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Abstract. We endow the de Rham cohomology of any Poisson or Jacobi manifold with a natural
homotopy Frobenius manifold structure. This result relies on a minimal model theorem for multi-
complexes and a new kind of a Hodge degeneration condition.
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Introduction

The de Rham forms of a Poisson algebra (A-side of the Mirror Symmetry conjecture)
and the Dolbeault cochain complex of a Calabi–Yau algebra (B-side) carry a square-zero
order 2 differential operator endowing them with a Batalin–Vilkovisky algebra structure
(see [Kos85, Man99]).

A Frobenius manifold [Man99] is an algebraic structure that amounts to the op-
eradic action of the homology of the Deligne–Mumford–Knudsen compactification of
the moduli space of genus 0 curves H•(M0,n+1). Motivated by ideas from string the-
ory [BCOV94], Barannikov and Kontsevich showed in [BK98] that the Dolbeault coho-
mology of a Calabi–Yau manifold carries a natural Frobenius manifold structure (see also
[Cos05, LS07]).

Using the methods of Barannikov and Kontsevich together with a result of Mathieu
[Mat95], Merkulov [Mer98] endowed the de Rham cohomology of a symplectic manifold,
satisfying the hard Lefschetz condition, with a natural Frobenius manifold structure.

Getzler [Get95] proved that the Koszul dual of the operad H•(M0,n+1) is the coho-
mology of the moduli space of genus 0 curves H •+1(M0,n+1). Hence a coherent action
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of the latter spaces defines the notion of homotopy Frobenius manifold, with the required
homotopy properties [DV12].

The purpose of this paper is to prove the following theorem.

Theorem (3.7, 4.5). The de Rham cohomology of a Poisson manifold (respectively a
Jacobi manifold) carries a natural homotopy Frobenius manifold structure, which extends
the product induced by the wedge product and allows one to reconstruct the algebraic
homotopy type of the de Rham complex.

This theorem extends the previous results in three directions. First, it holds for any Pois-
son manifolds. Then, it provides us with higher geometrical invariants which faithfully
encode the initial algebraic structure. Finally, it extends to Jacobi manifolds, including
the example of contact manifolds.

To prove our main result, we develop further the homotopy theory of multicom-
plexes [Lap01, Mey78]. The notion of a multicomplex is a certain lift of the notion
of a spectral sequence. We prove a minimal model theorem for multicomplexes, which
amounts to a decomposition into a product of a minimal one and an acyclic trivial one.

Furthermore, we introduce a new condition, called gauge Hodge condition, which
ensures the uniform vanishing of the induced BV-operator (and its higher homotopies) on
the underlying homotopy groups. This gauge Hodge condition, suggested by the Givental
action formalism [Cos05, DSV13, KMS13], gives a necessary and sufficient condition for
the spectral sequence of a bicomplex to degenerate at the first page.

Retrospectively, one can interpret several homotopical results as gauge-type argu-
ments. In particular, the operator1 = JdDRJ in complex geometry [DGMS75] and gen-
eralised complex geometry [Cav05, Gua11], once written as −JdDRJ

−1, can be viewed
as gauge equivalent to −dDR. Formulas ensuring the degeneration of appropriate spectral
sequences for cyclic homology of Poisson manifolds [Pap00] and quantum de Rham co-
homology of Poisson manifolds [Shu04] have a gauge symmetry flavour to them as well.
Finally, the notion of gauge equivalence for Frobenius manifolds is studied in [CZ03],
where it is used to prove that the construction of Barannikov and Kontsevich applied to
two quasi-isomorphic dg BV-algebras yields two Frobenius manifold structures that can
be identified with one another.

Convention

Throughout the text, we work over a field K of characteristic 0.

