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Abstract. We prove that the complement of a toric arrangement has the homotopy type of a mini-
mal CW-complex. As a corollary we deduce that the integer cohomology of these spaces is torsion-
free.

We apply discrete Morse theory to the toric Salvetti complex, providing a sequence of cellular
collapses that leads to a minimal complex.

Keywords. Toric arrangements, discrete Morse theory, minimal CW-complexes, torsion in coho-
mology

Introduction

A toric arrangement is a finite family

A = {K1, . . . , Kn}

of special subtori of the complex torus (C∗)d (more precisely the Ki are level sets of
characters, see §2.1). Given a complexified toric arrangement A (see Definition 2.6) we
consider the space

M(A ) := (C∗)d \
⋃

A

and prove that
(a) the space M(A ) is minimal in the sense of [14], i.e., it has the homotopy type of

a CW-complex with exactly βk = rkH k(M(A );Z) cells in dimension k, for every
k ∈ N, hence

(b) the space M(A ) is torsion-free, that is, the homology and cohomology modules
Hk(X;Z), H k(X;Z) are torsion-free for every k ∈ N.

The study of toric arrangements experienced a fresh impulse from recent work of De
Concini, Procesi and Vergne [10, 9], in which toric arrangements emerge as a link between
partition functions and box splines.
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In their book [9], De Concini and Procesi emphasize some similarities between toric
arrangements and the well-established theory of arrangements of affine hyperplanes. The
present work provides substantial new evidence in this sense.

Background

Combinatorics. The combinatorial framework for the theory of arrangements of hyper-
planes is widely considered to be given by matroid theory, a well-established branch of
combinatorics that has proved very useful in this context ever since the seminal work of
Zaslavsky [33].

The combinatorial study of toric arrangements has quite recent roots, and is still in
search of a full-fledged pertaining theory. From an enumerative point of view, the arith-
metic Tutte polynomial introduced by Moci [23] summarizes previous results by Ehren-
borg, Readdy and Slone [15] and of De Concini and Procesi [9]. This initiated the quest
for a variation on the concept of matroid that would suit the ‘toric’ setting and lead
D’Adderio and Moci [5] to suggest a theory of arithmetic matroids as a “combinatori-
alization” of the essential algebraic data of toric arrangements. Arithmetic matroids in
fact encode—but, as yet, do not appear to characterize—some of the crucial combinato-
rial data of toric arrangements, for example the poset of layers (Definition 2.10). In this
context, our work can be seen as an exploration of the properties that would be required
from a (still lacking) notion of a ‘toric oriented matroid’.

Topology. An important result in the theory of arrangements of hyperplanes was estab-
lished by Brieskorn [3], who proved that the integer cohomology of the complement of
an arrangement of complex hyperplanes is torsion-free. This allowed Orlik and Solomon
to compute the integer cohomology algebra via the de Rham complex [25]. Minimality
of complements of complex hyperplane arrangements was proven much later by Randell
[27] and independently by Dimca and Papadima [14], with Morse-theoretic arguments.
The explicit construction of such a minimal complex was studied by Yoshinaga [32],
Salvetti and Settepanella [31] and the second author [12].

The present paper contributes to a similar circle of ideas for toric arrangements.
To our knowledge, the first result about the topology of toric arrangements was ob-

tained by Looijenga [21] who deduced the Betti numbers of M(A ) from a spectral se-
quence computation. De Concini and Procesi [8] explicitly expressed the generators of
the cohomology modules over C in terms of local no broken circuit sets and, for the spe-
cial case of totally unimodular arrangements, were able to compute the cohomological
algebra structure. A presentation of the fundamental group π1(M(A )) of complexified
toric arrangements was computed by the authors in [6], based on a combinatorially de-
fined polyhedral complex carrying the homotopy type of the complement M(A ), called
the toric Salvetti complex. This polyhedral complex is given as the nerve of an acyclic
category1 and was introduced by the authors in [6], generalizing to arbitrary complexified
toric arrangements the complex defined by Moci and Settepanella [24]. Recently, Davis

1 For our use of the term ‘acyclic category’ see Remark 3.4.
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and Settepanella [7] published vanishing results for cohomology of toric arrangements
with coefficients in some particular local systems.

Outline

Here we prove minimality by exhibiting, for a given complexified toric arrangement A ,
a minimal CW-complex that is homotopy equivalent to M(A ). This complex is obtained
from the toric Salvetti complex after a sequence of cellular collapses indexed by a discrete
Morse function. The construction of the discrete Morse function relies on a stratification
of the toric Salvetti complex where strata are counted by ‘local no-broken-circuit sets’
(Definition 2.19), which are known to control the Poincaré polynomial of M(A ) by [8].

The (topological) boundary maps of the minimal complex can be recovered in prin-
ciple from the discrete Morse data. The explicit computation of such boundary maps is
in general difficult even in the case of hyperplane arrangements, where explicit computa-
tions are known only in dimension 2 either by following the discrete Morse gradient [17,
16] or by exploiting braid monodromy [18, 29, 30]. We leave the explicit computation of
the boundary maps for our toric complex as a future direction of research.

As an application of our methods, in the last section we describe a construction of the
minimal complex for complexified affine arrangements of hyperplanes that uses only the
intrinsic combinatorics of the arrangement (i.e. its oriented matroid), as an alternative to
the method of [31].

We close our introduction with a detailed outline of the paper.

• We begin with Section 1, where we review some known facts about the combinatorics
and the topology of hyperplane arrangements and we prove some preparatory results
about linear extensions of posets of regions of real arrangements.
• In Section 2 we give a short introduction to toric arrangements and we collect some

results from the literature on which our work is built.
• Section 3 breaks the flow of material directly related to toric arrangements in order to

develop discrete Morse theory for acyclic categories, generalizing the existing theory
for posets.
• We approach the core of our work with Section 4, where we introduce a stratification

and a related decomposition of the toric Salvetti complex (Definition 4.22).
• In order to understand the structure of the pieces of the decomposition of the toric

Salvetti complex we need to patch together ‘local’ combinatorial data, which come
from the theory of arrangements of hyperplanes. We do this in Section 5 using diagrams
of acyclic categories.
• Our work culminates with Section 6. The keystone is Proposition 6.8, where we prove

the existence of perfect acyclic matchings for the face categories of subdivisions of
the compact torus given by toric arrangements. With this, we can apply the Patchwork
Lemma of discrete Morse theory (in its version for acyclic categories) to our decom-
position of the toric Salvetti complex in order to get an acyclic matching of the whole
complex. This matching can be shown to be perfect and thus prescribes a series of
cellular collapses leading to a minimal model for the complement of the toric arrange-
ment.
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• As a further application of our methods, in Section 7 we show that our methods can
be used to construct a minimal complex for the complement of (finite) complexified
arrangements of hyperplanes.

1. Arrangements of hyperplanes

The theory of hyperplane arrangements is an important ingredient in our treatment of toric
arrangements. In order to set the stage for the subsequent considerations, we therefore
introduce the language and recall some relevant results about hyperplane arrangements.
A standard reference for a comprehensive introduction to the subject is [26].

1.1. Generalities

Throughout this section let V be a finite-dimensional vector space over a field K.
An affine hyperplane H in V is the level set of a linear functional on V , that is, there

are α ∈ V ∗ and a ∈ K such that H = {v ∈ V | α(v) = a}. A set of hyperplanes is called
dependent or independent according to whether the corresponding set of elements of V ∗

is dependent or not.

Definition 1.1. An arrangement of hyperplanes in V is a collection A of affine hyper-
planes in V .

A hyperplane arrangement A is called central if every hyperplane H ∈ A is a linear
subspace of V ; finite if A is finite; locally finite if for every p∈V the set {H ∈A | p∈H }
is finite; real (or complex, or rational) if V is a real (or complex, or rational) vector space.

When we will need to define a total order on the elements of a finite arrangement A ,
we will do this by simply indexing the elements of A , as A = {H1, . . . , Hn}.

Much of the theory of hyperplane arrangements is devoted to the study of the comple-
ment of an arrangement A , that is, the space

M(A ) := V \
⋃

A .

Definition 1.2. Let A be a hyperplane arrangement. The intersection poset of A is the
set

L(A ) :=
{⋂

K
∣∣∣ K ⊆ A

}
\
{
∅
}

of all nonempty intersections of elements of A , ordered by reverse inclusion, i.e., for
X, Y ∈ L(A ), X ≥ Y if X ⊆ Y .

Notice that the whole space V is an element of L(A ) (corresponding to the empty inter-
section), whereas the empty set is not. The intersection poset is a meet-semilattice, and
for central hyperplane arrangements it is a lattice. In this case we speak of the intersection
lattice of A .
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1.1.1. Deletion and restriction. Consider a hyperplane arrangement A in the vector
space V and an intersection X ∈ L(A ). We associate to X two new arrangements:

AX := {H ∈ A | X ⊆ H }, A X
:= {H ∩X | H ∈ A \AX}.

Notice that AX is an arrangement in V , while A X is an arrangement on X.

Remark 1.3. If a total ordering A = {H1, . . . , Hn} is defined, then it is clearly inherited
by AX for every X ∈ L(A ). On the elements of A X a total ordering is induced as
follows. For L ∈ A X define

XL := min{H ∈ A | L ⊆ H }. (1.1)

Then order A X
= {L1, . . . , Lm} so that XLi < XLj in A for all 1 ≤ i < j ≤ m.

1.1.2. No broken circuit sets. In this section let A be a central hyperplane arrangement
and fix an arbitrary total ordering of A .

Definition 1.4. A circuit is a minimal dependent subset C ⊆ A . A broken circuit is a
subset of the form

C \ {minC} ⊆ A

obtained from a circuit by removing its least element. A no broken circuit set (or, for
short, an nbc set) is a subset N ⊆ A which does not contain any broken circuit.

Remark 1.5. An equivalent definition of nbc set is the following. A subset N =

{Hi1 , . . . , Hik } ⊆ A with i1 ≤ · · · ≤ ik is a no broken circuit set if it is independent
and there is no j < i1 such that N ∪ {Hj } is dependent.

Definition 1.6. We will write nbc(A ) for the set of no broken circuit sets of A and
nbck(A ) := {N ∈ nbc(A ) | |N | = k} for the set of all no broken circuit sets of
cardinality k.

1.2. Real arrangements

In this section we consider the case where A is an arrangement of hyperplanes in Rd in
order to set up some notation and use the real structure to gain some deeper understanding
of the combinatorics of no broken circuit sets.

It is not too difficult to verify that the complement M(A ) consists of several con-
tractible connected components. These are called chambers of A . We write T (A ) for
the set of all chambers of A .

Definition 1.7. Let A be a real arrangement. The set of faces of A is

F(A ) := {relint(C ∩X) | C ∈ T (A ), X ∈ L(A )}.

We partially order this set by setting F ≤ G if F ⊆ G, and then call F(A ) the face poset
of A .
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Remark 1.8. A face F ∈ F(A ) is an open subset of
⋂
{H ∈ A | F ⊆ H }. We denote

by F the topological closure of F in Rd .

Remark 1.9. Given F ∈ F(A ) define the subarrangement AF := {H ∈ A | F ⊆ H }.
We have a natural poset isomorphism F(AF ) ∼= F(A )≥F . Therefore, in the following
we will identify these two posets.

One of the main enumerative questions about arrangements of hyperplanes in real space
asks for the number of chambers of a given hyperplane arrangement. The answer is very
elegant and somehow surprising.

Theorem 1.10 (Zaslavsky [33]). Given a real hyperplane arrangement A ,

|T (A )| = |nbc(A )|.

1.2.1. Taking sides. If A is an arrangement in a real space V , then every hyperplane H
is the locus where a linear form αH ∈ V

∗ takes the value aH . This way we can associate
to each H ∈ A its positive and negative halfspace:

H+ := {x ∈ V | αH (x) > aH }, H− := {x ∈ V | αH (x) < aH }.

