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Abstract. We use the concept of intrinsic metrics to give a new definition for an isoperimetric
constant of a graph. We use this novel isoperimetric constant to prove a Cheeger-type estimate for
the bottom of the spectrum which is nontrivial even if the vertex degrees are unbounded.
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1. Introduction

In 1984 Dodziuk [9] proved a lower bound on the spectrum of the Laplacian on infinite
graphs in terms of an isoperimetric constant. Dodziuk’s bound is an analogue of Cheeger’s
inequality for manifolds [6] except for the fact that Dodziuk’s estimate also contains an
upper bound for the vertex degrees in the denominator. In a later paper [12] Dodziuk and
Kendall wrote that it would be desirable to have an estimate without the rather unnatural
vertex degree bound. They overcame this problem in [12] by considering the normalized
Laplace operator, which is always a bounded operator, instead. However, the original
problem of finding a lower bound on the spectrum of unbounded graph Laplace operators
that only depends on an isoperimetric constant has remained open until today.

In this paper, we solve this problem by using the concept of intrinsic metrics. More
precisely, for a given weighted Laplacian, we use an intrinsic metric to redefine the bound-
ary measure of a set. This leads to a modified definition of the isoperimetric constant for
which we obtain a lower bound on the spectrum that depends solely on the constant. These
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estimates hold for all weighted Laplacians (including bounded and unbounded Laplace
operators). The strategy of proof is not surprising, as it does not differ much from the one
of [9, 12]. However, the main contribution of this note is to provide the right definition of
an isoperimetric constant to solve the open problem mentioned above.

To this day, there is a vital interest in estimates of isoperimetric constants and in
Cheeger-type inequalities. For example, rather classical estimates for isoperimetric con-
stants in terms of the vertex degree can be found in [2, 11, 43, 44]; for relations to random
walks, see [21, 48]. While, for regular planar tessellations, isoperimetric constants can be
computed explicitly [26, 28]; for arbitrary planar tessellations there are estimates in terms
of curvature [27, 35, 40, 47]. For Cheeger inequalities on simplicial complexes, there is
recent work found in [45]; for general weighted graphs, see [10, 37]. Moreover, Cheeger
estimates for the bottom of the essential spectrum and criteria for discreteness of spec-
trum are given in [19, 34, 49, 50]. Upper bounds for the top of the (essential) spectrum
and another criterion for the concentration of the essential spectrum in terms of the dual
Cheeger constant are given in [3]. Finally, let us mention works connecting discrete and
continuous Cheeger estimates [1, 8, 33, 41].

The paper is structured as follows. The set up is introduced in the next section. The
Cheeger inequalities are presented and proven in Section 3. Moreover, upper bounds are
discussed. A technique to incorporate nonnegative potentials into the estimate is discussed
in Section 4. Section 5 is dedicated to relating the exponential volume growth of a graph
to the isoperimetric constant via upper bounds while lower bounds on the isoperimetric
constant in terms of curvature are presented in Section 6. These lower bounds allow us to
give examples where our estimate yields better results than all estimates known before.

2. The set up

2.1. Graphs

Let X be a countably infinite set equipped with the discrete topology. A function m :
X → (0,∞) gives a Radon measure on X of full support via m(A) =

∑
x∈Am(x) for

A ⊆ X, so that (X,m) becomes a discrete measure space.
A graph over (X,m) is a symmetric function b : X×X→ [0,∞) with zero diagonal

that satisfies ∑
y∈X

b(x, y) <∞ for x ∈ X.

We can think of x and y as neighbors, i.e., being connected by an edge, if b(x, y) > 0;
we then write x ∼ y. In this case, b(x, y) is the strength of the bond interaction between
x and y. For convenience we assume that there are no isolated vertices, i.e., every vertex
has a neighbor. We call b locally finite if each vertex has only finitely many neighbors.

The measure n : X→ (0,∞) given by

n(x) =
∑
y∈X

b(x, y) for x ∈ X.

plays a distinguished role in the proof of classical Cheeger inequalities. In the case when
b : X ×X→ {0, 1}, n(x) gives the number of neighbors of a vertex x.
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2.2. Intrinsic metrics

We call a pseudometric d for a graph b on (X,m) an intrinsic metric if∑
y∈X

b(x, y)d(x, y)2 ≤ m(x) for all x ∈ X.