1. Homotopy theory of multicomplexes

Definition 1.1 (Mixed complex and multicomplex). A mixed complex (A, d,1) is a
graded vector space A equipped with two linear operators d and 1 of respective degrees
−1 and 1, satisfying

d2
= 12

= d1+1d = 0.
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A multicomplex (A, d = 10,11,12, . . .) is a graded vector space A endowed with a
family of linear operators of respective degrees |1n| = 2n− 1 satisfying

n∑
i=0

1i1n−i = 0 for n ≥ 0.

Since d = 10 squares to zero, (A, d) is a chain complex. We call the underlying homol-
ogy groups H(A, d) the homotopy groups of the multicomplex A. A mixed complex is a
multicomplex where all the higher operators 1n vanish for n ≥ 2.

Definition 1.2 (∞-morphism). An ∞-morphism f : A  A′ of multicomplexes is a
family {fn : A→ A′}n≥0 of linear maps of respective degrees |fn| = 2n satisfying∑

k+l=n

fk1l =
∑
k+l=n

1′kfl for n ≥ 0.

The composite of two∞-morphisms f : A A′ and g : A′  A′′ is given by

(gf )n :=
∑
k+l=n

gkfl for n ≥ 0.

The associated category is denoted by∞-multicomp.

Notice that f0 : (A, d) → (A′, d ′) is a chain map. When the first map f0 is a
quasi-isomorphism (respectively an isomorphism), the ∞-morphism f is called an
∞-quasi-isomorphism (respectively an ∞-isomorphism), and denoted A

∼
 A′ (re-

spectively A
∼= A′). The invertible morphisms of the category ∞-multicomp are the

∞-isomorphisms. An∞-isomorphism whose first component is the identity map is called
an∞-isotopy and denoted A = A′.

Remark 1.3. Mixed complexes are differential graded modules over the free commu-
tative algebra D := S(1) generated by a degree 1 element. Viewed as an associative
algebra, it admits the quadratic presentation D = T (1)/(12). This algebra is Koszul
with Koszul dual coalgebra D¡

= T c(δ), the cofree coalgebra on a degree 2 generator
δ := s1.

Hence the notion of multicomplex is the notion of mixed complex up to homotopy
according to Koszul duality theory: a multicomplex is a differential graded module over
the cobar construction �D¡ of the Koszul dual coalgebra [LV12, Section 10.3.17].

In the same way, the above definition of∞-morphisms coincides with the homotopy
morphisms of the general theory [LV12, Section 10.2].

A homotopy retract consists of the following data:

(A, dA)h
$$ p //

(H, dH )
i

oo

where p is a chain map, where i is a quasi-isomorphism, and where h has degree 1,
satisfying

ip − idA = dAh+ hdA.
If moreover pi = idH , then it is called a deformation retract.
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Proposition 1.4 (Homotopy Transfer Theorem [Lap01]). Given a homotopy retract data
between two chain complexes A and H , and a multicomplex structure {1n}n≥1 on A, the
following formulae define a multicomplex structure on H :

1′n :=
∑

j1+···+jk=n

p1j1h1j2h . . . h1jk i for n ≥ 1, (1)

an∞-quasi-isomorphism i∞ = {in}n≥0 : H
∼
 A which extends the map i, where

in :=
∑

j1+···+jk=n

h1j1h1j2h . . . h1jk i for n ≥ 1,

and an∞-quasi-isomorphism p∞ = {pn}n≥0 : A
∼
 H which extends the map p, where

pn :=
∑

j1+···+jk=n

p1j1h1j2h . . . h1jkh for n ≥ 1.

Proof. The proof is a straightforward computation. One can also prove it using the in-
terpretation in terms of the Koszul duality theory of Remark 1.3. It is then a particular
example of the general Homotopy Transfer Theorem of [LV12, Section 10.3]. ut

Definition 1.5 (Hodge-to-de-Rham degeneration). Let (A, d,11,12, . . .) be a multi-
complex. A Hodge-to-de-Rham degeneration data consists of a homotopy retract

(A, d)h
$$ p //

(H(A), 0),
i

oo

satisfying ∑
j1+···+jk=n

p1j1h1j2h . . . h1jk i = 0 for n ≥ 1.

