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Abstract. We lower substantially the strength of the assumptions needed for the validity of cer-
tain results in category theory and homotopy theory which were known to follow from Vopěnka’s
principle. We prove that the necessary large-cardinal hypotheses depend on the complexity of the
formulas defining the given classes, in the sense of the Lévy hierarchy. For example, the statement
that, for a class S of morphisms in a locally presentable category C of structures, the orthogonal
class of objects is a small-orthogonality class (hence reflective) can be proved in ZFC if S is 61,
while it follows from the existence of a proper class of supercompact cardinals if S is 62, and
from the existence of a proper class of what we call C(n)-extendible cardinals if S is 6n+2 for
n ≥ 1. These cardinals form a new hierarchy, and we show that Vopěnka’s principle is equivalent
to the existence of C(n)-extendible cardinals for all n. As a consequence of our approach, we prove
that the existence of cohomological localizations of simplicial sets, a long-standing open problem
in algebraic topology, is implied by the existence of arbitrarily large supercompact cardinals. This
follows from the fact that E∗-equivalence classes are 62, where E denotes a spectrum treated as
a parameter. In contrast with this fact, E∗-equivalence classes are 61, from which it follows (as is
well known) that the existence of homological localizations is provable in ZFC.

Keywords. Supercompact cardinal, extendible cardinal, Lévy hierarchy, accessible category, re-
flective subcategory, cohomological localization

Introduction

The answers to certain questions in category theory turn out to depend on set theory.
A typical example is whether every full limit-closed subcategory of a complete category
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C is reflective. On the one hand, there are counterexamples involving the category of
topological spaces and continuous functions [45]. On the other hand, as explained in [2],
an affirmative answer to this question for locally presentable categories is implied by a
large-cardinal axiom called Vopěnka’s principle (stating that, for every proper class of
structures of the same type, there exists a nontrivial elementary embedding between two
of them).

Large cardinals were used in a similar way in [17] to show that the existence of coho-
mological localizations, a famous unsolved problem, follows from Vopěnka’s principle.
Other relevant consequences of Vopěnka’s principle in algebraic topology were found in
[15], [16], [19], [43]. However, the precise consistency strength of many implications of
this axiom in category theory or homotopy theory is not known, and in some cases the
question of whether such statements are provable in ZFC remains unanswered. A relevant
step in this direction was made in [42].

In another direction, it was pointed out in [9] that certain results about accessible
categories that follow from Vopěnka’s principle are still true under much weaker large-
cardinal assumptions. This claim is based on the following finding, which is the subject
of the present article: the assumptions needed to infer reflectivity or smallness of orthog-
onality classes in accessible categories may depend on the complexity of the formulas in
the language of set theory defining these classes. Here “complexity” is meant in the sense
of the Lévy hierarchy [31, Ch. 13]. Recall that 6n formulas and 5n formulas are defined
inductively as follows: 50 formulas are the same as 60 formulas, namely formulas in
which all quantifiers are bounded; 6n+1 formulas are of the form ∃x ϕ where ϕ is 5n,
and 5n+1 formulas are of the form ∀x ϕ where ϕ is 6n.

For example, as we prove in this article, if S is a full limit-closed subcategory of
a locally presentable category C of structures, and S can be defined with a 62 formula
(possibly with parameters), then the existence of a proper class of supercompact cardinals
suffices to ensure reflectivity of S. Moreover, remarkably, if S can be defined with a 61
formula, then the reflectivity of S is provable in ZFC.

In the case of a more complex definition of S, its reflectivity follows from the ex-
istence of a proper class of what we call C(n)-extendible cardinals, for some n. These
cardinals form a natural hierarchy ranging from extendible cardinals [31, 20.22] when
n = 1 to Vopěnka’s principle. Indeed, as stated in Corollary 6.9 below, Vopěnka’s princi-
ple is equivalent to the claim that there exists a C(n)-extendible cardinal for every n < ω.
We denote by C(n) the proper class of cardinals α such that Vα is a 6n-elementary sub-
model of the set-theoretic universe V , and say that a cardinal κ is C(n)-extendible if
κ ∈ C(n) and for all λ > κ in C(n) there is an elementary embedding j : Vλ → Vµ for
some µ ∈ C(n) with critical point κ , such that j (κ) ∈ C(n) and j (κ) > λ.

By way of this approach, we prove that the existence of cohomological localizations
of simplicial sets follows from the existence of a proper class of supercompact cardi-
nals. This result uses the fact, proved in Theorem 9.3 below, that for every (Bousfield–
Friedlander) spectrum E the class of E∗-acyclic simplicial sets (where E∗ denotes the
reduced cohomology theory represented by E) can be defined by means of a 62 formula
with E as a parameter. However, the class of E∗-acyclic simplicial sets (where E∗ now
denotes homology) can be defined with a 61 formula. This is consistent with the fact
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that the existence of homological localizations can be proved in ZFC, as done indeed by
Bousfield [11]; see also [5].

The reason why classes of homology acyclics have lower complexity than classes of
cohomology acyclics is that, for a fibrant simplicial set Y with basepoint, the statement
“all pointed maps f : Sn→ Y are nullhomotopic”, where Sn is the simplicial n-sphere, is
absolute between transitive models of ZFC, since a simplicial map Sn→ Y is determined
by a single n-simplex of Y satisfying certain conditions expressible in terms of Y with
bounded quantifiers (cf. [40, 3.6]). However, ifX and Y are simplicial sets with basepoints
x0 and y0, then the statement “all pointed maps f : X → Y are nullhomotopic” involves
unbounded quantifiers, since it is formalized, for example, by stating that

∀f (f is a map from X to Y → ∃h (h is a homotopy from f to y0)).

Therefore, for a spectrumE, there might existE∗-acyclic simplicial sets in a transitive
model of ZFC containingE that fail to beE∗-acyclic in some larger model, while the class
of E∗-acyclic simplicial sets is absolute. See Section 9 for a detailed discussion of these
facts.

Another consequence of this article is that the main theorem of [9] can now be proved
for reflections, not necessarily epireflections. Thus, if there are arbitrarily large super-
compact cardinals, then every reflection L on an accessible category of structures is an
F-reflection for some set F of morphisms, provided that the class ofL-equivalences is 62
(see Corollary 8.5 below). Boldface types 6n or 5n are used to denote the fact that the
corresponding formulas may contain parameters.

We also prove that the Freyd–Kelly orthogonal subcategory problem [25], asking if
S⊥ is reflective for a class of morphisms S in a suitable category, has an affirmative
answer in ZFC for 61 classes in locally presentable categories of structures. It is also true
for 62 classes if a proper class of supercompact cardinals is assumed to exist, and for
6n+2 classes if there is a proper class of C(n)-extendible cardinals for n ≥ 1. We say that
S is definable with sufficiently low complexity to encompass all these cases in a single
phrase.

Essentially the same arguments hold in the homotopy category of simplicial sets,
hence yielding a simpler and more accurate answer than in [17] (where Vopěnka’s prin-
ciple was used) to Farjoun’s question in [20] of whether every homotopy reflection on
simplicial sets is an f -localization for some map f . Localizations with respect to sets of
maps were constructed in [12], [21], [28], and the extension to proper classes of maps
was carried out in [17] using Vopěnka’s principle. Here we prove that localizations with
respect to proper classes of maps exist whenever the given classes are definable with
sufficiently low complexity.

We warn the reader that in this article, as well as in [9], complexity of classes of
objects or morphisms in an accessible category C is meant under the assumption that C
is accessibly embedded into a category of structures. This happens canonically with the
category of simplicial sets and with the category of Bousfield–Friedlander spectra, or,
more generally, with categories of models of basic theories in any language. Terminology
and background can be found in [2, 5.B], where it is proved that every accessible category
is equivalent to one which is accessibly embedded into a category of structures.
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1. Categories of structures

Most of the results in this article refer to categories of structures (possibly many-sorted,
in a language of any cardinality). For the convenience of the reader, we start by recall-
ing terminology and background about structures and models in this section. Additional
details can be found, among many other sources, in [2, Ch. 5] and [31, Ch. 12].

For a regular cardinal λ, a λ-ary S-sorted signature 6 consists of a set S of sorts, a
set 6op of operation symbols, another set 6rel of relation symbols, and an arity function
that assigns to each operation symbol an ordinal α < λ, a sequence 〈si : i ∈ α〉 of input
sorts and an output sort s ∈ S, and to each relation symbol an ordinal β < λ and a
sequence of sorts 〈sj : j ∈ β〉. An operation symbol with α = ∅ is called a constant
symbol. A signature 6 is called operational if 6rel = ∅ and relational if 6op = ∅.

Given an S-sorted signature 6, a 6-structure is a triple

X = 〈{Xs : s ∈ S}, {σX : σ ∈ 6op}, {ρX : ρ ∈ 6rel}〉

consisting of an underlying S-sorted set or universe, denoted by {Xs : s ∈ S} or (Xs)s∈S ,
together with a function

σX :
∏
i∈α

Xsi → Xs

for each operation symbol σ ∈ 6op of arity 〈si : i ∈ α〉 → s (including a distinguished
element of Xs for each constant symbol of sort s), and a set

ρX ⊆
∏
j∈β

Xsj

for each relation symbol ρ ∈ 6rel of arity 〈sj : j ∈ β〉.
A homomorphism f : X → Y between two 6-structures is an S-sorted function

(fs : Xs → Ys)s∈S preserving operations and relations. For each signature 6, the cat-
egory of 6-structures and their homomorphisms will be denoted by Str6.

Given a λ-ary S-sorted signature6, the language Lλ(6) consists of sets of variables,
terms, and formulas, which are defined as follows. There is a family W = {Ws : s ∈ S}

of sets of cardinality λ, the elements of Ws being variables of sort s. One defines terms
by declaring that each variable is a term and, for each operation symbol σ ∈ 6op of arity
〈si : i ∈ α〉 → s and each collection of terms τi of sort si , the expression σ(τi)i∈α is a
term of sort s. Atomic formulas are expressions of the form τ1 = τ2 and ρ(τj )j∈β , where
ρ ∈ 6rel is a relation symbol of arity 〈sj : j ∈ β〉 and each τj is a term of sort sj with
j ∈ β. Formulas are built in finitely many steps from the atomic formulas by means of
logical connectives and quantifiers. Thus, if {ϕi : i ∈ I } are formulas and |I | < λ, then so
are the conjunction

∧
i∈I ϕi and the disjunction

∨
i∈I ϕi . Quantification is allowed over

sets of variables of cardinality smaller than λ; that is, (∀(xi)i∈I ) ϕ and (∃(xi)i∈I ) ϕ are
formulas if ϕ is a formula and |I | < λ.

Variables that appear unquantified in a formula are called free. If a formula is denoted
by ϕ(xi)i∈I , it is meant that each xi is a free variable.
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Each language Lλ(6) determines a satisfaction relation between 6-structures and
formulas with an assignment for their free variables. If ϕ(xi)i∈I is a formula where each
xi is a free variable of sort si and X is a 6-structure, a variable assignment, denoted by
xi 7→ ai , is a function a : I →

⋃
s∈S Xs such that a(i) ∈ Xsi for all i. Satisfaction of

a formula ϕ in a 6-structure X is defined inductively, starting with the atomic formulas
and quantifying over subsets of

⋃
s∈S Xs of cardinality smaller than λ (see [2, §5.26] for

details). We write X |= ϕ(ai)i∈I if ϕ is satisfied in X under an assignment xi 7→ ai for
all its free variables xi .

A formula without free variables is called a sentence. A set of sentences is called
a theory. A model of a theory T in a language Lλ(6) is a 6-structure satisfying all
sentences of T . For each theory T , we denote by Mod T the full subcategory of Str6
consisting of all models of T .

A language Lλ(6) is called finitary if λ = ω (the least infinite cardinal); otherwise it
is infinitary. An especially important finitary language is the language of set theory. This
is the first-order finitary language corresponding to the signature with one sort, namely
“sets”, and one binary relation symbol (“membership”). Hence the atomic formulas are
x = y and x ∈ y, where x and y are sets.

Define, recursively on the class of ordinals, V0 = ∅, Vα+1 = P(Vα) for all α, where
P denotes the power-set operation, and Vλ =

⋃
α<λ Vα if λ is a limit ordinal. Then every

set is an element of some Vα (see [30, Lemma 9.3] or [31, Lemma 6.3]). The rank of a
set X is defined as the least ordinal α such that X ∈ Vα+1. Hence Vα is the set of all sets
whose rank is less than α. The universe V of all sets is the union of Vα for all ordinals α.

Everything in this article is formulated in ZFC (Zermelo–Fraenkel set theory with the
axiom of choice). Thus, a class consists of all sets for which a certain formula of the
language of set theory is satisfied, possibly with parameters. More precisely, a class C is
defined by a formula ϕ(x, y1, . . . , yn) with parameters p1, . . . , pn if

C = {x : ϕ(x, p1, . . . , pn)},

where satisfaction, if unspecified, is meant in the universe V . The sets p1, . . . , pn are
fixed values of y1, . . . , yn under every variable assignment. To simplify the notation, we
often replace p1, . . . , pn by a single parameter p = {p1, . . . , pn}. A class which is not
a set is called a proper class. Each set A is definable with A itself as a parameter by
A = {x : x ∈ A}.

In this article, a model of ZFC will be a pair 〈M,∈〉 where M is a set or a proper
class and ∈ is the restriction of the membership relation to M , in which the formalized
ZFC axioms are satisfied. Thus, if we neglect the fact that M can be a proper class, we
may view 〈M,∈〉 as a 6-structure where 6 is the relational signature of the language of
set theory, and in fact a model of the theory consisting of the formalized ZFC axioms. In
particular, 〈V,∈〉 itself is such a model.

A class M is transitive if every element of an element of M is an element of M . We
shall always assume that models of ZFC are transitive, but not necessarily inner (a model
is called inner if it is transitive and contains all the ordinals).
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2. The Lévy hierarchy

In this section we specialize to the language of set theory. Given two classes M ⊆ N , we
say that a formula ϕ(x1, . . . , xk) is absolute betweenM and N if, for all a1, . . . , ak inM ,

N |= ϕ(a1, . . . , ak) if and only if M |= ϕ(a1, . . . , ak).

We say that a formula ϕ(x1, . . . , xk) is upward absolute for transitive models of some
theory T if, given any two such models M ⊆ N and given a1, . . . , ak ∈ M for which
ϕ(a1, . . . , ak) is true in M , ϕ(a1, . . . , ak) is also true in N . And we say that ϕ is down-
ward absolute if, in the same situation, if ϕ(a1, . . . , ak) holds in N then it holds in M .
A formula is absolute if it is both upward and downward absolute. If T is unspecified,
then it should be understood that T is by default the set of all formalized ZFC axioms. If
it is meant, on the contrary, that T = ∅, then we speak of absoluteness between transitive
classes.

