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Abstract. We study topological properties of stable Hamiltonian structures. In particular, we prove
the following results in dimension three: The space of stable Hamiltonian structures modulo homo-
topy is there; stable Hamiltonian structures are generically Morse–Bott (i.e. all closed orbits are
Bott nondegenerate) but not Morse; the standard contact structure on S3 is homotopic to a stable
Hamiltonian structure which cannot be embedded in R4. Moreover, we derive a structure theorem
for stable Hamiltonian structures in dimension three, study sympectic cobordisms between stable
Hamiltonian structures, and discuss implications for the foundations of symplectic field theory.
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1. Introduction

A stable Hamiltonian structure is a generalization of a contact structure as well as a taut
foliation defined by a closed 1-form. Stable Hamiltonian structures were introduced by
Hofer and Zehnder [33] as a condition on hypersurfaces for which the Weinstein conjec-
ture can be proved. Later, they attained importance as the structure on a manifold needed
for the compactness result in symplectic field theory [22, 9, 16]. Further interest in stable
Hamiltonian structures arises from the recent proof of the Weinstein conjecture in dimen-
sion three by Hutchings and Taubes [34] (see also Rechtman [44, 45]), and from their
relation to Mañé’s critical values [13] and other dynamical properties [42, 14]. Stable
Hamiltonian structures also appear in work by Eliashberg, Kim and Polterovich on con-
tact non-squeezing [23], and by Wendl and coauthors on symplectic fillings [52, 43, 38,
39].

In this paper we take first steps in studying the topology of stable Hamiltonian struc-
tures. Besides their intrinsic interest, some of these topological questions are also relevant
for the foundations of symplectic field theory.

Definition 1.1. A Hamiltonian structure (HS) on an oriented (2n−1)-dimensional man-
ifold M is a closed 2-form ω of maximal rank, i.e. such that ωn−1 vanishes nowhere.
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Associated to ω is its 1-dimensional kernel distribution (foliation) kerω := {v ∈ TM |
ivω = 0}. We orient kerω using the orientation onM together with the orientation on the
local transversal to kerω given by ωn−1. A stabilizing 1-form for ω is a 1-form λ such
that

λ ∧ ωn−1 > 0 and kerω ⊂ ker dλ. (1)

A Hamiltonian structure ω is called stabilizable if it admits a stabilizing 1-form λ, and
the pair (ω, λ) is called a stable Hamiltonian structure (SHS). A SHS (ω, λ) induces a
canonical Reeb vector field R generating kerω and normalized by λ(R) = 1. Note that if
(ω, λ) is a SHS, then (ω,−λ) is a SHS inducing the opposite orientation.

We call an oriented 1-foliation L a stable Hamiltonian foliation if it is the kernel
foliation of a SHS.

Note that there is no analogue for (stable) Hamiltonian structures of the stability re-
sults of Moser and Gray for symplectic resp. contact structures (see e.g. [41]) because
the dynamics of the kernel foliation can change drastically under small perturbations. By
“stable Hamiltonian topology” we mean the study of stable Hamiltonian structures up to
homotopy in the following sense.

Definition 1.2. A homotopy of Hamiltonian structures is a smooth family ωt , for t in
some interval I ⊂ R, such that the cohomology class of ωt remains constant. The ho-
motopy is called stabilizable if it admits a smooth family of stabilizing 1-forms λt , and
the pair (ωt , λt ) is called a homotopy of stable Hamiltonian structures, or simply a stable
homotopy.

Remark 1.3. Let us emphasize that for a homotopy of HS ωt we always require ω̇t to
be exact. This is the relevant notion for various reasons that will become clear in this
paper (e.g. invariance considerations in symplectic field theory, see Section 6.7). We will
exclusively use this notion of homotopy, with the exception of Sections 5.1 and 5.2 where
we will briefly consider deformations ωt with varying cohomology class (to which we
will explicitly refer as “nonexact deformations”).

Let us now describe the main results of this paper.

Discreteness. For a de Rham cohomology class η∈H 2(M;R), we denote by SHSη(M)
and HSη(M) the spaces of SHS resp. HS with [ω] = η, equipped with the Ck-topology
for some 2 ≤ k ≤ ∞.

Theorem 1.4 (cf. Theorem 4.4). Every SHS (ω, λ) on a closed 3-manifold has a
C5-neighbourhood in SHS[ω](M) in which all SHS are stably homotopic to (ω, λ).

This means that, for any closed 3-manifold M and cohomology class η ∈ H 2(M;R), the
space SHSη(M)/∼ is discrete in the topological sense, which justifies the term “stable
Hamiltonian topology” in the title. In particular, this implies that there are at most count-
ably many homotopy classes of SHS representing η (Corollary 4.5).

Question 1.5. Does an analogue of Theorem 1.4 hold in higher dimensions?
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Stabilization. Much of this paper is concerned with the properties of the natural map

5 : SHSη → HSη, (ω, λ) 7→ ω.

It has the following properties:

(a) Each nonempty fibre 5−1(ω) is convex and hence contractible.
(b) 5 is in general not surjective. In fact, its image im5 ⊂ HSη is in general neither

closed (this is easy to see) nor open (this is much harder and proved in [14]).
(c) There exist smooth paths in im5which have no smooth lift to SHSη. More precisely,

we show

Theorem 1.6 (cf. Theorem 5.9). On every closed oriented 3-manifold there exists a
stable Hamiltonian foliation L with the following property. For any HS ω0 defining L
there exists a Baire set B̃ in the space Ẽ of (exact) deformations {ωt }t∈[0,1] of ω0 that
cannot be stabilized, no matter what stabilizing 1-form λ0 we take for ω0.

A similar result holds for lifts of convergent sequences (see Theorem 3.8). For nonexact
deformations of HS, easy obstructions to stabilizability arise from foliated cohomology
(see Section 5.2).

Contact structures. Every positive contact form λ induces a SHS (dλ, λ) and homo-
topies of contact forms induce stable homotopies, so we have a natural map

CF/∼→ SHS0/∼

from homotopy classes of positive contact forms to homotopy classes of exact SHS. Using
Eliashberg’s classification of contact structures on S3 we prove

Theorem 1.7 (cf. Theorem 3.48). On S3 the map CF/∼→ SHS0/∼ is not bijective.

Considerations from symplectic field theory (see Section 6.7) lead us to the following

Conjecture 1.8. The map in Theorem 1.7 is injective but not surjective.

Structure theorem in dimension 3. In dimension 3 we have the following structure
theorem.

Theorem 1.9 (cf. Corollary 4.2). Every stable Hamiltonian structure on a closed
3-manifold M is stably homotopic to a SHS (ω, λ) for which there exists a (possibly
disconnected and possibly with boundary) compact 3-dimensional submanifold N =
N+ ∪ N− ∪ N0 of M , invariant under the Reeb flow, and a (possibly empty) disjoint
union U = U1 ∪ · · · ∪ Uk of compact regions with the following properties:

• intU ∪ intN = M;
• dλ = ±ω on N± and dλ = 0 on N0;
• on each Ui ∼= [0, 1] × T 2 the SHS (ω, λ) is exact and T 2-invariant.

Moreover, we can always arrange that N+ is nonempty, and if ω is exact we can arrange
that N0 is empty.
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Roughly speaking, this says that M is a union of regions on which (ω, λ) is positive
contact (dλ = ω), negative contact (dλ = −ω), or flat (dλ = 0), glued along 2-tori
invariant under the Reeb flow.

Morse–Bott approximations. In order to define invariants such as symplectic field the-
ory or Rabinowitz Floer homology, one needs to consider SHS that are Morse (i.e. all
closed Reeb orbits are nondegenerate) or at least Morse–Bott (see Section 4.3 for the def-
inition). It is well known that any contact form can be C∞-approximated by one which is
Morse. Surprisingly, this fails for more general SHS:

Theorem 1.10 (cf. Theorems 3.7, 3.36 and 3.37). In every stable homotopy class in di-
mension 3 there exists a stable Hamiltonian structure which cannot be C2-approximated
by stable Hamiltonian structures that are Morse.

Remark 1.11. Using the techniques in the proof of Theorem 4.6, the stable Hamiltonian
structure in Theorem 1.10 can actually be chosen to be Morse–Bott.

This is bad news for the foundations of symplectic field theory: Besides the transver-
sality problems for holomorphic curves, one faces the additional difficulty of making a
SHS Morse, or at least Morse–Bott. However, this difficulty can be overcome in dimen-
sion 3:

Theorem 1.12 (cf. Theorem 4.6). Any SHS on a closed oriented 3-manifold can be con-
nected to a SHS which is Morse–Bott by a C1-small stable homotopy.

We discuss in Section 6.7 how Theorem 1.12 might be used to construct homotopy in-
variants of SHS in dimension 3. Let us emphasize, however, that we did not succeed in
actually constructing such an invariant. In particular, we explain in Section 6.7 why, in
defiance of our initial expectations, symplectic field theory does not seem to provide such
an invariant. Nevertheless, we make the following

Conjecture 1.13 (cf. Conjecture 6.35). The SHS (dαst, αst) and (dαot, αot) on S3 are
not stably homotopic, where αst is the standard contact form and αot is an overtwisted
contact form defining the same orientation.

This conjecture would imply Conjecture 1.8 (see the proof of Theorem 3.48).

h-principle. Hamiltonian structures satisfy an h-principle ([40], see Section 2.6 for the
precise statement). For stable Hamiltonian structures in dimension 3, the 0-parametric
h-principle holds (Proposition 2.18). On the other hand, Conjecture 1.13 would imply
that the 1-parametric h-principle fails for stable Hamiltonian structures in dimension 3.

Cobordisms. Symplectic field theory satisfies TQFT type axioms with respect to sym-
plectic cobordisms. In order to turn it into a homotopy invariant of SHS, we need to
construct suitable symplectic cobordisms from stable homotopies. The naive definition
of a (topologically trivial) symplectic cobordism between HS ωa and ωb on M is a sym-
plectic manifold ([a, b] × M,�) such that �|{i}×M = ωi for i = a, b. This definition
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turns out to be too restrictive (a SHS is not even cobordant to itself in this sense!). We
introduce two more general notions: strong cobordism (replacing ωi by ωi + tidλi for
sufficiently small ti), and weak cobordism (replacing ωi by more general closed 2-forms
with the same kernel)—see Section 6.1. Moreover, we define a length of a stable homo-
topy (Section 6.2) and show that every sufficiently short stable homotopy gives rise to a
strong cobordism (Proposition 6.6). We discuss in Section 6.7 how this might be used to
turn suitable TQFTs into homotopy invariants.

In Section 6.3 we construct pairs of SHS which are homotopic as HS but not weakly
cobordant, with obstructions to weak cobordisms arising from helicity and fillability. Our
failure to construct such examples which are stably homotopic motivates the following

Question 1.14. Given a stable homotopy (ωt , λt )t∈[0,1], are ω0 and ω1 weakly bicobor-
dant?

Embeddability and ambient homotopies. Given an abstract stable Hamiltonian struc-
ture (M2n−1, ω, λ), we can ask whether it admits an embedding ι : M ↪→ W into a given
symplectic manifold (W 2n, �) such that ι∗� = ω.

Theorem 1.15 (cf. Corollary 6.22). There exists a SHS (ω, λ) on S3 which is stably
homotopic to (dαst, αst) but cannot be embedded in (R4, �st).

This shows that abstract stable homotopies cannot in general be realized by homotopies
of hypersurfaces in a fixed symplectic manifold. On the other hand, under an additional
“tameness” assumption, many examples of smoothly but not tame stably homotopic hy-
persurfaces are constructed in [13]. In Section 3.10 we exhibit a large class of SHS that
are not tame (Corollary 3.40).

Integrability in dimension 3. Although we set up the theory in arbitrary dimensions,
most of our actual results concern dimension 3. The reason is that for a SHS (ω, λ) on
a 3-manifold M we have dλ = fω for a function f : M → R which is invariant
under the Reeb flow. By a version of the Arnold–Liouville theorem first observed in [1],
regions where df 6= 0 are foliated by invariant 2-tori on which the Reeb flow is linear
(Theorem 3.3). The study of SHS on these integrable regions reduces to the study of
T 2-invariant SHS on [0, 1] × T 2 (Section 3.4). On the other hand, on regions where f
is constant the SHS is either positive contact (f > 0), negative contact (f < 0), or flat
(f = 0), so it can be studied using methods from contact topology and foliations. The
remaining difficulty is thus to understand the boundaries between these regions. This is
overcome by our main technical result, Proposition 3.23, which allows us to replace λ by
a new stabilizing 1-form λ̃ such that the boundaries of the regions where the new function
f̃ = dλ̃/ω is constant are contained in integrable regions for f .

2. Background on stable Hamiltonian structures

In this section we discuss the basic properties of stable Hamiltonian structures and collect
some examples.
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2.1. Basic examples

The three basic examples of stable Hamiltonian structures are the following.

Contact manifolds: (M, λ) is a contact manifold, R is the Reeb vector field, and ω =
±dλ.

Mapping tori: M := Wφ := R × W/(t, x) ∼ (t + 1, φ(x)) is the mapping torus of a
symplectomorphism φ of a symplectic manifold (W, ω̄), R = ∂/∂t , λ = dt , and ω is
the form on M induced by ω̄. Note that dλ = 0, so ker λ defines a foliation. Note that
Wφ
∼= [0, 1] ×W/(0, x) ∼ (1, φ(x)).

Circle bundles: π : M → W is a principal circle bundle over a symplectic manifold
(W, ω̄), R is the vector field generating the circle action, λ is a connection form, and
ω = π∗ω̄. Note that if ω = dλ is the curvature of the connection λ then we are actually
in the contact case (Boothby–Wang construction).

2.2. Stable hypersurfaces

Historically, the stability condition for Hamiltonian structures first appeared as a dynami-
cal stability condition for hypersurfaces in symplectic manifolds [33]. To see this relation,
let (X,�) be a symplectic manifold and let M ⊂ X be a closed hypersurface. Note that
the restriction ω := �|M is a HS.

Lemma 2.1 ([16, Lemma 2.3]). For a closed hypersurface M in a symplectic manifold
(X,�) the following are equivalent:

(a) The hypersurface M is stable in the sense of [33], i.e. there exists a tubular neigh-
bourhood (−ε, ε) ×M of {0} ×M such that the 1-dimensional kernel foliations of
�|{t}×M on {t} × M are all conjugate via a family of diffeomorphisms depending
smoothly on t .

(b) There exists a vector field Y transverse to M such that ker(LY�|M) ⊂ ker(�|M).
(c) The Hamiltonian structure (M,�|M) is stabilizable.

Given a SHS (ω, λ) on an abstract manifoldM , we can always realizeM as a stable hyper-
surface in some symplectic manifold (X,�), i.e. there exists an embedding ι : M ↪→ X

in a symplectic manifold (X,�) such that ι?� = ω and ι(M) is a stable hypersurface
in X. For this take, for instance, the symplectization(

X := (−ε, ε)×M, � := ω + tdλ+ dt ∧ λ
)

(2)

for ε > 0 small enough. In this example a transverse vector field Y in Lemma 2.1(b) can
be taken to be just ∂t and a family {φt }t∈(−ε,ε) of diffeomorphisms

φt : {0} ×M → {t} ×M

with
φt∗ ker�|{0}×M = ker�|{t}×M
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to be the flow of ∂t ,
φt (x, τ ) := (x, τ + t).

The much more interesting question whether a given SHS can be embedded into more
specific symplectic manifolds, e.g. closed ones or the standard Cn, will be discussed in
Section 3.11.

2.3. Stability and geodesibility

The property of a Hamiltonian structure ω to be stabilizable depends only on its kernel
distribution kerω. More generally, we say that an oriented 1-dimensional foliation L is
stabilizable if there exists a vector field X generating L such that

λ(X) = 1 and iXdλ = 0. (3)

Definition 2.2. An orientable 1-dimensional foliation L is called geodesible if there
exists a vector field X generating L and a Riemannian metric g such that the (naturally
parametrized) flow lines of X are geodesics for g.

The following theorem gives a characterization of stabilizability which is sometimes
more convenient than equation (1).

Theorem 2.3 (Wadsley [50]). An orientable 1-dimensional foliation L is stabilizable if
and only if it is geodesible. Given a vector field X generating L whose flow lines are
geodesics for a metric g and such that g(X,X) ≡ 1, a stabilizing 1-form (called Wadsley
form) is obtained by

λ := iXg.

Proof. Let us give the simple proof since we will need parts of it later. Given a metric
g = 〈 , 〉 and a vector field X, we set λ := iXg and compute, for a second vector field Y ,

dλ(X, Y ) = X · λ(Y )− Y · λ(X)− λ([X, Y ]) = X · 〈X, Y 〉 − Y · |X|2 − 〈X, [X, Y ]〉

= 〈∇XX, Y 〉 + 〈X,∇XY − [X, Y ]〉 − Y · |X|
2

= 〈∇XX, Y 〉 + 〈X,∇YX〉 − Y · |X|
2
= 〈∇XX, Y 〉 −

1
2Y · |X|

2.

So we have shown the formula

iXd(iXg) = i∇XXg − d(|X|
2/2). (4)

Now let X be a vector field generating L. If its flow lines are geodesics for a metric g and
g(X,X) ≡ 1, then the right-hand side in (4) vanishes, so the 1-form λ = iXg satisfies
(3). Conversely, if λ is a 1-form satisfying (3), pick any metric g such that iXg = λ,
i.e. X has length 1 and is perpendicular to ker λ with respect to g. Then g(X,X) = 1, so
in (4) the left-hand side and the second term on the right-hand side vanish and we obtain
∇XX = 0, i.e. the flow lines of X are geodesics. ut
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Corollary 2.4. On an oriented 3-manifold, a vector field X is the Reeb vector field of a
stable Hamiltonian structure if and only if there exist a metric g and a volume form µ

such that
∇XX = 0, g(X,X) ≡ 1, LXµ = 0. (5)

Given a metric g and volume form µ satisfying (5), the stable Hamiltonian structure is
given by

λ := iXg, ω := iXµ.

Moreover, given a stable Hamiltonian structure (ω, λ)with Reeb vector fieldX, the metric
and volume form satisfying (5) can be chosen such that µ = λ ∧ ω is the volume form
induced by g.

Proof. Given a stable Hamiltonian structure (ω, λ) with Reeb vector field X, pick a
metric g such that iXg = λ, i.e. X has length 1 and is perpendicular to ker λ. Then
g(X,X) = 1 and ∇XX = 0 follows from iXdλ = 0 and (4). The volume form µ := λ∧ω

satisfies LXµ = dω = 0. If we pick g on ker λ to be ω(·, J ·) for a complex structure J
on ker λ compatible with ω, then µ is the volume form induced by g.

The converse direction is an immediate consequence of (4). ut

2.4. Relation to hydrodynamics

In dimension 3, Reeb vector fields of stable Hamiltonian structures naturally arise as
special solutions in hydrodynamics. This observation is due to Etnyre and Ghrist [26]
(in the contact case, but the stable case is similar). We refer to [3] for background on
hydrodynamics.

The velocity fieldX of an ideal incompressible fluid on a closed oriented Riemannian
3-manifold (M, g) with volume form µ (not necessarily the one induced by the metric)
satisfies the Euler equation

∂X

∂t
+∇XX = −∇p, LXµ = 0.

Here the pressure function p is uniquely determined up to a constant by the equation
LXµ = 0. Stationary (i.e. time-independent) solutions thus satisfy

∇XX = −∇p, LXµ = 0. (6)

In view of (4), this equation can be rewritten as

iXd(iXg) = −dα, LXµ = 0, (7)

where α := p + |X|2/2 is the Bernoulli function. It follows from the first equation that
α is a first integral for X and it is shown in [1] that in regions where α is nonconstant the
flow of X is completely integrable (cf. [3, 26] and the discussion in Section 3.1 below).
The other extreme (and little understood) case are the Beltrami fields: solutions of (7)
with constant α, i.e. such that

iXd(iXg) = 0, LXµ = 0 (8)
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for some metric g and volume form µ. The proof of the following corollary is analogous
to that of Corollary 2.4.

Corollary 2.5. On an oriented 3-manifold, a vector fieldX is a Beltrami field if and only
if it generates the kernel foliation of a stable Hamiltonian structure. Given a metric g and
a volume form µ satisfying (8), the stable Hamiltonian structure is given by

λ := iXg, ω := iXµ.

Moreover, given a stable Hamiltonian structure (ω, λ) whose kernel foliation is generated
byX, the metric and volume form satisfying (8) can be so chosen that µ = (1/λ(X))λ∧ω
is the volume form induced by g.

Remark 2.6. (a) Note that any rescaling fX of a Beltrami field by a positive function
f : M → R is again a Beltrami field (just rescale g and µ accordingly), but the same is
not true for the Reeb vector field of a stable Hamiltonian structure.

(b) Beltrami vector fields arise e.g. as solutions of the stationary Euler equation (6)
with constant pressure, i.e. ∇XX = 0 and LXµ = 0. Indeed, the rescaled vector field
X̄ := X/|X| satisfies the same equations and in addition g(X̄, X̄) ≡ 1, so it satisfies (7)
with vanishing Bernoulli function, hence X̄ as well as X are Beltrami.

(c) The curl of a Beltrami field X (with respect to g, µ) is defined by the equation

icurlXµ = d(iXg).

The first equation in (8) implies iXicurlXµ = 0, so curlX = fX for a function f :
M → R. This function f is a first integral of X and will play a crucial role in Section 3.

2.5. Obstructions to stability

Not every orientable 1-dimensional foliation is geodesible, and moreover not every kernel
foliation of a HS is. In this paper, we will only use the second one of the following two
easy obstructions.

Obstruction 1. An oriented 1-foliation L is not geodesible if it contains a Reeb compo-
nent, i.e. an oriented embedded annulusA consisting of leaves of L such that the boundary
orientation of ∂A coincides with that given by L. Indeed, if the ambient manifold contains
a Reeb component, then for any vector field X spanning L and any 1-form λ satisfying
iXdλ = 0 we have

∫
A
dλ = 0; hence by Stokes’ theorem

∫
∂A
λ = 0 and the equation

λ(X) = 1 in (3) cannot be satisfied.

Obstruction 2. A Hamiltonian structure ω on a closed manifold is not stabilizable if ω
has a primitive α for which

α ∧ ωn−1
≡ 0. (9)

Indeed, assume that there exists λ stabilizing ω. Consider

d(α ∧ λ ∧ ωn−2) = λ ∧ ωn−1
− α ∧ dλ ∧ ωn−2.
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The first term on the right-hand side is pointwise positive by the first condition in (3), the
second term is identically zero by the second condition in (3) and (9) (all factors vanish
on the Reeb vector field), and the left-hand side is exact. Integration over the manifold
thus yields a contradiction.

Obstructions 1 and 2 are special cases of the following general characterization of
geodesibility due to Sullivan.

Theorem 2.7 (Sullivan [48]). An oriented foliation L is nongeodesible if and only if
there exists a foliation cycle which can be arbitrarily well approximated by boundaries of
singular 2-chains tangent to the foliation.

2.6. The h-principle for Hamiltonian structures

Hamiltonian structures satisfy the h-principle. For this, letM be an odd-dimensional man-
ifold. Denote by�2

nondeg(M) the space of (not necessarily closed) 2-forms onM of maxi-
mal rank, and by HSa(M) the space of closed 2-forms of maximal rank (i.e. Hamiltonian
structures) representing the cohomology class a ∈ H 2(M;R). Both spaces are equipped
with the C∞loc-topology. The following h-principle was first proved by McDuff [40] (see
also [24]). In fact, it is a consequence (via symplectization) of the h-principle for sym-
plectic forms on open manifolds.

Theorem 2.8 (McDuff [40]). The inclusion HSa(M) ↪→ �2
nondeg(M) is a homo-

topy equivalence. In particular, if M admits a 2-form of maximal rank then every
a ∈ H 2(M;R) is represented by a Hamiltonian structure, and two cohomologous Hamil-
tonian structures are homotopic iff they are homotopic through (not necessarily closed)
2-forms of maximal rank.

Corollary 2.9. Let M be an oriented 3-manifold M . Then every a ∈ H 2(M;R) is rep-
resented by a Hamiltonian structure, and two cohomologous Hamiltonian structures are
homotopic iff their kernel distributions are homotopic as oriented line fields. In partic-
ular, the Hamiltonian structures dα0, dα1 induced by contact forms α0, α1 on M are
homotopic iff the contact distributions are homotopic as oriented plane fields.

We will show in Proposition 2.18 that the existence part of this corollary also holds for
stable Hamiltonian structures. In Theorem 3.48 we will show that, assuming transversality
for holomorphic curves can be achieved, the homotopy part fails for stable Hamiltonian
structures.

2.7. Foliated cohomology

Let L be an oriented 1-dimensional foliation on a closed manifoldM . Fix any vector field
R generating L and consider the subcomplex

�kL(M) := {α ∈ �
k(M) | iRα = 0, iRdα = 0}
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of the de Rham complex (note that this does not depend on the choice of R). Its coho-
mology H k

L(M) is the foliated cohomology of the foliation L. The inclusion �kL(M) ⊂
�k(M) induces a canonical map

κ : H k
L(M)→ H k(M;R).

Note that any HS ω with kerω = L carries a cohomology class [ω] ∈ H 2
L(M), and

any stabilizing 1-form λ for L defines a cohomology class [dλ] ∈ ker(κ : H 2
L(M) →

H 2(M;R)).
Foliated cohomology will appear throughout this paper. A first illustration of its im-

portance is the following “foliated” version of Moser’s stability theorem.

Proposition 2.10. Let (ωt )t∈[0,1] be a smooth family of Hamiltonian structures with con-
stant kernel foliation kerωt = L. Suppose that the foliated cohomology H 2

L(M) is finite-
dimensional and [ωt ] = [ω0] ∈ H

2
L(M) for all t . Then there exists a smooth family

(φt )t∈[0,1] of diffeomorphisms with φ0 = 1, φ∗t L = L and φ∗t ωt = ω0 for all t .

Proof. Pick a vector field R generating L and a 1-form λ with λ(R) = 1. Since [ωt ] =
[ω0] ∈ H

2
L(M), there exist 1-forms µt with ω0 + dµt = ωt and iRµt = 0. According to

Lemma 2.11 below, the µt can be chosen to depend smoothly on t . Now the proof can be
concluded by a standard Moser argument: Since iRµ̇t = 0 and kerωt = L, there exists
a unique t-dependent vector field Xt satisfying iXtωt = −µ̇t and λ(Xt ) = 0. Its flow φt
satisfies

d

dt
φ∗t ωt = φ

∗
t (LXtωt + ω̇t ) = φ

∗
t d(iXtωt + µ̇t ) = 0

and hence φ∗t ωt = ω0, which in turn implies φ∗t L = L. ut

The following lemma was used in the preceding proof.

Lemma 2.11. Let L be an oriented 1-dimensional foliation on a closed manifoldM such
thatH k

L(M) is finite-dimensional. Then for each smooth family αt ∈ �kL(M), t ∈ R, with
[αt ] = 0 ∈ H k

L(M) there exists a smooth family βt ∈ �k−1
L (M) such that dβt = αt .

Proof. The proof uses some facts about Fréchet spaces and nuclear spaces. Here a Fréchet
space is a metrizable locally convex topological vector space. In [46] the open mapping
theorem is proved for Fréchet spaces: Any surjective continuous linear map X → Y

between Fréchet spaces is open. It follows that if T : X → Y is a continuous linear
map between Fréchet spaces whose image im T has finite codimension, then im T ⊂ Y

is closed. (To see this, pick vectors e1, . . . , ek ∈ Y spanning Y/im T ; then the continuous
linear map T̂ : X ⊕ Rk → Y , (x, x1, . . . , xk) 7→ T x + x1e1 + · · · + xkek , is surjective,
hence open, so im T = T̂ (X ⊕ 0) is closed).