This data amounts to the vanishing of all the transferred operators 1′n on the underlying
homotopy groups of a multicomplex.

To any multicomplex (A,10,11,12, . . .), one associates the following chain com-
plex. Let Cp,q := Ap−q and ∂r := 1r : Cp,q → Cp−1+r,q−r . We consider the total
complex T̂ot(C)n :=

∏
p+q=n Cp,q , equipped with the differential ∂ :=

∑
r≥0 ∂r . (The

degrees of the respective 1n ensure that ∂ has degree −1.) The row filtration Fn defined
by considering the C•,k for k ≤ −n provides us with a decreasing filtration of the total
complex and thus with a spectral sequence Er(A).

Proposition 1.6 (Degeneration at page 1). The spectral sequence Er(A) associated to a
multicomplex (A, d = 10,11,12, . . .) degenerates at the first page if and only if there
exists a Hodge-to-de-Rham degeneration data.
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Proof. If the differentials dr vanish for r ≥ 1, then E1
= E2

= · · · = H(A, d). In
this case, the formulae [BT82, Chapter III] for the dr coincide with the formulae defining
the transferred 1′r . The other way round, one sees by induction from r = 1 that Er =
H(A, d) and dr = 1′r . ut

In the case of a mixed complex, C•,• is a bicomplex. So the Hodge-to-de-Rham condition
is equivalent to degeneration of the usual bicomplex spectral sequence at the first page.
This is the case for the classical Hodge-to-de-Rham spectral sequence of compact Kähler
manifolds.

A multicomplex (A, d = 10,11,12, . . .) is called minimal when d = 10 = 0. It is
called acyclic when the underlying chain complex (A, d) is acyclic, and it is called trivial
when 1n = 0 for n ≥ 1.

Theorem 1.7 (Minimal model). In the category∞-multicomp, any multicomplex A is
∞-isomorphic to the product of a minimal multicomplex H = H(A), given by the trans-
ferred structure, with an acyclic trivial multicomplex K .

Proof. This theorem is a direct consequence of [LV12, Theorem 10.4.5] applied to the
Koszul algebraD. More precisely, we consider a choice of representatives for the homol-
ogy classes H(A) ∼= H ⊂ A and a complement K ⊂ A of it. This decomposes the chain
complex A = H ⊕K , where the differential on H = H(A) is trivial and where the chain
complex K is acyclic. Let us denote the respective projections by p : A � H and by
q : A� K . This induces the following homotopy retract:

(A, dA)h
$$ p //

(H, 0).
i

oo

Using formula (1) of Proposition 1.4, we endow H with the transferred multicomplex
structure. So (H, 0, {1′n}n≥1) is a minimal multicomplex and (K, dK , 0) is an acyclic
trivial multicomplex. Their product in the category∞-multicomp is given by (H⊕K, dK ,
{1′n}n≥1). The projection q extends to an∞-morphism q∞ by qn := qh1n for n ≥ 1. By
the categorical property of the product, the maps p∞ and q∞ induce an∞-isomorphism
r : A H ⊕K , explicitly given by r0 := p + q and

rn := pn + qn =
∑

j1+···+jk=n

p1j1h1j2h . . . h1jkh+ qh1n for n ≥ 1. (2)

ut

2. Gauge Hodge condition

We consider the algebra End(A)[[z]] := Hom(A,A)⊗K[[z]] of formal power series with
coefficients in the endomorphism algebra of A. One can view the∞-endomorphisms of
a multicomplex A as elements of End(A)[[z]]. Under this interpretation, their composite
corresponds to the product of the associated series.
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Theorem 2.1. A multicomplex (A, d,11,12, . . .) admits a Hodge-to-de-Rham degen-
eration data if and only if there exists an element R(z) :=

∑
n≥1 Rnz

n in End(A)[[z]]
satisfying

eR(z)de−R(z) = d +11z+12z
2
+ · · · . (3)

Proof. The proof is built from the following three equivalences.