The concept of intrinsic metrics was first studied systematically by Sturm [46] for strongly
local regular Dirichlet forms and it was generalized to all regular Dirichlet forms by
Frank–Lenz–Wingert [17]. By [17, Lemma 4.7, Theorem 7.3] it can be seen that our
definition coincides with the one of [17]. A possible choice for d is the path pseudomet-
ric induced by the edge weights w(x, y) = ((m/n)(x) ∧ (m/n)(y))1/2 for x ∼ y (see
e.g. [30]). Moreover, the combinatorial graph metric (i.e., the path metric with weights
w(x, y) = 1 for x ∼ y) is intrinsic if m ≥ n. Intrinsic metrics for graphs were recently
discovered independently in various contexts—see e.g. [14, 15, 16, 23, 25, 30, 31, 32,
42], where certain variations of the concept also go under the name of adapted metrics.

2.3. Isoperimetric constant

In this section we use the concept of intrinsic metrics to give a refined definition of the
isoperimetric constant. It turns out that this novel isoperimetric constant is more suitable
than the classical one if n ≥ m. Let W ⊆ X. We define the boundary ∂W of W by

∂W = {(x, y) ∈ W ×X \W | b(x, y) > 0}.

For a given intrinsic metric d we set the measure of the boundary as

|∂W | =
∑

(x,y)∈∂W

b(x, y)d(x, y).

Note that |∂W | < ∞ for finite W ⊆ X by the Cauchy–Schwarz inequality and the
assumption that

∑
y b(x, y) <∞. We define the isoperimetric constant or Cheeger con-

stant α(U) = αd,m(U) for U ⊆ X as

α(U) = inf
W⊆U finite

|∂W |

m(W)
.

If U = X, we write

α = α(X).

For b : X×X→ {0, 1} and d the combinatorial graph metric the measure of the boundary
|∂W | is the number of edges leaving W . If additionally m = n, then our definition of α
coincides with the classical one from [12].
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2.4. Graph Laplacians

Denote by Cc(X) the space of real valued functions on X with compact support. Let
`2(X,m) be the space of square summable real valued functions on X with respect to the
measure m which comes equipped with the scalar product 〈u, v〉 =

∑
x∈X u(x)v(x)m(x)

and the norm ‖u‖ = ‖u‖m = 〈u, u〉1/2. Let the form Q = Qb with domain D be given
by

Q(u) =
1
2

∑
x,y∈X

b(x, y)(u(x)− u(y))2, D = Cc(X)
‖·‖Q

,

where ‖·‖Q = (Q(·)+‖·‖2)1/2. The formQ defines a regular Dirichlet form on `2(X,m)

(see [20, 36]). The corresponding positive selfadjoint operator L can be seen to act as

Lf (x) =
1

m(x)

∑
y∈X

b(x, y)(f (x)− f (y))

(cf. [36, Theorem 9]). Let L̃ be the extension of L to F̃ = {f : X → R |∑
y∈X b(x, y)|f (y)| < ∞ for all x ∈ X}. We have Cc(X) ⊆ D(L) if (and only if)

L̃Cc(X) ⊆ `2(X,m) (see [36, Theorem 6]). In particular, this is easily seen to be the
case if the graph is locally finite or if infx∈X m(x) > 0. Note that L becomes a bounded
operator if and only if Cm ≥ n for some C > 0 (cf. [24, Theorem 9.3]). In particular, if
m = n, then L is referred to as the normalized Laplacian.

We denote the bottom of the spectrum σ(L) and of the essential spectrum σess(L)

of L by
λ0(L) = inf σ(L) and λess

0 (L) = inf σess(L).

3. Cheeger inequalities

Let b be a graph over (X,m) and d be an intrinsic metric. In this section we prove the
main results of the paper.

3.1. Main results

Theorem 3.1. λ0(L) ≥ α
2/2.

Remark. (a) A similar statement can be proven for weighted Laplacians on finite graphs
for the first nonzero eigenvalue. In this case, the infimum in the definition of the isoperi-
metric constant has to be taken over all sets that have at most half of the measure of the
whole graph. The main part of the proof works similarly; for details of the adaptation to
the finite graph case, see [7, proof of Theorem 2.2].