Definition 1.11. Consider a complexified locally finite arrangement A with any choice
of ‘sides’ H+ and H− for every H ∈ A . The sign vector of a face F ∈ F(A ) is the
function γF : A → {−, 0,+} defined as

γF (H) :=

+ if F ⊆ H+,
0 if F ⊆ H,
− if F ⊆ H−.

When we need to specify the arrangement A to which the sign vector refers, we will
write γ [A ]F (H) for γF (H).

Remark 1.12. The poset F(A ) is isomorphic to the set {γF | F ∈ F(A )} with partial
order given by γF ≤ γG if γF (H) = γG(H) whenever γG(H) 6= 0 (see e.g. [2]).

Definition 1.13. Let C1, C2 ∈ T (A ) be chambers of a real arrangement, and let B ∈
T (A ) be a distinguished chamber. We will write

S(C1, C2) := {H ∈ A | γC1(H) 6= γC2(H)}

for the set of hyperplanes of A which separate C1 and C2. For all C1, C2 ∈ T (A ) write

C1 ≤ C2 ⇔ S(C1, B) ⊆ S(C2, B).

This turns T (A ) into a poset T (A )B , the poset of regions of the arrangement A with
base chamber B.
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Remark 1.14. Let A0 be a real arrangement and B ∈ T (A0). Given a subarrangement
A1 ⊆ A0, for every chamber C ∈ T (A0) there is a unique chamber Ĉ ∈ T (A1) with
C ⊆ Ĉ. The correspondence C 7→ Ĉ defines a surjective map

σA1 : T (A0)B → T (A1)B̂

such that C ≤ C′ implies σA1(C) ≤ σA1(C
′) for all C,C′ ∈ T (A0).

Definition 1.15. Let A0 be a real arrangement and let �0 denote any total ordering of
T (A0). Consider a subarrangement A1 ⊆ A0. The section

µ[A1,A0] : T (A1)→ T (A0), C 7→ min�0{K ∈ T (A0) | K ⊆ C},

of σA1 defines a total ordering �0,1 on T (A1) by

C �0,1 D ⇔ µ[A1,A0](C) �0 µ[A1,A0](D)

that we call induced by �0.

Lemma 1.16. Consider real arrangements A2 ⊆ A1 ⊆ A0, a given total ordering �0 of
T (A0) and the induced total ordering �0,1 of T (A1). Then

µ[A1,A0] ◦ µ[A2,A1] = µ[A2,A0].

Proof. Take any C ∈ T (A2) and define

C0 := µ[A2,A0](C), C1 := σA1(C0), so µ[A1,A0](C1) = C0,

C2 := µ[A2,A1](C), C3 := µ[A1,A0](C2).

We have to show that C0 = C3. First, notice that C0 �0 C3 because C3 ⊆ C2 ⊆ C.
For the reverse inequality notice that C1, C2 ⊆ C, which implies C2 �0,1 C1 and so, by
definition of the induced ordering, C3 = µ[A1,A0](C2) �0 µ[A1,A0](C1) = C0. ut

Proposition 1.17. Let a base chamber B of A0 be chosen. If �0 is a linear extension of
T (A0)B , then �0,1 is a linear extension of T (A1)B̂ .

Proof. We have to prove that for all C,D∈T (A1), C≤D in T (A1)B̂ implies C�0,1D,
i.e., µ[A0,A1](C) �0 µ[A0,A1](D).

We argue by induction on k := |A0 \ A1|, the claim being evident when k = 0.
Suppose then that k > 0, choose H ∈ A0 \ A1 and set A ′0 := A0 \ {H }. By induction
hypothesis we have

µ[A ′0 ,A1](C) �
′

0 µ[A
′

0 ,A1](D),

which by definition means

µ[A0,A
′

0 ](µ[A
′

0 ,A1](C)) �0 µ[A0,A
′

0 ](µ[A
′

0 ,A1](D))

and thus, via Lemma 1.16, µ[A0,A1](C) �0 µ[A0,A1](D). ut
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1.3. Complex(ified) arrangements

We turn to the case of complex hyperplane arrangements, where the space M(A ) has
subtler topology. For the sake of concision here we deliberately disregard the chrono-
logical order in which the relevant theorems were proved, and start with the minimality
result.

Definition 1.18. Let X be a topological space. For j ≥ 0, the j -th Betti number is
βj (X) := rkH j (M(A );Z). The space X is called minimal if it is homotopy equivalent
to a CW-complex with βj (X) cells of dimension j , for all j ≥ 0. Such a CW-complex is
also called minimal.

Theorem 1.19 (Randell [27], Dimca and Papadima [14]). The spaceM(A ) is minimal.

Corollary 1.20. The cohomology groups H k(M(A );Z) are torsion-free.

Proof. Theorem 1.19 asserts the existence of a minimal complex for M(A ). The (alge-
braic) boundary maps of the chain complex constructed from this minimal complex are
all zero, thus torsion cannot arise in homology. ut

Corollary 1.20 can be traced back to the seminal work of Brieskorn [3], where also the fol-
lowing other important fact about the cohomology of affine arrangements of hyperplanes
was proved.

Theorem 1.21 (Brieskorn [3]). Let A be a finite affine hyperplane arrangement. Then,
for every p ∈ N,

Hp(M(A );Z) ∼=
⊕

X∈L(A )p

Hp(M(AX);Z),

where L(A )p := {X ∈ L(A ) | codimX = p}.

Intimitely related to this torsion-freeness is the fact that it is enough to compute de Rham
cohomology in order to know the cohomology with integer coefficients, the so-called
Orlik–Solomon algebra introduced in [25]. Here, too, no broken circuit sets enter the
picture as most handy combinatorial invariants.

Theorem 1.22. Let A be a complex central hyperplane arrangement. Then the Poincaré
polynomial of M(A ) satisfies

PA (t) :=
∑
j≥0

rkH j (M(A );Z) tj =
∑
j≥0

|nbcj (A )| tj .

Remark 1.23. In particular, the numbers |nbck(A )| do not depend on the chosen order-
ing of A .

Remark 1.24 ([19]). Combining Theorem 1.21 with Theorem 1.22 we get the follow-
ing formula for the Poincaré polynomial of the complement of an arbitrary finite affine
complex arrangement:

PA (t) =
∑

X∈L(A )

|nbccodimX(AX)| t
codimX.
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We now turn to a special class of arrangements in complex space.

Definition 1.25. An arrangement A in Cd is called complexified if every hyperplane
H ∈ A is the complexification of a real hyperplane, i.e. there are αH ∈ (Rd)∗ and
aH ∈ R with

H = {x ∈ Cd | αH (<(x))+ iαH (=(x)) = aH }.

Let A be a complexified arrangement and consider its real part

AR := {H ∩ Rd | H ∈ A },

an arrangement of hyperplanes in Rd . Notice that L(A ) ∼= L(AR) and therefore nbc(A )

= nbc(AR).
If A is a complexified arrangement, one can use the combinatorial structure of AR

to study the topology of M(A ). Therefore we will write F(A ) = F(AR) and T (A )

= T (AR).

1.3.1. The homotopy type of complexified arrangements. Using combinatorial data about
AR, Salvetti [28] defined a cell complex which embeds in the complement M(A ) as a
deformation retract. We explain Salvetti’s construction.

Definition 1.26. Given a face F ∈ F(A ) and a chamberC ∈ T (A ), defineCF ∈ T (A )

as the unique chamber such that, for H ∈ A ,

γCF (H) =

{
γF (H) if γF (H) 6= 0,
γC(H) if γF (H) = 0.

The reader may think of CF as the one among the chambers adjacent to F that “faces” C.

Definition 1.27. Consider an affine complexified locally finite arrangement A and define
the Salvetti poset as follows:

Sal(A ) := {[F,C] | F ∈ F(A ), C ∈ T (A ), F ≤ C},

with the order relation

[F1, C1] ≤ [F2, C2] ⇔ F2 ≤ F1 and (C2)F1 = C1.

Definition 1.28. Let A be an affine complexified locally finite hyperplane arrangement.
Its Salvetti complex is S(A ) = 1(Sal(A )).

Theorem 1.29 (Salvetti [28]). The complex S(A ) is homotopically equivalent to
M(A ). More precisely S(A ) embeds in M(A ) as a deformation retract.

Remark 1.30. In fact, Sal(A ) is the face poset of a regular cell complex (of which S(A )

is the barycentric subdivision) whose maximal cells correspond to the pairs

{[P,C] | P ∈ minF(A ), C ∈ T (A )}.

It is this complex that Salvetti describes in [28]. When we need to distinguish between
the two complexes we will speak of the cellular and simplicial Salvetti complex.
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1.3.2. Minimality. In the case of complexified arrangements, explicit constructions of a
minimal CW-complex for M(A ) were given in [31] and [12]. We review the material of
[12, §4] that will be useful for our later purposes.

Lemma 1.31 ([12, Theorem 4.13]). Let A be a central arrangement of real hyper-
planes, let B ∈ T (A ) and let � be any linear extension of the poset T (A )B . The subset
of L(A ) given by all intersections X such that

S(C,C′) ∩AX 6= ∅ for all C′ ≺ C

is an order ideal of L(A ). In particular, it has a well defined and unique minimal element
which we will call XC .

Remark 1.32. Note that XC depends on the choice of B and of the linear extension of
T (A )B .

Corollary 1.33. For all C ∈ T (A ) we have

C = min�{K ∈ T (A ) | KXC = CXC },

where, for Y ∈ L(A ) and K ∈ T (A ), we define KY := σAY
(K).

Now recall the (cellular) Salvetti complex of Definition 1.28 and Remark 1.30. In par-
ticular, its maximal cells correspond to the pairs [P,C] where P is a point and C is a
chamber. When A is a central arrangement, the maximal cells correspond to the cham-
bers in T (A ). In this case we can stratify the Salvetti complex assigning to each chamber
C ∈ T (A ) the corresponding maximal cell of S(A ), together with its faces. Let us make
this precise.

Definition 1.34. Let A be a central complexified hyperplane arrangement and write
minF(A ) = {P }. Define a stratification of the cellular Salvetti complex S(A ) =⋃
C∈T (A ) SC through

SC :=
⋃
{[F,K] ∈ Sal(A ) | [F,K] ≤ [P,C]}.

Given an arbitrary linear extension (T (A ),�) of T (A )B , for all C ∈ T (A ) define

NC := SC \
⋃
D≺C

SD.

In particular the poset Sal(A ) can be partitioned as

Sal(A ) =
⊔

C∈T (A )

NC(A ).

Theorem 1.35 ([12, Lemma 4.18]). There is an isomorphism of posets

NC
∼= F(A XC )op,

whereXC is the intersection defined via Lemma 1.31 by the same choice of base chamber
and of linear extension of T (A )B used to define the subposets NC .
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Remark 1.36. The alternative proof given in [12] of minimality of M(A ) for A a com-
plexified central arrangement follows from Theorem 1.35 by an application of discrete
Morse theory (see Section 3). Indeed, from a shelling order of F(A XC ) one can con-
struct a sequence of cellular collapses of the induced subcomplex of SC that leaves only
one ‘surviving’ cell. Via the Patchwork Lemma (Lemma 3.7 below) these sequences
of collapses can be concatenated to give a sequence of collapses on the cell complex
S(A ). The resulting complex after the collapses has one cell for every NC , namely
|nbc(A)| = PA (1) cells, and is thus minimal.

Example 1.37. Consider the arrangement of Figure 1. We have

L(A ) = {R2, H1, H2, H3, P }

where P = H1 ∩H2 ∩H3. The chambers are ordered according to their indices, B being
the base chamber. Then XB = R2, XC1 = H3, XC2 = H1, XC3 = H2, XC4 = XC5 = P .

Recall the construction of the cellular Salvetti complex (e.g. from [6, Definition 2.4]).
Figure 1(a) shows the stratum SB = NB (dotted shading) and the stratum NC1 (solid
shading). The stratum NC1 consists of two 1-dimensional faces and one 2-dimensional
face. Its poset structure is showed in Figure 1(c) and it is isomorphic, as a poset, to the
order dual of F(A XC1 ), depicted in Figure 1(b).