A class C is upward absolute between transitive classes M ⊆ N if it is definable,
possibly with a set p of parameters, by a formula that is upward absolute between M
andN . Downward absolute classes are defined analogously, and we say that C is absolute
between M and N if it is upward absolute and downward absolute, hence allowing the
possibility that C = {x : ϕ(x, p)} = {x : ψ(x, p)} where ϕ is upward absolute and ψ is
downward absolute. In this situation, N |= x ∈ C if and only if M |= x ∈ C, assuming
that p ∈ M .

The following terminology is due to Lévy (see [31, Ch. 13]). A formula of the lan-
guage of set theory is said to be 60 if all its quantifiers are bounded, that is, of the form
∃x ∈ a or ∀x ∈ a. Then6n formulas and5n formulas are defined inductively as follows:
50 formulas are the same as 60 formulas; 6n+1 formulas are of the form (∃x1 . . . xk) ϕ,
where ϕ is 5n; and 5n+1 formulas are of the form (∀x1 . . . xk) ϕ, where ϕ is 6n. We say
that a formula is 6n ∧5n if it is a conjunction of a 6n formula and a 5n formula.

Classes can be defined by distinct formulas and, more generally, properties and math-
ematical statements can be formalized in the language of set theory in many different
ways. We say that a class C is 6n-definable (or, briefly, that C is 6n) if there is a 6n
formula ϕ(x, y) such that C = {x : ϕ(x, p)} for a set p of parameters. Similarly, a class
is 5n if it can be defined by some 5n formula with parameters. A class is called 1n if
it is both 6n and 5n. For notational convenience, if no parameters are involved, then we
write that a class C is 6n, 5n or 1n, using lightface types.

The same terminology is used with statements or informal expressions; for example,
“λ is a cardinal” is a 51 statement [31, Lemma 13.13], while “f is a function”, “α is an
ordinal” or “ω is the least nonzero limit ordinal” are 10 statements [31, Lemma 12.10].

If a class C is 61 with a set p of parameters, then it is upward absolute for transitive
classes containing p. In fact, given a 61 formula ∃x ϕ(x, y) where ϕ is 60 and given a
set p of parameters, suppose that M ⊆ N are transitive classes with p ∈ M . Then, if
M |= ∃x ϕ(x, p), we may infer that N |= ∃x ϕ(x, p) as well, since if a ∈ M witnesses
that ϕ(a, p) holds in M , then a ∈ N and ϕ(a, p) also holds in N , since ϕ is absolute.

Conversely, if a class C is upward absolute for transitive models of some finite frag-
ment ZFC∗ of ZFC, then it is 61. To prove this claim, suppose that C is defined by a
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formula ϕ(x, y) that is upward absolute for transitive models of ZFC∗ with a set p of
parameters. Then C is also defined by the following 61 formula:

∃M [M is transitive ∧ {x, p} ⊂ M ∧ M |= (ϕ(x, p) ∧ (
∧

ZFC∗))]. (2.1)

Indeed, if a ∈ C then ϕ(a, p) holds in V , and it follows from the Reflection Principle [31,
Theorem 12.14] that there is an ordinal α with {a, p} ∈ Vα such that Vα |= ϕ(a, p) and
all the sentences in the finite set ZFC∗ are satisfied in Vα , so Vα witnesses (2.1). And, if a
setM witnesses (2.1) for some variable assignment x 7→ a, then, since ϕ(x, y) is upward
absolute for transitive models of ZFC∗, we infer that ϕ(a, p) holds in V , that is, a ∈ C.

Similarly, if a class C is defined by a51 formula with parameters, then it is downward
absolute for transitive classes containing the parameters, and, if C is downward absolute
for transitive models of some finite fragment of ZFC, then it is 51, analogously to (2.1).
We conclude that 11 classes are absolute for transitive classes containing the parameters.

The following are examples of nonabsoluteness which will be relevant in this article.

Example 2.1. The class of topological spaces is 51, since the union of every collection
of open sets must be open. Thus, a topology on a set X in some model of ZFC may fail
to be a topology on X in a larger model. However, the class of simplicial sets is 10 (see
Section 9).

Example 2.2. Let C be the class of all abelian groups of the form Zκ , where κ is a cardi-
nal. Then A ∈ C if and only if

∃x (x is a cardinal ∧ ∀y (y ∈ A↔ y is a function from x to Z)),

which is a 62 formula, since the expression written within the outer parentheses is51. In
every model of ZFC with measurable cardinals, the following sentence is true:

∃κ ∃f (κ is an infinite cardinal ∧ f is a group homomorphism from Zκ to Z
∧ f (Z<κ) = 0 ∧ f 6= 0),

while if this holds then the smallest κ with this property is measurable, according to [22];
see [23] for further details. Therefore, this sentence is false in a model of ZFC without
measurable cardinals while it is true in a model of ZFC with measurable cardinals.

Example 2.3. For a cardinal λ and a set X, we denote by Pλ(X) the set of all subsets
of X whose cardinality is smaller than λ. Note first that, although the statement “A is a
subset of B” is 10, the statement “A is the set of all subsets of B” is formalized with the
following 51 formula:

∀a ∈ A (a ⊆ B) ∧ ∀x (x ⊆ B → x ∈ A).

This statement cannot be formalized with any upward absolute formula, since, if we pick
a countable transitive model M of ZFC and A is the set of all subsets of the natural
numbers N in M , then A cannot be the set of all subsets of N in the universe V , since A
is countable.
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The assertion “x is finite” is11, since it is equivalent to the statement that there exists
a bijection between x and a finite ordinal (which is 61) and it is also equivalent to the
statement that every injective function from x to itself is surjective (which is 51). Note
also that, if a set x is finite and each of its elements belongs to a modelM of ZFC, then we
may infer that x ∈ M using the pairing and union axioms. From this fact it follows that
the statement A = Pω(B)—that is, “A is the set of all finite subsets of B”—is absolute
for transitive models of a suitable finite fragment of ZFC, hence 11. Nevertheless, if M
and N are just transitive classes with M ⊂ N and B ∈ M , it can happen that the claim
“Pω(B) exists” is true in N but not in M , as discussed in [39, Sections 5 and 6].

For a cardinal λ > ω, the expression A = Pλ(B) can be formalized by claiming that
λ is a cardinal and ∀x (x ∈ A↔ (x ⊆ B ∧ |x| < λ)). The clause |x| < λ is, on the one
hand, equivalent to

(∃α ∈ λ) ∃f (f is a bijective function from x to α),

which is 61, and on the other hand it is the negation of λ ≤ |x|, hence equivalent to the
51 claim that there is no injective function from λ to x. Therefore, A = Pλ(B) is 51.

3. Complexity of categories

In order to simplify expressions, if C is a category we shall denote byX ∈ C the statement
that X is an object of C and by f ∈ C(X, Y ) the claim that X and Y are objects of C and
f is a morphism from X to Y .

Definition 3.1. For n ≥ 0, a category C is called 6n-definable (briefly, 6n) with a
set p of parameters if there is a 6n formula ϕ of the language of set theory such that
ϕ(X, Y,Z, f, g, h, i, p) is true if and only if f ∈ C(X, Y ), g ∈ C(Y, Z), h is the compos-
ite of f and g, and i is the identity of X.

If a category C is 6n with a set p of parameters, then there are6n formulas ψOb(x, y)

andψMor(x, y, z, t) such thatψOb(X, p) is true if and only ifX ∈ C andψMor(X, Y, f, p)

is true if and only if f ∈ C(X, Y ). Specifically, from a formula ϕ as in Definition 3.1 we
can choose ψMor(x, y, z, t) to be ∃i ϕ(x, x, y, i, z, z, i, t), and next choose ψOb(x, y) to
be ∃z ψMor(x, x, z, y).

If C is 6n, then the statement F = C(X, Y ) is formalized with the following 6n∧5n
formula:

(∀f ∈ F) f ∈ C(X, Y ) ∧ ∀g (g ∈ C(X, Y )→ g ∈ F).

We say that a category is 5n for n ≥ 0 if there are 5n formulas defining its objects,
morphisms, composition and identities. A category will be called 1n if it is both 6n

and 5n.
A category is upward absolute for transitive classes if its objects, morphisms, com-

position and identities can be defined by formulas that are upward absolute for transitive
classes. Downward absolute categories are defined in the same way, and a category will be
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called absolute if it is both upward absolute and downward absolute. Thus, 11 categories
are absolute for transitive classes containing the parameters involved.

If C is a subcategory of the category of sets, then composition and identities in C are
prescribed by those of sets. Therefore, the complexity of a subcategory of sets is the same
if defined as in Definition 3.1 or if simply treated as a class of sets together with a class
of functions.

Many important categories which cannot be embedded into Set have nevertheless a
complexity in our sense. For example, the homotopy category of simplicial sets cannot be
embedded into Set according to [24], and yet it can be defined with a 62 formula, since
µ is a morphism from X to Y if and only if there exists a simplicial map f from X to a
fibrant replacement of Y such that µ is the set of all simplicial maps homotopic to f , and
composition is defined accordingly (fibrant replacements are discussed in Section 9).

For a category C and an object A of C, we denote by (C ↓ A) the slice category whose
objects are pairs 〈X, f 〉where f ∈ C(X,A) and whose morphisms 〈X, f 〉 → 〈X′, f ′〉 are
morphisms g ∈ C(X,X′) such that f = f ′ ◦g. Dually, the objects of the coslice category
(A ↓ C) are pairs 〈X, f 〉 where f ∈ C(A,X), with corresponding morphisms. Both
(C ↓ A) and (A ↓ C) are definable with the same complexity as C, withA as an additional
parameter. Slice and coslice categories are (non-full) subcategories of the category of
arrows Arr C, whose objects are triples 〈A,B, f 〉 with f ∈ C(A,B), which we normally
denote by f : A→ B. A morphism 〈A,B, f 〉 → 〈C,D, g〉 is a commutative square

A //

f

��

C

g

��

B // D

Lemma 3.2. If 6 is any signature, then there is a signature 6′ such that Arr Str6 fully
embeds into Str6′, and, if A is a 6-structure, then there is a signature 6′′ such that
(A ↓ Str6) fully embeds into Str6′′. In both cases, the embedding preserves complexity.

Proof. Let S be the set of sorts of 6. Consider a new set of sorts S′ with two elements s0

and s1 for each s ∈ S, and let 6′ be the S′-sorted signature with the following operation
symbols and relation symbols. The set 6′op has two symbols σ 0 and σ 1 of respective
arities 〈(si)0 : i ∈ α〉 → s0 and 〈(si)1 : i ∈ α〉 → s1 for each symbol σ ∈ 6op of arity
〈si : i ∈ α〉 → s, and an additional symbol µs of arity s0

→ s1 for each s ∈ S. The set
6′rel has two symbols ρ0 and ρ1 of respective arities 〈(sj )0 : j ∈ β〉 and 〈(sj )1 : j ∈ β〉
for each symbol ρ ∈ 6rel of arity 〈sj : j ∈ β〉.

Then a 6′-structure is a pair of 6-structures X0 and X1 together with an S-sorted
function µ : X0

→ X1. Therefore, Arr Str6 is canonically isomorphic to the full sub-
category of Str6′ whose objects are triples 〈X0, X1, µ〉 for which µ is a homomorphism
of 6-structures.

For the second claim, define, as in [2, 1.57(2)], a signature 6′′ by adding to 6 a new
relation symbol ρa of arity s for each element a ∈ As . Then (A ↓ Str6) is canonically
isomorphic to the full subcategory of Str6′′ whose objects are those Y ∈ Str6 for which
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(ρa)Y consists of a single element of Ys for each a ∈ As and the function ρY : A → Y

given by ρY (a) = (ρa)Y is a homomorphism of 6-structures.
Both embeddings preserve complexity due to their canonical nature. In more detail,

suppose given a 6n class F of objects in Arr Str6. Then its image F ′ in Str6′ is defined
as the class of 6′-structures

X = 〈{Xs0 : s ∈ S} ∪ {Xs1 : s ∈ S},

{(σ 0)X : σ ∈ 6op} ∪ {(σ
1)X : σ ∈ 6op} ∪ {(µs)X : s ∈ S},

{(ρ0)X : ρ ∈ 6rel} ∪ {(ρ
1)X : ρ ∈ 6rel}〉

for which the triple consisting of

X0
= 〈{Xs0 : s ∈ S}, {(σ

0)X : σ ∈ 6op}, {(ρ
0)X : ρ ∈ 6rel}〉,

X1
= 〈{Xs1 : s ∈ S}, {(σ

1)X : σ ∈ 6op}, {(ρ
1)X : ρ ∈ 6rel}〉,

together with the S-sorted function f : X0
→ X1 given by fs = (µs)X for all s ∈ S is in

the class F . Hence, F ′ is also 6n, and analogously with 5n.
The argument for (A ↓ Str6) is similar. ut

Proposition 3.3. If 6 is a λ-ary signature for a regular cardinal λ, then the following
assertions hold:

(a) The category Str6 of 6-structures is 51 with parameters {λ,6}, and it is absolute
between transitive classes closed under sequences of length less than λ and contain-
ing the parameters.

(b) More generally, the category Mod T of models of a theory T in Lλ(6) is 12 with
parameters {λ,6, T }, and it is absolute between transitive classes closed under se-
quences of length less than λ and containing the parameters.

Proof. In order to claim that X is a 6-structure, we need to formalize the following
statement: “λ is a regular cardinal, and 6 = 〈S,6op, 6rel, ar〉 is a λ-ary signature, and
X = 〈{Xs : s ∈ S}, {σX : σ ∈ 6op}, {ρX : ρ ∈ 6op}〉 is a 6-structure”. Writing down
that λ is a regular cardinal is 51 by [31, Lemma 13.13], and adding that 6 is a λ-ary
signature does not increase complexity. The assertion that X is a 6-structure includes
the 51 formula

(∀σ ∈ 6op) (∀α ∈ λ) (∀x) [[x is a function α→
⋃
s∈S Xs

∧ ar(σ ) = (〈si : i ∈ α〉 → s) ∧ (∀i ∈ α) x(i) ∈ Xsi ] → σX(x) ∈ Xs].

