ≥ 0. In the quantum mechanical version of the same system
it is no longer true that the stationary wave function is zero inside the step (quantum
tunnelling). However, provided E < V0 is bounded away from V0 we should get bounds
uniform through E which say the wave function cannot be arbitrarily concentrated inside
the step. The positive Laplacian 1X(I) plays the role of a Schrödinger operator for free
dynamics on X(I), the eigenvalues of 1X(I) corresponding to energy levels. We seek
uniform bounds on eigenfunctions with eigenvalues bounded away from and less than
n2/4, which can be thought of as the escape energy, so that these eigenfunctions are bound
states. Given that their energy is bounded uniformly through I away from escape, they
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should not concentrate near infinity. Making formal sense of this argument constitutes the
bulk of the proof.

All the machinery is brought together in Section 5 to prove the following.

Theorem 1.6 (Main Theorem). Let F be a totally real number field with a fixed infinite
place, and OF the ring of integers of F . Let G = SO(F n+2, q), the closed F -subgroup of
GLn+2 which preserves a quadratic form q defined over F . Assume G(R) ∼= SO(n+1, 1)
at the fixed place and compact at the other real places. Let 3 be a subgroup of G(F ) ∩
GLn+2(OF ) with the following properties:

Algebraic fullness: 3 is Zariski-dense in G(C) and the traces of 3 generate OF .
Geometric regularity: The image of 3 at the fixed place is geometrically finite, orien-

tation preserving and torsion free as an isometry group of Hn+1.
Fractal fullness: The Hausdorff dimension δ of the limit set of 3 is greater than s0

n ,
defined by

s0
n ≡ n−

2(n− 1)
(n+ 1)(n+ 2)

. (1.13)

Let X(I) = Hn+1/3(I) for I an ideal in OF . Then by replacing 3 with a finite index
subgroup if necessary we have, for |OF /I| large enough and I coprime to a finite set of
primes,

�(X(I)) ∩ [δ(n− δ), s0
n(n− s

0
n)) = �(X(1)) ∩ [δ(n− δ), s

0
n(n− s

0
n)). (1.14)

The finite index subgroup of3 which we may need to pass to is the31 of Section 2. This
is not necessary if one assumes that 3 is contained in the kernel of the appropriate spinor
norm. The index of this subgroup has independent bounds which depend on the number
of generators of 3 and the structure of a localization6 (OF )S respectively.

Corollary 1.7 (Main Corollary). For3 as before (replace3 with the finite index spinor
norm kernel if necessary) and δ > s0

n , �(X(I)) has a spectral gap. That is, writing
λ1(X(I)) for the second smallest eigenvalue of 1X(I), for |OF /I| large and I coprime
to a finite set of primes,

λ1(X(I)) ≥ min(λ1(X), s
0
n(n− s

0
n)).

Some remarks are due before we mention applications. When 3 = 0 we obtain the
result of Clozel [Clo] on property (τ ), albeit with a weaker bound. For any arithmetic
lattice, the Borel Density Theorem [Bo] implies Zariski-density, so our result also applies
(when our geometric criteria are met). In this case we obtain the current best bound for an
arbitrary arithmetic lattice in SO(n+ 1, 1). This is due to a somewhat trivial tightening in
Lemma 2.3 of the arguments in Kelmer and Silberman [KeSi] together with a nontrivial
improvement in Lemma 2.4. When 3 is of infinite index our result is entirely new. We
show that our result is not vacuous in this case by constructing eligible 3 in Section 6.

One important application of the spectral gap is the Bourgain–Gamburd–Sarnak affine
linear sieve introduced in [BGS1], [BGS3], which we recall now.

6 This localization is given by strong approximation.
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Theorem 1.8 (Bourgain, Gamburd, Sarnak). Let G ⊂ GLn be a connected, simply con-
nected, absolutely simple algebraic group defined over Q. Let f ∈ Q[G] be a nonzero
nonunit with t irreducible factors in Q[G]. Let3 be a subgroup ofG(Q)∩GLn(Z) finitely
generated by a set S. We suppose the pair (3, f ) has the following properties:

Algebraic fullness: 3 is Zariski-dense in G.
No local congruence obstructions: For every integer q ≥ 2 there exists x ∈ 3 with

(f (x), q) = 1.
Square free expansion: As q runs through square free integers, the Cayley graphs

H(S3(q),3/3(q)) form an expander family.

Then there exists r such that the set of x ∈ 3 such that f (x) has at most r prime factors
is Zariski-dense in G. Moreover the minimal such r is bounded explicitly and effectively
in terms of the spectral gap in the expander family.

This result is given in [BGS3, Theorem 1.6]. Using tools of additive combinatorics Bour-
gain and Gamburd [BG] established the expansion property for Zariski-dense3⊂SL2(Z)
through prime levels. In [BGS2] the expansion property in SL2(Z) for Zariski-dense 3
is proved for square free levels, and an equivalence between expansion in Cayley graphs
and the spectral gap for the spaces H2/3(q) is given. In case δ(3) ≤ 1/2 there is no
discrete L2 spectrum and the gap has to be interpreted as a pole free region of the mero-
morphically continued resolvent (1H2/3(q)− s(1− s))

−1. Affine sieve methods are used
to sharply estimate the quantity

|{x ∈ 3 : |x| ≤ T , all the irreducible factors of f have prime evaluation at x}|

using the nonexplicit gap. Furthermore (still in [BGS2]) it is shown that there is an r such
that

|{x ∈ 3 : |x| ≤ T , f (x) has at most r prime factors}| (1.15)

has a good bound below, in particular implying that f (3) contains infinitely many r-
almost primes, that is, numbers which are products of at most r primes. This r can be
determined explicitly using either the value of the L2 spectral gap or the size of the pole
free region of the (continued) resolvent (corresponding to δ > 1/2 and δ ≤ 1/2 respec-
tively).

The explicit gap is utilized in the paper of Kontorovich [Ko]. There the affine sieve
theory is applied (with the necessary adaptations) to the function

f (c, d) = c2
+ d2

and the orbit O = (0, 1)0, for 0 an infinite index, Zariski-dense, finitely generated sub-
group of SL2(Z)with δ(0) > 149/150 and containing parabolics. Then using Gamburd’s
[G] explicit 5/6 gap, it is proved that f (O) contains infinitely many 25-almost primes.
Similar methods are applied (in particular also using Gamburd’s 5/6 gap) by Kontorovich
and Oh [KoOh] to the Pythagorean orbit O = (3, 4, 5)0 for 0 a finitely generated Zariski-
dense subgroup of SOQ(Z),

Q(x) = x2
+ y2

− z2.
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They consider the hypotenuse (F (x) = z), area (F(x) = xy/12) and product (F(x) =
xyz/60) functions. The affine linear sieve gives infinitely many R-almost primes in F(O)
for explicit R provided δ(0) is large and there are no local congruence obstructions for
the pair (O, F ) (R and δ depend on the function F considered).

Theorem 1.6 will yield similar applications via the affine linear sieve.

2. Algebra

2.1. Notation

Throughout this paper we use f � g to mean that f ≤ Cg for some constant C, and
f ≈ g to mean that g � f � g. If subscripts are present, e.g.�ε , this indicates that the
implied constant depends on the subscripts. We view the number field F and the groups G
and 3 as fixed throughout, so all our implied constants possibly depend on these objects.

2.2. Strong approximation and reduction to prime powers

The aim of this section is to control the factor groups 3/3(I) and their representation
theory. The group 3/3(I) is naturally a subgroup of 0/0(I). In [G] the case n = 1
is treated at prime levels. In this case enough is known about the maximal subgroups of
SL2(Fp) to provide an ad hoc proof that apart from finitely many primes p, 3/3(p) ∼=
SL2(Fp). The needed bound on the nontrivial representations is that of Frobenius.

For us the description of the factor groups will follow from the work of Weisfeiler
[Weis]. This describes strong approximation for Zariski-dense subgroups of algebraic
groups which amongst other things are simply connected. We therefore need to carefully
deal with the fact that SO is covered by Spin. The bounds on representations at prime
levels are due to Seitz and Zalesskii [SZ], and at the general level we use a result of
Kelmer and Silberman [KeSi] together with an improvement of our own.

Recall that F is a totally real number field with a fixed infinite place, and G =
SO(F n+2, q) is the closed F -subgroup of GLn+2 which preserves a quadratic form q

defined over F . We assume G(R) ∼= SO(n + 1, 1) at the fixed place and is compact at
the other real places. The ring of integers of F is OF and 0 = G(F ) ∩ GLn+2(OF ). We
drop the dependence on F and simply write O = OF in this section. Then we take a sub-
group 3 of 0 which is Zariski-dense in G(C) and such that the traces of 3 in the adjoint
representation generate OF . The congruence subgroups 0(I),3(I) are the kernels of the
reduction map modulo an ideal I in O.

Compactness of G(Rv) away from the fixed place implies discreteness of 0 at the
fixed place, by using the isomorphism G(R) ∼= SO(n+1, 1) we therefore realize 0 and3
as discrete isometry groups of n+1-dimensional hyperbolic space Hn+1. We assume that
3 is geometrically finite, hence finitely generated.