Step 1. We first prove that there exists a series R(z) :=
∑
n≥1 Rnz

n
∈ End(A)[[z]]

satisfying condition (3) if and only if there exists an∞-isotopy

(A, d, 0, . . .) = (A, d,11,12, . . .)

between A with trivial structure and A with its multicomplex structure.
Condition (3) is equivalent to eR(z)d = (d +11z +12z

2
+ · · · )eR(z), which means

that eR(z) is the required∞-isotopy.

Step 2. Given a deformation retract for A onto its underlying homotopy groups H(A),
there exists an∞-isotopy (A, d, 0, . . .) = (A, d,11,12, . . .) if and only if there exists
an∞-isotopy

(H(A), 0, 0, . . .) = (H(A), 0,1′1,1
′

2, . . .).

The homotopy transfer theorem of Proposition 1.4 provides us with the following diagram
in∞-multicomp:

(A, d, 0, . . .) =

ϕ
// (A, d,11,12, . . .)

∼p∞

��
(H(A), 0, 0, . . .) =

ψ
//

i ∼

OO

(H(A), 0,1′1,1
′

2, . . .)

So given an∞-isotopy ϕ, the composite ψ := p∞ϕi is an∞-isotopy. Conversely, sup-
pose we are given an ∞-isotopy ψ . The map p + q : A → H(A) ⊕ K is a map of
chain complexes, hence it is an ∞-isomorphism between these two trivial multicom-
plexes. Then the map ψ + idK defined by idH + idK for n = 0 and by ψn for n ≥ 1
defines an ∞-isomorphism between H(A) ⊕ K with trivial multicomplex structure to
H(A)⊕K with the transferred structure. Finally, we consider the inverse∞-isomorphism

r−1
: H(A)⊕K

∼= A of the∞-isomorphism r given at (2) in the proof of Theorem 1.7.
The composite r−1 (ψ + idK) (p + q) of these three maps provides us with the required
∞-isotopy.

Step 3. Let us now prove that an∞-isotopy

(H(A), 0, 0, . . .) = (H(A), 0,1′1,1
′

2, . . .)

exists if and only if the (transferred) operators 1′n vanish for n ≥ 1.
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Let us denote by f : (H(A), 0, 0, . . .) = (H(A), 0,1′1,1
′

2, . . .) the given∞-isotopy.
The defining condition ∑

k+l=n

1′kfl =
∑
k+l=n

fk1l = 0 for n ≥ 1

implies 1′n = 0 for n ≥ 1, by a direct induction. Conversely, the identity idH(A) provides
us the required∞-isotopy. ut

We define the gauge Hodge condition to be the existence of a series R(z) ∈ End(A)[[z]]
satisfying the conjugation condition (3).

Remarks 2.2. � Notice that this proof actually shows that, under the gauge Hodge con-
dition, every deformation retract is a Hodge-to-de-Rham degeneration data. In this
case, the transferred multicomplex structure vanishes uniformly, i.e. independently of
the choices of representatives of the homotopy groups. This theorem solves a question
raised at the end of [DSV13].

� When (A, d,1) is a mixed complex equipped with a Hodge-to-de-Rham degeneration
data, the series R(z) defined by the formula

R(z) := − log
(

1− h1z+
∑
n≥1

ip(1h)nzn
)

satisfies relation (3) of Theorem 2.1. Explicitly, R(z) =
∑
n≥1 rnz

n, where

rn =
(h1)n

n
− n

n∑
l=1

(h1)l−1ip(1h)n−l+1

l
.

� A BV-algebra equipped with a series R(z) :=
∑
n≥1 Rnz

n satisfying (3) is called a
BV/1-algebra in [KMS13], where this notion is studied in detail.