(b) We also obtain a similar statement for the selfadjoint operator that is related to the
maximal form (cf. Section 5) which is discussed under the name of Neumann Laplacian
in [24]. Here one has to take the infimum in the definition of the isoperimetric constant
over all sets of finite measure. With this choice, all of our proofs work analogously.
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Under the additional assumption that L is bounded with operator norm 1, we recover
the classical Cheeger inequality from [19, 43] which can be seen to be stronger than the
one of [12] by the Taylor expansion. We say that d ≥ 1 (respectively, d ≤ 1) for neighbors
if d(x, y) ≥ 1 (respectively, d(x, y) ≤ 1) for all x ∼ y.

Theorem 3.2. If m ≥ n and d ≥ 1 or d ≤ 1 for neighbors, then

λ0(L) ≥ 1−
√

1− α2.

In order to estimate the essential spectrum let the isoperimetric constant at infinity be
given by

α∞ = sup
K⊆X finite

α(X \K),

which coincides with the one of [37] in the case of the combinatorial graph metric and
with the one of [19, 34] if additionally b : X × X → {0, 1} and m = n. Note that
the assumptions of the following theorem are in particular fulfilled if the graph is locally
finite or if infx∈X m(x) > 0.

Theorem 3.3. Assume Cc(X) ⊆ D(L). Then λess
0 (L) ≥ α2

∞/2.

3.2. Co-area formulae

Among the key ingredients for the proof are the following well-known area and co-area
formulae. For example, they are already found in [37] (see also [22]). We include a short
proof for the sake of convenience. Let `1(X,m)={f : X→R |

∑
x∈X |f (x)|m(x)<∞}.

Lemma 3.4. Let f ∈ `1(X,m), f ≥ 0 and �t := {x ∈ X | f (x) > t}. Then

1
2

∑
x,y∈X

b(x, y)d(x, y)|f (x)− f (y)| =

∫
∞

0
|∂�t | dt,

where the value∞ on both sides of the equation is allowed, and∑
x∈X

f (x)m(x) =

∫
∞

0
m(�t ) dt.

Proof. For x, y ∈ X, x ∼ y with f (x) 6= f (y), let Ix,y be the interval [f (x) ∧ f (y),
f (x) ∨ f (y)) and let |Ix,y | = |f (x) − f (y)| be its length. Then (x, y) ∈ ∂�t or
(y, x) ∈ ∂�t if and only if t ∈ Ix,y . Hence, by Fubini’s theorem,∫

∞

0
|∂�t | dt =

1
2

∫
∞

0

∑
x,y∈X

b(x, y)d(x, y)1Ix,y (t) dt

=
1
2

∑
x,y∈X

b(x, y)d(x, y)

∫
∞

0
1Ix,y (t) dt

=
1
2

∑
x,y∈X

b(x, y)d(x, y)|f (x)− f (y)|.



264 Frank Bauer et al.

Note that x ∈ �t if and only if 1(t,∞)(f (x)) = 1. Again, by Fubini’s theorem,∫
∞

0
m(�t ) dt =

∫
∞

0

∑
x∈X

m(x)1(t,∞)(f (x)) dt

=

∑
x∈X

m(x)

∫
∞

0
1(t,∞)(f (x)) dt =

∑
x∈X

m(x)f (x). ut

3.3. Form estimates

Lemma 3.5. For U ⊆ X and u ∈ D with support in U and ‖u‖m = 1,

Q(u) ≥ α(U)2/2.

Moreover, if m ≥ n and d ≥ 1 or d ≤ 1 for neighbors, then

Q(u)2 − 2Q(u)+ α(U)2 ≤ 0.

Proof. Let u ∈ Cc(X). We calculate, using the co-area formulae above with f = u2,

α‖u‖2m = α

∫
∞

0
m(�t ) dt ≤

∫
∞

0
|∂�t | dt =

1
2

∑
x,y∈X

b(x, y)d(x, y)|u(x)2 − u(y)2|

≤ Q(u)1/2
(

1
2

∑
x,y∈X

b(x, y)d(x, y)2(u(x)+ u(y))2
)1/2

≤ Q(u)1/2
(

2
∑
x∈X

u(x)2
∑
y∈X

b(x, y)d(x, y)2
)1/2
≤ 21/2Q(u)1/2‖u‖m,

where the final estimate follows from the intrinsic metric property. The second statement
follows if we use in the above estimates