Next consider the Fréchet space �k of smooth k-forms on M and its closed (hence
Fréchet) subspaces F ⊂ �kL ⊂ �k , where F denotes the closed forms in �kL and we
have omitted M from the notation. By hypothesis the image E of the continuous linear
map d : �k−1

→ F has finite codimension, so by the preceding discussion E is closed
and hence Fréchet.
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Now the proof is concluded by an argument of Banyaga [6]: The space C∞(R) of
smooth functions R → R is a nuclear space in the sense of Grothendieck ([31], see
also [49]), so its tensor product with each Fréchet space X has a natural completion
C∞(R) ⊗̂ X ∼= C∞(R, X). Moreover, any surjective continuous linear map T : X → Y

between Fréchet spaces induces a surjective continuous linear map 1⊗̂T : C∞(R)⊗̂X→
C∞(R)⊗̂Y (see [49]). Applying this to the map d : �k−1(M)→ E above, we thus obtain
a surjective continuous linear map 1 ⊗̂ d : C∞(R, �k−1)→ C∞(R, E), which gives the
desired conclusion. ut

Example 2.12. Suppose L are the orbits of a locally free circle action, so the orbit
space B is an orbifold and we have a projection π : M → B. Then �kL(M) = π

∗�k(B)

and H k
L(M)

∼= H k(B;R). The map κ : H k
L(M) → H k(M;R) corresponds to the pull-

back π∗ : H k(B;R) → H k(M;R), which is in general neither surjective nor injec-
tive. This example also shows that Proposition 2.10 fails under the weaker hypothesis
[ωt ] = [ω0] ∈ H

2(M;R) (e.g. take the Hopf fibration S3
→ S2 and ωt the pullback of

an area form on S2 of area 1+ t).

Remark 2.13. In the preceding example H k
L(M) was finite-dimensional. We will see in

Section 3.12 that for stable Hamiltonian structures in dimension three H 2
L(M) is often

infinite-dimensional.

2.8. Helicity

LetM be a closed oriented 3-manifold. The helicity pairing of two exact 2-forms µ = dα
and ν = dβ is

Hel(µ, ν) :=
∫
M

α ∧ ν =

∫
M

β ∧ µ.

This is independent of the primitives α, β and defines a symmetric bilinear form on the
space of exact 2-forms. The associated quadratic form

Hel(µ) =
∫
M

α ∧ µ

is called the helicity of µ.
Now consider a 1-dimensional oriented foliation L. An exact 2-form ω with L ⊂

kerω carries a helicity Hel(ω). If ω = dα with α|L = 0 then α ∧ ω contracts to zero
with L and thus vanishes identically, so we have Hel(ω) = 0. Thus helicity descends to a
quadratic form on

DL := ker(κ : H 2
L(M)→ H 2(M;R)).

Note that for each stabilizing 1-form λ for L we have dλ ∈ DL and thus a helicity
Hel(dλ).

Example 2.14. If ω = dα for a positive contact form α, its helicity satisfies

Hel(ω) =
∫
M

α ∧ dα > 0.
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Example 2.15. For L corresponding to the fibres of a circle bundle π : M → B over a
closed oriented surface B as in Example 2.12 we distinguish two cases according to its
Euler number e ∈ Z. If e = 0 the pullback π∗ : H 2(B;R)→ H 2(M;R) is injective, thus
DL = 0 and the helicity vanishes identically. If e 6= 0 the pullback π∗ : H 2(B;R) →
H ∗(M;R) is the zero map, thus DL ∼= H 2(B;R) and the helicity pairing is given by

Hel : H 2(B;R)×H 2(B;R)→ R, (x, y) 7→

∫
B
x
∫
B
y

e
.

2.9. Left-invariant Hamiltonian structures on PSL(2,R)

This example is a particular case of the contact one. We consider left-invariant 1-forms
on the Lie group PSL(2,R). To be more concrete, we choose a basis

H :=

(
1 0
0 −1

)
, E+ :=

(
0 1
0 0

)
, E− :=

(
0 0
1 0

)
.

of the Lie algebra sl(2,R). The structural equations are

[H,E+] = 2E+, [H,E−] = −2E−, [E+, E−] = H.

Let (h, e+, e−) be the basis of sl(2,R)? dual to (H,E+, E−). We extend h, e+ and e− to
left-invariant 1-forms on PSL(2,R) by left multiplication and denote the 1-forms by the
same letters. The structural equations above can be rewritten in terms of the 1-forms h,
e+ and e− as follows:

dh = e− ∧ e+, de+ = 2e+ ∧ h, de− = 2h ∧ e−.

This shows that if 0 6= α ∈ sl(2,R)∗, then dα is nowhere zero and so for dimensional
reasons defines a Hamiltonian structure. For

α = ah+ a+e
+
+ a−e

−
6= 0

we compute

α ∧ dα = (ah+ a+e
+
+ a−e

−) ∧ (adh+ a+de
+
+ a−de

−)

= a2h ∧ e− ∧ e+ + a+a−2e+ ∧ h ∧ e− + a−a+2e− ∧ e+ ∧ h

= (a2
+ 4a+a−)h ∧ e− ∧ e+.

We fix an orientation of PSL(2,R) (and its compact quotients) by specifying the volume
form h∧ e− ∧ e+. It is clear from the computation above that α is a positive contact form
when a2

+ 4a+a− > 0, negative contact when a2
+ 4a+a− < 0, and defines a foliation

when a2
+ 4a+a− = 0. The cone

C := {α ∈ sl(2,R)∗ | a2
+ 4a+a− = 0}

separates the space sl(2,R)∗ into three connected components: one consisting of positive
contact forms, and the other two consisting of negative contact forms. For a contact form
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α ∈ sl(2,R)∗ its Reeb vector field (viewed as an element of sl(2,R)) is given by R =
X/(a2

+ 4a+a−) with

X = aH + 2a−E+ + 2a+E− =
(
a 2a−

2a+ −a

)
.

Note that the spectrum of X consists of two distinct real eigenvalues if α is positive con-
tact and of two conjugate imaginary eigenvalues if α is negative contact. Let 0 be a lattice
in PSL(2,R) such that the quotient 0\PSL(2,R) is smooth and compact. Then the space
of left-invariant forms on PSL(2,R) descends to a certain space V of exterior forms on
the quotient 0\PSL(2,R) and the natural identification is an isomorphism of graded com-
mutative algebras. Thus all our equalities involving left-invariant forms or left-invariant
vector fields on PSL(2,R) induce the corresponding equalities of their descendants on
0\PSL(2,R). In particular, the cone C descends to a cone in V (still denoted by C)
which separates V into three connected components as before. Moreover, Obstruction 2
in Section 2.3 yields: For any nonzero α ∈ C ⊂ V (i.e., α defines a foliation) the HS dα
is not stabilizable.

The dynamics on the quotient is well understood in view of

Theorem 2.16 ([4, Theorem 5.3]).

(a) For a negative contact form α− ∈ V the Reeb flow is periodic.
(b) For a positive contact form α+ ∈ V the Reeb flow is ergodic.

We elaborate a bit on the contact cases.

Case 1: α− ∈ V is a negative contact form. By Theorem 2.16(a), its Reeb vector field R
defines a (locally free) circle action on M := 0\PSL(2,R), so its orbit space 6 is a
closed 2-dimensional oriented orbifold. Denote by π : M → 6 the projection and by L
the foliation defined by R. According to Example 2.12, the foliated cohomology is given
byH 2

L(M)
∼= H 2(6;R) ∼= R. Since dα− is nowhere vanishing on planes transverse to L

it represents a nonzero class [dα−] ∈ H 2
L(M) and therefore generates H 2

L(M). If θ is a
closed 2-form on M with

iRθ = 0, (10)

then [θ ] = c[dα−] ∈ H 2
L(M) for a constant c ∈ R, hence there exists a 1-form ρ on M

such that
θ = cdα− + dρ, iRρ = 0. (11)

Case 2: α+ ∈ V is a positive contact form. Here the corresponding discussion is even
easier. Namely, let R be the Reeb vector field of α+ and let θ be a closed 2-form on M
satisfying (10). Then θ is proportional to dα, i.e. θ = f dα for a function f : M → R.
Now the vector field R preserves both dα and θ , so it must preserve the function f . By
ergodicity of R (Theorem 2.16(b)), the function f is then constant, i.e.

θ = cdα+ (12)

for some c ∈ R. In particular, we see that in both cases the foliated cohomology H 2
L(M)

is 1-dimensional and generated by [dα±], so κ : H 2
L(M)→ H 2(M;R) is the zero map.

We will come back to this example in Section 5 and in Section 6.3.
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2.10. Magnetic flows

A large and interesting class of SHS arises in magnetic flows. For this, consider the cotan-
gent bundle τ : T ∗Q→ Q of a closed n-manifoldQ. Given a closed 2-form σ onQ (the
“magnetic field”),

� = dp ∧ dq + tτ ∗σ

defines a symplectic form on T ∗Q. Consider on T ∗Q a classical Hamiltonian of the form

H(q, p) = 1
2 |p|

2

for a metric g = | | on Q. Solutions of the Hamiltonian system defined by � and H
describe the motion of a charged particle in the magnetic field σ . For each t > 0 the level
set Mt := H

−1(t) is canonically diffeomorphic (by rescaling in p) to the unit cotangent
bundle S∗Q, so ωt := �|Mt defines a Hamiltonian structure on S∗Q. We assume that
σ |π2(Q) = 0. Then the classical theory of Hamiltonian systems associates to this situation
a Mañé critical value c = c(g, σ ) ∈ (0,∞] (see e.g. [13]). The following facts are proved
or illustrated by examples in [13].

(1) In all known examples except one (Q = T 2),Mt is stable for t < c and nonstable for
t = c. For t > c, Mt is sometimes stable and sometimes not.

(2) In most known examples,Mt is stable except for finitely many t . However, there exist
examples in which Mt is nonstable for all t in an open interval (a,∞).

(3) There exist examples of level setsMs,Mt with s < c < t that are tame stable but not
tame stably homotopic (see Section 6.6).

Note that if τ ∗σ is nonexact then Mt cannot be of contact type, so magnetic flows pro-
vide a large class of stable Hamiltonian structures that are not contact. We conclude this
subsection with an explicit example (see [13]).

Example 2.17. Let (Q, g) be a closed hyperbolic surface and σ the area form defined by
the hyperbolic metric g. Then the Mañé critical value is c = 1/2. For t > 1/2, Mt is of
contact type with positive contact form p dq, and the Reeb flow is ergodic with periodic
orbits representing all nontrivial free homotopy classes in T ∗Q. For t < 1/2, Mt is of
negative contact type, i.e. ωt = dαt for a contact form defining the opposite orientation,
and all Reeb orbits are periodic and contractible in T ∗Q. M1/2 is nonstable and has no
periodic orbits at all (the flow on M1/2 is the famous “horocycle flow” and nonstability
follows from Obstruction 2 in Section 2.5). Note that this example can also be recovered
from Theorem 2.16 since S∗Q = 0\PSL(2,R) for a lattive 0.

2.11. An existence result

The following existence result was independently proved in [43] in dimension 3; we thank
C. Wendl for suggesting its generalization to higher dimensions.

Proposition 2.18. For any (2n−1)-dimensional closed contact manifold (M, ξ) and any
rational cohomology class η ∈ H 2(M;Q) there exists a closed 2-form ω with [ω] = η
and a contact form λ defining ξ such that (ω, λ) is a stable Hamiltonian structure. In the
case n = 2 the same holds for any real cohomology class η ∈ H 2(M;R).



First steps in stable Hamiltonian topology 337

Proof. We proceed by induction on n. Let n ≥ 2 and assume the statement has been
established for all contact manifolds of dimension 2(n−1)−1 (for n = 2 this hypothesis
is vacuous). Let (M, ξ) be a contact manifold of dimension 2n − 1 and η ∈ H 2(M;Q).
After rescaling we may assume η ∈ H 2(M;Z). By [35] we can represent the Poincaré
dual of the cohomology class η by an embedded closed contact submanifold N ⊂ M . We
apply the induction hypothesis to (N, ξ |N , η|N ). This gives us a contact form λN on N
and a closed 2-form ωN onN representing the class η|N such that (ωN , λN ) is a SHS (for
n = 2 we take any λN and ωN = 0).

Pick some Riemannian metric on N . Let π : DN → N denote the disk bundle
associated to the normal bundle of N in M and let SN := ∂DN be the corresponding
circle bundle. Note that η|N is the Euler class e(SN ) ∈ H 2(N;Z) of the circle bundle SN .
We proceed in two steps. First, we write down a normal form for a contact form λ on DN
using a connection form on SN . Then we use the same connection form to write down a
Thom form for DN and add it to dλ to obtain the desired 2-form ω.

Constructing a contact form on DN . We can always realize a closed 2-form represent-
ing the Euler class of a principal S1-bundle in terms of a connection form. Thus, there
exists a connection 1-form δ on SN such that dδ = −π∗ωN (here the connection form δ

is normalized to have integral 1 over the fibre). Let r be the radial coordinate in a fibre
of DN normalized such that ∂DN = {r = 1}. Let ḊN := DN \ N be the punctured disk
bundle. We extend the 1-form δ from SN to ḊN in an r-invariant way. Then the 1-form
r2δ on ḊN extends as zero over N to a smooth 1-form on DN .

Lemma 2.19. For ε > 0 sufficiently small the 1-form

λε := π
∗λN + εr

2δ

defines a contact form on DN . Moreover, for each compactly supported function F :
[0, 1)→ R constant near 0 there exists a constant KF > 0 such that for all K ≥ KF we
have

λε ∧
(
dλε − d[K

−1F(r)δ]
)n−1

> 0.

Proof. Let us write out

dλε = dπ
∗λN + εr

2dδ + 2εrdr ∧ δ = [π∗dλN − εr2π∗ωN ] + 2εrdr ∧ δ

and

dλε − d[K
−1F(r)δ] = [π∗dλN + (K

−1F(r)− εr2)π∗ωN ] + [2εr −K−1F ′(r)dr] ∧ δ.

It follows that

λε ∧
(
dλε − d[K

−1F(r)δ]
)n−1
= (n− 1)α1 ∧ α2,

where

α1 := π
∗λN ∧

(
π∗dλN + [K

−1F(r)− εr2
]π∗ωN

)n−2
,

α2 := [2εr −K−1F ′(r)]dr ∧ δ.
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Since (ωN , λN ) is a SHS on N and λN is contact, for small ε and large K we get

ker
(
π∗dλN + [K

−1F(r)− εr2
]π∗ωN

)
= π∗ ker dλN .

Hence the kernel of α1 is exactly the tangent space to the fibre. Since α2 restricts to the
fibre as a positive area form for K large, the lemma follows. ut

Note that in the preceding proof we have shown (for F ≡ 0)

ker(π∗dλN − εr2π∗ωN ) = π
∗ ker dλN .

The expression for dλε now shows that

π∗ ker dλN ∩ ker dr ∩ ker δ ⊂ ker dλε,

and since λε is contact we have in fact equality:

ker dλε = π∗ ker dλN ∩ ker dr ∩ ker δ.

Constructing a Thom form for the bundle DN . Let now F be any nonnegative com-
pactly supported nonincreasing function on [0, 1) with F ≡ 1 near r = 0. Then

TF := −d(F (r)δ)

is a Thom form on DN . Set
ωF := Kdλε + TF

on DN , for some constant K ≥ K(F) > 0 as in Lemma 2.19. Then Lemma 2.19 yields
λε ∧ ω

n−1
F > 0. On the other hand, we have

ker dλε = π∗ ker dλN ∩ ker dr ∩ ker δ ⊂ ker
(
−F ′(r)dr ∧ δ + F(r)π∗ωN

)
= ker TF ,

hence ker dλε ⊂ kerωF . Since λε is contact, this shows that (ωF , λε) is a SHS on DN .
Having defined the forms λε, TF and ωF on DN , we now finish the argument as

follows. By the contact neighbourhood theorem (see e.g. [28, Theorem 2.5.15]) there
exists a positive r1 < 1 and an embedding

i : {r ≤ r1} → M

such that i∗ ker λε = ξ . Thus there exists a positive r0 < r1 and a contact form λ on M
defining ξ that coincides with i∗λε on i({r ≤ r0}) ⊂ M . We choose the function F in
such a way that supp(F ) ⊂ {r < r0} and thus

supp(TF ) ⊂ {r < r0}.

The pushforward i∗TF extends as zero to the complement of i∗({r < r0}). Finally we set

ω := Kdλ+ i∗TF

on M (with K as above). The pair (ω, λ) then constitutes the desired SHS and Proposi-
tion 2.18 is proved for rational cohomology classes.
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The case n = 2. In the case n = 2 the argument can be adjusted to work for any
η ∈ H 2(M;R) as follows. Pick an integer basis C1, . . . , Ck of the free part of H 2(M;Z)
and write η =

∑k
i=1 aiCi with coefficients ai ∈ R. Represent the Poincaré duals of

C1, . . . , Ck inH1(M;Z) by disjoint embedded loopsN1, . . . , Nk that are positively trans-
verse to ξ , i.e. λ(Ṅi) > 0. Pick a contact form λ defining ξ which is standard near the Ni
and Thom forms Ti near Ni as above. Then

ω := Kdλ+

k∑
i=1

aiTi

with a suficiently large constant K yields the desired SHS (ω, λ). ut

3. Stable Hamiltonian structures in dimension three

3.1. Integrability

When the underlying manifoldM is 3-dimensional, there are a number of simplifications.
First, ω being maximally nondegenerate means simply that it is nowhere zero. Second,
the second condition in (1) simplifies to

dλ = fω, (13)

where f is a smooth function on M . Since the Reeb vector field R of the SHS (ω, λ)
preserves both ω and λ, it must also preserve the proportionality coefficient f between
dλ and ω. In other words, the function f is an integral of motion for the vector field R.

Remark 3.1. The function f already appeared in Remark 2.6(c) as the proportionality
coefficient between R and its curl. To see that this is really the same function, write
curlR = fR and compute, using the volume form µ = λ ∧ ω,

dλ = icurlRµ = f iRµ = fω.

If f is constant we have either f ≡ 0 or f ≡ c 6= 0. In the first case the closed
1-form λ defines a taut foliation, in the second case λ defines a contact structure and
ω = c−1dλ is exact. Regions where f is nonconstant are foliated by the level sets of f .
The level sets of f are 2-tori, so any connected region where df 6= 0 is simply an interval
times T 2. This motivates the following

Definition 3.2. Let L be a stable Hamiltonian foliation on M . Let I ⊂ R be an interval
(open, closed or half-open) and U ⊂ M be a region diffeomorphic to I × T 2 such that L
is a subfoliation of the foliation by T 2’s. Then U is called an integrable region for L (and
for any SHS defining L).

A Hamiltonian structure ω on I ×T 2 is called T 2-invariant if ω is invariant under the
obvious action of T 2. Similarly a SHS (ω, λ) is called T 2-invariant if both forms ω and λ
are invariant under the action of T 2. These are discussed in detail in Section 3.4. For now
we state the following consequence of the Arnold–Liouville theorem [2].
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Theorem 3.3. Let (ω, λ) be a SHS with Reeb vector field R on an integrable region
I×T 2. Then there exists an orientation preserving diffeomorphism8 of I×T 2 preserving
the tori {r} × T 2 such that 8∗ω, 8∗R and the restrictions 8∗λ|{r}×T 2 are T 2-invariant.
If in addition f = dλ/ω is constant on the tori {r} × T 2, then 8∗λ is T 2-invariant.
Moreover, for any k ≥ 1 the assignment (ω, λ) 7→ 8 is continuous with respect to the
Ck-topology on the space of stable Hamiltonian structures and the Ck−1-topology on the
group of diffeomorphisms.

Proof. We denote by E the space of SHS having I ×T 2 as an integrable region, equipped
with the Ck-topology. Consider some (ω, λ) ∈ E . We denote U := I × T 2 and view the
flow of the Reeb vector field R as a Hamiltonian system as follows. Consider the product
(−ε, ε)× U with the symplectic form

� = ω + tdλ+ dt ∧ λ. (14)

Then R is the Hamiltonian vector field with respect to � of the Hamiltonian function
given by the projection onto the first factor

H : (−ε, ε)× U → R, H(t, x) := t.

Let p denote the projection to the first factor of U := I × T 2. This gives us an integral of
motion for this Hamiltonian vector field

F : (−ε, ε)× U → R, F (t, x) := p(x).

Vanishing of the Poisson bracket {H,F } = 0 is automatic as for any integral of motion
with the Hamiltonian, so the pair (H, F ) gives us a complete system of integrals on
(−ε, ε) × U . Now we argue as in the proof of the Arnold–Liouville Theorem in [2].
Let XH and XF be the Hamiltonian vector fields on (−ε, ε) × U of H and F . Both
vector fields XH and XF preserve H and F , thus the vector fileds are tangent to the tori
{t, r} × T 2. Vanishing of {H,F } implies vanishing of the commutator [XH , XF ]. Linear
independence of dH and dF at every point implies that the vector fields XH and XF are
pointwise linearly independent. Altogether, the flows of XH and XF define an R2 action
on (−ε, ε)×I×T 2 whose orbits are the tori {(t, r)}×T 2. For each torus {(t, r)}×T 2 the
corresponding stabilizer group 0(ω,λ)(t,r) that leaves one (and then any) point of {(t, r)}×T 2

fixed is a lattice in R2. Moreover, by the implicit function theorem, these lattices vary
continuously with ((t, r), (ω, λ)), and smoothly with (t, r) for fixed (ω, λ). Let

8(XH , XF , ·) : R2
→ Diff+((−ε, ε)× U)

denote the 2-flow of the pair (XH , XF ) of vector fields. Let i : R2/Z2
→ R2/0

(ω,λ)
(t,r) be

a linear orientation preserving identification varying continuously with ((t, r), (ω, λ)).
Given τ ∈ T 2

= R2/Z2 let τ (ω,λ)(t,r) denote its image in R2/0
(ω,λ)
(t,r) under the identifica-

tion i. This gives us a free T 2-action parametrized by (ω, λ) ∈ E ,

ρ : T 2
× E → Diff+((−ε, ε)× U), (τ, (ω, λ)) 7→ 8(XH , XF , τ

(ω,λ)
(t,r) ),
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transitive on every torus. The parametrization by (ω, λ) ∈ E is continuous because the
triple (XH , XF , τ

(ω,λ)
(t,r) ) depends continuously on ((t, r), (ω, λ)) and 8 is a continuous

function of its arguments. Here the space of vector fields and the space of diffeomor-
phisms are given the Ck−1-topologies.

Fix a smooth section s (independent of (ω, λ)) of the trivial fibration (−ε, ε)×I×T 2

→ T 2. We use the action ρ and the section s to define an orientation preserving self-
diffeomorphism of (−ε, ε)× U by the formula

9(t, r, θ, φ) := ρ(θ, φ)(t, r, s(t, r)).

Note that the first two coordinates of 9(t, r, θ, φ) are (t, r). Pulling back the action ρ we
get the action9−1ρ9 which is just the standard action of T 2 on (−ε, ε)×U by shifts in θ
and φ. So given a differential-geometric object on (−ε, ε)×U invariant under the action
of ρ, its pullback under9 is invariant under the standard T 2-action (below “T 2-invariant”
always means invariance under the standard T 2-action).

By construction of ρ the vector fields XH and XF are ρ-invariant, hence 9∗XH
and 9∗XF are T 2-invariant. In other words, 9∗XH and 9∗XF are linear on the tori
{t, r} × T 2. The symplectic form � is invariant under the flows of XH and XF and thus
under ρ, hence the pullback9∗� is T 2-invariant. We view8 := 9|{0}×U as a diffeomor-
phism of U . Formula (14) shows that 9∗�|{0}×U = 8∗ω and XH |{t=0} = R. This shows
T 2-invariance of8∗ω and of8∗R. SetX := XF |{t=0} and note that8∗X is T 2-invariant.
We contract formula (14) with XF at t = 0 to get

ιX� = ιXω − λ(X)dt = −dr.

This shows that λ(X) = 0 and ιXω = −dr . We view the last two equalities as living
on U . Pulling back with 8 yields

(8∗λ)(8∗X) = 0, ι8∗X8
∗ω = dr.

On the other hand, we have 8∗λ(8∗R) = λ(R) = 1, so the restriction of 8∗λ to a torus
{r} × T 2 is the unique 1-form which takes value 0 on 8∗X and 1 on 8∗R. Since the
vector fields 8∗X and 8∗R are T 2-invariant, this shows T 2-invariance of 8∗λ|{r}×T 2 .

To analyze invariance of 8∗λ, we work in standard coordinates (r, θ, φ) on
(−ε, ε) × T 2 and rename 8∗ω, 8∗R, 8∗X and 8∗λ back to ω, R, X and λ respec-
tively. The invariance properties allow us to write ω and λ uniquely as

ω = dr ∧ (k1(r)dθ + k2(r)dφ), λ = g1(r)dθ + g2(r)dφ + g3(r, θ, φ)dr

(cf. the proof of Lemma 3.9 below). Here k1, k2, g1, g2 are functions of r only, but g3
will in general depend on (r, θ, φ)—see Remark 3.4 below. However, if we in addition
assume that f = dλ/ω is constant on the tori r × T 2, then we can deduce more. Indeed,
the relation dλ = fω writes out as

g′1 −
∂g3

∂θ
= f k1, g′2 −

∂g3

∂φ
= f k2.

Since the functions g1, g2, k1, k2, f are T 2-invariant, so are ∂g3/∂θ and ∂g3/∂φ, which
therefore vanish by periodicity of g3. So in this case g3, and thus λ, is T 2-invariant. ut
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Remark 3.4. In general, we cannot achieve in Theorem 3.3 that 8∗λ is T 2-invariant. To
see this, consider

λ = r2dθ + (1− r2)dφ

on (0, 1)× T 2 and

ω = dλ = 2rdr ∧ (dθ − dφ).

Let η := 2 sin(θ − φ)rdr . Note that

dη = 2 cos(θ − φ)(dθ − dφ)r ∧ dr = cos(θ − φ)ω.

Thus for small ε > 0 the form λε stabilizes ω and

fε = dλε/ω = 1+ ε cos(θ − φ).

This function is not constant on the tori {r} × T 2. So for any diffeomorphism 8 of
(0, 1)× T 2 preserving the tori {r} × T 2 we see that 8∗dλε/8∗ω = 8∗fε is not constant
on the tori {r} × T 2. Thus the form 8∗λε cannot be T 2-invariant (assuming that 8∗ω is
T 2-invariant).

3.2. Slope functions

In standard coordinates (r, θ, φ) on an integrable region I × T 2, the pullback 8∗R of the
Reeb vector field in Theorem 3.3 has the form

8∗R = w1(r)∂θ + w2(r)∂φ .

In particular, it is T 2-invariant, linear on each invariant torus {r} × T 2, and it preserves
the standard area form dθ ∧dφ. In this subsection we associate a “slope function” to such
a vector field.

Consider a nowhere zero vector field X on a 2-torus T preserving an area form σ . By
Cartan’s formula,

β := iXσ

is a closed 1-form on T .

Lemma 3.5. (a) There exists a closed 1-form α on T with α(X) > 0.
(b) There exist coordinates (θ, φ) on T ∼= T 2 in which X defines a linear foliation. In

particular, the flow lines of X are either all dense or all closed.
(c) Upon replacing σ by a different X-invariant area form of the same sign, the coho-

mology class [iXσ ] ∈ H 1(T ;R) gets multiplied by a positive constant.
(d) For any vector field X̃ defining the same oriented 1-foliation as X and any X̃-in-

variant area form σ̃ of the same sign as σ , the cohomology class [i
X̃
σ̃ ] ∈ H 1(T ;R)

is a positive multiple of [iXσ ] ∈ H 1(T ;R).
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Proof. (a) First note that β is transitive, i.e. any two points in T can be connected by
a path γ with β(γ̇ ) > 0. (This was remarked by Calabi [11], and it can be proved by
combining two results in [27]: By [27, Theorem 9.6], either all leaves of the foliation
kerβ are noncompact, or all leaves are compact. In the first case transitivity follows from
[27, Theorem 9.13]. In the second case the leaves are the fibres of a fibration T → S1,
and sections of this fibration provide paths with β(γ̇ ) > 0 between any two points.) By
a theorem of Calabi [11], transitivity implies the existence of a metric on T for which β
is harmonic. Then α := − ∗ β, where ∗ is the Hodge star operator of the metric, has the
desired properties.

(b) Let α be a 1-form as in (a). The vector field X̄ := α(X)−1X satisfies β(X̄) = 0
and α(X̄) = 1. Define a vector field Y on T by α(Y ) = 0 and β(Y ) = 1. Then X̄ and Y
are commuting vector fields which are linearly independent at every point, so they are
linear in suitable angular coordinates (θ, φ) on T ∼= T 2.

(c) If f σ is a differentX-invariant area form of the same sign, f is a positive function
on T invariant under X. If all flow lines of X are dense this implies that f is constant
and (c) follows. Otherwise we may choose coordinates (θ, φ) such that X points in the
direction ∂θ ; then f is a function of φ only and β is a θ -independent multiple of dφ, so
fβ is cohomologous to a positive multiple of β.