As in Weisfeiler [Weis, Theorem 1.1], there exists a finite set S of primes such that
G can be given the structure of a group scheme over the localization OS of O away
from S, and 3 is contained in GOS

(OS). This results from ‘clearing denominators’ in
the definition of q; we take S as in [Weis, Theorem 1.1]. We then have an ‘orthogonal
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OS-module’ in the sense of Bass [Ba] by equipping P = On+2
S with q : On+2

S → OS ,
and G = SO(P, q) as a group scheme over OS . Following Bass [Ba] there is a short exact
sequence of group schemes (suppressing q)

1→ µ2 → Spin→ GOS
→ 1 (2.1)

which is exact in the fppf 7 topology on Spec(OS).
This yields the sequence in cohomology

1→ µ2(OS)→ Spin(OS)→ GOS
(OS)

σ
−→ H1(Spec(OS), µ2). (2.2)

There is an isomorphism H 1(Spec(OS), µ2) ∼= Discr(OS) which converts σ into the
spinor norm SN . The discriminant group Discr(OS) fits into the exact sequence

0→ µ2(OS)→ O∗S
2
−→ O∗S → Discr(OS)→ Pic(OS)

2
−→ Pic(OS), (2.3)

which implies that Discr(OS) is a finite abelian group of exponent 2.
We let 3̃ denote the preimage of 3 in Spin(OS). The strong approximation theorem

of Weisfeiler [Weis] then states that there is a finite index subgroup 3̃0 of 3̃ such that the
image of 3̃0 is dense in the group Spin(ÔS), where ÔS is the profinite completion of OS .
In particular for I avoiding S the reduction map

3̃0 → Spin(OS/I) ∼= Spin(O/I)

is onto.
By appealing to commutativity of the diagram obtained by reducing the sequence

(2.2) modulo I we get

3/3(I) ⊇ Image(φI) = ker(SNI : GOS (O/I)→ Disc(O/I)), (2.4)

where φI : Spin(O/I) → GOS
(O/I) is the covering map of finite groups and SNI is

the spinor norm at I. If 3/3(I) is bigger than the image then there will be nontrivial
representations of 3/3(I) which factor through the quotient (3/3(I))/Image(φI). We
let

31 = ker SN |3 (2.5)

be the kernel of the spinor norm restricted to3; this is a finite index normal subgroup. The
index [3 : 31] is bounded independently by the size of Discr(OS) and by 2L where L is
the number of generators of3. Then we have the precise strong approximation statement

31/31(I) = ker(SNI) (2.6)

for I avoiding S.
If I has prime factorization I =

∏l
i=1 P

ri
i then the group 31/31(I) splits as a

product

31/31(I) ∼=
l∏
i=1

31/31(Prii ), (2.7)

7 Faithfully flat and finitely presented.
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so that bounds on the size of 31/31(I) will follow from bounds at prime power levels
via |31/31(I)| =

∏
i |31/31(Prii )|. Let ρ : 31/31(I) → Aut(V ) be a nontrivial

irreducible representation of level I, i.e. ρ does not factor through a representation of
31/31(I ′) for any I ′|I, I ′ 6= I. Then ρ is a tensor product of irreducible representations
ρi : 31/31(Prii )→ Aut(Vi) of level Prii and

dim ρ =
∏
i

dim ρi . (2.8)

We have now reduced the needed argument to prime power level. We deal with the prime
case first.

2.3. Prime case

Writing kP = OF /P for the residue field at P , the previous discussion says that for P
avoiding S we have

31/31(P) =
{
�±(2m, |kP |) if n = 2m− 2 is even,
�(2m+ 1, |kP |) if n = 2m− 1 is odd. (2.9)

We recall some facts about these groups from [Suz]. If n = 2m − 1 is odd the com-
mutator subgroup �(2m+ 1, |kP |) is simple and of index 2 in SO(2m+ 1, |kP |).

Ifm ≥ 2 and n = 2m−2 then there are two special orthogonal groups SO±(2m, |kP |)
and we write�±(2m, |kP |) for the commutator subgroup. The centre has size at most two
and the central factor group is simple for m ≥ 3. When m = 2 we have split and nonsplit
versions

P�+(4, |kP |) = PSL2(|kP |)× PSL2(|kP |), P�−(4, |kP |) = PSL2(|kP |
2).

The following lemma gives the needed bounds for prime levels.

Lemma 2.1. Let ϕ be a nontrivial representation of 31/31(P). Then the dimension of
ϕ is bounded below as |kP | → ∞ by

dimϕ � |kP |
n−1. (2.10)

For the size of the group 31/31(P) we have

|31/31(P)| ≈ |kP |(n+2)(n+1)/2. (2.11)
Proof. By the previous discussion, outside finitely many primes we have 31/31(P) ∼=
�(±)(n + 2, |kP |). The possible sizes for this group can be found in [Suz]. For n 6= 2, 4
this is a perfect central extension of degree at most 2 of a finite Chevalley group, and lower
bounds for the dimension of a nontrivial representation of such a group can be found in
[SZ]. If n = 2 then 31/31(P) is a degree 2 perfect central extension of PSL2(|kP |) ×
PSL2(|kP |) or PSL2(|kP |2). At worst we have a faithful irreducible representation of
PSL2(|kP |) contained in ϕ. The needed bound is then well known. Finally if n = 4, using
the accidental isomorphisms ([Suz])

P�+(6, |kP |) = PSL4(|kP |), P�−(6, |kP |) = PSU4(|kP |),

we see that in either case there is an associated nontrivial projective representation whose
dimension can be bounded by further results tabulated in [SZ]. ut
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2.4. Prime power case

In this section we make use of the work of Weisfeiler [Weis] to bound the size of the
group 31/31(Pr), and the work of Kelmer and Silberman [KeSi] along with some im-
provements to bound the dimension of new representations. As31/31(Pr) = ker SNPr ,
any new representation lifts to a nontrivial representation of the Spin group which we
denote H(O/Pr). The level structures are such that the lift is a new representation of
H(O/Pr).

For i > 0 let H(P i) denote the kernel of the reduction map H(O/Pr)→ H(O/P i),
or in other words the congruence subgroup ofH(O/Pr) of level P i . Let L denote the Lie
algebra of H . We will use the following lemma of Weisfeiler.

Lemma 2.2 ([Weis, Lemma 5.2]).

(i) For i > 0 theH(kP ) moduleH(P i)/H(P i+1) is isomorphic to L(kP )⊗P i/P i+1,
where the action on the first factor is by Ad and the action on the second factor is
trivial.

(ii) The map (x, y) 7→ [x, y] maps H(P i) × H(Pj ) into H(P i+j ) and descends to a
map

H(P i)/H(P i+1)×H(Pj )/H(Pj+1)→ H(P i+j )/H(P i+j+1).

This map is given explicitly by

[x ⊗ r, y ⊗ s] = [x, y] ⊗ rs

when H(P i)/H(P i+1) is viewed as L(kP )⊗ P i/P i+1, and similarly for j , j + i.
(iii) If [L(kP ), L(kP )] = L(kP ) then [H(P),H(P)] = H(P2).

It follows immediately that H(P i) is abelian for i ≥ r/2 in light of [H(P i),H(P i)] ⊆
H(P2i) = {1}. Let k = [r/2] be the integral part of r/2. Suppose that ρ is a new represen-
tation of H(O/Pr), i.e. the restriction ResH(O/P

r )

H(Pr−1)
ρ is not trivial. The work of Kelmer

and Silberman [KeSi] can be paraphrased as follows:8

Lemma 2.3 (Kelmer and Silberman). There is a character χ of H(Pr−k) appearing in
ResH(O/P

r )

H(Pr−k)
ρ which has nontrivial restriction to H(Pr−1). Moreover for the orbit of χ

under the co-Adjoint action of H(O/Pr) we have

M ≡ |Orbit(H(O/Pr ),co-Ad)(χ)| �

{
|kP |r(n−1) if r = 2k even,
|kP |(r−1)(n−1) if r = 2k + 1 odd,

(2.12)

and there is an immediate bound below for dim ρ ≥ M .

8 We make a slight improvement here by noting that the proof of [KeSi, Proposition 4.4] goes
through when their e is n− 1 for n = 2, 3, 4 in our indexing of n.
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For r = 2k this is the result which we will use. Assume now that r = 2k + 1 and we will
look for the natural strengthening

dim ρ � |kP |
r(n−1). (2.13)

As in Lemma 2.3, take a character χ which appears in ResH(O/P
r )

H(Pr−k)
ρ and has

ResH(P
r−k)

H(Pr−1)
χ nontrivial. We recall some of the ingredients of the proof for our own use.

The co-Adjoint action ofH(O/Pr) on the unitary dual ̂H(O/Pr−k) descends to an action
of H(O/Pk). Then ̂H(O/Pr−k) is isomorphic to L(O/Pk) via a map which intertwines
the co-Adjoint and adjoint actions. Under this fixed isomorphism, χ is identified with
an element X ∈ L(O/Pk) such that X 6= 0 modP . An orbit-stabilizer argument then
provides enough characters via the Ad-orbit of X. The bound on the size of the stabilizer
is obtained by induction, and at each stage the nonzero reduction XP ∈ L(kP ) of X
modulo P is all the data which is needed. For an explicit formulation of the connection
between XP and χ0 ≡ ResH(P

r−k)

H(Pr−1)
χ , let Tr denote the Galois trace Tr : kP → Fp where

|kP | = pf for some f . Then after the identification H(Pr−1) ∼= L(kP ) we have, for
Z ∈ L(kP ),

χ(Z) = χ0(Z) = exp
(

2πi Tr(B(XP , Z))

p

)
, (2.14)

where B denotes the nondegenerate Killing form on L(kP ).
Let Vχ be the subspace of V (the vector space associated to ρ) upon which H(Pr−k)

acts by χ . As all the Vχ ′ for χ ′ in the co-Adjoint orbit are isomorphic and orthogonal, if
we can prove the dimension of Vχ is large we get a bound

dimV = dim ρ � dimVχ · |Orbit(H(O/Pr ),co-Ad)(χ)|. (2.15)

In the next lemma we utilize a better bound on dimVχ to get an improvement for r odd
on the dimension bound in Lemma 2.3 (which is using the trivial dimVχ ≥ 1).

Lemma 2.4. Let r = 2k + 1 ≥ 3 and ρ a new representation of H(O/Pr). Then

dim ρ � |kP |
r(n−1) (2.16)

with implied constant uniform with respect to r and P .