3. De Rham cohomology of Poisson manifolds

Definition 3.1 (Frobenius manifold, [Man99]). A (formal) Frobenius manifold is an al-
gebra over the operad H•(M0,n+1) made up of the homology of the Deligne–Mumford–
Knudsen moduli spaces of stable genus 0 curves.

This algebraic structure amounts to giving a collection of symmetric multilinear maps
µn : A

⊗n
→ A, for n ≥ 2, of degrees |µn| := 2(n − 2) satisfying some quadratic

relations (see [Man99] for instance). It is also called a hypercommutative algebra in the
literature. (Notice that we do not require here any non-degenerate pairing, nor any unit).

The operad H•(M0,n+1) is Koszul, with Koszul dual cooperad H •+1(M0,n+1), the
cohomology groups of the moduli spaces of genus 0 curves. Algebras over the linear
dual operad H•(M0,n+1) are called gravity algebras in the literature. The operadic cobar
construction �H •(M0,n+1)

∼
→ H•(M0,n+1) provides a resolution of the former operad

(see [Get95]).
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Definition 3.2 (Homotopy Frobenius manifold). A homotopy Frobenius manifold is an
algebra over the operad �H •(M0,n+1).

The operations defining such a structure are parametrised by H •(M0,n+1). Hence, a ho-
motopy Frobenius manifold structure on a chain complex with trivial differential is made
up of an infinite sequence of strata of multilinear operations, whose first stratum forms a
Frobenius manifold.

Definition 3.3 (dg BV-algebra). A dg BV-algebra (A, d,∧,1) is a differential graded
commutative algebra equipped with a square-zero degree 1 operator 1 of order less
than 2.

The data of a dg BV-algebra amounts to a mixed complex data (A, d,1) together with
a compatible commutative product. We refer the reader to [LV12, Section 13.7] for more
details on this notion.

To any homotopy Frobenius manifold H , we can associate a rectified dg BV-algebra
Rec(H) (see [DV12, Section 6.3]).

Theorem 3.4 ([DV12]). Let (A, d,∧,1) be a dg BV-algebra equipped with a Hodge-
to-de-Rham degeneration data. The underlying homotopy groupsH(A, d) carry a homo-
topy Frobenius manifold structure whose rectified dg BV-algebra is homotopy equivalent
to A.

This result shows that the transferred homotopy Frobenius manifold faithfully encodes
the homotopy type of the dg BV-algebra A. It provides a refinement of a result of Baran-
nikov and Kontsevich [BK98], where only the underlying Frobenius manifold structure is
considered. This first stratum of operations can be described in terms of sums of labelled
graphs (see [LS07]).

Proposition 3.5 ([Kos85]). Let (M,ω) be a Poisson manifold. Its de Rham complex
(�•(M), dDR,∧,1) is a dg BV-algebra, with the operator 1 defined by

1 := i(ω)dDR − dDRi(ω) = [i(ω), dDR],

where i(−) : �•(M)→ �•−2(M) denotes the contraction operator.

In particular, �•(M) becomes a mixed complex, the canonical double complex of Bryl-
inski [Bry88].

Koszul’s proof of this result relies on the following relation between the contraction
operators, the Schouten–Nijenhuis bracket, and the de Rham differential, which we shall
use throughout the paper.

Proposition 3.6 ([Kos85]). For every smooth manifold M , and any polyvector fields
ω1, ω2,

i([ω1, ω2]) = −[[i(ω2), d], i(ω1)].
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Theorem 3.7. The de Rham cohomology of a Poisson manifold (M,ω) carries a natu-
ral homotopy Frobenius manifold structure whose rectified dg BV-algebra is homotopy
equivalent to (�•(M), dDR,∧,1).

Proof. The operators of Proposition 3.5 satisfy

[i(ω), [i(ω), dDR]] = −[[i(ω), dDR], i(ω)] = i([ω,ω]) = 0,

where i(−) denotes the contraction of differential forms by vector fields. This, together
with the fact that

eR(z)de−R(z) = eadR(z)(d) for any R(z) ∈ End(A)[[z]],

immediately implies that

ei(ω)zdDRe
−i(ω)z

= dDR +1z.

