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Abstract. We compute the K-theory of C*-algebras generated by the left regular representation of
left Ore semigroups satisfying certain regularity conditions. Our result describes the K-theory of
these semigroup C*-algebras in terms of the K-theory for the reduced group C*-algebras of certain
groups which are typically easier to handle. Then we apply our result to specific semigroups from
algebraic number theory.
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1. Introduction

Let P be a (discrete) semigroup. If P admits left cancellation, then left translation defines
an action of P by isometries Vp, p ∈ P , on the Hilbert space `2(P ). When P is a group,
the Vp are unitaries and the reduced C*-algebra C∗r (P ) generated by the operators Vp is
one of the most classical objects of study in the theory of operator algebras. The analogous
C*-algebra for a genuine semigroup has recently attracted attention, partly triggered by
natural examples, and has been studied in various connections. We call them (reduced
or regular) semigroup C*-algebras. The interested reader may consult [Li2] for a brief
account of the historical background of these C*-algebras attached to semigroups.

The possibility of describingC∗r (P ), for a left cancellative semigroup P , as a universal
C*-algebra with generators and relations has been analyzed in [Li2] in connection with
amenability properties of P . Also, such a description was discussed in detail in [C-D-L]
for the important example of the “ax + b-semigroup” R o R× for the ring of integers R
in a number field. In this latter paper also the KMS-structure for a natural one-parameter
group on C∗r (RoR×) was studied and it was shown that it is partly governed by the ideal
class group for R.

In the present paper we set out to determine the K-theoretic invariants of C∗r (P ) for
a class of semigroups containing the semigroups arising from number theory that we are
interested in. Here is our main result:
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Theorem. Let P be a countable left Ore semigroup. Assume that the family of con-
structible right ideals J of P is independent (§2.2), and that the enveloping group G of
P satisfies the Baum–Connes conjecture with coefficients. Let I denote the G-saturation
of J \ {∅} in the power set P(G) of G. Then the K-theory of the semigroup C*-algebra
C∗r (P ) can be described as follows:

K∗(C
∗
r (P ))

∼=

⊕
[X]∈G\I

K∗(C
∗
r (GX)),

where GX = {g ∈ G : g ·X = X} denotes the stabilizer of X ∈ I under the action of G
on I.

In fact, we only need the Baum–Connes conjecture with coefficients in two specificG-C*-
algebras. Moreover, in good situations, it turns out thatC∗r (P ) and

⊕
[X]∈G\I C

∗
r (GX) are

actually KK-equivalent. We refer the reader to §7 for more explanations and more precise
formulations of our result. Let us now explain the basic ideas behind the proof:

As a first step, we need an embedding of C∗r (P ) as a full corner of a (reduced) crossed
product D or G of a commutative C*-algebra D by an enveloping group G for P (see
Section 4). The existence of such a crossed product follows from the left Ore condition
on P (see [La]). As a consequence, the K-theory of C∗r (P ) is isomorphic to the K-theory
of D or G.

We then prove a rather general K-theoretic theorem which, in many situations, allows
one to reduce the computation of K∗(D or G) to the, often much simpler, computation
of the K-theory of C*-algebras associated with certain subgroups of G. Our key techni-
cal result concerns the following situation. Assume that D is a commutative C*-algebra
generated by a multiplicative family {ei : i ∈ I } of projections, satisfying a certain inde-
pendence condition, and that a groupG acts onD leaving the generating family invariant.
We then show under the assumption that G satisfies the Baum–Connes conjecture for the
coefficient algebras D and c0(I ) that the computation of the K-theory of the crossed
product C*-algebraDor G is equivalent to the computation of the K-theory of the much
simpler crossed product c0(I )or G (see Section 6). The proof uses techniques that have
been developed in connection with the Baum–Connes conjecture in [C-E-O], [E-L-P-W]
and [Mey-Ne]. A combined statement of the relevant results is given in [E-N-O]. Note that
by [H-K] all amenable groups (among many others) satisfy the Baum–Connes conjecture,
so the results apply in particular to our motivating examples R o R×.

Now, on the other hand, if a group G acts on c0(I ) where I is a discrete set, then
simple imprimitivity considerations show that the crossed product c0(I ) or G is Morita
equivalent to a direct sum of the (reduced) group C*-algebras of the stabilizer groups.

In the case of the crossed productDor G connected to the left Ore semigroup P , the
algebra D is generated by the set of projections {EX : X ∈ I} with EX the orthogonal
projection from `2(G) to `2(X) ⊆ `2(G). The independence condition for this set of
projections follows from a similar independence condition on the set of constructible
right ideals J in P . This gives the result of our theorem. Moreover, ifG satisfies a certain
strong version of the Baum–Connes conjecture (which again holds, among others, for all
amenable groups) we can deduce the stronger result that C∗r (P ) is KK-equivalent to the
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direct sum
⊕
[X]∈G\I C

∗
r (GX). Note that the G-orbits in I and the stabilizers GX are

easily determined in specific examples.
Under the same assumptions on our semigroup P as above, there exists a natural diag-

onal map C∗r (P )→ C∗r (P )⊗min C
∗
r (P ). This means that, just as for a group C*-algebra,

the K-homology of C∗r (P ) becomes a ring via this diagonal map. The KK-equivalence
between C∗r (P ) and the direct sum of the C*-algebras of the stabilizer groups, which we
construct assuming the strong Baum–Connes conjecture, induces in fact an isomorphism
of K-homology rings.