1
2

∑
x,y∈X

b(x, y)d(x, y)2(u(x)+ u(y))2

= 2
∑
x,y∈X

b(x, y)d(x, y)2u(x)2 −
1
2

∑
x,y∈X

b(x, y)d(x, y)2(u(x)− u(y))2

≤ 2‖u‖2m −Q(u),

where we distinguish the cases d ≥ 1 and d ≤ 1: For the first case we use that d is
intrinsic and that −d(x, y)2 ≤ −1. For the second case, we estimate d(x, y) ≤ 1 in the
first line and then use n ≤ m. The statement follows by the density of Cc(X) in D. ut

3.4. Proofs of the theorems

Proof of Theorems 3.1 and 3.2. By Lemma 3.5, the statements follow from the variational
characterization of λ0 via the Rayleigh–Ritz quotient: λ0 = infu∈D, ‖u‖=1Q(u). ut
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Proof of Theorem 3.3. Let QU , U ⊆ X, be the restriction of Q to Cc(U)
‖·‖Q and LU

be the corresponding operator. Note that QU = Q on Cc(U). The assumption Cc(X) ⊆
D(L) clearly implies L̃Cc(X) ⊆ `2(X,m), which is equivalent to the fact that the func-
tions y 7→ b(x, y)/m(y) are in `2(X,m) for all x ∈ X (see [36, Proposition 3.3]). This
implies that for any finite set K ⊆ X the operator LX\K is a compact perturbation of L.
Thus, from Lemma 3.5 we conclude that

λess
0 (L) = λess

0 (LX\K) ≥ λ0(LX\K) = inf
u∈Cc(X\K), ‖u‖=1

Q(u) ≥ α(X \K)2/2.

This implies the statement of Theorem 3.3. ut

3.5. Upper bounds for the bottom of spectrum

In this section we show an upper bound for λ0(L) by α as in [9, 11, 12] for uniformly
discrete metric spaces.

Theorem 3.6. Let d be an intrinsic metric such that (X, d) is uniformly discrete with
lower bound δ > 0. Then λ0(L) ≤ α/δ.

Proof. By assumption we have d ≥ δ > 0 away from the diagonal. It follows that |∂W | ≥
δ
∑
(x,y)∈∂W b(x, y) = δQ(1W ) for all W ⊆ X finite. By the inequality δλ0(L) ≤

δQ(1W )/‖1W‖2 ≤ |∂W |/m(W), we deduce the statement. ut

The example below shows that, in general, there is no upper bound by α only.

Example 3.7. Let b0 : X × X → {0, 1} be a k-regular rooted tree for k > 1 with root
x0 ∈ X (that is, each vertex has k forward neighbors). Furthermore, let b1 : X × X →

{0, 1} be such that b1(x, y) = 1 if and only if x and y have the same distance to x0
with respect to the combinatorial graph distance in b0. Now, let b = b0 + b1, m ≡ 1
and let d be given by the path metric with weights w(x, y) = (n(x) ∨ n(y))−1/2 for
x ∼ y. Then α = αd,m = 0, which can be seen from |∂Br |/m(Br) ≤ k−(r−1)/2

→ 0 as
r → ∞, where Br is the set of vertices that have distance ≤ r to x0 with respect to the
combinatorial graph metric.

On the other hand, by [39, Theorem 2] the heat kernel pt (x0, ·) of the graph b equals
the corresponding heat kernel on the k-regular tree b0. Hence, by a Li type theorem
(see [24, Theorem 8.1] or [38, Corollary 5.6]), we get 1

t
logpt (x0, y) → −λ0(L) =

−(k + 1− 2
√
k) for any y ∈ X as t →∞ (see also [39, Corollary 6.7]). As α = 0, this

shows that α can yield no upper bound without further assumptions.

Nevertheless, the example does not exclude the possibility that there is a different in-
trinsic metric which might yield a reasonable upper bound. Hence, one might ask whether
there exist examples for which every intrinsic metric fails to give an upper bound or, oth-
erwise, if one can always find an intrinsic metric that yields an upper bound.



266 Frank Bauer et al.

4. Potentials

In this section we briefly discuss how the strategy proposed in [37] to incorporate poten-
tials into the inequalities can be applied to the new definition of the Cheeger constant.
This yields a Cheeger estimate for all regular Dirichlet forms on discrete sets (cf. [36,
Theorem 7]).

Let b be a graph over a discrete measure space (X,m). Furthermore, let c : X →
[0,∞) be a potential and define

Qb,c(u) =
1
2

∑
x,y∈X

b(x, y)(u(x)− u(y))2 +
∑
x∈X

c(x)u(x)2

on D(Qb,c) = Cc(X)
‖·‖Qb,c and let Lb,c be the corresponding operator.

