
DOI 10.4171/JEMS/506

J. Eur. Math. Soc. 17, 405–431 c© European Mathematical Society 2015

Henning Haahr Andersen · Volodymyr Mazorchuk

Category O for quantum groups

Received June 1, 2011 and in revised form August 13, 2012

Abstract. We study the BGG-categories Oq associated to quantum groups. We prove that many
properties of the ordinary BGG-category O for a semisimple complex Lie algebra carry over to the
quantum case.

Of particular interest is the case when q is a complex root of unity. Here we prove a tensor
decomposition for simple modules, projective modules, and indecomposable tilting modules. Us-
ing the known Kazhdan–Lusztig conjectures for O and for finite-dimensional Uq -modules we are
able to determine all irreducible characters as well as the characters of all indecomposable tilting
modules in Oq .

As a consequence, we also recover the known result that the generic quantum case behaves like
the classical category O.

Keywords. Quantized highest weights modules, specialization at roots of unity, tensor decompo-
sitions, tilting modules

1. Introduction

Let g be a semisimple Lie algebra over Q associated to a semisimple complex Lie al-
gebra gC. The corresponding BGG-category O, defined in [BGG], has been studied in-
tensively over the last decades; see the recent monograph [Hu] for details.

In this paper we study similar categories for quantum groups. We let v denote an
indeterminate and set Uv equal to the quantum group (or rather the quantized enveloping
algebra) for g over Q(v). The subcategory Ov of the module category for Uv is then
defined in complete analogy with Oint, the subcategory of O consisting of modules with
integral weights. Using Lusztig’s quantum divided power version of Uv (see below) it is
possible to consider also specializations Oq of Ov for any q ∈ C \ {0}. Our principal
interest is in the case where q is a root of unity.

In a little more detail, set A = Z[v, v−1
] ⊂ Q(v) and let UA be the Lusztig A-form

of Uv (cf. [Lu90b]). For any nonzero q ∈ C we set Uq = UA⊗AC, where C is made into
an A-algebra by the specialization v 7→ q. Then Oq is the BGG-category for Uq .
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Denote by Fq the subcategory of Oq consisting of all finite-dimensional Uq -modules
of type 1. When q is not a root of unity, this category is semisimple and it has ex-
actly the same “combinatorics” as the category of finite-dimensional modules for gC,
i.e. the characters of the simple modules are given by Weyl’s character formula (see e.g.
[APW91, Ja].)

Suppose now q is a root of unity. Then Fq has a much more complicated structure.
In the present paper we assume that q is of odd order l and if g contains a summand of
type G2 we assume in addition that l is prime to 3. Then the “combinatorics” of Fq has
been worked out: Lusztig [Lu89] stated the conjecture that irreducible characters in Fq
should be given by the values at 1 of the Kazhdan–Lusztig polynomials associated to the
affine Weyl group for g. More specifically, the Kazhdan–Lusztig polynomials involved are
the parabolic ones corresponding to affine Weyl group for the Langlands dual of g relative
to its finite Weyl subgroup (cf. also [So97a]). Kazhdan and Lusztig [KL94] proved that
the category of finite-dimensional modules (of type 1) forUq is equivalent to a category of
modules for the corresponding affine Kac–Moody algebra. This requires a weak restric-
tion on l and in the non-simply laced case it has to be supplemented by Lusztig’s later
work [Lu94]. Then Kashiwara and Tanisaki [KT95], [KT96] proved the corresponding
conjecture for affine Kac–Moody algebras. This established the above mentioned conjec-
ture on the irreducible characters in Fq . Soergel [So97b], [So99] subsequently determined
the characters of indecomposable tilting modules in Fq .

We prove that several classes of fundamental modules such as simple modules, inde-
composable projective modules, indecomposable injective modules, and indecomposable
tilting modules in Oq have a tensor product decomposition with a part which “comes
from” Fq and a part which is a q-Frobenius twist of a corresponding module in Oint; see
Sections 3 and 4 for the precise statements. This allows us to deduce our main results: we
determine all irreducible characters as well as the characters of all indecomposable tilting
modules in Oq (see Corollaries 5.3 and 5.4).

In the process of establishing these results we prove that many of the properties of O,
e.g. finite length of all modules, the existence of enough projectives and injectives, exis-
tence of tilting modules, and Ringel self-duality, all carry over to Oq .

One of the main features of Oq is that it contains a copy of Oint, namely we may iden-
tify Oint with the direct sum of all “special blocks” in Oq (see Theorem 3.11). Once we
have established this and the above mentioned properties of Oq , we return to the generic
category Ov . Using specialization of v at 1 on the one hand and at large order roots of
unity q on the other hand, we are able to identify the combinatorics (i.e. the composition
factor multiplicities of simple modules in Verma modules, and the multiplicities of Verma
modules in Verma flags of indecomposable tilting modules) of Ov with that of Oint. As
was pointed out to us by D. Kazhdan, in the simply laced case there is a stronger result,
proved by M. Finkelberg in his thesis [Fi] from 1993, which establishes a category equiv-
alence between Oq and Oint in the case when q is a nonzero non-root of unity. G. Lusztig
made us aware of the paper [EK] where a generic equivalence is proved more generally
for symmetrizable Kac–Moody algebras (see [EK, Theorem 4.2]). Our proof via the root
of unity case is completely different.
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The paper is organized as follows. In Section 2 we recall some basic facts about quan-
tum groups at roots of unity. Then in Sections 3–4 we establish the results about Oq

mentioned above. In particular, the tensor decompositions of simple modules, indecom-
posable projective or injective modules, and tilting modules are found in Theorem 3.1,
Theorem 3.15, Theorem 3.18, and Corollary 4.8, respectively. Then we deduce in Sec-
tion 5 the combinatorics of Oq before we conclude the paper in Section 6 by proving that
in the generic case the combinatorics of Ov is the same as that of Oint. We complete the
paper with a section which provides a parallel with the category O for Lie superalgebras.

2. Preliminaries on quantum groups

2.1. Quantum groups at roots of 1. For an indeterminate v denote by Uv the quantum
group over Q(v) corresponding to a complex simple Lie algebra g. This is the Q(v)-
algebra with generators Ei, Fi,K±1

i , i = 1, . . . , n = rank(g), and relations as given in
[Ja, Chapter 5].

Set A = Z[v, v−1
]. Then A contains the quantum numbers [r]d = vdr−v−rd

vd−v−d
for any

r, d ∈ Z, d 6= 0 as well as the corresponding q binomials
[
m
t

]
d
, m ∈ Z, t ∈ N. When

r ≥ 0 we set [r]d ! = [r]d [r − 1]d · · · [1]d . In the following we will often need these
elements for d = 1, in which case we will omit it from the notation.

Let C be the Cartan matrix associated with g. We denote by D a diagonal ma-
trix whose entries are relatively prime natural numbers di with the property that DC
is symmetric. Then we set E(r)i = E

r
i /[r]di !. With a similar expression for F (r)i we now

define the A-form UA of Uv to be the A-subalgebra of Uv generated by the elements
E
(r)
i , F

(r)
i ,K±1

i , i = 1, . . . , n, r ≥ 0. This is the Lusztig divided power quantum group.
In this paper we fix throughout a primitive root of unity q ∈ C of odd order l. We

assume that l is prime to 3 if g has type G2. The corresponding quantum group is then
the specialization Uq = UA ⊗A C where C is considered as an A-module via v 7→ q (cf.
[Lu90a], [Lu90b]). We abuse notation and write E(r)i also for the element E(r)i ⊗ 1 ∈ Uq
and similarly for F (r)i .

We have a triangular decomposition Uq = U−q U
0
qU
+
q with U−q and U+q being the

subalgebras generated by F (r)i or E(r)i , i = 1, . . . , n, r ≥ 0, respectively. The “Cartan
part” U0

q is the subalgebra generated by K±1
i and

[
Ki
t

]
, i = 1, . . . , n, t ≥ 0, where[

Ki

t

]
=

t∏
j=1

Kiv
di (1−j) −Kiv

−di (1−j)

vdij − v−dij
.

We denote the “Borel subalgebra” U0
qU
+
q by Bq .

Recall that Uv is a Hopf algebra with comultiplication1, counit ε and antipode S (see
[Ja, 4.11]). It is easy to see that their restrictions give UA the structure of a Hopf algebra
over A. Then Uq also gets an induced Hopf algebra structure.

