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Abstract. We prove that under the Gaussian measure, half-spaces are uniquely the most noise
stable sets. We also prove a quantitative version of uniqueness, showing that a set which is al-
most optimally noise stable must be close to a half-space. This extends a theorem of Borell, who
proved the same result but without uniqueness, and it also answers a question of Ledoux, who
asked whether it was possible to prove Borell’s theorem using a direct semigroup argument. Our
quantitative uniqueness result has various applications in diverse fields.
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1. Introduction

Gaussian stability theory is a rich extension of Gaussian isoperimetric theory. As such
it connects numerous areas of mathematics including probability, geometry [9], concen-
tration and high dimensional phenomena [32], re-arrangement inequalities [10, 18] and
more. On the other hand, this theory has recently found fascinating applications in com-
binatorics and theoretical computer science. It was essential in [36] for proving the “ma-
jority is stablest” conjecture [19,26], the “it ain’t over until it’s over” conjecture [21], and
for establishing the unique games computational hardness [25] of numerous optimization
problems including, for example, constraint satisfaction problems [2, 14, 27, 40].

The standard measure of stability of a set is the probability that positively correlated
standard Gaussian vectors both lie in the set. The main result in this area, which is used in
all of the applications mentioned above, is that half-spaces have optimal stability among
all sets with a given Gaussian measure. This fact was originally proved by Borell [9], in
a difficult proof using Ehrhard symmetrization. Recently, two different proofs of Borell’s
result have emerged. First, Isaksson and the first author [18] applied some recent advances
in spherical symmetrization [10] to give an proof that also generalizes to a problem in-
volving more than two Gaussian vectors. Then Kindler and O’Donnell [28], using the
subadditivity idea of Kane [22], gave a short and elegant proof, but only for sets of mea-
sure 1/2 and for some special values of the correlation.
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In this paper, we will give a novel proof of Borell’s result. In doing so, we answer a
question posed 18 years ago by Ledoux [30], who used semigroup methods to show that
Borell’s inequality implies the Gaussian isoperimetric inequality and then asked whether
similar methods could be used to give a short and direct proof of Borell’s inequality.
Moreover, our proof will allow us to strengthen Borell’s result and its discrete applica-
tions. First, we will demonstrate that half-spaces are the unique optimizers of Gaussian
stability (up to almost sure equality). Then we will quantify this statement, by showing
that if the stability of a set is close to optimal given its measure, then the set must be close
to a half-space.

The questions of equality and robustness of isoperimetric inequalities can be rather
more subtle than the inequalities themselves. In the case of the standard Gaussian isoperi-
metric result, it took about 25 years from the time the inequality was established [8, 41]
before the equality cases were fully characterized [11] (although the equality cases among
sufficiently nice sets were known earlier [15]). Robust versions of the standard Gaussian
isoperimetric result were first established only recently [12, 35]. Here, for the first time
since Borell’s original proof [9] more than 25 years ago, we establish both that half-spaces
are the unique maximizers and that a robust version of this statement is also true.

1.1. Discrete applications

From our Gaussian results, we derive robust versions of some of the main discrete ap-
plications of Borell’s result, including a robust version of the “majority is stablest” the-
orem [36]. The “majority is stablest” theorem concerns subsets A of the discrete cube
{−1, 1}n with the property that each coordinate xi has only a small influence on whether
x ∈ A (see [36] for a precise definition); the theorem says that over all such sets A,
the ones that are most noise stable take the form {x :

∑
aixi ≤ b}. From the results

we prove here, it is possible to obtain a robust version of this, which says that any sets
A ⊂ {−1, 1}n with small coordinate influences and almost optimal noise sensitivity must
be close to some set of the form {x :

∑
aixi ≤ b}.

A robust form of the “majority is stablest” theorem immediately implies a robust
version of the quantitative Arrow theorem. In economics, Arrow’s theorem [1] says that
any non-dictatorial election system between three candidates which satisfies two natural
properties (namely, the “independence of irrelevant alternatives” and “neutrality”) has a
chance of producing a non-rational outcome. (By non-rational outcome, we mean that
there are three candidates, A, B and C say, such that candidate A is preferred to can-
didate B, B is preferred to C and C is preferred to A.) Kalai [19, 20] showed that if
the election system is such that each voter has only a small influence on the outcome,
then the probability of a non-rational outcome is substantial; moreover, the “majority is
stablest” theorem [36] implies that the probability of a non-rational outcome can be mini-
mized by using a simple majority vote to decide, for each pair of candidates, which one is
preferred. A robust version of the “majority is stablest” theorem implies immediately that
(weighted) majority-based voting methods are essentially the only low-influence methods
that minimize the probability of a non-rational outcome.
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In a different direction, our robust noise stability result has an application in hardness
of approximation, specifically in the analysis of the well-known Max-Cut optimization
problem. The Max-Cut problem seeks a partition of a graph G into two pieces such
that the number of edges from one piece to the other is maximal. This problem is NP-
hard [24] but Goemans and Williamson [17] gave an approximation algorithm with an
approximation ratio of about 0.878. Their algorithm works by embedding the graph G
in a high-dimensional sphere and then cutting it using a random hyperplane. Feige and
Schechtman [16] showed that a random hyperplane is the optimal way to cut this embed-
ded graph; with our robust noise stability theorem, we can show that any almost-optimal
cutting procedure is almost the same as using a random hyperplane. The latter result is
derived via a novel isoperimetric result for spheres in high dimensions where two points
are connected if their inner product is exactly some prescribed number ρ.

1.2. Borell’s theorem and a functional variant

Let γn be the standard Gaussian measure on Rn. For −1 < ρ < 1 let X and Y be jointly
Gaussian random vectors on Rn such that X and Y are standard Gaussian vectors and
EXiYj = δijρ. We will write Prρ for the joint probability distribution of X and Y . We
will also write φ for the density of γ1 and 8 for its distribution function:

φ(x) =
1
√

2π
e−x

2/2, 8(x) =

∫ x

−∞

φ(y) dy.

Theorem 1.1 (Borell [9]). For any 0 < ρ < 1 and any measurable A1, A2 ⊂ Rn,

Prρ(X ∈ A1, Y ∈ A2) ≤ Prρ(X ∈ B1, Y ∈ B2) (1.1)

where

B1 = {x ∈ Rn : x1 ≤ 8
−1(γn(A1))}, B2 = {x ∈ Rn : x1 ≤ 8

−1(γn(A2))}

are parallel half-spaces with the same volumes asA1 andA2 respectively. If −1 < ρ < 0
then the inequality (1.1) is reversed.

Like many other inequalities about sets, Theorem 1.1 has a functional analogue. To state
it, we define the function

J (x, y) = J (x, y; ρ) = Prρ(X1 ≤ 8
−1(x), Y1 ≤ 8

−1(y)).

Theorem 1.2. For any measurable functions f, g : Rn→ [0, 1] and any 0 < ρ < 1,

EρJ (f (X), g(Y ); ρ) ≤ J (Ef,Eg; ρ) (1.2)

If −1 < ρ < 0 then the inequality (1.2) is reversed.

To see that Theorem 1.2 generalizes Theorem 1.1, consider f = 1A1 and g = 1A2 . Note
that J (0, 0) = J (1, 0) = J (0, 1) = 0, while J (1, 1) = 1. Thus, J (f (X), g(Y )) =
1X∈A1,Y∈A2 and so the left hand side (resp. right hand side) of Theorem 1.2 is the same
as the left hand side (resp. right hand side) of Theorem 1.1.
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In fact, we can also go in the other direction and prove Theorem 1.2 from Theo-
rem 1.1: given f, g : Rn→ [0, 1], define A1, A2 ⊂ Rn+1 to be the subgraphs of8−1

◦ f

and 8−1
◦ g respectively. It can be easily checked, then, that

EρJ (f (X), g(Y ); ρ) = Prρ(X̃ ∈ A1, Ỹ ∈ A2)

where X̃ and Ỹ are standard Gaussian vectors on Rn+1 with EX̃i Ỹi = δijρ. On the other
hand, Ef = γn+1(A1) and Eg = γn+1(A2) and so the definition of J implies that

J (Ef,Eg; ρ) = Prρ(X̃ ∈ B1, Ỹ ∈ B2)

where B1 and B2 are parallel half-spaces with the same volumes as A1 and A2. Thus,
Theorem 1.1 in n+ 1 dimensions implies Theorem 1.2 in n dimensions.

However, we will give a proof of Theorem 1.2 that does not rely on Theorem 1.1. We
do this for two reasons: first, we believe that our proof of Theorem 1.2 is simpler than
existing proofs of Theorem 1.1. More importantly, our proof of Theorem 1.2 is a good
starting point for the main results of the paper. In particular, it allows us to characterize
the cases of equality and near-equality. As we mentioned earlier, it is not known how to
get such results from existing proofs of Theorem 1.1.

1.3. New results: Equality

In our first main result, we get a complete characterization of the functions for which
equality in Theorem 1.2 is attained.

Theorem 1.3. For any measurable functions f, g : Rn → [0, 1] and any −1 < ρ < 1
with ρ 6= 0, if equality is attained in (1.2) then there exist a, b, d ∈ Rn such that either

f (x) = 8(〈a, x − b〉) a.s., g(x) = 8(〈a, x − d〉) a.s.,

or

f (x) = 1{〈a,x−b〉≥0} a.s., g(x) = 1{〈a,x−d〉≥0} a.s.

In particular, the second case of Theorem 1.3 implies that if A1 and A2 achieve equality
in Theorem 1.1 then A1 and A2 must be almost surely equal to parallel half-spaces.

1.4. New results: Robustness

Once we know the cases of equality, the next natural thing to ask is whether they are ro-
bust: if f and g almost achieve equality in (1.2)—in the sense that EρJ (f (X), g(Y )) ≥
J (Ef,Eg)− δ—does it follow that f and g must be close to some functions of the form
8(〈a, x − b〉)? In the case of the Gaussian isoperimetric inequality, which can be viewed
as a limiting form of Borell’s theorem, the question of robustness was first addressed
by Cianchi et al. [12], who showed that the answer was “yes,” and gave a bound that
depended on both δ and n. The authors [35] then proved a similar result which had no
dependence on n, but a worse (logarithmic, instead of polynomial) dependence on δ. The
arguments we will apply here are similar to those used in [35], but with some improve-
ments. In particular, we establish a result with no dependence on the dimension, and with
a polynomial dependence on δ (although we suspect that the exponent is not optimal).
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Theorem 1.4. For measurable functions f, g : Rn→ [0, 1], define

δ = δ(f, g) = J (Ef,Eg)− EρJ (f (X), g(Y )) (1.3)

and let
m = m(f, g) = Ef (1− Ef )Eg(1− Eg).

For any 0 < ρ < 1, there exists C(ρ) < ∞ such that for any f, g : Rn → [0, 1] there
exist a, b, d ∈ Rn such that

E|f (X)−8(〈a,X − b〉)| ≤ C(ρ)m−C(ρ)δ
1
4
(1−ρ)(1−ρ2)

1+3ρ ,

E|g(X)−8(〈a,X − d〉)| ≤ C(ρ)m−C(ρ)δ
1
4
(1−ρ)(1−ρ2)

1+3ρ .

We should mention that a more careful tracking of constants in our proof would improve
the exponent of δ slightly. However, this improvement would not bring the exponent above
1/4 and it would not prevent the exponent from approaching zero as ρ → 1.

Although Theorem 1.4 is stated only for 0 < ρ < 1, the same result for −1 < ρ < 0
follows from certain symmetries. Indeed, one can easily check from the definition of J
that J (x, y; ρ) = x − J (x, 1− y;−ρ). Taking expectations yields

EρJ (f (X), g(Y ); ρ) = Ef − EρJ (f (X), 1− g(Y );−ρ)
= Ef − E−ρJ (f (X), 1− g(−Y );−ρ).

Now, suppose that −1 < ρ < 0 and that f, g almost attain equality in Theorem 1.2:

EρJ (f (X), g(Y ); ρ) ≤ J (Ef,Eg; ρ)+ δ.

Setting g̃(y) = 1− g(−y) implies that

E−ρJ (f (X), g̃(Y );−ρ) ≥ J (Ef,Eg̃;−ρ)− δ.

Since 0 < −ρ < 1, we can apply Theorem 1.4 to f and g̃ to conclude that f and g̃ are
close to the equality cases of Theorem 1.3, and it follows that f and g are also close to
one of these equality cases. Therefore, we will concentrate for the rest of this article on
the case 0 < ρ < 1.

1.5. Optimal dependence on ρ in the case f = g

The dependence on ρ in Theorem 1.4 is particularly interesting as ρ → 1, since it is
in that limit that Borell’s inequality recovers the Gaussian isoperimetric inequality. As
it is stated, however, Theorem 1.4 does not recover a robust version of the Gaussian
isoperimetric inequality because of its poor dependence on ρ as ρ → 1. In particular, as
ρ → 1, the exponent of δ tends to zero and the constant C(ρ) tends to infinity.

It turns out that a poor dependence on ρ is necessary in some sense. To see this, take
n = 1, A = [2,∞) and B = [−1, 0] ∪ [1,∞). If B ′ = [0,∞) then B ′ is a half-space
with the same measure as B; hence,

δ(A,B) = Prρ(X ∈ A, Y ∈ B ′)− Pr(X ∈ A, Y ∈ B) ≤ Pr(X ∈ A, Y 6∈ B).
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Now, if X ∈ A and Y 6∈ B then X − Y ≥ 1. But X − Y is a mean-zero Gaussian variable
with variance 2(1− ρ), and so

δ(A,B) ≤ Prρ(X − Y ≥ 1) ≤ e−c/(1−ρ)
2
.

On the other hand, the distance between B and the nearest half-space is some fixed con-
stant. Hence, either the exponent of δ must decay like (1− ρ)2 as ρ → 1, or the constant
in front of δ must grow like ec/(1−ρ)

2
.

We can, however, obtain much a much better dependence on ρ if we restrict to the
case f = g. In this case, it turns out that δ(f, f ) grows only like (1− ρ)−1/2 as ρ → 1,
which is exactly the right rate for recovering the Gaussian isoperimetric inequality.

Theorem 1.5. For every ε > 0, there is a ρ0 < 1 and a C(ε) such that for any ρ0 <

ρ < 1 and any f : Rn→ [0, 1] with Ef = 1/2, there exists a ∈ Rn such that

E|f (X)−8(〈a,X〉)| ≤ C(ε)
(
δ(f, f )
√

1− ρ

)1/4−ε

.

The requirement Ef = 1/2 is there for technical reasons, and we do not believe that it is
necessary (see Conjecture 6.9).

By applying Ledoux’s result [31] connecting Borell’s inequality with the Gaussian
isoperimetric inequality, Theorem 1.5 has the following corollary (for the definition of
Gaussian surface area, see [35]):

Corollary 1.6. For every ε > 0, there is a C(ε) < ∞ such that for every set A ⊂ Rn
such that Pr(A) = 1/2 and A has Gaussian surface area less than 1/

√
2π + δ, there is a

half-space B such that
Pr(A4 B) ≤ C(ε)δ1/4−ε .

This should be compared with the work of Cianchi et al. [12], who gave the best possible
dependence on δ, but suffered some unspecified dependence on n:

Theorem 1.7. For every n and every a ∈ (0, 1), there is a constant C(n, a) such that
for every set A ⊂ Rn such that Pr(A) = a and A has Gaussian surface area less than
φ(8−1(a))+ δ, there is a half-space B such that

Pr(A4 B) ≤ C(n, a)δ1/2.

Note that Theorem 1.7 is stronger than Corollary 1.6 in two senses, but weaker in one.
Theorem 1.7 is stronger since it applies to sets of all volumes and because it has a better
dependence on δ (in fact, Cianchi et al. show that δ1/2 is the best possible dependence
on δ). However, Corollary 1.6 is stronger in the sense that it—like the rest of our robust-
ness results—has no dependence on the dimension. For the applications we have in mind,
this dimension independence is more important than having optimal rates. Nevertheless,
we conjecture that it is possible to have both at the same time:

Conjecture 1.8. There is a universal constant C such that for every A ⊂ Rn with Gaus-
sian surface area less than φ(8−1(Pr(A)))+ δ, there is a half-space B such that

Pr(A4 B) ≤ C Pr(A)−Cδ1/2.
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1.6. On highly correlated functions

Let us mention one more corollary of Theorem 1.5. We have used EρJ (f (X), f (Y )) as
a functional generalization of Prρ(X ∈ A, Y ∈ A). However, Eρf (X)f (Y ) is another
commonly used functional generalization of Prρ(X ∈ A, Y ∈ A) which appeared, for ex-
ample, in [31]. Since xy ≤ J (x, y) for 0 < ρ < 1, we see immediately that Theorem 1.2
holds when the left hand side is replaced by Eρf (X)f (Y ). The equality case, however,
turns out to be different: whereas equality in Theorem 1.2 holds for f (x) = 8(〈a, x−b〉),
there is equality in

Eρf (X)f (Y ) ≤ J (Ef,Ef ; ρ) (1.4)
only when f is the indicator of a half-space. Moreover, a robustness result for (1.4) fol-
lows fairly easily from Theorems 1.4 and 1.5.