So by Theorem 2.1, �•(M) admits a Hodge-to-de-Rham degeneration data, and Theo-
rem 3.4 applies. ut

This result refines the Lie formality theorem of [ST08], since the transferred L∞-algebra
structure is trivial. Note that gauge-theoretic methods were already used (independently)
in [FM12] to obtain a conceptual proof of the former theorem.

A direct corollary of Theorem 3.7 and Proposition 1.6 is that the spectral sequence
for the double complex (�•(M), dDR,1) degenerates on the first page for every Poisson
manifold M [FIdL96].

4. De Rham cohomology of Jacobi manifolds

We extend the above arguments even further to treat the case of Jacobi manifolds, which
is a generalisation of the notion of Poisson manifolds including the case of contact mani-
folds.

Definition 4.1 (Jacobi manifold [Lic78]). A Jacobi manifold is a smooth manifold M
equipped with a pair

(ω,E) ∈ 0(32(TM))× 0(TM),

for which
[ω,ω] = 2E ∧ ω, [E,ω] = 0.

We consider again the space �(M) of differential forms equipped with the order 2 op-
erator 1 := [i(ω), dDR]. It is easy to check that it anticommutes with the de Rham dif-
ferential: dDR1 + 1dDR = 0. Unlike the previous case of Poisson manifolds, the op-
erator 1 does not square to 0 on every form of a Jacobi manifold. The vector field E
induces a homotopy for this relation. Hence the differential forms actually carry a homo-
topy BV-algebra structure.
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Definition 4.2 (Commutative BV∞-algebra [Kra00]). A commutative BV∞-algebra

(A,∧, d = 10,11,12, . . .)

is a dg commutative algebra A equipped with operators 1n of degree 2n− 1 and order at
most n+ 1, satisfying

n∑
i=0

1i1n−i = 0 for n ≥ 0.

In particular, the operators 1n of a commutative BV∞-algebra A make it a multicom-
plex. A commutative BV∞-algebra is an example of a homotopy BV-algebra [GCTV12,
DV12], where all the structural operations vanish except for the commutative product and
the operators 1n.

Theorem 4.3. Let (M,ω,E) be a Jacobi manifold. Its de Rham complex(
�•(M),∧, dDR,11 := [i(ω), dDR],12 := i(E)i(ω)

)
is a commutative BV∞-algebra.

Proof. Let us denote 10 = dDR, 11 = 1, and 12 = i(E)i(ω). Clearly, (10)
2
= 0, and

since

dDR1+1dDR = dDR(i(ω)dDR − dDRi(ω))+ (i(ω)dDR − dDRi(ω))dDR = 0,

we have 1011 +1110 = 0. A similar computation shows that the de Rham differential
anti-commutes with i(E):

i(E)1+1i(E) = i(E)(i(ω)dDR − dDRi(ω))+ (i(ω)dDR − dDRi(ω))i(E)

= i(ω)i(E)dDR + (dDRi(E)− LE)i(ω)+ i(ω)(−i(E)dDR + LE)− dDRi(E)i(ω)

= −LEi(ω)+ i(ω)LE = −i([E,ω]) = 0.

We note that

[i(ω),1] = −[1, i(ω)] = −[[i(ω), dDR], i(ω)] = i([ω,ω]) = 2i(E∧ω) = 2i(E)i(ω).
(4)

Furthermore, we have

12
= dDRi(ω)dDRi(ω)+ i(ω)dDRi(ω)dDR − dDRi(ω)

2dDR. (5)

To simplify the latter expression, we compute

[i(ω),1] = i(ω)(i(ω)dDR − dDRi(ω))− (i(ω)dDR − dDRi(ω))i(ω)

= −2i(ω)dDRi(ω)+ i(ω)
2dDR + dDRi(ω)