2.2. The small quantum group. We also have the small quantum group uq ⊂ Uq ,
defined as the subalgebra of Uq generated by Ei, Fi,K±1

i , i = 1, . . . , n. It is also a Hopf
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subalgebra. Note that Uq is generated by uq and E(l)i , F
(l)
i , i = 1, . . . , n, as follows from

[Lu89, Proposition 3.2(a)].
The small quantum group also has a triangular decomposition uq = u−q u

0
qu
+
q with

the obvious definitions of the three parts. We write bq = u0
qu
+
q . Note that u−q and u+q

are finite-dimensional. In fact, the PBW basis for U−q (resp. U+q ) leads to a basis for u−q
(resp. u+q ): we just have to take PBW-monomials where each “root vector” has degree at
most l [Lu90b, Theorem 8.3]. Also u0

q is finite-dimensional. In fact,K2l
i = 1 for all i (see

[Lu90a, 5.7]).

2.3. The quantum Frobenius homomorphism. Let UC denote the enveloping algebra
of g. It has generators ei, fi and hi , i = 1, . . . , n. Lusztig [Lu90b, Section 8] (see also
[Lu, Part V]) has then defined a quantum Frobenius homomorphism Frq : Uq → UC by

E
(r)
i 7→

{
e
(r/ l)
i if l divides r;

0 if not,
Ki 7→ 1,

F
(r)
i 7→

{
f
(r/ l)
i if l divides r;

0 if not.

[
Ki

t

]
7→

(
hi

t

)
,

Here
(
hi
t

)
=
∏t
s=1

(hi−s+1)
s

.

2.4. Representations of Uq . Set X = Zn. Then for λ ∈ Zn we define χλ : U0
q → C

by χλ(K±1
i ) = q±diλi and χλ

([
Ki
t

])
=
[
λi
t

]
di

. This is a well-defined character of U0
q

(see e.g. [APW91, Lemma 1.1]) and it extends to Bq by mapping E(r)i to 0 for all r > 0,
i = 1, . . . , n.

If M is a U0
q -module, then the λ-weight space of M is defined as follows:

Mλ = {m ∈ M | um = χλ(u)m for all u ∈ U0
q }. (2.1)

The module M is called a weight module of type 1 provided that M decomposes into
a direct sum of weight spaces of the form (2.1). In this paper we consider only weight
modules of type 1 and will simply call them weight modules.

If N is a UC-module then we may consider N also as a Uq -module via Frq . To dis-
tinguish it from N we denote this Uq -module by N [l] and call it the (q-Frobenius) twist
ofN . Note that uq acts trivially onN [l]. Conversely, ifM is a weightUq -module on which
uq acts trivially, then there exists a UC-module N such that M = N [l] [Lu90b, 8.16]. In
this case we also write N = M [−l]. Note that N = M as C-spaces and the action of ei
(resp. fi) on a vector v ∈ N is given by eiv = E

(l)
i v (resp. fiv = F

(l)
i v).

Note that Frq restricts to homomorphisms U0
q → U0

C and Bq → BC, where U0
C is

the enveloping algebra of the Cartan subalgebra h in g generated by the hi’s, and BC is
the enveloping algebra of the Borel subalgebra of g generated by the hi’s and ei’s. We
also denote these homomorphisms by Frq . Using them we can twist U0

C- as well as BC-
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modules. For instance, the 1-dimensional U0
q - (or Bq -) module Clλ is the twist of the 1-

dimensional U0
C- (or BC-) module Cλ determined by λ ∈ X (we identify X with the set

of integral weights in h∗ in the usual way).

3. The category Oq

3.1. Definition. Similarly to [BGG] we define the category Oq as the full subcategory
of Uq -mod consisting of those Uq -modules M which satisfy the following conditions:

(I) M is finitely generated as a Uq -module,
(II) M is a weight module,

(III) dimU+q m <∞ for all m ∈ M .

Remark. Let Oint denote the integral subcategory (i.e. the direct sum of all integral
blocks) of the usual BGG category O for g (see [BGG]). If M ∈ Oint then M [l] ∈ Oq .

For λ ∈ X the Verma Uq -module with highest weight λ is given by the usual recipe:

1q(λ) = Uq ⊗Bq Cλ.

The standard arguments (see e.g. [Di, Chapter 7]) show that 1q(λ) has the following
universal property:

HomOq
(1q(λ),M) = {m ∈ Mλ | E

(r)
i m = 0 for all r > 0, i = 1, . . . , n}.

Moreover, it is easily seen that 1q(λ) has a unique maximal proper submodule. The
corresponding simple quotient is denoted Lq(λ). Then the set {Lq(λ) : λ ∈ X} is a
complete and irredundant set of representatives of isomorphism classes of simple modules
in Oq .

3.2. Infinitesimal modules. Replacing Uq by the small quantum group uq we get baby
Verma modules defined by

1̄q(λ) = uq ⊗bq Cλ, λ ∈ X.

If we replace here uq by the subalgebra uqU0
q of Uq and bq by U0

q bq = U
0
qu
+
q , then we

have similarly
1̂q(λ) = uqU

0
q ⊗U0

q bq
Cλ.

The module 1̂q(λ) restricted to uq coincides with 1̄q(λ) and is finite-dimensional. It has
dimension lN where N is the number of positive roots (because as a vector space we
may identify it with u−q ). The module 1̂q(λ) has a universal property similar to the one
enjoyed by 1q(λ) and it has a unique simple quotient which we denote L̂q(λ).

Set now Xl = {λ ∈ X | 0 ≤ λi < l, i = 1, . . . , n}. Then each λ ∈ X has an ‘l-adic
expansion” λ = λ0

+ lλ1 with λ0
∈ Xl and λ1

∈ X. In the following, upper indices 0
and 1 on a weight will always refer to the components of the weight in this expansion.
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We set X+ = {λ ∈ X | 〈λ, α∨〉 ≥ 0 for all positive roots α}. The elements of X+ are
called dominant weights. An antidominant weight is a λ ∈ X for which λ+ ρ ∈ −X+.

We have the following remarkable fact about these infinitesimal simple modules (see
[AW, Theorem 1.9]):

L̂q(λ) ' Lq(λ
0)⊗ C[l]

λ1 . (3.1)

The most “special” infinitesimal simple module is the one with highest weight
(l − 1)ρ. Here, as usual, ρ is half of the sum of all positive roots. We call this mod-
ule the quantum Steinberg module and denote it by Stl . Note that by (3.1) it is in fact a
simple Uq -module; moreover,

Stl = L̂q((l − 1)ρ) = 1̂q((l − 1)ρ) = Lq((l − 1)ρ).

Remark. Above we could also replace uq by uqBq . Then we get baby Verma modules
for uqBq defined by 1̃q(λ) = uqBq ⊗Bq Cλ with simple quotient L̃q(λ). When restricted
to uqU0

q , these modules coincide with 1̂q(λ) and L̂q(λ), respectively. Note, in particular,
that the Steinberg module Stl is also a simple uqBq -module, as it extends, in fact, to Uq .

The composition factor multiplicities of 1̃q(λ) as well as the multiplicities with
which 1̃q(λ) occurs in a baby Verma filtration of an indecomposable projective uqBq -
module coincide with the corresponding numbers for the Weyl module in Fq with highest
weight λ when λ is sufficiently dominant. This follows from (3.1) (cf. [APW92, Theo-
rem 4.6]). This fact allows us to apply the combinatorics of Fq mentioned in the intro-
duction to the category of uqBq -modules.

3.3. Tensor product formula for simple modules in Oq . Recall that Uq is a Hopf al-
gebra. In particular, its comultiplication allows us to make the tensor product (over C) of
two modules for Uq into a Uq -module. We write ⊗ for ⊗C. Note that Oq is stable under
tensoring with finite dimensional modules (of type 1).

Let M,N ∈ Oq . Then we consider HomC(M,N) as a Uq -module in the usual way
(see e.g. [APW91, Section 2.9]). The uq -fixed points Homuq (M,N) then form a Uq -
submodule on which uq acts trivially (cf. [APW92, Section 3.2]). Hence by Section 2.4
there exists a UC-module P = Homuq (M,N)

[−l] with P [l] = Homuq (M,N).
Let us also record the following adjointness valid whenever in addition toM,N ∈ Oq

we have a module Q ∈ O:

HomOq
(Q[l] ⊗M,N) ' HomO(Q,Homuq (M,N)

[−l]). (3.2)

We now have the following theorem first proved by G. Lusztig [Lu89, Theorem 7.4]:

Theorem 3.1. Let λ ∈ X. Then Lq(λ) ' LC(λ1)[l] ⊗ Lq(λ
0).