Corollary 1.9. For any 0 < ρ < 1, there is a constant C(ρ) <∞ such that if a function
f : Rn→ [0, 1] satisfies Ef = 1/2 and

Ef (X)f (Y ) ≥
1
4
+

1
2π

arcsin ρ − δ

then there is a half-space B such that

E|f (X)− 1B(X)| ≤ C(ρ)δc,

where c > 0 is a universal constant.

1.7. Discrete applications

Corollary 1.9 implies a robust version of the “majority is stablest” theorem [36], which
concerns functions of low influence and high noise stability; for a function f : {−1, 1}n

→ {−1, 1}, we define the influence of the ith coordinate by

Infi(f ) = Pr
(
f (x1, . . . , xn) 6= f (x1, . . . , xi−1,−xi, xi+1, . . . , xn)

)
and the noise stability of f by

Sρ(f ) = Eρf (ξ)f (σ )

where (ξ, σ ) = ((ξ1, . . . , ξn), (σ1, . . . , σn)) ∈ {−1, 1}n × {−1, 1}n is chosen so that
(ξi, σi)∈{−1, 1}2 are independent random variables with Eξi=Eσi=0 and Eρξiσi=ρ.

The “majority is stablest” theorem [36] informally states that low-influence, balanced
functions cannot be essentially more noise stable than the majority function. This was first
explicitly conjectured by Khot, Kindler, Mossel, and O’Donnell [27] in a paper studying
the hardness of approximation of Max-Cut. It was used to show that approximating the
maximum cut in a graph to within a factor of about 0.87856 is unique-games hard. This
result is optimal, since the famous efficient algorithm of Goemans and Williamson [17]
is guaranteed to find a cut that is within a 0.87856 factor of the maximum cut. A special
case of the “majority is stablest” theorem was conjectured earlier by Kalai [19] in the
context of his quantitative version of Arrow’s theorem.

Combining our Gaussian results with the original proof from [36], we obtain a robust
version of the “majority is stablest” theorem:
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Theorem 1.10. For every δ > 0, there is a τ > 0 such that the following holds: suppose
that f : {−1, 1}n → [0, 1] is a function with Infi(f ) ≤ τ for every i. Then for every
0 < ρ < 1,

Sρ(f ) ≤ J (Ef,Ef ; ρ)+ δ. (1.5)
If, moreover, there is some 0 < ρ < 1 such that

Sρ(f ) ≥ J (Ef,Ef ; ρ)− δ (1.6)

then there exist a, b ∈ Rn such that

E|f (ξ)− 1{〈a,ξ−b〉≥0}| ≤ C(ρ)δ
c(ρ),

where c(ρ), C(ρ) > 0 are constants depending only on ρ.

If we set an = (1/
√
n)(1, . . . , 1) and bn = 8−1(Ef )an, then the central limit theorem

implies that E1{〈an,ξ−bn〉≥0} → Ef and Sρ(1{〈an,ξ−bn〉≥0})→ J (Ef,Ef ; ρ). In the case
Ef = 1/2 and bn = 0, (1.5) says, therefore, that no low-influence function can be much
more noise stable than the simple majority function—this is the content of the “major-
ity is stablest” theorem from [36]. Our contribution is (1.6), which says that the only
low-influence functions which come close to this bound are close to weighted majority
functions.

We remark that Theorem 1.10 is not stated in the most general possible form that
we can prove. In particular, we could state a two-function version of Theorem 1.10, or a
version that uses the functional EρJ (f (ξ), f (σ ); ρ) in place of Sρ(f ). All of these vari-
ations, however, are proved in essentially the same way, namely by combining the ideas
from [36] with the appropriate Gaussian robustness result. In order to avoid repetition,
therefore, we will only state and prove one version.

1.8. Spherical noise stability and the Max-Cut problem

The well-known similarity between a Gaussian vector and a uniformly random vector on
a high-dimensional sphere suggests that there might be a spherical analogue of our Gaus-
sian noise sensitivity result. The correlation structure on the sphere that is most useful
is the uniform measure over all pairs of points (x, y) whose inner product 〈x, y〉 is ex-
actly ρ. Under this model of noise, we can use robust Gaussian noise sensitivity to show,
asymptotically in the dimension, robustness for spherical noise sensitivity. This uses the
theory of spherical harmonics and has applications to rounding semidefinite programs (in
particular, the Goemans–Williamson algorithm for Max-Cut). Our proof uses and gener-
alizes the work of Klartag and Regev [29], in which a related problem was studied in the
context of one-way communication complexity.

Our spherical noise stability result mostly follows from Theorem 1.4, by replacing X
and Y byX/|X| and Y/|Y |. When n is large, these renormalized Gaussian vectors are uni-
formly distributed on the sphere and their inner product is tightly concentrated around ρ.
The fact that their inner product is not exactly ρ causes some difficulty, particularly be-
cause Qρ is actually orthogonal to the joint distribution of two normalized Gaussians.
Working through this difficulty with some properties of spherical harmonics, we obtain
the following spherical analogue of Theorem 1.4:
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Theorem 1.11. Let 0 < ρ < 1 and write Qρ for the measure of (X, Y ) on the
sphere Sn−1 where the pair (X, Y ) is uniformly distributed in

{(x, y) ∈ Sn−1
× Sn−1

: 〈x, y〉 = ρ}.

For measurable A1, A2 ⊂ S
n−1, define

δ = δ(A1, A2) = Qρ(X ∈ B1, Y ∈ B2)−Qρ(X ∈ A1, Y ∈ A2),

where B1 and B2 are parallel spherical caps with the same volumes as A1 and A2 re-
spectively. Define also

m(A1, A2) = p(1− p)q(1− q),

where p = Pr(X ∈ A1) and q = Pr(Y ∈ A2).
For any A1, A2 ⊂ S

n−1, there exist parallel spherical caps B1 and B2 such that

Q(A1 4 B1) ≤ C(ρ)m
−C(ρ)δ

1
4
(1−ρ)(1−ρ2)

1+3ρ
∗ ,

Q(A2 4 B2) ≤ C(ρ)m
−C(ρ)δ

1
4
(1−ρ)(1−ρ2)

1+3ρ
∗ ,

where δ∗ = max(δ, n−1/2 log n).

The case ρ = 0 of the above theorem is related to work by Klartag and Regev [29].
In this case one expects that X and Y should behave as independent random variables
on Sn−1 and that therefore for all A1, A2, Q0(X ∈ A1, Y ∈ A2) should be close to
Q(X ∈ A1)Q(Y ∈ A2). Indeed the main technical statement of Klartag and Regev
(Theorem 5.2) says that for any two sets A1, A2,

|Q0(X ∈ A1, Y ∈ A2)−Q(X ∈ A1)Q(Y ∈ A2)| ≤ C/n.

In other words the results of Klartag and Regev show that in the case ρ = 0, a uniform
orthogonal pair (X, Y ) on the sphere behaves like a pair of independent random variables
up to an error of order n−1, while our results show that for 0 < ρ < 1, (X, Y ) that are ρ
correlated behave like Gaussians with the same correlation.

That spherical caps minimize the quantity Qρ(X ∈ A1, Y ∈ A2) over all sets A1 and
A2 with some prescribed volumes is originally due to Baernstein and Taylor [3], while a
similar result for a different noise model is due to Beckner [5]. Their results do not follow
from ours because of the dependence on n in Theorem 1.11, and so one could ask for a
sharper version of Theorem 1.11 that does imply these earlier results. One obstacle is that
we do not know a proof of Beckner’s inequality that gives control of the deficit.

1.8.1. Rounding the Goemans–Williamson algorithm. Let G = (V ,E) be a graph and
recall that the Max-Cut problem is to find a set A ⊂ V such that the number of edges
between A and V \ A is maximal. It is of course equivalent to look for a function f :
V → {−1, 1} such that

∑
(u,v)∈E |f (u)−f (v)|

2 is maximal. Goemans and Williamson’s
breakthrough was to realize that this combinatorial optimization problem can be effi-
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ciently solved if we relax the range {−1, 1} to Sn−1. Let us say, therefore, that an embed-
ding f of a graph G = (V ,E) into the sphere Sn−1 is optimal if∑

(u,v)∈E

|f (u)− f (v)|2

is maximal. An oblivious rounding procedure is a (possibly random) function R : Sn−1

→ {−1, 1} (we call it “oblivious” because it does not look at the graph G). We will
then denote by Cut(G,R) the expected value of the cut produced by rounding the worst
possible optimal spherical embedding of G:

Cut(G,R) =
1
2

min
f

E
∑

(u,v)∈E

|R(f (u))− R(f (v))|,

where the minimum is over all optimal embeddings f . If MaxCut denotes the maximum
cut in G, then Goemans and Williamson [17] showed that when R(x) = sgn(〈X, x〉) for
a standard Gaussian vector X, then for every graph G,

Cut(G,R) ≥ MaxCut(G)min
θ
αθ ,

where αθ = 2
π

θ
1−cos θ . In the other direction, Feige and Schechtman [16] showed that for

every oblivious rounding scheme R and every ε > 0, there is a graph G such that

Cut(G,R) ≤ MaxCut(G)
(
ε +min

θ
αθ

)
.

In other words, no rounding scheme is better than the half-space rounding scheme. Using
Theorem 1.4, we can go further:

Theorem 1.12. Suppose R is a rounding scheme on Sn−1 such that for every graph G
with n vertices,

Cut(G,R) ≥ MaxCut(G)
(

min
θ
αθ − ε

)
.

Then there is a hyperplane rounding scheme R̃ such that

E|R(Y )− R̃(Y )| ≤ Cεc?,

where Y is a uniform (independent of R and R̃) random vector on Sn−1, C and c are
absolute constants, and ε? = max{ε, n−1/2 log n}.

In other words, any rounding scheme that is almost optimal is essentially the same as
rounding by a random half-space.

1.9. Testing half-spaces

We quickly sketch an application of Theorems 1.4 and 1.10 to testing. Suppose we are
given oracle access to a set A ⊂ Rn (meaning that we are not given an explicit represen-
tation of the set, but we can query whether points belong to A), and we want to design an
algorithm that (1) will answer “yes” with high probability if A is a half-space and (2) will
answer “no” with high probability if Pr(A4 B) > ε for all half-spaces B.
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An efficient test for this problem was found in [34]. We note that Theorem 1.5 pro-
vides a simpler and very direct test just by sampling ε−5 pairs (Xi, Yi) and counting the
number of times that Xi ∈ A and the number of times that 1A(Xi) = 1A(Yi). By doing
so, we obtain accurate estimates of Pr(A) and Pr(X ∈ A, Y ∈ A) and so by Theorem 1.5,
we can tell whether A is close to a half-space.

By Theorem 1.10, this algorithm also applies to linear threshold functions with low
influences on the discrete cube (such functions are called regular in [34]). (By the more
general arguments in [36], the algorithm also applies to other discrete spaces such as
half-spaces in biased cubes or cubes of the form [q]n for some q ≥ 3.) Using the argu-
ments of [34] it is then possible to extend the testing algorithm to general linear threshold
functions on the discrete cube.

1.10. Proof techniques

1.10.1. Borell’s theorem. We prove Theorem 1.2 by differentiating along the Ornstein–
Uhlenbeck semigroup. This technique was used by Bakry and Ledoux [4] in their proof
of the Gaussian isoperimetric inequality and, more generally, a Gaussian version of the
Lévy–Gromov comparison theorem. Recall that the Ornstein–Uhlenbeck semigroup can
be specified by defining, for every t ≥ 0, the operator

(Ptf )(x) =

∫
Rn
f
(
e−tx +

√
1− e−2t y

)
dγn(y). (1.7)

Note that Ptf → f as t → 0 (pointwise, and also in Lp), while Ptf → Ef as t →∞.
Let ft = Ptf , gt = Ptg, and consider the quantity

Rt := EρJ (ft (X), gt (Y )). (1.8)

As t → 0, Rt converges to the right hand side of (1.2); as t → ∞, Rt converges to the
left hand side of (1.2). We will prove Theorem 1.2 by showing that dRt/dt ≥ 0 for all
t > 0.

1.10.2. The equality case. The equality case almost comes for free from our proof of
Theorem 1.2. Indeed, Lemma 2.2 exprsses dRt/dt as the expectation of a strictly positive
quantity times

|(∇(8−1
◦ ft ))(X)− (∇(8

−1
◦ gt ))(Y )|,

where | · | denotes the Euclidean norm. Now, if there is equality in Theorem 1.2 then
dRt/dt must be zero for all t , which implies that the expression above must be zero
almost surely. This implies that ∇(8−1

◦ ft ) and ∇(8−1
◦ gt ) are almost surely equal to

the same constant, and therefore ft and gt can be written as 8 composed with a linear
function. We can then infer the same statement for f and g because Pt is one-to-one.

1.10.3. Robustness. Our approach to robustness begins similarly to the approach in our
recent work [35]. If δ(f, g) is small then dRt/dt must also be small for most t > 0.
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Looking at the expression in Lemma 2.2 we first concentrate on the main term: |∇vt (X)−
∇wt (Y )|

2 where vt = 8−1
◦ ft and wt = 8−1

◦ gt . Using an analogue of Poincaré’s
inequality, we argue that if the expected value of |∇vt (X) − ∇wt (Y )|2 is small then vt
and wt are close to linear functions.

Considerable effort goes into controlling the “secondary terms” of the expression in
Lemma 2.2. This control is established in a sequence of analytic results, which rely heav-
ily on the smoothness of the semigroup Pt , concentration of Gaussian vectors and Lp
interpolation inequalities. In the end, we show that if δ = δ(f, g) is small then for every
t > 0, vt is ε(δ, t)-close to a linear function. Since 8 is a contraction, this implies that ft
must be close to a function of the form 8(〈x, a〉 − b).

We would like to then conclude the proof by applying P−1
t , and saying that f must be

close to P−1
t 8(〈x, a〉 − b), which also has the form 8(〈x, a′〉 − b′). The obvious prob-

lem here is that P−1
t is not a bounded operator, but we work around this by arguing that

it acts boundedly on the functions that we care about. This part of the argument marks
a substantial departure from [35], where our argument used smoothness and spectral in-
formation. Here, we will use a geometric argument to say that if h = 1A − 1B where B
is a half-space, then E|h| can be bounded in terms of E|Pth|. This improved argument is
essentially the reason that the rates in Theorem 1.4 are polynomial, while the rates in [35]
were logarithmic.

1.11. Subsequent work

A quite different study of the functional EρJ (f (X), g(Y ); ρ) turns out to yield yet an-
other proof of Borell’s inequality: in a subsequent work with De [13], the authors give a
proof of Borell’s inequality by first proving a four-point inequality for J which tensorizes
to the discrete cube. Applying the central limit theorem then recovers Borell’s inequality.
That approach is similar to Bobkov’s elementary proof of the Gaussian isoperimetric in-
equality [7]. The proof in [13] has an advantage and a disadvantage compared to the one
presented here. The advantage of the tensorization argument is that it directly yields some
interesting inequalities on the cube (in particular, one obtains a direct proof of the “ma-
jority is stablest” theorem), while the proof we present here has the advantage of giving
control over the deficit. In particular, we do not know how to prove Theorem 1.4 using
the techniques in [13].

2. Proof of Borell’s theorem

Recall the definition of Pt and Rt from (1.7) and (1.8). In this section, we will compute
dRt/dt and show that it is non-negative, thereby proving Theorem 1.2. First, define vt =
8−1
◦ ft , wt = 8−1

◦ gt , and K(x, y; ρ) = Prρ(X ≤ x, Y ≤ b). Then

J (ft (X), gt (Y )) = K(vt (X),wt (Y )).

Lemma 2.1.
∂K(x, y)

∂x
= φ(x)8

(
y − ρx√

1− ρ2

)
,

∂K(x, y)

∂y
= φ(y)8

(
x − ρy√
1− ρ2

)
.
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Proof. Note that Y can be written as ρX +
√

1− ρ2 Z, where X and Z independent
standard Gaussian vectors. Then {X ≤ x, Y ≤ y} =

{
X ≤ x, Z ≤

y−ρX
√

1−ρ2

}
, and so

K(x, y) =

∫ x

−∞

∫ y−ρs
√

1−ρ2

−∞

φ(s)φ(t) dt ds.