Hence, the whole statement is51. Similarly, the assertion that f : X→ Y is a homomor-
phism of 6-structures is 51, since we need to impose that f (σX(x)) = σY (f (x)) for all
functions x : α →

⋃
s∈S Xs with x(i) ∈ Xsi for all i ∈ α, for each operation symbol σ

of arity 〈si : i ∈ α〉 → s. Stating that f (x) ∈ ρY for every x ∈ ρX and each relation
symbol ρ does not require unbounded quantifiers.
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If λ = ω, then we can omit the clause “λ is a regular cardinal” and there is only need
to quantify over finite sequences in

⋃
s∈S Xs , which is 11, as discussed in Example 2.3.

In order to state that X is a model of a theory T , we need to assert that “X is a λ-ary
6-structure, and T is a set of sentences of the language of 6, and every sentence of T is
satisfied inX”. If λ = ω, then this is again11, since satisfaction of sentences of a finitary
language inX only depends on finite subsets ofX. For an arbitrary regular cardinal λ, the
last two clauses are absolute between transitive classes that are closed under sequences
of length less than λ. Hence, by the Reflection Principle, X is a model of T if and only
if every ϕ ∈ T is a sentence of the language of 6, and X is a 6-structure, and there is a
finite fragment ZFC∗ of ZFC such that

∃M (M is transitive and closed under <λ-sequences
∧ {λ,6, T ,X} ⊂ M ∧ M |=

∧
ZFC∗ ∧ M |= (∀ϕ ∈ T )X |= ϕ), (3.1)

which can be replaced with

∀M ((M is transitive and closed under <λ-sequences
∧ {λ,6, T ,X} ⊂ M ∧ M |=

∧
ZFC∗)→ M |= (∀ϕ ∈ T )X |= ϕ). (3.2)

Since (3.1) is 62 and (3.2) is 52, the statement “X is a model of T ” is 12. And a mor-
phism between models of T is just a homomorphism of 6-structures, so the proof of
part (b) is complete. ut

4. Supporting elementary embeddings

An elementary embedding of a6-structureX into another6-structure Y (whereX and Y
can be proper classes) is a function j : X → Y that preserves and reflects truth. That is,
for every formula ϕ(xi)i∈I of the language of 6 and all {ai : i ∈ I } in X, the sentence
ϕ(ai)i∈I is satisfied in X if and only if ϕ(j (ai))i∈I is satisfied in Y .

In what follows, we consider elementary embeddings between structures of the lan-
guage of set theory. If j : V → M is a nontrivial elementary embedding of the universe V
of all sets into a transitive class M , then its critical point (i.e., the least ordinal moved
by j ) is a measurable cardinal. In fact, the existence of a nontrivial elementary embed-
ding of the set-theoretic universe into a transitive class is equivalent to the existence of a
measurable cardinal [31, Lemma 17.3].

For a subcategory C of the category of sets and an elementary embedding j : V → M ,
we say that j is supported by C if, for every object X in C, the set j (X) is also in C and
the restriction function j�X : X→ j (X) is a morphism in C.

Theorem 4.1. Let j : V → M be an elementary embedding with critical point κ . Let
6 be a λ-ary signature in Vκ for a regular cardinal λ < κ such that M is closed under
sequences of length less than λ. If X is a 6-structure, then j (X) is also a 6-structure
and j�X : X→ j (X) is an elementary embedding of 6-structures.
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Proof. First, observe that j (λ) = λ and hence λ is also a regular cardinal in M . Next,
j (6) = 6 as 6 ∈ Vκ . Therefore, since j is an elementary embedding, if X is a
6-structure then j (X) is a 6-structure in M . It follows that j (X) is also a 6-structure
in V , because, by Proposition 3.3, being a λ-ary 6-structure is absolute for transitive
classes containing λ and closed under sequences of length less than λ.

We next check, by induction on the complexity of formulas of Lλ(6), that j�X is an
elementary embedding of 6-structures. For atomic formulas, let σ ∈ 6op be an operation
symbol with arity 〈si : i ∈ α〉 → s where α < λ, so j (α) = α. Thus, if ai ∈ Xsi for all
i ∈ α, and a ∈ Xs , then, since j is elementary, X |= (σX(ai)i∈α = a) if and only if

M |=
(
j (X) |= (σj (X)(j (ai))i∈α = j (a))

)
.

Since the statement j (X) |= (σj (X)(j (ai))i∈α = j (a)) is absolute for transitive classes,
it holds in M if and only if it holds in V , as needed. Relation symbols ρ ∈ 6rel are dealt
with similarly, and the cases of negation and conjunction are immediate. Thus, it only
remains to consider existential formulas. If X |= ∃x ϕ(x, a) for some a ∈ X, then there
exists b ∈ X such that X |= ϕ(b, a). By induction hypothesis, j (X) |= ϕ(j (b), j (a));
hence j (X) |= ∃x ϕ(x, j (a)). For the converse, observe first that, since M is transitive
and closed under sequences of length less than λ, satisfaction in j (X) of formulas of
Lλ(6) is absolute between M and V . Hence, if j (X) |= ∃x ϕ(x, j (a)) for some a ∈ X,
then M |= (j (X) |= ∃x ϕ(x, j (a))) and by elementarity of j we conclude, as needed,
that X |= ∃x ϕ(x, a). ut

Since elementary embeddings of 6-structures are homomorphisms, Theorem 4.1 tells
us that categories of structures support elementary embeddings with sufficiently large
critical point. The following generalization of this fact is a more accurate restatement of
[9, Proposition 4.4].

Theorem 4.2. Let C be a class of 6-structures for some λ-ary signature 6, where λ is a
regular cardinal. Suppose that C is 61 with a set p of parameters. Let j : V → M be an
elementary embedding with critical point κ > λ such that M is closed under sequences
of length less than λ and {p,6} ∈ Vκ . If X ∈ C, then j (X) ∈ C and j�X : X→ j (X) is
an elementary embedding of 6-structures.

Proof. The proof follows the same steps as the proof of Theorem 4.1, using the fact that
61 formulas are upward absolute to infer that j (X) ∈ C for every X ∈ C. ut

5. Vopěnka’s principle and supercompact cardinals

For any two structures M ⊆ N of the language of set theory and n < ω, we write
M �n N and say that M is a 6n-elementary substructure of N if, for every 6n formula
ϕ(x1, . . . , xk) and all a1, . . . , ak ∈ M ,

N |= ϕ(a1, . . . , ak) if and only if M |= ϕ(a1, . . . , ak).
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For a cardinal λ, we denote by H(λ) the set of all sets whose transitive closure has
cardinality less than λ. Thus H(λ) is a transitive set contained in Vλ, and, if λ is strongly
inaccessible, then H(λ) = Vλ (see [35, Lemma 6.2]).

A class C of ordinals is unbounded if it contains arbitrarily large ordinals, and it is
closed if, for every ordinal α, if

⋃
(C ∩ α) = α then α ∈ C. The abbreviation club means

closed and unbounded. As a consequence of the Reflection Principle [31, Theorem 12.14],
for every n there exists a club class of cardinals λ such that H(λ) �n V . In addition, if λ
is uncountable, then H(λ) �1 V .

In what follows, structures are meant to be sets, not proper classes. We say that X
and Y are structures of the same type if they are both 6-structures for some signature 6.
Vopěnka’s principle is the following assertion (compare with [2, Ch. 6] or [31, (20.29)]):

VP: For every proper class C of structures of the same type, there exist distinct X and Y
in C and an elementary embedding of X into Y .

This is a statement involving classes. In the language of set theory, one can also formu-
late VP, but as an axiom schema, that is, an infinite set of axioms; namely, one axiom for
each formula ϕ(x, y) of the language of set theory with two free variables, as follows:

∀x [(∀y ∀z ((ϕ(x, y) ∧ ϕ(x, z))→ y and z are structures of the same type)
∧ ∀α (α is an ordinal→ ∃y (rank(y) > α ∧ ϕ(x, y))))→

∃y ∃z (ϕ(x, y) ∧ ϕ(x, z) ∧ y 6= z ∧ ∃e (e : y → z is elementary))].

In this article, VP will be understood as this axiom schema, and similarly with the variants
of VP defined below.

In the statement of VP, the requirement that there is an elementary embedding between
two distinct structures is sometimes replaced by the requirement that there is a nontrivial
elementary embedding between two possibly equal structures. It follows from [14] that it
is consistent with ZFC to assume that the two formulations are equivalent. Equivalence
can be proved using rigid graphs, as in [2, §6.A], although this seems to require the use
of global choice.

The theory ZFC+VP is very strong. It implies, for instance, that the class of extendible
cardinals is stationary; that is, every club proper class contains an extendible cardinal [37].
The consistency of ZFC+ VP follows from that of ZFC plus the existence of an almost-
huge cardinal (see [31] or [33]).

If λ and ν are cardinals, we denote by ν<λ the union of να for all α < λ. If f : A→ B

is a homomorphism of structures and M is any set, when we write that f ∈ M we mean
that A,B ∈ M and {(a, f (a)) : a ∈ A} ∈ M .

Theorem 5.1. Let C be a full subcategory of6-structures definable by a61 formula with
a set p of parameters for some λ-ary signature6. Let κ be a regular cardinal bigger than
λ such that {p,6} ∈ H(κ) and with the property that ν<λ < κ for all ν < κ . Then the
following hold:
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(a) For every homomorphism g : A → Y of 6-structures with A ∈ H(κ) and Y ∈ C
there is a homomorphism f : A→ X withX ∈ C∩H(κ) and a commutative triangle

A

f

��

g

��

X
e // Y

where e is an elementary embedding.
(b) Every object Y ∈ C has a subobject X ∈ C ∩H(κ).

Proof. We only have to prove (a), since (b) then follows with A = ∅. Note that every
elementary embedding of 6-structures is an injective homomorphism and, since C is a
full subcategory, e : X → Y is in C, so X is a subobject of Y , since, in a subcategory of
sets, every injective morphism is a monomorphism (see [1, Proposition 7.37]).

Thus, suppose that C, viewed as a class, is definable as C = {x : ϕ(x, p)}, where ϕ
is 61 and p ∈ H(κ). Given g : A → Y with A ∈ H(κ) and Y ∈ C, let µ be a regular
cardinal bigger than κ such that Y ∈ H(µ) and such that H(µ) |= ϕ(Y, p).

In this situation, the Löwenheim–Skolem Theorem implies the existence of an ele-
mentary substructure 〈N,∈〉 of 〈H(µ),∈〉 of cardinality smaller than κ and closed under
sequences of length less than λ (here we use the assumption that ν<λ < κ for all ν < κ)
such that g ∈ N and with the transitive closure of {p,6,A} contained in N . By elemen-
tarity, g is a homomorphism of 6-structures in N and N |= ϕ(Y, p).

Let M be the transitive collapse of N , and let j : M → N be the isomorphism given
by the collapse, that is, j is inverse to the function π(x) = {π(z) : z ∈ x} (see [31, 6.13]).
Since N is closed under sequences of length less than λ, so is M , and the critical point of
j is greater than or equal to λ. And since N contains the transitive closure of {p,6,A},
we have π(p) = p, π(6) = 6 and π(A) = A. Moreover, the restriction j�A is the
identity.

Now let X ∈ M be such that j (X) = Y and let f : A → X be such that j (f ) = g.
Then X ∈ H(κ) since |M| < κ and M is transitive. Since j is an isomorphism and
j (p) = p, we infer that M |= ϕ(X, p), and hence, as 61 formulas are upward absolute
for transitive classes, we conclude that X ∈ C in V . Since j (6) = 6 and M and N are
closed under sequences of length less than λ, the object X is a 6-structure and, since j is
an isomorphism, the restriction e = j�X is an elementary embedding, hence a homomor-
phism of 6-structures. Moreover, f is also a homomorphism and the triangle commutes
since f has been defined so that g(a) = j (f (a)) for all a ∈ A. ut

Recall that a cardinal κ is called λ-supercompact if there is an elementary embedding
j : V → M with M transitive and with critical point κ such that j (κ) > λ and M is
closed under λ-sequences. Note that it then follows that H(λ) ∈ M . A cardinal κ is
supercompact if it is λ-supercompact for all ordinals λ.

The following theorem is an upgraded version of [9, Theorem 4.5], where a similar
result was proved for absolute classes.
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Theorem 5.2. Let C be a full subcategory of6-structures definable by a62 formula with
a set p of parameters. Suppose that there exists a supercompact cardinal κ bigger than
the rank of p and 6. Then the following hold:

(a) For every homomorphism g : A→ Y of 6-structures with A ∈ Vκ and Y ∈ C there
is a homomorphism f : A → X with X ∈ C ∩ Vκ and an elementary embedding
e : X→ Y with e ◦ f = g.

(b) Every object Y ∈ C has a subobject X ∈ C ∩ Vκ .

Proof. As with Theorem 5.1, we only have to prove (a), since (b) follows by taking
A = ∅. Suppose that κ is a supercompact cardinal for which {p,6,A} ∈ Vκ . Then,
since κ is strongly inaccessible, we have Vκ = H(κ) and, since κ is regular, it is bigger
than the supremum of the ordinals of the arities of all the operation symbols and relation
symbols of 6, so 6 is κ-ary.

Given a homomorphism g : A→ Y with Y ∈ C, let µ be a cardinal bigger than κ such
that Y ∈ H(µ) and H(µ) �2 V . Let j : V → M be an elementary embedding with M
transitive and critical point κ , such that j (κ) > µ and M is closed under µ-sequences.
Then j (A) = A since A is in H(κ), and g and the restriction j�Y : Y → j (Y ) are
in M because A, Y ∈ M and M is closed under µ-sequences. In addition, g : A→ Y is a
homomorphism of 6-structures in M , since, by Proposition 3.3, being a homomorphism
of κ-ary 6-structures is absolute for transitive classes containing 6 and closed under
sequences of length less than κ . Moreover, by Theorem 4.1, since 6 ∈ Vκ , the restriction
j�Y : Y → j (Y ) is an elementary embedding of 6-structures.

Since being a cardinal is 51 and hence downward absolute, µ is a cardinal in M , and
this implies thatH(µ) in the sense ofM coincides withH(µ). It follows thatH(µ)�1M ,
since every61 sentence ψ which holds inM also holds in V (as61 sentences are upward
absolute) and therefore ψ holds in H(µ) because H(µ) �2 V . Hence, 62 formulas are
upward absolute between H(µ) and M . Since H(µ) �2 V and the class C is defined by
a 62 formula ϕ(x, y), we see that H(µ) |= ϕ(Y, p) and thus M |= ϕ(Y, p).