Proof. Take χ , Vχ as before. We avoid all finitely many primes P where the char-
acteristic p of kP is ramified in F . By Lemma 2.2, H(Pr−k) is in the centre of
H(Pk) = H(Pr−k−1), and so H(Pk) preserves Vχ . Let φ0 denote the subrepresen-
tation of ResH(O/P

r )

H(Pk)
ρ corresponding to Vχ and choose some irreducible representation

(φ,W) ofH(Pk) appearing in (φ0, Vχ ). Our trick is to consider the Hom(W,W) ∼= φ̄⊗φ
representation of H(Pk). As H(Pr−k) acts as an irreducible character on W , it acts triv-
ially on Hom(W,W) and so φ̄ ⊗ φ factors through a representation of the abelian group
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H(Pk)/H(Pr−k), which is isomorphic to L(kP ) by Lemma 2.2. Then φ̄ ⊗ φ splits as a
direct sum of irreducible characters of L(kP ),

φ̄ ⊗ φ ∼=

(dimW)2⊕
i=1

θi .

As before we can write, for each i and Z ∈ L(kP ),

θi(Z) = exp
(

2πi Tr(B(Yi, Z))
p

)
for uniquely determined Yi ∈ L(kP ). Let U = 〈Y1, . . . , Y(dimW)2〉 be the Fp-vector sub-
space of L(kP ) spanned by the Yi . In fact, via composition in Hom(W,W) any element
of this space is one of the Yi as the θi form an abelian group. Let U⊥ be the orthogonal
subspace to U with respect to Tr(B(·, ·)). For v ∈ U⊥ we have θi(v) = 1 for all i and
therefore φ̄ ⊗ φ(ṽ) = IdHom(W,W), where ṽ denotes a lift of v in H(Pk). The group Gv
generated by ṽ and all of H(Pr−k) does not depend on the lift and is an abelian group
by Lemma 2.2. Therefore ResH(P

k)
Gv

φ splits as a direct sum of irreducible characters.
As φ̄ ⊗ φ(ṽ) is trivial, all of these characters must be the same and therefore φ(ṽ) is a
scalar multiple of the identity on W . For any z̃ ∈ H(Pk) reducing modulo H(Pr−k) to
z ∈ L(kP ), for the image of the group commutator we have

1 = φ([ṽ, z̃]Grp) = φ([v, z]Lie),

where [v, z]Lie is viewed as an element of H(Pr−1) by Lemma 2.2. Moreover

φ([ṽ, z̃]) = χ0([v, z]) = exp
(

2πi Tr(B(XP , [v, z]))

p

)
in the notation from our previous discussion, so in particular

Tr(B(XP , [v, z])) = 0

for all z ∈ L(kP ), or what is the same by ad-invariance of the Killing form,

Tr(B([v,XP ], z)) = 0. (2.17)

By nondegeneracy it follows that [v,XP ] = 0, i.e. v is in the centralizer CL(kP )(XP ). As
in [KeSi], we have9

dimkP CL(kP )(XP ) ≤ dimkP L(kP )− 2(n− 1) (2.18)

9 This inequality is the key to the inductive step of the proof of Lemma 2.3, so it is fitting that it
is also the ingredient here.
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and as we have shown U⊥ ⊆ CL(kP )(XP ) it follows that

dimFp U
⊥
≤ dimFp CL(kP )(XP ) = f dimkP CL(kP )(XP )

≤ f (dimkP L(kP )− 2(n− 1))
= dimFp L(kP )− 2f (n− 1)

where f is the inertia degree. Then immediately dimFp U ≥ 2f (n− 1) so that

dimW ≥
√

# of Yi =
√
|Fp|dimFp U ≥

√
|Fp|2f (n−1) = |kP |

n−1. (2.19)

Finally W is a subspace of Vχ and as we remarked before we have the bound

dim ρ ≥ dimVχ ·|Orbit(H(O/Pr ),co-Ad)(χ)| ≥ dimW ·|Orbit(H(O/Pr ),co-Ad)(χ)|. (2.20)

Inserting the bound from Lemma 2.3 on the size of the orbit together with the bound in
(2.19) gives us the desired result

dim ρ � |kP |
n−1
|kP |

(r−1)(n−1)
= |kP |

r(n−1). ut

We remark that the idea of this proof should hold in the more general setting of Lemma
2.2, provided centralizer bounds analogous to (2.18) can be obtained.

2.5. General result

Now we have all that is required for the main result of this section.

Lemma 2.5. If I =
∏l
i=1 P

ri
i is the prime factorization of an ideal I in OF , then for

the size of the group 31/31(I) we have

|31/31(I)| ≈
l∏
i=1

|kPi |
ri (n+1)(n+2)/2

= |OF /I|(n+1)(n+2)/2. (2.21)

Any representation ρ of 31/31(I) of level I has dimension

dim ρ �

l∏
i=1

|kPi |
ri (n−1)

= |OF /I|n−1. (2.22)

Proof. For the size of the group it is sufficient to give the size of each of the31/31(Prii )
by (2.7). This is obtained from the bound at prime level in Lemma 2.1 together with
Lemma 2.2 which gives the size of the factor H(Pji )/H(P

j+1
i ) as |kPi |

(n+2)(n+1)/2
=

|L(kPi )|. The bound on the dimension of ρ follows from the discussion leading up to
(2.8) together with the bounds obtained at prime level in Lemma 2.1, at even power of
prime level in Lemma 2.3 and at odd power of prime level in Lemma 2.4. ut
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3. Eigenfunction estimates

3.1. The geometry near infinity

Recall that we are considering geometrically finite, torsion free and orientation preserving
subgroups3,3(I) of Isom+(Hn+1) (here we replace3 with the31 of the previous sec-
tion if necessary). The geometry of the quotientsX(I) = Hn+1/3(I) is well understood,
although less is usually said about the nature of the covering maps πI : X(I)→ X. We
aim in this section to describe the geometry of the covering maps near infinity. A good
description of the geometry at a fixed level can be found in the paper of Mazzeo and
Phillips [MP]. We follow the notation of Guillarmou [Gu], who considers slightly less
general spaces (with finite holonomy in the cusps) but provides very useful analytic lem-
mas which can be extended to our case without difficulty.

The space Hn+1 has a natural compactification by adding a sphere at infinity Sn∞.
The action of 3 on Hn+1 extends to the sphere. If o is a point in Hn+1 then the orbit
3o accumulates on a subset of the boundary denoted L(3), the limit set of 3 (that this
set is independent of o is a general property of nonpositive curvature). The complement
Sn∞ − L(3) is called the domain of discontinuity. It follows that 3 acts discretely and
properly discontinuously on the domain of discontinuity. As 3 is geometrically finite, it
has a Dirichlet fundamental domain F in Hn+1 which is finitely faced by totally geodesic
hypersurfaces. If 3 is infinite index in 0 then this fundamental domain necessarily ex-
tends to the boundary, and the bounding hypersurfaces meet the boundary in subsets of
n− 1-dimensional spheres. Similar statements hold for3(I), in particular a fundamental
domain FI for 3(I) is paved by images of F under coset representatives of 3/3(I).

The elements of 0 can be classified by their fixed points on the boundary. Either γ
fixes two points on the boundary and the geodesic between these two points, in which
case it is called hyperbolic, or γ has one fixed point and acts by Euclidean motions on
horospheres tangent to this point. In the latter case γ is called parabolic.

Away from parabolic fixed points, the region where F meets the boundary can be
covered by finitely many charts isometric to regions

Mr = {(x, y) ∈ (0,∞)× Rn : x2
+ |y|2 < 1}, (3.1)

gr = x
−2(dx2

+ dy2),

which we call regular neighbourhoods. These can be chosen sufficiently small so that they
project isometrically to the quotient X. The pulled-back charts cover a corresponding re-
gion in X(I). The remaining neighbourhoods are near parabolic fixed points. Suppose
that ∞ in the upper half-space model is the fixed point of a parabolic element, by con-
jugating if necessary. Let 3∞ consist of all elements of 3 with this fixed point. This
group is purely parabolic by discreteness and can be thought of as acting as Euclidean
isometries on any horosphere, which is isomorphic to Rn. Some of the facts which follow
come from the theory of Bieberbach groups for which the reader can consult the notes of
Thurston [T].

Following [MP], the group 3∞ contains a maximal normal free abelian subgroup
3a of finite index. We define the rank k of the cusp at ∞ to be the rank of 3a . There
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exists a maximal affine subspace Rk ⊂ Rn fixed by 3∞. The subgroup 3a acts on
this space by translations, and the quotient Fk ≡ Rn/3∞ is the total space of a flat
vector bundle of rank n − k over a compact flat base manifold Bk . This Bk can real-
ized concretely as Rk/0∞. It is covered by a flat k-torus T k = Rk/3a by the usual
Galois correspondence, the covering map coming from the map of flat vector bundles
F̃k ≡ Rn/3a → Rn/3∞ restricted to the zero section. We use y for a local coordinate
in the fibre coming from Rn−k , and z for a coordinate on Bk coming from the covering
Rk → Rk/3∞. To cover the regions at infinity in X which come from parabolic fixed
points we can use charts isometric to rank k cuspidal neighbourhoods

Mk = {(x, [y, z]) ∈ (0,∞)× Fk : x2
+ |y|2 > 1}, (3.2)

gk = x
−2(dx2

+ dy2
+ dz2),

where we are writing [y, z] for local trivializing coordinates. The quadratic differential
dz2 refers to a flat metric on Bk . Note also that |y|2 is a well defined function, as changing
trivialization effects an orthogonal transformation on y and similarly dy2 is defined in-
dependently of trivialization. In general there are finitely many cusps of each rank but to
simplify the discussion we assume that there is only one neighbourhood of each cuspidal
type Mk . We drop the isometries which identify the sets in X with the model neigh-
bourhoods and think of the Mr , Mk as sets in X. It can be arranged that all the cuspidal
neighbourhoods are disjoint.