Differentiating in x gives

∂K(x, y)

∂x
=

∫ y−ρx
√

1−ρ2

−∞

φ(x)φ(t) dt = φ(x)8

(
y − ρx√

1− ρ2

)
.

This proves the first claim. The second claim follows because K(x, y) is symmetric in x
and y. ut

Lemma 2.2.

dRt

dt
=

ρ

2π
√

1− ρ2
Eρ exp

(
−
v2
t + w

2
t − 2ρvtwt

2(1− ρ2)

)
|∇vt −∇wt |

2.

Before we prove Lemma 2.2, note that it immediately implies Theorem 1.2 because the
right hand side in Lemma 2.2 is clearly non-negative.

Proof. Set L = 1 − 〈x,∇〉; it is well-known (and easy to check by direct computation)
that dft/dt = Lft for all t ≥ 0. The integration by parts formula

Ef (X)Lg(X) = −E〈∇f (X),∇g(X)〉 (2.1)

for bounded smooth functions f and g is also standard and easily checked. Thus,

dRt

dt
= Eρ

(
Kx(vt (X),wt (Y ))

dvt (X)

dt

)
+ Eρ

(
Ky(vt (X),wt (Y ))

dwt (X)

dt

)
. (2.2)

Now, the chain rule implies that dvt
dt
=

Lft
φ(vt )

. Hence, the first term of (2.2) is

Eρ
(
Kx(vt (X),wt (Y )

φ(vt (X))
Lft (X)

)
= Eρ8

(
wt (Y )− ρvt (X)√

1− ρ2

)
Lft (X), (2.3)

where we have used Lemma 2.1. Now write Y = ρX +
√

1− ρ2 Z (with X and Z
independent); conditioning on Z and applying the integration by parts (2.1) with respect
to X, we have

(2.3) = −
ρ√

1− ρ2
Eρφ

(
wt − ρvt√

1− ρ2

)
〈∇wt −∇vt ,∇ft 〉

=
ρ√

1− ρ2
Eρφ

(
wt − ρvt√

1− ρ2

)
φ(vt )〈∇vt −∇wt ,∇vt 〉, (2.4)
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where we have written, for brevity, vt and wt instead of vt (X) and wt (Y ). Since K is
symmetric in its arguments, there is a similar computation for the second term of (2.2):

E
(
Ky(vt (X),wt (Y ))

dwt (X)

dt

)
= −

ρ√
1− ρ2

Eρφ
(
vt − ρwt√

1− ρ2

)
φ(wt )〈∇vt −∇wt ,∇wt 〉. (2.5)

Note that

φ

(
wt − ρvt√

1− ρ2

)
φ(vt ) = φ

(
vt − ρwt√

1− ρ2

)
φ(wt ) =

1
2π

exp
(
−
v2
t + w

2
t − 2ρvtwt

2(1− ρ2)

)
;

hence, we can plug (2.4) and (2.5) into (2.2) to obtain

dRt

dt
=

ρ

2π
√

1− ρ2
E exp

(
−
v2
t + w

2
t − 2ρvtwt

2(1− ρ2)

)
|∇vt −∇wt |

2. ut

3. The equality case

Lemma 2.2 allows us to analyze the equality case (Theorem 1.3), with very little addi-
tional effort. Similar ideas were used by Carlen and Kerce [11] to analyze the equality
case in the standard Gaussian isoperimetric problem. Clearly, Lemma 2.2 implies that if
for every t , vt and wt are linear functions with the same slope, then equality is attained
in Theorem 1.2. To prove Theorem 1.3, we will show that the converse also holds (i.e. if
equality is attained then vt and wt are linear functions with the same slope). Then we will
take t → 0 to obtain the desired conclusion regarding f and g.

First of all, if f (x) = 1{〈a,x−b〉≥0}, then a direct computation gives

ft (x) = 8

(
kt
〈a, x − etb〉

|a|

)
, (3.1)

where kt=(e2t
−1)−1/2. Since Pt is injective, it follows that whenever ft=8(〈a, x−b′〉)

for some a, b with |a| = kt , f must have the form f (x) = 1{〈a,x−b〉≥0}. Since, moreover,
kt is decreasing in t , we have the following lemma:

Lemma 3.1. If ft (x) = 8(〈a, x − b′〉) for some a, b′ ∈ Rn with |a| ≤ kt , then there
exists b ∈ Rn such that if f̃ (x) = 1{〈a,x−b〉≥0} then f = Ps f̃ , where s solves |a| = ks+t .

In order to apply Lemma 3.1, we will use the following pointwise bound on ∇vt , whose
proof can be found in [4]. Note that the bound is sharp because, according to (3.1), equal-
ity is attained when f is the indicator function of a half-space.

Lemma 3.2. For any function f : Rn→ [0, 1], any t > 0, and any x ∈ Rn,

|∇vt (x)| ≤ kt .
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Proof of Theorem 1.3. Suppose that equality is attained in (1.2). Since dRt/dt is non-
negative, it must be zero for almost every t > 0. In particular, we may fix some t > 0
such that dRt/dt = 0. Note that everything in Lemma 2.2 is strictly positive, except for
the last term, which can be zero. Therefore, dRt/dt = 0 implies that ∇vt (X) = ∇wt (Y )
almost surely. Since the conditional distribution of Y given X is fully supported, ∇vt and
∇wt must be almost surely equal to some constant a ∈ Rn. Moreover, vt and wt are
smooth functions (because ft , gt and 8−1 are smooth); hence, vt (x) = 〈a, x − b′〉 and
wt (x) = 〈a, x − d

′
〉 for some b′, d ′ ∈ Rn, and so

ft (x) = 8(〈a, x − b
′
〉), gt (x) = 8(〈a, x − d

′
〉).

Now, Lemma 3.2 asserts that |a| = |∇vt | ≤ kt . Hence, Lemma 3.1 implies that there
are b ∈ R and s ≥ 0 such that if f̃ (x) = 1{〈a,x−b〉≥0} then f = Ps f̃ , where s solves
|a| = ks+t . In particular, f takes one of the two forms indicated in Theorem 1.3: if s = 0
then f (x) = f̃ (x) = 1{〈a,x−b〉≥0}. On the other hand, s > 0 implies, by (3.1), that
fs = 8(ks〈a/|a|, x − e

sb〉), which we can write in the form 8(〈a, x − b〉) by replacing
ksa/|a| with a and ksesb with b. We complete the proof by applying the same argument
to g. ut

4. Robustness: approximation for large t

The proof of Theorem 1.4 follows the same general lines as the one in [35]. Our starting
point is Lemma 2.2, and the observation that if (1.2) is close to an equality then dRt/dt
must be small for most t . For such t , using Lemma 2.2, we will argue that vt must be
close to linear for that t ; it then follows that ft must be close to one of the equality cases
in Theorem 1.3. Finally, we use a time-reversal argument to show that f must be close to
one of those equality cases also.

Our proof will be divided into two main parts. In this section, we will show that vt
is close to linear; we will give the time-reversal argument in Section 5. The main result
in this section, therefore, is Proposition 4.1, which says that ft must be close to one of
the equality cases of Theorem 1.3. Recall the definition of δ from (1.3), and recall that
kt = (e

2t
− 1)1/2.

Proposition 4.1. For any 0 < ρ < 1, and for any t > 0, there exists C(t, ρ) such that
for any f, g and for any 0 < α < 1, there exist b, d ∈ R and a ∈ Rn with |a| ≤ kt such
that

E
(
ft (X)−8(〈a,X〉 − b)

)2
+ E

(
gt (X)−8(〈a,X〉 − d)

)2
≤ C(t, ρ)m(f, g)C(t,ρ)

(
δ

α

) 1
1+4k2

t /(1−ρ)
1

1+α

where m(f, g) = Ef (1− Ef )Eg(1− Eg).
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Let us observe—and this will be important when we apply Proposition 4.1—that by
Lemma 3.1, |a| ≤ kt implies that 8(〈a, ·〉 − b) can be written in the form Pt+s1B for
some s > 0 and some half-space B.

The main goal of this section is to prove Proposition 4.1. The proof proceeds accord-
ing to the following steps:

• First, using a Poincaré-like inequality (Lemma 4.2) we show that if the quantity
Eρ |∇v(X) − ∇w(Y )|2 is small then v and w are close to linear functions (with the
same slope).
• In Proposition 4.3, we use the reverse Hölder inequality and some concentration prop-

erties to show that if dRt/dt is small, then Eρ |∇vt (X)−∇wt (Y )|2p must be small for
some p < 1.
• Using Lemma 3.2, we argue that if the quantity Eρ |∇vt (X) − ∇wt (Y )|2p is small

then Eρ |∇vt (X)−∇wt (Y )|2 is also small. Thus, we can apply the Poincaré inequality
mentioned in the first bullet point, and so we obtain linear approximations for vt andwt .

4.1. A Poincaré-like inequality

Recall that we proved the equality case by arguing that if dRt/dt = 0 then
|∇vt (X) − ∇wt (Y )| is identically zero, so ∇vt and ∇wt must be constant and thus
vt and wt must be linear. The first step towards a robustness result is to show that if
|∇vt (X) − ∇wt (Y )| is small, then vt and wt must be almost linear, and with the same
slope.

Lemma 4.2. For any smooth functions v,w ∈ L2(Rn, γn), if we set a = 1
2 (E∇v+E∇w)

then for any 0 < ρ < 1,

E
(
v(X)− 〈X, a〉 − Ev

)2
+ E

(
w(X)− 〈X, a〉 − Ew

)2
≤

Eρ |∇v(X)−∇w(Y )|2

2(1− ρ)
.

We remark that Lemma 4.2 achieves equality when v and w are quadratic polynomials
which differ only in the constant term.

In order to prove Lemma 4.2, we recall the Hermite polynomials: for k ∈ N, define
Hk(x) = (k!)

−1/2ex
2/2 dk

dxk
e−x

2/2. It is well-known that theHk form an orthonormal basis
of L2(R, γ1). For a multiindex α ∈ Nn, let

Hα(x) =

n∏
i=1

Hαi (xi).

Then the Hα form an orthonormal basis of L2(Rn, γn). Define |α| =
∑
i αi ; note that Hα

is linear if and only if |α| = 1, and αi = 0 implies that ∂
∂xi
Hα = 0. If αi > 0, define

Siα by (Siα)i = αi − 1 and (Siα)j = αj for j 6= i. Then a well-known recurrence for
Hermite polynomials states that

∂

∂xi
Hα =

{
√
αi HSiα if αi > 0,

0 if αi = 0.
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In particular,

E
(
∂

∂xi
Hα

)2

= αi . (4.1)

It will be convenient for us to reparametrize the Ornstein–Uhlenbeck semigroup Pt :
for 0 < ρ < 1, let Tρ = Plog(1/ρ). It is then easily checked that for any v ∈ L1(Rn, γn),
Eρ(v(Y ) |X) = (Tρv)(X).

The final piece of background that we need before proving Lemma 4.2 is the fact that
Tρ acts diagonally on the Hermite basis, with

TρHα = ρ
|α|Hα. (4.2)

Proof of Lemma 4.2. First, consider two arbitrary functions b(x), c(x) ∈ L2(Rn, γn) and
suppose that their expansions in the Hermite basis are b =

∑
α bαHα and c =

∑
α cαHα .

Then

Eρ(b(X)− c(Y ))2 = Eb2
+ Ec2

− 2Eρb(X)c(Y ) = Eb2
+ Ec2

− 2Eb(X)(Tρc)(X)

=

∑
α

(b2
α + c

2
α − 2ρ|α|bαcα),

where we have used (4.2) in the last line to compute the Hermite expansion of Tρc. Now,
2bαcα ≤ b2

α + c
2
α and so

Eρ(b(X)− c(Y ))2 = (b0 − c0)
2
+

∑
|α|≥1

(b2
α + c

2
α − 2ρ|α|bαcα)

≥ (b0 − c0)
2
+

∑
|α|≥1

(b2
α + c

2
α)(1− ρ

|α|)

≥ (b0 − c0)
2
+ (1− ρ)

∑
|α|≥1

(b2
α + c

2
α). (4.3)

Now write v and w in the Hermite basis as v =
∑
vαHα and w =

∑
wαHα . Then,

by (4.1),

∂v

∂xi
=

∑
αi≥1

vα
√
αi HSiα,

∂w

∂xi
=

∑
αi≥1

wα
√
αi HSiα.

In particular, if we set b = ∂v/∂xi , then bSiα =
√
αi vα for any α with αi ≥ 1. Specifi-

cally, b0 = vei (where ei is the multi-index with 1 in position i and 0 elsewhere) and∑
|α|≥1

b2
α =

∑
|α|≥2, αi≥1

b2
Siα
=

∑
|α|≥2, αi≥1

αiv
2
α

(Setting c = ∂w/∂xi , there is of course an analogous inequality for c and w.) Applying
this to (4.3), we have

Eρ
(
∂v

∂xi
(X)−

∂w

∂xi
(Y )

)2

≥ (vei − wei )
2
+ (1− ρ)

∑
|α|≥2, αi≥1

αi(v
2
α + w

2
α). (4.4)
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Now if we apply (4.4) for each i and sum the resulting inequalities, we obtain

Eρ |∇v(X)−∇w(Y )|2 ≥
∑
|α|=1

(vα − wα)
2
+ 2(1− ρ)

∑
|α|≥2

(v2
α + w

2
α). (4.5)

On the other hand, let a = 1
2 (E∇v + E∇w). Since E ∂v

∂xi
= vei and Hei (x) = xi , it

follows that
〈x, a〉 =

1
2

∑
|α|=1

(vα + wα)Hα(x).

Since Ev = v0, we have

E(v(X)− 〈X, a〉 − Ev)2 =
∑
|α|=1

(
vα − wα

2

)2

+

∑
|α|≥2

v2
α.

Adding to this the analogous expression for w, we obtain

2(1− ρ)
(
E(v(X)− 〈X, a〉 − Ev)2 + E(w(X)− 〈X, a〉 − Ew)2

)
= (1− ρ)

∑
|α|=1

(vα − wα)
2
+ 2(1− ρ)

∑
|α|≥2

(v2
α + w

2
α).

Noting that 1− ρ ≤ 1, we see that this is smaller than (4.5). Hence

E
(
v(X)− 〈X, a〉 − Ev

)2
+ E

(
w(X)− 〈X, a〉 − Ew

)2
≤

Eρ |∇v(X)−∇w(Y )|2

2(1− ρ)
. ut

4.2. A lower bound on dRt/dt

Recall the formula for dRt/dt given in Lemma 2.2. In this section, we will use the
reverse-Hölder inequality to split this formula into an exponential term and a term de-
pending on |∇vt (X)− ∇wt (Y )|. We will then use the smoothness of vt and wt to bound
the exponential term, with the following result:

Proposition 4.3. For any 0 < ρ < 1 and any t > 0, there is a c(t, ρ) > 0 such that for
any r ≤ 1

1+4k2
t /(1−ρ)

and for any f and g,

dRt

dt
≥ c(t, ρ)m

4
k2
t (1+kt )

2

1−ρ
(
E|∇vt (X)−∇wt (Y )|2r

)1/r
.

There are three main ingredients in the proof of Proposition 4.3. The first is the reverse-
Hölder inequality, which states that for any functions f > 0 and g ≥ 0 and for any β > 0
and 0 < r < 1 with 1/r − 1/β = 1,

Efg ≥ (Ef−β)−1/β(Egr)1/r . (4.6)

The second ingredient involves a well-known property of the Gaussian measure: the
concentration of Lipschitz functions (see, e.g., [33]).
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Lemma 4.4. If f : Rn→ R is 1-Lipschitz with median M then for any t > 0,

Pr(f (X) ≥ M + t) ≤ 8(−t), Pr(f (X) ≤ M − t) ≤ 8(−t).

By integrating out Lemma 4.4 in t , one obtains the following bound:

Lemma 4.5. If f : Rn→ R is 1-Lipschitz with median M then for any λ < 1,

E exp(λf 2(X)/2) ≤
2

√
1− λ

e
λ

2(1−λ)M
2
.

Proof. Suppose without loss of generality thatM ≥ 0. By Lemma 4.4, |f−M| is stochas-
tically dominated by the absolute value of a Gaussian variable. That is, if Z is a standard
Gaussian variable and 9 : [0,∞)→ R is an increasing, convex function then

E9(f ) ≤ E9(|f −M| +M) ≤ E9(|Z| +M).

Now, if 9(x) = eλx
2/2—which is convex, symmetric in x, and increasing on [0,∞)—

then

E9(|Z| +M) = E9(max{Z,−Z} +M) = Emax{9(Z +M),9(−Z +M)}
≤ 2E9(Z +M).