Proof. Let L be any simple uq -module (of type 1). Recall from the previous subsection
that L is the restriction of a simple Uq -module (which we also denote by L). Then for
any M ∈ Oq the natural map Homuq (L,M) ⊗ L → M which takes f ⊗ m to f (m) is
a Uq -homomorphism. It is in fact an injection which identifies Homuq (L,M) ⊗ L with
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the L-isotypic component of the uq -socle ofM . By the above, this Uq -module is equal to
N [l] for some N ∈ Oint.

Applying these observations to M = Lq(λ) we get Lq(λ) ' Homuq (L,Lq(λ)) ⊗ L

for some such L, i.e. Lq(λ) ' L
[l]
1 ⊗L with L1 ∈ O. Clearly L1 must be irreducible, i.e.

L1 = LC(µ) for some µ ∈ X. By Section 3.2 we have L ' Lq(ν) for some ν ∈ Xl . By
weight considerations and the uniqueness of the l-adic expansion of λ we get µ = λ1 and
ν = λ0. ut

3.4. Verma modules in Oq . We now want to study the composition factors of Verma
modules. If M ∈ Oq and µ ∈ X, we denote by [M : Lq(µ)] the multiplicity of Lq(µ)
as a composition factor of M . We use similar notation for modules in O and for uqBq -
modules.

Lemma 3.2. Let M be a BC-module. Then the map

u⊗m 7→ Frq(u)⊗m, u ∈ Uq , m ∈ M,

is an isomorphism of Uq -modules

Uq ⊗uqBq M
[l]
' (UC ⊗BC M)

[l].

Proof. The map is clearly both well-defined and aUq -homomorphism. Note that uqBq =
u−q Bq and the restriction of Frq toU−q is a surjection ontoU−C with kernel generated by the
augmentation ideal of u−q . It follows that the two modules in question are both isomorphic
as C-spaces to U−C ⊗M with the claimed map identifying the two. ut

Proposition 3.3. For λ ∈ X the Verma module 1q(λ) has a filtration in Oq with quo-
tients of the form1C(µ1)[l]⊗ L̃q(µ

0), µ ∈ X. Each quotient1C(µ1)[l]⊗ L̃q(µ
0) occurs

[1̃q(λ) : L̃q(µ)] times.

Proof. Consider a composition series of 1̃q(λ)

0 = F r ⊂ F r−1
⊂ · · · ⊂ F 0

= 1̃q(λ)

with quotients F i−1/F i ' L̃q(µi). When we apply the exact functor Uq ⊗uqBq −, we
obtain the filtration

0 = Uq ⊗uqBq F
r
⊂ Uq ⊗uqBq F

r−1
⊂ · · · ⊂ Uq ⊗uqBq F

0

of Uq ⊗uqBq 1̃q(λ) ' 1q(λ) with quotients Uq ⊗uqBq L̃q(µi). Now we recall from
Section 3.2 that for any µ ∈ X we have L̃q(µ) ' Clµ1 ⊗ Lq(µ

0). By the tensor identity
we have

Uq ⊗uqBq L̃q(µ) ' (Uq ⊗uqBq Clµ)⊗ Lq(µ
0).

Finally, Lemma 3.2 shows that Uq ⊗uqBq Clµ ' 1C(µ1)[l], and the proposition follows.
ut

Recall that modules in O have finite composition series (see [Di, Chapter 7]). More-
over, by Proposition 3.1 the composition factors of 1C(µ1)[l] ⊗ Lq(µ

0) are LC(ν1)[l] ⊗

Lq(µ
0) ' Lq(lν

1
+ µ0) (occurring [1C(µ1) : LC(ν1)] times). We thus have
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Corollary 3.4. For every λ ∈ X the Verma module 1q(λ) has finite length. Moreover,
for µ ∈ X we have

[1q(λ) : Lq(µ)] =
∑
ν≥µ1

[1̃q(λ) : L̃q(lν + µ
0)][1C(ν) : LC(µ

1)].

Corollary 3.5. All modules in Oq have finite length.

Proof. By condition (I) of Oq it is enough to establish this for cyclic modules M , i.e. we
assume M = Uqm for some m ∈ M . By conditions (II) and (III), m is contained in a
finite-dimensional Bq -submodule E ⊂ M . This means that M is a quotient of Uq ⊗Bq E
which has a finite Verma filtration (take a Bq -filtration of E with 1-dimensional quotients
and apply the exact functorUq⊗Bq−). It is therefore enough to check that Verma modules
in Oq have finite length. We did this in Corollary 3.4. ut

For later use we record the following consequence of Corollary 3.4.

Corollary 3.6. Let λ,µ ∈ X. Then for l � 0 we have

[1q(λ) : Lq(µ)] = [1̃q(λ) : L̃q(µ)].

Proof. Choose l so large that λ − µ 6≥ lν for any ν > 0. Then the sum on the right
hand side of the formula in Corollary 3.4 contains only one term, namely the term with
ν = µ1. ut

3.5. Special modules in Oq

Proposition 3.7. Let λ ∈ X. Then 1q(lλ+ (l − 1)ρ) ' 1C(λ)[l] ⊗ Stl .

Proof. We have 1̃q((l − 1)ρ) ' Stl (see [APW92, Lemma 2.6]). Just as in the proof of
Proposition 3.3 we then get

1q(lλ+ (l − 1)ρ) ' Uq ⊗uqBq 1̃q(lλ+ (l − 1)ρ)

' (Uq ⊗uqBq ⊗Clλ)⊗ Stl ' 1C(λ)
[l]
⊗ Stl . ut

Corollary 3.8. If λ is antidominant then 1q(lλ + (l − 1)ρ) is simple. In particular,
1q(−ρ) is simple.

Proof. It is well-known (see e.g. [Di, Chapter 7] or [Hu, Theorem 4.4]) that 1C(λ) is
simple in O when λ is antidominant. ut

3.6. The special block in Oq . The considerations at the beginning of Section 3.3 allow
us to define a functor F : Oq → Oint by

FN = Homuq (Stl, N)[−l].

Since Stl is projective as a uq -module, F is exact.
Note that the map f ⊗ s 7→ f (s) is a homomorphism and in fact an inclusion

(FN)[l] ⊗ Stl → N . The considerations in Section 3.3 prove the following:
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Proposition 3.9. Let λ ∈ X. Then

FLq(λ) '

{
LC(λ1) if λ = lλ1

+ (l − 1)ρ,
0 if l does not divide λ+ ρ.

This is a key ingredient in the following:

Proposition 3.10. Let λ,µ∈X. Suppose λ0
=(l−1)ρ 6= µ0. Then ExtiOq

(Lq(λ), Lq(µ))

= 0 for all i.

Proof. As Lq(λ) = LC(λ1)[l]⊗Stl and Stl is projective as a uq -module, for anyM ∈ Oq

we get, via (3.2),
ExtiOq

(Lq(λ),M) ' ExtiO(LC(λ
1),FM).

When M = Lq(µ) we have FM = 0 by Proposition 3.9, and the desired vanishing
follows. ut

Proposition 3.10 allows us to define Ospec
q to be the block in Oq consisting of those

M ∈ Oq whose composition factors all belong to lX + (l − 1)ρ. We call this the special
block in Oq and its objects special modules in Oq .

Define a functor G : O→ Ospec
q by

GN = N [l] ⊗ Stl .

Note that for N ∈ O, GN is indeed a special module in Oq .
Clearly, G is exact and is in fact (left and right) adjoint to F. It is also immediate that

F ◦ G is isomorphic to the identity functor on O. Moreover, by Theorem 3.1, G ◦ F is
naturally isomorphic to the identity on simple modules and hence on Ospec

q . We have thus
proved

Theorem 3.11. There is an equivalence of categories Oint ∼= Ospec
q given by the mutually

inverse functors F and G.

3.7. Projective modules in Oq . Recall that in Oint the Verma module 1C(λ) is projec-
tive whenever λ+ ρ is dominant (cf. [Hu, Proposition 3.8]). Hence Theorem 3.11 gives

Corollary 3.12. If λ + ρ is dominant, then 1q(lλ + (l − 1)ρ) is projective in Oq . In
particular, 1q(−ρ) is projective.

More generally, let µ ∈ X and denote by PC(µ) ∈ O a projective cover of LC(µ). Then
Theorem 3.11 gives the following:

Proposition 3.13. For each λ ∈ X the module PC(λ)[l] ⊗ Stl is a projective cover of
Lq(lλ+ (l − 1)ρ) in Oq .