We consider now the covering maps πI : XI → X. If q is a parabolic fixed point
of 3 with stabilizer 3q then 3q ∩ 0(I) also fixes this point and is the stabilizer in
3(I), i.e. 3(I)q = 3q ∩ 0(I). In addition, 3a ∩ 0(I) is the maximal normal free
abelian subgroup 3(I)a in 3(I)q . There is then a map of flat rank n− k vector bundles
Fk,I ≡ Rn/3(I)q → Fk which when restricted to the zero section gives a covering map
of flat compact manifolds Bk,I ≡ Rk/3(I)q → Bk . If one considers the images of F
under coset representatives of 3/3(I) one sees that π−1

I (Mk) is isometric to a disjoint
union of isometric cuspidal neighbourhoods,

π−1
I (Mk) ∼=

mk,I∐
i=1

Mk,I , (3.3)

where

Mk,I = {(x, [y, z]) ∈ (0,∞)× Fk,I : x2
+ |y|2 > 1}, (3.4)

gk = x
−2(dx2

+ dy2
+ dz2),

and as before, y and z refer to trivializing coordinates for the flat vector bundle. If lk,I
is the degree of the covering of base manifolds Bk,I → Bk then we have mk,I lk,I =
|3/3(I)|, the degree of the covering map πI . As we will work with the covering tori
T kI ≡ Rk/3(I)a → Tk , it is salient to note that the obvious diagram of covering maps
involving the tori T kI , T k and base manifolds Bk,I , BI is commutative. The covering map
at Mk can be given explicitly with respect to these neighbourhoods, indeed it is directly
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induced by the map Fk,I → Fk so that the x coordinate is preserved. As for the regular
neighbourhoods, it can be arranged that the preimage π−1

I (Mr) of each individual Mr is
isometric to |3/3(I)| disjoint copies ofMr . Then the covering map in each disjoint copy
is given by the identity with respect to these charts.

Now we seek compactification coordinates for these charts. The transformation de-
fined locally and which only affects the coordinate in R+ and in the fibre

(x, [y, z]) 7→ (t, [u, z]) =

(
x

x2 + |y|2
,

[
−y

x2 + |y|2
, z

])
(3.5)

actually (by flatness) gives a diffeomorphism from (Mk, gk) to

{(t, [u, z]) ∈ (0,∞)× Fk : t2 + |u|2 < 1}.

The pushed-forward metric is

t−2(dt2 + du2
+ (t2 + |u|2)2dz2). (3.6)

These coordinates allow the charts Mk to be smoothly compactified by adding a {t = 0}
portion to form M̄k . The charts Mr also naturally compactify by adding a {x = 0} part
and all these boundary pieces join together to give a smooth boundary δX̄ toX. The com-
pactification of X is denoted X̄; it has the structure of a smooth compact manifold with
boundary δX̄. A similar procedure takes place to smoothly compactifyX(I) to X̄(I). For
each Mk there is a cusp submanifold isomorphic to Bk of δX̄ corresponding to the zero
section of Fk at t = 0. The cusp submanifold of δX̄ coming from Mk is denoted bk and
we define

B ≡ δX̄ −

n∐
k=1

bk. (3.7)

Following the same procedure at level I we get a regular boundary part B(I) which
naturally covers B. A collar neighbourhood of the boundary could now be expected by
Milnor’s Collar Neighbourhood Lemma [Mi]; the following proposition gives us some
fine control over the geometry in such a neighbourhood.

Proposition 3.1. In some collar neighbourhood (0, ε)ρ×δX̄ of δX̄ the hyperbolic metric
is given by

g =
dρ2
+ h(ρ)

ρ2 (3.8)

for some smooth family of symmetric tensors h(ρ) on δX̄, depending smoothly on ρ,
positive for ρ > 0 with h(0) = h0 positive on B and satisfying

h(ρ) = du2
+ (ρ2

+ |u|2)2dz2

in each M̄k . Moreover ρ = t in M̄k .
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This appears as a discussion in [Gu]. It extends to include maximal rank cusps by inter-
preting the u variable as absent. Also, Guillarmou is only considering the case of rational
cusps, but the proof goes through in our slightly more general case as it only relies on a
PDE being noncharacteristic away from the cusps.

The boundary defining function ρ lifts from X to X(I). By our previous remarks
on the nature of the covering maps in local charts, by making ε small enough so that
ρ−1((0, ε)) does not escape any of the local charts we can use the same ε for all I. The
metric provided also lifts to the collar neighbourhood (0, ε)π∗Iρ × δX̄(I). By examining
the covering map in the cuspidal regions we get an exact form for the metric at each
level I.

3.2. Bounds below in the cusps

Here we examine the cuspidal regions near infinity. There the metric is exact and we
can get an exact result. In the local [u, z] coordinates corresponding to the bound-
ary part in M̄k , define the product regions Nk(R) = (0, 1/R) × {|u|2 < 3/4}, and
Nk,I(R) = π

−1
I (Nk(R)). In the maximal rank cusp, Nn(R) = (0, 1/R) × Bn. Note that

by choosing R0 large enough, we can assume that for all R > R0, Nk(R) ⊂ M̄k (hence
the corresponding result at level I), and we make this increase for R0 immediately if
necessary, and consider R > R0.

We separate into two cases depending on whether the holonomy representation

h : π1(T
k)→ O(n− k) (3.9)

has finite image. If it does then we can pass to a finite locally isometric covering
f : (T k, f ∗dz2) → (Bk, dz

2) such that f ∗Fk is trivial. The torus T k is the quotient
Rk/ ker(h). Moreover the holonomy representation of T kI is the restriction to a smaller
group so remains finite at all levels. The reader can also note that the finite holonomy
property is always satisfied for n = 2. We cover finite holonomy in the following lemma.

Lemma 3.2. If the holonomy representation of T k has finite image then

1X(I)|C∞0 (Nk,I (R))≥ n
2/4. (3.10)

Proof. First we make a lifting argument to simplify the case. Let φ ∈ C∞0 (Nk,I(R)). We
lift φ to a region covering Nk,I(R),

Nk,I(R) ≡ {(t, u, z) ∈ (0, 1/R)× Rn−k × T kI : |u|
2 < 3/4}

equipped with the pulled-back metric via 1× f . Then note

〈1Nk,I (R)
(1× f )∗φ, (1× f )∗φ〉Nk,I (R) = |h(π1(T

k
I ))| × 〈1Nk,I (R)φ, φ〉Nk,I (R),

‖(1× f )∗φ‖2
Nk,I (R)

= |h(π1(T
k
I ))| × ‖φ‖

2
Nk,I (R)

,

and (1×f )∗φ ∈ C∞0 (Nk,I(R)) so it is sufficient to prove the result when the cross section
is a trivial bundle over a torus. Then assume that Fk,I ∼= Rn−k × T kI , so that

Nk,I(R) = {(t, u, z) ∈ (0, 1/R)× Rn−k × T kI : |u|
2 < 3/4}.
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Now we introduce the change of coordinates t = e−τ , and then conjugate the Lapla-
cian by the function |g|1/4 = enτ/2(e−2τ

+ |u|2)k/2. Clearly φ 7→ |g|1/4φ preserves
C∞0 (Nk,I(R)). The conjugated Laplacian acts on the L2 space defined by the volume
element dτ ∧ du ∧ dz. For L = |g|1/41|g|−1/4 in coordinates (τ, u, z) one has

L = −∂2
τ + e

−2τ1Euclidean
u +

e−2τ

(e−2τ + |u|2)2
1FlatToroidal
z +

n2

4
. (3.11)

The main part of this calculation appears in [Gu, (5.2)]. This completes the proof as
the first three terms can be easily verified to be nonnegative on C∞0 (Nk,I(R)) with the
product measure. ut

As remarked before, the readers can skip the next lemma if they are interested only in
the case n = 2. For the remaining cases the idea is that functions on a flat bundle with
nondiscrete holonomy are equivalent to functions on a bundle with discrete holonomy
where the previous lemma can be applied. Moreover we can find finite holonomy bundles
‘arbitrarily close’ to the original, and the action of the Laplacian is continuous in some
sense with respect to this approximation. This perturbation argument is due to Mazzeo
and Phillips as they use it in [MP, Lemma 5.12].

Lemma 3.3. In any cuspidal neighbourhood Nk,I(R),

1X(I)|C∞0 (Nk,I (R))≥ n
2/4. (3.12)

Proof. We assume now that the holonomy representation has infinite image, or we are
done by Lemma 3.2. We drop the I dependence which does not matter as we only
deal with one level at a time. By the same lifting argument as before it is sufficient
to consider the case when Bk = T k so the cross section is a flat bundle Fk over a
torus. Then conjugating the parabolic fixed point to ∞ in the upper half-space model
{(x, u, z) ∈ R+ × Rn−k × Rk} we have 3∞ = 3a = π1(T

k) a free abelian group
of rank k and preserving the Euclidean horosphere {x = 1} which we take as a cover.
The image of the holonomy representation is commutative so each element in the image
has the same invariant subspaces. For simplicity we proceed for n = 3 and k = 1, so
that π1(T

1) is infinite cyclic with generator γ . By hypothesis (and further conjugating if
necessary) γ acts on the plane {(x, u, z) ∈ R+ × R2

× R : x = 1} by

γ : (u, z) 7→

((
cos θ sin θ
− sin θ cos θ

)
u, z+ 1

)
with θ irrational. We consider the perturbing map

pη : (u, z) 7→

((
cos(ηz) sin(ηz)
− sin(ηz) cos(ηz)

)
u, z

)
where η+θ is rational and η will be chosen arbitrarily small in what follows. We compute

pηγp
−1
η (u, z) =

((
cos(θ + η) sin(θ + η)
− sin(θ + η) cos(θ + η)

)
u, z+ 1

)
.