(d) Let f be any positive smooth function on T 2 and consider the vector field X̃ :=
fX. Assume that X̃ preserves an area form σ̃ of the same sign as σ . Then i

X̃
σ̃ = iXf σ̃ is

closed. In particular, f σ̃ is an X-invariant area form of the same sign as σ and the result
follows from part (c). ut

Let X and σ be as above. Note that iXσ is nowhere vanishing, so in particular it is not
exact (if iXσ = dχ for a function χ ∈ C∞(T ), the maximum of χ would give a zero
of iXσ ). We say that a and b in H 1(T ;R) are equivalent and write a ∼ b if one is the
positive multiple of the other. The quotient

PH 1(T ;R) := H 1(T ;R) \ {0}/∼

is called the projectivization. The descendant of a 6= 0 ∈ H 1(T ;R) in the projectivization
will be denoted by Pa. Since the cohomology class [iXσ ] is not zero it descends to the
projectivization to give a quantity

kX := −P [iXσ ] ∈ PH
1(T ;R)

called the slope of X. Note that by Lemma 3.5(d), the slope kX depends only on the ori-
ented foliation defined by X. The integral cohomology H 1(T ,Z) sits inside H 1(T ,R) as
an integer lattice; we call images of nonzero integral cohomology classes in the projec-
tivization rational points. By Lemma 3.5(b) we have the following dichotomy: Either kX
is rational and all the orbits of X are closed, or kX is irrational and all the orbits of X are
dense.

There is a more concrete coordinate way to describe the first cohomology of T and its
projectivization, which will enable us to write a formula for kX in terms of X. Namely,
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let T ∼= R2/Z2 be coordinatized by (θ, φ) and oriented by dθ ∧ dφ. The form iXσ can
be written as

iXσ = a1(θ, φ)dθ + a2(θ, φ)dφ,
∂a1

∂φ
=
∂a2

∂θ
.

In the identification H 1(T ;R) ∼= R2 via the basis [dθ ], [dφ] its cohomology class is
given by

[iXσ ] =

(∫
T 2
a1 dθ dφ,

∫
T 2
a2 dθ dφ

)
and the slope by

kX = −P [iXσ ] = −|iXσ |
−1
(∫

T 2
a1 dθ dφ,

∫
T 2
a2 dθ dφ

)
, (15)

where

|iXσ | :=

((∫
T 2
a1 dθ dφ)

2
+

(∫
T 2
a2 dθ dφ

)2)1/2

.

Consider now I ×T for an interval I ⊂ R, open or closed or half-open. LetX be a vector
field on I × T tangent to the tori {r} × T and preserving a volume form V on I × T . The
vector field X can also be viewed as a family {Xr}r∈I of vector fields on T parametrized
by I . Similarly, we can write the volume form as

V = dr ∧ σr ,

where r is the coordinate on I and σr is a smooth family of area forms on T preserved
byXr . This gives rise to a smooth family of 1-forms {iXrσr}r∈I as above, and formula (15)
applied toXr in place ofX shows that kXr depends smoothly on r (since a1 and a2 depend
smoothly on r).

Definition 3.6. The smooth function

k : I → S1, r 7→ kXr ,

is called the slope function of the oriented foliation L defined by X.

We note one useful simplification of (15) for future use. Indeed, by Lemma 3.5(b) we
may assume that the vector field X is linear in coordinates (θ, φ), say X = b1∂θ + b2∂φ
for constants b1, b2 ∈ R. By Lemma 3.5(d) we may choose σ := dθ∧dφ, then a1 = −b2
and a2 = b1. So (15) simplifies to

kX = (b2,−b1)/

√
b2

1 + b
2
2. (16)

The situation considered in this subsection arises in integrable 4-dimensional Hamil-
tonian systems as follows. Consider a symplectic 4-manifold (W,ω) and two Poisson
commuting functions H,F on W whose differentials are linearly independent at every
point. Then each compact connected component of a level set of (H, F ) is a 2-torus T .
Define a 2-form σ on T by σ(XH , XF ) := 1. A short computation using [XH , XF ] = 0
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shows that σ is preserved by the flows of XH and XF . So we can consider the slope
function of the foliation defined by XH .

For a stable Hamiltonian structure (ω, λ) on a 3-manifold M this situation arises in
regions where the proportionality factor f = dλ/ω is nonconstant. The unique vector
field Xf ∈ ker λ defined by iXf ω + df = 0 commutes with the Reeb vector field R and
is linearly independent of R where df 6= 0. So σ(R,Xf ) := 1 defines an invariant area
form on level sets of f and we can consider the slope function of the foliation defined by
the Reeb vector field R. Of course, this description is related to the 4-dimensional picture
by symplectization, as described in Section 3.1.

3.3. Persistence of invariant tori

The following theorem states that integrable regions persist under C2-small perturbations
of a SHS. Moreover, if the slope function is nonconstant then the perturbed SHS has
rational as well as irrational invariant tori, so in particular it is not Morse. In Section 3.9
we will show that any SHS is homotopic to one satisfying the hypotheses of this theorem.

Theorem 3.7. Let (ω0, λ0) be a SHS on M and assume that it has an integrable region
K0 ∼= [a, b] × T

2
⊂ M on which (ω0, λ0) is T 2-invariant and the proportionality coeffi-

cient f0 := dλ0/ω0 : K0 → [a, b] is the projection onto the first factor. Denote by µ the
Lebesgue measure on [a, b] × T 2. Then:

(a) There exist constants C, δ0 > 0 such that for any δ < δ0, any SHS (ω, λ) which
is δ-close to (ω0, λ0) in the C2-metric has an integrable region K with µ(K) ≥
µ(K0)− Cδ.

(b) If (ω, λ) as in (a) is actually Ck-close to (ω0, λ0) for some k ≥ 4, then there exists
a diffeomorphism 9 of M , Ck−3-close (and thus isotopic) to the identity, such that
9([a, b]×T 2) = K and the pullback SHS (9∗ω,9∗λ) is T 2-invariant on [a, b]×T 2.

(c) If in addition the slope function k0 of L0 on K0 is not constant, then δ0 > 0 can be
chosen such that for any SHS (ω, λ) as in (a) the kernel foliation L contains rational
as well as irrational invariant tori.

Proof. Consider (ω, λ) as in (a). The hypothesis implies that the function f := dλ/ω :
K0 → R is C1-close to f0, more precisely, ‖f − f0‖C1 < Cδ for some constant C inde-
pendent of δ. To simplify notation, we will replace Cδ by δ and drop C in the following.
Set I := [a, b] and

Iη := [a + η, b − η], η > 0.

For the first step we will only need that ‖f − f0‖C0 < δ. This implies

f−1(Iδ) ⊂ int(I × T 2)

and
I3δ ⊂ f (I2δ × T

2) ⊂ Iδ.

Combining these inclusions, we obtain

f−1(f (I2δ × T
2)) ⊂ I × T 2,
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i.e. if a level set of f meets I2δ × T
2, then it is contained in the interior of I × T 2. If δ is

small enough, then C1-closeness of f and f0 implies that all points in I × T 2 are regular
for f . Combining this with the above inclusion gives us an integrable region

K := f−1(f (I2δ × T
2)) ⊃ I2δ × T

2

for L containing I2δ × T
2. This proves part (a).

Set J := f (I2δ × T
2) and define

8 : K → J × T 2, (r, x) 7→ (f (r, x), x).

This is a diffeomorphism C1-close to the identity because the function f is C1-close
to f0, the projection onto the first factor.

For part (b), assume that (ω, λ) is in fact Ck-close to (ω0, λ0) for some k ≥ 4. Then
8 is Ck−1-close to the identity. We extend f |K to a submersion f̃ : [a, b] × T 2

→ [a, b]

which is Ck−1-close to f0 and coincides with f0 near ∂[a, b]. Using the last displayed
formula with f̃ in place of f we extend 8 to a self-diffeomorphism 8̃ of [a, b] × T 2

which is Ck−1-close to the identity and equals the identity near the boundary. We extend
8̃ to a self-diffeomorphism (still called 8̃) of M in the obvious way. The pushforward
SHS 8∗(ω, λ) is then Ck−2-close to (ω0, λ0), and J × T 2 is an integrable region for
8∗(ω, λ). Thus by Theorem 3.3 there exists a diffeomorphism 2 of J × T 2, Ck−3-close
to the indentity, such that 2∗8∗(ω, λ) is T 2-invariant. The diffeomorphism 2 extends
to a diffeomorphism of [a, b] × T 2 which is Ck−3-close to the identity and equals the
identity near the boundary, and thus to a diffeomorphism of M (called 2̃) in the obvious
way. Let 0 : J × T 2

→ [a, b] × T 2 be the mapping which is the identity on the second
factor and a linear isomorphism on the first factor. Since the integrable region [a, b]×T 2

can be slightly extended, the diffeomorphism 0 can be extended to a self-diffeomorphism
0̃ of M , Ck−3-close to identity. Now the diffeomorphism 9 := (0̃ ◦ 2̃ ◦ 8̃)−1 has the
required properties and part (b) follows.

For part (c), assume that the slope function k0 of L0 is not constant on I . By taking
δ0 small enough, we can ensure that k0 is not constant on I3δ . Note that I3δ ⊂ J =

f (I2δ×T
2) by the proof of part (a). In particular, k0 is not constant on J . The pushforward

foliation 8∗L on J × T 2 is the kernel foliation of 8∗(ω, λ) and thus tangent to the
tori {r} × T 2. Let k : J → S1 be the slope function of 8∗L on J × T 2. Since the
diffeomorphism 8 is C1-close to the identity and the foliation L on K is C0-close to L0,
we see that the foliation 8∗L is C0-close to L0, so the slope function k is C0-close to
the restriction of the slope function k0 to J , which is nonconstant. Thus k is not constant
and so attains rational and irrational values, therefore the foliation 8?L and thus L has
rational as well as irrational invariant tori. ut

As a first application of Theorem 3.7, we illustrate the difference between a convergent se-
quence of stabilizable Hamiltonian structures and a convergent sequence of stable Hamil-
tonian structures.

Theorem 3.8. There exists a stable Hamiltonian structure (ω0, λ0) on RP 3 and a se-
quence of stabilizable Hamiltonian structures ωn which C2-converges to ω0, but such
that there is no sequence of 1-forms λn stabilizing ωn which C2-converges to λ0.
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Proof. We view RP 3 as the unit cotangent bundle for the standard round metric g0
on S2. The Liouville form α0 defines a contact form on RP 3 whose Reeb flow is the
geodesic flow for g0. This is a periodic flow, so it gives RP 3 the structure of a princi-
pal S1-bundle over a closed surface 6 ∼= S2 (the space of oriented great circles on S2).
Let π : RP 3

→ 6 denote the corresponding bundle projection. Note that α0 defines a
connection 1-form on this circle bundle and dα0 = π∗σ for an area form σ on 6. We
choose a 1-form ρ on 6 such that dρ is somewhere zero and somewhere nonzero. Then
λ0 := α0+π

∗ρ defines another connection form on the circle bundle, so λ0 stabilizes the
HS ω0 := dα0. Since dλ0 = π

∗(σ + dρ), the proportionality coefficient f0 := dλ0/ω0
is given by (σ + dρ)/σ , which is nonconstant because dρ is somewhere zero and some-
where nonzero. This produces an integrable region K0 for the kernel foliation L0 of ω0
meeting the conditions of Theorem 3.7(a). It follows that for any SHS (ω, λ) sufficiently
C2-close to (ω0, λ0) there persist invariant tori, and moreover, they fill a region of mea-
sure approximately µ(K0).

Now we invoke the following theorem of Katok [36]: For each k ≥ 2 and ε, δ > 0
there exists a Finsler metric g on S2, δ-close to g0 in the Ck-norm, such that the geodesic
flow of g is ergodic on an open invariant region U of the unit cotangent bundle S∗gS

2

whose complement S∗gS
2
\U has measure < ε. This implies that the invariant tori for the

geodesic flow of g constitute a set of measure at most ε.
Now pick a sequence gn of such Finsler metrics which C3-converges to g0 and such

that the set of invariant tori for the geodesic flow of gn has measure at most µ(K0)/2 for
all n. Let αn be the contact form on RP 3 obtained by restricting the Liouville form to
the unit cotangent bundle S∗gnS

2. Then ωn := dαn is a sequence of stabilizable (by αn)
Hamiltonian structures which C2-converges to ω0 = dα0. This sequence cannot be sta-
bilized by a family of 1-forms λn which C2-converges to λ0 because, by the discussion
above, this would imply that for large n the set of invariant tori for ωn would have mea-
sure greater than µ(K0)/2, contradicting the choice of the gn. ut

3.4. T 2-invariant Hamiltonian structures on I × T 2

Let I be an interval in R (open or closed or half-open). Consider I ×T 2 with coordinates
(r, θ, φ) and the T 2-action by shift in (θ, φ). We orient I × T 2 by the volume form
dr ∧ dθ ∧ dφ.

Hamiltonian structures. For a path h = (h1, h2) : I → R2 consider the T 2-invariant
1-form

αh := h1(r)dθ + h2(r)dφ

and the 2-form
ωh := dαh = h

′

1(r)dr ∧ dθ + h
′

2(r)dr ∧ dφ.

This defines a HS iff h′(r) 6= 0 for all r ∈ I , and in that case its oriented kernel foliation
is

Lh = SpanR{−h
′

2(r)∂θ + h
′

1(r)∂φ}. (17)
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Note that αh is a positive contact form if and only if h always turns clockwise. To
see this, we view R2 as C. Then the contact condition αh ∧ dαh > 0 reads 〈h, ih′〉 > 0,
where 〈·, ·〉 denotes the standard scalar product on R2. Writing h = ρ(r)eiσ (r) we find
〈h, ih′〉 = −|h|2σ ′(r), so the contact condition is equivalent to σ ′ < 0.

Slope functions. We define the slope function of the HS ωh on I ×T 2 as the slope func-
tion of its oriented kernel foliation kerωh = Lh given by (17). In terms of the function h,
formula (16) (with b1 = −h

′

2 and b2 = h
′

1) translates to

k(r) = h′(r)/|h′(r)|.

Note that the slope function and all its properties are intrinsic to the foliation Lh and do
not depend on the defining HS.

Winding numbers. We define the winding number of h by w(h) := σ(b) − σ(a) ∈ R,
where h′(r)/|h′(r)| = eiσ (r) for a function σ : I = [a, b] → R. Note that for immer-
sions h0, h1 which agree near ∂I we have w(h0) − w(h1) ∈ Z, and h0, h1 are regularly
homotopic rel ∂I iff w(h0) = w(h1). For a T 2-invariant HS ω defining the foliation Lh
we define its winding number by w(ω) := w(h).

Stabilizing 1-forms. For another T 2-invariant 1-form

λg := g1(r)dθ + g2(r)dφ

we have

dλg = g
′

1(r)dr ∧ dθ + g
′

2(r)dr ∧ dφ, λg ∧ ωh = (h
′

1g2 − h
′

2g1)dr ∧ dθ ∧ dφ.

So λg stabilizes ωh iff

g′1h
′

2 − g
′

2h
′

1 = 0, h′1g2 − h
′

2g1 > 0.

Viewing R2 as C, this can also be written as

〈g′, ih′〉 = 0, 〈g, ih′〉 > 0. (18)

Lemma 3.9. Fix an interval I and a relatively compact subinterval J ⊂⊂ I .

(a) Any T 2-invariant exact 2-form ω on I × T 2 can be written as ω = ωh for a function
h : I → C which is unique up to adding a constant.

(b) Any 1-form α with dα = ω T 2-invariant can be modified rel boundary to α̃ with
dα̃ = ω satisfying α̃|J = αh for a function h : J → R. Moreover, if α is Ck-small
we can choose α̃ Ck-small as well.

(c) Any T 2-invariant 1-form λ stabilizing ωh is homotopic rel boundary through
T 2-invariant stabilizing 1-forms to λ̃ satisfying λ̃|J = λg for a function g : J → R.
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Proof. (a) Any T 2-invariant 2-form ω can be written as

ω = k1(r)dr ∧ dθ + k2(r)dr ∧ dφ + k3(r)dφ ∧ dθ

for smooth functions k1, k2, k3 : I → R. If ω is exact, then k3 = 0 and integrating k1
and k2 we see that there exists a function h : I → R2, unique up to adding a constant,
such that ω = dαh.

(b) Consider a 1-form α with dα = ω T 2-invariant. Denote by ᾱ the T 2-invariant
1-form on I × T 2 obtained by averaging α. Then dᾱ = ω = dα, so α − ᾱ is closed.
Since ω vanishes on each torus {r} × T 2, the restriction α|{r}×T 2 is closed. Its de Rham
cohomology class is preserved under averaging, so we have [ᾱ|{r}×T 2 ] = [α|{r}×T 2 ] ∈

H 1({r} × T 2
;R). This shows that [ᾱ − α] = 0 ∈ H 1(I × T 2

;R), so we can write
ᾱ − α = df for a function f : I × T 2

→ R. Pick a cutoff function ρ : I → [0, 1] which
equals 0 near ∂I and 1 on a neighbourhood K of J ⊂⊂ I . Then α̂ := α + d(ρ(r)f )

satisfies dα̂ = ω, agrees with α near ∂I × T 2 and is T 2-invariant on K × T 2. Thus
α̂|K×T 2 can be written in the form

h1(r)dθ + h2(r)dφ + h3(r)dr = αh + h3(r)dr

for smooth functions h1, h2, h3 : K → R. Pick a function σ : I → [0, 1] which equals 0
outsideK and 1 on J . Then α̃ := α̂−σ(r)h3(r)dr is the desired 1-form. The construction
shows that α̃ will be Ck-small if α is.

(c) Any T 2-invariant 1-form λ on I × T 2 can be written in the form

λ = g1(r)dθ + g2(r)dφ + g3(r)dr = λg + g3(r)dr

for smooth functions g1, g2, g3 : I → R. It stabilizes ωh if and only if g = (g1, g2)

satisfies (18). Pick a function ρ : I → [0, 1] which equals 1 near ∂I and 0 on J . Then
λ̃ := λg+ρ(r)g3(r)dr is the desired 1-form and (1− t)λ+ t λ̃ the desired homotopy. ut

In the remainder of this section we investigate the question of stabilizability: Given an
immersion h : I → C, does there exist a function g : I → C satisfying (18) with
prescribed values near ∂I?

It turns out that the answer depends on the slope function k = h′/|h′| : I → S1.

Stabilization for constant slope. Let us first consider the case of constant slope, i.e. with
constant slope function k = h′/|h′| ∈ S1. In this case (18) is equivalent to

h′/|h′| ≡ k, 〈g, ik〉 ≡ c > 0 (19)

for a constant c > 0. Thus h moves along a straight line in direction k, and the function g
can move freely on the straight line 〈g, ik〉 ≡ c. Note that convex combinations of pairs
satisfying (19) with the same slope k (but possibly different constants c) again satisfy (19).
So we obtain the following answer to the stabilizability question:

Let h : [0, 1] → C be an immersion with constant slope k and g0, g1 be functions
near 0, 1 satisfying (19) with constants c0, c1. Then there exist a function g : I → C
satisfying (18) which agrees with g0 near 0 and g1 near 1 if and only if c0 = c1.
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More generally, we can show a stabilization result for constant slopes near the bound-
ary. Fix 0 < δ < ε and h̄, ḡ : [0, ε] ∪ [1− ε, 1] → C satisfying

h̄′/|h̄′| ≡ k− on [0, ε], h̄′/|h̄′| ≡ k+ on [1− ε, 1],
〈ḡ, ik−〉 ≡ c− on [0, ε], 〈ḡ, ik+〉 ≡ c+ on [1− ε, 1],

for unit vectors k± ∈ C and constants c± > 0. The preceding discussion shows that we
cannot hope for a general stabilization result unless c− = c+, which turns out to be also
sufficient:

Lemma 3.10. Suppose c− = c+. Then there exists a continuous map that assigns to
every immersion h : [0, 1] → C with h = h̄ on [0, ε]∪[1−ε, 1] a function g : [0, 1] → C
satisfying (18) and g = ḡ on [0, δ] ∪ [1− δ, 1].

Proof. Note that a special solution to conditions (18) is given by the formula

g(r) := ich′(r)/|h′(r)| (20)

for some constant c > 0. In other words, each immersion h can be stabilized by g :
I → C via (20). To apply this, pick a function ρ : [0, 1] → [0, 1] which equals 0 on
[0, δ] ∪ [1 − δ, 1] and 1 on [ε, 1 − ε]. With c := c− = c+, we define g by (1 − ρ)ḡ +
ρcih̄′/|h̄′| on [0, ε] ∪ [1− ε, 1] and by (20) on [ε, 1− ε]. ut

Remark 3.11. The 1-form λg corresponding to g defined by (20) is the Wadsley form
associated to the (suitably scaled) flat metric on I × T 2.

The following corollary spells out the special case ḡ = h̄.

Corollary 3.12. Fix 0 < δ < ε, c > 0 and unit vectors k± ∈ C. Suppose that h̄ :
[0, ε]∪[1−ε, 1] → C satisfies h̄′/|h̄′| ≡ k− and 〈h̄, ik−〉 ≡ c on [0, ε], and h̄′/|h̄′| ≡ k+
and 〈h̄, ik+〉 ≡ c on [1 − ε, 1]. Then there exists a smooth map that assigns to every
immersion h : [0, 1] → C with h = h̄ on [0, ε] ∪ [1 − ε, 1] a function g : [0, 1] → C
satisfying (18) and g = h̄ on [0, δ] ∪ [1− δ, 1].

One useful example to which the corollary applies is h̄(r) = ±(r2, 1− r2).

Remark 3.13. Moving the function g on the line we can achieve that g ≡ const on some
subinterval J ⊂ I . Then we can perturb h slightly on J , so that (h, g) still satisfies (18)
and the slope h′/|h′| is nonconstant on J .

Stabilization for nonconstant slope. We have seen that for constant slope there is an
obstruction to stabilizability. On the other hand, we will show that stabilization is always
possible if the slope function is nonconstant:

Proposition 3.14. Let h : [0, 1] → C be an immersion such that h′/|h′| is not constant
on [ε, 1 − ε]. Let ḡ : [0, ε] ∪ [1 − ε] → C be given such that (h, ḡ) satisfies (18) on
[0, ε] ∪ [1 − ε, 1]. Then there exists a function g : [0, 1] → C which agrees with ḡ on
[0, ε] ∪ [1− ε, 1] such that (h, g) satisfies (18).
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The proof is based on two lemmata. The first lemma gives a criterion when a T 2-invariant
Hamiltonian perturbation of a T 2-invariant SHS is again stabilizable. It will play a crucial
role in Section 4.

Lemma 3.15. (a) Let h̄, ḡ : [0, 1] → C satisfy (18) and suppose that h̄′/|h̄′| is not
constant on [ε, 1 − ε]. Then for every h : [0, 1] → C sufficiently C1-close to h̄ and
g0 : [0, ε] ∪ [1 − ε, 1] → C sufficiently C1-close to ḡ|[0,ε]∪[1−ε,1] such that (h, g0)

satisfies (18) on [0, ε] ∪ [1− ε, 1] there exists g : [0, 1] → C which is C1-close to ḡ
and agrees with g0 on [0, ε] ∪ [1− ε, 1] such that (h, g) satisfies (18). Moreover, for
fixed ḡ the assignment (h, g0) 7→ g works smoothly in families.

(b) LetC1-small ξ : [0, 1] → C be given. Set g0 = ḡ and consider the family ht = h̄+tξ ,
t ∈ [0, 1]. Then for the corresponding functions gt from (a) we have an estimate
|ġt |C1 ≤ C|ξ |C1 for some constant C > 0 and all t ∈ [0, 1].

Proof. (a) By the first condition in (18) we have ḡ′(r) = ρ̄(r)h̄′(r) for a function ρ̄ :
[0, 1] → R, and g′0(r) = ρ0(r)h

′(r) for a function ρ0 : [0, ε] ∪ [1 − ε, 1] → R which
is C0-close to ρ̄|[0,ε]∪[1−ε,1]. Let us extend ρ0 to a function ρ0 : [0, 1] → R which is
C0-close to ρ̄. We look for g satisfying g′(r) = ρ(r)h′(r) for a function ρ : [0, 1] → R
which agrees with ρ0 on [0, ε] ∪ [1− ε, 1], so that the first condition in (18) holds. Given
such a ρ we set

g(r) := g0(0)+
∫ r

0
ρ(s)h′(s) ds.

This agrees with g0 on [0, ε], and it agrees with g0 on [1− ε, ε] iff∫ 1

0
ρ(s)h′(s) ds = g0(1)− g0(0).

Denote by V the space of smooth functions σ : [0, 1] → R with support in [ε, 1 − ε],
equipped with the C0 norm. Writing ρ = ρ0+σ , the preceding condition is equivalent to

δ := g0(1)− g0(0)−
∫ 1

0
h′(s)ρ0(s) ds

being in the image of the linear map

Lh′ : V → C, σ 7→

∫ 1

0
σ(s)h′(s) ds.

Now a unit vector v ∈ C is orthogonal to the image of Lh′ iff 〈k′(s), v〉 = 0 for all
s ∈ [ε, 1 − ε], which can only happen if the slope h′/|h′| is constant on [ε, 1 − ε]. But
this is not the case since by assumption the slope h̄′/|h̄′| is not constant on [ε, 1 − ε]
and h′ is C0-close to h̄′. Thus Lh′ is surjective. Closer inspection shows that we can find
a right inverse for Lh′ whose norm is uniformly bounded for h′ in a C0-neighbourhood
of h̄′. Indeed, let K ⊂ V be the kernel of the operator Lh̄′ and T be a 2-dimensional
algebraic complement, so Lh̄′ |T : T → C is an isomorphism. Since the map h′ 7→ Lh′ is
continuous with respect to the operator norm, Lh′ |T is invertible with uniformly bounded
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inverses for h′ in a C0-neighbourhood of h̄′. Thus (Lh′ |T )−1
: C → T ↪→ V are the

required right inverses of Lh′ .
Note that, since the pair (g0, ρ0) is C0-close to the pair (ḡ, ρ̄), the complex number

δ is small and hence we can find g which is C1-close to ḡ such that the first condition
in (18) holds. The second condition in (18) now follows from C1-closeness.

For (b) note that gt is defined by

gt (r) := ḡ(0)+
∫ r

0
ρt (s)h

′
t (s) ds, ht (s) = h̄(s)+ tξ(s), ρt (s) = ρ0(s)+ σt (s).

Thus

ġt (r) :=

∫ r

0
[σ̇t (s)h

′
t (s)+ ρt (s)ξ

′(s)] ds.

Since h′t is C0-bounded and ξ ′ is C0-small, for C1-smallness of ġt it remains to show
C0-smallness of σ̇t .

Note that σt is defined by

Lh′t (σt ) = Lh̄′(σt )+ tLξ
′(σt ) = δt

with

δt = ḡ(1)− ḡ(0)−
∫ 1

0
(h̄+ tξ )′(s)ρ0(s) ds, Lξ ′(σt ) =

∫ 1

0
σt (s)ξ

′(s) ds.

It follows that

Lh′t (σ̇t )+ Lξ
′(σt ) = δ̇t = −

∫ 1

0
ξ ′(s)ρ0(s) ds.

Since ξ ′ isC0-small, we see that δ̇t is small (and independent of t). Since the operatorsLh′t
have uniformly bounded right inverses, it follows that

σ̇t = (Lh′t )
−1(δ̇t − Lξ ′(σt ))

is uniformly C0-small for all t ∈ [0, 1]. This finishes the proof of Lemma 3.15. ut

Lemma 3.16. Let h, g0, g1 : [0, 1] → C be given such that the pairs (h, g0) and (h, g1)

both satisfy (18). Suppose that h′/|h′| is not constant. Then there exists a function g :
[0, 1] → C which agrees with g0 near 0 and with g1 near 1 such that (h, g) satisfies (18).

Proof. By assumption, there exists a point p ∈ (0, 1) at which the slope function k =
h′/|h′| has nonzero derivative. We pick a small interval I ⊂ (0, 1) on which k′ 6= 0, so
the unit vectors k0 = k(0) and k1 = k(1) are linearly independent and close to each other,
and rescale I back to [0, 1]. We set cj = 〈gj (j), ikj 〉 for j = 0, 1. Linear independence
of k0 and k1 implies that there exists a unique pair (s0, s1) ∈ R2 such that

g0(0)− g1(1) = s1k1 − s0k0. (21)
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We pick a small ε > 0 and define the following piecewise constant function σ on [0, 1]:
on [0, ε) we set σ = ε−1s0, on [ε, 1 − ε] we set σ = 0, and finally on (1 − ε, 1] we set
σ = −ε−1s1. We set

g(r) := g0(0)+
∫ r

0
σ(s)k(s) ds.