As mentioned above, our motivating examples are the semigroups attached to a De-
dekind domain R, such as the ring of integers in an algebraic number field, or function
field, K . For such a ring we consider the multiplicative semigroup R×, the multiplica-
tive semigroup of principal ideals and the ax + b-semigroup R o R× (see §8). These
semigroups have obvious enveloping groups K×, the group of principal fractional ideals
and K o K×. The set I which appears when we apply our theorem can be identified
with the set of fractional ideals (for both R× and the semigroup of principal ideals), or
with the translates of fractional ideals, inK , respectively. The stabilizer groups are essen-
tially the group of invertible elements in R×, trivial or the group of invertible elements
in RoR×. The orbits in I for the action of the enveloping group are labeled by the ideal
class group ClK in each case. We note that in the case of multiplicative semigroups, there
are natural actions of the class group on the K-theory of the corresponding semigroup
C*-algebras.

Finally we turn to a study of specific structural properties of the C*-algebra
C∗r (RoR×) for the ring of integers R in a number field (see §8.2). This algebra is of spe-
cial interest for many reasons. As mentioned above, it has an intriguing KMS-structure,
but it also has a unique maximal ideal and the quotient by this ideal gives the ring C*-
algebra A[R] studied in [Cu-Li]. This ring C*-algebra is purely infinite and simple and
can be represented as a crossed product by actions on adele spaces in different ways. In
[Cu-Li] we also determined its K-theory for a first class of number fields. The complete
K-theoretic computation is obtained in [Li-Lü].

Using a criterion from [Pas-Rør] we can now show that C∗r (RoR×) is purely infinite
(though of course not simple) and has the ideal property. These properties are of structural
interest for a C*-algebra. Using our K-theory computation and another criterion from
[Pas-Rør], we can show that C∗r (RoR×) on the other hand does not have real rank zero.
The first named author is indebted to C. Pasnicu and G. Gong for drawing his attention to
these properties.

2. Preliminaries

2.1. Semigroups. A semigroup is a set P together with an associative binary opera-
tion (or multiplication) P × P → P , (p, q) 7→ pq. We will not consider (non-trivial)
topologies on our semigroups, which means that topologically, all our semigroups will be
viewed as discrete sets. A unit element in a semigroup P is an element e in P with the
property that ep = pe = p for all p in P . All the semigroups in this paper are assumed
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to have unit elements. In addition, since we would like to use KK-theory in §6, all our
semigroups in §6 are supposed to be countable so that the semigroup C*-algebras will be
separable.

Moreover, a semigroup P is called left cancellative if for all p, x and y in P , px = py
implies x = y. Similarly, a semigroup P is called right cancellative if for all p, x and y
in P , xp = yp implies x = y. A semigroup is called cancellative if it is both left and
right cancellative.

2.2. Ideal structure. A left ideal of a semigroup P is a subset X of P which is invariant
under left multiplication, i.e. for every x in X and p in P , px lies in X again. Simi-
larly, a right ideal of a semigroup P is a subset X of P which is invariant under right
multiplications, i.e. for every x in X and p in P , xp lies in X again.

In the analysis of semigroup C*-algebras, a certain family of right ideals plays an
important role. It is defined as follows:

Definition 2.2.1. For a semigroup P , let J be the smallest family of right ideals of P
satisfying

• ∅, P ∈ J ,
• J is closed under left multiplication and taking preimages under left multiplication

(X ∈ J , p ∈ P ⇒ pX, p−1X ∈ J ),
• J is closed under finite intersections (X, Y ∈ J ⇒ X ∩ Y ∈ J ).

Here for every subset X of P and for all p ∈ P we define

pX := {px : x ∈ X} and p−1X := {q ∈ P : pq ∈ X}.

It follows directly from this definition that J consists of ∅ and arbitrary finite intersections
of right ideals of the form q−1

1 p1 · · · q
−1
n pnP for q1, . . . , qn, p1, . . . , pn ∈ P . Elements

in J are called constructible right ideals of P .
We need the following

Definition 2.2.2. The family J is said to be independent (we also say that the con-
structible right ideals of P are independent) if for all right ideals X,X1, . . . , Xn in J
with X =

⋃n
j=1Xj , we have X = Xj for some 1 ≤ j ≤ n.