B

C1 C2

C3 C4

C5

H1

H2

H3

(a) SB and NC1

P

F1 F2

(b) F(A XC1 )

[P,C1]

[F1, C1] [F2, C5]

(c) NC1

Fig. 1. Example of stratification.
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2. Toric arrangements

2.1. Introduction

We have presented arrangements of hyperplanes in affine space as families of level sets
of linear forms. Now, we want to explain in which sense this idea generalizes to a toric
setting.

Our ambient spaces will be the complex torus (C∗)d and the compact (or real) torus
(S1)d , where we consider S1 as the unit circle in C. We consider characters of the torus,
i.e., maps χ : (C∗)d → C∗ given by

χ(x1, . . . , xd) = x
α1
1 · · · x

αd
d for an α = (α1, . . . , αd) ∈ Zd .

The characters form a lattice, which we denote by 3, under pointwise multiplication.
Notice that the assignment α 7→ x

α1
1 · · · x

αd
d provides an isomorphism Zd → 3.

We consider subtori defined as level sets of characters, that is, hypersurfaces in (C∗)d
of the form

K = {x ∈ (C∗)d | χ(x) = a} with χ ∈ 3, a ∈ C∗. (2.1)

Notice that, if a ∈ S1, the intersection K ∩ (S1)d is also a level set of a character
(described by the same equation).

Definition 2.1. A (complex) toric arrangement A in (C∗)d is a finite set

A = {K1, . . . , Kn}

of hypersufaces of the form (2.1) in (C∗)d .

Definition 2.2. Let A be a toric arrangement in (C∗)d . Its complement is

M(A ) := (C∗)d \
⋃

A .

Definition 2.3. A real toric arrangement A in (S1)d is a finite set

A c
= {Kc

1 , . . . , K
c
n}

of hypersufacesKc
i in (S1)d of the form (2.1) with a ∈ S1. If a complex toric arrangement

restricts to a real toric arrangement on (S1)d we will call A complexified.

We will often use this interplay between the complex and the ‘real’ hypersurfaces in the
same vein that one exploits properties of the real part of complexified arrangements to
gain insight into the complexification.

2.2. An abstract approach

We now introduce an equivalent but more abstract approach to toric arrangements. Being
able to switch the point of view according to the situation will make our considerations
below considerably more transparent.
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Definition 2.4. Let 3 ∼= Zd be a finite rank lattice. The corresponding complex torus is

T3 := HomZ(3,C∗).

The compact (or real) torus corresponding to 3 is

T c3 := HomZ(3, S
1),

where, again, S1
:= {z ∈ C | |z| = 1}.

The choice of a basis {u1, . . . , ud} of 3 gives isomorphisms

8 : T3→ (C∗)d ,
ϕ 7→ (ϕ(u1), . . . , ϕ(ud)),

8c : T c3→ (S1)d ,

ϕ 7→ (ϕ(u1), . . . , ϕ(ud)).
(2.2)

Remark 2.5. Consider a finite rank lattice 3 and the corresponding torus T3. The char-
acters of T3 are the functions

χλ : T3→ C∗, χλ(ϕ) = ϕ(λ) with λ ∈ 3.

The characters form a lattice under pointwise multiplication, and this lattice is naturally
isomorphic to 3. Therefore in the following we will identify the character lattice of T3
with 3.

Now, the ‘abstract’ definition of toric arrangements is the following.

Definition 2.6. Consider a finite rank lattice 3. A toric arrangement in T3 is a finite set
of pairs

A = {(χ1, a1), . . . , (χn, an)} ⊂ 3× C∗.

A toric arrangement A is called complexified if A ⊂ 3× S1.

Remark 2.7. The abstract definition is clearly equivalent to Definition 2.1 via the iso-
morphisms in (2.2) and by

Ki := {x ∈ T3 | χi(x) = ai}. (2.3)

Accordingly, we have M(A ) := T3 \
⋃
{K1, . . . , Kn}.

Definition 2.8. Let 3 be a finite rank lattice. A real toric arrangement in T c3 is a finite
set of pairs

A c
= {(χ1, a1), . . . , (χn, an)} ⊂ 3× S

1.

Remark 2.9. A complexified toric arrangement A in T3 induces a real toric arrange-
ment A c in the sense of Definition 2.3 via (2.2) and

Kc
i := {x ∈ T

c
3 | χi(x) = ai}.

Furthermore, embedding T c3 ↪→ T3 in the obvious way, we haveKc
i = Ki ∩ T

c
3 and thus

a complexified toric arrangement as in Definition 2.3.
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We now illustrate what has been proposed [8, 22] as the ‘toric analogue’ of the intersection
poset (see Definition 1.2).

Definition 2.10. Let A = {(χ1, a1), . . . , (χn, an)} be a toric arrangement on T3. A layer
of A is a connected component of a nonempty intersection of some of the subtori Ki
(defined in Remark 2.7). The set of all layers of A ordered by reverse inclusion is the
poset of layers of the toric arrangement, denoted by C(A ).

Notice that, as in the case of hyperplane arrangements, the torus T3 itself is a layer, while
the empty set is not.

Definition 2.11. Let 3 be a rank d lattice and let A be a toric arrangement on T3. The
rank of A is rk(A ) := rk 〈χ | (χ, a) ∈ A 〉.

(a) A character χ ∈ 3 is called primitive if, for all ψ ∈ 3, χ = ψk only if k ∈ {−1, 1}.
(b) The toric arrangement A is called primitive if for each (χ, a) ∈ A , χ is primitive.
(c) The toric arrangement A is called essential if rk(A ) = d .

Remark 2.12. For every nonprimitive arrangement there is a primitive arrangement
which has the same complement. Furthermore, if A is a nonessential arrangement, then
there is an essential arrangement A ′ such that

M(A ) ∼= (C∗)d−l ×M(A ′) where l = rk(A ′).

Therefore the topology of M(A ) can be derived from the topology of M(A ′).

In view of Remark 2.12, our study of the topology of complements of toric arrangements
will not loose in generality by stipulating the next assumption.

Assumption 2.13. From now on we assume that every toric arrangement is primitive and
essential.

2.2.1. Deletion and restriction. Let 3 be a finite rank lattice and A be a toric arrange-
ment in T3.

Definition 2.14. For every sublattice 0 ⊆ 3 we define the arrangement

A0 := {(χ, a) | χ ∈ 0},

and for every layer X ∈ C(A ) a sublattice

0X := {χ ∈ 3 | χ is constant on X} ⊆ 3.

Definition 2.15. Let X be a layer of A . We define toric arrangements

AX := A0X on T0X ,

and

A X
:= {Ki ∩X | X 6⊆ Ki} on the torus X.
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Remark 2.16. Notice that for a layer X ∈ C(A ) and a hypersurface K of A , the inter-
section K ∩X need not be connected.

In general K ∩ X consists of several connected components, each of which is a level
set of a character in the torus X. In particular A X is a toric arrangement in the sense of
Definition 2.6.

2.2.2. Covering space. We now recall a construction of [6] which we need in the follow-
ing. For more details we refer to [6, §3.2]. Consider the covering map

p : Cd ∼= HomZ(3,C)→ HomZ(3,C∗) = T3, ϕ 7→ exp ◦ ϕ. (2.4)

Notice that by identifying HomZ(3,C) ∼= Cd , p becomes the universal covering map

(t1, . . . , td) 7→ (e2πit1 , . . . , e2πitd )

of the torus T3. Also, this map restricts to a universal covering map

Rd ∼= HomZ(3,R)→ HomZ(3, S
1) ∼= (S

1)d .

Consider now a toric arrangement A on T3. Its preimage under p is a locally finite
affine hyperplane arrangement on HomZ(3,C),

A �
:= {(χ, a′) ∈ 3× C | (χ, e2πia′) ∈ A }.

If we write it in coordinates, A � becomes the arrangement on Cd defined as

A �
= {Hχ,a′ | (χ, e

2πia′) ∈ A } with Hχ,a′ =
{
x ∈ Cn

∣∣∣ ∑αixi = a
′

}
,

where we expanded χ(x) = xα1
1 · · · x

αd
d .

Remark 2.17. If the toric arrangement A is complexified, so is the hyperplane arrange-
ment A �.

2.3. Combinatorics

As in the case of hyperplanes, one would like to describe the topology of the complement
in terms of the combinatorics of the arrangement.

Lemma 2.18. Let A be a toric arrangement, and X ∈ C(A ) a layer. Then the subposet
C(A )≤X is the intersection poset of a central hyperplane arrangement A [X]. If A is
complexified, then so is A [X].

Proof. This is implicit in much of [8, 22]; the proof follows by lifting the layer X to A �.
A formally precise definition of A [Y ] can also be found in Section 4.1 below. ut

In other words, lower intervals of posets of layers are intersection lattices of (central)
hyperplane arrangements. The following definition is then natural.



498 Giacomo d’Antonio, Emanuele Delucchi

Definition 2.19 ([8, 22]). Let A be a toric arrangement of rank d and fix a total ordering
on A . A local no broken circuit set of A is a pair

(X,N) with X ∈ C(A ), N ∈ nbck(A (X)) where k = d − dimX.

We will write N for the set of local no broken circuits, and partition it into subsets

Nj := {(X,N) ∈ N | dimX = d − j}.

Remark 2.20. Let X ∈ C(A ) and N ⊆ A (X). If we consider the ‘list’ X of all pairs
(χi, ai) with χi |X ≡ ai , then the elements of N index a ‘sublist’ XN . Then (X,N) is
a local no broken circuit set if and only if XN is a basis of X with no local external
activity in the sense of d’Adderio and Moci [5, Section 5.3].

2.4. Cohomology

The cohomology (with complex coefficients) of the complements of toric arrangements
was studied by Looijenga [21] and De Concini and Procesi [8].

Theorem 2.21 ([8, Theorem 4.2]). Consider a toric arrangement A . The Poincaré poly-
nomial of M(A ) can be expressed as follows:

PA (t) :=

∞∑
j=0

dimH j (M(A );C) tj =
∞∑
j=0

|Nj |(t + 1)k−j tj .

This result was obtained in [8] by computing de Rham cohomology, and in [21] via spec-
tral sequence computations. In the special case of (totally) unimodular arrangements, De
Concini and Procesi also determine the algebra structure of H ∗(M(A );C) by formality
of M(A ) [8, Section 5].

2.5. The homotopy type of complexified toric arrangements

From now on, we will think of A as being a complexified (primitive, essential) toric
arrangement.

The complement of a complexified toric arrangement A has the homotopy type of a
finite cell complex, defined from the stratification of the real torus T3 into chambers and
faces induced by the associated ‘real’ arrangement A c.

Definition 2.22. Let A = {(χ1, a1), . . . , (χn, an)} be a complexified toric arrangement.
Its chambers are the connected components of M(A c). We denote the set of chambers
of A by T (A ).

The faces of A are the connected components of the intersections

relint(C ∩X) with C ∈ T (A ), X ∈ C(A ).

The faces of A are the cells of a polyhedral complex, which we denote by D(A ).

The topology of a (nonregular) polyhedral complex is encoded in an acyclic category,
called the face category of the complex (see [6, §2.2.2] for some details on face cate-
gories, our Section 3 below for some basics about acyclic categories, and [20] for a more
comprehensive treatment).
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Definition 2.23. The face category of a complexified toric arrangement is F(A ) =

F(D(A )), i.e. the face category of the polyhedral complex D(A ).

The lattice 3 acts on Cn and on Rn as the group of automorphisms of the covering map
p of (2.4) above. Consider now the map q : F(A �)→ F(A ) induced by p.

Proposition 2.24 ([6, Lemma 4.8]). Let A be a complexified toric arrangement. The
map q : F(A �)→ F(A ) induces an isomorphism of acylic categories

F(A ) ∼= F(A �)/3.