Let (X′, b′, m′) be a copy of (X, b,m). Let Ẋ = X ∪ X′, let ṁ : Ẋ → (0,∞)
be such that ṁ|X = m, ṁ|X′ = m′, and let ḃ : Ẋ × Ẋ → [0,∞) be given by
ḃ|X×X = b, ḃ|X′×X′ = b′, ḃ(x, x′) = c(x) = c′(x′) for corresponding vertices x ∈ X
and x′ ∈ X′, and ḃ ≡ 0 otherwise. Then the restrictionQḃ,X of the form Qḃ on `2(Ẋ, ṁ)

to D(Qḃ,X) = Cc(X)
‖·‖Q

ḃ satisfies

D(Qb,c) = D(Qḃ,X) and Qb,c = Qḃ,X.

Let d : X×X→ [0,∞) be an intrinsic metric for b over (X,m) and assume there is
a function δ : X→ [0,∞) such that∑

y∈X

b(x, y)d(x, y)2 + c(x)δ(x)2 ≤ m(x) for all x ∈ X.

Example 4.1. (1) For a given intrinsic metric d a possible choice for the function δ is
δ(x) = ((m(x)−

∑
y∈X b(x, y)d(x, y)

2)/c(x))
1/2 if c(x) > 0, and 0 otherwise.

(2) Choose d as the path metric induced by the edge weights w(x, y) = (( m
n+c

)(x) ∧

( m
n+c

)(y))1/2 for x ∼ y and δ as in (1). If c > 0, then δ > 0.

We next define ḋ. Since we are only interested in the subgraphX of Ẋ, we do not need
to extend d to all of Ẋ but only set ḋ|X×X = d and ḋ(x, x′) = δ(x) for the corresponding
vertex x′ ∈ X′ of x. Defining α̇(X) = α̇d,m(X) by

α̇(X) = inf
W⊆X finite

|∂W |ḋ

m(W)

with |∂W |ḋ =
∑
(x,y)∈∂W ḃ(x, y)ḋ(x, y) =

∑
(x,y)∈∂W b(x, y)d(x, y)+

∑
x∈W c(x)δ(x)

implies that α̇(X) = αḋ,ṁ(X), where the right hand side is the Cheeger constant of the
subgraph X ⊆ Ẋ as in Section 2.3. Hence, we get

λ0(Lb,c) ≥ α̇(X)
2/2

by Lemma 3.5 and the arguments from the proof of Theorem 3.1.
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5. Upper bounds by volume growth

In this section we relate the isoperimetric constant to the exponential volume growth of
the graph. Let b be a graph over a discrete measure space (X,m) and let d be an intrinsic
metric. We let Br(x) = {y ∈ X | d(x, y) ≤ r} and define the exponential volume growth
µ = µd,m by

µ = lim inf
r→∞

inf
x∈X

1
r

log
m(Br(x))

m(B1(x))
.

Other than for the classical notions of isoperimetric constants and exponential volume
growth on graphs (see [5, 11, 18, 43]), it is, geometrically, not obvious that α = αd,m
and µ = µd,m can be related. However, given a Brooks-type theorem, the proof is rather
immediate. Therefore, let the maximal form domain be given by

Dmax
:=

{
u ∈ `2(X,m)

∣∣∣∣ Qmax(u) =
1
2

∑
x,y∈X

b(x, y)(u(x)− u(y))2 <∞

}
.

Theorem 5.1. IfD = Dmax, then 2α ≤ µ. In particular, this holds if one of the following
assumptions is satisfied:

(a) The graph b is locally finite and d is an intrinsic path metric such that (X, d) is
metrically complete.

(b) Every infinite path of vertices has infinite measure.

Proof. Under the assumption D = Dmax we have λ0(L) ≤ µ
2/8 by [25, Theorem 4.2].

(Note that the 8 in the denominator as opposed to the 4 found in [25] is explained in
[25, Remark 4.3].) Thus, the statement follows from Theorem 3.1. Note that, by [32,
Theorem 2] and [24, Corollary 6.3], (a) implies D = Dmax, and by [36, Theorem 6], (b)
implies D = Dmax. ut

6. Lower bounds by curvature

In this section we give a lower bound on the isoperimetric constant by a quantity that is
sometimes interpreted as a curvature [11, 29, 39]. Let b be a graph over (X,m) and let d
be an intrinsic metric.