We claim the following:

(i) g(1)− g1(1) is small and
(ii) the pair (h, g) satisfies (18).

For (i) we introduce the averages A0 := ε
−1 ∫ ε

0 k(s) ds, A1 := ε
−1 ∫ 1

1−ε k(s) ds and note
that limε→0A0 = k0 and limε→0A1 = k1. Using the explicit formula for g we write

g(1)− g1(1) = g0(0)− g1(1)+ s0A0 − s1A1.

This together with the above convergence properties of A0 and A1 and equation (21)
implies (i) for small enough ε.

For (ii) we first consider r ∈ [0, ε] and write out the estimate

|〈g(r)− g0(0), ik(r)〉| ≤ |s0|ε−1
∫ ε

0
|〈k(s), ik(r)〉| ds

≤ |s0| max
r1,r2∈[0,ε]

|〈k(r1), ik(r2)〉|.

Note that the latter maximum tends to zero as ε→ 0. This shows that if ε is small enough,
then 〈g(r), ik(r)〉 is close to 〈g0(0), ik(r)〉, and the latter is close to 〈g0(0), ik0〉 =

c0 > 0. Altogether, 〈g(r), ik(r)〉 is close to c0 and thus in particular positive. Similarly
for r ∈ [1 − ε, 1], we write g(r) − g(1) = ε−1s1

∫ 1
r
k(s) ds, use that g(1) is close to

g1(1) and that maxr1,r2∈[1−ε,1] |〈k(r1), ik(r2)〉| tends to zero as ε → 0 to conclude that
〈g(r), ik(r)〉 is close to c1 and thus in particular positive. For the intermediate region
r ∈ [ε, 1− ε] recall that k′ 6= 0 and thus any k(r) “sits between” k(ε) and k(1− ε). Since
g is constant on [ε, 1 − ε], the number 〈g(r), ik(r)〉 belongs to the interval bounded by
〈g(ε), ik(ε)〉 and 〈g(1− ε), ik(1− ε)〉, which implies the required positivity.

Now approximate σ by an L1-close smooth function (still denoted by σ ) and define g
as above. The new function g is smooth and still satisfies conditions (i) and (ii). Recall
that k′ is nonconstant. Now condition (i) and the equality g(0) = g0(0) allow us to use
Lemma 3.15 to adjust σ so that g = g0 near 0 and g = g1 near 1. ut

Proof of Proposition 3.14. We extend ḡ from [0, ε] to a larger interval [0, r0] such
that (18) still holds and the derivative of the slope function k = h′/|h′| is nonzero at r0.
(If k is not constant near ε this can be done for r0 slightly larger than ε, and if k is constant
near ε we extend ḡ satisfying equation (19) until k becomes nonconstant). Similarly, we
extend ḡ from [1− ε, 1] to a larger interval [r1, 1] so that (18) still holds and k′(r1) 6= 0.
Now we use Lemma 3.16 to find g : [0, r0] ∪ [r1, 1] → C satisfying (18) which agrees
with ḡ on [0, ε] ∪ [1 − ε, 1] and with ik near r0 and r1, so we can extend it as ik over
[r0, r1] to the desired function g : [0, 1] → C. ut

Proposition 3.14 answers the stabilization question for a single function h : [0, 1] → C.
The following proposition answers the question for homotopies.
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Proposition 3.17. Let ht : [0, 1] → C, t ∈ [a, b], be a homotopy of immersions such that
for each t the slope h′t/|h

′
t | restricted to [ε, 1−ε] is nonconstant. Let ḡt : [0, ε]∪[1−ε, 1],

t ∈ [a, b], be a homotopy such that (ht , ḡt ) satisfies (18) on [0, ε] ∪ [1 − ε, 1] for all
t ∈ [a, b]. Then there exists a homotopy gt which agrees with ḡt on [0, ε]∪[1−ε, 1] such
that (ht , gt ) satisfies (18) on [0, 1] for all t ∈ [a, b].

Proof. We apply Proposition 3.14 for each time s ∈ [a, b] to get a (possibly discontinu-
ous) family {g̃s}s∈[a,b] stabilizing hs on [0, 1] (i.e. (hs, g̃s) satisfies (18)) and restricting to
[0, ε] ∪ [1− ε, 1] as ḡs . Lemma 3.15 applied with ḡ := g̃s shows that each s ∈ [a, b] has
an open neighbourhood U ⊂ [a, b] and a smooth family gUt , t ∈ U , such that (ht , gUt )
satisfies (18) and gUt |[0,ε]∪[1−ε,1] = ḡt for all t ∈ U . Finitely many such neighbour-
hoods Ui cover [a, b]. Let {ρi} be a finite partition of unity subordinate to this covering
and set gt :=

∑
i ρig

Ui
t . This family is smooth as a function of t ∈ [a, b]. Moreover, for

each t it is a finite sum of functions stabilizing ht , thus the pair (ht , gt ) satisfies (18). On
[0, ε] ∪ [1− ε, 1] we have gt =

∑
i ρi ḡt = ḡt . This completes the proof. ut

Corollary 3.18. Let h0, h1 : [0, 1] → C be two immersions with h0 = h1 on [0, ε] ∪
[1 − ε, 1] and the same winding number. Let g0 : [0, ε] ∪ [1 − ε, 1] → C be such that
(h0, g0) satisfies (18). Then there exists a homotopy (ht , gt ), t ∈ [0, 1], satisfying (18)
and fixed on [0, ε] ∪ [1− ε, 1], such that ht connects h0 and h1.

Proof. Since the immersions h0, h1 have the same winding number, they are homotopic
through immersions ht , t ∈ [0, 1], fixed on [0, ε] ∩ [1 − ε, 1]. If h0 has constant slope
on [ε, 1− ε] we use Remark 3.13 to make it nonconstant, and similarly for h1. Since the
condition to have constant slope on [ε, 1 − ε] is of infinite codimension, we can choose
the homotopy of immersions ht to have nonconstant slope on [ε, 1− ε] for all t ∈ [0, 1].
Now the stabilizing family gt is provided by Proposition 3.17. ut

Remark 3.19. Clearly, Proposition 3.17 remains true with the interval [a, b] replaced by
any compact manifold with boundary. Hence the proof of Corollary 3.18 shows that the
space of pairs h, g : [0, 1] → C satisfying (18), fixed on [0, ε] ∪ [1− ε, 1] and with fixed
winding number, is weakly contractible.

3.5. T 2-invariant Hamiltonian structures on T 3 and S3

To illustrate the techniques developed in Section 3.4, we now classify exact T 2-invariant
Hamiltonian structures on T 3 and S3 up to T 2-invariant stable homotopy.

We begin with the 3-torus T 3
= R3/Z3 with coordinates (r, θ, φ). We let T 2 act

on T 3 via shift along θ and φ, and consider exact T 2-invariant Hamiltonian structures
on T 3. Any exact T 2-invariant Hamiltonian structure ω on T 3 can be written as ω = ωh,
where h : R→ C is an immersion with periodic h′. Now exact T 2-invariant HS on T 3 are
classified up to T 2-invariant homotopy by the winding number w(h) ∈ Z, i.e. the degree
of the map h′/|h′| : S1

→ S1. Since every homotopy ωht of exact T 2-invariant HS on T 3

can be stabilized by λgt with gt obtained from ht by formula (20), we have shown

Corollary 3.20. Two exact T 2-invariant SHS on T 3 are connected by a T 2-invariant
stable homotopy if and only if they have the same winding number.
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Next we consider the 3-sphere

S3
= {(x1, y1, x2, y2) ∈ R4

| x2
1 + y

2
1 + x

2
2 + y

2
2 = 1}.

We introduce the radial coordinate r ∈ [0, 1] and two angular coordinates φ and θ on S3

as follows:
r := (x2

1 + y
2
1)

1/2, tan θ = y1/x1, tanφ = y2/x2.

Let T 2 act on S3 by rotations in (x1, y1) and (x2, y2) planes, i.e. by shifts along θ and φ.
The goal of this subsection is to classify T 2-invariant SHS up to T 2-invariant stable ho-
motopy.

Consider first a T 2-invariant HS ω on S3. Its Reeb vector field R is tangent to the
level sets r = const, in particular {r = 0} and {r = 1} are closed Reeb orbits. Define two
signs s0, s1 by s0 = + iff the orientations on {r = 0} induced by R and ∂φ coincide, and
s1 = + iff the orientations on {r = 1} induced by R and ∂θ coincide. Clearly, these signs
remain constant during a homotopy of T 2-invariant HS.

Recall from Lemma 3.9 that ω can be written on {0 < r < 1} as ω = ωh =

h′1(r)dr ∧ dθ + h
′

2(r)dr ∧ dφ for an immersion h : (0, 1) → C which is unique
up to adding a constant. Smoothness and nondegeneracy at r = 0 imply that h′1(r) =
ar + O(r2) near r = 0 for some a 6= 0. Note that the sign of a is s0. Thus we can
T 2-invariantly homotope ω = ωh until h′(r) = (s0r, 0) near r = 0, i.e. ω agrees with
s0r dr ∧ dθ near r = 0. Note that the orientation preserving diffeomorphism of S3 map-
ping x1 7→ x2, x2 7→ x1, y1 7→ y2 and y2 7→ y1 exchanges θ with φ and r2 with 1− r2.
In particular, rdr pulls back to −rdr . Thus, arguing symmetrically we can further T 2-
invariantly homotope ω = ωh until it agrees with −s1rdr ∧ dφ near r = 1. After this
standardization, we define the winding number as in Section 3.4. Then two T 2-invariant
HS are T 2-invariantly homotopic iff they have the same signs and winding number.

Next consider a T 2-invariant SHS (ω, λ) on S3. After a T 2-invariant stable homotopy
as in Remark 3.13, we may assume that the slope function h′/|h′| is nonconstant. By
definition of the signs s0, s1, the HS ω is stabilized by the 1-form s0dφ near r = 0 and
by s1dθ near r = 1. By Proposition 3.14, there exists a T 2-invariant stabilizing 1-form λ̃

for ω which agrees with s0dφ near r = 0 and with s1dθ near r = 1. Fixing the stabilizing
1-form λ̃, we can now homotope ω near r = 0, 1 to ω̃ which agrees with s0rdr ∧ dθ near
r = 0 and with −s1rdr ∧ dφ near r = 1.

Finally, consider two T 2-invariant SHS (ωi, λi), i = 0, 1, on S3 with the same signs
s0, s1 and the same winding number. After applying the stable homotopies in the previous
paragraph, we may assume that both (ωi, λi) agree with (s0rdr ∧ dθ, s0dφ) near r = 0
and with (−s1rdr ∧ dφ, s1dθ) near r = 1. By assumption, ω0 and ω1 have the same
winding number. Hence, by Corollary 3.18, (ω0, λ0) and (ω1, λ1) are connected by a
T 2-invariant stable homotopy fixed near r = 0, 1. So we have shown

Corollary 3.21. Two T 2-invariant SHS on S3 are connected by a T 2-invariant stable
homotopy if and only if they have the same signs and winding number.

Remark 3.22. Similar arguments (cf. Remark 3.19) show that the space of exact
T 2-invariant SHS on T 3 (resp. S3) with fixed winding number (resp. signs and winding
number) is weakly contractible.
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3.6. Thickening a level set

In this subsection we prove the following technical result which will play a crucial role in
the remainder of this paper.

Proposition 3.23. Let (ω, λ) be a SHS on a closed 3-manifold M and set f := dλ/ω.
Let Z ⊂ R be any set of Lebesgue measure zero containing a value a ∈ Z ∩ im f . Then
there exists a stabilizing form λ̃ for ω such that f̃ := dλ̃/ω can be written as f̃ = σ ◦ f
for a function σ : R → R which is locally constant on a open neighbourhood of Z
(and thus f̃ is locally constant on an open neighbourhood of f−1(Z)) and f̃ ≡ a on an
open neighbourhood of f−1(a). Moreover, for every s ∈ [0, 1) we can achieve that λ̃ is
C1+s-close to λ.

We will use two special cases of this result. The first one is Z = {a} for some value a
of f :

Corollary 3.24. Let (ω, λ) be a SHS on a closed 3-manifold M and set f := dλ/ω. Let
a ∈ im f be any (singular or regular) value of f . Then there exists a stabilizing form λ̃

for ω such that f̃ := dλ̃/ω satisfies f̃ ≡ a on an open neighbourhood of f−1(a).

The second special case arises for Z the set of critical values:

Corollary 3.25. Let (ω, λ) be a SHS on a closed 3-manifoldM and set f := dλ/ω. Then
there exists a (possibly disconnected and possibly with boundary) compact 3-dimensional
submanifold N ofM , invariant under the Reeb flow, a finite family {Ui}i=1,...,k of disjoint
open integrable regions and a stabilizing 1-form λ̃ for ω with the following properties:

•
⋃
i Ui ∪N = M;

• λ̃ is C1-close to λ;
• the proportionality coefficient f̃ := dλ̃/ω is constant on each connected component

of N ;
• on each Ui ∼= (ai, bi)×T 2 the function f is given by the projection onto the first factor

and for r sufficiently close to ai or bi we have {r} × T 2
⊂ N .

Moreover, f̃ = σ ◦ f for a function σ : R→ R which is C0-close to the identity.

Proof. Let the 1-form λ̃ and the proportionality coefficient f̃ = dλ̃/ω = σ ◦ f be
obtained from Proposition 3.23 with Z the set of critical values of f (and any value
a ∈ Z). Since Z is compact, it is covered by finitely many open intervals (cj , dj ), j =
1, . . . , n, on which σ is constant. By shrinking these intervals slightly if necessary we
may assume that all cj , dj are regular values of f . Set J :=

⋃n
j=1[cj , dj ] and N :=

f−1(J ). Let d be the minimal distance between any two of the intervals [cj , dj ]. Let
I =

⋃
i∈N(ai, bi) be the set of regular values of f , written as a countable union of

disjoint intervals. As the ai, bi are singular values, those intervals (ai, bi) with length
bi − ai strictly smaller than d must be contained in one of the intervals [cj , dj ]. After
renumbering we may asume that (ai, bi) for i = 1, . . . , m are all the intervals from I

with finite length ≥ d . Set Id :=
⋃m
i=1(ai, bi). It is clear that the image of f is contained
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in Id ∪ J . Thus setting U := f−1(Id) gives N ∪U = M . The connected components Ui
of U are diffeomorphic to (ai, bi)×T 2 with f being the obvious projection. Finally, note
that each ai and bi is itself a singular value of f and thus must be contained in (cj , dj )
for some j . ut

The proof of Proposition 3.23 consists in analysis of suitable linear function spaces. We
begin with a lemma about functions on the real line.

Lemma 3.26. Let σ be a smooth real valued function on an interval [c, d]. LetZ ⊂ [c, d]
be a set of Lebesgue measure zero, a ∈ Z, and s ∈ [0, 1). Then there exists a sequence of
smooth functions σn on [c, d] converging to σ in the Cs-norm such that each σn is locally
constant on an open neighbourhood of Z and σn(a) = σ(a) for all n.

Proof. Since Z has Lebesgue measure 0, it has an open neighbourhood U of arbitrarily
small Lebesgue measure. We can represent U as a countable union

⋃
i∈N Ui of intervals.

We can assume that all Ui are disjoint by replacing any two of them which intersect
by their union. Moreover, we can assume that the distance between any two of them
is positive by replacing any pair (x1, x2), (x2, x3) of intervals by the interval (x1, x3).
Then we can choose a set of intervals Vi with the following properties. For each i we
have Ūi ⊂ Vi , all the Vi have positive distance from each other, and the measure of
V :=

⋃
i∈N Vi does not exceed twice the measure ofU . For each i we choose a compactly

suported cutoff function χi : Vi → [0, 1] which equals 1 on Ui . These cutoff functions
patch together to a cutoff function χ which is compactly supported in V and equals 1
on U .

We set hU := (1 − χ)σ ′. By construction hU is a smooth function vanishing on U .
Now σ(x) = σ(a) +

∫ x
a
σ ′(y) dy. Set σU (x) := σ(a) +

∫ x
a
hU (y) dy. This defines a

smooth function on [c, d] with σU (a) = σ(a). Note that σ ′ and σ ′U = (1− χ)σ
′ are both

bounded and differ only on the support of χ , which is a set of small measure. Thus σ ′

and σ ′U are Lp-close to each other for any 1 ≤ p <∞. Next set C := maxy∈[c,d] |σ ′(y)|
and compute

|σ(x)− σU (x)| =

∣∣∣∣∫ x

a

(σ ′(y)− hU (y)) dy

∣∣∣∣ ≤ ∫
[c,d]

|χ(y)| |σ ′(y)| dy ≤ C|V |.

Thus σ and σU are C0-close. Combined with Lp-closeness of their derivatives this also
gives W 1,p-closeness for any 1 ≤ p < ∞. The Sobolev embedding theorem yields a
continuous embedding W 1,p([c, d]) ↪→ Cs([c, d]) for s ≤ 1 − 1/p, so by choosing p
large we get Cs-closeness for any given s ∈ [0, 1). ut

Remark 3.27. If Z is compact it is covered by finitely many of the intervals Uα in the
proof, so in this case we can achieve that for each n the neighbourhood of Z on which σn
is constant is a finite union of intervals.

Proof of Proposition 3.23. Now we fix some interval [c, d] containing im f and let Z, a,
s be as in the proposition. Set

C := {σ ∈ C∞([c, d]) | σ is constant on some open set containing Z},
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Consider the space C∞(M) of smooth functions on M . Let

f ∗ : C∞([c, d])→ C∞(M)

denote the linear operator given by composing with the function f on the right, and
introduce the linear subspaces

D := f ∗(C) ⊂ E := f ∗(C∞([c, d])) ⊂ C∞(M).

We introduce the following evaluation linear functional:

a∗ : E → R, h = σ ◦ f 7→ σ(a).

In other words, a∗(h) is the value the function h takes on the level set f−1(a). For any
b ∈ R and any subset S ⊂ E we denote Sb := S ∩ (a∗)−1(b).

We equip E with the Cs-topology (note that E is not complete with this topology) and
denote by S̄ ⊂ E the closure of a subset S ⊂ E in E with respect to this topology. We
claim that for any b ∈ R,

D̄b
= Eb. (22)

Indeed, the estimate ‖σ ◦ f ‖Cs (M) ≤ ‖σ‖Cs ([c,d])‖f ‖sC1(M)
shows continuity of f ∗ :

C∞([c, d]) → E with respect to the Cs-norms, so the claim follows from Lemma 3.26.
In particular, we have

D̄ = E . (23)

The key observation is that for any h = σ ◦ f ∈ E the 2-form hω is closed:

d(hω) = σ ′df ∧ ω = σ ′d(fω) = σ ′d(dλ) = 0.

This allows us to define the operator

H : E → F ⊂ H 2(M;R),

where H(h) := [hω] is the de Rham cohomology class and F := H(E). At this point we
fix some reference Riemannian metric. In terms of the Hodge decomposition, the operator
of taking cohomology is just theL2-projection from the space of closed forms to the space
of harmonic forms and thus is continuous with respect to the L2 topology on the space of
closed forms. Since the topology on E is stronger than L2, we deduce that the operator H
is continuous on E and from (23) we get

H(D) = H(E) = F.

The real vector space F is finite-dimensional as a subspace of the finite-dimensional space
H 2(M;R) and we set k := dimF . Set

K := kerH, KD := ker(H |D) = K ∩D.

We claim that the codimension ofKD in D is k. Indeed, assume there were k+ 1 linearly
independent vectors in D spanning a subspace intersecting KD trivially; then the restric-
tion of H to this subspace would give us an injective map from this space to the space F



First steps in stable Hamiltonian topology 359

of dimension one less. On the other hand, the codimension of KD in D cannot be smaller
than k, for otherwise the image of H would have dimension smaller than k, contradicting
H(D) = F . Thus there exists a (nonunique) k-dimensional subspace T of D such that we
have the following (algebraic, not topological) direct sum decomposition:

D = KD ⊕ T , (24)

with H restricting as an isomorphism to T . Continuity of H implies that

• the kernel K of H is closed in E , and
• the projection from E onto T along K (understood as the composition of H and the

finite-dimensional inverse of H |T ) is continuous.

Now we use the freedom in the choice of T to see that we can without loss of generality
assume that either KD ⊂ D0 or T ⊂ D0. Indeed, if for all h ∈ KD we have a∗(h) = 0,
then the first case is realized. Otherwise, there exists h ∈ KD with a∗(h) = c 6= 0.
Let t1, . . . , tk ∈ T be a basis of T . For any j = 1, . . . , k set cj := a∗(tj ) and t̂j :=
tj − (cj/c)h. Now a∗(t̂j ) = cj − (cj/c)c = 0, so t̂j ∈ D0. Moreover, {t̂j }j=1,...,k is the
basis of a linear subspace space T̂ which complements KD in D because H(t̂j ) = H(tj )
and {H(tj )}j=1,...,k is a basis of F .

Now we come to the crucial assertion. We claim that for each b ∈ R,

K̄b
D = K

b. (25)

To see this let h ∈ Kb be arbitrary. According to (22) we find a sequence {hn}n∈N ⊂ Db

converging to h. According to (24) each hn can be uniquely decomposed as hn = hKn +h
T
n ,

with hKn ∈ KD and hTn ∈ T . Continuity of the projection from E to T alongK and h ∈ K
implies that the sequence {hTn }n∈N ⊂ T converges to 0 ∈ T . Since K is closed, we
conclude

hKn = hn − h
T
n → h ∈ K.

Next, recall that one of the spaces in the direct sum KD ⊕ T is a subspace of D0. Now if
KD ⊂ D0, then a∗(hKn ) = 0 for all n and thus a∗(h) = 0. If T ⊂ D0, then a∗(hKn ) =
a∗(hn − h

T
n ) = a

∗(hn) = b = a
∗(h). In any case,

a∗(hKn ) = a
∗(h)

for all n. This shows (25).
Note that f ∈ Ka . Therefore, by (25) the function f can be arbitrarily well Cs-ap-

proximated by some f̃ ∈ Ka
D. Then the difference β := f̃ ω− fω is Cs-small and exact.

By Lemma 3.28 below, β has a primitive 1-form α that is C1+s-small. The desired 1-form
is now λ̃ := λ + α. It is C1+s-close to λ, so in particular it evaluates positively on the
Reeb vector field of (ω, λ). As dλ̃ = f̃ ω by construction, we see that λ̃ stabilizes ω.
By definition of Da , the function f̃ = σ ◦ f is locally constant on a neighbourhood of
f−1(Z) and takes value a on f−1(a). This proves Proposition 3.23. ut

Lemma 3.28. Let β be a Cs-small exact 2-form on a closed manifold M , for some
s ∈ (0, 1). Then β has a primitive 1-form α that is C1+s-small.
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Proof. A primitive 1-form α is obtained from β by first applying the Green operatorG for
the Laplace–Beltrami operator1 and then taking the co-differential d∗. Since1 is elliptic
(see e.g. [51]), it satisfies for each 0 < s < 1 and all smooth 2-forms β an estimate of
Hölder norms

‖β‖2+s ≤ C(‖1β‖s + ‖β‖s).

Indeed, such an estimate is proved in [29] for domains in Rn. From this the estimate on a
compact manifold M follows using a finite partition of unity φi via

‖β‖2+s ≤
∑
i

‖φiβ‖2+s ≤ C
∑
i

(‖1(φiβ)‖s + ‖φiβ‖s)

≤ C′
(∑

i

‖φi1β‖s + ‖β‖s+1

)
≤ C′′(‖1β‖s + ‖β‖s+1)

and applying the same estimate to ‖β‖s+1. Now standard Hodge theory arguments
(see [51]) imply that the Green operator satisfies an estimate

‖Gβ‖C2+s (M) ≤ C‖β‖Cs (M)

for all exact 2-forms β, from which the claim follows. ut

3.7. Taut foliations

In this subsection we investigate the special case of a SHS (ω, λ) with dλ = 0, so ker λ
defines a taut foliation. After a small deformation of the closed 1-form we may assume
that λ represents a rational cohomology class, and after rescaling we may assume that
[λ] ∈ H 1(M;Z). Then integration of λ over paths from a fixed base point yields a fi-
bration π : M → S1

= R/Z over the circle. It follows that the restriction ω̄ of ω to a
fibre W is symplectic. Thus M = Wψ is the mapping torus of a symplectomorphism ψ

of (W, ω̄) with ω induced by ω̄ and λ = π∗dφ, where φ is the coordinate on S1. Now
every isotopy of symplectomorphisms ψt induces a stable homotopy on M . (For this, we
always identify Wψ0 with Wψt by the diffeomorphism (φ, x) 7→ (φ, ψtρ(φ) ◦ ψ

−1
0 (x))

for some fixed function ρ : [0, 1] → [0, 1] which equals 0 near 0 and 1 near 1.) Using
Moser’s theorem, this can be used to classify SHS with dλ = 0 in dimension 3. Here we
content ourselves with the following observation that will be needed later.

Lemma 3.29. For any symplectomorphism ψ of a closed symplectic manifold (W,ω)
there exists a symplectic isotopy ψt such that ψ0 = φ and ψ1 = 1 on some open subset
U ⊂ W .

Proof. After a Hamiltonian isotopy we may assume that ψ has a fixed point p. Now
consider the graph gr(ψ) as a Lagrangian submanifold of (W ×W,ω ⊕ −ω). A neigh-
bourhood of the diagonal 1 ⊂ W ×W is symplectomorphic to a neighbourhood of the
zero section in the cotangent bundle T ∗1. Since gr(ψ) intersects the zero section at (p, p)
it can be written nearby as the graph of an exact 1-form dH on 1 with H(p, p) = 0 and
dH(p, p) = 0. Replacing H by a function which vanishes identically near (p, p) thus
yields a symplectic isotopy from ψ to a symplectomorphism ψ1 which equals the identity
near p. ut
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Corollary 3.30. Any SHS (ω, λ) with dλ = 0 on a closed 3-manifold M is stably homo-
topic to (ω1, λ1) such that there exists an embedded solid torus S1

× D in M on which
(ω1, λ1) = (dαst, αst) with

αst = r
2dθ + (1− r2)dφ.

Proof. By the discussion preceding Lemma 3.29, after a stable homotopy we may assume
thatM = Wψ is the mapping torus of a symplectomorphism ψ of (W, ω̄) with ω induced
by ω̄ and λ = π∗dφ. By Lemma 3.29, we may further assume that ψ = 1 on some
open region U ⊂ W . Pick a disk D = {r ≤ r0} ⊂ U on which ω̄ = d(r2dθ) in polar
coordinates, so on Dψ ∼= S1

× D we have ω = d(r2dθ) and λ = dφ. Define a new
trivialization of Dψ ∼= S1

×D by composing the previous one with the diffeomorphism
(r, θ, φ) 7→ (r, θ − φ, φ) of S1

×D. In this trivialization we then have

ω = d(r2dθ + (1− r2)dφ) = dαst, λ = dφ.

Since ω has constant slope (1−i)/
√

2 on S1
×D, we can homotope the stabilizing form λ

to make it restrict as r2dθ + (1− r2)dφ on a smaller solid torus S1
×D′. ut

3.8. Contact regions

Proposition 3.31. Any SHS (ω, λ) on a closed 3-manifold M is stably homotopic to
(ω1, λ1) such that there exists an embedded solid torus S1

×D inM on which (ω1, λ1) =

(dαst, αst) with
αst = r

2dθ + (1− r2)dφ.