170 Michael Magee

This implies pη descends to a bundle isomorphism Fk → F
η
k where F ηk is the total space

of a bundle over T 1 with rational holonomy. It also induces a map (also denoted pη) to a
new cuspidal region Nη

k (R) in the obvious way. Now take φ ∈ C∞0 (Nk(R)). It is not hard
to show10 that

〈1Nηk (R)
pη∗φ, pη∗φ〉L2(N

η
k (R))
= 〈p∗η1Nηk (R)

pη∗φ, φ〉L2(Nk(R))

→ 〈1Nk(R)φ, φ〉L2(Nk(R))
(3.13)

as η→ 0. We have also

〈1Nηk (R)
pη∗φ, pη∗φ〉L2(N

η
k (R))
≥ (n2/4)‖pη∗φ‖2L2(N

η
k )(R)
= (n2/4)‖φ‖2

L2(Nk(R))

by Lemma 3.2. Then choosing of ηi → 0 with θ + ηi rational in (3.13) we have

〈1Nk(R)φ, φ〉L2(Nk(R))
≥ (n2/4)‖φ‖2

L2(Nk(R))
,

which is the required bound below. The same idea works in the general case with more
‘perturbation directions’. ut

3.3. Bounds below in regular neighbourhoods

Let B0 ⊂ δX̄ be the compact manifold with boundary

B0 = δX̄ −

n−1⋃
k=1

{(u, z) ∈ δM̄k : |u|
2 < 1/4}, (3.14)

δB0 =

n−1⋃
k=1

{(u, z) ∈ δM̄k : |u|
2
= 1/4}.

By Proposition 3.1, after the change of coordinates ρ = e−τ the hyperbolic metric on
π−1
I ((0, 1/R)× B0) is of the form

g = dτ 2
+ e2τπ∗Iγ (τ).

Here γ (τ) = h(e−τ )with h as in Proposition 3.1. The Laplacian on π−1
I ((lnR,∞)τ×B0)

takes the form (as in [Gu, (5.1)])

1X(I) = −∂
2
τ − n∂τ −

1
2π
∗

I(Tr(γ−1(τ ).∂τγ ))∂τ + e
−2τ1π∗Iγ (τ)

. (3.15)

Our next lemma prepares the way by giving the Laplacian on π−1
I ((lnR,∞)τ ×B0) as a

‘polynomial’ in ∂τ and ∇π∗Iγ (0).

10 Something very similar appears in the proof of [MP, Lemma 5.12].
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Lemma 3.4. The Laplacian on π−1
I ((lnR,∞)τ × B0) can be written

1X(I) = −∂
2
τ − n∂τ + e

−2τ1π∗Iγ (0)

+ e−τ (π∗If )∂τ + e
−3τ (π∗Ia.∇π∗Iγ (0) + divπ∗Iγ (0) .π

∗

Ib.∇π∗Iγ (0)), (3.16)

where f (resp. a, resp. b) is a smooth bounded function (resp. one-form, resp. endomor-
phism of the tangent bundle) on (lnR,∞)τ × B0.

Proof. By the smoothness of the family of metrics h(ρ), we can write

γ−1(τ ) = (1+ e−τb)γ−1(0), (3.17)

|γ (τ)|1/2 = (1+ e−τ c)|γ (0)|1/2, (3.18)

|γ (τ)|−1/2
= (1+ e−τ c̃)|γ (0)|−1/2, (3.19)

with (by multiplying (3.18) and (3.19))

c + c̃ + e−τ cc̃ ≡ 0. (3.20)

The quantities b, c and c̃ are smooth bounded 2-tensors and functions respectively on
(lnR,∞)τ × B0. It follows from the compactness of B0 that any fixed finite number of
derivatives of b, c and c̃ are smooth and bounded on (lnR,∞)τ × B0. The analogous
statements hold for π∗Iγ (τ) by replacing b, c and c̃ with their lifts.

Using (3.18) and (3.19) and writing d for the exterior derivative on B0, we calculate

divγ (τ) = divγ (0)+e−τ (1+ e−τ c̃)d(c)

+ e−τ (c + c̃ + e−τ cc̃) divγ (0)
= divγ (0)+e−τω, (3.21)

where the term on the second line vanished due to (3.20) and ω is a smooth bounded
one-form on (lnR,∞)τ × B0 (we use boundedness of derivatives of c here). By (3.17),

∇γ (τ) = ∇γ (0) + e
−τb.∇γ (0). (3.22)

Now using 1γ (τ) = divγ (τ) .∇γ (τ) our previous formulae (3.21) and (3.22) give

1γ (τ) = (divγ (0)+e−τω).(∇γ (0) + e−τb.∇γ (0))

= 1γ (0) + e
−τω.(1+ e−τb).∇γ (0) + e−τ divγ (0) .b.∇γ (0)

= 1γ (0) + e
−τ (a.∇γ (0) + divγ (0) .b.∇γ (0)),

where a (resp. b) is a smooth bounded one form (resp. endomorphism of the tangent
bundle) on (lnR,∞)τ × B0. To get the analogous result at level I we can repeat the
argument and note that all the quantities which appear are the lifts of their counterparts in
the previous discussion. This yields

1π∗Iγ (τ)
= 1π∗Iγ (0)

+ e−τ (π∗Ia.∇π∗Iγ (0) + divπ∗Iγ (0) .π
∗

Ib.∇π∗Iγ (0)). (3.23)
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Similar arguments show that

−
1
2π
∗

I(Tr(γ−1(τ ).∂τγ )) = e
−τπ∗If (3.24)

where f is a smooth bounded function. Substituting (3.23) and (3.24) into (3.15) gives
the desired expression (3.16). ut

To proceed, we conjugate the Laplacian by the function

GI ≡ π
∗

I(|g|/|γ (0)|)
1/4

so as to act on the product space associated to the volume element dτ ∧ µπ∗Iγ (0). The
conjugated Laplacian

L(I;R) : C∞0 (π
−1
I ((lnR,∞)× B0))→ C∞0 (π

−1
I ((lnR,∞)× B0)),

L(I;R) ≡ GI1X(I)G
−1
I ,

takes the form
L(I;R) = L0(I;R)+ E(I;R) (3.25)

where
L0(I;R) = −∂2

τ + e
−2τ1π∗Iγ (0)

+ n2/4. (3.26)

The operator 1γ (0) refers to the Laplacian on (B0, γ (0)) with Dirichlet boundary condi-
tions. In the next lemma we compute the error term E(I;R).

Lemma 3.5. In the region π−1
I ((lnR,∞)τ × B0),

E(I;R) = e−τAI∂τ+e
−3τBI .∇π∗Iγ (0)+e

−3τ divπ∗Iγ (0) .CI .∇π∗Iγ (0)+e
−τDI (3.27)

where AI and DI are I-uniformly bounded functions, BI is an I-uniformly bounded
one-form, and CI is an I-uniformly bounded endomorphism of the tangent bundle.

Proof. Our starting point is equation (3.16). We will compute E((1);R) at full level
and compare the calculation to that of general level. Throughout this calculation we will
accumulate error terms; we will always use Ei to denote a smooth bounded function on
(lnR,∞) × B0 and �i to denote a smooth bounded one-form on (lnR,∞) × B0. We
write G = G(1) and note

G = enτ/2(1+ e−τJ ), (3.28)

G−1
= e−nτ/2(1+ e−τJ ′), (3.29)

where J, J ′ ∈ C∞((lnR,∞) × B0) have bounded derivatives. We will conjugate the
terms in equation (3.16) in turn. Firstly we calculate

G(−∂2
τ −n∂τ )G

−1
= −∂2

τ − (n+2G∂τ (G−1))∂τ −G(∂
2
τ (G

−1)+n∂τ (G
−1)). (3.30)

From (3.29) we can write

∂τ (G
−1) = −

n

2
G−1
+ e−(n/2+1)τ (∂τJ

′
− J ′), (3.31)
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and taking another derivative gives

∂2
τ (G

−1) =
n2

4
G−1
+ e−(n/2+1)τ (∂2

τ J
′
− (n+ 2)∂τJ ′ + (n+ 1)J ′

)
. (3.32)

Making use of (3.31) and (3.32) in (3.30) gives

G(−∂2
τ − n∂τ )G

−1
= −∂2

τ − 2Ge−(n/2+1)(∂τJ
′
− J ′)∂τ

+ n2/4−Ge−(n/2+1)τ (∂2
τ J
′
− 2∂τJ ′ + J ′).