Having these projectives allows us to deduce the following:

Theorem 3.14. The category Oq has enough projectives.
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Proof. This is a standard argument (cf. [Hu, 3.8]): By induction with respect to length we
reduce the problem to proving that each simple module can be covered by a projective.
Given λ ∈ X, we set ν = w0λ

0
+ (l − 1)ρ where w0 denotes the longest element in

the Weyl group W for g. Then w0ν = λ0
− (l − 1)ρ is the lowest weight of the finite-

dimensional simple module Lq(ν). Therefore 1q(lλ1
+ (l − 1)ρ)⊗ Lq(ν) surjects onto

1q(lλ
1
+ (l − 1)ρ + w0ν) = 1q(λ). Now it is an easy consequence of Proposition 3.13

that PC(λ1)[l]⊗Stl surjects onto1q((lλ1
+(l−1)ρ). So we see that the projective module

PC(λ1)[l] ⊗ Stl ⊗ Lq(ν) surjects onto Lq(λ). ut

Define Pq(λ) ∈ Oq as the projective cover of Lq(λ). Then Corollary 3.12 says that
Pq(λ) = 1q(λ) for all λ such that λ + ρ ∈ X+ ∩ lX. Moreover, Proposition 3.13 says
that Pq(lλ + (l − 1)ρ) ' PC(λ)[l] ⊗ Stl for all λ ∈ X. We shall now generalize this by
showing that all indecomposable projectives in Oq have a tensor factorization.

Recall that the subcategory Fq consisting of all finite-dimensional modules in Oq

also has enough projectives (see [APW92, Section 4]). Let us denote by Qq(µ) ∈ Fq the
projective cover of Lq(µ) for µ ∈ X+.

Theorem 3.15. For any λ ∈ X we have Pq(λ) ' PC(λ1)[l] ⊗Qq(λ
0).

Proof. By [APW92, Theorem 4.6] the restriction to uq of Qq(λ
0) is the projective cover

of Lq(λ0), i.e. for µ ∈ Xl we have

Homuq (Q(λ
0), Lq(µ)) =

{
C if µ = λ0,

0 otherwise.

Hence, using (3.2) and Theorem 3.1, for any µ ∈ X we get

ExtiOq
(P (λ1)[l] ⊗Q(λ0), Lq(µ))

= ExtiOC
(PC(λ

1), Lq(µ
1)⊗ Homuq (Q(λ

0), Lq(µ
0))[−l])

=

{
C if µ = λ and i = 0,
0 otherwise.

ut

Let us also record the following important consequence of the constructions in the proof
of Theorem 3.14.

Corollary 3.16. Projective modules in Oq all possess Verma filtrations.

Proof. Let λ ∈ X. We shall prove that the conclusion holds for Pq(λ). When λ ∈ lX +
(l−1)ρ this follows from the fact that the corresponding statement is true in O combined
with Theorem 3.11. But then the result follows in general, because the construction in the
proof of Theorem 3.14 reveals that Pq(λ) may be obtained as a summand of a projective
in Ospec

q tensored by a finite-dimensional module. ut

3.8. Injective modules in Oq . Let M be an arbitrary Uq -module. Since the antipode
S on Uq is an antihomomorphism, the dual space M∗ = HomC(M,C) has the natural
structure of a Uq -module given by uf (m) = f (S(u)m) for u ∈ Uq , f ∈ M∗, m ∈ M .
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Now Uv has an automorphism ω which interchanges Ei and Fi and inverts Ki (see [Ja,
4.6]). Clearly, ω gives rise to an automorphism of Uq . Twisting M∗ by ω we get the
Uq -module ωM∗ and when M ∈ Oq we set

M?
=

⊕
λ∈X

(ωM∗)λ.

Then (−)? is an endofunctor on Oq , called duality, with the property that for each λ∈X
we have dim (M?)λ = dimMλ. Hence L?q(λ)' Lq(λ) (i.e. ? is simple-preserving). The
existence of ? gives immediately:

Theorem 3.17. Oq has enough injectives.

We set Iq(λ) = P ?q (λ). This is the injective envelope of Lq(λ) in Oq and if we denote by
IC(µ) the injective envelope of LC(µ) in Oint then Theorem 3.15 implies:

Theorem 3.18. For any λ ∈ X we have Iq(λ) ' IC(λ1)[l] ⊗Qq(λ
0).

3.9. Projective-injective modules in Oq . By a projective-injective module we under-
stand a module which is both projective and injective. We have

Theorem 3.19. Let λ ∈ X. Then the following assertions are equivalent:

(a) Pq(λ) ' Iq(λ).
(b) Lq(λ) occurs in the socle of a projective-injective module in Oq .
(c) Lq(λ) occurs in the top of a projective-injective module in Oq .
(d) Lq(λ) occurs in the socle of some 1q(µ), µ ∈ X.
(e) λ is antidominant.

Proof. The corresponding statement for Oint (and also for its parabolic subcategories) is
well-known (see e.g. [Ir, Addendum and Proposition 4.3]). Hence Theorem 3.11 implies
the claim for λ ∈ lX + (l − 1)ρ.

Note that Qq(λ
0) is self-dual. Hence by Theorem 3.15 and 3.18 we see that (a) holds

if and only if PC(λ1) ' IC(λ1).
Now it is clear that (a) implies (b) and (b) implies (c). In view of Corollary 3.16 we

see that (d) is a consequence of (c). Suppose Lq(λ) is a submodule of 1q(µ) for some
µ ∈ X. Then Propositions 3.3 and 3.1 show that LC(λ1) is a submodule of 1C(ν) for
some ν ∈ X. By the O-result this implies that λ1 is antidominant. But this is equivalent
to (e). Finally, (c) implies (a) by the observations at the beginning of the proof. ut

The properties described in Theorem 3.19 appear frequently in various categories associ-
ated with Lie (super)algebras (see e.g. [MS, Theorem 48] and [BS, Theorems 6.1,6.2]).
For Lie superalgebras this will be further clarified in Section 7.
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4. BGG reciprocity, Struktursatz and Ringel self-duality

4.1. BGG reciprocity in Oq . The dual Verma module 1?q(λ) is denoted ∇q(λ). Then
we have the following easy but very useful vanishing theorem (cf. [Hu, 6.12]).

Theorem 4.1. Let λ,µ ∈ X. Then

ExtiOq
(1q(λ),∇q(µ)) '

{
C if i = 0 and λ = µ,
0 otherwise.

Proof. Note that ExtiOq
(1q(λ),∇q(µ)) ' ExtiOq

(1q(µ),∇q(λ)) by duality. This allows
us to assume that λ 6< µ. Easy weight arguments show that the conclusion holds for
i = 0. Now by Corollary 3.16 all projectives in Oq have Verma filtrations. Moreover, we
have a short exact sequence 0 → K → Pq(λ) → 1q(λ) → 0 with K having a Verma
filtration where all subfactors 1q(λ′) have λ′ > λ. The i > 0 part of the theorem then
follows from this sequence by a dimension shift argument. ut

As a consequence we see that if M ∈ Oq has a Verma (resp. dual Verma) filtration then
the number of occurrences (M : 1q(λ)) (resp. (M : ∇q(λ)) of 1q(λ)) (resp. ∇q(λ))
in this filtration equals the dimension of HomOq

(M,∇q(λ)) (resp. HomOq
(1q(λ),M)).

This immediately leads to the following BGG-reciprocity laws:

Corollary 4.2. Let λ,µ ∈ X. Then

(Pq(λ) : 1q(µ)) = [1q(µ) : Lq(λ)] = (Iq(λ) : ∇q(µ)).

In other words, the above means that Oq is a highest weight category in the sense of
[CPS88] (with infinitely many isomorphism classes of simple modules).

4.2. The category C . Let C denote the full subcategory of Oq with objects Pq(λ),
λ ∈ X. For simplicity we will identify objects of C with elements in X. Then Corol-
lary 3.5 implies that C is a locally finite-dimensional C-linear category (we refer to
[MOS] for generalities on representations of C-linear categories). Moreover, from Corol-
lary 3.5 and Theorems 3.14 and 3.17 it follows that for any λ ∈ X there exist only finitely
many µ ∈ X such that C (λ, µ) 6= 0 and that for any λ ∈ X there exist only finitely many
µ ∈ X such that C (µ, λ) 6= 0.