2.5.1. The Salvetti category. Recall that the Salvetti complex for affine hyperplane ar-
rangements makes use of the operation of Definition 1.26. We need a suitable analogue
for toric arrangements.

Proposition 2.25 ([6, Proposition 3.12]). Let 3 be a finite rank lattice, and 0 a sublat-
tice of 3. Let A a complexified toric arrangement on T3 and recall the arrangement
A0 from Definition 2.14. The projection π0 : T3 → T0 induces a morphism of acyclic
categories

π0 : F(A )→ F(A0).

Consider now a face F ∈ F(A ). We associate to it the sublattice

0F = {χ ∈ 3 | χ is constant on F } ⊆ 3.

Definition 2.26. Consider a toric arrangement A on T3 and a face F ∈ F(A ). The
restriction of A to F is the arrangement AF = A0F on T0F .

We will write πF = π0F : F(A )→ F(AF ).

Definition 2.27 ([6, Definition 4.1]). Let A be a toric arrangement on a complex
torus T3. The Salvetti category of A is the category Sal(A ) defined as follows.

(a) The objects are the morphisms in F(A ) between faces and chambers:

Ob(Sal(A )) = {m : F → C | m ∈ Mor(F(A )), C ∈ T (A )}.

(b) The morphisms are the triples (n,m1, m2) : m1 → m2, where m1 : F1 → C1, m2 :

F2 → C2 ∈ Ob(Sal(A )), n : F2 → F1 ∈ Mor(F(A )) and m1, m2 satisfy the
condition

πF1(m1) = πF1(m2).

(c) Composition of morphisms is defined as

(n′, m2, m3) ◦ (n,m1, m2) = (n ◦ n
′, m1, m3)

whenever n and n′ are composable.

Remark 2.28. The Salvetti category is an acyclic category in the sense of Definition 3.1.
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Definition 2.29. Let A be a complexified toric arrangement; its Salvetti complex is the
nerve S(A ) := 1(Sal(A )).

Theorem 2.30 ([6, Theorem 4.3]). The Salvetti complex S(A ) embeds in the comple-
ment M(A ) as a deformation retract.

Remark 2.31. As for the case of affine arrangements, the Salvetti category is the face
category of a polyhedral complex, of which the toric Salvetti complex is a subdivision. If
we need to distinguish between the two, we will call the first the cellular Salvetti complex
and the second the simplicial Salvetti complex.

3. Discrete Morse theory

Our proof of minimality will consist in describing a sequence of cellular collapses on the
toric Salvetti complex, which is not necessarily a regular cell complex. We thus need to
extend discrete Morse theory from posets to acyclic categories.

The setup used in the textbook of Kozlov [20] happens to lend itself very nicely to
such a generalization—in fact, once the right definitions are made, even the proofs given
in [20] just need some minor additional observation.

Definition 3.1. An acyclic category is a small category where the only endomorphisms
are the identities, and these are the only invertible morphisms.

An indecomposable morphism in an acyclic category is a morphism that cannot be
written as the composition of two nontrivial morphisms. The length of a morphism m in
an acyclic category is the maximum number of members in a decomposition of m into
nontrivial morphisms. The height of an acyclic category is the maximum of the lengths
of its morphisms: here we will restrict ourselves to acyclic categories of finite height.

A rank function on an acyclic category C is a function rk : Ob(C) → N such that
rk−1(0) 6= ∅ and for every indecomposable morphism x → y, rk(x) = rk(y) − 1. An
acyclic category is called ranked if it admits a rank function.

A linear extension ≺ of an acyclic category is a total order on its set of objects such
that

Mor(x, y) 6= ∅ implies x ≺ y.

Remark 3.2 (Acyclic categories and posets). Every partially ordered set can be viewed
as an acyclic category whose objects are the elements of the poset and |Mor(x, y)| = 1 if
x ≤ y, |Mor(x, y)| = 0 else (see [20, Exercise 4.9]).

Conversely, to every acyclic category C there is naturally associated a partial order on
the set Ob(C) defined by x ≤ y if and only if Mor(x, y) 6= ∅. We denote by C this poset
and by · : C → C the natural functor, with C viewed as a category as above. We say C is
a poset if this functor is an isomorphism.

In the following sections we will freely switch between the categorical and set-theo-
retical view of posets.
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Remark 3.3 (Face categories). The acyclic categories we will be concerned with will
arise mostly as face categories of polyhedral complexes. Intuitively, a polyhedral complex
is a CW-complex X whose cells are polyhedra, and the attaching maps of a cell x restrict
to homeomorphisms on every boundary face of x. The face category then has an object
for every cell of X and an arrow x → y for every boundary cell of y that is attached to x.
See [6, Definitions 2.6 and 2.8] for the precise definition.

Notice that the face category of a polyhedral complex is naturally ranked by the di-
mension of the cells.

Remark 3.4 (Terminology). We take the term acyclic category from [20]. The same
name, in other contexts, is given to categories with acyclic nerve. The reader should be
warned: acyclic categories as defined here need not have acyclic nerve.

On the other hand, the reader should be aware that what we call “acyclic category”
appears in the literature also as loopless category or as scwol (for “small category without
loops”).

The data about the cellular collapses that we will perform are stored in so-called acyclic
matchings.

Definition 3.5. A matching of an acyclic category C is a set M of indecomposable mor-
phisms such that, for all m,m′ ∈ M, the sources and the targets of m and m′ are four
distinct objects of C. A cycle of a matching M is an ordered sequence of morphisms

a1b1a2b2 · · · anbn

where

(1) for all i, ai 6∈M and bi ∈M,
(2) for all i, the targets of ai and bi coincide and the sources of ai+1 and bi coincide, as

also do the sources of a1 and bn.

A matching M is called acyclic if it has no cycles. A critical element of M is any object
of C that is neither the source nor the target of any m ∈M.

Lemma 3.6. A matching M of an acyclic category C is acyclic if and only if

(a) for all x, y ∈ Ob(C), m ∈M ∩Mor(x, y) implies Mor(x, y) = {m},
(b) there is a linear extension of C where the source and target of every m ∈ M are

consecutive.

Proof. Recall from Remark 3.2 the poset C, and notice that for every matching M of C,
the set M is a matching of C. Moreover, by Theorem 11.1 of [20], condition (b) above is
equivalent to M being acyclic.

To prove the statement, let first M be a matching of C satisfying (a) and (b). Because
of (a), every cycle of M maps to a cycle of M. Since M is acyclic because of (b), M must
be acyclic too.

Let now M be an acyclic matching of C. Then M must be acyclic, thus (b) holds. If
(a) fails, say because of some x, y ∈ Ob(C) with Mor(x, y) ⊇ {m,m′} and m ∈M, then
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m′ 6∈M (because M is a matching) and the sequence m′m is a cycle of M, contradicting
the assumption. ut

A handy tool for dealing with acyclic matchings is the following result, which generalizes
[20, Theorem 11.10].

Lemma 3.7 (Patchwork Lemma). Consider a functor ϕ : C → C′ of acyclic categories
and suppose that for each object c of C′ an acyclic matching Mc of ϕ−1(c) is given. Then
the matching M :=

⋃
c∈Ob(C′)Mc of C is acyclic.

Proof. We apply Lemma 3.6. Since Morϕ−1(c)(x, y) = MorC(x, y) for all c ∈ Ob(C′)
and all x, y ∈ Ob(ϕ−1(c)), condition (a) holds for M because it holds for Mc.

Property (b) for M is proved via the linear extension of C obtained by concatenation
of the linear extensions given by the Mc on the categories ϕ(c). ut

The topological gist of discrete Morse theory is the so-called “Fundamental Theorem”
(see e.g. [20, §11.2.2]). Here we state the part of it that will be needed below.

Theorem 3.8. Let F be the face category of a finite polyhedral complex X, and let M be
an acyclic matching of F . Then X is homotopy equivalent to a CW-complex X′ with, for
all k, one cell of dimension k for every critical element of M of rank k.

Proof. A proof can be obtained applying [20, Theorem 11.15] to the filtration of X with
i-th term Fi(X) =

⋃
j≤i xj , where x0, x1, . . . is an enumeration of the cells of X corre-

sponding to a linear extension of F(X) in which the source and target of every m ∈ M
are consecutive (such a linear extension exists by Lemma 3.6(b)). ut

Remark 3.9. Let M be an acyclic matching of a polyhedral complex X.

(i) The boundary maps of the complexX′ in Theorem 3.8 can be explicitly computed by
tracking the individual collapses, as in [20, Theorem 11.13(c)].

(ii) We will call M perfect if the number of its critical elements of rank k is βk(X), the
k-th Betti number ofX. Note that if the face category of a complexX admits a perfect
acyclic matching, then X is minimal in the sense of [14].

4. Stratification of the toric Salvetti complex

We now work our way towards the proof of minimality of complements of toric arrange-
ments. We start by defining a stratification of the toric Salvetti complex, in which each
stratum corresponds to a local nonbroken circuit. Then, in the next section, we will ex-
ploit the structure of this stratification to define a perfect acyclic matching on the Salvetti
category.

4.1. Local geometry of complexified toric arrangements

We start by introducing the key combinatorial tool in order to have a ‘global’ control of
the local contributions.

Consider a rank d complexified toric arrangement A = {(χ1, a1), . . . , (χn, an)}. As
usual write χi(x) = xαi for αi ∈ Zd and Ki = {x ∈ T3 | χi(x) = ai}.
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Define
A0 := {Hi = ker 〈αi, ·〉 | i = 1, . . . , n},

a central hyperplane arrangement in Rd .
From now on, fix a chamber B ∈ T (A0) and a linear extension ≺0 of T (A0)B .
Next, we introduce some central arrangements associated with the ‘local’ data.

Definition 4.1. For every face F ∈ F(A ) define the arrangement

A [F ] := {Hi ∈ A0 | χi(F ) = ai}.

If Y ∈ C(A ) define
A [Y ] := {Hi ∈ A0 | Y ⊆ Ki}.

Remark 4.2. The linear extension ≺0 of T (A0)B induces as in Proposition 1.17 linear
extensions ≺F of T (A [F ])BF and ≺Y of T (A [Y ])BY , for every F ∈ F(A ) and every
Y ∈ C(A ).

Moreover, for F ∈ F(A ) and C,C′ ∈ T (A [F ]) we denote by SF (C,C′) the set of
separating hyperplanes of the arrangement A [F ], as introduced in Definition 1.13.

Definition 4.3. Given Y ∈ C(A ) let Ỹ ∈ L(A0) be defined as

Ỹ :=
⋂
Y⊆Ki

Hi .

Moreover, for C ∈ T (A [Y ]) letX(Y,C) ⊇ Y be the layer determined by the intersection
defined by Lemma 1.31 from≺Y . Analogously, forC ∈ T (A [F ]) letX(F,C) be defined
with respect to ≺F .

We write X̃(Y, C) and X̃(F, C) for the corresponding elements of L(A [Y ]) and
L(A [F ]).

Definition 4.4. Let

Y := {(Y, C) | Y ∈ C(A ), C ∈ T (A [Y ]), X(Y, C) = Y }.

For i = 0, . . . , d let Yi := {(Y, C) ∈ Y | dimY = i}.

Example 4.5. Consider the toric arrangement A = {(x, 1), (xy−1, 1), (xy, 1)} of Fig-
ure 2(a). In this and in the following pictures we consider the compact torus (S1)2 as a
quotient of the square. Therefore we draw toric arrangements in a square (pictured with a
dashed line), where the opposite sides are identified.

The layer poset consists of the following elements:

C(A ) = {P,Q,K1,K2,K3, (C∗)2}.