Proof. Corollary 3.30 allows us to assume that the function f = dλ/ω is not identically
zero. After applying Corollary 3.24 to a value a 6= 0 of f we may assume that dλ = aω
on some open region U ⊂ M . Suppose first that a > 0, so after rescaling we may assume
dλ = ω onU . Pick any contractible transverse knot γ inU . Pick a neighbourhood S1

×D

of γ on which the contact structure is given by ker λ = kerαst. Then there exists a contact
homotopy λt rel ∂U (with fixed kernel on S1

× D) from λ to a contact form λ1 which
equals αst on a neighbourhood S1

×D of γ , so we are done in this case.
If a < 0 we rescale so that dλ = −ω on U . Let Ū be the neighbourhood U ⊂ M with

the orientation reversed (opposite to that of M). Then λ is a positive contact form on Ū .
Thus, there exists a contact homotopy λt rel ∂U from λ to a contact form λ1 which equals
r2dθ + (1− r2)dφ on a neighbourhood S1

×D2 of a contractible transverse knot γ with
dφ ∧ dr ∧ dθ defining the opposite orientation on M . Now consider another embedding
of S1

×D2 inM by composing the old one with the flip map θ 7→ −θ on the right. In the
new coordinates (φ, r, θ) the form λ1 equals −r2dθ + (1− r2)dφ near γ and the volume
form dφ ∧ dr ∧ dθ defines the positive orientation on M . Define ωt := −dλt . Note that
ω1 = −dλ1 = 2rdr ∧ (dθ + dφ). Now we homotope rel ∂(S1

× D2) the stabilizing
form λ1 to λ2 (still stabilizing ω1) that restricts as dφ to a neighbourhood of γ . (This
uses constancy of the slope of ω1.) Then we homotope the HS ω1 to ω2 (supported in
the neighbourhood {λ2 = dφ} of γ ) restricting as 2rdr ∧ (dθ − dφ) to an even smaller
neighbourhood of γ (by changing the dφ summand only). The last step is to homotope
(supported in {ω2 = 2rdr ∧ (dθ − dφ)}) the stabilizing form λ2 to λ3 that restricts as
r2dθ + (1− r2)dφ to a neighbourhood of γ . ut
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3.9. Genuine stable Hamiltonian structures

Let h : I → C2 be an immersion. In the notation introduced at the beginning of Sec-
tion 3.4 set ωh := dαh. Set Lh := kerωh.

Definition 3.32. We say that the slope function k of ωh
• twists if k(r) ∈ S1 makes one full turn clockwise and one full turn counterclockwise as
r runs through I ;
• is nowhere constant if for any interval (a, b) ⊂ I the restriction k|(a,b) is not constant.

Lemma 3.33. If k twists, then the form αh is not contact.

Proof. Assume for contradiction that αh is contact. Recall that this means that 〈h, ih′〉
6= 0 or equivalently that h always turns clockwise (counterclockwise). Monotonicity of
the angle of h and twisting of h′/|h′| imply that for some r ∈ I the vectors h(r) and h′(r)
are real multiples of each other, i.e. 〈h(r), ih′(r)〉 6= 0, which is a contradiction. ut

Lemma 3.34. Let (ω, λ) be any SHS defining the foliation Lh above. If k twists, then the
proportionality coefficient f := dλ/ω is not globally constant.

Proof. Assume for contradiction that f = dλ/ω is constant. Then by Theorem 3.3 we
can choose coordinates in which both the Hamiltonian structure ω and the stabilizing
form λ are T 2-invariant. So we can write

λ = g1dθ + g2dφ + g3dr = λg + g3dr

for some g = (g1, g2) : I → C and g3 : I → R. If f 6= 0 then λ is contact. Now
λ ∧ dλ = (λg + g3dr) ∧ dλg = λg ∧ dλg , so λg is contact and ker dλg = Lh. The
contradiction follows from Lemma 3.33 with g in place of h. If f = 0, then the functions
g1 and g2 above are constant. The Reeb vector field R spans Lh and thus is proportional
to ik. So λ(R) is a multiple of 〈g, ik〉. Constancy of g and twisting of k force the last
expression to vanish for some r ∈ I , contradicting the condition λ(R) = 1. ut

Definition 3.35. Let L be a stable Hamiltonian foliation on a 3-manifoldM . We say that
L is genuine if for every SHS (ω, λ) defining L the proportionality coefficient f := dλ/ω
is not globally constant on M . A SHS defining a genuine 1-foliation is called genuine.

Theorem 3.36. If a stable Hamiltonian foliation L on M has an integrable region K in
which the slope function k twists, then for any SHS (ω, λ) defining L the proportionality
coefficient f := dλ/ω is not constant on K . In particular, L is genuine. If in addition k
is nowhere constant, then any SHS (ω, λ) defining L satisfies the assumptions of Theo-
rem 3.7(c).

Proof. The first assertion follows from Lemma 3.34. Assume in addition that S is
nowhere constant and write K ∼= I × T 2. Then for any SHS (ω, λ) the proportionality
coefficient f = dλ/ω must be constant on irrational tori and thus on all the tori {r}×T 2,
so by shrinking I , if necessary, we can achieve that f is a submersion. This matches the
assumptions of Theorem 3.7(c). ut

The following is the main result of this subsection.
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Theorem 3.37. Any SHS on a closed 3-manifold can be homotoped to a SHS (ω, λ) with
the following properties. The 1-dimensional foliation L associated with (ω, λ) satisfies
the assumptions of Theorem 3.36 (has an integrable region K in which the slope function
is nowhere constant and twists).

Moreover, we can achieve that K = γ × (D2
\ {0}) for an embedded solid torus

γ ×D2 around a contractible periodic orbit γ of (ω, λ).

Proof. In view in Proposition 3.31, we can achieve that (ω, λ) restricts to some embedded
solid torus S1

× D2 ∼= W ⊂ M (where D2
= {r ≤ r0} ⊂ R2 for some r0 < 1) as

(dαst, αst), with αst as in Proposition 3.31. Moreover, we can arrange that the periodic
orbit γ := S1

× (0, 0) is contractible in M . We write αst = αh0 for h0
= (h0

1, h
0
2) =

(r2, 1 − r2). Note that W \ γ is diffeomorphic to (0, r0] × T 2 with coordinates (r, θ, φ)
and we fall into the setup of Section 3.4. We consider a homotopy of immersions hs =
(hs1, h

s
2) : (0, r0] → R2 as shown in Figure 1. (The curve h0 is dashed, the curve h1 is

Fig. 1. The slope function twists.

bold, and the points r = 0, ε, r0 − ε1, r0 follow the direction of increase of the parameter
r on the curve h1.) This homotopy is fixed and equal to (r2, 1 − r2) near r = 0 and
r = r0, so we can stabilize it by Corollary 3.12. Since the resulting homotopy of SHS is
supported in the interior ofW \γ , it extends to the whole ofM . By construction the kernel
foliation L of ω satisfies the assumptions of Theorem 3.36 on the integrable regionW \γ .

ut

3.10. Nontame stable Hamiltonian structures

As a byproduct of the techniques developed in Section 3.4, we obtain examples of SHS
which are not weakly tame in the sense of [13].
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Consider a closed (2n− 1)-manifold M with a Hamiltonian structure ω. Assume that
[ω] vanishes on π2(M). Denote by R the space of contractible closed Reeb orbits. For
γ ∈ R we define the ω-energy by

Eω(γ ) :=

∫
D

γ̄ ∗ω,

where γ̄ : D → M is a smooth map from the unit disk with γ̄ |∂D = γ . Note that this
definition is unambiguous because of the assumption on [ω]. For a stabilizing 1-form λ

we define the λ-energy of γ by

Eλ(γ ) :=

∫
γ

λ.

Definition 3.38. Following [13], we say that a HS ω as above is

• weakly tame if for any compact interval [a, b] ⊂ R the set of γ ∈ R with Eω(γ ) ∈
[a, b] is compact (with respect to the C∞-topology);
• tame if for some (and hence every) stabilizing 1-form λ there exists a constant cλ > 0

such that Eλ(γ ) ≤ cλ|Eω(γ )| for all γ ∈ R.

Remark 3.39. Phrased differently, weak tameness means that the function Eω : R→ R
is proper. It follows from Ascoli–Arzelà theorem that for any SHS the function (Eω, Eλ) :
R→ R2 is proper. Thus a SHS is weakly tame whenever Eλ is bounded in terms of Eω
on R, e.g. if (ω, λ) is tame. Note that a SHS induced by a contact structure is tame because
Eλ = Eω in that case.

Corollary 3.40. Let (ω, λ) be a stable Hamiltonian structure as in Theorem 3.37, con-
structed from a contractible knot γ . The (ω, λ) is never tame, and it can be arranged not
to be weakly tame.

Proof. We use the notation from the proof of Theorem 3.37. By construction, ω = dβ

for a 1-form β on M which is of the form h1(r)dφ + h2(r)dθ on the region (0, r0] ×
T 2 around the contractible knot γ . Moreover, we can arrange that γ is contractible and
Eω(γ ) =

∫
γ
β.

By construction, there exists an interval (a, b) ⊂ (0, r0] such that on (a, b)× T 2 the
slope function of β is nowhere constant and twists. By Lemma 3.33, twisting implies that
β is not contact on (a, b) × T 2, so there exists r∗ ∈ (a, b) such that β ∧ dβ = 0 along
{r∗} × T 2. In other words, β(R)|{r∗}×T 2 ≡ 0 for the Reeb vector field R of (ω, λ). Since
the slope function S is not constant near r∗, there exists a sequence {rp}p∈N ⊂ S−1(Q)
with rp → r∗ as p → ∞. Then the foliation L is rational on the tori {rp} × T 2 and
εp := β(R)|{rp}×T 2 → 0 as p → ∞. Let γp be a periodic orbit of R on {rp} × T 2 of
period Tp. Then its λ-energy and ω-energy satisfy

Eλ(γp) =

∫ Tp

0
λ(R) dt = Tp, Eω(γp) =

∫ Tp

0
β(R) dt = εpTp,

which shows that (ω, λ) is never tame.
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For the last statement, we choose the function h(r) in the proof of Theorem 3.37 such
that for some r∗ the following holds: h′(r∗) is rational and h(r∗) is proportional to h′(r∗)
(e.g. h(r∗) = 0). Then each leaf γ of L on the torus {r∗} × T 2 is closed and

∫
γ
β = 0, so

ω is not weakly tame. ut

3.11. Embeddability

Lemma 3.41. Let h = (h1, h2) : (0, 1) → R+ × R+ be an embedding such that
(h1, h2)|(0,ε)∪(1,1−ε) = (r

2, 1−r2) for some ε > 0. Then the corresponding T 2-invariant
Hamiltonian structure d(h1(r)dθ + h2(r)dφ) on (0, 1)× T 2 can be realized as a hyper-
surface in the symplectization (R+×(0, 1)×T 2, d(sαst)). Here s is the coordinate on R+
and αst = r

2dθ + (1− r2)dφ.

Proof. Consider the map f : R+ × R+→ R+ × (0, 1),

f (x1, x2) :=

(
x1 + x2,

√
x1

x1 + x2

)
.

This map is a diffeomorphism with inverse given by

f−1(s, r) = (sr2, s(1− r2)).

Thus it induces a diffeomorphism

F : R+ × R+ × T 2
→ R+ × (0, 1)× T 2, (x1, x2, θ, φ) 7→ (f (x1, x2), θ, φ),

which satisfies

F ∗(sαst) = F
∗(sr2dθ + s(1− r2)dφ) = x1dθ + x2dφ.

The embedding h = (h1, h2) : (0, 1)→ R+ × R+ induces an embedding

H : (0, 1)× T 2
→ R+ × R+ × T 2, (r, θ, φ) 7→ (h1(r), h2(r), θ, φ).

Hence the composition

F ◦H : (0, 1)× T 2
→ R+ × (0, 1)× T 2

is an embedding satisfying

(F ◦H)∗(sαst) = H
∗(x1dθ + x2dφ) = h1(r)dθ + h2(r)dφ.

Taking the exterior derivative on both sides gives the lemma. ut

As an application of this lemma, let us apply the construction of Theorem 3.37 in Sec-
tion 3.9 to the SHS (ω = dα, λ = α) corresponding to a Stein fillable contact manifold
(M, α). Here we choose the function h1 to take values only in the first quadrant, as shown
in Figure 1. Since the symplectization of (M, α) then embeds into the completion of the
Stein filling, Lemma 3.41 implies
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Corollary 3.42. Let (ω = dα, λ = α) be the SHS corresponding to a Stein fillable
contact 3-manifold (M, α). Then the resulting stable Hamiltonian structure (ω1, λ1) in
Theorem 3.37 embeds as a hypersurface in the completion of the same Stein manifold.
For example, applying this to the standard contact structure on S3, we obtain a hypersur-
face bounding a ball in standard R4 whose characteristic foliation has the properties in
Theorem 3.36.

Remark 3.43. Lemma 3.41 fails without the assumption that (h1, h2) takes values only
in the positive quadrant—see Remark 6.23.

3.12. Foliated cohomology of integrable regions

Proposition 3.44. Let ω be a Hamiltonian structure on a closed 3-manifold M with
kerω = L. If L possesses an integrable region on which the slope function is nonconstant,
then the foliated cohomology H 2

L(M) is infinite-dimensional.

Remark 3.45. It follows that under the hypotheses of Proposition 3.44, ker(κ : H 2
L(M)

→ H 2(M;R)) is infinite-dimensional.

Proof of Proposition 3.44. Let I × T 2 be an open integrable region on which ω = dα

with
α = h1(r)dθ + h2(r)dφ

and nonconstant slope function S(r) = h′(r)/|h′(r)|. After shrinking I we may assume
that S(r) is nowhere constant in I . Note that the kernel foliation L is positively generated
by the vector field

R = h′1(r)∂φ − h
′

2(r)∂θ .

Consider first a 2-form β ∈ �2
L(I × T

2). Then β = f dα for an R-invariant function f .
As f must be constant on each irrational torus, and irrational tori are dense (because the
slope of R is nowhere constant), f = f (r) depends only on r . This shows that

�2
L(I × T

2) = ker(d : �2
L→ �3

L) = {f (r)dα | f : I → R}.

Next we compute the image of d : �1
L → �2

L. Thus consider µ ∈ �1
L. The condition

iRµ = 0 implies
µ = adr + b(h′1(r)dθ + h

′

2(r)dφ)

for functions a, b : I × T 2
→ R. By the discussion above, iRdµ = 0 implies that

dµ = f (r)dα for a function f : I → R, which is equivalent to the conditions

∂

∂r
(bh′1)−

∂a

∂θ
= f (r)h′1(r),

∂

∂r
(bh′2)−

∂a

∂φ
= f (r)h′2(r),

h′1(r)
∂b

∂φ
− h′2(r)

∂b

∂θ
= 0.
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The last equation shows that b is invariant under R and thus a function b = b(r) of r
only. The first two equations then show that ∂a/∂θ and ∂a/∂φ depend only on r , so by
periodicity a = a(r) depends only on r . The first two equations now combine to

b(r)h′′(r)+ b′(r)h′(r) =
d

dr
(b(r)h′(r)) = f (r)h′(r).

Since h′′(r) is linearly independent of h′(r) for almost all r , this implies b ≡ 0, and
therefore µ = a(r)dr and dµ = 0. So we have shown

im(d : �1
L→ �2

L) = 0 and H 2
L(I × T

2) = {f (r)dα | f : I → R}.

Now if f ∈ C∞0 (I ) has compact support the 2-form f (r)dα extends by zero to a closed
form in �2

L(M) which by the preceding argument is exact iff f ≡ 0, so H 2
L(M) contains

the infinite-dimensional subspace {f (r)dα | f ∈ C∞0 (I )}. ut

3.13. Overtwisted disks

Legendrian and transverse knots play a central role in contact topology. The basic rea-
son for this is that, as a consequence of Gray’s stability theorem, the homotopy types of
the spaces of Legendrian and transverse knots do not change during contact homotopies
(see below for the precise formulation). In this subsection we show that any SHS in di-
mension 3 is homotopic to one containing an overtwisted disk, and as a consequence,
the homotopy types of the spaces of Legendrian and transverse knots may change during
stable homotopies.

Recall that an overtwisted disk in a contact 3-manifold (M, ξ = ker λ) is an embedded
disk Dot ⊂ M such that TDot = ξ along ∂Dot.

Proposition 3.46. Any SHS (ω0, λ0) on a closed oriented 3-manifold M is stably homo-
topic to a SHS (ω1, λ1) such that ω1 = dλ1 on an open region U ⊂ M and there exists
an overtwisted disk Dot ⊂ U .

Proof. By Proposition 3.31, after a stable homotopy we may assume that there exists an
embedded solid torus S1

×D in M on which (ω0, λ0) = (dαst, αst) with

αst = r
2dθ + (1− r2)dφ.

Here (φ, r, θ) are polar coordinates on S1
×D and D = {r ≤ r2} for some r2 > 0.

Let ht = (h1t , h2t ) : [0, r2] → R2 be a family of immersions and 0 < r∗ < r0 <

r1 < r2 be points with the following properties (see Figure 2; the curve h0 is dashed, the
curve h1 is bold, and the points r = 0, r∗, r0, r1, r2 follow the direction of increase of the
parameter r on the curve h1; note that the h1-axis is vertical and the h2-axis horizontal):

• h0(r) = (r
2, 1− r2);

• ht (r) = (r
2, 1− r2) near r = 0 and r = r2 for all t ;

• h1(r) = (r
2, 1− r2) for r ∈ [r0, r1];
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Fig. 2. Overtwisted disk.

• h′11h21 − h
′

21h11 > 0 on the interval (0, r1];
• h11(r∗) = 0 and h21(r∗) < 0.

This induces a homotopy of T 2-invariant HS ωt := dαt with

αt := h1t (r)dθ + h2t (r)dφ.

Note that αt = αst near r = 0 and r = r2 for all t , and α1 = αst for r ∈ [r0, r1]. Moreover,
α1 is a positive contact form on {r ≤ r1}. We apply Corollary 3.12 twice. First, we apply
it to the homotopy {ωt }t∈[0,1] to get a family of T 2-invariant 1-forms λt stabilizing ωt .
Second, we apply Corollary 3.12 to the constant homotopy ω1|{r∈[r0,r2]}. This gives us a
stabilizing form λ̂ for ω1|{r∈[r0,r2]} which coincides with α1 on {r ∈ [r0, r0 + ε]} (both
forms equal αst there). Since α1 is a contact form on {r ≤ r1}, the form λ̂ can be extended
from {r ∈ [r0, r2]} to {r ≤ r1} = S1

× D as α1. Thus λ̂ stabilizes ω1 and ω1 = dλ̂ on
U := {r < r0 + ε}. We join λ1 and λ̂ by a linear homotopy. This shows that (ω0, λ0)

is stably homotopic to the SHS (ω1, λ̂). We claim that for each angle φ∗, the set Dot
:= {r ≤ r∗, φ = φ∗} ⊂ U is an overtwisted disk for the contact form λ̂|U = α1|U .
Indeed, the conditions h11(r∗) = 0 and h21(r∗) < 0 imply that along ∂Dot the contact
planes ξ1 = kerα1 and the tangent spaces TDot are both spanned by the vectors ∂r and ∂θ .
Renaming λ1 := λ̂ thus concludes the proof. ut

Now consider a nowhere vanishing 1-form λ on an oriented 3-manifold M with kernel
distribution ξ = ker λ. Following the terminology from contact topology (see e.g. [25]),
we call an oriented knot γ : S1

→ M Legendrian if λ(γ̇ ) ≡ 0, and (positively) transverse
if λ(γ̇ ) > 0. Denote by �1

nv the space of nowhere vanishing 1-forms on M and by 3 the
space of embeddings S1 ↪→ M , both equipped with the C∞-topology, and consider the
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projections

πLeg
: {(λ, γ ) ∈ �1

nv ×3 | λ(γ̇ ) ≡ 0} → �1
nv,

π trans
: {(λ, γ ) ∈ �1

nv ×3 | λ(γ̇ ) > 0} → �1
nv.

Thus the fibres (πLeg)−1(λ) resp. (π trans)−1(λ) are the spaces of Legendrian resp. trans-
verse knots for λ. As a consequence of Gray’s stability theorem, the restrictions of πLeg

and π trans to the preimages of the space of contact forms are locally trivial fibrations. By
contrast, denote by SHS the space of SHS and consider the projections

5Leg
: {(ω, λ, γ ) ∈ SHS ×3 | λ(γ̇ ) ≡ 0} → SHS,

5trans
: {(ω, λ, γ ) ∈ SHS ×3 | λ(γ̇ ) > 0} → SHS.

Corollary 3.47. The projections 5Leg and 5trans are not Serre fibrations.

Proof. By Proposition 3.46 there exists a homotopy (ωt , λt ) of SHS on M with (ω0, λ0)

= (dλst, λst) such that ω1 = dλ1 on an open region U ⊂ M and there exists an over-
twisted disk Dot ⊂ U . We claim that this path in SHS cannot be lifted to a continuous
path γt in the total space of 5Leg with γ1 parametrizing ∂Dot.

Indeed, suppose such a lift γt exists. For each t let tb(γt ) be the Thurston–Bennequin
invariant, defined as the linking number of γt with its pushoff in the Reeb direction. Then
t 7→ tb(γt ) is continuous and integer valued, hence constant, and therefore tb(γ0) =

tb(γ1) = 0. But this contradicts Bennequin’s inequality tb(γ0) ≤ −1 for every Legendrian
knot γ0 in (S3, λst).

This proves that 5Leg is not a Serre fibration. An analogous argument shows that the
path (ωt , λt ) cannot be lifted to a continuous path γt in the total space of 5trans with γ1
parametrizing a positive transverse pushoff of the negatively oriented boundary ∂Dot.

Indeed, suppose such a lift γt exists. For each t let sl(γt ) be the self-linking number,
defined as the linking number of γt with its pushoff in the direction of a nowhere vanishing
section of ker λ over a spanning disk for γt . Then t 7→ sl(γt ) is continuous and integer
valued, hence constant, and therefore sl(γ0) = sl(γ1) = 1 (see [5]). But this contradicts
Bennequin’s inequality sl(γ0) ≤ −1 for every transverse knot γ0 in (S3, λst). ut

3.14. Contact structures as stable Hamiltonian structures

Every positive contact form λ induces a SHS (dλ, λ) and homotopies of contact forms
induce stable homotopies, so we have a natural map

CF/∼→ SHS0/∼

from homotopy classes of positive contact forms to homotopy classes of exact SHS.

Theorem 3.48. On S3 the map CF/∼→ SHS0/∼ is not bijective.
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For the proof, let us fix some conventions. All contact structures will be oriented, so
that the underlying formal structures are oriented plane fields. For a contact form α the
orientation on the contact structure kerα is given by dα. More generally, for any plane
field ξ a 2-form γ restricting as an area form on ξ induces an orientation on ξ . The
notation (ξ, γ ) will stand for the corresponding oriented plane field. The corresponding
homotopy class of oriented plane fields will be denoted by [(ξ, γ )].

Consider

S3
:= {(x1, y1, x2, y2) ∈ R4

| x2
1 + y

2
1 + x

2
2 + y

2
2 = 1}

with its standard orientation. Consider the orientation reversing involution

9 : S3
→ S3, (x1, y1, x2, y2) 7→ (−x1, y1, x2, y2).

For a 1-form α on S3 we set ᾱ := 9∗α. So the standard contact form and its pullback are
given by

λst = x1dy1 − y1dx1 + x2dy2 − y2dx2,

λ̄st = −x1dy1 + y1dx1 + x2dy2 − y2dx2.

Lemma 3.49. The standard contact form and its pullback under 9 represent different
homotopy classes of oriented plane fields:

C := [(ker λst, dλst)] 6= C̄ := [(ker λ̄st, dλ̄st)].

Proof. The vector fields

R+ := −y1∂x1 + x1∂y1 − y2∂x2 + x2∂y2 ,

R− := −y1∂x1 + x1∂y1 + y2∂x2 − x2∂y2

are transverse to ker λst and ker λ̄st, respectively. Moreover, the transverse orientations
defined by these vector fields together with the corresponding orientations of the plane
fields define the standard orientation on S3. We show that (in some trivialization) the
Hopf invariants of these vector fields are different. For this we choose a framing of T S3

as follows:

e1 := R+,

e2 := (−x2∂x1 + y2∂y1 + x1∂x2 − y1∂y2),

e3 := (−y2∂x1 − x2∂y1 + y1∂x2 + x1∂y2).

In this framingR+ is constant and thus has Hopf invariant zero. It remains to computeR−.
For this we use the Riemannian metric 〈 , 〉 on S3 induced by the standard Euclidean
metric on R4. This gives us

〈R−, e1〉 = (x
2
1 + y

2
1)− (x

2
2 + y

2
2),

〈R−, e2〉 = 2(y1x2 + x1y2),

〈R−, e3〉 = 2(y1y2 − x1x2).
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So in complex coordinates z1 = x1+ iy1, z2 = x2+ iy2 the map S3
→ S2 induced by R−

is given by
(z1, z2) 7→ (|z1|

2
− |z2|

2,−2iz1z2)

if we identify S2 with the unit sphere in R× C. Up to a factor of −i this is just the Hopf
fibration and thus has Hopf invariant 1. ut

Proof of Theorem 3.48. Let λot be an overtwisted contact form on S3 with the same
underlying class of oriented plane fields as λst. We distinguish two cases.

Case 1: (dλst, λst) and (dλot, λot) are stably homotopic. Then the map CF/∼ →
SHS0/∼ is not injective.

Case 2: (dλst, λst) and (dλot, λot) are not stably homotopic. In this case, observe that
[(ker λ̄ot, dλ̄ot)] = [(ker λ̄st, dλ̄st)] = C̄. Consider the positive SHS (dλ̄st,−λ̄st) and
(dλ̄ot,−λ̄ot) on S3 and note that their underlying classes of oriented plane fields are both
equal to C̄. Assume for contradiction that the map CF/∼ → SHS0/∼ is surjective.
Then there exist positive contact forms α1 and α2 on S3 such that the SHS (dλ̄st,−λ̄st)

is homotopic to (dα1, α1) and the SHS (dλ̄ot,−λ̄ot) is homotopic to (dα2, α2). Note that
the underlying oriented plane field class for both α1 and α2 is C̄ and the class of λst is
C 6= C̄ by Lemma 3.49. Thus, by uniqueness of the positive tight contact structure on S3

(see [19]), both α1 and α2 must be overtwisted. The classification of overtwisted contact
structures [20] implies that α1 and α2 are homotopic through contact forms. By transitiv-
ity, this implies that the SHS (dλ̄st,−λ̄st) and (dλ̄ot,−λ̄ot) on S3 are homotopic, so the
SHS (dλst, λst) and (dλot, λot) are homotopic, contradicting the assumption of Case 2.

ut

Considerations from symplectic field theory (see Section 6.7) suggest that the SHS
(dλot, λot) and (dλst, λst) on S3 are not stably homotopic. Then Case 1 in the preced-
ing proof would not occur and the discussion of Case 2 shows that the map CF/∼ →
SHS0/∼ would not be surjective. Moreover, this map would be injective in view of the
classification of contact structures on S3 in [19, 20]. This leads us to

Conjecture 3.50. The map in Theorem 1.7 is injective but not surjective.

4. Structure results in dimension three

4.1. A structure theorem

Theorem 4.1. Let (ω, λ) be a SHS on a closed 3-manifold M and set f := dλ/ω. Then
there exists a (possibly disconnected and possibly with boundary) compact 3-dimensional
submanifold N of M , invariant under the Reeb flow, a (possibly empty) disjoint union
U = U1 ∪ · · · ∪ Uk of compact integrable regions and a stabilizing 1-form λ̃ for ω with
the following properties:

• intU ∪ intN = M;
• the proportionality coefficient f̃ := dλ̃/ω is constant on each connected component

of N ;
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• on each Ui ∼= [0, 1] × T 2 the SHS (ω, λ) is exact and T 2-invariant and f (r, z) =
αir + βi for constants αi > 0, βi ∈ R;
• λ̃ is C1-close to λ.

Moreover, if ω is exact we can arrange that f̃ attains only nonzero values on N .

Proof. Let f̃ and the decomposition M =
⋃k
i=1 U

′

i ∪ N = M be obtained from Corol-
lary 3.25. Recall that the U ′i ∼= (a

′

i, b
′

i)× T
2 are open and for r sufficiently close to a′i or

b′i we have {r}×T 2
⊂ N . Thus we may replace each interval by a slightly smaller closed

interval [ai, bi] ⊂ (a′i, b
′

i) such that the closed integrable regions Ui := [ai, bi] × T 2

satisfy
⋃
i intUi ∪ intN = M .

Next recall from Corollary 3.25 that on each Ui ∼= [ai, bi] × T 2 the function f is
given by the projection onto the first factor and f̃ = σ ◦ f for a function σ : R→ R. So
the function f̃ is constant on the tori {r}×T 2, r ∈ [ai, bi]. Therefore, for each integrable
regionUi the full version of Theorem 3.3 applies to give an identificationUi ∼= [0, 1]×T 2

(linear on the first factor) in which both ω and λ̃ are T 2-invariant and ω is exact.
For the last statement, denote by N+, N0, N− the union of components of N on

which f̃ is positive (resp. zero, negative). We want to get rid of N0 if [ω] = 0. Pick
a primitive β of ω and consider the 1-form λt := λ̃ + tβ for small positive t . Then
dλt/ω = f̃ + t , so λt stabilizes ω and has proportionality factor shifted by t . We choose
t such that 0 < t < −minN− f̃ . Then f̃ + t is positive on N+ ∪N0 and negative on N−,
so the stabilizing 1-form λt is nonzero on N . Clearly, we can choose λt C1-close to λ̃ and
hence to λ. Renaming back λt to λ̃ concludes the proof of Theorem 4.1. ut

Theorem 4.1 is the formulation of the structure theorem that will be most useful for ap-
plications. The following corollary gives an alternative formulation in which the structure
is more restrictive but we lose C1-closeness.