This can be written as

G(−∂2
τ − n∂τ )G

−1
= −∂2

τ + n
2/4+ e−τE1∂τ + e

−τE2, (3.33)

where boundedness of E1 and E2 follows from boundedness of derivatives of J ′. Simi-
larly the ‘f ’ term in (3.16) after conjugation becomes

G(e−τf ∂τ )G
−1
= e−τE3∂τ + e

−τE4. (3.34)

Therefore the contribution to the conjugated Laplacian from terms with τ derivatives is

G
(
−∂2

τ − n∂τ −
1
2e
−τf ∂τ

)
G−1
= −∂2

τ + n
2/4+ e−τE5∂τ + e

−τE6. (3.35)

Now we calculate

G(e−2τ1γ (0))G
−1
= e−2τ1γ (0) + e

−3τ (1+ e−τJ )
(
2(∇γ (0)J ′).∇γ (0) +1γ (0)(J ′)

)
= e−2τ1γ (0) + e

−3τ�1.∇γ (0) + e
−3τE7, (3.36)

and

G(e−3τa.∇γ (0))G
−1
= e−3τa.∇γ (0) + e

−4τ (1+ e−τJ )a.(∇γ (0)J ′)

= e−3τ�2.∇γ (0) + e
−4τE8. (3.37)

The final term becomes after conjugation

G(e−3τ divγ (0) .b.∇γ (0))G−1

= e−3τ divγ (0) .b.∇γ (0) + e−4τ (1+ e−τJ )(∇γ (0)J ′).b.∇γ (0)

+ e−4τ (1+ e−τJ )(b.∇γ (0)J ′).∇γ (0) + e−4τ (1+ e−τJ ) divγ (0) .b.(∇γ (0)J ′)

= e−3τ divγ (0) .b.∇γ (0) + e−4τ�3.∇γ (0) + e
−4τE9. (3.38)

In total therefore we have

L((1), R) = G1XG−1
= −∂2

τ + n
2/4+ e−2τ1γ (0)

+ e−τA∂τ + e
−3τB.∇π∗Iγ (0)

+ e−3τ divπ∗Iγ (0) .C.∇π∗Iγ (0) + e
−τD (3.39)
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for smooth bounded A, B, C andD. The result at a general level I holds with A replaced
withAI ≡ π

∗

I(A), and similarly for B, C andD: this follows by repeating the calculation
and noting that all the inputs are lifts from level (1). The output error terms are then also
lifts and the I-uniform bounds follow. ut

The following lemma claims that the errors at each level I can be treated as perturba-
tions simultaneously, by decreasing the size of the neighbourhood at infinity if necessary.
A similar lemma appears in [P, Lemma 4.1].

Lemma 3.6. For all ε > 0, we can choose R0 = R0(ε) large enough so that for all
R > R0, and all f ∈ C∞0 (π

−1
I ((lnR,∞)τ × B0)),

|〈E(I;R)f, f 〉| < ε|〈L0(I;R)f, f 〉|. (3.40)

Proof. The proof will follow from the identity on C∞0 (π
−1
I ((lnR,∞)τ × B0))

〈L0(I;R)f, f 〉 = ‖∂τf ‖2 + ‖e−τ∇π∗Iγ (0)f ‖
2
+ (n2/4)‖f ‖2. (3.41)

From Lemma 3.5, E(I;R) can be written

E(I;R) = e−τAI∂τ + e
−3τBI .∇π∗Iγ (0) + e

−3τ divπ∗Iγ (0) .CI .∇π∗Iγ (0) + e
−τDI ,

with AI ,DI I-uniformly bounded functions, BI a vector field with I-uniform bound
and CI representing an endomorphism of the tangent bundle. The norm of CI is I-
uniformly bounded when considered as a function. Each of the terms occurring in
〈E(I;R)f, f 〉 can be controlled by (3.41), e.g.

|〈e−3τ divπ∗Iγ (0) .CI .∇π∗Iγ (0)f, f 〉| = |〈(e
−τCI).e

−τ
∇π∗Iγ (0)

f, e−τ∇π∗Iγ (0)
f 〉|

≤ ‖(e−τCI).e
−τ
∇π∗Iγ (0)

f ‖ ‖e−τ∇π∗Iγ (0)
f ‖ ≤ ‖e−τCI‖op‖e

−τ
∇π∗Iγ (0)

f ‖2

≤ ‖e−τCI‖op〈L0(I;R)f, f 〉 ≤
1
R0
‖CI‖op〈L0(I;R)f, f 〉,

and ‖CI‖op is uniformly bounded so by increasing R0 we can sufficiently control the size
of this term. The other terms in 〈E(I;R)f, f 〉 are estimated similarly. ut

Lemma 3.7. For any η > 0 we can choose R0 = R0(η) large enough so that for all
R > R0,

1X(I)|C∞0 (π−1
I ((0,1/R)×B0))

> n2/4− η (3.42)

uniformly with respect to I.

Proof. By Lemma 3.6 we can choose R0(η) so that

|〈E(I;R)f, f 〉| <
4η
n2 |〈L0(I;R)f, f 〉|.

The first two terms in (3.26) are nonnegative and so L0(I;R) ≥ n2/4. Then

〈L(I;R)f, f 〉 = 〈L0(I;R)f, f 〉 + 〈E(I;R)f, f 〉 > (1− 4η/n2)〈L0(I;R)f, f 〉
> (n2/4− η)〈f, f 〉,

which gives the result. ut



Quantitative spectral gap for thin groups of hyperbolic isometries 175

3.4. Eigenfunction estimates

Let χ : (0,∞)→ [0, 1] be a smooth cutoff function such that

χ(t) =

{
1 if t ≤ 1/2,
0 if t ≥ 1,

and such that (1 − χ2)1/2 is also smooth. Then let χk , k = 1, . . . , n be a set of cut-
off functions defined locally on δX̄ such that in the boundary coordinates corresponding
to M̄k ,

χk(u, z) = χ
( 3

2 |u|
2), k < n,

χn(z) ≡ 1,

and extended by zero to the rest of the boundary δX̄. Also define scaled versions of the
cutoff

χR(ρ) = χ(Rρ) (3.43)

which localizes to smaller regions as R → ∞. For R > R0 large enough, view χR as a
function of ρ on the collar neighbourhood of infinity (0, ε)ρ × δX̄, and extend by zero to
a function on the whole of X. For notational convenience define

χ0 ≡
(

1−
n∑
k=1

χ2
k

)1/2
, (3.44)

χR,i,∞ ≡ χRχi, i = 0, 1, . . . , n, (3.45)

χR,K ≡ (1− χ2
R)

1/2. (3.46)

Then the functions
χR,K , χR,i,∞, i = 0, . . . , n,

form an R-parameterized partition of unity for X in the sense of [CFKS, Definition 3.1].
In particular they are appropriate for application of the IMS localization formula which
first appeared explicitly in [Si]. Moreover the functions

π∗IχR,K , π
∗

IχR,i,∞, i = 0, . . . , n,

form an R-parameterized partition of unity for X(I). LetK(R) = X−ρ−1(0, 1
2R
)
. This

is a compact core for X as it is isolated from the boundary.
The bounding below in Lemmas 3.3 and 3.7 relied on the localized functions being

compactly supported. In order for this to be the case we use an approximation argument
following from the well known fact that on a complete Riemannian manifold (M, g), the
smooth compactly supported functions C∞0 (M) are a core for the Laplacian 1g . In other
words C∞0 (M) is dense in L2(M) with respect to the graph norm

‖f ‖0(1g) ≡
√
‖f ‖2

L2(M)
+ ‖1gf ‖

2
L2(M)

. (3.47)

This result can be found in the paper of Chernoff [Ch].
Now we state and prove the key lemma.
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Lemma 3.8 (Eigenfunction estimates). For any ε > 0, there exists an R = R(ε) and
a constant C = C(ε) > 0 such that if φ is a normalized eigenfunction of the Laplacian
on X(I) with eigenvalue s(n− s) ∈ [δ(n− δ), n2/4− ε] then∫

π−1
I (K(R))

|φ|2 dX(I) ≥ C > 0, (3.48)

uniformly with respect to I.

Proof. Suppose that φ is a normalized eigenfunction of 1I on X(I) with exceptional
eigenvalue s(n− s) ≤ n2/4− ε, i.e.

1Iφ = s(n− s)φ, ‖φ‖L2(X(I)) = 1.

The IMS localization formula (see [CFKS, Theorem 3.2] or [Si]) tells us how to re-
late global quantities to local quantities. Using this with the partition of unity π∗IχR,K ,
π∗IχR,i,∞ for the quantity 〈1Iφ, φ〉 = s(n− s) we have

s(n− s) = 〈1I(π
∗

IχR,K)φ, (π
∗

IχR,K)φ〉 +
n∑
i=0

〈1I(π
∗

IχR,i,∞)φ, (π
∗

IχR,i,∞)φ〉

− 〈|∇I(π
∗

IχR,K)|
2φ, φ〉 −

n∑
i=0

〈|∇I(π
∗

IχR,i,∞)|
2φ, φ〉. (3.49)

The first term is estimated

〈1I(π
∗

IχR,K)φ, (π
∗

IχR,K)φ〉 ≥ δ(n− δ)‖(π
∗

IχR,K)φ‖
2
L2(X(I)), (3.50)

by the Patterson–Sullivan description of the bottom of the spectrum. Let {ϕk}∞k=1 be a
sequence in C∞0 (X(I)) which goes to φ in the graph norm. By Lemmas 3.3 and 3.7 we
can increase R independently of k and I so that for all i,

〈1I(π
∗

IχR,i,∞)ϕk, (π
∗

IχR,i,∞)ϕk〉 ≥ (n
2/4− ε/4)‖(π∗IχR,i,∞)ϕk‖

2
L2(X(I)).

Taking the limit in k to get the corresponding statement for φ and summing over i we
have

n∑
i=0

〈1I(π
∗

IχR,i,∞)φ, (π
∗

IχR,i,∞)φ〉 ≥ (n
2/4− ε/4)‖(π∗IχR)φ‖

2
L2(X(I)). (3.51)

The remaining terms in (3.49) can be estimated by noting

∇I(π
∗

IχR,i,∞) = π
∗

I(∇(1)χR,i,∞),

so using the product rule for the gradient, and that the projection is a local isometry, we
get

|∇I(π
∗

IχR,i,∞)|
2
= π∗I

(
χ2
R|∇(1)χi |

2
+ χ2

i |∇(1)χR|
2
+ 2χRχi〈∇(1)χi,∇(1)χR〉

)
= π∗I(χ

2
R|∇(1)χi |

2
+ χ2

i |∇(1)χR|
2),
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where the last term on the first line vanished due to the form of the metric. Summing
over i, and using the estimates (3.50) and (3.51) in (3.49) we have

s(n− s) ≥ δ(n− δ)‖(π∗IχR,K)φ‖
2
L2(X(I)) + (n

2/4− ε/4)‖(π∗IχR)φ‖
2
L2(X(I))

− 〈π∗I(|∇(1)χR|
2
+ |∇(1)χR,K |

2)φ, φ〉 −
〈
π∗I

(
χ2
R

n∑
i=0

|∇(1)χi |
2
)
φ, φ

〉
.