Figures 2(b) and 2(c) show respectively the arrangements A [P ] and A [Q] = A0.
Let Y be as in Definition 4.4. There is one element (P,D0) ∈ Y and two elements

(Q,D1), (Q,D2) ∈ Y . Furthermore we have an element for each 1-dimensional layer
(Ki,Di) ∈ Y .
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P

Q

F

K1

K2

K3

(a) A toric arrangement

D0

(b) The arrangement A [P ]

D1 D2

(c) The arrangement A [Q]

Fig. 2. A toric arrangement and some of its associated hyperplane arrangements.

Lemma 4.6. Let A be a rank d toric arrangement. For all i = 0, . . . , d , we have
|Yi | = |Ni |.

Proof. This follows because for every i = 0, . . . , d ,

|Ni | =

∑
Y∈C(A )
dimY=i

|nbci(A [Y ])|.

Every summand on the right hand side counts the number of generators in top de-
gree cohomology or—equivalently—the number of top-dimensional cells of a mini-
mal CW-model of the complement of the complexification of A [Y ]. By [12, Lemma
4.18 and Proposition 2] these top-dimensional cells correspond bijectively to chambers
C ∈ T (A [Y ]) with X(Y,C) = Y . Therefore

|Ni | =

∑
Y∈C(A )
dimY=i

|{C ∈ T (A [Y ]) | X(Y,C) = Y }| = |Yi |. ut

Definition 4.7. Recall Definition 1.15 and define a function

ξ0 : Y → T (A0)B , (Y, C) 7→ µ[A [Y ],A0](C).

Fix a total order a on Y that makes this function order preserving (i.e., for y1, y2 ∈ Y ,
by definition ξ0(y1) ≺0 ξ0(y2) implies y1 a y2).

We now examine the local properties of the ordering a.

Definition 4.8. For F ∈ F(A ) let YF := {(Y, C) ∈ Y | F ⊆ Y }. Since F ⊆ Y implies
A [Y ] ⊆ A [F ], we can define a function

ξF : YF → T (A [F ]), (Y, C) 7→ µ[A [Y ],A [F ]](C).

Remark 4.9. By Lemma 1.16,µ[A [F ],A0]◦ξF =ξ0 on YF . Therefore, for y1, y2∈YF ,
ξF (y1) ≺F ξF (y2) implies ξ0(y1) ≺0 ξ0(y2), and thus y1 a y2.

Proposition 4.10. For all F ∈ F(A ) and every y = (Y, C) ∈ YF ,

X(F, ξF (y)) = Y.
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Proof. We will use the lattice isomorphisms L(A [F ])
≤Ỹ
∼= L(A [Y ]) ∼= C(A )≤Y . By

definition we have

ξF (y) = µ[A [Y ],A [F ]](C) = min≺F {K ∈ T (A [F ]) | K ⊆ C}

and therefore A [F ]Ỹ ∩ SF (ξF (y), C1) 6= ∅ for all C1 ≺F ξF (y), which shows that Ỹ ≥
X̃(F, ξF (y)) in L(A [F ]) and thus Y ≥ X(F, ξF (y)) in C(A ). Now, for every layer Z
with Z < Y we have A [Z] ⊆ A [Y ]. Because by definition Y = X(Y,C), we have
Z̃ < Ỹ = X̃(Y, C) in L(A [Y ]) and so there is C2 ≺Y C with SY (C2, C) ∩ A[Y ]Z̃ = ∅.

Let C3 := µ[A [Y ],A [F ]](C2). We have C3 ⊆ C2 and ξF (y) ⊆ C, therefore
SF (C3, ξF (y)) ∩ supp(Z̃) = ∅, and C3 ≺F ξF (y) by C2 ≺Y C. This means Z 6≥
X(F, ξF (y)), and the claim follows. ut

Lemma 4.11. For F ∈ F(A ) and C ∈ T (A [F ]) we have

ξF (XC, σA [XC ](C)) = C.

In particular ξF : YF → T (A [F ]) is a bijection.

Proof. Using the definition of ξF and Corollary 1.33 we have

ξF (XC, σA [XC ](C)) = µ[A [XC],A [F ]](σA [XC ](C))

= min{K ∈ T (A [F ]) | KXC = CXC } = C.

Letting βF : T (A [F ]) → YF be defined by C 7→ (XC, σA [XC ](C)), the above means
ξF ◦βF = id, therefore the map ξF is surjective. Injectivity of ξF amounts now to proving
βF ◦ ξF = id, which is an easy check on the definitions. ut

Corollary 4.12. For y1, y2 ∈ YF , y1 a y2 if and only if ξF (y1) �F ξF (y2).

4.2. Lifting faces and morphisms

We now relate our constructions to the covering A � of A of §2.2.2. Recall that 3 acts
freely on F(A �) and that q : F(A �) → F(A ) = F(A �)/3 is the projection to the
quotient (compare Proposition 2.24).

Remark 4.13. Fix a face F ∈ Ob(F(A )), and choose a lifting F � in F(A �). Then the
arrangements A �

F � and A [F ] differ only by a translation. Thus we have natural isomor-
phisms of posets

F(A [F ]) ∼= F(A �
F �)
∼= F(A �)≥F � .

In the following we will identify these posets and, in particular, define a functor of acyclic
categories q : F(A [F ])→ F(A ) according to the restriction of q : F(A �)→ F(A )

to F(A �)≥F � .
Given a face G of F(A [F ]) we will write q(G) for the image under the covering q

(see Proposition 2.24) of the corresponding face of F(A �)≥F � .
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Remark 4.14 (Notation). Recall that we identify posets (such as F(A �) or F(A [F ]))
with the associated acyclic categories, as explained in Remark 3.2. In particular, if x, y
are elements in a poset with x ≤ y, we will take the notation x ≤ y also to stand for the
unique morphism x → y in the associated category.

Now, given a morphism m : F → G of F(A ), for every choice of F �
∈ F(A �)

lifting F , there is a unique morphism F �
≤ G� lifting m. We have F(A �

G�) ⊆ F(A �
F �)

(see Remark 1.9)

Definition 4.15. Consider a toric arrangement A on T3 ∼= (C∗)k and a morphism m :

F → G of F(A ). Because of the freeness of the action of 3, for every choice of F � in
F(A �) lifting F , there is a unique morphism F �

≤ G� lifting m.
To m we associate

(a) the order preserving function

im : F(A [G])→ F(A [F ])

corresponding to the inclusion F(A �
G�) ⊆ F(A �

F �) (see Remark 1.9) under the iden-
tification of Remark 4.13;

(b) the face Fm ∈ F(A [F ]) defined by

Fm := im(Ĝ)

where Ĝ denotes the unique minimal element of F(A [G]).
Clearly then Ĝ = FidG . In the following we will abuse notation for the sake of trans-
parency and, given a face G of F(A ), we will write Gid for FidG .

Example 4.16. Consider the arrangement A of Figure 2. Figure 3 illustrates the maps
im and in for the morphisms m : P → F and n : Q→ F .

Fm

F

Fn

im(C)

C

in(C)

im

in

Fig. 3. Fm and the map im.

Remark 4.17. Every choice of positive sides for the elements of A0 determines a cor-
responding choice for all the elements of A �. Then given m : F → G and any lift G�

of G, in terms of sign vectors and identifying each H ∈ A [F ] with its unique translate
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which contains G�, we have

γFm [A [F ]] = γG� [A �
]
|A [F ].

In particular, if G is a chamber, then so is Fm.

Lemma 4.18. Recall the setup of Definition 4.15.

(a) If F
m
→ G

n
→ K are morphisms of F(A ), then

in◦m = im ◦ in, thus im(Fn) = Fn◦m.

(b) Let m : F → G be a morphism of F(A ). Then, for every morphism n of A [G],
we have q(im(n)) = q(n), and in particular q(im(K)) = q(K) for every face K of
A [G].

(c) Let m : G ≤ K be a morphism of F(A [F ]). Then there are morphisms n : F →
q(G) and m� of F(A ) with

in(q(G)id ≤ Fm�) = m.

Proof. Parts (a) and (b) are immediate rephrasing of the definitions. For part (c) let n :=
q(Fid ≤ G) and m�

:= q(m). ut

4.3. Definition of the strata

Each stratum will be associated to an element of Y , and we will think of the Salvetti
category as being ‘built up’ from strata according to the ordering of Y .

Definition 4.19. Define the map θ : Sal(A )→ Y as follows:

θ : (m : F → C) 7→ (X(F, Fm), σA [X(F,Fm)](Fm)).

Remark 4.20. For every object m : F → C of Sal(A ) we have ξF (θ(m)) = Fm.

Lemma 4.21. Form : G→ C andm′ : G→ C′ ∈ ζ , if θ(m) a θ(m′) then Fm ≺G Fm′ .
Proof. If θ(m) a θ(m′), then by Remark 4.20 and Corollary 4.12, Fm = ξG(θ(m)) ≺G
ξG(θ(m

′)) = Fm′ . ut

Definition 4.22. Given a complexified toric arrangement A on (C∗)d , we consider the
stratification Sal(A ) =

⋃
(Y,C)∈Y S(Y,C) indexed by Y , where

S(Y,C) := {m ∈ Sal(A ) | ∃(m→ n) ∈ Mor(Sal(A )), n ∈ θ−1(Y, C)}.

Moreover, recall from Definition 4.7 the total ordering ` on Y and define

Ny := Sy \
⋃
y′ay

Sy′ .

Example 4.23. Consider the toric arrangement A of Figure 2. Figure 4(a) shows two
strata of the stratification of Sal(A ) of Definition 4.22.

The stratum S((C∗)2,D) appears with a dotted shading, while the stratum N(K2,D2) has a
solid shading. Thus N(K2,D2) consists of two 1-dimensional layers and two 2-dimensional
layers. Figure 4(b) depicts the rank 1 arrangement A K2 . The category N(K2,D2) is showed
in Figure 4(c) and it is isomorphic to F(A K2)op (in this case F(A K2)op ∼= F(A K2)).
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(a) Stratification of the toric Salvetti complex

P

Q

(b) The arrangement A K2 on S1

(c) N(K2,D2)
∼= F(A K2)op

Fig. 4. Stratification of the toric Salvetti complex (cf. Figure 2).

5. The topology of the strata

We now want to show that, for y ∈ Y , the category Ny is isomorphic to the face category
of a complexified toric arrangement. The main result of this section is the following.

Theorem 5.1. Consider a complexified toric arrangement A and for y = (Y, C) ∈ Y
let Ny be as in Definition 4.22. Then there is an isomorphism of acyclic categories

N(Y,C)
∼= F(A Y )op.

The main idea for proving this theorem is to use the ‘local’ combinatorics of the (hyper-
plane) arrangements A [F ] to understand the ‘global’ structure of the strata in Sal(A ).
We carry out this ‘local-to-global’ approach by using the language of diagrams.

5.1. The category AC

Let Cat denote the category of small categories. We define AC to be the full subcategory
of Cat consisting of acyclic categories (see Definition 3.1, cf. [20]).
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Colimits in AC do not coincide with colimits taken in Cat . In the following, we will
need an explicit description of colimits in AC, at least for the special class of diagrams
with which we will be concerned.

Definition 5.2. Let I be an acyclic category. A diagram D : I → AC of acyclic cate-
gories is called geometric if

(i) • for every X ∈ Ob(I), D(X) is ranked and
• for every f ∈ Mor(I), D(f ) is rank-preserving;

(ii) for every X ∈ Ob(I) and every x ∈ Mor(D(X)) there exist

• X̂ ∈ Ob(I),
• f ∈ MorI(X̂,X) and
• x̂ ∈ Mor(D(X̂)) with D(f )(̂x) = x

such that for every morphism g ∈ MorI(Y,X) and every y ∈ D(g)−1(x) there exists
a morphism ĝ ∈ MorI(X̂, Y ) such that D(ĝ)(̂x) = y.

Remark 5.3. From the definition it follows that the morphism x̂ in (ii) is unique.