That is, we have E9(f ) ≤ 2E9(Z +M). But for a Gaussian variable, we have

Eeλ(Z+M)
2/2
=

1
√

1− λ
e

λ
2(1−λ)M

2
. ut

The third and final ingredient in the proof of Proposition 4.3 is a relationship between the
mean of f and the median of vt .

Lemma 4.6. If Nt is a median of vt then

m(f ) = Ef (1− Ef ) ≤ 2 exp
(
−

N2
t

2(1+ kt )2

)
.

Proof. The proof essentially follows the one of Lemma 3.8 of [35]. Note that it is enough
to show that if Nt ≤ 0 then

Ef ≤ 28
(

Nt

1+ kt

)
. (4.7)

Indeed, since m(f ) ≤ Ef , the inequality 8(x) ≤ e−x
2/2 for x ≤ 0 will complete the

proof as long as Nt ≤ 0; on the other hand, if Nt > 0 then we apply (4.7) to 1−f instead
of f . Note that replacing f by 1− f changes the sign of Nt ; also, the definition of m(f )
ensures that m(f ) ≤ E(1− f ).

To prove (4.7), recall that vt = 8−1(ft ). Let Mt = 8(Nt ), so that Mt is a median
of ft . Then for any α < 1, Pr(ft ≥ 8(αNt )) = Pr(vt ≥ αNt ). Recall from Lemma 3.2
that vt is kt -Lipschitz. Thus, by Lemma 4.4,

Pr(ft ≥ 8(αNt )) = Pr(vt ≥ αNt ) = Pr(vt ≥ Nt + (1− α)Nt ) ≤ 8
(
(1− α)Nt

kt

)
.

Setting α = 1/(1+ kt ), we have (1− α)/kt = α. Thus, Pr(ft ≥ 8(αNt )) ≤ 8(αNt ).
Since ft ≤ 1, Markov’s inequality implies that Eft ≤ 28(αNt ). Recalling that α =
1/(1+ kt ), this proves (4.7). ut
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Proof of Proposition 4.3. We begin by applying the reverse-Hölder inequality (4.6) to the
equation in Lemma 2.2:

dRt

dt
≥

ρ

2π
√

1− ρ2

(
Eρ exp

(
β
v2
t + w

2
t − 2ρvtwt

2(1− ρ2)

))−1/β

(Eρ |∇vt −∇wt |2r)1/r

(4.8)

with β and r yet to be determined. Let us first consider the exponential term in (4.8).
Since 2|vtwt | ≤ v2

t + w
2
t , we have

Eρ exp
(
β
v2
t + w

2
t − 2ρvtwt

2(1− ρ2)

)
≤ Eρ exp

(
β
v2
t + w

2
t

2(1− ρ)

)
≤

(
E exp

(
β

v2
t

1− ρ

)
E exp

(
β
w2
t

1− ρ

))1/2

, (4.9)

where we used the Cauchy–Schwarz inequality in the last line. Recall from Lemma 3.2
that vt and wt are both kt -Lipschitz. Thus, we can apply Lemma 4.5 with f = vt/kt and
λ = 2βk2

t /(1− ρ); we see that if λ = 2βk2
t /(1− ρ) ≤ 1/2, then

E exp
(
β

v2
t

1− ρ

)
≤ CeλM

2
t ,

where Mt is a median of vt . Applying the same argument to wt and plugging the result
into (4.9), we have

Eρ exp
(
β
v2
t + w

2
t − 2ρvtwt

2(1− ρ2)

)
≤ Ceλ(M

2
t +N

2
t ),

where Nt is a median of wt . Going back to (4.8), we have

dRt

dt
≥

c−1/βρ√
1− ρ2

e
−
λ
β
(M2

t +N
2
t )(Eρ |∇vt −∇wt |2r)1/r , (4.10)

with (recall) λ = 2βk2
t /(1 − ρ) ≤ 1/2; hence, β ≤ 1

4 (1 − ρ)/k
2
t . Recalling that 1/r −

1/β = 1, we see that (4.10) holds for any r ≤ 1
1+4k2

t /(1−ρ)
. Finally, we invoke Lemma 4.6

to show that

exp
(
−
λ

β
M2
t

)
= exp

(
−

2k2
tM

2
t

1− ρ

)
≥ (cEf (1− Ef ))4

k2
t (1+kt )

2

1−ρ

(and similarly for g and Nt ). Plugging this into (4.10) completes the proof. ut

4.3. Proof of Proposition 4.1

We are now prepared to prove Proposition 4.1 by combining Proposition 4.3 with Lem-
mas 3.2 and 4.2. Besides combining these three results, there is a small technical obstacle:
we know only that the integral of dRt/dt is small; we do not know anything about dRt/dt
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at specific values of t . So instead of showing that vt is close to linear for every t , we will
show that for every t , there is a nearby t∗ such that vt∗ is close to linear. By ensuring that
t∗ is close to t , we will then be able to argue that vt is also close to linear.

Proof of Proposition 4.1. For any 0 < r < 1, Lemma 3.2 implies that

(Eρ |∇vt −∇wt |2r)1/r ≥
(E|∇vt −∇wt |2)1/r

(2kt )2(1−r)/r
.

By Lemma 4.2 applied to vt and wt , if we set a = 1
2 (E∇vt + E∇wt ) and we define

ε(vt ) = E(vt (X)− 〈X, a〉 − Ev)2 (and similarly for ε(wt )), then

(ε(vt )+ ε(wt ))
1/r
≤
(2kt )2(1−r)/r

(2(1− ρ))1/r
(Eρ |∇vt −∇wt |2r)1/r .

Now we plug this into Proposition 4.3 to obtain

(ε(vt )+ ε(wt ))
1/r
≤ C(t, ρ)m

−4
k2
t (1+kt )

2

1−ρ
dRt

dt
≤ C(t, ρ)m−C(t,ρ)

dRt

dt
. (4.11)

Recall that δ(f, g) =
∫
∞

0
dRs
ds
ds. In particular,

αt min
t≤s≤t (1+α)

dRt

dt

∣∣∣∣
s

≤

∫ t (1+α)

t

dRs

ds
ds ≤ δ(f, g)

and so there is some s ∈ [t, t (1+α)] such that dRt
dt

∣∣
s
≤

δ
αt

. If we apply this to (4.11) with
t replaced by s and with r = 1

1+4k2
t /(1−ρ)

≤
1

1+4k2
s /(1−ρ)

, we obtain

ε(vs)+ ε(ws) ≤ C(t, ρ)m
−rC(t,ρ)(δ/α)r .

Since 8 is Lipschitz, if we denote E(fs − 8(〈X, a〉 − Evs))2 by ε(fs) (and similarly
for gs), then we have

ε(fs)+ ε(gs) ≤ C(t, ρ)m
−rC(t,ρ)(δ/α)r ≤ C(t, ρ)m−C(t,ρ)(δ/α)r , (4.12)

where the second inequality follows because r depends only on t and ρ, so it can be
absorbed into the constant C(t, ρ).

Now we will need a lemma to show that ε(ft ) and ε(ft ) are small. We will prove the
lemma after this proof is complete.

Lemma 4.7. For any t < s and any h ∈ L2(Rn, γn),

E(Pth)2 ≤ (E(Psh)2)t/s(Eh2)1−t/s .
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To complete the proof of Proposition 4.1, we apply Lemma 4.7 with h = f −

P−1
s 8(〈X, a〉 − Evs) (note that P−1

s 8(〈X, a〉 − Evs) exists by Lemma 3.1, because
|a| ≤ ks). Since Eh2

≤ sup |h| ≤ 1 and s ≤ (1+ α)t , we see that

ε(ft ) = E(Pth)2 ≤ (E(Psh)2)t/s = ε(fs)1/(1+α).

Applying this (and the equivalent inequality for g) to (4.12), we have

ε(ft )+ ε(gt ) ≤ C(t, ρ)
1/(1+α)m−C(t,ρ)/(1+α)(δ/α)r/(1+α),

where ε(ft )means E(ft−P−1
s−t8(〈X, a〉−Evs))2 and similarly for ε(gt ). Since α < 1, we

have 1/2 ≤ 1/(1+ α) ≤ 1 and so we can absorb the power 1/(1+ α) into the constant
C(t, ρ). ut

Proof of Lemma 4.7. Expand Psh in the Hermite basis as Psh =
∑
bαHα . Then

E(Psh)2 =
∑

b2
α, E(Pth)2 =

∑
b2
αe

2(s−t)|α|, Eh2
=

∑
b2
αe

2s|α|.

By Hölder’s inequality applied with the exponents s/t and s/(s − t),

E(Pth)2 =
∑

b(s−t)/sα e2(s−t)|α|bt/sα ≤
(∑

b2
αe

2s|α|
)(s−t)/s(∑

b2
α

)t/s
= (Eh2)(s−t)/s(E(Psh)2)t/s . ut

5. Robustness: time-reversal

The final step in proving Theorem 1.4 is to show that the conclusion of Proposition 4.1
implies that f and g are close to one of the equality cases. In [35], the authors used a
spectral argument. However, that spectral argument was responsible for the logarithmi-
cally slow rates (in δ) that [35] showed. Here, we use a better time-reversal argument that
gives polynomial rates. The argument here will need the function f to take values only in
{0, 1}. Thus, we will first establish Theorem 1.4 for sets; having done so, it is not difficult
to extend it to functions using the equivalence, described in Section 1.4, between the set
and functional forms of Borell’s theorem.

The main goal of a time-reversal argument is to bound E|h| from above in terms of
E|Pth|, for some function h. The difficulty is that such bounds are not possible for gen-
eral h. An illuminating example is the function h : R→ R given by h(x) = sgn(sin(kx)):
on the one hand, E|h| = 1; on the other, E|Pth| can be made arbitrarily small by taking k
large.

The example above is problematic because there is a lot of cancellation in Pth. The
essence of this section is that for the functions h we are interested in, there is a geometric
reason which disallows too much cancellation. Indeed, we are interested in functions h of
the form 1A−1B whereB is a half-space. The negative part of such a function is supported
on B, while the positive part is supported on Bc. As we will see, this fact allows us to
bound the amount of cancellation that occurs, and thus obtain a time-reversal result:
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Proposition 5.1. Let B be a half-space and A be any other set. There is an absolute
constant C such that for any t > 0,

γ (A4 B) ≤ Cmax
{
E|Pt1A − Pt1B |, (e2t

− 1)1/4
√
E|Pt1A − Pt1B |

}
,

The main idea in Proposition 5.1 is in the following lemma, which states that if a non-
negative function is supported on a half-space then Pt will push strictly less than half of
its mass onto the complementary half-space.

Lemma 5.2. There is a constant c > 0 such that for any b ∈ R, if f : Rn → [0, 1] is
supported on {x1 ≤ b} then for any t > 0,

E(Ptf )1{X1≥e−tb} ≤ max
{

1
2
Ef − c

(Ef )2
√
e2t − 1

,
3
8
Ef
}
.

Proof. Because Pt is self-adjoint,

E(Ptf )1{X1≥e−tb} = EfPt1{X1≥e−tb} = Ef8
(
X1 − b
√
e2t − 1

)
.

Now, the set {b − Ef ≤ x1 ≤ b} has measure at most φ(0)Ef . In particular,
Ef 1{b−Ef≤x1≤b} ≤ φ(0)Ef ≤

1
2Ef .

Let A = {x1 ≤ b − Ef } and B = {b − Ef ≤ x1 ≤ b} and recall that f is supported
on {x1 ≤ b}, so that f = f (1A + 1B). Now,

8

(
x1 − b
√
e2t − 1

)
≤

{
8
(
−

Ef
√
e2t−1

)
, x ∈ A,

1
2 , x ∈ B,

and so

Ef8
(
X1 − b
√
e2t − 1

)
= E1Af8

(
X1 − b
√
e2t − 1

)
+ E1Bf8

(
X1 − b
√
e2t − 1

)
≤ 8

(
−

Ef
√
e2t − 1

)
E1Af +

1
2
E1Bf

=
1
2
Ef −

(
1
2
−8

(
−

Ef
√
e2t − 1

))
Ef 1A. (5.1)

There is a constant c > 0 such that8(−x) ≤ max{1/2−cx, 1/4} for all x ≥ 0. Applying
this with x = Ef

√
e2t−1

, we have

(5.1) ≤
1
2
Ef − Ef 1A min

{
c

Ef
√
e2t − 1

,
1
4

}
≤ max

{
1
2
Ef − c

(Ef )2
√
e2t − 1

,
3
8
Ef
}

where for the last inequality, recall that Ef 1A ≥ 1
2Ef . ut

Proof of Proposition 5.1. Without loss of generality, B is the half-space {x1 ≤ b}. Let f
be the positive part of 1A−1B and let g be the negative part, so that γ (A4B) = Ef+Eg.
Note that f is supported on Bc and g is supported on B.
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Without loss of generality, Ef ≥ Eg; Lemma 5.2 implies that if Ef ≤ C
√
e2t − 1

then

2E(1BPtf + 1BcPtg) ≤ Ef + Eg − c
(Ef + Eg)2
√
e2t − 1

. (5.2)

On the other hand, if Ef ≥ C
√
e2t − 1 then

2E(1BPtf + 1BcPtg) ≤
3
4
Ef + Eg ≤

7
8
(Ef + Eg). (5.3)

Thus,

E|Ptf −Ptg| = EPtf +EPtg− 2Emin{Ptf, Ptg} = Ef +Eg− 2Emin{Ptf, Ptg}

≥ Ef +Eg− 2E(1BPtf + 1BcPtg) ≥ min
{
c
(Ef +Eg)2
√
e2t − 1

,
Ef +Eg

8

}
,

where we have applied (5.2) and (5.3) in the last inequality. Now there are two cases,
depending on which term in the minimum is smaller: if the first term is smaller then

Ef + Eg ≤ C(e2t
− 1)1/4

√
E|Ptf − Ptg|;

otherwise, the second term in the minimum is smaller and

Ef + Eg ≤ 8E|Ptf − Ptg|.

In either case,

γ (A4 B) = Ef + Eg ≤ Cmax
{
E|Ptf − Ptg|, (e2t

− 1)1/4
√
E|Ptf − Ptg|

}
,

as claimed. ut

5.1. Synchronizing the time-reversal

Proposition 5.1 would be enough if we knew that E(Pt1A − Pt1B)2 were small. Now,
Proposition 4.1 and Lemma 3.1 imply that E(Pt1A − Pt+s1B)2 is small, for some s ≥ 0.
In this section, we will show that if e−t = ρ then s must be small. Now, this is not
necessarily the case for arbitrary sets A; in fact, for any s > 0 one can find A such that
E(Pt1A − Pt+s1B)2 is arbitrarily small. Fortunately, we have some extra information
on A: we know that it is almost optimally noise stable with parameter ρ. In particular, if
e−t = ρ then E1APt1A is close to E1BPt1B .

Using this extra information, the proof of robustness proceeds as follows: since
E1APt1A is close to E1BPt1B and Pt1A is close to Pt+s1B , we will show that E1BPt+s1B
is close to E1BPt1B . But we know all about B: it is a half-space. Therefore, we can find
explicit and accurate estimates for E1BPt+s1B and E1BPt1B in terms of t , s and γn(B);
using them, we can conclude that s is small. Now, if s is small then we can show (again,
using explicit estimates) that E(Pt1B − Pt+s1B)2 is small. Since E(Pt1A − Pt+s1B)2
is small (this was our starting point, remember), we can apply the triangle inequality to
conclude that E(Pt1A − Pt1B)2 is small. Finally, we can apply Proposition 5.1 to show
that E|1A − 1B | is small.
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Proposition 5.3. For every t , there is a C(t) such that the following holds. For sets
A,A′ ⊂ Rn, suppose that B,B ′ ⊂ Rn are parallel half-spaces with γ (A) = γ (B)

and γ (A′) = γ (B ′). If there exist s, ε1, ε2 > 0 such that

E(Pt1A − Pt+s1B)2 ≤ ε2
1 and E1APt1A′ ≥ E1BPt1B ′ − ε2

then (
E(Pt1A − Pt1B)2

)1/2
≤ C(t)

ε1 + ε2(
I (γ (A))I (γ (A′))

)C(t) ,
where I (x) = φ(8−1(x)).

Rather than prove Proposition 5.3 all at once, we have split the part relating the quantities
E(Pt1B − Pt+s1B)2 and E1B(Pt1B ′ − Pt+s1B ′) into a separate lemma.