Let C -mod (resp. mod-C ) denote the category of finite-dimensional left (resp.
right) C -modules, that is, covariant (resp. contravariant) functors M : C → C-mod
(the latter being the category of finite-dimensional complex vector spaces) satisfying∑
λ∈X dim M(λ) <∞. Then abstract nonsense (see e.g. [Ga]) implies that Oq is equiva-

lent to mod-C , and the latter is equivalent to C -mod by duality.
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4.3. Dominance dimension and Soergel’s Struktursatz

Proposition 4.3. The category Oq has dominance dimension at least two with respect to
projective-injective modules, that is, for any projective module P ∈ Oq there exists an
exact sequence

0→ P → X1 → X2, (4.1)

where both X1 and X2 are projective-injective.

Proof. This claim is well-known for Oint (see e.g. [KSX, 3.1]). Hence Theorem 3.11 im-
plies the claim for P ∈ Ospec

q . By Theorem 3.15, every indecomposable projective can be
obtained by tensoring an indecomposable projective from Ospec

q with a finite-dimensional
module and taking a direct summand. As this tensoring is both left and right adjoint to
an exact functor, it preserves projective-injective modules. Hence such tensoring maps a
sequence of the form (4.1) to a sequence of the same form, and the claim follows. ut

Denote by C PI the full subcategory of C whose objects are all antidominant λ ∈ X, that is,
those λ ∈ X for which the projective module Pq(λ) is also injective (see Theorem 3.19).
For λ ∈ X define

Mλ := HomOq
(−, Pq(λ)) ∈ mod-C PI.

Let C denote the full subcategory of mod-C PI with objects Mλ, λ ∈ X.
Define a functor 8 : C → C as follows: on objects we set 8(λ) := Mλ, λ ∈ X; if

λ,µ ∈ X and ϕ ∈ HomOq
(Pq(λ), Pq(µ)), then set

8(ϕ) := ϕ ◦ − : HomOq
(−, Pq(λ))→ HomOq

(−, Pq(µ)).

The following result generalizes [So90, Struktursatz].

Theorem 4.4. The functor 8 is an isomorphism of categories.

Proof. By definition, 8 induces a bijection on objects. So we need only check that
it induces a bijection on morphisms, that is, for any λ,µ ∈ X the map 8λ,µ :

HomOq
(Pq(λ), Pq(µ)) → C (Mλ,Mµ) is an isomorphism. This is clear if both Pq(λ)

and Pq(µ) are injective.
By Proposition 4.3, the injective envelope of Pq(µ) is projective. Observe that if ϕ ∈

HomOq
(Pq(λ), Pq(µ)) is nonzero, then the image of ϕ contains a simple submodule L

in the socle of Pq(µ). By Theorem 3.19, L is a homomorphic image of some projective-
injective module P . By the projectivity of P , the surjection f : P → L lifts to a map
f ′ : P → Pq(λ) such that f = ϕ ◦ f ′. This implies that 8λ,µ(ϕ) is nonzero and hence
8λ,µ is injective.

To prove surjectivity let λ,µ ∈ X and f ∈ C (Mλ,Mµ). By Proposition 4.3, there are
exact sequences

0→ Pq(λ)→ X1 → X2, 0→ Pq(µ)→ Y1 → Y2
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in Oq such thatX1,X2, Y1 and Y2 are projective-injective. Applying the covariant functor
HomOq

(−,−) to these exact sequences yields injective resolutions for both Mλ and Mµ

in mod-C PI. The map f admits lifts giving the following commutative diagram:

0 // Mλ
//

f

��

HomOq
(−, X1) //

f ′

��

HomOq
(−, X2)

f ′′

��
0 // Mµ

// HomOq
(−, Y1) // HomOq

(−, Y2)

As X1, X2, Y1 and Y2 are projective-injective, the right hand square of the latter diagram
is the image of the right hand square of some commutative diagram of the form

0 // Pq(λ) //

ϕ

��

X1 //

��

X2

��
0 // Pq(µ) // Y1 // Y2

As both rows are exact, the commutative right hand square of the latter diagram induces a
unique ϕ : Pq(λ)→ Pq(µ)making the diagram commutative and we have8λ,µ(ϕ) = f .
This proves surjectivity and completes the proof. ut

Statements similar to Proposition 4.3 and Theorem 4.4 appear frequently and play an
important role in Lie-theoretic context (sometimes in disguise); see e.g. [St03, Theo-
rem 10.1], [St06, Theorem 3.9] and [Ma, Corollary 2]. Our proof above follows the ap-
proach of [KSX]. Making a parallel with the results of [MM], we propose the following
conjecture:

Conjecture 4.5. The category C PI is symmetric, i.e. the bimodules C PI(−,−)∗ and
C PI(−,−) are isomorphic.

In [MM] it is shown that some similar categories associated to certain Lie superalgebras
are symmetric, using a description of the Serre functor for the corresponding category O
via Harish-Chandra bimodules. A similar approach for C PI would require developing the
theory of Harish-Chandra bimodules in the quantum case.

4.4. Tilting modules in Oq . A module M ∈ Oq is called tilting if M has both a Verma
filtration and a dual Verma filtration. In Oint there exists, for each λ ∈ X, a unique inde-
composable tilting module TC(λ) which has λ as its unique highest weight. The same is
true in Oq :

Theorem 4.6. For each λ ∈ X there exists an indecomposable tilting module Tq(λ)
with λ as its unique highest weight. Every indecomposable tilting module in Oq is iso-
morphic to Tq(λ) for some λ ∈ X.
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There are various ways to prove this (compare e.g. with [So99]); we choose the one which
we think is the shortest.

Proof. The functor G : Oint → Ospec
q clearly takes tilting modules in Oint to tilting

modules in Oq (see Proposition 3.7). Hence for µ ∈ X we set Tq(lµ + (l − 1)ρ) =
TC(µ)[l] ⊗ Stl .

For general λ ∈ X we set µ = λ1
−ρ and consider T = TC(µ)[l]⊗Stl⊗Lq(λ0

+ρ).
Then T is a tilting module and its highest weight is λ occurring with multiplicity 1. So
we set Tq(λ) equal to the unique indecomposable summand of T which has a nonzero
λ-weight space.

This gives the existence of Tq(λ). The second statement is then seen by standard
arguments (see [Hu, Theorem 11.2]). ut

For N ∈ Oq we denote by TrPI(N) the trace in N of all projective-injective modules, that
is, the sum of the images of all homomorphisms from M to N , where M is projective-
injective. Note that for every finite-dimensional V ∈ Oq the functor V ⊗ − preserves
the category of projective-injective modules. This implies that for any N ∈ Oq we have
TrPI(V ⊗ N) ∼= V ⊗ TrPI(N). Titling modules in Oq can be alternatively described as
follows:

Theorem 4.7. (i) For every λ ∈ X the module TrPI(Pq(λ)) is an indecomposable tilt-
ing module.

(ii) Every indecomposable tilting module is isomorphic to TrPI(Pq(λ)) for some λ ∈ X.
(iii) (Ringel self-duality) For all λ,µ ∈ X we have

HomOq
(Pq(λ), Pq(µ)) ∼= HomOq

(TrPI(Pq(λ)),TrPI(Pq(µ))).

In the classical case, Ringel self-duality is due to Soergel [So97b].

Proof. This is well-known for OC (see e.g. [So97b, FKM]). Hence Theorem 3.11 implies
the claim for Ospec

q . Using translation and Theorem 3.15 we deduce that TrPI(Pq(λ)) is a
tilting module for every λ ∈ X.

From Theorem 4.4 it follows that for all λ,µ ∈ X the restriction map

HomOq
(Pq(λ), Pq(µ))→ HomOq

(TrPI(Pq(λ)),TrPI(Pq(µ)))

is bijective. This proves (iii) and implies that every TrPI(Pq(λ)) is indecomposable, prov-
ing (i). Claim (ii) follows from the fact that every tilting module occurs as a direct sum-
mand of a simple tilting module from Ospec

q tensored with a finite-dimensional module.
ut

Theorem 4.7(i) combined with Theorem 3.15 implies a tensor product formula for inde-
composable tilting modules, similar to Theorems 3.15 and 3.17. Namely, let λ0

∈ Xl and
write λ̃0

= lρ + w0 · λ
0.