Definition 5.4. Define a relation ∼ on
∐
X∈Ob(I) Mor(D(X)) as follows: for x ∈

Mor(D(X)) and y ∈ Mor(D(Y )) let x ∼ y if there are

• an object Z ∈ Ob(I), a morphism z ∈ Mor(D(Z)) and
• morphisms fX : Z→ X, fY : Z→ Y of I
such that D(fX)(z) = x and D(fY )(z) = y.

Moreover, define a relation ≈ on
∐
X∈Ob(I) Ob(D(X)) by setting a ≈ b if ida ∼ idb.

Remark 5.5. If D is a geometric diagram of acyclic categories, the observation that
x ∼ y if and only if x̂ = ŷ, together with Remark 5.3, shows that ∼ and ≈ are in
fact equivalence relations.

Proposition 5.6. Let D : I → AC be a geometric diagram of acyclic categories. Then
the colimit of D exists and is given by the co-cone (C, (γX)X∈Ob(I)) with

Ob(C) =
∐

X∈Ob(I)
Ob(D(X))

/
≈, Mor(C) =

∐
X∈Ob(I)

Mor(D(X))
/
∼

(where [m]∼ : [x]≈ → [y]≈ whenever m : x → y), and for every X ∈ Ob(I), x ∈
Ob(D(X)) and m ∈ Mor(D(X),

γX(x) = [x]≈, γX(m) = [m]∼.

Proof. One easily checks that C is a well-defined small category. We have to prove two
claims.

Claim 1. C is acyclic.

Proof. Because the definition of a geometric diagram requires D(f ) to be rank-preserving
for all f ∈ Mor(I), we can define for all [x]≈ ∈ Ob(C) a value ν([x]≈) := rk(x), where
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x is any representative and the rank is taken in the appropriate category. Now, for every
X ∈ Ob(I), every nonidentity morphism m ∈ MorD(X)(x, y) has rk(x) < rk(y) and thus
ν([x]≈) < ν([y]≈)—in particular, [m]∼ is not an identity. This implies directly that the
only endomorphisms of C are the identities. Moreover, if the morphism [m]∼ above is an
invertible nonidentity, then its inverse whould be a morphism [y]≈ → [x]≈—but since
ν([x]≈) < ν([y]≈), no such morphism exists.

Claim 2. The co-cone (C, (γX)X∈ObI) has the universal property.

Proof. Let (C′, (γ ′X)X∈ObI) be a co-cone over D . We have to show that there is a unique
morphism of co-cones 9 : (C, (γX)X∈ObI)→ (C′, (γ ′X)X∈ObI).

In order to do so, notice that if y ∈ [x]∼ ∈ Mor(C), there are X, Y,Z ∈ Ob(I),
fX, fZ ∈ Mor(I) and z ∈ Mor(D(Z)) as in Definition 5.4 such that

γ ′X(x) = γ
′

ZfX(z) = γ
′

YfY (z) = γ
′

Y (y).

This proves that the assignments

9[x]≈ := γ
′

X(x), 9[m]∼ := γ
′

X(m),

whereX is such that x is in D(X), do not depend on the choice of the representative x and
thus define a function 9 : C → C′. A routine check shows functoriality and uniqueness
of 9. ut

5.2. Proof of Theorem 5.1

Throughout this section let A be a complexified toric arrangement and recall the nota-
tional conventions of Section 4.2, in particular Remarks 4.13 and 4.14.

Definition 5.7 (A diagram for the face category of the compact torus).

F (A ) = F : F(A )op
→ AC,

F 7→ F(A [F ]),
(m : F → G) 7→ (im : F(A [G])→ F(A [F ])).

After these preparations, we turn to diagrams.

Lemma 5.8. For the diagram F of Definition 5.7 we have

colim F (A ) = F(A ).

Proof. We begin by noticing that F is a geometric diagram. Indeed, for a morphism
m : G ≤ K of F (F ) let n and m� be obtained as in Lemma 4.18(c). Then

F̂ := q(G), f := nop, m̂ := (q(G)id ≤ Fm�) (5.1)

satisfy the requirements of Definition 5.2.
Accordingly, the objects and morphisms of colim F are given as in Proposition 5.6,

with the relation∼ generated by n ∼ F (m)(n) for every morphismm : F → G of F(A )
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and every morphism n : G′ → G′′ of F(A [G]) and, accordingly, the relation ≈ gen-
erated by G′ ≈ F (m)(G′) for all morphisms (m : F → G) ∈ Mor(F(A )) and all
G′ ∈ Ob(F(A [G])). For the sake of notational transparency we will omit explicit refer-
ence to∼ and≈ and denote equivalence classes with respect to these equivalence relations
simply by J · K, to avoid confusion with the square brackets used to identify elements of
the Salvetti complex.

We prove the lemma by constructing an isomorphism 8 : F(A ) → colim F as
follows. For every object F ∈ F(A ) define 8(F) := JFidK (recall from Definition 4.15
that Fid is a face in F(A [F ])), and for every morphism m : F → G in F(A ) define

8(m) := JFid ≤ FmK.

The bijectivity of 8 is easily seen, so we only need to show the functoriality of 8. To
this end consider two composable morphisms F

m
→ G

n
→ H . Using Lemma 4.18(a) we

get

8(n) ◦8(m) = JGid ≤ GnK ◦ JFid ≤ FmK = JF (m)(Gid ≤ Gn)K ◦ JFid ≤ FmK
= Jim(Gid) ≤ im(Gn)K ◦ JFid ≤ FmK
= JFm ≤ Fn◦mK ◦ JF ≤ FmK = JF ≤ Fn◦mK = 8(n ◦m). ut

Definition 5.9 (A diagram for the Salvetti category).

D(A ) = D : F(A )op
→ AC,

F 7→ Sal(A[F ]),
(m : F → G) 7→ jm : Sal(A [G]) ↪→ Sal(A [F ]),

where jm([G,C]) = [im(G), im(C)].

Lemma 5.10.
colim D(A ) = Sal(A ).

Proof. The proof follows the outline of the proof of Lemma 5.8, and starts by noticing
that the diagram D , too, is geometric. Indeed, let x : [K1, C1] ≤ [K2, C2] be a morphism
in Sal(A [F ]). Correspondingly, we have morphisms m0 : K2 ≤ K1, m1 : K1 ≤ C1,
m2 : K2 ≤ C2 of F(A [F ]). For i = 0, 1, 2 let ni , m

�
i be obtained from mi as in Lemma

4.18(c). Then a straightforward check on the definitions shows that the assignment

F̂ := q(K2), f := nop, x̂ : [(K2)id, Fm�
2
] ≤ [F

m
�
0
, F

m
�
1◦m

�
0
]

is well-defined and satisfies the requirement of Definition 5.2.
Thus Proposition 5.6 again applies and, accordingly, we write objects and morphisms

of colim D as equivalence classes of the appropriate relations, which we will again denote
by J·K.

An isomorphism 9 : Sal(A ) → colim D can now be defined as follows. For an
object m : F → C of Sal(A ) define 9(m) = J[Fid, Fm]K (notice that, considering m as
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a morphism of F(A ), we have 9(m) = 8(m)). For a morphism (n,m1, m2) of Sal(A )

with mi : Fi → Ci and n : F2 → F1 define

9(n,m1, m2) = JD(n)([(F1)id, Fm1 ]) ≤ [(F2)id, Fm2 ]K
= J[in((F1)id), in(Fm1)] ≤ [(F2)id, Fm2 ]K = J[Fn, Fm1◦n] ≤ [(F2)id, Fm2 ]K,

where in the last equality we have used Lemma 4.18(a). ut

Remark 5.11. Using Remark 4.18(c) we find that every element ε ∈ Ob(colim D(A ))

has a (unique) representative [Fid, C] ∈ S(A [F ]) such that for any other representative
[G,K] with ε = JG′,KK there is a unique face G ∈ F(A ) and a unique morphism
m : F → G with [G′,K] = [Fm, im(C)].

Lemma 5.12. Let m : F → G be a morphism of F(A ) and consider a (Y, C) ∈ YF .
Then the inclusion jm : Sal(A [G])→ Sal(A [F ]) restricts to an inclusion

jm : SξG(Y,C)→ SξF (Y,C).

Remark 5.13. Note that, given any chamber C of A [G] and any chamber C′ of A [F ],
there is a natural inclusion S(A [G])C ↪→ S(A [F ])C′ ⊆ S(A [F ]) if and only if
S(im(C), C

′) ∩A [G] = ∅.

Proof of Lemma 5.12. With Remark 5.13 we only need to show that

S(im(ξG(Y, C)), ξF (Y, C)) ∩A [G] = ∅.

Let H ∈ A [G]. Then

γim(ξG(Y,C))(H) = γξG(Y,C)(H) = γξF (Y,C)(H), so H /∈ S(im(ξG(Y, C)), ξF (Y, C)),

where the last equality follows from the fact that ξF (Y, C) ⊆ ξG(Y, C). ut

Lemma 5.12 allows us to state the following definition.

Definition 5.14. Given (Y, C) ∈ Y let

E(Y,C) : F(A Y )op
→ AC,

F 7→ S(A [F ])ξF (Y,C),
(m : F → G) 7→ (jm)|E(Y,C)(G).

Lemma 5.15. Let (Y, C) ∈ Y , then

colim E(Y,C) = S(Y,C).

Proof. We consider the isomorphism 9 : Sal(A )→ colim D of Lemma 5.10. We want
to show that 9(S(Y,C)) = colim E(Y,C), and we do this in two steps.
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Step 1: colim E(Y,C) ⊆ 9(S(Y,C)). Let JG,KK ∈ colim E(Y,C). Then (recall Remark
5.11) there is a morphism m : F → G of F(A ) such that [Fm, im(K)] ∈ SξF (Y,C) ⊆
Sal(A [F ]), i.e.

[Fm, im(K)] ≤ [Fid, ξF (Y, C)].

Taking the preimage under 9 of this relation we get a morphism

9−1(JG,KK)→ 9−1(JFid, ξF (Y, C)K) ∈ Mor(Sal(A )).

Now, using Proposition 4.10 we have

θ(9−1(JFid, ξF (Y, C)K)) = (X(F, ξF (Y, C)), σA [Y ]ξF (Y, C))

= (Y, σA [Y ] ◦ µ[A [Y ],A [F ]](C) ) = (Y, C).

Therefore 9−1(JG,KK) ∈ S(Y,C), so JG,KK ∈ 9(S(Y,C)), as was to be proved.

Step 2: 9(S(Y,C)) ⊆ colim E(Y,C). Consider now (m : G → K) ∈ S(Y,C). Then there
is a morphism (h,m, n) : m → n ∈ Mor(Sal(A )) with n : F → K ′, h : F → G and
θ(n) = (Y, C). In particular, in view of Remark 4.20, we get Fn = ξF (θ(n)) = ξF (Y, C).

Applying 9 to the morphism (h,m, n), in Sal(A [F ]) we obtain

jn([G,Gm]) ≤ [F,Fn] = [F, ξF (Y, C)], thus jn([G,Gm]) ∈ SξF (Y,C),

and we conclude that

9(m) = JG,GmK = Jjn([G,Gm])K ∈ colim E(Y,C),

as required. ut

Definition 5.16. Given (Y, C) ∈ Y , define

G(Y,C) : F(A Y )op
→ AC,

F 7→ NξF (Y,C),

(m : F → G) 7→ (jm)|G(Y,C)(G).

Remark 5.17. To prove that the diagram G(Y,C) is well defined, we have to show that for
every morphism m : F → G of F(A Y ),

jm(NξG(Y,C)) ⊆ NξF (Y,C). (5.2)

This follows because by Proposition 4.10 we have X(F, ξF (Y, C)) = Y , and thus with
[12, Lemma 4.18] we can rewrite

NξF (Y,C) = {[G,K] ∈ Sal(A [F ]) | G ∈ F(A [F ]Ỹ ), KG = ξF (Y, C)G}.