Lemma 5.4. For every t there is a C(t) such that for any parallel half-spaces B and B ′,
and for every s > 0,(

E(Pt1B − Pt+s1B)2
)1/2
≤ C(t)

E1B(Pt1B ′ − Pt+s1B ′)(
I (γ (B))I (γ (B ′))

)C(t) .
Proof. First of all, one can easily check through integration by parts that for a smooth
function f : R→ R, ∫

∞

b

φ(x)(Lf )(x) dx = −f ′(b)φ(b). (5.4)

By rotating B and B ′, we can assume that B = {x1 ≥ a} and B ′ = {x1 ≥ b}. Let
Fab(t) = E1BPt1B ′ =

∫
∞

a
φ(x)8

(
e−tx−b√

1−e−2t

)
dx and consider its derivative: by (5.4),

F ′ab(t) =

∫
∞

a

φ(x)L8

(
e−tx − b
√

1− e−2t

)
dx = −ktφ(a)φ

(
e−ta − b
√

1− e−2t

)
= −

kt

2π
exp

(
−
a2
+ b2
− 2e−tab

2(1− e−2t )

)
≤ −

kt

2π
exp

(
−
a2
+ b2

1− e−2t

)
.

Now, kt is decreasing in t and exp(−x/(1−e−2t )) is increasing in t . In particular, for any
τ ∈ [t, t + s],

F ′ab(τ ) ≤ −
kt+s

2π
exp

(
−
a2
+ b2

1− e−2t

)
.

Hence,

Fab(t)− Fab(t + s) ≥ −s max
t≤τ≤t+s

F ′ab(τ ) ≥
skt+s

2π
exp

(
−
a2
+ b2

1− e−2t

)
. (5.5)

If s is large, this is a poor bound because skt+s decreases exponentially in s. However,
when s ≥ 1 we can instead use

Fab(t)− Fab(t + s) ≥ Fab(t)− Fab(t + 1) ≥
kt+1

2π
exp

(
−
a2
+ b2

1− e−2t

)
. (5.6)
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Equations (5.5) and (5.6) show that if E1B(Pt1B ′ − Pt+s1B ′) is small then s must be
small. The next step, therefore, is to control E(Pt1B − Pt+s1B)2 in terms of s. Now,

E(Pt1B − Pt+s1B)2 = E
(
(Pt1B)2 + (Pt+s1B)2 − 2(Pt1B)(Pt+s1B)

)
= E1B(P2t1B + P2(t+s)1B − 2P2t+s1B)

=
(
Faa(2t)− Faa(2t + s)

)
−
(
Faa(2t + s)− Faa(2t + 2s)

)
≤ s

(
F ′aa(2t)− F

′
aa(2t + 2s)

)
, (5.7)

where the inequality follows because

F ′aa(t) = −
kt

2π
exp

(
−
(1− e−t )a2

1− e−2t

)
= −

kt

2π
exp

(
−

a2

1+ e−t

)
and so F ′aa is an increasing function. To control the right hand side of (5.7), we go to the
second derivative of Faa :

F ′′aa(t) =
e2t

2π(e2t − 1)3/2
exp

(
−

a2

1+ e−t

)
+

1

2π
√
e2t − 1

a2e−t

(1+ e−t )2
exp

(
−

a2

1+ e−t

)
This is decreasing in t ; hence

E(Pt1B − Pt+s1B)2 ≤ s
(
F ′aa(2t)− F

′
aa(2t + 2s)

)
≤ 2s2F ′′aa(2t). (5.8)

We will now complete the proof by combining our upper bound on E(Pt1B−Pt+s1B)2
with our lower bounds on E1B(Pt1B ′ −Pt+s1B ′). First, assume s ≤ 1. Then kt+s ≥ kt+1
and so (5.5) plus (5.8) implies that

(
E(Pt1B − Pt+s1B)2

)1/2
≤ 2π exp

(
a2
+ b2

1− e−2t

)√
2F ′′aa(2t)
kt+1

E1B(Pt1B ′ − Pt+s1B ′)

= 2π
1− 2

1−e−2t

√
2F ′′aa(2t)
kt+1

E1B(Pt1B ′ − Pt+s1B ′)(
I (γ (B))I (γ (B ′))

) 2
1−e−2t

.

If we take C(t) ≥ max{
√

2F ′′aa(2t)/kt+1, 2/(1−e−2t )} then the lemma holds in this case.
On the other hand, if s > 1 then (5.6) implies that

2π
1− 2

1−e−2t

kt+1

E1B(Pt1B ′ − Pt+s1B ′)(
I (γ (B))I (γ (B ′))

) 2
1−e−2t

≥ 1.

Since E(Pt1B − Pt+s1B)2 ≤ 1 trivially, the lemma holds in this case provided that

C(t) ≥ max{1/kt+1, 2/(1− e−2t )}. ut

Proof of Proposition 5.3. By the Cauchy–Schwarz inequality,

E1APt1A ≤ E1APt+s1B +
√
E(Pt1A − Pt+s1B)2 ≤ E1APt+s1B + ε1.
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Moreover, E1APt+s1B ′ ≤ E1BPt+s1B ′ since B is a super-level set of Pt+s1B ′ with the
same volume as A. Thus,

E1BPt1B ′ − ε2 ≤ E1APt1A′ ≤ E1APt+s1B ′ + ε1 ≤ E1BPt+s1B ′ + ε1.

By Lemma 5.4,

(E(Pt1B − Pt+s1B)2)1/2 ≤
C(t)E1B(Pt1B ′ − Pt+s1B ′)
(I (γn(A))I (γn(A′)))C(t)

≤
C(t)(ε1 + ε2)

(I (γn(A))I (γn(A′)))C(t)
.

Finally, the triangle inequality gives

(E(Pt1A − Pt1B)2)1/2 ≤
(E(Pt1A − Pt+s1B)2)1/2 + (E(Pt1B − Pt+s1B)2)1/2

(I (γn(A))I (γn(A′)))C(t)

≤
ε1 + C(t)(ε1 + ε2)

(I (γn(A))I (γn(A′)))C(t)
.

Of course, 1 can be absorbed into the constant C(t). ut

5.2. Proof of robustness

Proof of Theorem 1.4. First, define t by e−t = ρ. We then have k2
t = ρ

2/(1− ρ2) and
so the exponent of δ in Proposition 4.1 becomes

1

1+ 4 ρ2

(1−ρ2)(1−ρ)

·
1

1+ α
=

(1− ρ2)(1− ρ)
1− ρ + 3ρ2 + ρ3 ·

1
1+ α

. (5.9)

Of course, we can define α > 0 (depending on ρ) so that (5.9) is

η :=
(1− ρ2)(1− ρ)

1+ 3ρ
.

Now suppose that f = 1A and g = 1A′ for some A,A′ ⊂ Rn. Proposition 4.1 implies
that there are a ∈ Rn and b ∈ R such that |a| ≤ kt and

E
(
(Pt1A)(X)−8(〈a,X〉 − b)

)2
≤ C(ρ)m−C(ρ)δη.

Since |a| ≤ kt , Lemma 3.1 implies that we can find some s > 0 and a half-space B such
that 8(〈a, x〉 − b) = (Pt+s1B)(x); then

E(Pt1A − Pt+s1B)2 ≤ C(ρ)m−C(ρ)δη. (5.10)

At this point, it is not clear that γ (A) = γ (B); however, we can ensure this by modify-
ing B slightly:

E(Pt1A − Pt+s1B)2 ≥ (EPt1A − EPt+s1B)2 = (γ (A)− γ (B))2.

Therefore let B̃ be a translation of B so that γ (B̃) = γ (A). By the triangle inequality,

(E(Pt1A − Pt+s1B̃)
2)1/2 ≤ (E(Pt1A − Pt+s1B)2)1/2 + (E(Pt+s1B − Pt+s1B̃)

2)1/2

≤ (E(Pt1A − Pt+s1B)2)1/2 + |γ (B)− γ (B̃)|1/2

≤ 2(E(Pt1A − Pt+s1B)2)1/2.
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By replacing B with B̃, we can assume in (5.10) that γ (A) = γ (B) (at the cost of
increasing C(ρ) by a factor of 2).

Now we apply Proposition 5.3 with ε2
1 = C(ρ)m

−C(ρ)δη and ε2 = δ. The conclusion
of Proposition 5.3 leaves us with

(E(Pt1A − Pt1B)2)1/2 ≤ C(ρ)m−C(ρ)(ε1 + ε2) ≤ C(ρ)m
−C(ρ)δη/2,

where we have absorbed the constant C(t) from Proposition 5.1 into C(ρ). Since E|X| ≤
(EX2)1/2 for any random variable X, we may apply Proposition 5.1:

γ (A4B) ≤ C(ρ)
√
E|Pt1A − Pt1B | ≤ C(ρ)(E(Pt1A−Pt1B)2)1/4 ≤ C(ρ)m−C(ρ)δη/4.

By applying the same argument toA′ and B ′, this establishes Theorem 1.4 in the case that
f and g are indicator functions.

To extend the result to other functions, note EJ (f (X), g(Y )) = EJ (1A(X̃), 1A′(Ỹ ))
where X̃ and Ỹ are ρ-correlated Gaussian vectors in Rn+1, and

A = {(x, xn+1) ∈ Rn+1
: xn+1 ≥ 8

−1(f (x))},

A′ = {(x, xn+1) ∈ Rn+1
: xn+1 ≥ 8

−1(g(x))}.

Moreover, Ef = γn+1(A) and Eg = γn+1(A
′). Applying Theorem 1.4 for indicator

functions in dimension n+ 1, we find a half-space B such that

γn+1(A4 B) ≤ C(ρ)m
−C(ρ)δη/4. (5.11)

By slightly perturbing B, we can assume that it does not take the form {xi ≥ b} for any
1 ≤ i ≤ n; in particular, this means that we can write B in the form

B = {(x, xn+1) ∈ Rn : xn+1 ≥ 〈a, x〉 − b}

for some a ∈ Rn and b ∈ R. But then

γn+1(A4 B) = E|f (X)−8(〈a,X〉 − b)|;

combined with (5.11), this completes the proof. ut

6. Optimal dependence on ρ

In this section, we will prove Theorem 1.5. To do so we need to improve the dependence
on ρ that appeared in Theorem 1.4. Before we begin, let us list the places where the
dependence on ρ can be improved:

1. In Proposition 4.3, we needed to control

Eρ exp
(
β
v2
t (X)+ w

2
t (Y )− 2ρvt (X)wt (Y )
2(1− ρ2)

)
.

Of course, the denominator of the exponent blows up as ρ → 1. However, if vt = wt
then the numerator goes to zero (in law, at least) at the same rate. In this case, therefore,
we are able to bound the above expectation by an expression not depending on ρ.
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2. In the proof of Proposition 4.1, we used an L∞ bound on |∇vt | and |∇wt | to show that
for some r < 1,

Eρ
(
|∇vt (X)−∇wt (Y )|

2)1/r
≤ C(t)Eρ

(
|∇vt (X)−∇wt (Y )|

2r)1/r .
This inequality is not sharp in its ρ-dependence because when vt = wt , the left hand
side shrinks like (1−ρ)1/r as ρ → 1, while the right hand side shrinks like 1−ρ. We
can get the right ρ-dependence by using an Lp bound on |∇vt (X) − ∇vt (Y )| when
applying Hölder’s inequality, instead of an L∞ bound.

3. In applying Proposition 5.3, we were forced to take e−t = ρ. Since most of our bounds
have a (necessary) dependence on t , this causes a dependence on ρ which is not op-
timal. To get around this, we will use the subadditivity property of Kane [22] and
Kindler and O’Donnell [28] to show that we can actually choose certain values of t
such that e−t is much smaller than ρ. In particular, we can take t to be quite large even
when ρ is close to 1.

Once we have incorporated the first two improvements, we will obtain a better version of
Proposition 4.1:

Proposition 6.1. For any α, t > 0, there is a constant C(t, α) such that for any f :
Rn→ [0, 1], there exist a ∈ Rn and b ∈ R with |a| ≤ kt such that

E
(
ft (X)−8(〈X, a〉 − b)

)2
≤ C(t, α)m(f )

8k2
t (1+kt )

2

1+8k2
t

−α
(

δ

ρ
√

1− ρ

) 1
1+8k2

t

−α

,

where kt = (e2t
− 1)−1/2, δ(f ) = EρJ (f (X), f (Y )) − J (Ef,Ef ), and m(f ) =

Ef (1− Ef ).
Moreover, this statement holds with a C(t, α) which, for any fixed α, is decreasing

in t .

Once we have incorporated the third improvement above, we will use the arguments of
Section 5 to prove Theorem 1.5.

6.1. A better bound on the auxiliary term

First, we will tackle item 1 above. Our improved bound leads to a version of Proposi-
tion 4.3 with the correct dependence on ρ.

Proposition 6.2. Let kt = (e2t
− 1)−1/2. There are constants 0 < c,C < ∞ such that

for any t > 0, if r ≤ 1/(1+ 8k2
t ) then

dRt

dt
≥

ρ√
1− ρ2

(cm(f ))8k
2
t (1+kt )

2(
E|∇vt (X)−∇vt (Y )|2r

)1/r
where m(f ) = Ef (1− Ef ).

To obtain this improvement, we note that for a Lipschitz function v, the quotient
(v(X)− v(Y ))/

√
1− ρ satisfies a Gaussian tail bound that does not depend on ρ:
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Lemma 6.3. If v : Rn→ R is L-Lipschitz and 2βL2 < 1 then

Eρ exp
(
β
(v(X)− v(Y ))2

1− ρ

)
≤

2√
1− 2βL2

.

Proof. Let Z1 =
X+Y

2 and Z2 =
X−Y
√

2(1−ρ)
. Then EZ2

2 = 1. Now we condition on Z1: the
function

v(X)− v(Y ) = v

(
Z1 +

√
1− ρ

2
Z2

)
− v

(
Z1 −

√
1− ρ

2
Z2

)
is L
√

2(1− ρ)-Lipschitz in Z2 and has conditional median zero (because it is odd in Z2).
Now we apply Lemma 4.5 (conditionally on Z1) with f (Z2) =

1
L
√

2(1−ρ))
(v(X)− v(Y ))

and λ = 2L2β: provided that λ = 2L2β < 1, we have

Eρ exp
(
β
(v(X)− v(Y ))2

1− ρ

∣∣∣∣Z1

)
≤

1√
1− 2L2β

.

Integrating out Z1 proves the claim. ut

Next, we use the estimate of Lemma 6.3 to prove a bound on

Eρ exp
(
β
v2
t (X)+ v

2
t (Y )− 2ρvt (X)wt (Y )
2(1− ρ2)

)
that is better than the one from (4.9) which was used to derive Proposition 4.3.

Lemma 6.4. There is a constant C such that for any t > 0, and for any β > 0 with
8βk2

t ≤ 1,

Eρ exp
(
β
v2
t (X)+ v

2
t (Y )− 2ρvt (X)vt (Y )
2(1− ρ2)

)
≤ CeM

2
t /2,

where Mt is a median of vt .

Proof. We begin with the Cauchy–Schwarz inequality:

Eρ exp
(
β
v2
t (X)+ v

2
t (Y )− 2ρvt (X)vt (Y )
2(1− ρ2)

)
= Eρ exp

(
β
(vt (X)− vt (Y ))

2

2(1− ρ2)

)
exp

(
β
vt (X)vt (Y )

1+ ρ

)
≤

(
Eρ exp

(
β
(vt (X)− vt (Y ))

2

(1− ρ2)

))1/2(
E exp

(
2β
vt (X)

2

1+ ρ

))1/2

. (6.1)

Now, recall from Lemma 3.2 that vt is kt -Lipschitz. In particular, Lemma 6.3 implies that
if 8βk2

t ≤ 1 then the first term of (6.1) is at most 2
√

2. Finally, Lemma 4.5 implies that
the second term of (6.1) is bounded by CeM

2
t /2. ut
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Proof of Proposition 6.2. First, we follow the proof of Proposition 4.3 up until (4.8). At
this point, we can apply Lemma 6.4 to obtain

dRt

dt
≥ c

ρ√
1− ρ2

e−M
2
t /(2β)

(
Eρ |∇vt (X)−∇vt (Y )|2r

)1/r
,

and we conclude by applying Lemma 4.6, which implies that

e−M
2
t /(2β) ≥ (cm(f ))(1+kt )

2/β .

Then set β = 1/(8k2
t ). ut

6.2. Higher moments of |∇vt (X)−∇vt (Y )|

Here, we will carry out the second step of the plan outlined at the beginning of Section 6.
The main result is an upper bound on arbitrary moments of |∇vt (X)−∇vt (Y )|.

Proposition 6.5. There is a constant C such that for any t > 0 and any 1 ≤ q <∞,(
Eρ |∇vt (X)−∇vt (Y )|q

)1/q
≤ Ck2

t

√
q(1− ρ)

(
(1+ kt )

√
log(1/m(f ))+

√
q kt

)
.