Corollary 4.8. For each λ ∈ X we have Tq(λ) ' TC(λ1
− ρ)[l] ⊗Qq(λ̃

0).
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5. Characters and Kazhdan–Lusztig data

5.1. Character formulas. Consider the group ring Z[X] in which we denote the basis
element corresponding to λ∈X by eλ. Multiplication is then determined by eλeµ=eλ+µ.

We extend this ring by defining its “completion” Ẑ[X] to consist of all expressions∑
λ cλe

λ where cλ ∈ Z for all λ and there exist λ1, . . . , λr ∈ X such that cλ = 0 unless
λ ≤ λi for some i (here ≤ is the usual order on X). Alternatively, this is the set of
Z-valued functions on X whose support is contained in a finite union of subsets of the
form X≤µ = {λ ∈ X | λ ≤ µ}. Clearly, multiplication on Z[X] extends to Ẑ[X].

If f =
∑
aλe

λ
∈ Ẑ[X], we set f [l] =

∑
aλe

lλ. If M ∈ Oint or M ∈ Oq , we set
chM =

∑
µ(dimMµ)e

µ
∈ Ẑ[X] and call this the character of M . Then for M ∈ Oint

we get ch(M [l]) = (chM)[l].
Using the notation from Section 3.4, for M ∈ Oint we have

chM =
∑
µ

[M : LC(µ)] chLC(µ), (5.1)

and similarly for M ∈ Oq we have

chM =
∑
µ

[M : Lq(µ)] chLq(µ). (5.2)

These sums are finite (cf. Corollary 3.5). If we take M = 1C(λ), then the sum in (5.1)
has a unique highest term, namely 1 · chLC(λ). We can therefore “invert” these equations
and obtain

chLC(λ) =
∑
µ

pCµ,λ ch1C(µ) (5.3)

for some unique pCµ,λ ∈ Z. Similarly, we get

chLq(λ) =
∑
µ

p
q
µ,λ ch1q(µ) (5.4)

for some unique pqµ,λ ∈ Z.
Note that whereas the sum in (5.3) is finite for all λ ∈ X (we have pCµ,λ = 0 unless

µ ∈ W · λ), this is not so in (5.4) (as blocks of Oq could have infinitely many simples).
For instance in the sl2-case we have

chLq(−2) = 1q(−2)+
∑
m≤−1

(ch1q(2ml)− ch1q(2ml − 2)). (5.5)

Similarly, we may consider the characters of (finite-dimensional) uqBq -modules. Here
we obtain the analogous formulas

chM =
∑
µ

[M : L̃q(µ)] ch L̃q(µ), (5.6)

and
ch L̃q(λ) =

∑
µ

p̃
q
µ,λ ch 1̃q(µ) (5.7)
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for some unique p̃qµ,λ ∈ Z. Again, (5.6) clearly involves only finite sums for any finite-
dimensional M (and is in fact a formula in Z[X]), whereas the sum in (5.7) may well be
infinite.

Finally, we observe the following obvious identities, valid for all λ,µ ∈ X:

(ch1C(λ))eµ = ch1C(λ+ µ), (5.8)
(ch1q(λ))eµ = ch1q(λ+ µ), (5.9)

(ch 1̃q(λ))eµ = ch 1̃q(λ+ µ). (5.10)

5.2. Characters of simple modules in Oq . Using the notation of Section 5.1 we have:

Theorem 5.1. For all λ ∈ X we have the following:

(i) chLq(λ) =
∑
ν,η p

C
ν,λ1 p̃

q

η,λ0 ch1q(lν + η);

(ii) pqµ,λ =
∑
lν+η=µ p

C
ν,λ1 p̃

q

η,λ0 =
∑
w∈Wλ1 pC

w·λ1,λ1 p̃
q

µ−lw·λ1,λ0 , where W λ1
denotes

the set of shortest coset representatives in W/StabW ·(λ1).

Proof. By Proposition 3.1 combined with (5.3) and (5.7) we find

chLq(λ) = (chLC(λ
1)[l] chLq(λ0) =

∑
ν

pC
ν,λ1(ch1C(ν))

[l]
∑
η

p̃
q

η,λ0 ch 1̃q(η)

=

∑
µ

( ∑
lν+η=µ

pC
ν,λ1 p̃

q

η,λ0

)
(ch1C(ν))

[l] ch 1̃q(η).

So, to establish (i) we should only check that

(ch1C(ν))
[l] ch 1̃q(η) = ch1q(lν + η). (5.11)

However, by (5.10) we have ch 1̃q(η) = (ch Stl)eη−(l−1)ρ (because Stl = 1̃q((l− 1)ρ)).
Hence using Proposition 3.7 we find

(ch1C(ν))
[l] ch 1̃q(η) = (ch1C(ν))

[l](ch Stl)eη−(l−1)ρ

= (ch1q(lν + (l − 1)ρ))eη−(l−1)ρ
= ch1q(lν + η).

Here we have used (5.9) for the last equality.
The first equality in (ii) is immediate from (i), and the second comes from the fact that

pC
ν,λ1 = 0 unless ν ∈ W · λ1. ut

5.3. Characters of indecomposable tilting modules in Oq . By Corollary 4.8 we get,
for any λ ∈ X,

ch Tq(λ) =
∑
ν,η

(TC(λ
1
− ρ) : 1C(ν))(Qq(λ̃

0) : 1̃q(η)) ch(1C(ν)
[l]) ch 1̃q(η).

Applying (5.11) in this formula we get

Theorem 5.2. For all λ,µ ∈ X we have

(Tq(λ) : 1q(µ)) =
∑

ν,η,lν+η=µ

(TC(λ
1
− ρ) : 1C(ν))(Qq(λ̃

0) : 1̃q(η)).
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5.4. Kazhdan–Lusztig theory for Oq . Fix an antidominant weight λ ∈ X. For each
µ ∈ W · λ we pick w ∈ W minimal such that w · λ = µ. Then the Kazhdan–Lusztig
conjecture [KL] proved independently by Beilinson and Bernstein [BB] and by Brylinski
and Kashiwara [BK] says that (for each such minimal y,w ∈ W )

pCy·λ,w·λ = (−1)l(yw)Py,w(1). (5.12)

Here Py,w is the Kazhdan–Lusztig polynomial associated to y,w (see [KL]).
As discussed in the introduction, the analogous Lusztig conjecture for finite-dimen-

sional simple modules in Fq has also been settled.
Let Wl be the affine Weyl group (of dual Langlands type). Set

A−l = {λ ∈ X | −l < 〈λ+ ρ, α
∨
〉 < 0 for all positive roots α}.

This is the top antidominant alcove. Fix λ ∈ Ā−l and choose for each µ ∈ Wl ·λ a minimal
x ∈ Wl such that µ = x · λ. Then in analogy with (5.12) for all such minimal z, x ∈ Wl

for which z · λ, x · λ ∈ X+ we have

p
q
z·λ,x·λ = (−1)l(zx)Pz,x(1). (5.13)

Here Pz,x is again the Kazhdan–Lusztig polynomial associated to the pair (z, x) in the
affine Weyl groupWl . Note that this gives us only some of the coefficients; the remaining
coefficients (for x · λ ∈ X+ fixed) can be obtained using the Weyl character formula for
quantum Weyl modules.

Combining the above two formulas allows us to formulate Theorem 5.1 as follows:

Corollary 5.3. Let λ ∈ X and suppose w ∈ W , resp. x ∈ Wl , is minimal such that
w−1
· λ1 is antidominant, resp. x−1

· λ0
∈ Ā−l . Then the character of Lq(λ) equals∑

r∈W

∑
y∈Ww−1·λ1

∑
z∈Wx

−1·λ0
l

zx−1·λ0∈X+

(−1)l(yw)+l(zx)+l(r)Py,w(1)Pz,x(1)

· ch1C(yw
−1
· λ1)[l] ch1q(rzx−1

· λ0)

Similarly, the result in Theorem 5.2 leads to the following expression for the characters
of indecomposable tilting modules in Oq . The formula involves the “inverse” Kazhdan–
Lusztig polynomials Qx,y , i.e. the polynomials determined by the equations∑

z

(−1)l(z)−l(y)Py,zQz,w = δy,w.

Corollary 5.4. Let λ ∈ X. Assume that λ1
− ρ is regular, i.e. belongs to the interior of

a chamber so that there is a unique w ∈ W with w−1
· (λ1
− ρ) antidominant. Likewise

assume that λ0 is l-regular so that there is a unique x ∈ Wl with x−1
· λ0
∈ A−l . Then

(Tq(λ) : 1q(µ)) =
∑
y,z

Py,w(1)Qz,x(1)

where the sum runs over those y ∈ W , z ∈ Wl for which µ = lyw−1
· λ1
+ zx−1

· λ0.