Now let [G′, C′] ∈ NξG(Y,C). Then sinceG′ ⊆ Ỹ we have im(G′) ∈ F(A [F ]Ỹ ), and from
ξF (Y, C) ⊆ ξG(Y, C) we conclude im(C′)G′ = ξF (Y, C)G′ . Therefore jm([G′, C′]) =
[im(G

′), im(C
′)] ∈ NξF (Y,C), and the inclusion (5.2) is proved.
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Lemma 5.18.
colim G(Y,C) = N(Y,C).

Proof. Again the proof is in two steps.

Step 1: colim G(Y,C) ⊆ N(Y,C). Let JF,KK ∈ colim G(Y,C) and suppose JF,KK /∈ N(Y,C).
Then JF,KK ∈ colim E(Y ′,C′) for some (Y ′, C′) < (Y,C). As JF,KK ∈ colim G(Y,C),
there exist a point P ∈ F(A ) and a morphismm : P → F with [Pm, im(K)] ∈ NξP (Y,C).
Therefore, in A [P ] we have [Pm, im(K)] ≤ [P, ξP (Y, C)], which implies that KPm =
ξP (Y, C)Pm , and thus K = σA [F ](KPm) = ξF (Y, C).

Similarly, since JF,KK ∈ colim E(Y ′,C′) there is a point Q ∈ F(A ) and a morphism
n : Q→ F with [Qn, in(K)] ∈ SξQ(Y ′,C′). Then, as above, K = ξF (Y ′, C′).

From the bijectivity proven in Lemma 4.11 we conclude that (Y, C) = (Y ′, C′), which
contradicts (Y ′, C′) < (Y,C), proving that JF,KK ∈ N(Y,C), as desired.

Step 2: N(Y,C) ⊆ colim G(Y,C). Suppose that [F,K] ∈ N(Y,C) \ colim G(Y,C). Then
[F,K] ∈ SξP (Y ′,C′) for some P ∈ F(A ) and some (Y ′, C′) < (Y,C). But then we
have [F,K] ∈ colim E(Y ′,C′), thus [F,K] /∈ N(Y,C). ut

Lemma 5.19. There is an equivalence of diagrams

G(Y,C) ∼= F (A Y )op.

Proof. For each F ∈ F(A Y ) define isomorphisms G(Y,C)(F ) → F (A Y )op(F ) as fol-
lows:

G(Y,C)(F ) = NξF (Y,C)
∼= F(A [F ]Ỹ )op

= F(A Y
[F ])op

= F (A Y )op(F ),

where the isomorphism in the middle comes from Theorem 1.35. It can be easily checked
that these isomorphisms indeed induce morphisms of diagrams. ut

Proof of Theorem 5.1. As a consequence of Lemma 5.19,

N(Y,C) = colim G(Y,C) ∼= colim F (A Y )op
= F(A Y )op. ut

6. Minimality of toric arrangements

In this section we will construct a perfect acyclic matching of the Salvetti category of a
complexified toric arrangement. By Remark 3.9 this will imply minimality and, with it,
torsion-freeness of the arrangement’s complement.

6.1. Perfect matchings for the compact torus

Let A be a complexified toric arrangement in T3 and recall the notation of Section 2.1.
Choose a point P ∈ max C(A ). Up to a biholomorphic transformation we may suppose
that P is the origin of the torus.
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Let then (χ1, a1), . . . , (χd , ad) ∈ A be such that α1, . . . , αd are (Q-) linearly inde-
pendent and P ∈ Ki for all i = 1, . . . , d . For i = 1, . . . , d let H 1

i denote the hyperplane
of A � lifting Ki at the origin of Hom(3,R) ∼= Rd . For ease of notation we identify
3 ∼= Zd ⊆ Rd , and in particular think of αi as the normal vector to H 1

i .
For j ∈ [d] := {1, . . . , d} we consider the rank j − 1 lattice

3j := Zd ∩
⋂
i≥j

H 1
i .

Lemma 6.1. There is a basis u1, . . . , ud of3 such that for all i = 1, . . . , d , the elements
u1, . . . , ui−1 are a basis of 3i .

Proof. The proof is by repeated application of the Invariant Factor Theorem (e.g. [4,
Theorem 16.18]) to the free Z-submodule 3j of 3j−1. ut

Let (H 1
i )
+
:= {x ∈ Rd | 〈x, αi〉 ≥ 0}.

Remark 6.2. In particular, ui 6∈ H 1
i , hence ui(H 1

i ) 6= H 1
i . Moreover, without loss of

generality we may suppose ui ∈ (H 1
i )
+.

The lattice 3 acts on Rd by translations. Given u ∈ 3, let the corresponding translation
be

tu : Rd → Rd . x 7→ tu(x) := x + u.

Corollary 6.3. For all x ∈ Rd and all i < j ∈ [d], 〈tui (x), αd−j 〉 = 〈x, αd−j 〉.

Proof. We have ui ∈ 3j ⊆ H 1
d−j , therefore 〈ui, αd−j 〉 = 0 and thus

〈tui (x), αd−j 〉 = 〈x + ui, αd−j 〉 = 〈x, αd−j 〉 + 〈ui, αd−j 〉 = 〈x, αd−j 〉 + 0. ut

For i = 1, . . . , d let (H 2
i )
+
:= tui ((H

1
i )
+), and define

Q :=

d⋂
i=1

[(H 1
i )
+
\ (H 2

i )
+
].

Lemma 6.4. The region Q is a fundamental region for the action of 3 on Rd .

Proof. For i = 1, . . . , d , write
li := 〈ui, αi〉.

Then Q = {x ∈ Rd | 0 ≤ 〈x, αi〉 < li for all i = 1, . . . , d}. It is clear that Q can contain
at most one point for each orbit of the action of 3.

Now fix an x ∈ Rd . We want to construct a y ∈ Q such that x ∈ y +3.
To this end write x0 := x and let λd := b〈x0, αd〉/ldc. Then let

x1 := x0 − λdud , thus 0 ≤ 〈x1, αd〉 < ld .
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For every i ∈ {1, . . . , d − 1} define now recursively λd−i := b〈xi, αd−i〉/ld−ic and
xi+1 := xi − λd−iud−i , so that

0 ≤ 〈xi+1, αd−i〉 < ld−i

and so, by Corollary 6.3, for every j < i,

〈xi+1, αd−j 〉 = 〈t
−λd−i
ud−i · · · t

−λd−j−1
ud−j−1 (xj+1), αd−j 〉 = 〈xj+1, αd−j 〉 ∈ [0, ld−j [.

After d steps, we will have reached xd with

0 ≤ 〈xd , αi〉 < li for all i = 1, . . . , d.

Hence y := xd ∈ Q is the required point because, setting u :=
∑d
i=1 λiui , we have by

construction xd = t−u(x) and so x = tu(y) ∈ y +3. ut

Definition 6.5. Let A be a rank d toric arrangement, and let Bd be the ‘Boolean poset on
d elements’, i.e., the acyclic category of the subsets of [d] with the inclusion morphisms.
Since Bd is a poset, the function

Ob(F(A ))→ Ob(Bd), F 7→ {i ∈ [d] | F ⊆ Ki},

induces a well-defined functor of acyclic categories

I : F(A )→ Bop
d .

For every I ⊆ [d] define the category

FI := I−1(I ).

Our main technical result about the category FI is the following.

Lemma 6.6. For all I ⊆ [d], the subcategory FI is a poset admitting an acyclic match-
ing with only one critical element (in top rank).

We postpone the proof of this lemma after some preparatory steps. Fix I ⊂ [d], and let
k := |I |.

We consider
QI := Q ∩

(⋂
i∈I

H 1
i

)
\

⋃
j 6∈I

(H 1
j ∪H

2
j ).

The set B := {H ∩ X | H ∈ A �, H ∩Q 6= ∅} is a finite arrangement of affine hy-
perplanes in the affine hull X of QI . This arrangement determines a (regular) polyhedral
decomposition D(B) of Rd−k that coincides with D(A �

X) on Q.
The covering of Section 2.2.2 maps QI homeomorphically to its image, hence FI

is the face category of the set of cells of the decomposition of QI by D(B). Regularity
of D(B) implies that FI is a poset. Indeed, if D(B)∨ is the (regular) CW-decomposition
dual to the one induced by B, then Fop

I is the poset of cells of YI (subcomplex of D(B))
that is entirely contained in QI .

Let Q be the subdivision induced by B on the closure QI .
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Q{1}

Q{1,2}

Q{2}

Q∅

Y∅

Y{1}

Fig. 5. The case of the toric Weyl arrangement of type A2.

Lemma 6.7. The complex Q is shellable.

Proof. Coning the arrangement B (as in [26, Definition 1.15]) we obtain a central ar-
rangement B̂ = {Ĥ | H ∈ B} which subdivides the unit sphere into a regular cell
complex K. Then Q is isomorphic to the subcomplex of K given by⋂

i 6∈I

(Ĥ 1
i )
+
∩

⋂
i 6∈I

(Ĥ 2
i )
−,

which, by [2, Proposition 4.2.6(c)], is shellable. ut

Proof of Lemma 6.6. The pseudomanifold Q is constructible because it is shellable. By
[1, Theorem 4.1], it is also endo-collapsible, i.e., it admits an acyclic matching where the
critical cells are precisely the cells on the boundary plus one single cell in the interior
of Q. But this restricts to an acyclic matching of the subposet FI ⊆ F(Q) with exacly
one critical cell.

In turn, this gives an acyclic matching of Fop
I with exactly one critical cell. Since Fop

I

is the face poset of the CW-complex YI , the critical cell must be in bottom rank—thus in
top rank of FI , as required. ut

Proposition 6.8. For any complexified toric arrangement A , the acyclic category F(A )

admits a perfect acyclic matching.

Proof. Let A be of rank d. The proof is a straightforward application of the Patchwork
Lemma 3.7 in order to merge the 2d acyclic matchings described in Lemma 6.6 along the
map I of Definition 6.5. The resulting ‘global’ acyclic matching has 2d critical elements
and is thus perfect. ut

6.2. Perfect matchings for the toric Salvetti complex

Let A be a (complexified) toric arrangement.
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Proposition 6.9. The Salvetti category Sal(A ) admits a perfect acyclic matching.

Proof. Let the set Y be totally ordered according to Definition 4.7. Let P denote the
acyclic category given by the |Y |-chain. We define a functor of acyclic categories

ϕ : Sal(A )→ P, m 7→ (Y, C) for m ∈ N(Y,C),

and by Theorem 5.1 we have an isomorphism of acyclic categories ϕ−1((Y, C)) = N(Y,C)
∼= F(A Y )op. Then, by Proposition 6.8, ϕ−1((Y, C)) has an acyclic matching with 2d−rkX

critical cells.
An application of the Patchwork Lemma 3.7 yields an acyclic matching on Sal(A )

with ∑
j

|Yj |2d−j =
∑
j

|Nj |2d−j = PA (1)

critical cells, where the first equality is given by Lemma 4.6. This matching is thus perfect.
ut

Corollary 6.10. The complement M(A ) is a minimal space.

Proof. The cellular collapses given by the acyclic matching of Proposition 6.9 show that
the complement M(A ) is homotopy equivalent to a complex whose cells are counted by
the Betti numbers. ut

Corollary 6.11. The homology and cohomology groups Hk(M(A );Z), H k(M(A );Z)
are torsion-free for all k.

Proof. See Corollary 1.20. ut

7. Application: minimality of affine arrangements

After the existence proofs of Dimca and Papadima [14] and Randell [27], the first step
towards an explicit characterization of the minimal model for complements of hyperplane
arrangements was taken by Yoshinaga [32] who, for complexified arrangements, identi-
fied the cells of the minimal complex using their incidence with a general position flag
in real space and studied their boundary maps. Salvetti and Settepanella [31] obtained a
complete description of the minimal complex by using a ‘polar ordering’ determined by
a general position flag to define a perfect acyclic matching on the Salvetti complex.

In this section we explain how to use our techniques in order to extend the idea of [12]
to affine complexified hyperplane arrangements. We thus obtain a minimal complex that
is defined only in terms of the arrangement’s (affine) oriented matroid and is less cumber-
some than the one described in [13].