Now rank(Y ) < µ < j(κ) in V and also in M . Thus, as witnessed by g : A → Y ,
in M there exists a homomorphism f : A → X of 6-structures such that rank(X) <
j (κ) and ϕ(X, p) holds, and there is an elementary embedding e : X → j (Y ) such that
e◦f = j (g). By elementarity of j , the corresponding statement is true in V ; that is, there
exists a homomorphism of 6-structures f : A→ X such that rank(X) < κ and ϕ(X, p)
holds, so X ∈ C, and there is an elementary embedding e : X→ Y with e ◦ f = g, as we
wanted to prove. ut

Theorem 5.2 tells us that the existence of arbitrarily large supercompact cardinals implies
that VP holds for 62 proper classes. The following theorem yields a strong converse of
this fact.

Theorem 5.3. Suppose that, for every 12 proper class C of structures in the language
of set theory with one additional constant symbol, there exist distinct X and Y in C and
an elementary embedding of X into Y . Then there exists a proper class of supercompact
cardinals.
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Proof. Let ξ be any ordinal and suppose, towards a contradiction, that there are no su-
percompact cardinals bigger than ξ . Then the class function F given as follows is well
defined on ordinals ζ > ξ : F(ζ ) equals the least cardinal λ > ζ such that no cardinal κ
such that ξ < κ ≤ ζ is λ-supercompact. Since the assertion “ζ is λ-supercompact” is 12
in ZFC (see [33, §22]), F is 12-definable with ξ as a parameter. Let

C0 = {α : α is a limit ordinal, ξ < α, and ∀ζ (ξ < ζ < α→ F(ζ ) < α)}.

Then C0 is a club class 12-definable with ξ as a parameter.
Fix a rigid binary relation (i.e., a rigid graph)R on ξ+1 (see [41]). For each ordinal α,

let λα be the least element ofC0 greater than λ. The proper class C = {〈Vλα+2,∈, 〈α,R〉〉 :

α > ξ} is 12-definable with R as a parameter. By our assumption, there exist α < β

greater than ξ and an elementary embedding

j : 〈Vλα+2,∈, 〈α,R〉〉 → 〈Vλβ+2,∈, 〈β,R〉〉.

Since j must send α to β, it is not the identity. Hence, by Kunen’s Theorem ([31, Theo-
rem 17.7], [34]), we have λα < λβ . Let κ ≤ α be the critical point of j . Then, as in [37,
Lemma 2], it follows that κ is λα-supercompact. But this is impossible, since F(κ) < λα
because λα ∈ C0. ut

In order to summarize what we have proved so far, we introduce some useful notation.
Let 0 be one of 6n,5n,1n, 6n∧5n or 6n, 5n, 1n, 6n∧5n, for any n. For an infinite
cardinal κ and a signature 6 ∈ H(κ), we write:

VP6(0): For every 0 proper class C of 6-structures, there exist distinct X and Y in C
and an elementary embedding of X into Y .

SVP6κ (0): For every proper class C of 6-structures admitting a 0 definition whose pa-
rameters, if any, are inH(κ), and for every Y ∈ C, there exists X ∈ C ∩H(κ)
and an elementary embedding of X into Y .

If 6 is omitted from the notation, we mean that the corresponding statement holds for
all admissible signatures. Thus, VP(0) means VP6(0) for all 6, while SVPκ(0) means
SVP6κ (0) for every 6 ∈ H(κ).

Even though SVP6κ (0) is an apparently stronger statement than VP6(0) (hence the
notation SVP), in the case of 62 classes of structures they turn out to be equivalent, as we
next prove.

Corollary 5.4. The following statements are equivalent:

(1) SVPκ(62) holds for a proper class of cardinals κ .
(2) VP(62) holds.
(3) VP6(12) holds if6 is the signature of the language of set theory with one additional

constant symbol.
(4) There exists a proper class of supercompact cardinals.
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Proof. In order to check that (1)⇒(2), suppose that (1) is true, and let6 be any signature.
Let C be any proper class of 6-structures defined by a 62 formula with parameters, and
let κ be bigger than the ranks of the parameters and such that SVP6κ (62) holds. Since
C is a proper class, we may choose Y of rank bigger than κ , so any X ∈ C ∩ H(κ)
will necessarily be distinct from Y . Hence, there exist distinct X and Y such that X is
elementarily embeddable into Y , so VP6(62) holds, as needed. The implication (2)⇒(3)
is trivial, and Theorem 5.3 implies that (3)⇒(4). Finally, to see that (4)⇒(1), let ξ be any
cardinal and pick a supercompact cardinal κ > ξ . Since H(κ) = Vκ , Theorem 5.2 tells
us that SVPκ(62) holds. ut

The following is a corresponding version without parameters, with the same proof:

Corollary 5.5. The following statements are equivalent:

(1) SVPκ(62) holds for some cardinal κ .
(2) VP(62) holds.
(3) VP6(12) holds if 6 is the signature of the language of set theory.
(4) There exists a supercompact cardinal.

6. Vopěnka’s principle and extendible cardinals

For cardinals κ < λ, we say that κ is λ-extendible if there is an elementary embedding
j : Vλ → Vµ for some µ, with critical point κ and with j (κ) > λ. A cardinal κ is called
extendible if it is λ-extendible for all cardinals λ > κ . As shown in [31, 20.24], extendible
cardinals are supercompact. See [31] or [33] for related background.

For each n < ω, let C(n) denote the club proper class of infinite cardinals κ that are
6n-correct in V , that is, Vκ �n V . Since the satisfaction relation |=n for 6n sentences
(which is, in fact, a proper class) is 6n-definable for n ≥ 1 [33, §0.2], it follows that,
for n ≥ 1, the class C(n) is 5n. To see this, note first that C(0) is the class of all infinite
cardinals, and therefore it is51-definable. For κ an infinite cardinal, κ ∈ C(1) if and only
if κ is an uncountable cardinal and Vκ = H(κ), which implies that C(1) is 51-definable.
In general, for n ≥ 1 and for any infinite cardinal κ , we have Vκ �n+1 V if and only if

κ ∈ C(n) ∧ (∀ϕ(x) ∈ 6n+1) (∀a ∈ Vκ) (|=n+1 ϕ(a)→ Vκ |= ϕ(a)),

which is a 5n+1 formula showing that C(n+ 1) is 5n+1-definable.
We shall use the following new strong form of extendibility.

Definition 6.1. For C a club proper class of cardinals and κ < λ in C, we say that κ is
λ-C-extendible if there is an elementary embedding j : Vλ→ Vµ for some µ ∈ C, with
critical point κ , such that j (κ) > λ and j (κ) ∈ C. We say that a cardinal κ in C is
C-extendible if it is λ-C-extendible for all λ in C greater than κ .

Note that, for all n, if κ is C(n)-extendible, then κ is extendible. Therefore, a cardinal
is C(0)-extendible if and only if it is extendible.
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Proposition 6.2. Every extendible cardinal is C(1)-extendible.

Proof. Suppose that κ is extendible and λ ∈ C(1) is greater than κ . Note that the existence
of an extendible cardinal implies the existence of a proper class of inaccessible cardinals,
as the image of κ under any elementary embedding j : Vλ→ Vµ, with critical point κ
and λ a cardinal, is always an inaccessible cardinal in V . So we can pick an inaccessible
cardinal λ′ ≥ λ. Let j ′ : Vλ′ → Vµ′ be an elementary embedding with critical point κ
and such that j ′(κ) > λ′. Since Vλ′ = H(λ′), it follows by elementarity of j ′ that Vµ′ =
H(µ′). Hence, µ′ ∈ C(1).

Let us see that j = j ′�Vλ : Vλ → Vj ′(λ) witnesses the λ-C(1)-extendibility of κ .
We only need to check that µ = j ′(λ) ∈ C(1). But since Vλ �1 Vλ′ , it follows by
elementarity of j ′ that Vµ �1 Vµ′ . Hence, since µ′ ∈ C(1), also µ ∈ C(1). ut

Hence, a cardinal is C(1)-extendible if and only if it is extendible. Let us also observe
that, if there exists a C(n + 2)-extendible cardinal for n ≥ 1, then there exists a proper
class of C(n)-extendible cardinals (see [7]).

Lemma 6.3. If κ is C(n)-extendible, then κ ∈ C(n+ 2).

Proof. By induction on n. For n = 0, since κ ∈ C(1), we only need to show that if
∃x ϕ(x) is a 62 sentence, where ϕ is 51 and has parameters in Vκ , that holds in V , then
it holds in Vκ . So suppose that a is such that ϕ(a) holds in V . Let λ ∈ C(n) be greater
than κ and with a ∈ Vλ, and let j : Vλ→ Vµ be elementary, with critical point κ and with
j (κ) > λ. Then Vj (κ) |= ϕ(a), and so, by elementarity, Vκ |= ∃x ϕ(x).

Now suppose that κ is C(n)-extendible and ∃x ϕ(x) is a 6n+2 sentence, where ϕ
is 5n+1 and has parameters in Vκ . If ∃x ϕ(x) holds in Vκ , then, since by the induction
hypothesis κ ∈ C(n + 1), we infer that ∃x ϕ(x) holds in V . Now suppose that a is
such that ϕ(a) holds in V . Let λ ∈ C(n) be greater than κ and such that a ∈ Vλ, and
let j : Vλ → Vµ be elementary with critical point κ and with j (κ) > λ. Then, since
j (κ) ∈ C(n), we have Vj (κ) |= ϕ(a), and so, by elementarity, Vκ |= ∃x ϕ(x). ut

Theorem 6.4. For n ≥ 1, if κ is a C(n)-extendible cardinal, then SVPκ(6n+2) holds.

Proof. Fix a 6n+2 formula ∃x ϕ(x, y, z), where ϕ is 5n+1, such that

C = {Y : ∃x ϕ(x, Y, p)}

is a proper class of structures of the same type for some set p ∈ Vκ . Fix Y ∈ C and let
λ ∈ C(n + 2) be greater than κ and the ranks of p and Y . Thus, Vλ |= ∃x ϕ(x, B, p).
Let j : Vλ→ Vµ, for some cardinal µ ∈ C(n), be an elementary embedding with critical
point κ , with j (κ) > λ and j (κ) ∈ C(n). Note that both Y and j�Y : Y → j (Y ) are
in Vµ. Since κ, λ ∈ C(n+ 2) by Lemma 6.3, and κ < λ, we have Vκ �n+2 Vλ. It follows
that Vj (κ) �n+2 Vµ. Indeed, the following holds:

Vλ |= (∀x ∈ Vκ) (∀θ ∈ 6n+2) (Vκ |= θ(x)↔ |=n+2 θ(x)).

Hence, by elementarity,

Vµ |= (∀x ∈ Vj (κ)) (∀θ ∈ 6n+2) (Vj (κ) |= θ(x)↔ |=n+2 θ(x)),
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which implies that Vj (κ) �n+2 Vµ. Since j (κ) ∈ C(n), we have Vλ �n+1 Vj (κ), and
therefore Vλ �n+1 Vµ. It follows that Vµ |= ∃x ϕ(x, Y, b).

Thus, in Vµ it is true that there exists X ∈ Vj (κ) such that X ∈ C, namely Y , and there
exists an elementary embedding e : X → j (Y ), namely j�Y . Therefore, by elementarity
of j , the same is true in Vλ; that is, there exists X ∈ Vκ such that X ∈ C, and there exists
an elementary embedding e : X → Y . Since λ ∈ C(n + 2), we have X ∈ C and we are
done. ut

Corollary 6.5. If κ is an extendible cardinal, then SVPκ(63) holds.

Proof. This is the assertion of Theorem 6.4 for n = 1. ut

Corollary 6.6. Let C be a full subcategory of 6-structures definable by a 6n+2 formula
with a set p of parameters, where n ≥ 1. Suppose that there exists a C(n)-extendible
cardinal κ bigger than the rank of p and 6. Then the following hold:

(a) For every homomorphism g : A → Y of 6-structures with A ∈ Vκ and Y ∈ C there
is a homomorphism f : A → X with X ∈ C ∩ Vκ and an elementary embedding
e : X→ Y with e ◦ f = g.

(b) Every object Y ∈ C has a subobject X ∈ C ∩ Vκ .

Proof. Part (b) is a consequence of Theorem 6.4, and part (a) is a more general variant
proved as in Theorem 5.2. ut

The following theorem yields a converse to Theorem 6.4.

Theorem 6.7. Let n ≥ 1, and suppose that VP6(6n+1∧5n+1) holds when 6 is the sig-
nature of the language of set theory with finitely many additional 1-ary relation symbols.
Then there exists a C(n)-extendible cardinal.

Proof. Suppose, to the contrary, that there is no C(n)-extendible cardinal. Then the class
function F on ordinals given by defining F(ζ ) to be the least λ > ζ such that λ ∈ C(n)
and ζ is not λ-C(n)-extendible is well defined.

For λ ∈ C(n), the relation “ζ is λ-C(n)-extendible” is 6n+1, for it holds if and only
if ζ ∈ C(n) and

∃µ ∃j : Vλ→ Vµ (j is elementary ∧ cp(j) = ζ ∧ j (ζ ) > λ ∧ µ, j (ζ ) ∈ C(n)),

where cp(j) denotes the critical point of j . Hence F is 6n+1 ∧5n+1.
Let C = {α : α is a limit ordinal and (∀ζ < α)F (ζ ) < α}. So, C is a 6n+1 ∧5n+1

closed unbounded proper class.
For each ordinal α, let λα be the first limit point of D = C ∩C(n) above α. Note that

the class function f on ordinals such that f (α) = λα is (6n+1 ∧5n+1)-definable. Now
let

C = {〈Vλα ,∈, α, λα, C ∩ α + 1〉 : α ∈ D}.

We claim that C is (6n+1 ∧5n+1)-definable. To see this, observe that X ∈ C if and only
if X = 〈X0, X1, X2, X3, X4〉, where

(1) X2 ∈ C; (2) X3 = λX2; (3) X0 = VX3;

(4) X1 = ∈�X0; (5) X4 = C ∩X2 + 1.
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We have already seen that (1) and (2) are6n+1∧5n+1 expressible. And so are (3) and (4).
As for (5), note that X4 = C ∩ α + 1 holds in V if and only if it holds in VX3 .

So C is a 6n+1 ∧ 5n+1 proper class of structures of the same type in the language
of set theory with three additional relation symbols. By our assumption, there are α < β

in D and an elementary embedding

j : 〈Vλα ,∈, α, λα, C ∩ α + 1〉 → 〈Vλβ ,∈, β, λβ , C ∩ β + 1〉.