Proof. According to [So97a, Conjecture 7.1] (proved in [So97b]) we have (TC(λ1
− ρ) :

1C(yw−1
· (λ1
− ρ)) = Py,w(1) and (Qq(λ̃

0) : 1̃q(zx
−1
· λ0
+ lρ) = Qz,x(1). ut



Category O for quantum groups 423

Remark. Using [So97a, Remark 7.2.2] it is possible to generalize this corollary to in-
clude weights λ without the stated regularity assumptions.

Example 5.5. Consider the simplest possible case where the Lie algebra g is sl2. Then
X = Z with X+ = Z≥0. Suppose q is a complex root of unity of odd order l > 1. Then
we have the following description of the Verma modules and the indecomposable tilting
modules in Oq :

Case 1. Suppose λ ∈ Z is l-singular, i.e. λ ≡ −1 (mod l). Then we are in the special
block of Oq and just as in the classical case we have (cf. Theorem 3.11)1q(λ) = Tq(λ) =
Lq(λ) when λ < 0. On the other hand, for λ ≥ 0 we have two short exact sequences

0→ Lq(−λ− 2)→ 1q(λ)→ Lq(λ)→ 0,
0→ 1q(λ)→ Tq(λ)→ 1q(−λ− 2)→ 0.

Case 2. Suppose λ is l-regular and write λ = λ0
+ lλ1 with 0 ≤ λ0 < l − 1. If λ < 0 we

have two exact sequences

0→ Lq(−λ
0
− 2+ lλ1)→ 1q(λ)→ Lq(λ)→ 0,

0→ 1q(λ)→ Tq(λ)→ 1q(−λ
0
− 2+ lλ1)→ 0.

On the other hand, if λ ≥ 0 then 1q(λ) has composition factors Lq(λ), Lq(−λ0
−

2 + lλ1), Lq(−λ − 2), and Lq(λ0
+ l(−λ1

− 2)). Note that if λ1
= 0 the second and

the third factors coincide and so 1q(λ) has in this case only three composition factors.
Similarly the tilting module Tq(λ) has Verma filtration factors1q(λ),1q(−λ0

−2+ lλ1),
1q(−λ− 2), and 1q(λ0

− lλ1). If λ1
= 0 then the first and the last factors are identical

and so are the second and the third, so that in this case there are only two factors.

Although this example is maybe too simple to catch the full flavor of the behavior of
Verma modules and tilting modules, it does illustrate some important features: In the
most singular case (the special block) the modules are as in the classical case (with the
Kazhdan–Lusztig polynomials for the finite ordinary Weyl group governing the combi-
natorics). At the other extreme, when the weight λ in question is l-regular and far from
the walls of the Weyl chamber C containing it, the Verma module 1q(λ), respectively
the tilting module Tq(λ), has composition factors, respectively Verma filtration factors,
belonging to “clusters” in all the Weyl chambers below C (in the Bruhat order). These
clusters look like the alcove patterns in [Lu80]. When λ is close to some walls there
are (rather complicated) cancellations among these clusters. Moreover, there are several
degrees of l-singularity (depending on the facette for the affine Weyl group to which λ
belongs) which also influence the patterns. This is all encoded in Corollaries 5.3 and 5.4.

6. The generic case

6.1. The category Ov . We define the category Ov to be the full subcategory of the cate-
gory of Uv-modules consisting of those modules which satisfy the analogues of (I)–(III)
in Section 3.1.
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Among the objects in Ov we have the generic Verma modules 1v(λ), λ ∈ X, de-
fined in the usual way. They have unique simple quotients Lv(λ), and these are up to
isomorphism a complete set of simple modules in Ov .

The category Ov has properties completely analogous to Oint (see e.g. [C-P, Chapters
9–10]). In particular all modules in Ov have finite length, the Verma module 1v(λ) has
composition factors Lv(µ) with µ ∈ W · λ, and in fact Ov splits into blocks,

Ov =

⊕
λ

Oλ
v ,

where the block Oλ
v consists of those modules from Ov whose composition factors have

highest weights inW · λ, and where the sum runs over the set of all λ for which λ+ ρ are
dominant.

In analogy to Oq we have a duality (−)? on Ov which fixes simple modules. The dual
Verma module 1?v(λ) is denoted ∇v(λ).

6.2. A-lattices. Clearly the Verma module 1v(λ) has an A-lattice, namely the Verma
module for UA defined by

1A(λ) = UA ⊗BA Aλ.

Here BA is the Borel subalgebra of UA defined in analogy to Bq , and Aλ denotes the free
rank oneA-module with BA-action given by the analogue overA of the character χλ from
Section 2.4.

Similarly, ∇v(λ) has an A-lattice ∇A(λ) defined as the A-dual of 1A(λ) (with the
appropriate UA-structure).

Note that HomUA(1A(λ),∇A(λ)) ' A. We let cλ denote a generator of this module
and setKA(λ), respectively LA(λ) and CA(λ), equal to the kernel, respectively the image
and the cokernel, of cλ. Then we get the following two short exact sequences in Ov:

0→ KA(λ)→ 1A(λ)→ LA(λ)→ 0,
0→ LA(λ)→ ∇A(λ)→ CA(λ)→ 0.

Tensoring by the fraction field Q(v) of A we see that LA(λ) ⊗A Q(v) ' Lv(λ) because
Lv(λ) is the image of cλ ⊗ 1 : 1v(λ)→ ∇v(λ). On the other hand, if we specialize to a
root of unity q ∈ C (i.e. apply −⊗A Cq with Cq denoting C made into an A-module by
mapping v to q) then we obtain the following two exact sequences in Ov:

KA(λ)⊗A Cq → 1q(λ)→ LA(λ)⊗A Cq → 0,

0→ TorA1 (CA(λ),Cq)→ LA(λ)⊗A Cq → ∇q(λ)→ CA(λ)⊗A Cq → 0.

As LA(λ)⊗A Cq is a nonzero quotient of 1q(λ) it has Lq(λ) as a quotient but it may be
larger.

Proposition 6.1. Let λ,µ ∈ X. Then

dimC Lq(λ)µ ≤ dimQ(v) Lv(λ)µ

for all l. Equality holds if l � 0.
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Proof. The inequality follows from the above considerations. They also show that we
have equality if and only if TorA1 (CA(λ)µ,Cq) = 0. But CA(λ)µ is a finitely generated
A-module, so this Tor vanishes for all but at most finitely many q. ut

6.3. Generic multiplicities. From the above discussion we deduce the following result,
comparing combinatorics of Ov with that of O (see [HK] for some other results in the
same spirit).

Theorem 6.2. Let λ ∈ X. Then for all µ ∈ X,

[1v(λ) : Lv(µ)] = [1C(λ) : LC(µ)].

Proof. Recall that both sides are 0 unless µ ∈ W · λ. Let therefore µ ∈ W · λ. Choose l
so large that we have equality in Proposition 6.1 for all these finitely many µ’s. Then

[1v(λ) : Lv(µ)] = [1q(λ) : Lq(µ)].

By Corollary 3.6 this equals [1̃q(λ) : L̃q(µ)] (for large l). But if we also assume that
l is so large that both λ and µ belong to l-alcoves adjacent to −ρ then we claim that
the composition factor multiplicities in these (baby) Verma modules for uqBq agree with
their counterparts in O. This is a consequence of Corollary 5.3 because when x ∈ W the
Kazhdan–Lusztig polynomials Pz,x clearly vanish unless z ∈ W . ut

Clearly, this theorem implies

Corollary 6.3. The result in Theorem 6.2 holds not only for an indeterminate v but also
for any specialization v 7→ q where q ∈ C is transcendental.

Remark. The results of this section also follow from the fact that, after extending the
scalars to C, for any transcendental q ∈ C \ {0} the categories Oq and Oint are equivalent
(each block of such a category can be realized as modules over an associative algebra with
relations defined over Q). As was pointed out to us by D. Kazhdan, such an equivalence
was established (in the simply laced case) by M. Finkelberg in his thesis [Fi]. G. Lusztig
made us aware of the paper [EK] where such an equivalence is established more generally
for symmetrizable Kac–Moody algebras (see [EK, Theorem 4.2]). In our case this result
gives that if v is an indeterminate then the category Ov is equivalent to the integral block
in the category O for g⊗Q K where K is the fraction field of Q[[v]].