If we fix q and t , then the bound of Proposition 6.5 has the right dependence on ρ. In
particular, we will use it instead of the uniform bound |∇vt | ≤ kt , which does not improve
as ρ → 1.

There are two main tools in the proof of Proposition 6.5. The first is a moment bound
on the Hessian of vt , which was proved in [35] (see the last line in the proof of Proposition
3.6). In what follows, ‖ · ‖F denotes the Frobenius norm of a matrix.

Proposition 6.6. Let Hvt denote the Hessian matrix of vt . There is a constant C such
that for all t > 0 and all 1 ≤ q <∞,

(E‖Hvt‖
q
F )

1/q
≤ Ck2

t

(
(1+ kt )

√
log

1
m(f )

+
√
q kt

)
.

The other tool in the proof of Proposition 6.5 is a result of Pinelis [39], which will allow
us to relate moments of |∇vt (X)−∇vt (Y )| to moments of ‖Hvt‖F .

Proposition 6.7. Let h : Rn→ Rk be a C1 function and letDh be the n× k matrix of its
partial derivatives. If Z1 and Z2 are independent, standard Gaussian vectors in Rn then

(E|h(Z1)− h(Z2)|
q)1/q ≤ C

√
q(E‖Dh‖qF )

1/q

for every 1 ≤ q <∞, where C is a universal constant.

Proof. Define f : R2n
→ Rk by f (Z) = h(Z1) − h(Z2) where Z = (Z1, Z2).

Pinelis [39] showed that if 9 : Rk → R is a convex function then for any function
f : R2n

→ Rk with Ef = 0,

E9(f (Z)) ≤ E9
(
π

2
Df (Z) · Z̃

)
,
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where Z̃ is an independent copy of Z. Applying this with 9(x) = |x|q , and noting that
Df = ( 1 0

0 −1 )⊗Dh, we obtain

E|f (Z)|q ≤ CqE|Dh(Z1) · Z2|
q .

Now, E|AZ2|
q
≤ (C
√
q)q‖A‖F for any fixed matrixA; if we apply this fact conditionally

on Z1, then we obtain
E|f (Z)|q ≤ (C

√
q)qE‖Dh‖qF . ut

Proof of Proposition 6.5. Let Z,Z1 and Z2 be independent standard Gaussians on Rn;
set X =

√
ρ Z +

√
1− ρ Z1 and Y =

√
ρ Z +

√
1− ρ Z2 so that X and Y are standard

Gaussians with correlation ρ. Conditioned on Z, define the function

h(x) = ∇vt (
√
Z +

√
1− ρ x),

so that h(Z1) = ∇vt (X) and h(Z2) = ∇vt (Y ). Note that

(Dh)(x) =
√

1− ρ(Hvt )(
√
ρ Z +

√
1− ρ x);

thus Proposition 6.7 (conditioned on Z) implies that

E
(
|∇vt (X)−∇vt (Y )|

q
∣∣ Z) ≤ (C√q(1− ρ))qE(‖Hvt (X)‖qF ∣∣ Z).

Integrating out Z and raising both sides to the power 1/q, we have(
E|∇vt (X)−∇vt (Y )|q

)1/p
≤ C

√
q(1− ρ)(E‖Hvt‖

q
F )

1/q .

We conclude by applying Proposition 6.6 to the right hand side. ut

With the first two steps of our outline complete, we are ready to prove Proposition 6.1.
This proof is much like the proof of Proposition 4.1, except that it uses Propositions 6.2
and 6.5 in the appropriate places.

Proof of Proposition 6.1. For any non-negative random variable Z and any 0 < α < 2,
0 < r < 1, Hölder’s inequality applied with p = 2r/γ implies that

EZ2
= EZγZ2−γ

≤ (EZ2r)γ /(2r)(EZ2r(2−γ )/(2r−γ ))(2r−γ )/(2r).

In particular, if we set q = 2r(2− γ )/(2r − γ ) then we obtain

(EZ2r)1/r ≥

(
EZ2

(EZq)(2−γ )/q

)2/γ

. (6.2)

Now, set Z = |∇vt (X) − ∇vt (Y )|, a = E∇vt and ε(vt ) = E(vt (X) − 〈X, a〉 − Evt )2.
Lemma 4.2 and Proposition 6.5 then imply that the right hand side of (6.2) is at least(

2(1− ρ)ε(vt )(
ck2
t

√
q(1− ρ)

(
(1+ kt )

√
log(1/m(f ))+

√
q kt

))2−γ )2/γ

= c(1− ρ)
(

ε(vt )(
k2
t

√
q
(
(1+ kt )

√
log(1/m(f ))+

√
q kt

))2−γ )2/γ

.
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Now define η = 8k2
t /(1 + 8k2

t ) and choose r = 1 − η (so as to satisfy the hypothesis of
Proposition 6.2). If we then define γ = 2r − αη = 2− (2+ α)η for some 0 < α < 1, we
will find that q = 2r(2+ α)/α ≤ 6/α. In particular, the last displayed quantity is at least

(1− ρ)(cα)(2−γ )/γ
ε(vt )

2/γ(
(k3
t + 1)

√
log(1/m(f ))

)(2−γ )/γ .
Since (k3

t +1)(2−γ )/γ depends only on t , we can put this all together (going back to (6.2))
to obtain

(
E|∇vt (X)−∇vt (Y )|2r

)1/r
≥ c(t, α)(1− ρ)

ε(vt )
2/γ

logC(t)(1/m(f ))

= c(t, α)(1− ρ)
ε(vt )

1+8k2
t

1−4αk2
t

logC(t)(1/m(f ))
.

Combined with Proposition 6.2, this implies

dRt

dt
≥ c(t)ρ

√
1− ρ

m(f )8k
2
t (1+kt )

2

logC(t)(1/m(f ))
ε(vt )

1+8k2
t

1−4αk2
t

≥ c(t, α)ρ
√

1− ρ m(f )8k
2
t (1+kt )

2
+αε(vt )

1+8k2
t

1−4αk2
t , (6.3)

where the last line follows because for every α > 0 and every C, there is a C′(α) such that
for every x ≤ 1/4, logC(1/x) ≤ C′(α)x−α . Now, with (6.3) as an analogue of (4.11), we
complete the proof by following that of Proposition 6.1. Let us reiterate the main steps:
recalling that δ =

∫
∞

0
dRs
ds
ds, we see that for any α, t > 0, there is some s ∈ [t, t (1+α)]

so that dRt
dt

∣∣
s
≤

δ
αt

. By (6.3) applied with t = s, we have

ε(vs) ≤ C(t, α)m

8k2
t (1+kt )

2(1−4αk2
t )

1+8k2
t

−α
(

δ

ρ
√

1− ρ

) 1−4αk2
t

1+8k2
t .

Now, note that 8 is a contraction, and so Lemma 4.7 implies that

E
(
ft (X)− P

−1
s−t8(〈X,E∇vs〉 − Evs)

)2
≤ C(t, α)m

8k2
t (1+kt )

2(1−4αk2
t )

1+8k2
t

−α
(

δ

ρ
√

1− ρ

) 1−4αk2
t

1+8k2
t

−α

.

By changing α and adjusting C(t, α) accordingly, we can put this inequality into the form
that was claimed in the proposition.

Finally, recall that |E∇vs | ≤ ks by Lemma 3.2, and so P−1
s−t8(〈X,E∇vs〉 − Evs) can

be written in the form 8(〈X, a〉 − b) for some a ∈ Rn, b ∈ R with |a| ≤ kt . ut
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6.3. On the monotonicity of δ with respect to ρ

The final step in the proof of Theorem 1.5 is to improve the application of Lemma 5.4. As-
suming, for now, that f is the indicator function of a setA, the hypothesis of Theorem 1.5
tells us that if e−t = ρ then E1APt1A is almost as large as possible; that is, it is almost as
large as E1BPt1B where B is a half-space of probability Pr(A). This assumption allows
us to apply Lemma 5.4, but only with t = log(1/ρ). In particular, this means that we will
need to use this value of t in Proposition 6.1, which implies a poor dependence on ρ in
our final answer.

To avoid all these difficulties, we will follow Kane [22] and Kindler and O’Donnell
[28] to show that if E1APt1A is almost as large as possible for t = log(1/ρ), then it is
also large for certain values of t that are larger.

Proposition 6.8. Suppose A ⊂ Rn has Pr(A) = 1/2. If θ = cos(k arccos ρ) for some
k ∈ N, and

J (1/2, 1/2; ρ)− EρJ (1A(X), 1A(Y ); ρ) ≤ δ,

then
J (1/2, 1/2; θ)− EθJ (1A(X), 1A(Y ); θ) ≤ kδ.

Proof. Let Z1 and Z2 be independent standard Gaussians on Rn and define Z(γ ) =
Z1 cos γ + Z2 sin γ . Note that for any γ and any j ∈ N, Z((j + 1)γ ) and Z(jγ ) have
correlation cos γ . In particular, if γ = arccos ρ, then the union bound implies that

Prθ (X ∈ A, Y 6∈ A) = Pr(Z(0) ∈ A, Z(kγ ) 6∈ A)

≤

k−1∑
j=0

Pr
(
Z(jγ ) ∈ A, Z((j + 1)γ ) 6∈ A

)
= k Prρ(X ∈ A, Y 6∈ A). (6.4)

The remarkable thing about this inequality is that it becomes equality when A is a half-
space of measure 1/2, because in this case, Prρ(X ∈ A, Y 6∈ A) = 1

2π arccos ρ.
Recall that EρJ (1A(X), 1A(Y ); ρ) = Prρ(X ∈ A, Y ∈ A). Thus, the hypothesis of

the proposition can be rewritten as(
1
2
−

1
2π

arccos ρ
)
−
(
Pr(A)− Prρ(X ∈ A, Y 6∈ A)

)
≤ δ,

which rearranges to read

Prρ(X ∈ A, Y 6∈ A) ≤ δ +
1

2π
arccos ρ.

By (6.4), this implies that

Prθ (X ∈ A, Y 6∈ A) ≤ kδ +
1

2π
arccos θ,

which can then be rearranged to yield the conclusion of the proposition. ut
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Let us point out two deficiencies in Proposition 6.8: the requirement that Pr(A) = 1/2 and
that k be an integer. The first of these deficiencies is responsible for the assumption Ef =
1/2 in Theorem 1.5, and the second one prevents us from obtaining a better constant in
the exponent of δ. Both of these restrictions come from the subadditivity condition (6.4),
which only makes sense for an integer k, and only achieves equality for a half-space of
volume 1/2. But beyond the fact that our proof fails, we have no reason not to believe that
some version of Proposition 6.8 is true without these restrictions. In particular, we make
the following conjecture:

Conjecture 6.9. There is a function k(ρ, a) such that

• for any fixed a ∈ (0, 1), k(ρ, a) ∼
√

1− ρ as ρ → 1;
• for any fixed a ∈ (0, 1), k(ρ, a) ∼ ρ as ρ → 0; and
• for any a ∈ (0, 1) and any A ⊂ Rn the quantity

J (a, a; ρ)− EρJ (1A(X), 1A(Y ); ρ)
k(ρ, a)

is increasing in ρ.

If this conjecture were true, it would tell us that sets which are almost optimal for some ρ
are also almost optimal for smaller ρ, where the function k(ρ, a) quantifies the almost
optimality.

In any case, let us move on to the proof of Theorem 1.5. If the conjecture is true, then
the following proof will directly benefit from the improvement.

Proof of Theorem 1.5. We will prove the theorem when f is the indicator function of a
set A. The extension to general f follows from the same argument that was made in the
proof of Theorem 1.4.

Fix ε > 0. If ρ0 is close enough to 1 then for every ρ0 < ρ < 1, there is a k ∈ N such
that k arccos ρ ∈ [π/2 − ε, π/2 − ε/2]. In particular, this means that cos(k arccos ρ) ∈
[c1(ε), c2(ε)], where c1(ε) and c2(ε) converge to zero as ε → 0. Moreover, this k must
satisfy

k ≤
C(ε)

arccos ρ
≤

C(ε)
√

1− ρ
.

Now let θ = cos(k arccos ρ). By Proposition 6.8, A satisfies

J (1/2, 1/2; θ)− EθJ (1A(X), 1A(Y ); θ) ≤ C(ε)
δ

√
1− ρ

.

Now we will apply Proposition 6.1 with ρ replaced by θ and t = log(1/θ). Since θ ≤
c2(ε), it follows that kt = θ/

√
1− θ2 ≤ c3(ε) (where c3(ε) → 0 with ε). Thus, the

conclusion of Proposition 6.1 gives us a ∈ Rn and b ∈ R such that

E
(
(Pt1A)(X)−8(〈X, a〉 − b)

)2
≤ C

(
δ

θ
√
(1− θ)(1− ρ)

)1−c4(ε)

≤ C(ε)

(
δ

√
1− ρ

)1−c4(ε)

. (6.5)
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Now we apply the same time-reversal argument as in Theorem 1.4: Lemma 3.1 im-
plies that there is some s > 0 and a half-space B such that

E(Pt1A − Pt+s1B)2 ≤ C(ε)(δ/
√

1− ρ)1−c4(ε)

and we can assume, at the cost of increasing C(ε), that Pr(B) = Pr(A). Then Proposi-
tion 5.3 implies that

E(Pt1A − Pt1B)2 ≤ C(ε)(δ/
√

1− ρ)1−c4(ε),

and we apply Proposition 5.1 (recalling that t is bounded above and below by constants
depending on ε) to conclude that

Pr(A4 B) ≤ C(ε)(δ/
√

1− ρ)1/4−c4(ε)/4.

Recall that c4(ε) is some quantity tending to zero with ε. Therefore, we can derive the
claim of the theorem from the equation above by modifying C(ε). ut

Finally, we will prove Corollary 1.9.

Proof of Corollary 1.9. Since xy ≤ J (x, y), the hypothesis of Corollary 1.9 implies that

EJ (f (X), f (Y )) ≥
1
4
+

1
2π

arcsin ρ − δ.

Now, consider Theorem 1.5 with ε = 1/8. If ρ > ρ0 then apply it; if not, apply Theo-
rem 1.4. In either case, the conclusion is that there is some a ∈ Rn such that

E|f (X)−8(〈X, a〉)| ≤ C(ρ)δc.

Setting g(X) = 8(〈X, a〉), Hölder’s inequality implies that

|Eg(X)g(Y )− Ef (X)f (Y )| =
∣∣E(g(X)− f (X))g(Y )+ Ef (X)(g(Y )− f (Y ))

∣∣
≤ 2E|f − g|.

In particular,

Eg(X)g(Y ) ≥
1
4
+

1
2π

arcsin ρ − δ − C(ρ)δc. (6.6)

But the left hand side can be computed exactly: if |a| = (e2t
− 1)−1/2 and A = {x ∈ Rn :

x1 ≤ 0} then

Eg(X)g(Y ) = EPt1A(X)Pt1A(Y ) = E1A(X)P2t−log(ρ)1A(X) =
1
4
+

1
2π

arcsin(e−2tρ)

≤
1
4
+

1
2π

arcsin ρ −
1

2π
ρ(1− e−2t ),

where the last line used the fact that the derivative of arcsin is at least 1. Combining this
with (6.6), we have

1− e−2t
≤ C(ρ)δc. (6.7)
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On the other hand,

E|g − 1A| = 2(1/2− Eg1A) =
1
2
−

1
π

arcsin(e−t ) ≤
√

1− e−2t ,

which combines with (6.7) to prove that E|g − 1A| ≤ C(ρ)δc. Applying the triangle
inequality, we conclude that

E|f − 1A| ≤ E|f − g| + E|g − 1A| ≤ C(ρ)δc. ut

7. The robust “majority is stablest” theorem

In this section, we prove Theorem 1.10. We begin by recalling some Fourier-theoretic
properties of {−1, 1}n. For more background on the Fourier analysis of Boolean func-
tions, see the book by O’Donnell [38]. For S ⊂ [n], define χS : {−1, 1}n → {−1, 1} by
χS(x) =

∏
i∈S xi . Then {χS : S ⊂ [n]} is an orthonormal basis of L2({−1, 1}n). We will

write f̂S for the coefficients of f in this basis; that is,

f (x) =
∑
S⊂[n]

f̂SχS(x). (7.1)

It may be easily checked that the coordinate influences of f can be expressed in terms of
the Fourier expansion as

Infi(f ) =
∑
S3i

|S|f̂ 2
S . (7.2)

Recall that Prρ denotes the distribution on {−1, 1}n×{−1, 1}n under which (ξi, σi)ni=1
are independent, Eρξi = Eρσi = 0, and Eρξiσi = ρ. Define the Bonami–Beckner
semigroup Qt by

(Qtf )(ξ) = Ee−t (f (σ ) | ξ).
In terms of the Fourier expansion, one can check that

Qtf =
∑
S⊂[n]

e−t |S|f̂SχS . (7.3)

Also, Qt is a self-adjoint operator, and it satisfies

Eρf (ξ)g(σ ) = Ef (ξ)(Qlog(1/ρ)g)(ξ) = Eg(ξ)(Qlog(1/ρ)f )(ξ). (7.4)

7.1. The invariance principle

Note that any function f : {−1, 1}n→ R can be extended to a multilinear function on Rn
through the Fourier expansion (7.1): since χS(x) is defined for all x ∈ Rn, we may define
g(x) for x ∈ Rn by g(x) =

∑
S f̂SχS(x). We will say that g is the multilinear extension

of f ; note that g and f agree on {−1, 1}n, thereby justifying the term “extension.” A word
of caution: we will sometimes define functions f : {−1, 1}n→ R by formulas that make
sense on all of Rn (for example, f (x) = 1{〈a,x−b〉≥0}). In such a case, the multilinear
extension of f is not the same as the function 1{〈a,x−b〉≥0} : Rn→ R.
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Let us remark on some well-known and important properties of multilinear polyno-
mials. First of all, since Eξi = EXi = 0 and Eξ2

i = EX2
i = 1, it is trivial to check that

for multilinear functions f and g,

Ef (ξ) = Ef (X), Ef 2(ξ) = Ef 2(X), Eρf (ξ)g(σ ) = Eρf (X)g(Y ). (7.5)

It is also easy to check that if f is a multilinear polynomial then for any t > 0, Qtf and
Ptf are the same polynomial. In particular, there is no ambiguity in using the notation ft
for both Ptf and Qtf .