Since j sends α to β, it is not the identity. Let κ be the critical point of j .
Since α ∈ C, we have κ < F(κ) < α. Thus, j�VF(κ) : VF(κ) → Vj (F (κ)) is elemen-

tary, with critical point κ .
We claim that κ ∈ D. Otherwise, γ = sup(D ∩ κ) < κ . Let δ be the least ordinal

in D greater than γ with κ < δ < λα . Since δ is definable from γ in the structure
〈Vλα ,∈, α, C ∩ α + 1〉, and since j (γ ) = γ , we must also have j (δ) = δ. But then we
conclude that j�Vδ+2 : Vδ+2 → Vδ+2 is an elementary embedding, contradicting Kunen’s
Theorem [34].

By elementarity, j (κ) ∈ C(n). Moreover, since F(κ) ∈ C(n) and λβ ∈ C(n), we
have j (F (κ)) ∈ C(n). Since κ ∈ C, by elementarity we also have j (κ) ∈ C. Hence,
j (κ) > F(κ). This shows that j�VF(κ) witnesses that κ is F(κ)-C(n)-extendible, and
this contradicts the definition of F . ut

The proof of Theorem 6.7 easily generalizes to the boldface case (see the proof of The-
orem 5.3), namely if VP(6n+1 ∧5n+1) holds, then there is a proper class of C(n)-ext-
endible cardinals. In fact it is sufficient to assume that VP6(6n+1 ∧5n+1) holds when
6 is the signature of the language of set theory with a finite number of additional 1-ary
relation symbols.

The following corollaries summarize our results in this section.

Corollary 6.8. The following statements are equivalent for n ≥ 1:

(1) SVPκ(6n+2) holds for some cardinal κ .
(2) VP(6n+1 ∧5n+1) holds.
(3) VP6(6n+1∧5n+1) holds when 6 is the signature of the language of set theory with

a finite number of additional 1-ary relation symbols.
(4) There exists a C(n)-extendible cardinal.

Corollary 6.9. The following statements are equivalent:

(1) For every n, SVPκ(6n) holds for a proper class of cardinals κ .
(2) For every n, SVPκ(6n) holds for some cardinal κ .
(3) VP(6n) holds for all n.
(4) VP6(6n) holds for all n when 6 is the signature of the language of set theory with a

finite number of additional 1-ary relation symbols.
(5) There exists a C(n)-extendible cardinal for every n.
(6) There exists a proper class of C(n)-extendible cardinals for every n.
(7) Vopěnka’s principle holds.
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7. Accessible categories

A category is small if its objects form a set, and essentially small if the isomorphism
classes of its objects form a set.

Let λ be a regular cardinal. A nonempty category K is called λ-filtered if, given any
set {ki}i∈I of objects in K where |I | < λ, there is an object k ∈ K and a morphism ki → k

for each i ∈ I , and, moreover, given any set {fj : k → k′}j∈J of parallel arrows between
any two objects where |J | < λ, there is a morphism g : k′ → k′′ such that g ◦ fj is the
same morphism for all j ∈ J . If C is any category, a functor D : K → C where K is a
λ-filtered small category is called a λ-filtered diagram, and, if D has a colimit L, then L
is called a λ-filtered colimit. For example, every set is a λ-filtered colimit of its subsets of
cardinality smaller than λ (partially ordered by inclusion).

An objectA of a category C is λ-presentable if the functor C(A,−) preserves λ-filtered
colimits; that is, for each λ-filtered diagram D : K→ C with a colimit L, each morphism
A → L factors through a morphism A → Dk for some k ∈ K, and if two morphisms
A → Dk and A → Dk′ compose to the same morphism A → L, then there is some
k′′ ∈ K and morphisms k → k′′ and k′ → k′′ in K such that the two composites
A→ Dk′′ are equal (see [26, §6.1] or [38, §2.1]).

For a small full subcategory A of C and an object X in C, the canonical diagram
(A ↓ X) → C sends each pair 〈A, f 〉 with f ∈ C(A,X) to A. Recall from [2, 1.23]
that A is called dense in C if each object X of C is a colimit of the canonical diagram
(A ↓ X)→ C. A category C is bounded if it has a dense small full subcategory.

A category C is called λ-accessible if λ-filtered colimits exist in C and there is a set
A of λ-presentable objects such that every object of C is a λ-filtered colimit of objects
from A. A category C is called accessible if it is λ-accessible for some regular cardinal λ.
As shown in [2, p. 73] or [3, p. 226], if C is λ-accessible, then the full subcategory of its
λ-presentable objects is essentially small and, if we denote by Cλ a set of representatives
of all isomorphism classes of λ-presentable objects of C, then Cλ is dense in C. Moreover,
for every X ∈ C, the slice category (Cλ ↓ X) is λ-filtered and X is a colimit of the
canonical diagram (Cλ ↓ X)→ C. Thus, every accessible category is bounded.

An accessible category is called locally presentable if all colimits exist in it. It then
follows, by [2, Corollary 1.28], that all limits exist as well. Every category of structures
Str6 is locally presentable [2, 5.1(5)], and the forgetful functor Str6 → SetS creates
limits and colimits, where S is the set of sorts of 6 and SetS denotes the category of
S-sorted sets.

Theorem 7.1. Let λ be a regular cardinal and let C be a λ-accessible category. Then
there is a full embedding of C into a category of relational structures that preserves
λ-filtered colimits.

Proof. Let us assume, with greater generality, that C is a bounded category and let A be a
dense small full subcategory of C. Denote by SetA

op
the category of functors Aop

→ Set,
where Aop is the opposite of A. Then there are full embeddings

C → SetA
op
→ Str6, (7.1)
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defined as follows [2, Ch. 1]: The embedding of C into SetA
op

is of Yoneda type, sending
each object X to the restriction of C(−, X) to Aop. The fact that it is full and faithful is
proved in [2, Proposition 1.26]. The signature 6 is chosen by picking the objects of A as
sorts and the morphisms of Aop as relation symbols. The full embedding of SetA

op
into

Str6 sends each functor F to the A-sorted set {FA : A ∈ A} together with a relation
{(x, (Ff )x) : x ∈ FA} ⊂ FA × FB for each morphism f : B → A in A. Hence, (7.1)
sends each object X ∈ C to

〈{C(A,X) : A ∈ A}, {{(α, α ◦ f ) : α ∈ C(A,X)} : f ∈ A(B,A)}〉 .

If C is λ-accessible and we let A be a set of representatives of all isomorphism classes
of λ-presentable objects in C, then (7.1) preserves λ-filtered colimits, since the first arrow
preserves λ-filtered colimits by [2, Proposition 1.26], and the second arrow preserves all
filtered colimits (see [2, Example 1.41]). ut

As in [2, Definition 2.35], we say that a subcategory C of a category D is accessibly em-
bedded if C is full and closed under λ-filtered colimits in D for some regular cardinal λ.
Hence, in particular, C is isomorphism-closed, that is, every object of D which is isomor-
phic to an object of C is in C. Moreover, the inclusion C ↪→ D creates λ-filtered colimits.
If D is accessible and C is accessibly embedded into D, then C is itself accessible if and
only if, for some regular cardinal λ, every λ-filtered colimit of split subobjects of objects
of C is in C (see [2, Corollary 2.36] for details).

Vopěnka’s principle implies that every full embedding between accessible categories
is accessible. The same conclusion can be inferred from the existence of sufficiently large
C(n)-extendible cardinals [8].

A theory T in a λ-ary language is called basic if each of its sentences has the form

∀{xi : i ∈ I } (ϕ(xi)i∈I → ψ(xi)i∈I )

where ϕ and ψ are disjunctions of positive-primitive formulas and |I | < λ. A formula
is positive-primitive if it has the form ∃{yj : j ∈ J } η((yj )j∈J , (zk)k∈K), in which η is a
conjunction of atomic formulas and |J |, |K| < λ.

It follows from Theorem 7.1 that every accessible category is equivalent to an acces-
sibly embedded subcategory of a category of relational structures, namely to the closure
of the image of (7.1) under isomorphisms. Moreover, the following fundamental fact is
proved in [2]:

Theorem 7.2. Every accessibly embedded accessible subcategory of a category of struc-
tures is a category of models for some basic theory, and for every basic theory T in some
language Lλ(6), the category Mod T is accessible and accessibly embedded into Str6.

Proof. This is shown in [2, Theorems 4.17 and 5.35]. ut

We shall use the following terminology in order to simplify statements:

Definition 7.3. An accessible category of structures is a full subcategory of Str6 that is
accessible and accessibly embedded, for some signature 6.
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We saw in Proposition 3.3 that each category Mod T is 12 with parameters {λ,6, T }.
Hence, Theorem 7.2 implies that every accessible category of structures is at most 12.
In many cases the complexity will be lower; for example, if 6 is finitary, then, according
to Proposition 3.3, Mod T is 11 with parameters {6, T }. This amends the statement of
[9, Proposition 4.2].

Although, in the rest of the article, we shall restrict most of our discussion to ac-
cessible categories of structures, results involving only concepts that are invariant under
equivalence of categories will remain true for arbitrary accessible categories, by Theo-
rem 7.1.

A regular cardinal κ is said to be sharply bigger than another regular cardinal λ if
κ > λ and, for each set X of cardinality less than κ , the set Pλ(X) has a cofinal subset of
cardinality less than κ . This notion was introduced in [38, §2.3], where it was proved that
κ is sharply bigger than λ if and only if every λ-accessible category is κ-accessible (see
also [2, Theorem 2.11]).

If κ has the property that ν<λ < κ for all ν < κ (which was used in Theorem 5.1
above) and κ > λ, then κ is sharply bigger than λ, since, for a set X of cardinality ν, the
cardinality of Pλ(X) is precisely ν<λ. Therefore, if λ ≤ µ, then (2µ)+ is sharply bigger
than λ. This was first observed in [38, Proposition 2.3.5] and shows that for every λ there
are arbitrarily large regular cardinals sharply bigger than λ. Moreover, if κ is strongly
inaccessible and κ > λ, then κ is sharply bigger than λ.

In what follows, for an S-sorted signature 6 and a 6-structure A, the cardinality of
A designates the sum

∑
s∈S |As | of the cardinalities of the components of its underlying

S-sorted set.

Lemma 7.4. Let 6 be a λ-ary signature for a regular cardinal λ, and let C be a full
λ-accessible subcategory of Str6 closed under λ-filtered colimits. Let κ be a regular
cardinal sharply bigger than λ and bigger than the cardinalities of all λ-presentable
objects in C, and such that 6 ∈ H(κ). Then an object A ∈ C is κ-presentable if and only
if its cardinality is smaller than κ .

Proof. Let S be the set of sorts of 6; let 6op be its set of operation symbols and 6rel
its set of relation symbols. Let A be a 6-structure, and suppose first that its cardinality∑
s∈S |As | is smaller than κ . Let D : K → C be a κ-filtered diagram with a colimit L.

Then D is also λ-filtered and therefore the inclusion of C into Str6 preserves its colimit.
Suppose a homomorphism f : A → L is given. Since every set As has cardinality less
than κ and D is κ-filtered, each function fs : As → Ls factors through D(ks) for some
ks ∈ K. Since |S| < κ , we infer that f factors (as a function) through Dk for some
k ∈ K. Moreover, since the cardinality of the set of all α-sequences 〈ai : i ∈ α〉 with
ai ∈ Asi for all i and with α < λ is less than κ , and the cardinalities of the sets 6op and
6rel are also smaller than κ , we can find a morphism k→ l in K such that the composite
A → Dk → Dl is a homomorphism of 6-structures. For the same reason, given two
homomorphisms A→ Dk and A→ Dk′ which coincide in L, there is an object k′′ ∈ K
and morphisms k → k′′ and k′ → k′′ such that the composites A → Dk → Dk′′ and
A→ Dk′→ Dk′′ are equal. Hence A is κ-presentable.
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For the converse, by [38, Proposition 2.3.11], if κ is sharply bigger than λ then every
κ-presentable object A in C is a λ-filtered colimit of λ-presentable objects indexed by a
category with less than κ morphisms. Therefore, since each λ-presentable object has car-
dinality smaller than κ and the colimit is created in SetS , it follows that A has cardinality
smaller than κ . ut

The following is our main result in this section.

Theorem 7.5. Let C be an accessible category of structures and let S be a 6n full sub-
category of C, where n ≥ 1. Suppose that there is a proper class of supercompact cardi-
nals if n = 2 or that there is a proper class of C(n − 2)-extendible cardinals if n ≥ 3.
Then there is a dense small full subcategory D ⊆ S and there are arbitrarily large reg-
ular cardinals κ such that, for all Y ∈ S, the category (D ↓ Y ) is κ-filtered and Y is a
colimit of the canonical diagrams (D ↓ Y )→ S and (D ↓ Y )→ C.

Proof. Note first that, if S is essentially small, then the result trivially holds with D a
full subcategory of S containing one representative of each isomorphism class of objects
in S, if κ is chosen bigger than the cardinality of the set of objects of D. Therefore we
assume from now on that there is a proper class of nonisomorphic objects in S.

Choose a 6n formula defining S with a set p of parameters. Suppose that C embeds
accessibly into Str6 for a signature 6, and pick a regular cardinal λ such that 6 is λ-ary
and C is λ-accessible and closed under λ-filtered colimits in Str6. Let Cλ be a set of
representatives of all isomorphism classes of λ-presentable objects in C.

Now let α be any given ordinal. Choose a regular cardinal κ bigger than α and λ, and
large enough so that each object in Cλ is in H(κ) and {p,6} ∈ H(κ) as well. Moreover,
if n = 1 then pick κ of the form (2µ)+ with µ ≥ λ; if n = 2 then choose instead
κ supercompact, and if n ≥ 3 then choose it C(n − 2)-extendible. With any of these
choices, κ is sharply bigger than λ and therefore C is κ-accessible.

Let D be a full subcategory of S containing one representative of each isomorphism
class of objects in the set S ∩ H(κ). Note that, since each object of D is in H(κ), all
objects of D are κ-presentable in C, by Lemma 7.4.

Let Cκ be a set of representatives of all isomorphism classes of κ-presentable objects
of C, chosen so that D ⊆ Cκ and all objects of Cκ are inH(κ). The latter is possible since,
if A ∈ C and A is κ-presentable, then A has cardinality smaller than κ by Lemma 7.4 and
therefore A ∼= A′ as 6-structures for some A′ ∈ H(κ). Since C is isomorphism-closed,
A′ is in C and we may pick A′ as a member of Cκ .