The methods used in both [Fi] and [EK] are completely different from our approach.

7. A parallel with Lie superalgebras

There are several similarities between general properties of Oq and those of the category
O for finite-dimensional Lie superalgebras. These similarities played an important role
in forming our intuition for the results of the present paper and in this section we try to
make them more precise, following a suggestion of the referee and the editor. We refer
the reader e.g. to [Mu] for more details on Lie superalgebras and their modules. For a Lie
superalgebra a we denote by U(a) the corresponding enveloping algebra.
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7.1. Super setup. Let g = g0 ⊕ g1 be a Lie superalgebra over C. We assume that g0 is
a finite-dimensional reductive Lie algebra and g1 is a semisimple g0-module. We denote
by g-smod the abelian category of g-supermodules (where morphisms are homogeneous
g-homomorphisms of degree 0). Fix some triangular decomposition g = n− ⊕ h ⊕ n+

with the induced triangular decomposition g0 = n−
0
⊕ h0 ⊕ n+

0
. Our two basic examples

are: the general linear Lie superalgebra gl(m|n) and the queer Lie superalgebra qn.
The superalgebra gl(m|n) consists of (n + m) × (n + m) matrices naturally divided

into n×n, n×m,m×n andm×m blocks. The operation is the usual super-commutator of
matrices. The diagonal blocks form the even part while the off-diagonal blocks form the
odd part. The standard triangular decomposition corresponds to taking lower triangular,
diagonal and upper triangular matrices. Note that the Cartan subalgebra h of diagonal
matrices is purely even.

The superalgebra qn consists of 2n× 2n matrices of the form(
A B

B A

)
with respect to the usual super-commutator of matrices. The even part corresponds to
B = 0 while the odd part corresponds to A = 0. The triangular decomposition is induced
by the standard triangular decomposition for A and B (simultaneously). In this example
the Cartan subalgebra h has a nonzero odd component, in particular, it is not commutative.

7.2. Category O. To avoid technicalities and complicated notation, we will describe the
situation for the classical category O for g. All properties transfer mutatis mutandis to the
parabolic versions of O.

For a Lie superalgebra with triangular decomposition as above we can consider the
corresponding category O defined as the full subcategory of g-smod containing all ob-
jects M with the following properties:

(i) M is finitely generated;
(ii) the action of h0 on M is diagonalizable;

(iii) the action of U(n+) on M is locally finite.

Let V be a simple h0-diagonalizable h-supermodule. Set n+ ·V = 0 and define the Verma
or proper standard supermodule 1(V ) as usual via

1(V ) := U(g)⊗U(h⊕n+) V.

Standard arguments (see [Di, Hu]) show that 1(V ) has simple top, which we denote
by L(V ). Then the map V 7→ L(V ) sets up a bijection from the set isomorphism classes
of simple h0-diagonalizable h-supermodules to the set of isomorphism classes of simple
objects in O.

Let O0 denote the category O for g0. As U(g) is finite over U(g0) by the PBW theo-
rem, we have the usual induction functor

Indgg0
: O0 → O.

Our first observation is the following (compare with Corollary 3.5):
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Proposition 7.1. (a) The restriction functor Resgg0
maps O to O0.

(b) Every object in O has finite length.

Proof. From the PBW Theorem it follows that Resgg0
1(V ) is in O0, which implies

Resgg0
L(V ) ∈ O0. By adjunction, a projective cover P(V ) for L(V ) is a direct sum-

mand of some module of the form Indgg0
X, where X ∈ O0.

By the PBW Theorem, the composition Resgg0
◦ Indgg0

is naturally isomorphic to ten-
soring with the finite-dimensional g0-module

∧
g1. This means that P(V ) is of finite

length already as a g0-module, in particular, it is of finite length as an object in O. This
implies claim (b), and claim (a) follows by induction on the length of a module. ut

Both Resgg0
and Indgg0

are exact by the PBW Theorem (and even biadjoint up to par-
ity shifts, see e.g. [Go00]). In particular, the two functors take projectives to projectives
and injectives to injectives. The PBW Theorem also implies that they map modules with
Verma filtrations to modules with Verma filtrations.

Usual arguments imply that O has a block decomposition into a direct sum of in-
decomposable subcategories. The first principal difference with O0 is that blocks of O
might contain infinitely many isomorphism classes of simple objects (however, always
at most countably many). Description of the linkage principle for simples in O is a very
hard problem in full generality. However, it is known for several special cases: see e.g.
[Br03] for gl(m|n) or [Br04] for qn.

7.3. Standardly stratified structure. Let V be a simple h0-diagonalizable h-super-
module and V̂ be its projective cover in the category of h0-diagonalizable h-supermod-
ules. Set n+ · V̂ = 0 and define the standard module 1(V ) as follows:

1(V ) := U(g)⊗U(h⊕n+) V̂ .

From the PBW Theorem it follows that every projective in O has a standard filtration, that
is, a filtration with standard subquotients. Clearly, each 1(V ) has a filtration by Verma
(proper standard) supermodules. Note that Indgg0

maps modules with Verma filtrations to
modules with standard filtrations.

Dually, one defines the costandard module ∇(V ) and the proper costandard module
∇(V ). Using adjunction and the fact that O0 is a highest weight category, we get the
following ext-vanishing property:

ExtiO(1(V ),∇(V
′)) ∼=

{
C if V ∼= V ′,
0 otherwise.

This implies that the associative algebra describing a block of O is standardly stratified
in the sense of [CPS96]. In particular, we have the following BGG-reciprocity in O:

(P (V ) : 1(V ′)) = [∇(V ′) : L(V )]

(compare with Corollary 4.2). Another consequence is that O has tilting modules (in the
sense of [Fr07-1]). Tilting modules are modules which have both a standard filtration
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and a proper costandard filtration. Both Resgg0
and Indgg0

map tilting modules to tilting
modules. It follows that tilting modules are also cotilting.

We refer the reader to [Fr07-2] for a very detailed qn-example where1(V ) and1(V )
are explicitly computed and compared.

7.4. Dominance dimension and Soergel’s Struktursatz. For category O one has a
direct analogue of all our results from Subsection 4.3. We claim that every projective
P in O admits a two-step coresolution

0→ P → X1 → X2,

where both X1 and X2 are projective-injective (compare with Proposition 4.3). It is cer-
tainly enough to prove this for P(V ). From the above we know that the latter module
occurs as a direct summand of a module induced from a projective module in g0. Since
induction is exact and maps projectives to projectives and injectives to injectives, the
claim follows from the corresponding classical claim for O0.

Pick a representative in each isomorphism class of indecomposable projective-injec-
tive modules in O and let C PI be the full subcategory of O formed by these. Taking
homomorphisms in O into these representatives defines a contravariant functor 8 from
the additive category of projective objects in O into mod-C PI (see Subsection 4.3 for
more details).

Theorem 7.2. The functor 8 is fully faithful.

Proof. Mutatis mutandis the proof of Theorem 4.4. ut

7.5. Irving’s theorems. We also have the following natural super-analogue of Theo-
rem 3.19.

Theorem 7.3. Let V be a simple h0-diagonalizable h-supermodule. Then the following
assertions are equivalent:

(a) P(V ) is isomorphic to I (V ) up to parity shift.
(b) L(V ) occurs in the socle of a projective-injective module in O.
(c) L(V ) occurs in the top of a projective-injective module in O.
(d) L(V ) occurs in the socle of some 1(V ′).

Proof. This follows by adjunction from the corresponding properties of O0. ut

7.6. Constructive differences. The most important difference between category Oq in
the quantum case and category O in the super case is that for the latter we do not know
of any analogue for our decomposition statements: Theorem 3.1, Theorem 3.15, Theo-
rem 3.17 and Corollary 4.8. It seems that it is unreasonable to expect such analogues.
To some extent the situation in the super case is opposite to the quantum case. In the
quantum case we have one nice subcategory (the special block) and all other subcate-
gories are more complicated, however, they are “more complicated in the same way”.
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For Lie superalgebras the situation is the opposite: generically, a Lie superalgebra “be-
haves” like its even part (see e.g. [Go02, FM]), that is, in an “easy” way. However, there
are nongeneric degenerations of various kinds (e.g. atypical modules, nondiagonalizable
h-supermodules, projective-injectives which are self-dual only up to a parity shift etc.)
and for these degenerations the behavior is more complicated, however, in different ways.
Therefore we do not think that our tensor decomposition statements have any chance to
generalize to the super case.
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