Despite these similarities, g(X) and g(ξ) can have very different distributions in gen-
eral (for example, if g(x) = x1). The main technical result of [36] is that when f has
low influence and t > 0, then ft (X) and ft (ξ) have similar distributions. We will quote a
much less general statement than the one proved in [36], which will nevertheless be suf-
ficient for our purposes. In particular, we will only need to know that if g(ξ) takes values
in [0, 1], then g(X) mostly takes values in [0, 1]. Before stating the theorem from [36],
let us introduce some notation: for a function f taking values in R, let f̄ be its truncation
which takes values in [0, 1]:

f̄ (x) =


0 if f (x) < 0,
f (x) if 0 ≤ f (x) ≤ 1,
1 if 1 < f (x).

Theorem 7.1. Suppose f is a multilinear polynomial such that f (ξ) ∈ [0, 1] for all
ξ ∈ {−1, 1}n. If maxi Infi(f ) ≤ τ then for any η > 0,

E(fη(X)− fη(X))2 ≤ Cτ cη. (7.6)

We will now use Theorem 7.1 to prove Theorem 1.10. First, (7.6) and the triangle in-
equality imply that for any 0 < ρ′ < 1,

Eρ′fη(X)fη(Y ) ≤ Eρ′fη(X)fη(Y )+ Cτ cη. (7.7)

By (7.5) and (7.4),

Eρ′fη(X)fη(Y ) = Eρ′fη(ξ)fη(σ ) = Ee−2ηρ′f (ξ)f (σ ). (7.8)

Now set ρ′ = e2ηρ (assuming that η is small enough so that e2ηρ < 1). By (7.8) and (7.7),

Eρf (ξ)f (σ ) = Eρ′fη(X)fη(Y ) ≤ Eρ′fη(X)fη(Y )+ Cτ cη. (7.9)

Applying Theorem 1.2 to fη, we see that Eρf (ξ)f (σ ) ≤ Jρ′(Efη,Efη) + Cτ cη. Now,
Theorem 7.1 implies that |Efη − Ef | ≤ Cτ cη, and the derivatives of Jρ(x, x) in both x
and ρ can be bounded by a constant depending only on ρ; hence,

Jρ′(Efη,Efη) ≤ Jρ(Ef,Ef )+ C(ρ)(|ρ − ρ′| + |Efη − Ef |)
≤ Jρ(Ef,Ef )+ C(ρ)(η + Cτ cη).
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Plugging this into (7.9), we have Eρf (ξ)f (σ ) ≤ Jρ(Ef,Ef )+C(ρ)(η+Cτ cη), which
proves (1.5) once we take η sufficiently small (depending on τ ).

Next, we prove (1.6). Under our assumption that Eρf (ξ)f (σ ) ≥ Jρ(Ef,Ef ) − δ,
(7.9) implies that

Eρ′fη(X)fη(Y ) ≥ Jρ(Ef,Ef )− Cτ cη − δ ≥ Jρ(Efη,Efη)− Cτ cη − δ
≥ Jρ′(Efη,Efη)− C(ρ)η − Cτ cη − δ,

where the second inequality follows because |Ef − Efη| ≤ Cτ cη and ∂J (x, y; ρ)/∂x
is bounded. Applying Theorem 1.4 (with ρ′ in place of ρ) to fη, we see that there are
a, b ∈ Rn such that

E(fη(X)− 1{〈a,X−b〉≥0})
2
≤ C(ρ)(η + τ cη + δ)c(ρ).

By (7.6) and the triangle inequality, we may replace fη by fη:

E(fη(X)− 1{〈a,X−b〉≥0})
2
≤ C(ρ)(η + τ cη + δ)c(ρ). (7.10)

The next step is to pull (7.10) back to the discrete cube by replacing X with ξ on the
left hand side of (7.10). We will do this using Theorem 7.1. As a prerequisite, we need to
show that 1{〈a,x−b〉≥0} has small influences; this is essentially the same as saying that a is
well-spread:

Lemma 7.2. There is an a ∈ Rn satisfying (7.10) with
∑
a2
i = 1 and maxi |ai | ≤ Cτ c.

Once we have shown that 1{〈a,x−b〉≥0} has small influences, we can use Theorem 7.1 to
show that the multilinear extension of 1{〈a,x−b〉≥0} is close to 1{〈a,x−b〉≥0}:

Lemma 7.3. Let ga,b be the multilinear extension of the function x 7→ 1{〈a,x−b〉≥0}. If∑
i a

2
i = 1 and maxi |ai | ≤ τ then for any η > 0,

E(ga,bη (X)− 1{〈a,X−b〉≥0})
2
≤ C(η + τ cη).

From Lemma 7.3 and the triangle inequality, we conclude from (7.10) that

E(fη(X)− ga,bη (X))2 ≤ C(ρ)(η + τ cη + δ)c(ρ).

Since fη−ga,bη is a multilinear polynomial, its second moment remains unchanged when
X is replaced by ξ :

E(fη(ξ)− ga,bη (ξ))2 = E(fη(X)− ga,bη (X))2 ≤ C(ρ)(η + τ cη + δ)c(ρ).

Now, ga,b is the indicator of a half-space on the cube; thus, E(ga,bη (ξ)−ga,b(ξ))2 ≤ Cηc

(see, for example, [6]). Applying this and the triangle inequality, we have

E(fη(ξ)− ga,b(ξ))2 ≤ C(ρ)(η + τ cη + δ)c(ρ). (7.11)

The last piece is to replace fη by f . We do this with a simple lemma which shows that
for any function f , if fη is close to some indicator function then f is also close to that
function.
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Lemma 7.4. For any functions f : {−1, 1}n → [0, 1] and g : {−1, 1}n → {0, 1} and
any η > 0,

E(f (ξ)− g(ξ))2 ≤ C
√
E(fη(ξ)− g(ξ))2.

Applying Lemma 7.4 to (7.11), we obtain

E(f (ξ)− ga,b(ξ))2 ≤ C(ρ)(η + τ cη + δ)c(ρ).

By choosing τ and η small enough compared to δ, the proof of Theorem 1.10 is complete,
modulo the proofs of Lemmas 7.2, 7.3 and 7.4. We will prove them in the coming section.

7.2. Gaussian and Boolean half-spaces

Here we will prove the lemmas of the previous section. Before doing so, let us observe
that EXi1{〈a,X−b〉≥0} is proportional to ai , a fact which has already been noted by Matulef
et al. [34]:

Lemma 7.5. If |a| = 1 then

EXi1{〈a,X−b〉≥0} = aiφ(〈a, b〉).

Proof. Let ei ∈ Rn be the vector with 1 in position i and 0 elsewhere. We may write
ei = aia + a

⊥, where a⊥ is some element of Rn which is orthogonal to a. Note that
〈X, a⊥〉 is independent of 〈X, a〉 and so E〈X, a⊥〉1{〈a,X−b〉≥0} = 0. Hence,

EXi1{〈a,X−b〉≥0} = E〈aia + a⊥, X〉1{〈a,X−b〉≥0} = aiE〈a,X〉1{〈a,X−b〉≥0}

= aiEX11{X1≥〈a,b〉},

where the last equality follows because, by the rotational invariance of the Gaussian mea-
sure, 〈a,X〉 has the same distribution as X1. Finally, integration by parts shows that
EX11{X1≥〈a,b〉} = φ(〈a, b〉). ut

Next, we prove Lemma 7.2. The point is that if a half-space is close to a low-influence
function f then that half-space must also have low influences. We can then perturb the
half-space to have even lower influences without increasing its distance to f by much.

Proof of Lemma 7.2. Suppose that f has influences bounded by τ , and that

E(f (X)− 1{〈a,X−b〉≥0})
2
≤ γ, (7.12)

where γ = C(ρ)(η + τ cη + ε)c. We will show that there is some ã such that
∑
i ã

2
i = 1,

maxi |ãi | ≤ Cτ c, and
E(f (X)− 1{〈ã,X−b〉≥0})

2
≤ Cγ c. (7.13)

When applied to the function fη, this will imply the claim of Lemma 7.2.
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Since X1, . . . , Xn are orthonormal,

E(f (X)− 1{〈a,X−b〉≥0})
2
≥

n∑
i=1

(
EXif (X)− EXi1{〈a,X−b〉≥0}

)2
=

n∑
i=1

(
f̂{i} − aiφ(〈a, b〉)

)2
, (7.14)

where the equality used Lemma 7.5. Define κa,b = φ(〈a, b〉), and note from (7.2) that
since the influences of f are bounded by τ , |f̂{i}| ≤

√
τ for every i. Hence for any i

with |ai |κa,b ≥ 2
√
τ , we have (f̂{i} − aiκa,b)2 ≥ a2

i κ
2
a,b/4. Combining this with (7.12)

and (7.14),

γ ≥ E(f (X)− 1{〈a,X−b〉≥0})
2
≥
κ2
a,b

4

∑
{i: |ai |κa,b≥2

√
τ }

a2
i . (7.15)

We now consider two cases, depending on whether κa,b is large or small. First, sup-
pose that κa,b ≤ γ 1/3; suppose also, without loss of generality, that 〈a, b〉 ≤ 0 (if not,
replace f by 1 − f ). Then κa,b = φ(〈a, b〉) ≥ 8(〈a, b〉) = E1{〈a,X−b〉≥0}; on the other
hand, (7.12) implies that (Ef − E1{〈a,X−b〉≥0})

2
≤ E(f − 1{〈a,X−b〉≥0})

2
≤ γ and so

Ef ≤
√
γ + E1{〈a,X−b〉≥0} ≤

√
γ + κa,b ≤ 2γ 1/3.

Since f takes values in [0, 1], it follows that Ef 2
≤ Cγ c; in particular, any half-space

with small enough measure will satisfy (7.13).
Now suppose that κa,b ≥ γ 1/3 (which is in turn larger than τ 1/3 by definition);

then (7.15) implies that ∑
{i: |ai |≥2τ 1/6}

a2
i ≤

∑
{i: |ai |κa,b≥2

√
τ }

a2
i ≤ 4γ 1/3.

If we define ā to be the truncated version of a (i.e. āi = ai if |ai | < 2τ 1/6 and āi = 0
otherwise), then this implies that |a − ā|2 ≤ 4γ 1/3. Since |a| = 1, it then follows from
the triangle inequality that |ā| ≥ 1 − 2γ 1/6. Set ã = ā/|ā|. If γ is small enough so that
1− 2γ 1/6

≤ 1/2 then

max
i
|ãi | =

1
|ā|

max
i
|āi | ≤

2τ 1/6

1− 2γ 1/6 ≤ 4τ 1/6

and
|a − ã| ≤ |a − ā| + |ā − ã| ≤ 2γ 1/6

+
1− |ā|
|ā|

≤ 8γ 1/6.

By the triangle inequality, ã satisfies (7.13). ut

Next, we will prove Lemma 7.3: if ga,b is the multilinear extension of a low-influence
half-space, then ga,b is close to a half-space. Observe that this is very much not the case
for general half-spaces: the multilinear extension of 1{x1≥0} is x1, which is not close, in
L2(Rn, γn), to any half-space.
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The main idea of the proof is to study the quantity Ega,b(X)〈a,X − b〉. By showing
that this is almost as large as E1{〈a,X−b〉≥0}〈a,X − b〉, we show that ga,b(X) is close to
1{〈a,X−b〉≥0}.

Proof of Lemma 7.3. Suppose without loss of generality that 〈a, b〉 ≥ 0. Let h(x) =
〈a, x − b〉 and let g be the multilinear extension of 1{h≥0}. First of all, the Berry–Esséen
theorem implies that for any t ∈ R, |Pr(〈a, ξ〉 ≥ t) − Pr(〈a,X〉 ≥ t)| ≤ Cτ . By the
formula EZ =

∫
∞

0 Pr(Z ≥ t) dt for a non-negative random variable Z, we have

Eg(ξ)h(ξ) = Eh(ξ)1{h(ξ)≥0} =

∫
∞

0
Pr(〈a, ξ − b〉 ≥ t) dt =

∫
∞

〈a,b〉

Pr(〈a, ξ〉 ≥ t) dt

≥

∫ M

〈a,b〉

Pr(〈a, ξ〉 ≥ t) dt ≥
∫ M

〈a,b〉

Pr(X1 ≥ t) dt − CMτ

≥

∫
∞

〈a,b〉

Pr(X1 ≥ t) dt − CMτ − Ce
−M2/2

= Eh(X)1{h(X)≥0} − CMτ − Ce
−M2/2.

Choosing M =
√

log(1/τ), we have

Eg(ξ)h(ξ) ≥ Eh(X)1{h(X)≥0} − Cτ
c. (7.16)

Now, h is linear and so ht = e−th; since Qη is self-adjoint, Theorem 7.1 implies that

Eg(ξ)h(ξ) = eηEg(ξ)hη(ξ) = eηEgη(ξ)h(ξ) = eηEgη(X)h(X)
≤ eηEgη(X)h(X)+ Ceη(η + τ cη) ≤ Egη(X)h(X)+ C(η + τ cη),

where the last inequality assumes that η < 1 (if not then the lemma is trivial anyway),
and uses the fact that Egη(X)h(X) is bounded by a universal constant. Combining this
with (7.16) yields

Eh(X)1{h(X)≥0} ≤ Egη(X)h(X)+ C(η + τ cη). (7.17)

Now, let m(X) = 1{〈a,X−b〉≥0} − gη(X) and take ε = E|m|. Note that because gη ∈
[0, 1], when m 6= 0 then m and h have the same sign; in particular, m(x)h(x) ≥ 0. Let
A = {x : 〈a, x − b〉 ∈ [−ε/2, ε/2]}. Then Pr(A) ≤ ε/2, and since |m| ≤ 1 pointwise
we must have E|m|1Ac ≥ E|m| − Pr(A) ≥ ε/2. But on Ac we have |h(x)| ≥ ε/2; since
m(x)h(x) ≥ 0,

Em(X)h(X) ≥ Em(X)h(X)1{X∈Ac} ≥
ε

2
E|m|1Ac ≥

ε2

4
.

Applying this to (7.17) yields ε ≤ C(η + τ cη)c. So if we recall the definition of ε, then
we see that

E|1{〈a,X−b〉≥0} − gη(X)| ≤ C(η + τ
cη)c.

By changing the constant c, we may replace E| · | with E(·)2; by (7.6) and the triangle
inequality, we may replace gη by gη. This completes the proof of the lemma. Note that
the only reason for proving this lemma with gη instead of g was for extra convenience
when applying it; the statement of the lemma is also true with g instead of gη. ut
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The only remaining piece is Lemma 7.4.

Proof of Lemma 7.4. Suppose f : {−1, 1}n→ [−1, 1] and g : {−1, 1}n→ {−1, 1}. This
does not exactly correspond to the statement of the lemma, but it will be more convenient
for the proof; we can recover the statement of the lemma by replacing f by (1+ f )/2
and g by (1+ g)/2.