Let Y be any object of S. Since C is κ-accessible, we know that Y is a colimit of
the canonical diagram (Cκ ↓ Y ) → C, which is κ-filtered, by [2, p. 73]. Therefore, if
we prove that (D ↓ Y ) is cofinal in (Cκ ↓ Y ), it will then follow that Y is a colimit of
the canonical diagram (D ↓ Y ) → C, and that (D ↓ Y ) is κ-filtered. Moreover, since
Y is in S, we shall be able to conclude that Y is also a colimit of the canonical diagram
(D ↓ Y )→ S, as we wanted to show.

Thus, towards proving that (D ↓ Y ) is cofinal in (Cκ ↓ Y ), let A be any object of Cκ
and let a morphism g : A→ Y be given. If n = 1, then, since A ∈ H(κ), it follows from
part (a) of Theorem 5.1 that there is an object 〈X, f 〉 in (A ↓ S) with X ∈ S ∩ H(κ),
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together with an elementary embedding e : X → Y of 6-structures such that e ◦ f = g.
If n > 1, then Theorem 5.2 if n = 2 and Theorem 6.6 if n ≥ 3 lead to the same
conclusion (recall thatH(κ) = Vκ if κ is strongly inaccessible). In each case, we replace,
if necessary, X by an isomorphic object within S ∩H(κ), so we may assume that X ∈ D.

We therefore have a commutative triangle

A

f

��

g

��

X
e // Y

where f can also be viewed as a morphism from 〈A, g〉 to 〈X, e〉 in (Cκ ↓ Y ). Since
(Cκ ↓ Y ) is filtered, this tells us that (D ↓ Y ) is cofinal in (Cκ ↓ Y ), as we wanted to
show. ut

Corollary 7.6. If there is a proper class of supercompact cardinals, then every accessible
category is co-wellpowered.

Proof. Let C be an accessible category. Since accessibility and co-wellpoweredness are
invariant under equivalence of categories, we can assume that C is a category of models
of a basic theory T for some signature 6, by Theorems 7.1 and 7.2.

For an object A ∈ C, let EA be the full subcategory of (A ↓ C) whose objects are
the epimorphisms. Then EA is a partially ordered class, since between any two of its
objects there is at most one morphism. Moreover, EA is closed under colimits in (A ↓ C)
and, if a diagram D : K → EA has a colimit, then the colimit is a supremum of the set
{Dk : k ∈ K}, hence determined by this set up to isomorphism. Therefore, in order to
prove that C is co-wellpowered, it is enough to prove that EA is bounded for every A,
since this implies that EA is essentially small.

From the fact that C is 12 it follows that EA is 52, since an object of EA is a pair
〈Y, g〉 where g ∈ C(A, Y ) and

∀Z ∀h∀h′ [(h ∈ C(Y, Z) ∧ h′ ∈ C(Y, Z) ∧ h ◦ g = h′ ◦ g) → h = h′],

and a morphism 〈Y, g〉 → 〈Y ′, g′〉 is a morphism d ∈ C(Y, Y ′) with g′ = d ◦ g. Hence,
Theorem 7.5 implies that EA is bounded under the assumption that there are arbitrarily
large extendible cardinals.

However, as we next show, it is enough to assume that there are arbitrarily large super-
compact cardinals. For this, we need to repeat the argument used in the proof of Theo-
rem 7.5 and the one used in the proof of Theorem 5.2, adapted to our current situation.

If C is accessible, then (A ↓ C) is also accessible, by [2, Corollary 2.44]. Pick a regular
cardinal λ such that (A ↓ C) is λ-accessible. Assuming that there exists a proper class
of supercompact cardinals, we may choose a supercompact cardinal κ bigger than λ such
that6, T ∈ H(κ) and such that all λ-presentable objects of (A ↓ C) are inH(κ). Since κ
is strongly inaccessible, it is sharply bigger than λ and therefore (A ↓ C) is κ-accessible.

Choose a full subcategory D of EA containing one representative of each isomorphism
class of objects in EA ∩H(κ). By Lemma 7.4, all objects in D are κ-presentable. Choose
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also a set (A ↓ C)κ of representatives of all isomorphism classes of κ-presentable objects
of (A ↓ C), containing D and such that all its objects are in H(κ), which is possible by
Lemma 7.4.

Now let 〈Y, g〉 be any object of EA, so g : A→ Y is an epimorphism. We know that
〈Y, g〉 is a colimit of the canonical diagram

((A ↓ C)κ ↓ 〈Y, g〉)→ (A ↓ C).

Hence it suffices to prove that (D ↓ 〈Y, g〉) is cofinal in ((A ↓ C)κ ↓ 〈Y, g〉). For this,
pick any object in ((A ↓ C)κ ↓ 〈Y, g〉), which consists of a κ-presentable object 〈B, a〉 of
(A ↓ C) together with a morphism d : B → Y such that d ◦ a = g. Pick a cardinal µ > κ

such that 〈Y, g〉 ∈ H(µ). Then d is also in H(µ) since B ∈ H(κ).
Let j : V → M be an elementary embedding with M transitive and critical point κ ,

such that j (κ) > µ and M is closed under µ-sequences. Then g and d are in M since
H(µ) ∈ M . Moreover, C is absolute between M and V , by Proposition 3.3(b). Therefore
g is also an epimorphism in M , since, if h, h′ ∈ C(Y, Z) satisfy h ◦ g = h′ ◦ g in M , then
h and h′ also belong to C(Y, Z) in V and therefore h = h′, since g is an epimorphism
in V .

Since Y ∈ H(µ), the restriction j�Y : Y → j (Y ) is in M , and it is an elemen-
tary embedding of 6-structures by Theorem 4.1. Since A and B are in H(κ), we have
that j (A) = A and j (B) = B. Therefore, as in the proof of Theorem 5.2, g : A → Y

and d : B → Y witness that in M there is an object X (namely, Y ) and there is an epi-
morphism f ∈ C(A,X) with rank(X) < j (κ), together with an elementary embedding
e : X → j (Y ) such that e ◦ f = j (g) and a morphism c ∈ C(B,X) such that c ◦ a = f
and e ◦ c = j (d). This implies, by elementarity of j , that in V there is an epimorphism
f ∈ C(A,X)with rank(X) < κ , together with an elementary embedding e : X→ Y such
that e ◦ f = g and a morphism c ∈ C(B,X) such that c ◦ a = f and e ◦ c = d. In other
words, there is a commutative diagram

A

a

��

f

��

g

��

B

d

<<c
// X

e
// Y

Here we may replace 〈X, f 〉 by an isomorphic object which is in D. This shows that
(D ↓ 〈Y, g〉) is cofinal in ((A ↓ C)κ ↓ 〈Y, g〉), and consequently the category EA is
bounded, as needed. ut

On the other hand, as shown in [2, A.19], if each accessible category is co-wellpowered
then there exists a proper class of measurable cardinals. Therefore, the statement that
every accessible category is co-wellpowered is set-theoretical. Its precise consistency
strength is not known (see [2, Open Problem 11]). By [38, Theorem 6.3.8(i)], together
with the fact that categories of epimorphisms can be sketched by a pushout sketch (as
done in [2, p. 101]), the statement that every accessible category is co-wellpowered is
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implied by the existence of a proper class of strongly compact cardinals, a large-cardinal
assumption that is not known to be weaker, consistency-wise, than the existence of a
proper class of supercompact cardinals.

In order to simplify the statements of several corollaries of Theorem 7.5, we shall use
the following terminology.

Definition 7.7. We say that a class S is definable with sufficiently low complexity if any
of the following conditions is satisfied:

(1) S is 61.
(2) There is a proper class of supercompact cardinals and S is 62.
(3) There is a proper class of C(n)-extendible cardinals for some n ≥ 1 and S is 6n+2.

By Corollary 6.9, if Vopěnka’s principle holds, then all classes are definable with
sufficiently low complexity.

8. Small-orthogonality classes

An object X and a morphism f : A→ B in a category C are called orthogonal [25] if the
function

C(f,X) : C(B,X)→ C(A,X)
is bijective. That is,X and f are orthogonal if and only if for every morphism g : A→ X

there is a unique morphism h : B → X such that h ◦ f = g.
For a class of objects X , we denote by ⊥X the class of morphisms that are orthogonal

to all the objects of X . Similarly, for a class of morphisms F , we denote by F⊥ the class
of objects that are orthogonal to all the morphisms of F . Classes of objects of the form
F⊥ are called orthogonality classes, and, if F is a set (not a proper class), then F⊥ is a
small-orthogonality class.

In what follows, we view each class of morphisms in C as a full subcategory of the
category of arrows Arr C.

Lemma 8.1. For a regular cardinal λ, let F be a class of morphisms in a λ-accessible
category C, and let D ⊆ F . Suppose that each f ∈ F is a λ-filtered colimit of ele-
ments of D and suppose that the inclusion of F into Arr C preserves the colimit. Then
D⊥ = F⊥.

Proof. To prove this, only the inclusion D⊥ ⊆ F⊥ needs to be checked. LetX ∈ D⊥ and
let 〈A,B, f 〉 be any object of F . By assumption, 〈A,B, f 〉 ∼= colim 〈Ak, Bk, dk〉, where
〈Ak, Bk, dk〉 is in D for all k ∈ K, and K is λ-filtered. Since C is λ-accessible, the colimits
colimAk and colimBk exist, and the induced arrow colimAk → colimBk is a colimit of
the arrows dk : Ak → Bk . Thus, colim 〈Ak, Bk, dk〉 ∼= 〈colimAk, colimBk, colim dk〉, so
f induces bijections

C(B,X) ∼= C(colimBk, X) ∼= lim C(Bk, X)
∼= lim C(Ak, X) ∼= C(colimAk, X) ∼= C(A,X),

which means that X ∈ F⊥, as needed. ut
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Lemma 8.2. If S is a 6n+1 full subcategory of a 6n category C, then ⊥S is 5n+1 if
n ≥ 1, and it is 52 if n = 0.

Proof. The class ⊥S can be defined as follows: 〈A,B, f 〉 ∈ ⊥S if and only if

∀X ∀g [(X ∈ S ∧ g ∈ C(A,X))→ ∃h (h ∈ C(B,X) ∧ h ◦ f = g)]
∧ ∀X ∀h1 ∀h2 [(X ∈ S ∧ h1 ∈ C(B,X) ∧ h2 ∈ C(B,X)

∧ h1 ◦ f = h2 ◦ f )→ h1 = h2]. (8.1)

Recall that P → Q means ¬(P ∧ ¬Q), or ¬P ∨Q. Therefore, (8.1) is at least 52, and
it is 5n+1 if S is 6n+1 and C is at most 6n with n ≥ 1. ut

Theorem 8.3. Assume the existence of a proper class of C(n)-extendible cardinals,
where n ≥ 2. Then each 6n+1 orthogonality class in an accessible category C of struc-
tures is a small-orthogonality class.

Proof. Let S be a full subcategory of C whose objects form a 6n+1 orthogonality class.
Thus S = F⊥ for some F , and this implies that

(⊥S)⊥ = (⊥(F⊥))⊥ = F⊥ = S.

Since C is 12 by Proposition 3.3, we infer from Lemma 8.2 that ⊥S is 5n+1. Now the
category of arrows Arr C is accessible and embeds accessibly into a category of structures
in such a way that complexity is preserved, by Lemma 3.2. Hence, by Theorem 7.5, ⊥S
has a dense small full subcategory D and there is a regular cardinal κ (which we may
choose so that C is κ-accessible) such that every arrow f ∈ ⊥S is a κ-filtered colimit of
elements of D, both in ⊥S and in Arr C. Then D⊥ = (⊥S)⊥ = S by Lemma 8.1, so S is
indeed a small-orthogonality class. ut

This result can be sharpened as follows. A reflection on a category is a left adjoint (when
it exists) of the inclusion of a full subcategory [36], which is then called reflective. For
example, in the category of groups, the abelianization functor is a reflection onto the
reflective full subcategory of abelian groups. For every reflection L, the closure under
isomorphisms of its image is an orthogonality class, and it is in fact orthogonal to the
class of L-equivalences, i.e., morphisms f such that Lf is an isomorphism.

A reflection L is called an F-reflection, where F is a set or a proper class of mor-
phisms, if the closure under isomorphisms of the image ofL is equal to F⊥. This notion is
particularly relevant when F can be chosen to be a set (or even better a single morphism).
In the previous example, abelianization is an f -reflection where f is the canonical pro-
jection of a free group on two generators onto a free abelian group on two generators,
since the groups orthogonal to f are precisely the abelian groups.

Theorem 8.4. Let L be a reflection on an accessible category C of structures. Then L is
an F-reflection for some set F of morphisms under any of the following assumptions:

(1) The class of L-equivalences is definable with sufficiently low complexity.
(2) The class of objects isomorphic to LX for some X is 6n+1 for n ≥ 2 and there is a

proper class of C(n)-extendible cardinals.
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Proof. To prove case (1), let S be the full subcategory of L-equivalences in the category
of arrows of C. It then follows from Theorem 7.5 that there is a small full subcategory D
of S which is dense and satisfies S⊥ = D⊥, by Lemma 8.1, as needed. Case (2) follows
as a special case of Theorem 8.3. ut

The following corollary is a stronger variant of [9, Corollary 4.6]. The assumptions that L
be an epireflection and that C be balanced, which were made in [9], are not at all necessary
here.

Corollary 8.5. Suppose that there is a proper class of supercompact cardinals. If L is a
reflection on an accessible category C of structures and the class of L-equivalences is 62,
then L is an F-reflection for some set F of morphisms.

Proof. By assumption, the class ofL-equivalences is definable with sufficiently low com-
plexity. Hence, Theorem 8.4 applies. ut

As already shown in [17, Theorem 6.3], the assertion that every reflection on an acces-
sible category is an F-reflection for some set F of morphisms cannot be proved in ZFC.
Specifically, if one assumes that measurable cardinals do not exist and considers reflection
on the category of groups with respect to the class Z of homomorphisms of the form
Zκ/Z<κ → {0}, where κ runs over all cardinals (see Example 2.2), then there is no set F
of group homomorphisms such that F-reflection coincides with Z-reflection. This fact
was also used in [9].

Theorem 8.6. If C is a locally presentable category of structures, then every full subcate-
gory S of C closed under limits and definable with sufficiently low complexity is reflective.