2,

hence
2i(ω)dDRi(ω) = i(ω)

2dDR + dDRi(ω)
2
− 2i(E)i(ω),
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which allows us to simplify formula (5) into

12
+ i(E)i(ω)dDR + dDRi(E)i(ω) = 0,

which is 12
1 +1210 +1012 = 0. Also,

1112 +1211 = 1i(E)i(ω)+ i(E)i(ω)1

= −i(E)1i(ω)+ i(E)i(ω)1 = i(E)[i(ω),1] = 2i(E)2i(ω) = 0

and
12

2 = i(ω)i(E)i(ω)i(E) = i(ω)
2i(E)2 = 0.

Therefore, the operators10,11,12 and1n = 0 for n > 2 endow�•(M)with a structure
of a multicomplex. It is clear that 10 = dDR is a differential operator of order at most 1,
and that11 and12 are differential operators of order at most 2 and at most 3 respectively.

ut

The following statement is a special case of the general homotopy transfer theo-
rem [DV12, Th. 6.2] for homotopy BV-algebras.

Proposition 4.4 ([DSV13, Prop. 10]). Let (A,∧, d = 10,11,12, . . .) be a commu-
tative BV∞-algebra admitting a Hodge-to-de-Rham degeneration data. The underlying
homotopy groups H(A, d) carry a homotopy Frobenius manifold structure extending the
induced commutative product.

We shall use this result to deduce the following theorem.

Theorem 4.5. The de Rham cohomology of a Jacobi manifold carries a natural homo-
topy Frobenius manifold structure extending the product induced by the wedge product.

Proof. By formula (4),

[i(ω), [i(ω), dDR]] = [i(ω),11] = 212

and [i(ω), [i(ω), [i(ω), dDR]]] = [i(ω), 2i(E)i(ω)] = 0. Therefore,

ei(ω)z dDR e
−i(ω)z

= eadi(ω)z(dDR) = 10 +11z+12z
2.

By Theorem 2.1, we conclude that �•(M) admits a Hodge-to-de-Rham degeneration
data, so Theorem 4.3 and Proposition 4.4 apply, which completes the proof. ut

Remarks 4.6. � One can also consider the subspace of basic differential forms �•B(M)
defined by i(E)(α) = i(E)(dDRα) = 0. The various operators restrict to this space and
(�•B(M), dDR,∧,1) forms a dg BV-algebra [CMdL98]. Hence the basic de Rham co-
homology of a Jacobi manifold carries a natural homotopy Frobenius manifold struc-
ture, whose rectified dg BV-algebra is homotopy equivalent to the basic de Rham al-
gebra (�•B(M), dDR,∧,1).
For the so-called regular Jacobi manifolds [CMdL98], this result is literally contained
in Theorem 3.7. A Jacobi manifold is regular if the space of leaves M̃ = M/E can be
defined as a smooth manifold; in this case, it automatically inherits a Poisson structure
from the Jacobi structure on M , and �•B(M) ' �

•(M̃).
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� The homotopy Frobenius structure on the de Rham cohomology of a Poisson manifold,
as in Theorem 3.7, and on the basic de Rham cohomology of a Jacobi manifold, can
also be described in a different way. In both cases, there is a structure of a BV/1-
algebra, a notion defined in [KMS13], on the level of differential forms. In [KMS13],
an explicit formula for a quasi-isomorphism between the operads H•(M0,n+1) and
BV/1 is given. Therefore, the de Rham algebra carries a Frobenius manifold structure,
and this structure induces a homotopy Frobenius manifold structure on the de Rham
cohomology.
It is an interesting question whether it is possible to match the two approaches on
the level of formulas. Since one of the ways to obtain this quasi-isomorphism uses
Givental theory, one natural idea would be to describe the BV∞-structure in terms of
cohomological field theory and infinitesimal Givental operators. The first step in that
direction is made in [DSV13], where this kind of description is given for commutative
BV∞-algebras.
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