The terms on the second line will be estimated by L∞ norms which are preserved un-
der π∗I . Now we observe that χ2

R|∇(1)χi |
2 is supported only for ρ ≤ 1/R, and there

χ2
R|∇(1)χi |

2
g ≤ |∇(1)χi |

2
g = ρ

2
|∇u,eucχi |

2
euc ≤ (1/R

2)|∇u,eucχi |
2
euc,

where ∇u,euc, | · |euc refer to the Euclidean gradient and metric for the u coordinate in the
regions M̄k . Therefore we can increase R so that∥∥∥χ2

R

n∑
i=0

|∇(1)χi |
2
∥∥∥
∞

< ε/4.

Incorporating these estimates and letting

FR = (s(n− s)− δ(n− δ))χ
2
R,K + |∇(1)χR|

2
+ |∇(1)χR,K |

2,

we have

‖F
1/2
R ‖

2
∞‖φ‖

2
|L2(π−1

I (K(R)))
≥ ‖(π∗IFR)

1/2φ‖2
L2(X(I))

≥ (n2/4− ε/2− s(n− s))‖φ‖2
L2(X(I)−π−1

I (K(R)))
.

Now we note that ‖F 1/2
R ‖∞ is uniformly bounded as R → ∞. This follows from the

inequality s(n− s) < n2/4, and for example

|∇(1)χR|
2
g = |ρ

2Rχ ′|2g = ρ
2R2
|χ ′|2 ≤ |χ ′|2,

where ′ denotes a derivative. Then we have shown

1 = ‖φ‖2
|L2(π−1

I (K(R)))
+ ‖φ‖2

L2(X(I)−π−1
I (K(R)))

≤

(
1+

‖F
1/2
R ‖

2
∞

n2/4− ε/2− s(n− s)

)
‖φ‖2

L2(π−1
I (K(R)))

≤

(
1+
‖F

1/2
R ‖

2
∞

ε/2

)
‖φ‖2

L2(π−1
I (K(R)))

≤ (1+ C0(ε))‖φ‖
2
L2(π−1

I (K(R)))
= (1+ C0(ε))

∫
π−1
I (K(R))

|φ|2 dX(I),

which establishes the result by taking C(ε) = 1/(1+ C0(ε)) > 0. ut
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4. Analytic preparations

4.1. Estimates for terms appearing in the trace formula

Let o denote the point corresponding to (0, . . . , 0, 1) in the hyperboloid model for Hn+1.
We write G = SO0(n + 1, 1), and K = SO(n + 1) the maximal compact subgroup.
T will be some generating parameter throughout the rest of the paper. For the details on
spherical functions the reader can see [H]. For the representation theory we refer to [Kn].
All further ideas in this section are due to Sarnak and Xue [SX].

The lattice point count relates to harmonic analysis by consideration of the function
χT : G→ R given by

χT (g) =

{
1 if d(o, g(o)) ≤ T ,
0 if d(o, g(o)) > T .

(4.1)

For any λ = s(n− s) ∈ (0, n2/4) we can consider the associated complementary se-
ries representation πs . This contains a normalized spherical (K-invariant) vector v. From
this data we construct the spherical function

φs(g) ≡ 〈πs(g)v, v〉. (4.2)

We let fs(g) = χT (g)φs(g), and Fs = fs ∗ fs with fs(g) = fs(g−1). Then following
[SX, Lemma 2.1] we have Fs ∈ C0(K\G/K) and

Fs(g)�

{
e2(s−n/2)T e−

n
2 d(o,g(o)) if d(o, g(o)) ≤ 2T ,

0 if d(o, g(o)) > 2T .
(4.3)

The implied constant can be taken uniformly for s ∈ I ⊂ (n/2, δ], for I a closed interval.
As Fs is K-biinvariant there is an associated spherical transform of Fs , defined for λt =
t (n− t) by

F̂s(λt ) =

∫
G

Fs(g)φt (g) dG. (4.4)

In fact, the spherical transform is a ∗-homomorphism so we have, evaluating at λ = λs ,

F̂s(λ) = |fs(λ)|
2
=

(∫
G

χT (g)|φs(g)|
2dG

)2

, (4.5)

and using the property
φs(exp tX)� e(s−n)t (4.6)

we have

F̂s(λ) =

(∫
G

χT (g)|φs(g)|
2 dG

)2

�

(∫ T

0
e2(s−n)tent dt

)2

� e4(s−n/2)T . (4.7)

Moreover, as before the implied constant can be chosen uniformly for s in compact I ⊂
(n/2, δ].
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4.2. Lattice point count

Now we estimate the quantity

N(0(I), T ) ≡ |{γ ∈ 0(I) : d(o, γ o) ≤ T }|. (4.8)

In [SX] Sarnak and Xue conjectured that

N(0(I), T )�ε

enT (1+ε)

[0 : 0(I)]
+ enT/2 (4.9)

for 0 an arithmetic lattice in SO(n+ 1, 1). They established this result for n = 1, 2 by a
direct counting argument.

For n ≥ 3 we will rely on a result of Kelmer and Silberman [KeSi]. This uses the
spectral theory at the cofinite level (for 0). The best known spectral gap when n ≥ 3 is
given by Theorem 1.3 (a result of Bergeron and Clozel [BC]). This tells us that if s > n/2
and s(n− s) is a nonzero eigenvalue for Hn+1/0(I) then s ≤ n− 1.

The consequence for the lattice point count in SO(n+ 1, 1), n ≥ 3, is

N(0(I), T )�
enT

[0 : 0(I)]
+ e(n−1)T (4.10)

uniformly in T , I. This result appears in [KeSi, Theorem 2]. Using the estimate on the
size of the factor group from Lemma 2.5, we have the following bound for the lattice
point count.

Lemma 4.1 (Lattice point count). For any ε > 0 and n ≥ 2 we have

N(0(I), T )�ε

enT (1+ε)

|OF /I|(n+2)(n+1)/2 + e
(n−1)T . (4.11)

5. Proof of Main Theorem

Let I = [a, δ] a closed interval for some a > n/2. Replace 3 with the 31 of Sec-
tion 2 if necessary. We aim to apply the pre-trace formula to the automorphic kernel on
Hn+1

×Hn+1 corresponding to Fs at level I, i.e.

KI(x1, x2) =
∑

γ∈3(I)
Fs(g

−1
x1
γgx2), (5.1)

where we write gx for any group element such that gx(o) = x. For the spectral decompo-
sition of the automorphic kernel, as in [G, Proposition 5.2], w have

KI(x, x) =
∑

λj,I<n2/4

F̂s(λj,I)|ψj (x)|
2
+ E, (5.2)

where E is some nonnegative contribution from the continuous spectrum. The λj,I are
the eigenvalues of the Laplacian on X(I) below n2/4, counted with multiplicities. The
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ψi are the corresponding (lifted) eigenfunctions. There are only finitely many such eigen-
functions by the work of Lax and Phillips [LP].

We can now apply the eigenfunction estimates (Lemma 3.8) to find a compact part
K ⊂ X such that for all si ∈ I ,∫

π−1
I (K)

|ψj (x)|
2 dX(I) ≥ C > 0 (5.3)

uniformly through si ∈ I and I. This implies∫
π−1
I (K)

KI(x, x) dX(I) ≥
∑

λj,I<n2/4

F̂s(λj,I)
∫
π−1
I (K)

|ψj (x)|
2 dX(I)

≥

∑
λj,I : sj∈I

F̂s(λj,I)
∫
π−1
I (K)

|ψj (x)|
2 dX(I)

≥ C
∑

λj,I : sj∈I

F̂s(λj,I).

In particular, for any s ∈ I , if λ = s(n− s) appears as an eigenvalue of 1X(I) then∫
π−1
I (K)

KI(x, x) dX(I)� F̂s(λ)� e4(s−n/2)Tm(λ, I), (5.4)

wherem(λ, I) is the multiplicity of the eigenvalue and the implied constant is uniform in
s ∈ I . The last inequality is a result of the estimate for the spherically transformed kernel
in (4.7).

On the other hand∫
π−1
I (K)

KI(x, x) dX(I) =
∑

γ∈3(I)

∫
π−1
I (K)

Fs(g
−1
x γgx) dX(I)

=

∑
γ∈3(I)

∑
l∈3/3(I)

∫
K
Fs(g

−1
x l−1γ lgx) dX

� |OF /I|(n+2)(n+1)/2
∑

γ∈3(I)

∫
K
Fs(g

−1
x γgx) dX

� |OF /I|(n+2)(n+1)/2
∑

γ∈0(I)

∫
K
Fs(g

−1
x γgx) dX.

The penultimate inequality uses the bound on the size of the group 3/3(I) given
in Lemma 2.5. The last inequality is a result of the rather crude observation that
3(I) ⊂ 0(I). Using the upper bound (4.3) we have∑
γ∈0(I)

∫
K
Fs(g

−1
x γgx) dX � e2(s−n/2)T

∑
γ∈0(I)

∫
x∈K: d(x,γ x)≤2T

e−
n
2 d(x,γ x) dX. (5.5)
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As K is compact, there exists R such that K ⊂ B(o,R) in Hn+1. This gives

d(o, γ o) ≤ d(o, x)+ d(x, γ x)+ d(γ x, γ o) ≤ 2R + d(x, γ x),

and
d(x, γ x) ≤ 2R + d(o, γ o).