Proof. As in the proof of Theorem 7.5, for every A ∈ C we can choose a small full
subcategory D of S (depending on the cardinality of A and the parameters of C) such
that every arrow f : A→ Y with Y in S factors through some object X ∈ D. Hence the
inclusion functor S ↪→ C satisfies the solution-set condition for every A in C, as required
in the Freyd Adjoint Functor Theorem [36, V.6], from which the existence of a reflection
of C onto S follows. ut

The following result is a further improvement, since it implies, among other things, that,
if S is 61, then the reflectivity of S⊥ is provable in ZFC. This yields, in particular, a
solution of the Freyd–Kelly orthogonal subcategory problem [25] in ZFC for 61 classes.

Theorem 8.7. Let S be a class of morphisms definable with sufficiently low complexity
in an accessible category C of structures. Then S⊥ is a small-orthogonality class and, if
C is cocomplete, then S⊥ is reflective.

Proof. If we view S as a full subcategory of the category of arrows of C, then Theo-
rem 7.5 ensures that S has a dense small full subcategory D and Lemma 8.1 implies that
D⊥ = S⊥. Hence S⊥ is a small-orthogonality class, and small-orthogonality classes are
reflective if colimits exist [2, 1.37]. ut

If we weaken the assumption that S is closed under limits in Theorem 8.6, by imposing
only that it is closed under products and retracts, then we may infer similarly that S
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is weakly reflective, under the hypotheses made in the statement. On the other hand,
it is shown in [16] that, assuming the nonexistence of measurable cardinals, there is a
62 full subcategory S of the category of abelian groups which is closed under products
and retracts but not weakly reflective. Specifically, S is the closure of the class of groups
Zκ/Z<κ under products and retracts, where κ runs over all cardinals. Hence, the statement
that all 62 full subcategories closed under products and retracts in locally presentable
categories are weakly reflective implies the existence of measurable cardinals, while it
follows from the existence of supercompact cardinals.

Theorem 8.8. Every full subcategory closed under colimits and definable with suffi-
ciently low complexity in a locally presentable category C of structures is coreflective.

Proof. Argue as in [2, Theorem 6.28]. ut

9. Consequences in homotopy theory

Hovey conjectured in [29] that for every cohomology theory defined on spectra there is
a homology theory with the same acyclics. This conjecture remains so far unsolved. In a
different but closely related direction, the existence of cohomological localizations is also
an open problem in ZFC, although it is known that it follows from Vopěnka’s principle,
both in unstable homotopy and in stable homotopy, by [17] and [15, Theorem 1.5].

Motivated by these problems, in this section we compare homological acyclic classes
with cohomological acyclic classes from the point of view of complexity of their defini-
tions. We consider homology theories and cohomology theories defined on simplicial sets
and represented by spectra.

Spectra will be meant in the sense of Bousfield–Friedlander [13]. Thus, a spectrum E

is a sequence of pointed simplicial sets

〈(En, pn) : pn ∈ (En)0, 0 ≤ n < ω〉

equipped with pointed simplicial maps σn : SEn → En+1 for all n. Here S denotes sus-
pension, that is, SX = S1

∧X. For k ≥ 1, we denote by Sk the simplicial k-sphere, namely
Sk = 1[k]/∂1[k], where 1[k] is the standard k-simplex and ∂1[k] is its boundary. For
pointed simplicial sets X and Y , the smash product X ∧ Y is the quotient of the product
X × Y by the wedge sum X ∨ Y , and we denote by map∗(X, Y ) the pointed function
complex from X to Y , whose n-simplices are the pointed maps X ∧1[n]+ → Y , where
the subscript + means that a disjoint basepoint has been added.

A simplicial set is fibrant if it is a Kan complex [32]. For the purposes of this article, it
will be convenient to use Kan’s Ex∞ construction as a fibrant replacement functor. Thus,
there is a natural (injective) weak equivalence jY : Y ↪→ Ex∞Y for all Y , where Ex∞Y
is fibrant.

Let [X, Y ] denote the set of morphisms fromX to Y in the pointed homotopy category
of simplicial sets, which can be described as the set of pointed homotopy classes of maps
X → Ex∞Y . If Y is fibrant, then this is in bijective correspondence, via jY , with the set
of pointed homotopy classes of maps X→ Y .
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A spectrum E is an �-spectrum if each En is fibrant and the adjoints τn : En →
�En+1 of the structure maps σn : SEn→ En+1 are weak equivalences, where � denotes
the loop space functor �X = map∗(S1, X).

Each spectrum E defines a reduced homology theory E∗ on simplicial sets by

Ek(X) = colimn πn+k(X ∧ En) = colimn [Sn+k, X ∧ En] (9.1)

for k ∈ Z, and, if E is an �-spectrum, then E defines a reduced cohomology theory E∗

on simplicial sets by

Ek(X) = colimn πn−k(map∗(X,En)) = colimn [S
nX,En+k] (9.2)

for k ∈ Z. Note that, if k ≥ 0, then simply Ek(X) ∼= [X,Ek].
Such homology or cohomology theories are called representable, and we shall only

consider these in this article. Although not every generalized homology or cohomology
theory in the sense of Eilenberg–Steenrod is representable [44, Example II.3.17], ho-
mological localizations have only been constructed and studied assuming representabil-
ity [5], [11]. According to Brown’s representability theorem, every cohomology theory
which is additive (i.e., sending coproducts to products) is represented by some �-spec-
trum. Similarly, homology theories that preserve filtered colimits are representable (see
[4] or [44] for further details).

In most of what follows, we assume that E is an �-spectrum. A simplicial set X
is called E∗-acyclic if Ek(X) = 0 for all k ∈ Z, and, similarly, X is E∗-acyclic if
Ek(X) = 0 for all k ∈ Z. Observe that, by (9.2), the statement that X is E∗-acyclic
is equivalent to the statement that the pointed function complex map∗(X,En) is weakly
contractible (that is, connected and with vanishing homotopy groups) for all n.

A map f : X → Y is an E∗-equivalence if Ek(f ) : Ek(X) → Ek(Y ) is an isomor-
phism of abelian groups for all k ∈ Z, and similarly for cohomology. Let Cf denote the
mapping cone of f , which is obtained from the disjoint union of Y and X × 1[1] by
identifying X × {0} with f (X) ⊆ Y using f , and collapsing X × {1} to a point. Using
the Mayer–Vietoris axiom, one finds that f is an E∗-equivalence if and only if Cf is
E∗-acyclic, and analogously for cohomology.

The category of simplicial sets is 10, locally presentable, and it has a canonical
accessible embedding into a category of structures with a finitary ω-sorted operational
signature. In fact, one can write down explicitly a formula without unbounded quan-
tifiers expressing that X and Y are simplicial sets and f is a simplicial map from X

to Y . This amounts to formalizing the claim that a simplicial set X is a sequence of sets
〈Xn : 0 ≤ n < ω〉 (where the elements of Xn are called n-simplices), together with
functions dni : Xn → Xn−1 (called faces) for n ≥ 1 and 0 ≤ i ≤ n, and sni : Xn → Xn+1
(called degeneracies) for n ≥ 0 and 0 ≤ i ≤ n, satisfying the simplicial identities
(see [40, Definition 1.1]). A simplicial map f : X → Y is a sequence of functions
〈fn : Xn→ Yn〉0≤n<ω compatible with faces and degeneracies.

Similarly, the category of spectra is 10, locally presentable, and it also has an acces-
sible embedding into a category of structures with a finitary ω-sorted operational signa-
ture, since a spectrum E is a sequence 〈(Em, pm) : 0 ≤ m < ω〉 of pointed simplicial
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sets, where pm ∈ (Em)0, plus a sequence 〈σm : SEm → Em+1〉0≤m<ω of pointed maps,
each of which can be viewed as a map 1[1] × Em → Em+1 sending ∂1[1] × Em and
1[1] × {pm} to the basepoint pm+1. Giving a map f : 1[1] ×Em→ Em+1 is equivalent
to giving a collection of functions

f 0
0 , f

1
0 : (Em)0 → (Em+1)0 and f 0

k , f
1
k , f

01
k : (Em)k → (Em+1)k

for k ≥ 1, with commutativity conditions

f 0
0 ◦ d

1
0 = d

1
0 ◦ f

0
1 , f 1

0 ◦ d
1
0 = d

1
0 ◦ f

1
1 , f 0

0 ◦ d
1
0 = d

1
0 ◦ f

01
1 ,

f 0
0 ◦ d

1
1 = d

1
1 ◦ f

0
1 , f 1

0 ◦ d
1
1 = d

1
1 ◦ f

1
1 , f 1

0 ◦ d
1
1 = d

1
1 ◦ f

01
1 ,

s0
0 ◦ f

0
0 = f

0
1 ◦ s

0
0 , s0

0 ◦ f
1
0 = f

1
1 ◦ s

0
0 ,

and correspondingly for k ≥ 1.

Proposition 9.1. The following are 11 classes:

(1) Fibrant simplicial sets.
(2) Weak equivalences of simplicial sets.
(3) Weakly contractible spectra.
(4) �-spectra.

Proof. The assertion that a given simplicial set X is fibrant can be formalized by means
of the Kan extension condition, as in [40, Definition 1.3]. Explicitly, a simplicial set X is
fibrant if and only if for every 1 ≤ n < ω and every k ≤ n + 1, the following sentence
holds: For all x0, x1, . . . , xn+1 ∈ Xn such that dni xj = d

n
j−1xi for i < j , i 6= k and j 6= k,

there exists x ∈ Xn+1 such that dn+1
i x = xi for i 6= k. Since quantification over finite

subsets is 11 (see Example 2.3), the class of fibrant simplicial sets is 11-definable.
Towards (2), recall that a map of simplicial sets f : X → Y is a weak equivalence if

and only if it induces a bijection of connected components and isomorphisms of homo-
topy groups for every choice of a basepoint. Let us assume first that X and Y are fibrant.
Then f induces a bijection of connected components if and only if, for all x0 and x1 ofX0,
if there exists v ∈ Y1 with d1

0v = f (x0) and d1
1v = f (x1), then there exists u ∈ X1 with

d1
0u = x0 and d1

1u = x1, and moreover for each y ∈ Y0 there exist x ∈ X0 and v ∈ Y1

such that d1
0v = y and d1

1v = f (x). Hence, the statement that f induces a bijection of
connected components is 10.

Similarly, if a simplicial set X is fibrant, then the nth homotopy group πn(X, p) with
basepoint p ∈ X0 is the quotient of the set of all x ∈ Xn such that dni x = sp for all i
(where s = sn−2

n−2 ◦ · · · ◦ s
0
0 ) by the homotopy relation, where x ∼ x′ if dni x = d

n
i x
′ for

all i and there exists z ∈ Xn+1 with dn+1
n+1z = x, dn+1

n z = x′, and dn+1
i z = sn−1d

n
i x for

0 ≤ i < n (compare with [40, Definition 3.1]). Therefore, if X and Y are fibrant, then f
induces an isomorphism πn(X, p) ∼= πn(Y, q), where p ∈ X0 and q = f (p), if and only
if the following sentence holds:

∀y ∈ Yn [∀i ≤ n (d
n
i y = sq)→ [∃x ∈ Xn (∀i ≤ n (d

n
i x = sp)

∧ fn(x) ∼ y ∧ ∀x
′
∈ Xn ((∀i ≤ n (d

n
i x
′
= sp) ∧ fn(x

′) ∼ y)→ x ∼ x′))]].
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This shows that the statement that a map between fibrant simplicial sets is a weak equiv-
alence is 11.

Next we analyze the complexity of a fibrant replacement. For a simplicial set X, the
map jX : X ↪→ Ex∞X can be defined as the inclusion of X into a simplicial set Ex∞X
defined as follows. Let Ex1X be the simplicial set whose set of n-simplices is the set of
all maps from the barycentric subdivision of 1[n] into X. The barycentric subdivision
sd1[n] is the nerve of the poset of nondegenerate simplices of 1[n] (see [27, Ch. III,
§4]). The last vertex map sd1[n] → 1[n] yields an inclusion X ↪→ Ex1X. Then Ex∞X
is the union of a sequence of inclusions ExkX ↪→ Exk+1X for k ≥ 1, where Exk is the
composite of Ex1 with itself k times.

Let p be any vertex of X. Each element in πn(Ex∞Y, f (p)) is represented by a map
Sn → ExkY based at f (p) for some k < ω; that is, a map from 1[n] to ExkY sending
the boundary of 1[n] to f (p). By adjointness, the maps 1[n] → ExkY correspond
bijectively to the maps sdk1[n] → Y , where sdk is an iterated barycentric subdivision.
Let ak,n be the number of nondegenerate n-simplices of sdk1[n] and let Rk,n be the set of
all relations among their faces. For example, a2,1 = 4 and R2,1 consists of the equalities

d1
1 x(0→ 001) = d

1
1 x(01→ 001), d1

0 x(01→ 001) = d
1
0 x(01→ 011), d1

1 x(01→ 011) = d
1
1 x(1→ 011).

Thus, each map 1[n] → ExkY is determined by a sequence of ak,n (not necessarily
distinct) elements of Yn satisfying a set Rk,n of equalities among their faces. In what
follows, when we write “a map β : Sn → ExkY ” we implicitly formalize it as an ordered
sequence of ak,n elements of Yn satisfying a set Sk,n of sentences, including those of Rk,n
and those needed to express the fact that ∂1[n] is sent to the basepoint f (p). Homotopies
into ExkY are formalized similarly.

The assertion that a map f : X → Y induces πn(Ex∞X,p) ∼= πn(Ex∞Y, f (p)) for
every p ∈ X0 can therefore be expressed by stating that for every k < ω and every map
β : Sn → ExkY based at f (p) there exist l < ω and a map α : Sn → ExlX based at p
and a homotopy H : Sn ∧1[1]+→ ExrY from (Exrf ) ◦ α to β, where r ≥ k and r ≥ l,
and, moreover, if α′ : Sn→ ExmX is based at p and there is a homotopy from (Exrf )◦α′

to β with r ≥ k and r ≥ m, then there is a homotopy H : Sn ∧ 1[1]+ → ExsX from α

to α′ with s ≥ l and s ≥ m. Therefore, the class of weak equivalences between simplicial
sets is 11-definable.

Having proved (1) and (2), we next address (3). A spectrum F is weakly contractible
if and only if all its homotopy groups vanish, that is,

colimn [Sn+k, Fn] = 0 for all k ∈ Z.