Corollary 4.2. Every stable Hamiltonian structure on a closed 3-manifold M is stably
homotopic to a SHS (ω, λ) for which there exists a (possibly disconnected and possibly
with boundary) compact 3-dimensional submanifoldN = N+∪N−∪N0 ofM , invariant
under the Reeb flow, and a (possibly empty) disjoint union U = U1∪· · ·∪Uk of compact
integrable regions with the following properties:

• intU ∪ intN = M;
• dλ = ±ω on N± and dλ = 0 on N0;
• on each Ui ∼= [0, 1] × T 2 we have (ω, λ) = (ωh, λg) for functions h, g : [0, 1] → C

satisfying (18).

Moreover, we can always arrange that N+ is nonempty, and if ω is exact we can arrange
that N0 is empty.

Proof. Let a SHS (ω, λ) be given. After applying the homotopy in Proposition 3.31, we
may assume that dλ = ω on some open region V ⊂ M , so 1 is a singular value of the
function f = dλ/ω.

After applying Theorem 4.1 and renaming λ̃, f̃ back to λ, f we may assume that there
exist invariant compact 3-dimensional submanifolds N with the following properties:
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• intU ∪ intN = M;
• on each connected component Ni of N we have f ≡ ci for some constant ci ∈ R;
• on each Ui ∼= [0, 1] × T 2 the SHS (ω, λ) is exact and T 2-invariant.

Moreover, if ω is exact we can arrange that ci 6= 0 for all i. Since 1 was a singular value
of the original function f , there will be some positive ci .

By Lemma 3.9, after shrinking the Ui may assume that on each Ui ∼= [0, 1] × T 2 we
have (ω, λ) = (ωh, λg) for functions h, g : [0, 1] → C. By Remark 3.13, after a stable
homotopy supported in intU we can assume that the slope function h′/|h′| is nonconstant
on each Ui \N .

Now we define a homotopy of stabilizing 1-forms λt , t ∈ [0, 1], for ω as follows. On
each component Ni with ci = 0 we set λt := λ. On each component Ni with ci 6= 0 we
set

λt := (1− t)λ+ t |ci |−1λ.

We use Proposition 3.17 to extend this homotopy to a homotopy of stabilizing 1-forms
over all integrable regions Ui . The homotopy starts at λ0 = λ, and the proportionality
coefficient f1 = dλ1/ω of λ1 takes only values 0, 1,−1 on N . Renaming λ1 back to λ
concludes the proof of Corollary 4.2. ut

The following version of the structure theorem will be used in [17].

Corollary 4.3. Every stable Hamiltonian structure on a closed 3-manifold M is stably
homotopic to a SHS (ω, λ) for which there exists a (possibly disconnected and possibly
with boundary) compact 3-dimensional submanifoldN = N+∪N−∪N0 ofM , invariant
under the Reeb flow, and a (possibly empty) disjoint union U = U1∪· · ·∪Uk of compact
integrable regions with the following properties:

• intU ∪ intN = M;
• the proportionality coefficient f := dλ/ω is constant positive resp. negative on each

connected component of N+ resp. N−;
• on each Ui ∼= [0, 1] × T 2 the SHS (ω, λ) is exact and T 2-invariant and f is nowhere

zero;
• onN0 there exists a closed 1-form λ̄ representing a primitive integer cohomology class
λ̄ ∈ H 1(N0

;Z) such that λ̄ ∧ ω > 0 and λ̄ is T 2-invariant near ∂N0.

Proof. Consider a SHS (ω, λ) and apply the Structure Theorem 4.1 to find a new stabiliz-
ing 1-form λ̃. Denote byN+, N0, N− the union of components ofN on which f̃ = dλ̃/ω
is positive (resp. zero, negative). If the original proportionality coefficient f = dλ/ω is
nowhere zero, then we may assume that the new proportionality coefficient f̃ is nowhere
zero and (ω, λ̃) has all the desired properties (with N0

= ∅). So suppose that f has
nonempty zero set f−1(0). The proof of Theorem 4.1 (using Proposition 3.23 with Z the
set of critical values together with the value a = 0) allows us to arrange that f−1(0) is
contained in the interior of the flat part N0.

The new stabilizing form λ̃ restricts as a closed form toN0. WeC1-perturb λ̃|N0 to get
a 1-form λ̂ on N0 representing a rational cohomology class. Let V ∼= [0, 1] × T 2

⊂ N0

be a part of an integrable region sitting in N0 as a collar neighbourhood of one of its



374 Kai Cieliebak, Evgeny Volkov

boundary components {1} × T 2. Since the restriction λ̃|V is T 2-invariant and λ̂ is C1-
close to λ̃, the T 2 average λinv of λ̂ on V is C1-close to λ̂. As λinv and λ̂ represent the
same cohomology class on V , we can write λ̂ = λinv+ dχ for a smooth function χ on V .
Moreover, C1-closeness of λinv and λ̂ allows us to choose χ also C1-small. Let ρ be a
cutoff function on [0, 1] which equals 1 near 0 and 0 near 1. Set λ̄ := λinv + d(ρχ) on V
and extend this form as λ̂ inside N0. The closed form λ̄ is T 2-invariant near the boundary
of N0. Note also that

λ̄− λ̂ = λinv + d(ρχ)− (λinv + dχ) = d(ρχ)− dχ = d(χ(ρ − 1))

on V . Therefore, the difference λ̄ − λ̂ is exact on N0 and thus λ̄ represents a rational
cohomology class. Assume the procedure above has been performed near all boundary
components of N0. Now C1-smallness of χ implies C1-smallness of ρχ . This together
with the computation above and the C1-smallness of the difference λ̂ − λ̃ ensures that
λ̄ ∧ ω > 0 on N0. After multiplying λ̄ with a rational number we may assume that it
represents a primitive integer cohomology class in H 1(N0

;Z).
The set N0 and the 1-form λ̄ on it have the desired properties. However, the new

proportionality coefficient f̃ may still vanish on some integrable region Ui . To remedy
this, we choose δ > 0 so small that {f < δ} ⊂ N0. Now we apply Theorem 4.1 again to
the original SHS (ω, λ) to obtain new λ̃, f̃ and new regions Ñ±, Ñ0, Ũi . Moreover, we
can make ‖λ̃− λ‖C1 so small that Ñ0

⊂ {f̃ = 0} ⊂ {f < δ} ⊂ N0. In particular, f̃ does
not vanish on a neighbourhod W of M \ intN0. Now the SHS (ω, λ̃), the old set N0 and
1-form λ̄, and the intersections of the new sets Ũi and Ñ± with W satisfy all conditions
in Corollary 4.3. ut

4.2. Discreteness of homotopy classes of stable Hamiltonian structures

Theorem 4.4. Let (ω̄, λ̄) be a SHS on a closed 3-manifoldM . Then for every SHS (ω, λ)
which is sufficiently C5-close to (ω̄, λ̄) and satisfies [ω] = [ω̄] ∈ H 2(M;R) there exists
a stable homotopy (ωt , λt ), t ∈ [0, 1], such that ω0 = ω̄ and ω1 = ω. Moreover, the
homotopy ωt can be chosen C1-small.

Corollary 4.5. For any closed oriented 3-manifold M and cohomology class η ∈
H 2(M;R) there are at most countably many homotopy classes of SHS representing η.

Proof. Consider a family of pairwise nonhomotopic SHS (ωi, λi)i∈I representing the
class η, for some index set I . Consider the space SHSη of SHS representing η, equipped
with the C5-topology. By Theorem 4.4, each ωi has an open neighbourhood Ui in SHSη
such that all elements in Ui are stably homotopic to (ωi, λi). Hence Ui ∩ Uj = ∅ for
i 6= j , so the (Ui)i∈I are disjoint open sets in SHSη. Since SHSη is second countable
(as a subset of the second countable linear space of pairs of 2- and 1-forms), this is only
possible if I is countable. ut

Proof of Theorem 4.4. Step 1. Fix a SHS (ω̄, λ̄) on a closed 3-manifold M . Pick an
adapted decomposition M =

⋃
i Ui ∪N as in Theorem 4.1.
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Consider a SHS (ω, λ) sufficiently C5-close to (ω̄, λ̄) with [ω] = [ω̄]. By Theo-
rem 3.7(b), after pulling back (ω, λ) by a diffeomorphismC2-close to identity, we may as-
sume that (ω, λ) is exact and T 2-invariant on Ui and C1-close to (ω̄, λ̄). By Remark 3.13
we can adjust (ω̄, λ̄) so that it has nonconstant slope on each Ui .

By Lemma 3.28 we can write ω = ω̄ + dα for a C1-small 1-form α. After applying
Lemma 3.9(b) and shrinking the Ui , we may assume that α is T 2-invariant on each Ui
(and the slope of ω̄ is still nonconstant on the new Ui).

Now we replace λ̄ by the new stabilizing 1-form provided by Theorem 4.1 (C1-close
to the old one and still denoted by λ̄) such that f̄ = dλ̄/ω̄ is constant on each connected
component of N .

Step 2. Consider first the region N . Fix a smooth function τ : [0, 1] → [0, 1] which
equals 0 near 0 and 1 near 1 and define ωt := ω̄+ τ(t)dα on N . Denote by Nc the union
of components ofN on which f̄ ≡ c ∈ R and define 1-forms λt onN by λt := λ̄+τ(t)cα
on Nc. These 1-forms are C1-close to λ̄ and satisfy dλt = c(ω̄ + τ(t)dα) = cωt on Nc,
so λt stabilizes ωt on N . It remains to extend the homotopy (ωt , λt ) over the integrable
regions Ui .

Step 3. Consider an integrable region Ui ∼= [0, 1] × T 2. After applying Lemma 3.9(c)
and shrinking the Ui , we can write ω̄ = dαh̄, λ̄ = λḡ , ω = dαh, λ = λg , and α = αξ
for functions h̄, ḡ, ξ, h = h̄ + ξ, g : [0, 1] → C, where the pairs (h̄, ḡ) and (h, g)
satisfy (18) and ξ is C1-small. For some small ε the homotopy ωt is already defined
on [0, ε] ∪ [1 − ε, 1] × T 2 and we can write it as ωt = dαht for ht = h̄ + τ(t)ξ .
Using Remark 3.13 we adjust ξ on [ε, 1 − ε] so that the slope (h̄ + ξ)′/|(h̄ + ξ)′| is
nonconstant. We extend the homotopy ht from [0, ε] ∪ [1 − ε, 1] to [0, 1] so that the
slope h′t/|h

′
t | is nonconstant on [ε, 1−ε] throughout the homotopy and ht stays in a small

C1-neighbourhood of h̄. Since on [0, ε] ∪ [1 − ε, 1] × T 2 the homotopy ωt is stabilized
by αt , Proposition 3.17 allows us to extend this homotopy throughout [0, 1] × T 2. This
concludes the proof of Theorem 4.4. ut

4.3. Approximation of stable Hamiltonian structures by Morse–Bott ones

Theorem 4.6. For any SHS (ω, λ) on a closed oriented 3-manifold M and any ε > 0
there exists a stable homotopy γ = {(ωt = ω + dµt , λt )}t∈[0,1] such that (ω1, λ1) is
Morse–Bott and

‖γ ‖C1 := max
t∈[0,1]

(‖µ̇t‖C1 + ‖λ̇t‖C1) < ε.

Let us first recall the definition of Morse–Bott from [9]. A SHS (ω, λ) with Reeb vector
field R is called Morse–Bott if the following holds: For all T > 0 the set NT ⊂ M

formed by the T -periodic Reeb orbits is a closed submanifold, the rank of ω|NT
is locally

constant, and TpNT = ker(Dp8T − 1) for all p ∈ NT , where 8t is the Reeb flow. Note
that the case dimNT = 1 corresponds to nondegeneracy of closed Reeb orbits. In this
case we call the SHS Morse.

Next we prove a version of Theorem 4.6 for T 2-invariant SHS. Consider an integrable
region I × T 2 with SHS (ωh, λg) as in Section 3.4, h = (h1, h2) and g = (g1, g2). Its
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Reeb vector field is given by

R =
−h′2∂θ + h

′

1∂φ

h′1g2 − h
′

2g1
.

So T 2-families of periodic Reeb orbits occur whenever the slope h′/|h′| is rational.

Lemma 4.7. (a) The SHS (ωh, λg) on I ×T 2 is Morse–Bott iff h′′1h
′

2−h
′

1h
′′

2 6= 0 when-
ever h′/|h′| is rational.

(b) Assume that (ωh, λg) is already Morse–Bott in a neighbourhood of ∂I×T 2. Then for
each ε > 0 there exists a stable homotopy γ = {(ωht , λgt )}t∈[0,1] such that (ωh1 , λg1)

is Morse–Bott and ‖γ ‖C1 < ε.

Proof. (a) The Reeb flow for time T is given by

8T

rθ
φ

 =
 r

θ − k2(r)T

φ + k1(r)T

 , ki :=
h′i

h′1g2 − h
′

2g1
,

and its linearization equals

D8T =

 1 0 0
−k′2T 1 0
k′1T 0 1

 .
Thus ker(D8T −1) = span{∂θ , ∂φ} iff (k′1, k

′

2) 6= (0, 0). A short computation shows that
the latter condition is equivalent to h′′1h

′

2 − h
′

1h
′′

2 6= 0.
(b) Suppose that (ωh, λg) is Morse–Bott near ∂I , but not on all of I (otherwise there

is nothing to show). Then h′/|h′| is not constant on I . By replacing h with h̃ := h + ξ

for a C∞-small perturbation ξ supported away from the boundary we can arrange that
h̃′′1h̃
′

2 − h̃
′

1h̃
′′

2 6= 0 whenever h̃′/|h̃′| is rational, and h̃′/|h̃′| is still nonconstant. Then
according to Lemma 3.15 we can C1-perturb g accordingly rel boundary so that (18)
continues to hold.

It remains to check C1-smallness of the corresponding stable homotopy γ . It can be
written as (ωt , λt ) = (dαh + tdαξ , λgt ), t ∈ [0, 1], where gt is obtained from h+ tξ by
Lemma 3.15. We can take as primitives µt = tαξ , so that µ̇t = αξ , which is C1-small
if ξ is. The derivative λ̇gt is C1-small because ġt is, due to the estimate ‖ġt‖C1 ≤ ‖ξ‖C1

from Lemma 3.15(b). ut

Proof of Theorem 4.6. We will construct the homotopy γ in four steps, each step pro-
viding a C1-small homotopy {γi(t)}t∈[0,1]. The desired homotopy {γ (t)}t∈[0,1] will then
be given by γ (t) = γi(4t) for t ∈ [(i − 1)/4, i/4]. Since ‖γ ‖C1 ≤ 4 maxi ‖γi‖C1 , the
homotopy γ will be C1-small as well.

Step 1. Given (ω, λ), let λ̃ be the stabilizing 1-form for ω given by Theorem 4.1. We
linearly homotope λ to λ̃ by λt := (1−t)λ+t λ̃. Since λ̃ isC1-close to λ, the corresponding
stable homotopy γ = {ω, λt }t∈[0,1] is C1-small. We rename λ̃ back to λ and f̃ back to f .
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Step 2. Let Ui ∼= [0, 1] × T 2 be one of the integrable regions from Theorem 4.1. Recall
that in the situation of Theorem 4.1, for some ε > 0 and some constants c−, c+ ∈ R we
have dλ = c−ω for r ∈ [0, 2ε] and dλ = c+ω for r ∈ [1 − 2ε, 1]. Since (ω, λ) is exact
and T 2-invariant on [0, 1] × T 2, by Lemma 3.9 we can write ω = dαh and λ = λg +

g3(r)dr for functions h, g : [0, 1] → C satisfying (18) and g3 : [0, 1] → R. (The term
g3(r)dr does not affect the stabilization property and will remain unchanged throughout
the following discussion.) Moreover, we have g = c±h+d± on [0, 2ε] resp. [1−2ε, 1], for
constants d± ∈ C. Consider a C∞-small perturbation ξ supported in (0, 2ε)∪ (1− 2ε, 1)
of h such that the slope (h + ξ)′/|(h + ξ)′| is constant irrational near ε and 1 − ε. The
corresponding stable homotopy γ = {ωht , λgt + g3(r)dr}t∈[0,1] with ht = h + tξ and
gt = cωht + d± on [0, 2ε] resp. [1− 2ε, 1] is clearly C1-small. We rename (h1, g1) back
to (h, g).

Step 3. After Step 2 we may assume that the slope h′/|h′| is constant irrational near ε and
1−ε. According to Lemma 4.7, we can modify (h, g) by a C1-small homotopy supported
in (ε, 1− ε) to make the SHS Morse–Bott on a neighbourhood of [ε, 1− ε] × T 2. After
having performed this homotopy, denote by Y ⊂ M the union of the [ε, 1 − ε] × T 2 for
all integrable regions. Then M \ intY =

⋃
i Ni is a disjoint union of compact regions Ni

on which dλ = ciω for constants ci ∈ R. Moreover, each boundary component of Ni is a
2-torus lying in an integrable region in which the Reeb vector field has irrational slope.

Step 4. Consider a region N = Ni as in Step 3 on which dλ = cω for some constant
c ∈ R. Note that the Reeb vector field has no periodic orbits near ∂N . According to
[12, Theorem B.1], we can find a C∞-small 1-form ν compactly supported in intN such
that all periodic orbits of ω + dν in N are nondegenerate. (This is proved in [12] in the
case without boundary; it carries over to the case with boundary provided there are no
periodic orbits near the boundary.) We replace λ by the stabilizing form λ+cν on N . The
corresponding stable homotopy {ω+ tdν, λ+ tcν}t∈[0,1] is C1-small. Performing such a
perturbation on every regionNi , we obtain the desired Morse–Bott SHS, and Theorem 4.6
is proved. ut

5. Deformations of stable Hamiltonian structures

Throughout this section, (ω, λ) is a fixed stable Hamiltonian structure with Reeb vector
field R.

Definition 5.1. A (possibly nonexact) deformation of ω is (the germ of) a smooth family
{ωt }t∈[0,ε) of closed 2-forms with ω0 = ω. It is called exact if [ω̇t ] = 0. A (possibly
nonexact) stable deformation (ω, λ) is (the germ of) a smooth family {(ωt , λt )}t∈[0,ε) of
SHS with (ω0, λ0) = (ω, λ). We call a deformation {ωt }t∈[0,ε) on ω stabilizable if for
some δ ≤ ε there exists a smooth family {λt }t∈[0,δ) of stabilizing 1-forms for ωt with
λ0 = λ.

Note that, by contrast to the rest of the paper, in this section we consider exact as well
as nonexact deformations.
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Our goal in this section is to describe the set of those deformations that are stabi-
lizable. In full generality this question seems to be quite hard and we have been able to
answer it only in some special cases. In particular, we provide examples of (exact as well
as nonexact) deformations that are not stabilizable.

5.1. Linear stabilizability

Linearizing at t = 0 gives a necessary linear condition for stabilizability. To derive it,
consider a (possibly nonexact) stable deformation {(ωt , λt )}t∈[0,ε) of (ω0, λ0) = (ω, λ)

with Reeb vector fields Rt . Differentiating the equations iRtωt = 0 = iRt dλt at t = 0
yields

iṘ0
ω + iRω̇0 = 0 = iṘ0

dλ+ iRdλ̇0.

For given ω̇0, we consider the first equation

i
R̂
ω = −iRω̇0 (26)

as an equation for R̂ = Ṙ0. Note, first, that equation (26) is always solvable because
its right-hand side evaluates to zero on the kernel of ω and, second, that the difference
between any two solutions of this equation is a multiple of R. Fixing a solution R̂ of (26),
we consider the second equation

iRdλ̂ = −iR̂dλ (27)

as an equation for the 1-form λ̂. Note that the right-hand side of (27) does not depend on
the choice of R̂ because the difference between any two such choices is a multiple of R
contracting to zero with dλ.

We call a deformation {ωt }t∈[0,ε) of ω linearly stabilizable if equation (27) has a
solution, where R̂ is determined by (26). Note that this condition depends only on ω̇0. We
can reformulate it as follows:

Lemma 5.2. A (possibly nonexact) deformation {ωt }t∈[0,ε) is linearly stabilizable if and
only if there exists a smooth family {(λt , Rt )}t∈[0,ε) of 1-forms and vector fields satisfying
(λ0, R0) = (λ, R), iRtωt = 0, and iRt dλt = O(t

2).

Proof. The “if” follows from the preceding discussion. For the “only if”, assume that
there exists λ̂ solving (27). Consider the linear family of 1-forms λt := λ0 + t λ̂ for
t ∈ [0, ε). Pick a smooth family of vector fields Rt spanning kerωt with R0 = R (we
may normalize it by λt (Rt ) = 1 for small t). As above, differentiating iRtωt = 0 at t = 0
shows that R̂ = Ṙ0 solves (26). In order to check that iRt dλt = O(t

2) we differentiate
the expression iRt dλt at t = 0. This gives us

d

dt

∣∣∣∣
t=0
iRt dλt =

d

dt

∣∣∣∣
t=0
iRt (dλ0 + tdλ̂) = iṘ0

dλ+ iRdλ̂

and the last expression is zero because λ̂ solves (27). ut
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5.2. Deformations of contact structures

In this subsection we assume that the stable Hamiltonian structure is positive or negative
contact, i.e. ω = ±dλ. To warm up, suppose that the deformation {ωt }[0,ε) is exact,
i.e. [ω̇t ] = 0. Then we can choose a smooth path of primitives σt ofωt−ω and λt := λ±σt
is a path of contact forms stabilizing±dλt = ωt . So every exact deformation of a contact
structure is stabilizable.

For nonexact deformations, the linearized problem simplifies because of the extra
information that ω = ±dλ. Indeed, (27) can be rewritten using (26) as

iRdλ̂ = −iR̂dλ = ∓iR̂ω = ±iRω̇0,

and hence
iR(dλ̂∓ ω̇0) = 0. (28)

Solvability of this equation for λ̂ is equivalent to existence of a closed 2-form θ

(= ω̇0 ∓ dλ̂) with
[θ ] = [ω̇0] ∈ H

2(M;R), iRθ = 0. (29)

This condition has a natural interpretation in terms of foliated cohomology (see Sec-
tion 2.7) of the foliation L defined by R: For a deformation {ωt } of a positive or negative
contact SHS, condition (29) for linear stabilizability is equivalent to

[ω̇0] ∈ im[κ : H 2
L(M)→ H 2(M;R)]. (30)

Thus any deformation with [ω̇0] /∈ im κ will not be stabilizable. Below we give some
examples in which this happens.

Example 5.3. As in Section 2.9, let M be a compact quotient of PSL(2,R). Let α± be
a positive resp. negative contact form coming from a left-invariant form on PSL(2,R),
and let L be the foliation generated by its Reeb vector field R. By the discussion at the
end of Section 2.9, κ : H 2

L(M)→ H 2(M;R) is the zero map. Hence according to (30),
a deformation ωt of the SHS (ω, λ) = (dα±,±α±) is linearly stabilizable if and only if
[ω̇0] = 0.

As another example, let T n be the n-torus with the standard flat Euclidean metric and
π : S∗T n ∼= T n × Sn−1

→ T n its unit cotangent bundle. Let

i : T n→ T n × Sn−1
= S∗T n

be the inclusion of T n×{p} for a fixed point p ∈ Sn−1. Let R be the Reeb vector field of
the (contact) Liouville form λ on S∗T n and L the foliation generated by R. The following
lemma was pointed out to us by J. Bowden.

Lemma 5.4. In the notation above,

im[κ : H 2
L(S
∗T n)→ H 2(S∗T n;R)] = ker[i∗ : H 2(S∗T n;R)→ H 2(T n;R)].

Therefore, a deformation {ωt } of (dλ, λ) with i∗[ω̇0] 6= 0 is not linearly stabilizable.
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Proof. Assume first that θ is a closed 2-form on S∗T n which satisfies ιRθ = 0. We
claim that i∗[θ ] = 0, i.e. 〈[θ ], i∗b〉 = 0 for each b ∈ H2(T

n). This immediately follows
from the fact that i∗

(
H2(T

n)
)

is generated by homology classes which are represented by
smooth tori invariant under the Reeb flow. To see the latter fact, write T n as Rn/Zn and
let {e1, . . . , en} be the standard basis of Rn. It is well known that the homology of T n in
degree two is generated by the 2-dimensional subtori

Tjk = 〈ej , ek〉/Z2
⊂ T n, 1 ≤ j < k ≤ n.

Hence we can choose as generators of i∗(H2(S
∗T n)) the 2-tori

T̃jk = Tjk × {ej } ⊂ T
n
× Sn−1, 1 ≤ j < k ≤ n.

The Reeb flow φτR for τ ∈ R on S∗T n is given by the geodesic flow. Since geodesics on
the torus are just straight lines, we obtain the simple formula

φτR(x, y) = (x + τy, y), (x, y) ∈ T n × Sn−1, τ ∈ R.

Hence the 2-tori T̃jk are invariant under the geodesic flow. This proves the claim and thus
im κ ⊂ ker i∗.

For n ≥ 3 we are done since in that case i∗ : H 2(S∗T n;R) → H 2(T n;R) is an
isomorphism and therefore im κ = {0}. It remains to show ker i∗ ⊂ im κ in the case
n = 2. For this, pick coordinates (x, y, φ) on S∗T 2, where x and y are coordinates on
T 2
= R2/Z2 and φ ∈ S1 is the angular coordinate on the fibre. Then the Reeb vector

field is given by
R = cosφ ∂x + sinφ ∂y .

A short computation shows that a 2-form θ is closed and satisfies iRθ = 0 precisely if it
is of the form

θ = f (φ)(cosφ dy − sinφ dx) ∧ dφ

for a 2π -periodic function f : R → R. Then the values of [θ ] on the subtori Cx =
{x = 0} and Cy = {y = 0} are

[θ ](Cx) =

∫ 2π

0
f (φ) cosφ dφ, [θ ](Cy) =

∫ 2π

0
f (φ) sinφ dφ.

Since these values can be arbitrarily prescribed by the choice of f , this shows that every
cohomology class in ker i∗ can be represented by such a form θ , and hence ker i∗ ⊂ im κ .

ut

The case n = 2 is particularly interesting:

Proposition 5.5. In the notation of Lemma 5.4, let β be the standard area form on T 2 ∼=

R2/Z2 and consider the (nonexact) family of Hamiltonian structures ωt = dλ + tβ for
t ∈ R. Then

(i) each ωt is stabilizable, but
(ii) there is no smooth family {λt }t∈R of 1-forms λt stabilizing ωt . (More precisely,

smoothness always fails at t = 0.)
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Put simply: stabilizing forms exists, but they never form a smooth family. We emphasize
that in (ii) it is not assumed that λ0 = λ.

Proof. (i) To see stabilizability, note that ω0 = dλ is stabilizable because λ is a contact
form. For t 6= 0 consider the connection form λst for the flat metric on the torus. In
coordinates (x, y, φ)where x and y are coordinates on T 2 and φ is the angular coordinate
on the fibre, the Liouville form, the connection form and the standard area form on T 2

write out as

λ = cosφ dx ∧+ sinφ dy, λst = dφ, β = dx ∧ dy.

It follows that dλst = 0 and λst ∧ ωt = t dx ∧ dy ∧ dφ, so the 1-form sign(t)λst defines
a taut foliation and stabilizes ωt for t 6= 0.

(ii) To see the second assertion, assume for contradiction there exists a smooth family
{λt }t∈R stabilizing ωt . We distinguish two cases according to the proportionality coeffi-
cient f0 = dλ0/ω0 for t = 0.

Case 1: f0 is constant. Note that in this case f0 6= 0: otherwise, the closed stabilizing
form λ0 would define a foliation with the exact 2-form dλ restricting as an area form to the
leaves, which is impossible. Thus we are in the contact situation for t = 0, and therefore
the existence of a smooth family {λt }t∈R stabilizing {ωt }t∈R contradicts Lemma 5.4.