Consider a finite affine complexified arrangement A = {K1, . . . , Kn}. Define the
central arrangements A0 and A [F ] for F ∈ F(A ) in analogy to those of Section 4.1.
Choose a base chamber B ∈ T (A0), fix a total ordering ≺0 on A0 and define ≺F ,≺Y for
F ∈ F(A ), Y ∈ L(A ) as in Section 4.1. Moreover, let Y be as in Definition 4.4.
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Remark 7.1. Notice that, given the affine oriented matroid of A , the oriented matroid
of A0 can be recovered without referring to geometry. For instance, the tope poset of A0
can be defined in terms of the tope poset of A based at any unbounded chamber (see [2]
for terminology and basics on oriented matroids).

Lemma 7.2. Let A be a finite complexified affine hyperplane arrangement, and Y as
above. Then

|Y | =
∑
k∈N

rkH k(M(A );Z).

Proof. As in Lemma 4.6, applying [12, Lemma 4.18 and Proposition 2], for all Y ∈ L(A )

we have
|{C ∈ T (A [Y ]) |X(Y,C) = Y }| = rkH codimY (M(AY );Z).

The claim follows from Theorem 1.21. ut

We now define the analogue of the map θ of Definition 4.19.

Definition 7.3. Let F,G ∈ F(A ) with F ≤ G and identify

A [F ] = AF = {H ∈ A |F ⊆ H },

in particular we have an inclusion A [G] ⊆ A [F ] and, correspondingly, a function
iF≤G : F(A [G]) → F(A [F ]) as in Definition 4.15, which induces a function jF≤G :
Sal(A [F ])→ Sal(A [G]) as in Definition 5.9.

Theorem 7.4 ([11, Lemma 3.2.8 and Theorem 4.2.1]). The assignment E : F(A ) →

ACop, E (F ) := Sal(A [F ]), E (F ≤ G) := jF≤G, defines a diagram of posets such that
colim E is poset isomorphic to Sal(A ).

The stratification of Sal(A ) is also defined along the lines of the preceding sections.

Definition 7.5. Define the map θ : Sal(A )→ Y as follows:

θ([F,C]) := (X(F, iF≤G(G)), σA [X(F,iF≤G(G))](G)),

where we have identified G = minL(A [G]).

Definition 7.6. Let A be a finite complexified affine hyperplane arrangement and define
a total ordering a on Y as in Definition 4.7. Define

S(Y,C) :=
{
[F,C] ∈ Sal(A )

∣∣∣∣ there is [G,K] ∈ Sal(A ) with
[F,C] ≤ [G,K] and θ([G,K]) = (Y, C)

}
,

N(Y,C) := S(Y,C) \
⋃

(Y ′,C′)a(Y,C)

S(Y ′,C′).

The arguments of Section 5 can now be adapted to the affine case, giving the following
analogue of Theorem 5.1.
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Theorem 7.7. Let A be a finite complexified affine hyperplane arrangement. There is an
isomorphism of posets

N(Y,C)
∼= F(A Y )op for all (Y, C) ∈ Y .

The analogue of Proposition 6.8 is proved in [2, Theorem 4.5.7 and Corollary 4.5.8], from
which it follows that the poset N op

(Y,C) is shellable, and therefore N(Y,C) admits an acyclic
matching with one critical cell in top dimension. Applying the Patchwork Lemma as in
Proposition 6.9 we obtain a perfect acyclic matching M of Sal(A ). We summarize:

Proposition 7.8. Let A be a finite complexified affine hyperplane arrangement. The
(affine) oriented matroid data of A intrinsically define a discrete Morse function on
Sal(A ) that collapses the Salvetti complex to a minimal complex.

Remark 7.9. The considerations of this section carry over to the general case of non-
stretchable affine oriented matroids, as in [12] for the nonaffine case (compare Re-
mark 7.1).
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[12] Delucchi, E.: Shelling-type orderings of regular CW-complexes and acyclic matchings of the
Salvetti complex. Int. Math. Res. Notices 2008, no. 6, art. ID rnm167, 39 pp. Zbl 1204.52021
MR 2427459

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1288.57022&format=complete
http://www.ams.org/mathscinet-getitem?mr=2958950
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0944.52006&format=complete
http://www.ams.org/mathscinet-getitem?mr=1744046
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0277.55003&format=complete
http://www.ams.org/mathscinet-getitem?mr=0422674
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1093.20003&format=complete
http://www.ams.org/mathscinet-getitem?mr=2215618
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1256.05039&format=complete
http://www.ams.org/mathscinet-getitem?mr=2989987
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1254.52010&format=complete
http://www.ams.org/mathscinet-getitem?mr=2959041
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1287.52019&format=complete
http://www.ams.org/mathscinet-getitem?mr=3114774
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1099.14043&format=complete
http://www.ams.org/mathscinet-getitem?mr=2183118
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1217.14001&format=complete
http://www.ams.org/mathscinet-getitem?mr=2722776
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1223.58014&format=complete
http://www.ams.org/mathscinet-getitem?mr=2753257
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1204.52021&format=complete
http://www.ams.org/mathscinet-getitem?mr=2427459


Minimality of toric arrangements 521

[13] Delucchi, E., Settepanella, S.: Combinatorial polar orderings and recursively orderable ar-
rangements. Adv. Appl. Math. 44, 124–144 (2010) Zbl 1270.52028 MR 2576843

[14] Dimca, A., Papadima, S.: Hypersurface complements, Milnor fibers and higher homo-
topy groups of arrangements. Ann. of Math. (2) 158, 473–507 (2003) Zbl 1068.32019
MR 2018927

[15] Ehrenborg, R., Readdy, M., Slone, M.: Affine and toric hyperplane arrangements. Discrete
Comput. Geom. 41, 481–512 (2009) Zbl 1168.52018 MR 2496314

[16] Gaiffi, G., F. Mori, Salvetti, M.: Minimal CW-complexes for complements to line arrange-
ments via discrete Morse theory. In: Topology of Algebraic Varieties and Singularities,
Contemp. Math. 538, Amer. Math. Soc., Providence, RI, 293–308 (2011) Zbl 1222.32052
MR 2777826

[17] Gaiffi, G., Salvetti, M.: The Morse complex of a line arrangement. J. Algebra 321, 316–337
(2009) Zbl 1160.32027 MR 2469365

[18] Hironaka, E.: Abelian coverings of the complex projective plane branched along configu-
rations of real lines. Mem. Amer. Math. Soc. 105, no. 502, vi+85 (1993) Zbl 0788.14054
MR 1164128

[19] Jambu, M., Terao, H.: Arrangements of hyperplanes and broken circuits. In: Singularities
(Iowa City, IA, 1986), Contemp. Math. 90, Amer. Math. Soc., Providence, RI, 147–162 (1989)
Zbl 0782.05021 MR 1000599

[20] Kozlov, D.: Combinatorial Algebraic Topology. Algorithms Comput. Math. 21, Springer,
Berlin (2008) Zbl 1130.55001 MR 2361455

[21] Looijenga, E.: Cohomology of M3 and M 1
3 . In: Mapping Class Groups and Moduli Spaces

of Riemann Surfaces (Göttingen, 1991/Seattle, WA, 1991), Contemp. Math. 150, Amer. Math.
Soc., Providence, RI, 205–228 (1993) Zbl 0814.14029 MR 1234266

[22] Moci, L.: Combinatorics and topology of toric arrangements defined by root systems. Rend.
Lincei Mat. Appl. 19, 293–308 (2008) Zbl 1194.14077 MR 2465681

[23] Moci, L.: A Tutte polynomial for toric arrangements. Trans. Amer. Math. Soc. 364, 1067–
1088 (2012) Zbl 1235.52038 MR 2846363

[24] Moci, L., Settepanella, S.: The homotopy type of toric arrangements. J. Pure Appl. Algebra
215, 1980–1989 (2011) Zbl 1213.52021 MR 2776437

[25] Orlik, P., Solomon, L.: Combinatorics and topology of complements of hyperplanes. Invent.
Math. 56, 167–189 (1980) Zbl 0432.14016 MR 0558866

[26] Orlik, P., Terao, H.: Arrangements of Hyperplanes. Grundlehren Math. Wiss. 300, Springer,
Berlin (1992) Zbl 0757.55001 MR 1217488

[27] Randell, R.: Morse theory, Milnor fibers and minimality of hyperplane arrangements. Proc.
Amer. Math. Soc. 130, 2737–2743 (2002) Zbl 1004.32010 MR 1900880

[28] Salvetti, M.: Topology of the complement of real hyperplanes in CN . Invent. Math. 88,
603–618 (1987) Zbl 0594.57009 MR 0884802

[29] Salvetti, M.: Arrangements of lines and monodromy of plane curves. Compos. Math. 68,
103–122 (1988) Zbl 0661.14038 MR 0962507

[30] Salvetti, M.: On the homotopy type of the complement to an arrangement of lines in C2. Boll.
Un. Mat. Ital. A (7) 2, 337–344 (1988) Zbl 1160.32027 MR 0966915

[31] Salvetti, M., Settepanella, S.: Combinatorial Morse theory and minimality of hyperplane
arrangements. Geom. Topol. 11, 1733–1766 (2007) Zbl 1134.32010 MR 2350466

[32] Yoshinaga, M.: Hyperplane arrangements and Lefschetz’s hyperplane section theorem. Kodai
Math. J. 30, 157–194 (2007) Zbl 1142.32012 MR 2343416

[33] Zaslavsky, T.: Facing up to arrangements: face-count formulas for partitions of space by
hyperplanes. Mem. Amer. Math. Soc. 1, no. 154, vii+102 pp. (1975) Zbl 0296.50010
MR 0357135

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1270.52028&format=complete
http://www.ams.org/mathscinet-getitem?mr=2576843
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1068.32019&format=complete
http://www.ams.org/mathscinet-getitem?mr=2018927
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1168.52018&format=complete
http://www.ams.org/mathscinet-getitem?mr=2496314
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1222.32052&format=complete
http://www.ams.org/mathscinet-getitem?mr=2777826
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1160.32027&format=complete
http://www.ams.org/mathscinet-getitem?mr=2469365
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0788.14054&format=complete
http://www.ams.org/mathscinet-getitem?mr=1164128
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0782.05021&format=complete
http://www.ams.org/mathscinet-getitem?mr=1000599
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1130.55001&format=complete
http://www.ams.org/mathscinet-getitem?mr=2361455
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0814.14029&format=complete
http://www.ams.org/mathscinet-getitem?mr=1234266
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1194.14077&format=complete
http://www.ams.org/mathscinet-getitem?mr=2465681
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1235.52038&format=complete
http://www.ams.org/mathscinet-getitem?mr=2846363
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1213.52021&format=complete
http://www.ams.org/mathscinet-getitem?mr=2776437
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0432.14016&format=complete
http://www.ams.org/mathscinet-getitem?mr=0558866
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0757.55001&format=complete
http://www.ams.org/mathscinet-getitem?mr=1217488
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1004.32010&format=complete
http://www.ams.org/mathscinet-getitem?mr=1900880
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0594.57009&format=complete
http://www.ams.org/mathscinet-getitem?mr=0884802
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0661.14038&format=complete
http://www.ams.org/mathscinet-getitem?mr=0962507
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1160.32027&format=complete
http://www.ams.org/mathscinet-getitem?mr=0966915
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1134.32010&format=complete
http://www.ams.org/mathscinet-getitem?mr=2350466
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1142.32012&format=complete
http://www.ams.org/mathscinet-getitem?mr=2343416
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0296.50010&format=complete
http://www.ams.org/mathscinet-getitem?mr=0357135

	Introduction
	Arrangements of hyperplanes
	Toric arrangements
	Discrete Morse theory
	Stratification of the toric Salvetti complex
	The topology of the strata
	Minimality of toric arrangements
	Application: minimality of affine arrangements
	References