This is equivalent to imposing that, for all k ∈ Z and n ≥ 0 such that n + k ≥ 0, each
pointed map β : Sn+k → Ex∞Fn becomes nullhomotopic after suspending it a finite
number of times (say,m times) and composing with the structure maps σn : SFn→ Fn+1.
More precisely, on the one hand, we have

Sn+m+k
Smβ
−−→ SmEx∞Fn

j
−→ Ex∞SmEx∞Fn, (9.3)
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and, on the other hand, there are maps

Ex∞SmEx∞Fn
Ex∞Smj
←−−−−− Ex∞SmFn

Ex∞σ
−−−→ Ex∞Fn+m,

where σ is an abbreviation for σn+m−1 ◦ Sσn+m−2 ◦ · · · ◦ S
m−2σn+1 ◦ S

m−1σn. The maps
j and Ex∞Smj are natural weak equivalences.

Hence, F is weakly contractible if and only if, for each k ∈ Z and each (n+k)-simplex
x ∈ Ex∞Fn whose faces are equal to the basepoint, there is an (n + m + k)-simplex
y ∈ Ex∞SmFn whose faces are equal to the basepoint and an (n + m + k + 1)-simplex
z ∈ Ex∞Fn+m whose top face is y and all its other faces are equal to the basepoint, and
(Ex∞Smj)y ∼ j (Smx).

We finally prove (4). In order to formalize the fact that a spectrumE is an�-spectrum,
we first need that each simplicial set En be fibrant. Then we need to define the adjoint
maps τn : En → �En+1 and we need to impose that each τn be a weak equivalence. To
define τn, let x be a k-simplex of En. Its image in �En+1 = map∗(S1, En+1) is a map
S1
∧1[k]+→ En+1 which is determined by imposing that

(τn(x))(se1, ek) = σn(se1, x),

where e1 is the nondegenerate 1-simplex of S1 and ek is the nondegenerate k-simplex
of 1[k], and s denotes a composition of degeneracies. ut

In what follows, we denote by sSet∗ the category of pointed simplicial sets and pointed
maps.

Theorem 9.2. The class of E∗-acyclic simplicial sets for a spectrum E is 11 with E as
a parameter.

Proof. If (X, p) and (Y, q) are pointed simplicial sets, then W = X ∨ Y is a pointed
simplicial set contained in X × Y such that Wn contains all elements of the form (x, sq)

with x ∈ Xn and all those of the form (sp, y) with y ∈ Yn, where s is a composition of
degeneracies, with basepoint (p, q). The smash productX∧Y is obtained fromX×Y by
collapsingX∨Y to a point. Hence, (X∧Y )n = (Xn×Yn)\(Wn\{(sp, sq)}) for all n, and
we declare equal to (sp, sq) all faces of elements of Xn+1×Yn+1 and all degeneracies of
elements of Xn−1 × Yn−1 taking values in Wn.

If (X, p) is a pointed simplicial set and E is a spectrum with structure maps 〈σn :
0 ≤ n < ω〉, then X ∧ E is a spectrum with (X ∧ E)n = X ∧ En and structure maps
(id ∧ σn) ◦ (τ ∧ id) for all n, where τ : S1

∧ X → X ∧ S1 is the twist map. By Propo-
sition 9.1(3), the statement that X ∧ E is weakly contractible is 11. However, a formula
expressing this fact has to contain a definition of X ∧ E, where E is a given spectrum
treated as a parameter. This can be done in two equivalent ways, as follows:

X ∈ sSet∗ ∧ ∃F [F is a spectrum ∧ (∀n < ω)((Fn = X ∧ En)

∧ σFn = (id ∧ σ
E
n ) ◦ (τ ∧ id)) ∧ F is weakly contractible]; (9.4)

X ∈ sSet∗ ∧ ∀F [[F is a spectrum ∧ (∀n < ω)((Fn = X ∧ En)

∧ σFn = (id ∧ σ
E
n ) ◦ (τ ∧ id))] → F is weakly contractible]. (9.5)

Since (9.4) is 61 and (9.5) is 51, the theorem is proved. ut
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As explained in Section 2, the fact that homological acyclic classes are 11 implies that
they are absolute. This means that, if E is a spectrum and M is a transitive model of ZFC
such that E ∈ M (in which case E is a spectrum in M as well, since being a spectrum
is 10), then a simplicial set X ∈ M is E∗-acyclic in M if and only if it is E∗-acyclic.

We thank Federico Cantero for pertinent remarks about the argument given in the
proof of the next result.

Theorem 9.3. The class of E∗-acyclic simplicial sets for an �-spectrum E is 12 with E
as a parameter.

Proof. LetE be an�-spectrum, which will be used as a parameter. By Proposition 9.1(4),
every transitive model of ZFC containing E will agree with the fact that E is an �-spec-
trum.

A simplicial setX is E∗-acyclic if and only if, for all k ∈ Z and n ≥ 0 with n+k ≥ 0,
every map SnX → En+k becomes nullhomotopic after suspending it a finite number of
times and composing with the structure maps of E as in (9.3). This claim leads to a
52 formula—note that a map SnX → En+k is no longer determined by any finite set of
simplices of En+k . Next we show that it is possible to restate it by means of a62 formula.

A pointed simplicial set (X, p) isE∗-acyclic if and only if for all n < ω the simplicial
set map∗(X,En) is weakly contractible, assuming that E is an �-spectrum. Thus, X
is E∗-acyclic if and only if the following sentence is true, where we need to include a
definition of M = map∗(X,En):

X ∈ sSet∗ ∧ (∀n < ω) ∃M [M ∈ sSet∗
∧ (∀k < ω) [(∀f ∈ Mk) f ∈ sSet∗(X ∧1[k]+, En)

∧ ∀g (g ∈ sSet∗(X ∧1[k]+, En)→ g ∈ Mk)] ∧ M is weakly contractible].

According to Proposition 9.1, this is a 62 formula. ut

In order to state and prove the next results, we use the term homotopy reflection (also
called homotopy localization elsewhere) to designate a functor L : sSet∗ → sSet∗
equipped with a natural transformation η : Id → L which preserves weak equivalences
and becomes a reflection when passing to the homotopy category. For a homotopy re-
flection L, an L-equivalence is a map f : X → Y such that Lf : LX → LY is an
isomorphism in the homotopy category, and a simplicial set X is called L-local if it is
fibrant and weakly equivalent to LX for some X.

We also recall that, for a pointed map f : A→ B, a connected fibrant simplicial setX
is f -local if the induced map of pointed function complexes

map∗(f,X) : map∗(B,X)→ map∗(A,X)

is a weak equivalence, and a disconnected X is f -local if each of its connected compo-
nents is f -local with any choice of basepoint (cf. [21, 1.A.1]). Note that, if X is f -local
for a map f : A → B, then f induces a bijection [B,X] ∼= [A,X], since [B,X] is in
natural bijective correspondence with the set of connected components of map∗(B,X).
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Hence, being f -local is a stronger condition than being orthogonal to f in the homotopy
category.

The same terminology is used for a set or a proper class of maps F , that is, a simplicial
set is F-local if it is f -local for all f ∈ F . An F-localization is a homotopy reflection L
such that the class of L-local spaces coincides with the class of F-local spaces.

Lemma 9.4. Given any class S of pointed maps between simplicial sets, if there is a
subclass F ⊆ S such that each element of S is a filtered colimit of elements of F , then
every F-local space is S-local.

Proof. The argument is analogous to the one in the proof of Lemma 8.1. Let f : A→ B

be any element of S and let X be an F-local simplicial set, which we may assume con-
nected. Write f = colim fk (in the category of pointed maps between simplicial sets),
where fk : Ak → Bk is in F for all k ∈ K, and K is filtered. Now we use, as in [17,
Lemma 5.2], the fact that the natural map

hocolim fk → colim fk

is a weak equivalence, since homotopy groups commute with filtered colimits (hocolim
denotes a pointed homotopy colimit [28, 18.8]). Hence,

map∗(B,X) ' map∗(hocolimBk, X) ' holim map∗(Bk, X)
' holim map∗(Ak, X) ' map∗(hocolimAk, X) ' map∗(A,X),

from which it follows indeed that X is S-local. ut

Theorem 9.5. Assume the existence of arbitrarily large supercompact cardinals. Then
for every additive cohomology theory E∗ defined on simplicial sets there is a homotopy
reflection L such that the L-equivalences are precisely the E∗-equivalences.

Proof. Let S be the class of E∗-equivalences for a given additive cohomology theory E∗,
and view it as a full subcategory of the category of pointed maps between simplicial
sets, which is accessibly embedded into a category of structures, by Lemma 3.2. Since
the class of E∗-equivalences coincides with the class of maps whose mapping cone is
E∗-acyclic, Theorem 9.3 tells us that S is 12, hence 62. Consequently, it follows from
Theorem 7.5 that there is a regular cardinal κ and a set F of E∗-equivalences such that
every E∗-equivalence is a κ-filtered colimit of elements of F in the category of pointed
maps between simplicial sets.

To conclude the proof, let f : A→ B be the coproduct of all the elements of F , and
let L be f -localization, as constructed in [12], [21] or [28]. Since all the elements of F
are E∗-equivalences and E∗ is additive, f is an E∗-equivalence.

Let E be an �-spectrum representing E∗. Since f is an E∗-equivalence, it induces
bijections [B,En] ∼= [A,En] for all n, and in fact weak equivalences map∗(B,En) '
map∗(A,En) for all n. In other words, the basepoint component of En is f -local for all n.
Since En is a loop space, all its connected components have the same homotopy type and
therefore En itself is f -local for all n. It follows that every L-equivalence g : X → Y
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induces a weak equivalence map∗(Y,En) ' map∗(X,En) for all n, and we conclude that
all L-equivalences are E∗-equivalences.

Conversely, every E∗-equivalence is, as said above, a κ-filtered colimit of objects
from F . According to Lemma 9.4, every L-local simplicial set is E∗-local, and therefore
all E∗-equivalences are L-equivalences. This completes the argument. ut

What we have proved is that localization with respect to any additive cohomology theory
exists on the homotopy category of simplicial sets if there exist arbitrarily large super-
compact cardinals. This is a substantial improvement of [17, Corollary 5.4], where the
existence of cohomological localizations was inferred from Vopěnka’s principle.

We also emphasize that from Theorem 9.2 it follows, by a similar method to the
proof of Theorem 9.5 (or using Theorem 9.7 below), that the existence of homological
localizations (for representable homology theories) is provable in ZFC. Bousfield did it
indeed in [11].

The same line of argument provides an answer to Farjoun’s question in [20] of whether
all homotopy reflections are f -localizations for some map f . It was shown in [17] that the
answer is affirmative under Vopěnka’s principle, and Przeździecki proved in [42] that an
affirmative answer is in fact equivalent to Vopěnka’s principle. Here we prove an analogue
of Theorem 8.4.

Theorem 9.6. A homotopy reflection L on simplicial sets is an f -localization for some
map f under any of the following assumptions:

(1) The class of L-equivalences is definable with sufficiently low complexity.
(2) The class of L-local simplicial sets is 6n+1 for n ≥ 2 and there is a proper class of

C(n)-extendible cardinals.

Proof. For (1), we may choose, by Theorem 7.5, a set F of L-equivalences such that
every L-equivalence is a filtered colimit of elements of F in the category of pointed maps
between simplicial sets. Let f be the coproduct of all the elements of F . Then f is an
L-equivalence, since the class of L-equivalences is closed under coproducts. Therefore,
every L-local simplicial set is f -local, by [17, Corollary 4.4]. Conversely, every f -local
simplicial set is L-local by Lemma 9.4.

In order to prove (2), note that, if the class of L-local simplicial sets is 6n+1, then the
class of L-equivalences is 5n+1, since f : A→ B is an L-equivalence if and only if the
induced function [B,X] → [A,X] is a bijection for each L-local space X, which can be
formalized as

∀X ∀g [(X is an L-local simplicial set ∧ g ∈ sSet∗(A,X))→
(∃h (h ∈ sSet∗(B,X) ∧ h ◦ f ' g) ∧ any two such maps are homotopic)].

The statement “any two such maps are homotopic” can be formally written as a 52 for-
mula. Hence the same argument as in part (1) applies under the assumption that a proper
class of C(n)-extendible cardinals exists, by means of Theorem 7.5. ut

The corresponding analogue of Theorem 8.7 is the next result. Localization with respect
to proper classes of maps was shown to exist in [18] under restrictive conditions.
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Theorem 9.7. Let S be any (possibly proper) class of maps of simplicial sets. If S is
definable with sufficiently low complexity, then an S-localization exists.

Proof. Theorem 7.5 implies that there is a set F ⊆ S such that every f ∈ S is a filtered
colimit of elements of F . Then F-localization exists since F is a set, and every F-local
simplicial set is S-local by Lemma 9.4. Since F ⊆ S, all S-local simplicial sets are
F-local, so the proof is complete. ut

10. Bergman’s question

If 6 is a finitary operational signature, then 6-structures are universal algebras. If C is
a full subcategory of Str6 and n is a nonnegative integer, an n-ary implicit operation f
on C is a collection of functions fX : Xn → X indexed by objects X of C such that the
square

Xn
hn //

fX

��

Y n

fY

��

X
h // Y

commutes for each homomorphism h : X → Y . Such implicit operations are very useful
in finite universal algebra (see [6]). If C is a proper class with no homomorphisms except
identities, then each collection {fX}X∈C is an implicit operation. In a previous version
of [10], Bergman asked if it can happen that there is a proper class of distinct implicit
operations on some C assuming Vopěnka’s principle (here we neglect the fact that implicit
operations need not be sets themselves).

Theorem 10.1. For a finitary operational signature 6, Vopěnka’s principle implies that
there is only a set of implicit operations on each full subcategory of Str6.

Proof. Let C be a full subcategory of Str6, where 6 is S-sorted. By [3], Vopěnka’s
principle implies that there is a regular cardinal κ and a set A of objects in C such that
each object of C is a κ-filtered colimit of objects of A. Now, since the forgetful functor
Str6 → SetS and the n-fold product functor (−)n : SetS → SetS preserve colimits,
each implicit operation fX with X ∈ C is uniquely determined by {fA}A∈A. Hence the
collection of distinct implicit operations on C has a cardinality. ut

We improve this result as follows.

Theorem 10.2. For a finitary operational signature6, every full subcategory S of Str6
definable with sufficiently low complexity has only a set of implicit operations.

Proof. As shown in the proof of Theorem 7.5, for each object Y of S the slice category
(S ∩ H(κ) ↓ Y ) is cofinal in (K ↓ Y ) for some regular cardinal κ , where K is the
(essentially small) class of κ-presentable objects in Str6. Thus each object of S is a
κ-filtered colimit of objects from the set S ∩H(κ). The rest is the same as in the proof of
Theorem 10.1. ut
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