Case 2: f0 is not constant. We will show that this case cannot occur. For this, we need
some dynamical information about the kernel foliation kerωt of ωt . Since

ωt = − sinφ dφ ∧ dx + cosφ dφ ∧ dy + t dx ∧ dy,

the lift of kerωt from S1
× T 2 to S1

× R2 is generated by the vector field

Xt = cosφ ∂x + sinφ ∂y − t ∂φ .

It is easy to see that the projection of an orbit of Xt to the (x, y)-plane is a curve,
parametrized by arc length, with the property that its tangent vector is rotating with con-
stant speed t . This means that the projection of any orbit to the (x, y)-plane is a circle.
Thus the kernel foliation of ωt consists of closed leaves. In particular, kerωt does not pos-
sess any irrational invariant tori. But this contradicts Theorem 3.7(c) applied to (dλ, λ0).
Namely, fix some φ∗ ∈ S1. Then (S1

\ {φ∗}) × T
2 ∼= (0, 2π) × T 2 and kerω0 descends

to each torus {φ} × T 2 as a linear foliation with slope function S0(φ) = φ. In particular,
(0, 2π) × T 2 is an integrable region on which the slope function of kerω0 is nowhere
constant. The latter implies that f0 is T 2-invariant. Since by assumption f0 is noncon-
stant, we can apply Theorem 3.7(c) to deduce the existence of irrational invariant tori.
This contradiction shows that Case 2 does not occur and concludes the proof of Proposi-
tion 5.5. ut

We have seen several examples of nonexact deformations which are not stabilizable. Our
next goal is to give an example of an exact nonstabilizable deformation. For this we need
some preparation from functional analysis.
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5.3. Preliminaries from analysis

Let V be a smooth real vector bundle over a compact manifold M (possibly with bound-
ary). We consider the space 0(V ) of all smooth sections of V as a Fréchet space and let
F be any closed linear subspace of 0(V ). Fix a base point x0 ∈ F and set

F̃ := {x ∈ C∞([0, 1], F ) | x(0) = x0}

to be the smooth path space of F . Our next goal is give the affine space F̃ the structure of
an affine Fréchet space. Indeed, let π : [0, 1] ×M → M be the natural projection. Any
path x ∈ F̃ can be considered as a section sx of the pullback bundle π∗V as follows: for
t ∈ [0, 1] and p ∈ M we set

sx(t, p) := x(t)(p) ∈ π
∗V.

We identify the path space F̃ with the corresponding affine subspace in 0(π∗V ). Now the
space of sections 0(π∗V ) is Fréchet and the subspace F̃ is closed because F is closed in
0(V ). Thus F̃ is itself an affine Fréchet space. The following straightforward lemma will
be crucial for us.

Lemma 5.6. For each T ∈ (0, 1] the evaluation map

evT : F̃ → F, evT (x) := x(T ),

is open and continuous.

Proof. The map evT is a surjective linear map between affine Fréchet spaces. It is con-
tinuous because it is obtained by composing on the right with the map iT sending p ∈ M
to (T , p) ∈ [0, 1] ×M as follows: evT (sx) = sx ◦ iT . Finally, evT is open by the open
mapping theorem. ut

Note that for any open and continuous map its restriction to any open subset of the domain
remains open and continuous. We apply this to the map evT as follows: Let E ⊂ F be
any open subset with x0 ∈ E. The set

Ẽ := {x ∈ C∞([0, 1], E) | x(0) = x0} (31)

is an open subset of F̃ , so the restriction of evT to Ẽ is open and continuous.
Recall that a subset B of a topological space X is called a Baire set (or of second

category) if it contains a countable intersection of open and dense sets. Note that if we
have a continuous open map f : X→ Y between topological spaces andB ⊂ Y is a Baire
set, then f−1(B) is Baire in X. Indeed, the preimage of an open set is open because the
map is continuous, and the preimage of a dense set is dense because the map is open, so
the preimage of a countable intersection of open and dense sets is a countable intersection
of open and dense sets. We apply this to the map evT and summarize our discussion as
follows.
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Lemma 5.7. Let M be a closed manifold, V → M a smooth real vector bundle, F ⊂
0(V ) a closed linear subspace, E ⊂ F an open subset, x0 ∈ E a base point, B ⊂ E

a Baire set, and T ∈ (0, 1] a point. Then for Ẽ defined by (31) and the evaluation map
evT : Ẽ→ E at T the preimage ev−1

T (B) is Baire in Ẽ.

The next step is to see that Ẽ is a Baire space, i.e. any Baire subset is dense. This holds
because Ẽ is an open subset of the affine Fréchet space F̃ , and open subsets of complete
metrizable spaces have the Baire property.

Now we fix a Baire set B ⊂ E and define the following subset of Ẽ:

B̃ := {x ∈ Ẽ | ∃ tn→ 0 : x(tn) ∈ B}.

Clearly,

B̃ ⊃

∞⋂
n=1

{x ∈ Ẽ | x(1/n) ∈ B} =
∞⋂
n=1

ev−1
1/n(B).

Each set ev−1
1/n(B) is Baire by Lemma 5.7, so their intersection is Baire, thus B̃ is a Baire

set. In particular, B̃ is dense in Ẽ.

5.4. Exact deformations

We now apply the discussion of the previous subsection to Hamiltonian structures on a
closed oriented manifold M as follows (using the same notation):
• V = 32(M) is the bundle of exterior 2-forms over M;
• F ⊂ 0(V ) = �2(M) is the space of closed 2-forms of a given cohomology class η;
• E = HSη ⊂ F is the open subset of Hamiltonian structures of cohomology class η;
• the base point x0 is a fixed Hamiltonian structure ω0.

Lemma 5.8. The subset B ⊂ HSη of Hamiltonian structures of cohomology class η that
are Morse, i.e. all periodic orbits are nondegenerate, is a Baire set.

Proof. Consider a HS ω ∈ HSη. As in Section 2.2, we realize M as the hypersurface
{0} ×M in its symplectization

(X := [−ε, ε] ×M, � := ω + tdλ+ dt ∧ λ).

Nearby hypersurfaces M ′ ⊂ X are graphs over {0} ×M , so pulling back �|M ′ under the
projection M → M ′ along R yields HS ω′ on M cohomologous to ω. By [12, Theorem
B.1], there exist hypersurfaces M ′ C∞-close to {0} ×M for which �|M ′ is Morse. This
shows that the set B is dense.

Let us fix a Riemannian metric onM and parametrize all orbits of kerω, for ω ∈ HSη,
with unit speed. For N ∈ N denote by BN ⊂ HSη the set of HS of class η for which all
periodic orbits of period ≤ N are nondegenerate. A standard argument shows that BN
is open. (Consider a sequence ωk /∈ BN converging to ω ∈ HSη; let γk be degenerate
periodic orbits of ωk of period ≤ N ; by the Ascoli–Arzelà theorem a subsequence of γk
converges to a degenerate periodic orbit of ω of period ≤ N ; hence ω /∈ BN .) Since
B ⊂ BN and B is dense, we see that BN is dense. Hence B =

⋂
N∈N BN is a Baire set.

ut
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We keep the notation of the previous subsection. Thus

• Ẽ is the space of smooth paths {ωt }t∈[0,1] in HSη starting at ω0;
• B̃ ⊂ Ẽ is the subset of those paths for which there exists a sequence tn → 0 such that
ωtn is Morse.

We will refer to Ẽ as the space of exact deformations of ω0. By the discussion in the
previous subsection, B̃ is a Baire set. This is what we mean when we say “a Hamiltonian
structure can be deformed slightly to make it Morse”.

If the HS ω0 is contact, i.e. ω0 = dλ0 for a contact form λ0, the above argument
justifies the folklore lemma that we can always deform a contact form slightly to make it
Morse. This is in sharp contrast to the situation with general SHS: Theorem 3.37 provides
(“quite a lot of”) SHS which cannot even beC2-approximated by Morse SHS because any
C2-close SHS must have rational invariant tori by Theorem 3.7(c). In particular, for a SHS
(ω0, λ0) as in Theorem 3.7(c) the deformations in the Baire set B̃ cannot be stabilized.
This discussion shows

Theorem 5.9. Consider a 1-dimensional foliation L as in Theorem 3.36. Then for any
HS ω0 defining L there exists a Baire set B̃ in the space Ẽ of exact deformations of ω0
that cannot be stabilized, no matter what stabilizing 1-form λ0 we take for ω0. �

6. Homotopies and cobordisms of stable Hamiltonian structures

A smooth homotopy of contact forms (λt )t∈[0,1] on a closed manifold M gives rise to a
symplectic cobordism ([0, 1]×M,d(ectλt )) from (M, dλ) to (M, ecdλ) for a sufficiently
large constant c > 0. The corresponding statement for stable Hamiltonian structures
fails (see e.g. Corollary 6.21 below). In this section we investigate the relation between
stable homotopies and various generalized notions of symplectic cobordism. We discuss
obstructions to symplectic cobordisms, as well as obstructions to ambient stable homo-
topies arising from Rabinowitz Floer homology and potential obstructions arising from
symplectic field theory.

Recall that for all homotopies of HS ωt we assume that the cohomology class of ωt is
constant.

6.1. Various notions of cobordism

For a SHS (ω, λ) with kerω = L we introduce the following notation:

δ+(ω,λ) := sup{τ > 0 | ker(ω + tdλ) = L for all t ∈ [0, τ )},

δ−(ω,λ) := sup{τ > 0 | ker(ω + tdλ) = L for all t ∈ (−τ, 0]},

δ(ω,λ) := min{δ+(ω,λ), δ
−

(ω,λ)},

I(ω,λ) := (−δ
−

(ω,λ), δ
+

(ω,λ)),

C(ω,λ) := {ω + tdλ | t ∈ I(ω,λ)}.
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Moreover, for a HS ω we define

D+ω := {ω̂ ∈ �
2(M) | dω̂ = 0, [ω̂] = [ω] ∈ H 2(M;R), ker ω̂ = kerω, λ̂∧ ω̂n−1 > 0},

where λ̂ is any 1-form with λ̂|kerω > 0. Note that the definition of D+ω only depends
on the oriented kernel foliation kerω and the cohomology class of ω. Also note that
C(ω,λ) ⊂ D

+
ω for a SHS (ω, λ).

Now we turn to symplectic cobordisms. We will only consider cobordisms that are
topologically trivial, i.e. of the form [a, b] ×M .

Definition 6.1. A (topologically trivial) symplectic cobordism between HS ωa and ωb
on M is a symplectic manifold ([a, b] × M,�) such that �|{i}×M = ωi for i = a, b.
A symplectic cobordism ([a, b] ×M,�) is called trivial if

� = ω + d(f (t)λ)

for some SHS (ω, λ) on M and an increasing function f : [a, b] → I(ω,λ). A homotopy
of symplectic cobordisms between ωa and ωb is a smooth family {�s}s∈[0,1] of symplectic
forms on [a, b] ×M with �s |{i}×M = ωi for i = a, b and all s.

Note that if ([a, b] ×M,�) is a symplectic cobordism, then ωt := �|{t}×M defines a
homotopy of HS from ωa to ωb. Note that the ωt represent the same cohomology class,
so there exists a smooth path of 1-forms µt with µ0 = 0 and ωt = ωa + dµt . In the fol-
lowing all homotopies will come with a chosen smooth path of primitives µt . Conversely,
a homotopy of HS ωt = ωa + dµt induces a closed 2-form

� := ωa + dµt + dt ∧ µ̇t

on [a, b] ×M , which is symplectic inducing the orientation of [a, b] ×M iff

µ̇t |kerωt > 0. (32)

The above definition of symplectic cobordism is too rigid. For example, a HS is not cobor-
dant to itself with this definition. Therefore, we now introduce two more flexible notions.

Definition 6.2. A strong symplectic cobordism between SHS (ωa, λa) and (ωb, λb) on
M is a symplectic manifold ([a, b] ×M,�) such that �|{i}×M ∈ C(ωi ,λi ) for i = a, b.
A weak symplectic cobordism between HS ωa and ωb on M is a symplectic manifold
([a, b] ×M,�) such that �|{i}×M ∈ D+ωi for i = a, b. Two SHS (ωa, λa) and (ωb, λb)
are called (strongly resp. weakly) bicobordant if they are (strongly resp. weakly) cobor-
dant both ways. Homotopies of strong resp. weak cobordisms are defined analogously to
Definition 6.1.

Note that a strong cobordism is in particular a weak cobordism, but not the other way
around. Also note that a trivial cobordism is in particular a strong cobordism from (ω, λ)

to itself and such trivial cobordisms exist for all SHS. Finally we point out that, while
cobordisms in the sense of Definition 6.1 can obviously be composed, this is not true for
strong or weak cobordisms. We will discuss this in Section 6.3.
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6.2. Short homotopies and strong cobordisms

Consider now a homotopy of stable HS (ωt = ωa + dµt , λt ) with Reeb vector fields Rt .
We try to build a symplectic form on [a, b] ×M by

� := ωa + dνt + dt ∧ ν̇t , νt := µt + f (t)λt

for some smooth function f : [a, b] → R. The form � is symplectic iff ωt + f (t)dλt
is maximally nondegenerate for all t , and νt satisfies (32). The first condition holds if
|f (t)| < δ(ωt ,λt ) (as defined in Section 6.1). Condition (32) for νt is equivalent to

(µ̇t + ḟ (t)λt + f (t)λ̇t )(Rt ) > 0.

We associate to the homotopy γ := {ωt = ωa + dµt , λt } the following quantities:

δ := δ(γ ) := min
t
δ(ωt ,λt ), A := A(γ ) := max

t
|λ̇t (Rt )|, B := B(γ ) := max

t
|µ̇t (Rt )|.

Then symplecticity of � is implied by

|f (t)| < δ, ḟ (t) > A|f (t)| + B.

These conditions are satisfied by the linear function

f (t) = (Aδ + B + (b − a)−1δ)(t − a/2− b/2)

provided that
(Aδ + B)(b − a) < δ.

Define the length of the homotopy γ as

L(γ ) := (A+ B/δ)(b − a).

Then we have shown

Lemma 6.3. To every homotopy γ := {(ωt , λt )}t∈[a,b] of lengthL(γ ) < 1 we can canon-
ically associate a symplectic cobordism

C(γ ) := ([a, b] ×M,�)

such that for all t ∈ [a, b] we have �|{t}×M ∈ C(ωt ,λt ). If γ is a constant homotopy, then
C(γ ) is a trivial cobordism, and if {γ s}s∈[0,1] is a path of homotopies, then C(γ s) is a
homotopy of cobordisms. �

Example 6.4. If [a, b] = [0, 1] and ωt = ω is independent of t we have B = 0 and
L(γ ) = A. Moreover, in this case the stabilizing 1-forms λ0 and λ1 can be connected by
a linear homotopy λt = (1− t)λ0 + tλ1. A short computation yields

Rt =
R0

1− t + tλ1(R0)
, λ̇t (Rt ) =

λ1(R0)− 1
1− t + tλ1(R0)

.

So L(γ ) is small whenever λ1 is C0-close to λ0.
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Let us collect the dependence of the length on certain natural operations on homo-
topies.

(Reparametrization) Given a homotopy γ = {γt }t∈[a,b] and a smooth function τ : [a′, b′]
→ [a, b] consider the reparametrized homotopy γ ◦ τ = {γτ(t)}t∈[a′,b′]. With K :=
maxt |τ̇ (t)| the constants change as follows:

A(γ ◦ τ) ≤ KA(γ ), B(γ ◦ τ) ≤ KB(γ ),

δ(γ ◦ τ) = δ(γ ), L(γ ◦ τ) ≤
K(b′ − a′)

(b − a)
L(γ ).

In particular, reparametrization by a nonconstant linear function τ does not change the
length. Moreover, we can reparametrize a homotopy to make it constant near a and b, or
to turn a piecewise smooth homotopy into a smooth one, with arbitrarily small change in
length.

(Rescaling) Replacing the stabilizing 1-forms λt by cλt for a constant t has the following
effect on the constants:

Rt 7→ Rt/c, A 7→ A, B 7→ B/c, δ 7→ δ/c, L 7→ L.

Replacing the 2-forms ωt by cωt for a constant t has the following effect on the constants:

µt 7→ cµt , A 7→ A, B 7→ cB, δ 7→ cδ, L 7→ L.

In particular, the length is invariant under both rescalings.

(Concatenation) Two homotopies γ = {γt }t∈[a,b] and γ ′ = {γ ′t }t∈[b,c] with γb = γ ′b can
be concatenated in the obvious way to a homotopy γ # γ ′ on the interval [a, c]. Then we
have

A(γ # γ ′) = max{A(γ ),A(γ ′)}, B(γ # γ ′) = max{B(γ ), B(γ ′)},
δ(γ # γ ′) = min{δ(γ ), δ(γ ′)}, L(γ # γ ′) ≥ L(γ )+ L(γ ′).

(Restriction) Restricting a homotopy γ to a subinterval [a′, b′] ⊂ [a, b] does not increase
A and B and does not decrease δ, so

L(γ |[a′,b′]) ≤
b′ − a′

b − a
L(γ ).

In particular, any homotopy γ can be decomposed into homotopies of arbitrarily small
length.

(Reversal) For a homotopy γ ={γt }t∈[a,b] the reversed homotopy γ−1
={γ2b−t }t∈[b,2b−a]

retains the same constants and in particular the same length. The homotopy γ #γ−1, which
runs from γ1 to γb and back to γa over the interval [a, 2b − a], has length

L(γ # γ−1) = 2L(γ ).
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We see that for concatenation there is no triangle type inequality in general. Never-
theless, the following lemma provides an upper bound on L(γ # γ ′) in terms of L(γ ) and
L(γ ′) for certain concatenations. For a stable homotopy γ = {ωt = ω0 + dµt , λt }t∈[0,1]
we define the quantity

‖γ ‖C1 := max
t∈[0,1]

(‖µ̇t‖C1 + ‖λ̇t‖C1).

We say that γ is C1-small if ‖γ ‖C1 is small.

Lemma 6.5. For every SHS (ω, λ) and every ε > 0 there exists ρ > 0 with the follow-
ing property. Whenever γ = {ωt , λt }t∈[−1,0] is a stable homotopy ending at (ω, λ) and
γ ′ = {ωt , λt }t∈[0,1] is a stable homotopy starting at (ω, λ) such that ‖γ ′‖C1 < ρ, then
L(γ # γ ′) ≤ L(γ )+ ε.
Proof. It follows imediately from the definition that the assignment (ω, λ) 7→ δ(ω,λ) is
lower semicontinuous with respect to the C0

×C1-topology, i.e. for each SHS (ω, λ) and
ε > 0 there exists a C0

× C1-neighbourhood V of (ω, λ) such that for all (ω̃, λ̃) ∈ V we
have

δ(ω̃,λ̃) ≥ δ(ω,λ) − ε/2.

Note that for each t ∈ [0, 1] we have ‖ωt − ω‖C0 + ‖λt − λ‖C1 ≤ ‖γ ′‖C1 , hence for
ρ > ‖γ ′‖C1 sufficiently small we have (ωt , λt ) ∈ V and thus

δ(γ ′) ≥ δ(ω,λ) − ε/2 ≥ δ(γ )− ε/2.

Moreover, by the (Concatenation) properties we have

A(γ # γ ′) ≤ A(γ )+ A(γ ′) ≤ A(γ )+ ρ, B(γ # γ ′) ≤ B(γ )+ B(γ ′) ≤ B(γ )+ ρ.

These estimates combine to L(γ # γ ′) ≤ L(γ )+ ε for ρ sufficiently small. ut

The main result of this subsection is

Proposition 6.6. Let γ = {ωt , λt }t∈[0,1] be a homotopy of SHSs of length L(γ ) < 1/3.
Then there exists a symplectic cobordism ([0, 3] ×M,�) with the following properties:
• �|{t}×M ∈ C(ωτ(t),λτ(t)), where τ : [0, 3] → [0, 1] is the function

τ(t) =


t, t ∈ [0, 1],
2− t, t ∈ [1, 2],
t − 2, t ∈ [2, 3].

• ([0, 2] ×M,�) and ([1, 3] ×M,�) are homotopic to trivial cobordisms.

More colloquially, this means that short stable homotopies give rise to strong bicobor-
disms whose compositions are defined and homotopic to trivial cobordisms.
Proof. Since |τ ′| ≤ 1, the reparametrized homotopy γ ◦ τ has length L(γ ◦ τ) ≤
3L(γ ) < 1. Hence by Lemma 6.3 there exists a symplectic cobordism C(γ ◦ τ) =

([0, 3]×M,�) with�|{t}×M ∈ C(ωτ(t),λτ(t)). By the same lemma, the path of homotopies
{γ ◦ τ s}s∈[0,2] with fixed endpoints, where τ s(t) = sτ (t), induces a homotopy of cobor-
disms C(γ ◦ τ s) from ([0, 2] × M,�) to a trivial cobordism. An analogous argument
applies to ([1, 3] ×M,�). ut
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6.3. Large homotopies and weak cobordisms

If we drop the shortness condition on the homotopy, both Lemma 6.3 and Proposition 6.6
fail.

Proposition 6.7. On any closed oriented 3-manifold M there exist a homotopy
(ωt , λt )t∈[0,1] of exact SHS such that there exists no strong symplectic cobordism from
(ω0, λ0) to (ω1, λ1).

We will discuss in this subsection two obstructions to symplectic cobordisms. The proof
of Proposition 6.7 is based on

First obstruction: helicity. Suppose that dimM = 3 and recall from Section 2.8 the
helicity Hel(ω) =

∫
M
α∧ω of an exact 2-form ω = dα. Consider a symplectic cobordism

([0, 1] ×M,�) with �|{i}×M = ωi = dαi for i = 0, 1. This � is exact, i.e. � = dγ for
some 1-form γ on [0, 1] ×M , and we obtain

0 <
∫
[0,1]×M

� ∧� =

∫
[0,1]×M

d(γ ∧�) =

∫
{1}×M

γ ∧ dα1 −

∫
{0}×M

γ ∧ dα0

=

∫
M

α1 ∧ ω1 −

∫
M

α0 ∧ ω0 = Hel(ω1)− Hel(ω0).

Hence helicity is monotone under symplectic cobordisms. To obtain from this an ob-
struction to strong cobordisms we need to control the helicity Hel(ω̂) for ω̂ ∈ C(ω,λ). In
the presence of integrable regions, this can be done by choosing a sufficiently “exotic”
stabilizing 1-form:

Lemma 6.8. Let (ω = dα, λ0) be an exact SHS on a closed 3-manifold M . Suppose that
there exists an integrable region I × T 2 in M on which (dα, λ0) has a constant slope
v ∈ S1 in the sense of Section 3.4. Then for every ε > 0 there exists a stabilizing 1-form λ

for ω such that |Hel(ω̂)− Hel(ω)| < ε for all ω̂ ∈ C(ω,λ).

Proof. Consider ω̂ ∈ C(ω,λ), i.e. ω̂ = ω + tdλ with t ∈ I(ω,λ). Its helicity is

Hel(ω̂) =
∫
M

(α + tλ) ∧ (dα + tdλ) = Hel(ω)+ 2t
∫
M

λ ∧ ω + t2
∫
M

λ ∧ dλ.

Now suppose that (α, λ0) = (αh, λg0) has a constant unit slope v ∈ C on I × T 2,
i.e. ih′/|h′| ≡ v and 〈g0, v〉 ≡ c > 0. Given ε > 0, we deform g rel ∂I , keeping the
condition 〈g, v〉 ≡ c, such that g′(r±) = ±h′(r±)/ε for some r± ∈ I . Now ω + tdλ 6= 0
iff h′(r) + tg′(r) 6= 0 for all r ∈ I , which implies |t | ≤ ε. The term λg ∧ ωh =

〈g, ih′〉dr ∧ dθ ∧ dφ = c vol is independent of ε, and the term λg ∧ dλg = 〈g, ig
′
〉 vol is

of order 1/ε. Hence the above formula for the helicity yields Hel(ω̂) = Hel(ω) + O(ε),
and the lemma is proved. ut

Proof of Proposition 6.7. By Proposition 3.31, there exists an exact SHS (ω0, λ0) on M
((ω1, λ1) in the notation of Proposition 3.31) restricting as (dαst, αst) to some embedded
solid torus S1

×D2 with αst = αh0 for h0 = (r
2, 1− r2). Set γ := S1

×{(0, 0)} and write
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S1
×D2

\ γ = I ×T 2. Let h1 : I → C be an immersion which is homotopic to h0 rel ∂I
and such that the signed area 1A enclosed between the curves h0 and h1 is positive. We
use Corollary 3.12 to find a connecting homotopy (ht , gt ), t ∈ [0, 1], satisfying (18).
Thus the SHS (ωt , λt ) defined by (ht , gt ) satisfy

Hel(ω1)− Hel(ω0) =

∫
I

h∗1(ydx − xdy)−

∫
I

h∗0(ydx − xdy) = −21A < 0,

where x+iy denote coordinates on C. Now pick 0 < ε < 1A and replace λj , j = 0, 1, by
the stabilizing forms (still denoted λj ) provided by Lemma 6.8. Then for all ω̂i ∈ C(ωi ,λi )
we have

Hel(ω̂1)− Hel(ω̂0) ≤ −21A+ 2ε < 0,

so by monotonicity of helicity there exists no strong symplectic cobordism from (ω0, λ0)

to (ω1, λ1). ut

Proposition 6.7 shows that the notion of strong cobordism is too rigid for large homo-
topies. This motivates the following

Question 6.9 (Large Cobordism Question). Given a stable homotopy (ωt , λt )t∈[0,1], are
ω0 and ω1 weakly bicobordant?

A positive answer to this question would be very useful for the following reason:
Obstructions to homotopies of SHS beyond the homotopy class of almost contact struc-
tures are hard to construct (the only known ones arise in a more restricted setting from
Rabinowitz Floer homology, see Section 6.6 below). On the other hand, there are simple
obstructions to weak symplectic cobordisms, two of which we will now describe.

The first obstruction is again based on monotonicity of helicity on cobordisms. To
apply this to weak cobordisms, suppose that we have two exact HS’s ω0 and ω1 such that

Hel(ω̂0) > 0, Hel(ω̂1) ≤ 0

for all ω̂i ∈ D+ωi . Then ω0 and ω1 are not weakly cobordant. This situation occurs in
the example discussed in Section 2.9: Let M be a compact quotient of PSL(2,R) and
let α+ be a positive contact form coming from a left-invariant one on PSL(2,R). Since
any ω̂ ∈ D+dα+ is a closed form contracting to zero with the Reeb vector field of α+,
equation (12) holds with ω̂ in place of θ , so ω̂ = c dα+ for some constant c 6= 0. Thus

Hel(ω̂) = Hel(cdα+) = c2Hel(dα+) = c2
∫
M

α+ ∧ dα+ > 0.

Let α− be a negative contact form coming from a left-invariant one on PSL(2,R). Since
[dα−] generates ker κ = H 2

L(M), any ω̂ ∈ D+dα− has foliated cohomology class [ω̂] =
c[dα−] ∈ ker κ for a constant c ∈ R, and therefore

Hel(ω̂) = Hel(c dα−) = c2Hel(dα−) ≤ 0

because α− is a negative contact form. On the other hand, dα+ and dα− are homo-
topic as HS because any two nonzero left-invariant 2-forms on PLS(2,R) are homo-
topic through nonzero left-invariant 2-forms and this homotopy descends to any compact
quotient. Therefore, we have shown
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Proposition 6.10. The stable Hamiltonian structures (dα+, α+) and (dα−,−α−) above
on 0\PSL(2,R) are homotopic as HS, but there exists no weak symplectic cobordism
from dα+ to dα−. �

We conjecture that the two SHS (dα+, α+) and (dα−,−α−) are not stably homotopic.
The second obstruction to weak symplectic cobordisms is fillability: We will show

that the standard tight contact structure on S3 is not weakly cobordant to any overtwisted
one. Before showing this, we first discuss

Composability of weak cobordisms. Let us consider two symplectic cobordisms
([a, b] ×M,�−) and ([b, c] ×M,�+) with �±|{b}×M ∈ D+ω . Assume that there exists
a constant C > 0 and an orientation preserving diffeomorphism 8 : M → M such that

8∗(�+)|{b}×M = C�−|{b}×M .

Then

W := ([a, b] ×M) ∪8 ([b, c] ×M)

with the symplectic form given by �+ on [b, c] ×M and by C�− on [a, b] ×M defines
a symplectic cobordism from ({a} ×M,C�−) to ({c} ×M,�+). In general, however,
such a diffeomorphism need not exist.