Let ε = E(fη(ξ) − g(ξ))2. Since g takes values in {−1, 1}, we have Eg2
= 1. Then

the triangle inequality implies that (Eg2)1/2 ≤ (Ef 2
η )

1/2
+
√
ε; squaring yields

Ef 2
η ≥ Eg2

− 2E(f 2
η )

1/2√ε − ε ≥ 1− 3
√
ε.

Since Ef 2
≤ 1, we have

E(f − fη)2 =
∑
S⊂[n]

f̂ 2
S (1− e

−η|S|)2 ≤
∑
S⊂[n]

f̂ 2
S (1− e

−η|S|) = Ef 2
− Ef 2

η ≤ 3
√
ε.

It then follows by the triangle inequality that E(f − g)2 ≤ C
√
ε. ut

8. Spherical noise stability

We now use Theorem 1.4 to prove Theorem 1.11. For a subset A ⊂ Sn−1, we define
Ā ⊂ Rn to be the radial extension of A:

Ā = {x ∈ Rn : x 6= 0 and x/|x| ∈ A}.

From the spherical symmetry of the Gaussian distribution it immediately follows that
Pr(Ā) = Q(A). The proof of Theorem 1.11 crucially relies on the fact that Qρ(A1, A2)

is close to Prρ(Ā1, Ā2) in high dimensions. More explicitly, it uses the following lemmas:

Lemma 8.1. For any half-space H = {x ∈ Rn : 〈a, x〉 ≤ b} there is a spherical cap
B = {x ∈ Sn−1

: 〈a, x〉 ≤ b′} such that Pr(B̄) = Pr(H) and

Pr(B̄ 4H) ≤ Cn−1/2 log n.

Lemma 8.2. For any two sets A1, A2 ⊂ S
n−1 and any ρ ∈ [−1+ ε, 1− ε],

|Qρ(A1, A2)− Prρ(Ā1, Ā2)| ≤ C(ε)n
−1/2 log n.

Given Lemmas 8.2 and 8.1, Theorem 1.11 is an easy corollary of Theorem 1.4:

Proof of Theorem 1.11. Define δ∗ = δ(Ā1, Ā2). Let H1, H2 be parallel half-spaces with
Pr(Hi) = Pr(Āi), and let B1, B2 be the corresponding caps whose existence is guaranteed
by Lemma 8.1. Then

δ∗ = δ(Ā1, Ā2) = Prρ(X ∈ H1, Y ∈ H2)− Prρ(X ∈ Ā1, Y ∈ Ā2)

≤ Prρ(X ∈ B̄1, Y ∈ B̄2)− Prρ(X ∈ Ā1, Y ∈ Ā2)+O(n
−1/2 log n)

≤ Qρ(X ∈ B1, Y ∈ B2)−Qρ(X ∈ A1, Y ∈ A2)+O(n
−1/2 log n)

= δ(A1, A2)+O(n
−1/2 log n),

where the first inequality follows from Lemma 8.1 and the second from Lemma 8.2.
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From Theorem 1.4 it follows that there are parallel half-spaces H1 and H2 with
Pr(Hi) = Pr(Āi) satisfying

Pr(Āi 4Hi) ≤ C(ρ)m−C(ρ)δ
1
4
(1−ρ)(1−ρ2)

1+3ρ
∗ .

By Lemma 8.1, there are parallel caps B1 and B2 such that

Q(Ai 4 Bi) = Pr(Āi 4 B̄i) ≤ C(ρ)m−C(ρ)δ
1
4
(1−ρ)(1−ρ2)

1+3ρ
∗ . ut

The proof of Lemma 8.1 is quite simple, so we present it first:

Proof of Lemma 8.1. Let H = {x ∈ Rn : 〈a, x〉 ≤ b}, and suppose without loss of
generality that |a| = 1 and b ≥ 0. For any ε > 0, define

H+ε = {x ∈ Rn : 〈a, x〉 ≤ b(1+ ε)},
H−ε = {x ∈ Rn : 〈a, x〉 ≤ b(1− ε)}.

Note that Pr(H+ε \H
−
ε ) ≤ Cε.

Now define B = {x ∈ Sn−1
: 〈x, a〉 ≤ b/

√
n}. Then B̄ = {x ∈ Rn : 〈x, a〉 ≤

b|x|/
√
n}, and so

Pr(B̄ \H+ε ) = Pr
(
(1+ ε)b ≤ 〈X, a〉 ≤ b|X|/

√
n
)
≤ Pr(|X| ≥ (1+ ε)

√
n) ≤ Ce−cε

2n,

where the last line follows from standard concentration inequalities (Bernstein’s inequal-
ities, for example). Similarly,

Pr(H−ε \ B̄) ≤ Pr(|X| ≤ (1− ε)
√
n) ≤ Ce−cε

2n.

Since H−ε ⊂ H ⊂ H
+
ε and Pr(H+ε \H

−
ε ) ≤ Cε, it follows that

Pr(H 4 B̄) ≤ Cε + Ce−cε
2n.

By choosing ε = Cn−1/2 log n, we have

Pr(H 4 B̄) ≤ Cn−1/2 log n. (8.1)

Now, the lemma claimed that we could ensure Pr(B̄) = Pr(H). Since the volume of
the cap B ′ := {〈a, x〉 ≤ b′|x|} is continuous and strictly increasing in b′, we may define b′

to be the unique real number such that Pr(B̄ ′) = Pr(H). Now, either B ⊂ B ′ or B ′ ⊂ B;
hence Pr(B̄ 4 B̄ ′) = |Pr(B̄)− Pr(B̄ ′)|. On the other hand, (8.1) implies that

|Pr(B̄)− Pr(B̄ ′)| = |Pr(B̄)− Pr(H)| ≤ Cn−1/2 log n,

and so the triangle inequality leaves us with

Pr(H 4 B̄ ′) ≤ Pr(H 4 B̄)+ Pr(B 4 B̄ ′) ≤ Cn−1/2 log n. ut

We defer the proof of Lemma 8.2 until the next section, since this proof requires an
introduction to spherical harmonics.
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8.1. Spherical harmonics and Lemma 8.2

We will try to give an introduction to spherical harmonics which is as brief as possible,
while still containing enough material for us to explain the proof of Lemma 8.2 ade-
quately. A slightly less brief introduction is contained in [29]; for a full treatment, see [37].

Let Sk be the linear space consisting of harmonic, homogeneous, degree-k polyno-
mials. We will think of Sk as a subspace of L2(S

n−1,Q); then {Sk : k ≥ 0} spans
L2(S

n−1,Q). One can easily check that Sk is invariant under rotations. Hence it is a rep-
resentation of SO(n). It turns out, moreover, that Sk is an irreducible representation of
SO(n); combined with Schur’s lemma, this leads to the following important property:

Lemma 8.3. If T : L2(S
n−1) → L2(S

n−1) commutes with rotations then {Sk : k ≥ 0}
are the eigenspaces of T .

In particular, we will apply Lemma 8.3 to the operators Tρ defined by (Tρf )(X) =
E(f (Y ) | X), where (X, Y ) ∼ Qρ . In other words, (Tρf )(x) is the average of f over the
set {y ∈ Sn−1

: 〈x, y〉 = ρ}. Clearly, Tρ commutes with rotations; hence Lemma 8.3 im-
plies that {Sk : k ≥ 0} are the eigenspaces of Tρ . In particular, there exist {µk(ρ) : k ≥ 0}
such that Tρf = µk(ρ)f for all f ∈ Sk . Moreover, to compute µk(ρ), it is enough to
compute Tρf for a single f ∈ Sk . For this task, the Gegenbauer polynomials provide
good candidates: define

Gk(t) = E
(
t + iW1

√
1− t2

)k
,

where the expectation is over W = (W1, . . . ,Wn−1) distributed uniformly on the sphere
Sn−2. Define fk(x) = Gk(x1); it turns out that fk ∈ Sk; on the other hand, one can easily
check that fk(e1) = 1, while (Tρfk)(e1) = Gk(ρ). From the discussion above, it then
follows that

µk(ρ) = E
(
ρ + iW1

√
1− ρ2

)k
.

With this explicit formula, we can show that µk(ρ) is continuous in ρ:

Lemma 8.4. For any ε > 0 there exists C(ε) such that if ρ, η ∈ [−1+ ε, 1− ε] then

|µk(ρ)− µk(η)| ≤ C(ε)(|ρ − η| + n
−1/2).

We will leave the proof of Lemma 8.4 to the end. First, let us show how it can be used to
prove that Qρ(X ∈ A1, Y ∈ A2) is continuous in ρ.

Lemma 8.5. For any ε > 0 there exists C(ε) such that if ρ, η ∈ [−1+ ε, 1− ε] then

|Qρ(X ∈ A1, Y ∈ A2)−Qη(X ∈ A1, Y ∈ A2)|

≤ C(ε)Q1/2(A1)Q
1/2(A2)(|ρ − η| + n

−1/2).

Proof. Take f, g ∈ L2(S
n−1,Q) and consider the decomposition f =

∑
∞

k=0 fk where
fk ∈ Sk . Then

|EgTρf − EgTηf | ≤ ‖Tρf − Tηf ‖2‖g‖2
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(where ‖f ‖2 denotes
√
Ef 2) and

‖Tρf − Tηf ‖
2
2 =

∞∑
k=0

(µk(ρ)− µk(η))
2
‖fk‖

2
2.

By Lemma 8.4, we have

‖Tρf − Tηf ‖2 ≤ C(ε)(|ρ − η| + n
−1/2)‖f ‖2,

and therefore

|EgTρf − EgTηf | ≤ C(ε)‖f ‖2‖g‖2(|ρ − η| + n−1/2).

Note that if f = 1A1 and g = 1A2 then EgTρf = Qρ(X ∈ A1, Y ∈ A2), while
‖f ‖2 = Q(A1)

1/2. ut

The proof of Lemma 8.2 is straightforward once we know Lemma 8.5. As we have already
mentioned, normalized Gaussian vectors from Prρ have a joint distribution that is similar
to Qρ , except that their inner products are close to ρ instead of being exactly ρ. But
Lemma 8.5 implies that a small difference in ρ does not affect the noise sensitivity by
much.

Proof of Lemma 8.2. Let X, Y be distributed according to Prρ . Then

Prρ(X ∈ Ā1, Y ∈ Ā2) = Prρ(X/|X| ∈ A1, Y/|Y | ∈ A2).

Note that conditioned on |X|, |Y | and 〈X, Y 〉, the variables X/|X|, Y/|Y | are distributed
according to Qr , where r = 〈X, Y 〉/(|X| |Y |). Now with probability 1− 1/n2,

|X|2, |Y |2 ∈ n± Cn1/2 log n, 〈X, Y 〉 ∈ ρn± Cn1/2 log n.

On this event, we have

r = 〈X/|X|, Y/|Y |〉 ∈ ρ ± Cn−1/2 log n.

Using Lemma 8.5 we get

Prρ(X ∈ Ā1, Y ∈ Ā2) ≤ Qρ(X ∈ A1, Y ∈ A2)+ C(ε)n
−1/2 log n.

A similar argument yields a bound in the other direction and concludes the proof. ut

Our final task is the proof of Lemma 8.4:

Proof of Lemma 8.4. DefineZρ = ρ+iW1
√

1− ρ2 (recalling thatW = (W1, . . . ,Wn−1)

is uniformly distributed on Sn−2) so that µk(ρ) = EZkρ . Note that if |W1| ≤ 1/2 (which
happens with probability at least 1− exp(−cn)) then

|Zρ | = ρ
2
+W1(1− ρ2) ≤

1+ ρ2

2
≤ 1−

ε

2
≤ exp(−cε).
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Now,

µk(ρ)− µk(η) = E(Zkρ − Z
k
η) = E(Zρ − Zη)

k−1∑
j=1

ZjρZ
k−1−j
η . (8.2)

If |W1| ≤
1
2 then |ZjρZ

k−1−j
η | ≤ exp(−cεk) and so∣∣∣∑

j

ZjρZ
k−1−j
η

∣∣∣ ≤ k exp(−cεk) ≤ C(ε).

Applying this to (8.2), we have

|µk(ρ)− µk(η)| = E(Zkρ − Z
k
η)1{|W1|≥1/2} + E1{|W1|<1/2}(Zρ − Zη)

k−1∑
j=1

ZjρZ
k−1−j
η

≤ 2 Pr(|W1| ≥ 1/2)+ C(ε)E|Zρ − Zη| ≤ exp(−cn)+ C(ε)|ρ − η|,

where E|Zρ − Zη| ≤ C(ε)|ρ − η| because |
√

1− ρ2 −
√

1− η2| ≤ C(ε)|ρ − η|. ut

8.2. Spherical noise and Max-Cut

In this section, we will show how robust noise sensitivity on the sphere (Theorem 1.11)
implies that half-space rounding for the Goemans–Williamson algorithm is robustly
optimal (Theorem 1.12). The key for making this connection is Karloff’s family of
graphs [23]: for any n, d ∈ N, let Gn,d = (Vn,d , En,d) be the graph whose vertices
are the

(
n
n/2

)
balanced elements of {−n−1/2, n−1/2

}
n, and with an edge between u and v

if 〈u, v〉 = d/n − 1. Karloff showed that if d ≤ n/3 then the optimal cut of Gn,d has
value |En,d |(1 − d/(2n)). Moreover, the identity embedding (and any rotation of it) is
an optimal embedding of Gn,d into Sn−1. In these embeddings, every angle between two
connected vertices is d/n; hence, it is easy to calculate the expected value of a rounding
scheme:

Lemma 8.6. Let (X, Y ) be distributed according to Qd/n. For any rounding scheme R,

Cut(Gn,d , R) ≤
|En,d |

2
E|R(X)− R(Y )|,

where the expectation is with respect to X, Y and R.

Proof. Recall that

Cut(G,R) =
1
2

min
f

ER
∑

(u,v)∈E

|R(f (u))− R(f (v))|

≤
1
2
EREf

∑
(u,v)∈E

|R(f (u))− R(f (v))|,

where the expectation is taken over all rotations f . But if f is a uniformly random rotation
then for every (u, v) ∈ En,d , the pair (f (u), f (v)) is equal in distribution to the pair
(X, Y ) (and both pairs are independent of R). ut
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Theorem 1.12 follows fairly easily from Lemma 8.6, Theorem 1.11, and the fact
that MaxCut(Gn,d) = |En,d |(1 − d/n). Indeed, choose integers n and d such that
|d/n − 1 − cos θ∗| ≤ n−1, where θ∗ ≈ 2.33 minimizes αθ , and suppose there is a
rounding scheme R such that

Cut(Gn,d , R) ≥ MaxCut(Gn,d)(αθ∗ − ε).

Let θ = arccos(d/n− 1); since αθ is continuous in θ , it follows that |αθ − αθ∗ | ≤ C/n.
Taking ε? = max{ε, n−1/2 log n}, we have |αθ − αθ∗ | ≤ Cε? and so

Cut(Gn,d , R) ≥ MaxCut(Gn,d)(αθ − Cε?) =
1
2
|En,d |(1− cos θ)(αθ − Cε?)

=
1
π
θ |En,d |(1− Cε?).

By Lemma 8.6, 1
2E|R(X) − R(Y )| ≥

2
π
θ(1 − Cε?). If we define the (random) subset

AR ⊂ S
n−1 by AR = {x : R(x) = 1}, and set ρ = cos θ , then

Pr(AR)− Sρ(AR) =
1
2
E(|R(X)− R(Y )| | R).

Taking expectations gives

E(Pr(AR)− Sρ(AR)) =
1
2
E|R(X)− R(Y )| ≥

1
π

arccos ρ − Cε?. (8.3)

Let δR be the random deficit δR = (2/π) arccos ρ − (Pr(AR) − Sρ(AR)), so that (8.3)
implies EδR ≤ Cε?. Take ηR to be the distance from AR to the nearest hemisphere:
ηR = min{Pr(AR4B) : B is a hemisphere} and let BR be a hemisphere that achieves the
minimum (which is attained because the set of hemispheres is compact with respect to
the distance d(A,B) = Pr(A4B)). Recall that θ ≈ θ∗ ≈ 2.33 and so ρ = cos θ < 0; by
the same symmetries discussed following Theorem 1.4, Theorem 1.11 applies for ρ < 0,
but with the deficit inequality reversed. Hence, ηR ≤ Cmax{δR, n−1/2 log n}c. Taking
expectations yields

EηR ≤ CEmax{δR, n−1/2 log n}c ≤ Cmax{EδR, n−1/2 log n}c = C′εc? .

Consider the rounding scheme R̃(y)which is 1 when y ∈ BR and−1 otherwise. Then
E(|R(Y )− R̃(Y )| | R) = 2ηR , and so the displayed equation above implies that

E|R(Y )− R̃(Y )| ≤ Cεc? .

Since R̃ is a hyperplane rounding scheme, this completes the proof of Theorem 1.12.
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