Then ∑
γ∈0(I)

∫
x∈K: d(x,γ x)≤2T

e−
n
2 d(x,γ x) dX �

∑
γ∈0(I): d(o,γ o)≤2T+2R

e−
n
2 d(o,γ o) dX

�

∫ 2T+2R

0
e−

n
2 tN(0(I), t) dt,

by integrating by parts. By using the lattice point bound from Lemma 4.1 we estimate∫ 2T+2R

0
e−

n
2 tN(0(I), t) dt �ε

∫ 2T+2R

0

ent (1/2+ε)

|OF /I|(n+2)(n+1)/2 + e
(n/2−1)t

�ε

enT (1+2ε)

|OF /I|(n+2)(n+1)/2 + e
(n−2)T .

Gathering together we have the upper bound∫
π−1
I (K)

KI(x, x) dX(I)�ε e
2(s−n/2)T (enT (1+2ε)

+|OF /I|(n+2)(n+1)/2e(n−2)T ), (5.6)

so that we now have upper and lower bounds for the partial trace. Equations (5.6) and
(5.4) give

e2(s−n/2)Tm(λ, I)�ε e
nT (1+2ε)

+ |OF /I|(n+2)(n+1)/2e(n−2)T .

This is the keystone of the proof. Our previous work on the multiplicities and the lattice
point count will now play together to forbid certain values of s. Using Lemma 2.5 to
estimate m(λ, I) we now have, for any ε > 0,

e2(s−n/2)T
|OF /I|n−1

�ε e
nT (1+2ε)

+ |OF /I|(n+2)(n+1)/2e(n−2)T . (5.7)

Taking T ≈ ((n+ 1)(n+ 2)/4) ln |OF /I| we have, for all ε > 0,

|OF /I|(2s−n)(n+1)(n+2)/4+n−1
�ε |OF /I|(1+2ε)n(n+1)(n+2)/4 (5.8)

as |OF /I| → ∞, which can only be true if

s ≤ s0
n ≡ n−

2(n− 1)
(n+ 1)(n+ 2)

.

Recall that at the start we were free to choose an interval Is throughout which we had
uniformity. Going back and choosing I = [s0

n, δ], which makes sense as long as δ > s0
n ,

we have proved Theorem 1.6. Corollary 1.7 follows directly.
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6. Construction of thin groups with thick limit sets

Our main theorem (Theorem 1.6) gives a quantitative spectral gap for infinite covolume
subgroups of hyperbolic isometries, provided the Hausdorff dimension of the limit set
is large enough (and some other conditions are met). In other words, the ‘bass note’ of
the quotient manifold must be low. In order to find such a group, we must remain safe
from Doyle’s pretty result [D], which states that there is a universal upper bound for the
Hausdorff dimension of the limit sets of Schottky groups in Isom(H3).

The following procedure for constructing thin subgroups of hyperbolic arithmetic
lattices with arbitrarily large Hausdorff dimension is due to McMullen [McM]. He has
communicated a method which takes as input a compact n + 1-dimensional hyperbolic
manifold M which arises as an arithmetic quotient Hn+1/0 and which has an embedded
totally geodesic hypersurface S such that [S] 6= 0 in Hn(M,Z). The output is a set of
subgroups of 0 which are geometrically finite, infinite index and have Hausdorff dimen-
sions of the limit set arbitrarily close to n. This yields groups for which our main theorem
(Theorem 1.6) applies. This construction is similar in nature to Gamburd’s in the last sec-
tion of [G]. Slightly more care is required in higher dimension, for example because of
the inequivalence of geometrical finiteness and finite generation.

The required input arises in the work of Millson [Mill], whose development we re-
count now. We take as our field F = Q(√p) with p prime and consider the quadratic
form

q(x1, . . . , xn+2) = x
2
1 + x

2
2 + · · · + x

2
n+1 −

√
p x2

n+2. (6.1)

We then take 00 to be the subgroup of GLn+2(OF ) which preserves q. The quadratic
form q is conjugate to diag(1, . . . , 1,−1) by a diagonal matrix over R, via conjuga-
tion with the same element we can realize 00 as a group of isometries of the hyperbolic
plane Hn+1. We let 0 be the orientation preserving subgroup of 00. As we have remarked
in a previous section, 0 is discrete. Moreover 0 is uniform (cocompact) as follows. There
are no rational zeros of q, and 0 contains no nontrivial unipotent elements (if γ ∈ 0 is
unipotent then so is its Galois conjugate, which is an element of a definite orthogonal
group). The work of Mostow and Tamagawa [MT] then gives uniformity of 0. It is clear
that 0 is geometrically finite.

We next consider the congruence subgroups 0(P) for P prime in F . As in [Mill],
for P of large enough norm, 0(P) is torsion free and the quotient Hn+1/0(P) is a
compact manifold of constant negative curvature. Millson considers the involution ι in
0 which is the reflection in the plane x1 = 0. As 0(P) is normal in 0, it follows that ι
normalizes 0(P) and hence descends to an involution on Hn+1/0(P). For P not of norm
two and such that 0(P) is torsion free we then have a manifold M(P) = Hn+1/0(P)
with an involution ι whose fixed point set contains a constantly negatively curved, ori-
entable, codimension one submanifold S(P). Millson goes on to show that by passing to
congruence subgroups

0(P,P ′) ≡ {γ ∈ 0 : γ ≡ I modP, γ ≡ I modP ′} (6.2)

with P and P ′ of large enough norm we obtain a manifold M = Hn+1/0(P,P ′) and a
corresponding embedded totally geodesic hypersurface S such that [S] 6= 0 ∈ Hn(M,Q).
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We have π1(M) = 0(P,P ′), a geometrically finite and finite index subgroup of a uniform
arithmetic lattice.

We are now ready to apply McMullen’s construction [McM].
Let e : Hk(M,Z) × Hn+1−k(M,Z) → H0(M,Z) ∼= Z denote intersection number

and consider the homomorphism

φ : π1(M)→ Z, φ(γ ) = [S] e [γ ], (6.3)

by using the usual map π1(M) → H1(M,Z). Poincaré duality gives that φ is defined
and nonzero (see Hatcher [Ha] for details), as S is oriented and embedded, φ is moreover
onto. The kernel kerφ consists of classes with generic representatives which cross S the
same number of times in each direction relative to a fixed orientation of S.

We can cut M open along S to give a connected manifold with boundary Mcut. The
boundary δMcut consists of two connected components S1 and S2 which are both iso-
metric to S. Recall that S was obtained as a quotient of a totally geodesic hyperplane
5 ⊂ Hn+1. In this case it is known that π1(M) = π1(Mcut)∗π1(S), the HNN extension
of π1(Mcut) with respect to the maps ij∗ : π1(Sj ) → π1(Mcut) induced from the inclu-
sions of the boundary components of Mcut. Formally the HNN extension is generated by
π1(Mcut) and an element t subject to the relations

t i1(γ )t
−1
= i2(γ ); (6.4)

concretely this element t can be chosen to be anything with φ(t) = 1. Fix such a t .
To obtain manifolds with many repeated sections we consider the collection of hyper-

planes
Ck = {γ5 : γ ∈ φ−1(0) = kerφ} ∪ {γ5 : γ ∈ φ−1(k)}. (6.5)

Distinct hyperplanes in this collection do not intersect, and there is a connected compo-
nent of Hn+1

− Ck which meets all of the hyperplanes in Ck; we write Rk for the closure
of this connected component. We let 0k = Stabπ1(M)(Rk) so that for k = 1 we have
01 = π1(Mcut) and R1 is a universal cover for Mcut, i.e. Mcut = R1/01.

The quotient Rk/0k is then the manifold with boundary which is obtained by gluing
copies M i

cut, i = 1, . . . , k, together by identifying one boundary component of M i
cut with

the opposite boundary component of M i+1
cut , leaving two boundary components unglued

(coming from the first and last copies of Mcut).
We now note some properties of 0k . As 0k is contained in the kernel of φ, it is of

infinite index in π1(M). As Rk is invariant under 0k , the limit set L(0k) of 0k must
lie between the boundary of 5 and the boundary of tk5. This implies that the quotient
CL(0k)/0k of the closed convex hull of L(0k) by 0k has finite volume (in fact it is
compact). Also noting that 0k is finitely generated implies that 0k is geometrically finite
by a result of Bowditch [Bo].

We have constructed 0k , an infinite index geometrically finite subgroup of an arith-
metic lattice in SO(n + 1, 1). It remains to show that by making k large enough we can
force the Hausdorff dimension of the limit set δ(L(0k)) to be as close to n as we like.
Equivalently by the work of Sullivan [Sul] we can show that there are arbitrarily small
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eigenvalues of the Laplacian on Xk ≡ Hn+1/0k for k large. This will follow by finding
functions uk with small Rayleigh quotient∫

Xk
‖∇uk‖

2 dXk∫
Xk
|uk|2 dXk

. (6.6)

The set Rk/0k is a closed subset of Xk , consisting of k glued copies M i
cut of Mcut. Let

f+ ∈ C
∞(Mcut) be such that f+|S1≡ 0 and f+|S2≡ 1 and which is locally constant in a

neighbourhood of the boundary. Now for k ≥ 2 we define

uk =


f+ on M1

cut,

1 on M i
cut, i = 2, . . . , k − 1,

(1− f+) on Mk
cut,

0 on Xk − Rk/0k.

(6.7)

Calculation of the Rayleigh quotient (6.6) gives∫
Xk
‖∇uk‖

2 dXk∫
Xk
|uk|2 dXk

=
2
∫
Mcut
‖∇f+‖

2 dMcut∫
Mcut

((f+)2 + (1− f+)2) dMcut + (k − 2)vol(Mcut)
, (6.8)

which tends to 0 as k → ∞ (the only term depending on k is the last summand in the
denominator). This completes the construction.
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