Example 6.11. Consider a circle bundle π : M → W over a closed symplectic mani-
fold (W, ω̄) with the pullback (stabilizable) Hamiltonian structure ω = π∗ω̄. Then forms
in D+ω descend to the quotient and D+ω is homeomorphic to the space of positive sym-
plectic forms on W whose pullback to M is cohomologous to ω. In general, two such
symplectic forms need not be diffeomorphic.

However, in dimension 3, Proposition 2.10 and the preceding discussion implies

Lemma 6.12. Suppose that dimM = 3 and the foliated cohomology H 2
L(M) for L =

kerω is 1-dimensional. Then for all ω0, ω1 ∈ D
+
ω there exists a constant C > 0 and an

orientation preserving diffeomorphism 8 : M → M such that

8∗ω1 = Cω0.

Thus weak cobordisms as above can be composed at (M,ω) after rescaling. In particular,
this situation occurs for a circle bundle π : M → W over a closed symplectic 2-manifold
(W, ω̄) with the pullback (stabilizable) Hamiltonian structure ω = π∗ω̄. �

Second obstruction: fillability. As a first application of this observation, we now have

Corollary 6.13. There is no weak symplectic cobordism from (dαst, αst) to (dαot, αot),
where αst is the standard tight contact form on S3 and αot is an overtwisted contact form
defining the same orientation.
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Proof. For contradiction, suppose ([0, 1] × S3, �) is a symplectic cobordism with ω0 :=

�|{0}×S3 ∈ D
+

dαst
and ω1 := �|{1}×S3 ∈ D

+

dαot
. By Lemma 6.12, we can glue the standard

symplectic 4-ball (B4, C�st), rescaled by some constant C > 0, to ([0, 1]×S3, �) along
{0} × S3 to get a symplectic form � on B4 with �|∂B4 ∈ D

+

dαot
. By definition of D+dαot

,
the form�|∂B4 restricts positively to kerαot. Thus (B4, �) is a weak symplectic filling of
(S3, αot), which contradicts the theorem by Eliashberg and Gromov [18, 30] that weakly
fillable contact manifolds are tight. ut

6.4. T 2-invariant cobordisms in dimension three

We return to the setup of Section 3.4. For an interval I ⊂ R we consider the 4-manifold

[0, 1] × I × T 2

with coordinates (t, r, θ, φ), equipped with the T 2-action given by shift in (θ, φ), viewed
as a topologically trivial cobordism between {0} × I × T 2 and {0} × I × T 2. Consider a
T 2-invariant exact 2-form � on [0, 1] × I × T 2. We can write it as

� = dt ∧ βt + ωt

for t-dependent T 2-invariant forms βt , ωt on I × T 2. Exactness of � is equivalent to
exactness of ωt and dβt = ω̇t . By Lemma 3.9, ωt can be written as ωt = dαt for a
smooth family of 1-forms αt , t ∈ [0, 1], of the form

αt = h1(t, r)dθ + h2(t, r)dφ.

It follows that dβt = ω̇t = dα̇t and thus βt = α̇t + γt for a family of T 2-invariant closed
1-forms γt . After writing γt = δ̇t for a family of closed 1-forms

δt = a1(t)dθ + a2(t)dφ + ft (r)dr

and replacing αt by
αt + a1dθ + a2dφ,

we thus have
� = dt ∧ (α̇t + ḟtdr)+ dαt .

Denoting t-derivatives by ḣi and r-derivatives by h′i , we compute

� ∧� = 2dt ∧ α̇t ∧ dαt = 2dt ∧ (ḣ1dθ + ḣ2dφ) ∧ dr ∧ (h
′

1dθ + h
′

2dφ)

= 2(h′1ḣ2 − h
′

2ḣ1)dt ∧ dr ∧ dθ ∧ dφ.

Hence � is a positive symplectic form iff

h′1ḣ2 − h
′

2ḣ1 > 0
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for all (t, r). Geometrically, this condition means that the velocity vector h′t = (h
′

1, h
′

2)

and the t-derivative ḣt=(ḣ1, ḣ2) of the family of curves ht=(h1(t, ·), h2(t, ·)) : I → C,
t ∈ [0, 1], satisfy

〈ḣt , ih
′
t 〉 > 0, (33)

i.e. (ḣt , h′t ) is a positive basis of C for all t . Note that the functions ft do not enter
condition (33). Therefore, from now on we will assume ft = 0 and only consider � of
the form

� = dt ∧ α̇t + dαt . (34)

Definition 6.14. A monotone homotopy is a smooth family of curves ht : I → C satis-
fying condition (33).

The preceding discussion shows

Lemma 6.15. Two T 2-invariant Hamiltonian structures dα0 and dα1 on I × T 2 are
cobordant by a T 2-invariant cobordism iff there exists a monotone homotopy from h0 :

I → R2 to h1 : I → R2.

Let us now restrict our attention to curves h : [0, 1] → C which are standardized in
the sense that h(r) is a positive multiple of (r2, 1 − r2) near ∂[0, 1]. Note that each
monotone homotopy ht is in particular a regular homotopy, and if the ht are standardized
then by Corollary 3.12 the corresponding homotopy of Hamiltonian structures dαt can be
stabilized by T 2-invariant 1-forms. On the other hand, we will now construct examples
of standardized immersions h0, h1 which are regularly homotopic (i.e. have the same
rotation number), but for which there exists no standardized monotone homotopy from
h0 to a positive multiple of h1.

The first obstruction to monotone homotopies comes from winding numbers as de-
fined in Section 3.4.

Lemma 6.16. Let h0, h1 : [0, 1] → C \ {0} be standardized immersions missing the ori-
gin. If there exists a standardized monotone homotopy from h0 to a positive multiple of h1,
then w(h1) ≤ w(h0). Moreover, if in addition w(h1) < w(h0), then the corresponding
symplectic cobordism contains an exact Lagangian 2-torus.

Proof. Condition (33) implies that during a standardized monotone homotopy ht , the
winding number around 0 decreases by 1 each time ht passes through the origin. This
proves the first statement. If in addition w(h1) < w(h0), then there exists a (t, r) with
ht (r) = 0, so the primitive α of the symplectic form � given by (34) vanishes on the
torus {(t, r)} × T 2. ut

Example 6.17. Figure 3 shows a curve h which is obtained from hst(r) = (r
2, 1 − r2)

by a standardized monotone homotopy. (The curve hst is dashed, the curve h is bold.
The direction of increase of the parameter r on the curve hst is designated by the two
arrows. The curve h is oriented accordingly.) On the other hand, it has w(h) = −1, so
there is no standardized monotone homotopy from h to a positive multiple of hst.
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Fig. 3. Monotone homotopy.

Remark 6.18. Given two standardized immersions h0, h1 : [0, 1] → C it is in general
not easy to see whether they can be connected by a standardized monotone homotopy.
Indeed, J. Kukla [37] has shown that this question is equivalent to a well-known problem
in the topology of curves: Connect the curves h0, h1 along the coordinate axes to a 4-gon
and smoothen the corners to obtain an immersion γ : S1

→ C of the circle. Then the
curves h0,1 can be connected by a standardized monotone homotopy if and only if γ ex-
tends to an immersion of the disk. There is no simple invariant controlling the existence of
such an extension, although there are several algorithms for deciding this in the literature.

6.5. An exotic symplectic ball

The following construction was communicated to the second author by Y. Chekanov, who
remembers having seen it somewhere in the literature, but we have not been able to trace
its origins.

We consider R4 with its standard T 2-action and the standard symplectic form

�st := dαst, αst :=
1
2

2∑
j=1

(xjdyj − yjdxj ).

Denote by B4(r) the ball of radius r around the origin and by S3(r) := ∂B4(r) its bound-
ary sphere.

Proposition 6.19. There exists a symplectic form � on B4(1) with the following proper-
ties:

(i) � is T 2-invariant and � = �st on B4(1/2).
(ii) �|S3(r), r ∈ [1/2, 1], can be stabilized to a T 2-invariant stable homotopy from

1
2 (dαst, αst) to the induced stable Hamiltonian structure (ω, λ) on S3.

(iii) (B4, �) cannot be symplectically embedded into (R4, �st).
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Remark 6.20. The existence of an exotic symplectic ball is of course not new: An ex-
ample can be obtained by cutting a large ball out of an exotic symplectic R4. Historically,
the first exotic symplectic structure on R2n was found by Gromov [30]. Later an easy
explicit construction of an exotic symplectic structure on R4 was given by Bates and
Peschke [7].

Proof of Proposition 6.19. The proof combines the construction in Example 6.17 with
a result of Gromov. Let ht , t ∈ [1/2, 1], be a standardized monotone homotopy from
h1/2(r) :=

1
2hst(r) =

1
2 (r

2, 1 − r2) to the function h1 = h in Example 6.17. Due to the
standardization, the associated 1-forms αt extend to S3, so (34) defines an exact symplec-
tic structure � on [1/2, 1] × S3. Since w(h) = −1, ([1/2, 1] × S3, �) contains an exact
Lagrangian 2-torus. Since h1/2 =

1
2hst, we can glue a standard ball of radius 1/2 to this

cobordism to obtain an exact symplectic manifold (B4, �). Properties (i) and (ii) in the
proposition follow immediately from the construction and Corollary 3.12. Property (iii)
follows from the fact that (B4, �) contains an exact Lagrangian 2-torus, but (R4, �st)

does not by a theorem of Gromov [30]. ut

Corollary 6.21. There exists no symplectic cobordism ([1, 2]×S3, �) with�{1}×S3 = ω

the Hamiltonian structure in Proposition 6.19 and �{2}×S3 ∈ D
+

dαst
. �

Proof. Suppose such a cobordism exists. Then we can glue this cobordism to the ball in
Proposition 6.19 to obtain a symplectic manifold (B4

∪ [1, 2]×S3, �), which in turn can
be glued using Lemma 6.12 to (R4

\S3(R),�st) along a sphere S3(R) of suitable radiusR.
This yields an exact symplectic structure � on R4 with � = �st outside B4(R). By
Gromov’s uniqueness theorem for symplectic structures on R4 standard at infinity [30],
(R4, �) is symplectomorphic to (R4, �st), contradicting property (iii) in Proposition 6.19.

ut

Corollary 6.22. The SHS (ω, λ) on S3 in Corollary 6.21 is stably homotopic to
(dαst, αst) but cannot be embedded in (R4, �st).

Remark 6.23. Note that this corollary does not contradict Lemma 3.41 because the curve
h : [0, 1] → C defining ω does not remain in the positive quadrant.

Remark 6.24. (dαst, αst) and (ω, λ) in Proposition 6.19 are candidates for stable Hamil-
tonian structures that are stably homotopic and such that there exists no weak cobordism
from ω to dαst. However, the above argument breaks down if we relax the assumption
�{1}×S3 = ω in Corollary 6.21 to �{1}×S3 ∈ D+ω because the foliated cohomology
H 2
L(S

3) for L = kerω is infinite-dimensional (Proposition 3.44), so we cannot apply
Lemma 6.12 to glue the cobordisms.

6.6. Ambient homotopies and Rabinowitz Floer homology

Any embedding ψ : M ↪→ W of a hypersurface in a symplectic manifold (W,�) induces
a Hamiltonian structure ω = ψ∗� on M , and any smooth isotopy of embeddings ψt :
M ↪→ W induces a homotopy of HS ωt = ψ∗t �. We call such a homotopy ωt an ambient
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homotopy. Corollary 6.22 shows that not every homotopy of ω = ψ∗� can be realized
by an ambient homotopy.

Now we turn to the question of ambient stable homotopies: Given two stable hyper-
surfaces M0,M1 in a symplectic manifold (W,�), are they stably homotopic? Under an
additional technical hypothesis, this question has a negative answer and can be addressed
by Rabinowitz Floer homology [13]. We first give the relevant definitions.

For the remainder of this subsection, let (W,�) be a fixed symplectic manifold of
dimension 2n. We assume that �|π2(M) = 0 and (W,�) is convex at infinity or geomet-
rically bounded (see [13]). For a hypersurface M ⊂ W denote by R(M) the space of
periodic orbits on M that are contractible in W . Recall that to γ ∈ R(M) and a 1-form λ

on M we associate the energies

E�(γ ) =

∫
D2
γ̄ ∗�, Eλ(γ ) =

∫
γ

λ,

where γ̄ : D2
→ W with γ̄ |∂D2 = γ . All hypersurfaces M ⊂ W are assumed to be

closed and separating, i.e. W ⊂ M consists of two connected components.

Definition 6.25. A hypersurface M in (W,�) is called stable if the HS �|M is stabi-
lizable. A smooth homotopy (Mt )t∈[0,1] of hypersurfaces in W is called stable if there
exists a smooth homotopy of stabilizing 1-forms λt for �|Mt . Recall that a stable hyper-
surface M is called tame if for some (and hence every) stabilizing 1-form λ there exists a
constant cλ > 0 such that Eλ(γ ) ≤ cλ|E�(γ )| for all γ ∈ R(M). A stable homotopy Mt

is called tame if there exists a smooth homotopy of stabilizing 1-forms λt and a constant c
such that Eλt (γ ) ≤ c|E�(γ )| for all γ ∈ R(Mt ) and all t ∈ [0, 1].

Rabinowitz Floer homology (RFH) [12] associates to every (closed, separating) stable
tame hypersurface M ⊂ W a Z2-vector space RFH(M) which is invariant under tame
stable homotopies. Moreover, it has the following properties:

(i) If M is displaceable (by a Hamiltonian isotopy) then RFH(M) = 0.
(ii) If RFH(M) = 0 then M carries a periodic orbit contractible in W .

In particular, if RFH(M0) 6= RFH(M1) for two tame stable hypersurfaces, then they are
not tame stably homotopic. Using this, many examples of smoothly but not tame stably
homotopic hypersurfaces are constructed in [13]. Here we just give one example.

Example 6.26 ([13, Theorem 1.6]). Let G be the 3-dimensional Heisenberg group of
matrices 1 x z

0 1 y

0 0 1

 ,
where x, y, z ∈ R. The 1-form γ := dz− xdy is left-invariant and we let σ := dγ be the
exact magnetic field. If 0 is a co-compact lattice in G, Q := 0\G is a closed 3-manifold
and σ descends to an exact 2-form onQ. Equip the cotangent bundle τ : T ∗Q→ Q with
the symplectic form � = dp ∧ dq + τ ∗σ and the left-invariant Hamiltonian

H := 1
2

(
p2
x + (py + xpz)

2
+ p2

z

)
.
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Then each level set Mt = H
−1(t) for t 6= 1/2 is stable and tame. For t > 1/2, Mt has

no contractible periodic orbits and thus RFH(Mt ) 6= 0. For t < 1/2, Mt is displaceable
and thus RFH(Mt ) = 0. Therefore, two level setsMs,Mt with s < 1/2 < t are smoothly
homotopic and tame stable, but not tame stably homotopic.

Remark 6.27. In the preceding example, t = 1/2 is the Mañé critical value of the Hamil-
tonian system defined by � and H (see [13]). It appears to be a general feature (though
not a proven theorem) that level sets below and above the Mañé critical value are not tame
stably homotopic.

We expect that the hypersurfaces Ms,Mt with s < 1/2 < t in the preceding ex-
ample are not stably homotopic (i.e. without the tameness assumption), and more gener-
ally�|Ms , �|Mt are not stably homotopic through SHS on the unit cotangent bundle S∗Q.
However, this appears to lie outside the scope of established techniques such as RFH.

6.7. Symplectic TQFTs

In this section we introduce the notion of a “symplectic TQFT” and show how it gives
rise to a homotopy invariant for stable Hamiltonian structures. This notion was motivated
by symplectic field theory (SFT) introduced in [22], which indeed satisfies three of the
four axioms of a symplectic TQFT. However, as we explain below, it is unclear whether
there exists a version of SFT satisfying the fourth axiom. We include this section in the
hope that it may be helpful in finding some homotopy invariant for SHS in the future.

Definition 6.28. A symplectic TQFT is a contravariant functor F from the category of
SHS to a category C. Thus F associates

• to every SHS (M,ω, λ) an object F(M,ω, λ) in C;
• to every symplectic cobordism (W,�) a morphism F(W,�) in C;
• to homotopic symplectic cobordisms the same morphism in C;
• to a trivial cobordism ([0, 1] ×M,ω + d(f (t)λ)) an isomorphism in C

so that the usual functoriality properties hold.

Remark 6.29. (a) We are a little sloppy when speaking about the “category of SHS”.
For example, this category has no identity morphisms, and morphisms should be con-
catenations of cobordisms rather that single cobordisms. See [21] for a more thorough
discussion.

(b) For concreteness, we will assume that objects in C are vector spaces with some
additional structure, and morphisms are linear maps preserving this structure, so that a
morphism is invertible iff it is injective and surjective. This is the case for the algebraic
formulation of SFT in [15].

For two HS ω0, ω1 with the same kernel L and a stabilizing 1-form λ for L we write
ω0 <λ ω1 iff ω1 = ω0 + τdλ for a τ > 0 such that ker(ω0 + tdλ) = L for all t ∈ [0, τ ].
Note that for fixed λ this defines a partial ordering on HS with kernel L, and a complete
ordering on each equivalence class C(ω, λ).
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Proposition 6.30. For a symplectic TQFT F and SHS (ωi, λi) on M the following hold:

(a) For ω0 <λ ω1 there exist canonical isomorphisms

ψ(ω0,ω1;λ) : F(ω1, λ1)→ F(ω0, λ0)

such that for ω0 <λ ω1 <λ ω2 we have

ψ(ω0,ω1;λ)ψ(ω1,ω2;λ) = ψ(ω0,ω2;λ).

(b) Each stable homotopy γ = {ωt , λt }t∈[0,1] induces a canonical isomorphism

φγ : F(ω1, λ1)→ F(ω0, λ0)

such that for stable homotopies γ , γ ′ with γ1 = γ
′

0 we have

φγφγ ′ = φγ #γ ′ .

Proof. (a) For ω0 <λ ω1 there exists a trivial cobordism from ω0 to ω1 which induces an
isomorphismψ(ω0,ω1;λ) : F(ω1, λ1)→ F(ω0, λ0). This isomorphism does not depend on
the trivial cobordism since any two trivial cobordisms from ω0 to ω1 are homotopic. The
composition property follows from functoriality of F and the fact that the composition of
trivial cobordisms for the same λ is again a trivial cobordism.

(b) Consider a stable homotopy γ = {ωt , λt }t∈[0,1]. Assume first that L(γ ) < 1/3
and let ([0, 3] ×M,�) be the symplectic cobordism provided by Proposition 6.6. This is
the compositionW1W2W3 of three cobordisms from ω−0 to ω−1 to ω+0 to ω+1 , where ω±i ∈
C(ωi ,λi ). Without loss of generality we may assumeω−i <λi ωi <λi ω

+

i . Denote by F(Wi)

the induced morphisms. SinceW1W2 and W2W3 are homotopic to trivial cobordisms, the
compositions F(W1)F(W2) and F(W2)F(W3) are isomorphisms, hence

F(W2) : F(ω+0 , λ0)→ F(ω−1 , λ1)

is an isomorphism (see Remark 6.29). Define the isomorphism

φγ := ψ
−1
(ω−1 ,ω1;λ1)

F(W2)ψ
−1
(ω0,ω

+

0 ;λ0)
: F(ω0, λ0)→ F(ω1, λ1).

By the composition property in (a), this isomorphism does not depend on the choice of ω+0
and ω−1 and is thus canonically defined.

Now let us drop the assumption L(γ ) < 1/3. By the (Restriction) property in Sec-
tion 6.2, γ can be written as a concatenation γ = γ1 # · · · # γN of homotopies of length
L(γi) < 1/3. We define

φγ := φγ1 · · ·φγN : F(ω0, λ0)→ F(ω1, λ1)

with the isomorphisms φγi defined above. We need to show that this is independent of the
decomposition of γ into short homotopies γi . After taking a common refinement of two
decompositions, this reduces to showing φγ = φγ1φγ2 for a homotopy γ = γ1 # γ2 of
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length L(γ ) < 1/3. After reparametrization, we may assume that γ = {(ωt , λt )}t∈[0,2]
and γ1, γ2 are the restrictions to the intervals [0, 1] and [1, 2], respectively. By definition,

φγ = ψ
−1
(ω−0 ,ω0;λ0)

F(W)ψ−1
(ω2,ω

+

2 ;λ2)
: F(ω2, λ2)→ F(ω0, λ0)

for a cobordism (W,�) from ω−0 to ω+2 provided by Proposition 6.6. Without loss of gen-
erality we may assume that �{1}×M = ω1, so W = W1W2 for cobordisms W1 from ω−0
to ω1 and W2 from ω1 to ω+2 . Then we have

φγ1 = ψ
−1
(ω−0 ,ω0;λ0)

F(W1), φγ2 = F(W2)ψ
−1
(ω+2 ,ω2;λ2)

,

which together with F(W1)F(W2) = F(W) yields

φγ1φγ2 = ψ
−1
(ω−0 ,ω0;λ0)

F(W1)F(W2)ψ
−1
(ω+2 ,ω2;λ2)

= φγ .

This proves that the isomorphism φγ is independent of the decomposition of γ into short
homotopies and thus canonically defined. The same argument also shows the composition
property. ut

Remark 6.31. More generally, one could define a “homotopical” symplectic TQFT from
the 2-category of SHS to a 2-category C, with homotopies of cobordisms giving rise to
homotopies in C and a trivial cobordism inducing a homotopy equivalence. Then the argu-
ments in the proof of Proposition 6.30 show that stable homotopies give rise to homotopy
equivalences.

Let us now discuss to what extent SFT as introduced in [22] gives rise to a symplec-
tic TQFT in the sense above. For this, let us first consider only SHS (M,ω, λ) that are
Morse–Bott.

An R-invariant almost complex structure J on R × M is called adjusted to (ω, λ)
if J (∂r) = R, J (ξ) = ξ , and J |ξ is tamed by ω|ξ in the sense that ω(v, Jv) > 0 for
all 0 6= v ∈ ξ . SFT associates to such an (M, J ) an algebraic object (Poisson algebra,
Weyl algebra etc. depending on the version of SFT) SFT(M, J ) by counting suitable
holomorphic curves in (R×M,J) asymptotic to closed Reeb orbits.

Next consider a symplectic cobordism (W,�) with stable boundaries (M±, ω± =
�|M± , λ±). Note that we have canonical vector fields X± along M± defined by iX±� =
λ±, soX+ is outward pointing andX− is inward pointing. An almost complex structure J
on W is called adjusted to (�, λ±) if it is tamed by � and J (X±) = R±, J (ξ±) = ξ±
along M±. Denote by (Ŵ , Ĵ ) the almost complex manifold obtained by gluing semi-
infinite collars R±×M± toW alongM± and extending J R-invariantly by J± to the col-
lars. SFT associates to such a (W, J ) a morphism SFT(W, J ) from (M+, J+) to (M−, J−)
by counting suitable holomorphic curves in (Ŵ , Ĵ ).

Composition of cobordisms induces composition of morphisms, and homotopies of Jt
adjusted to the same (�, λ±) give rise to the same morphisms. Since the space of J
adjusted to (�, λ±) is contractible, this implies that SFT is in fact independent of the
adjusted J , so objects and morphisms can be written as SFT(M,ω, λ) and SFT(W,�).
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By construction, SFT will satisfy the first three axioms of a symplectic TQFT.
For the last axiom, consider a trivial cobordism (W = [0, 1]×M,� = ω+ d(f (t)λ)

between SHS (ω0 = ω + f (0)dλ, λ) and (ω1 = ω + f (1)dλ) on M . We wish to show
that SFT(W,�) is an isomorphism. After cutting [0, 1] into smaller intervals and using
functoriality, we may assume that the ωt := �|{t}×M , t ∈ [0, 1], are arbitrarily C1-close.
Since taming is an open condition, we then find an almost complex structure J onM that
is tamed by all the ωt . For this t-independent J the morphism SFT(W, J ) is counting
only trivial cylinders over closed Reeb orbits. This seems to suggest that SFT(W, J )
is the identity and the fourth axiom holds. However, a more careful inspection of the
definition of SFT shows that it involves Novikov completions depending on integrals
of the 2-form ω over holomorphic curves. As a result, the spaces SFT(M,ω0, λ) and
SFT(M,ω1, λ) might differ and SFT(W, J ) need not be an isomorphism.

Remark 6.32. At the time of writing, SFT has not yet been rigorously defined. The so-
lution of the relevant transversality problems for holomorphic curves is work in progress
by Hofer, Wysocki and Zehnder [32]. Apart from these well-known problems, we wish
to point out another issue that needs to be addressed. A priori, the construction of SFT
only works for stable Hamiltonian structures that are Morse–Bott. On the other hand, in
the proof of homotopy invariance in Proposition 6.30 we need to cut a stable homotopy
into short ones and we cannot guarantee that the SHS at which we cut are Morse–Bott.
So in order to construct a homotopy invariant of SHS out of SFT, one needs to define SFT
also for SHS that are not Morse–Bott. Moreover, in view of Theorem 1.10 one cannot
approximate a given SHS by Morse ones. The counterexample in Theorem 1.10 is still
Morse–Bott, which would suffice to define SFT, but it appears hopeless to try to prove
that any SHS can be approximated by Morse–Bott ones. One way out may be perturbing
the holomorphic curve equation used in SFT by a suitable Hamiltonian term.

Dimension 3. In dimension three, the problem in Remark 6.32 can be overcome due to
Theorem 4.6 and the following consequence of it.

Corollary 6.33. Let M be a closed oriented 3-manifold M . Then any stable homotopy γ
between Morse–Bott SHS on M can be written as a concatenation γ = γ1 # · · · # γN of
stable homotopies γi between Morse–Bott SHS of length L(γi) < 1/3, i = 1, . . . , N .

Proof. By the (Restriction) property in Section 6.2, γ can be written as a concatenation
γ = γ̄1 # · · · # γ̄N of homotopies of length L(γ̄i) < 1/3. Denote the end points of γi by
(ωi−1, λi−1) and (ωi, λi). Thus (ω0, λ0) and (ωN , λN ) are Morse–Bott but the other ones
need not be. Since length is invariant under linear rescaling, we may assume that each γi
is parametrized over an interval of length 1.

According to Theorem 4.6, there exists for each i = 1, . . . , N − 1 a stable homo-
topy δi (parametrized over [0, 1]) from (ωi, λi) to a Morse–Bott SHS with arbitrarily
small ‖δi‖C1 . We let δ0 = (ω0, λ0) and δN = (ωN , λN ) be the constant homotopies.
Applying Lemma 6.5 twice for each i = 1, . . . , N , we can thus achieve that each con-
catenation γi := δ−1

i−1 # γ̄i # δi has length L(γi) < 1/3. Since the end points of each γi are
Morse–Bott, this concludes the proof. ut
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Using Corollary 6.33, the proof of Proposition 6.30 can be carried out on the full subcat-
egory of Morse–Bott SHS to obtain an invariant of Morse–Bott SHS up to stable homo-
topies (through SHS that need not be Morse–Bott). Since every SHS is stably homotopic
to a Morse–Bott one, this invariant extends to all SHS, and we have shown:

Corollary 6.34. In dimension 3, every symplectic TQFT defined on the full subcategory
of Morse–Bott SHS gives rise to a homotopy invariant of SHS. �

We conclude this section with the following

Conjecture 6.35. The SHS (dαst, αst) and (dαot, αot) on S3 are not stably homotopic,
where αst is the standard contact form and αot is an overtwisted contact form defining the
same orientation.

This conjecture is motivated by rational symplectic field theory (RSFT) introduced
in [22]: It is well-known (see e.g. [53, 10]) that RFST(S3, αot) = {0}. On the other hand,
for the standard contact form αst all closed Reeb orbits have even degree, so the RSFT
Hamiltonian (without differential forms) for αst vanishes and RSFT(S3, αst) is the free
Poisson algebra generated by the closed Reeb orbits. Hence (dαst, αst) and (dαot, αot)

have different RSFT.

Remark 6.36. SFT is certainly not invariant under nonexact stable homotopies (ωt , λt ),
i.e. with varying cohomology class ωt . For example, consider T 3 with coordinates
(x, y, z) and the nonexact stable homotopy

ωt = dx ∧ dy + t dx ∧ dz, λt = dz.

(This corresponds to the mapping torus of a rotation of T 2 by angle t .) Note that the Reeb
vector field is Rt = ∂z − t∂y . For t = 0 all Reeb orbits are closed and rational SFT is
nontrivial. On the other hand, for t irrational there are no closed Reeb orbits and hence
rational SFT is trivial.
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