6.1. The lower bound

We fix an orientation on a subset of edges, that is, we choose E+, E− ⊂ X × X with
E+ ∩ E− = ∅ such that (x, y) ∈ E+ if and only if (y, x) ∈ E−. We define the curvature
K : X→ R with respect to this orientation by

K(x) =
1

m(x)

( ∑
(x,y)∈E−

b(x, y)d(x, y)−
∑

(x,y)∈E+

b(x, y)d(x, y)
)
.

Let us give an example for a choice of E±.
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Example 6.1. Let b take values in {0, 1}, m be the vertex degree function n, and d be
the combinatorial graph metric. For some fixed vertex x0 ∈ X, let Sr be the sphere with
respect to d around x0 and set |x| = r for x ∈ Sr . We choose E± such that outward
(resp., inward) oriented edges are in E+ (resp., E−), i.e., (x, y) ∈ E+, (y, x) ∈ E− if
x ∈ Sr−1 and y ∈ Sr for some r and x ∼ y. ThenK(x) = (n−(x)− n+(x))/n(x), where
n±(x) = #{y ∈ S|x|±1 | y ∼ x} and #A denotes the cardinality of A.

The following theorem is an analogue to [11, Lemma 1.15] and [13, Proposition 3.3]
which was also used in [49, 50] to estimate the bottom of the essential spectrum.

Theorem 6.2. If −K ≥ k ≥ 0, then α ≥ k.

Proof. Let W be a finite set and denote by 1W the corresponding characteristic function.
Furthermore, let σ(x, y) = ±d(x, y) for (x, y) ∈ E± and zero otherwise. We calculate
directly

km(W) ≤ −
∑
x∈W

K(x)m(x) =
∑
x∈X

1W (x)
∑
y∈X

b(x, y)σ (x, y)

=
1
2

(∑
x∈X

1W (x)
∑
y∈X

b(x, y)σ (x, y)−
∑
y∈X

1W (y)
∑
x∈X

b(x, y)σ (x, y)
)

≤
1
2

∑
x,y∈X

b(x, y)d(x, y)|1W (x)− 1W (y)| = |∂W |,

where we used
∑
y b(x, y)d(x, y) < ∞ and the antisymmetry of σ in the second step.

This finishes the proof. ut

6.2. Example of antitrees

In the final subsection we give an example of an antitree for which Theorem 6.2 together
with Theorem 3.1 yields a better estimate than the estimates known before. Recently, an-
titrees received some attention as they provide examples of graphs of polynomial volume
growth (with respect to the combinatorial graph metric) that are stochastically incomplete
and have a spectral gap (see [4, 23, 25, 31, 39, 51]).

For a given graph b : X×X→ {0, 1} with root x0 ∈ X and measurem ≡ 1, let Sr be
the vertices that have combinatorial graph distance r to x0 as above. We call a graph an
antitree if every vertex in Sr is connected to all vertices in Sr+1 ∪ Sr−1 and to none in Sr .

In [25], it is shown that λ0(L) = 0 whenever limr→∞ log #Sr/log r < 2. It remains
open by this result what happens in the case of an antitree with #Sr−1 = r

2. The classical
Cheeger constant αclassical = α1,n for the normalized Laplacian with the combinatorial
graph metric which is given as the infimum over #∂W/n(W) (with W ⊆ X finite) is
zero. This can be easily checked by choosing distance balls Br =

⋃r
j=0 Sj as test setsW .

Hence, the estimate λ0(L) ≥ (1 −
√

1− α2) infx∈X n(x) with α = α1,n found in [34] is
trivial.

Likewise, the estimates presented in [39] and [50], which use an unweighted curva-
ture, also give zero as a lower bound for the bottom of the spectrum in this case.
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By Theorem 6.2 we obtain a positive estimate for the Cheeger constant α = αd,1 with
the path metric induced by the edge weights w(x, y) = (n(x) ∨ n(y))−1/2, x ∼ y for
the antitree with #Sr−1 = r

2. We pick E± as in Example 6.1 above and obtain a positive
lower bound for −K . In particular, Theorem 6.2 shows that α > 0, and thus λ0(L) > 0
by Theorem 3.1 for the antitree satisfying #Sr−1 = r
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