In other words, J is independent if for every right ideal X in J , the following holds:
Given X1, . . . , Xn in J which are proper subsets of X (Xj ( X for all 1 ≤ j ≤ n), the
union

⋃n
j=1Xj is again a proper subset of X (

⋃n
j=1Xj ( X).

This independence condition plays an important role when one tries to describe
amenability of semigroups in terms of semigroup C*-algebras (see [Li2]). But as we will
see, it will also play a crucial role in our K-theoretic computations.

2.3. Ore semigroups. Our K-theoretic computations only work for so-called left Ore
semigroups.

Definition 2.3.1. A semigroup is called right reversible if every pair of non-empty left
ideals has a non-empty intersection.
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Definition 2.3.2. A semigroup is said to satisfy the left Ore condition if it is cancellative
and right reversible. A semigroup with these properties is called a left Ore semigroup.

The following result is the reason why the left Ore condition is so useful:

Theorem 2.3.3 (Ore, Dubreil). A semigroup P can be embedded into a group G such
that G = P−1P = {q−1p : p, q ∈ P } if and only if P satisfies the left Ore condition.
In this case, the group G is determined up to canonical isomorphism by the universal
property that every semigroup homomorphism P → G′ from P to a group G′ extends
uniquely to a group homomorphism G→ G′.

When we write G = P−1P in this theorem, we are identifying P with its image in G
under the embedding of P into G.

The reader may consult [Cl-Pr, Theorem 1.23] or [La, §1.1] for more explanations
about this theorem. For a left Ore semigoup P , let us call the (unique up to canonical
isomorphism) groupG which appears in the theorem the enveloping group of P . It is also
called the group of left quotients (which explains the terminology “left Ore semigroup”).

Instead of giving a full proof of this theorem, we now describe an explicit model for
the enveloping group in order to illustrate an important idea. Let P be a semigroup. We
define a partial order on P by setting p ≤ q :⇔ q ∈ Pp. Here Pp is the left principal
ideal of P generated by p, i.e. Pp = {xp : x ∈ P }. It is straightforward to see that P
is right reversible if and only if P is upwards directed with respect to this partial order,
which means that for all p1, p2 ∈ P , there exists q ∈ P such that p1 ≤ q and p2 ≤ q.
If we further assume that P is right cancellative, then p ≤ q implies that there exists a
unique element r ∈ P with q = rp. We denote this element r by qp−1. The observations
made so far tell us that given a right reversible, right cancellative semigroup P , we can
form an inductive system of sets indexed by the elements in P ordered by “≤” in the
following way:

• for every p ∈ P , the p-th set is given by P itself,
• for all p, q ∈ P with p ≤ q, the structure map from the p-th set to the q-th set is given

by left multiplication with qp−1: P → P , x 7→ (qp−1)x.

We can then form the set-theoretical inductive limit of this system and endow it with a
binary operation so that we again obtain a semigroup. Here are the details: As a first step,
we take the (set-theoretical) disjoint union

⊔
p∈P P . Let us denote the embedding of P

into the p-th copy of P in the disjoint union by P 3 x 7→ p−1
· x ∈

⊔
p∈P P . Then we

define an equivalence relation ∼ by identifying p−1
1 · x1 and p−1

2 · x2 in
⊔
p∈P P if there

exists p in P with p1 ≤ p, p2 ≤ p and (pp−1
1 )x1 = (pp

−1
2 )x2. The set of equivalence

classes (
⊔
p∈P P)/∼ carries the following canonical structure of a semigroup: Given

p−1
1 · x1 and p−1

2 · x2 in
⊔
p∈P P , take y ∈ P with x1 ≤ y and p2 ≤ y and set

[p−1
1 · x1][p

−1
2 · x2] = [((yx

−1
1 )p1)

−1
· ((yp−1

2 )x2)]. (1)

Here [·] stands for equivalence class. One can check that the set (
⊔
p∈P P)/∼ together

with the binary operation defined in (1) is indeed a semigroup. Let us denote it byG. The
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unit element in G is given by [e−1
· e] where e is the unit element of P . Moreover, by

definition of the binary operation, we have

[p−1
· x][x−1

· p] = [p−1
· p] = [e−1

· e]

(take y = x in (1)). So we see that we have actually defined a group. Finally, the map
P 3 p 7→ [e−1

· p] ∈ G defines a semigroup homomorphism which is injective if P is
also left cancellative. By construction, the group G, together with this embedding of P ,
has all the properties of Theorem 2.3.3: Every element of G is of the form [p−1

· x] =

[p−1
· e][e−1

· x] = ([e−1
· p])−1

[e−1
· x] ∈ P−1P . Here we are identifying P with its

image in G under the embedding P 3 p 7→ [e−1
· p] ∈ G. Moreover, given a group G′

and a semigroup homomorphism ϕ : P → G′, it is straightforward to check that the map
G → G′, [p−1

· x] 7→ ϕ(p)−1ϕ(x), defines a group homomorphism which extends ϕ.
Uniqueness of the extension follows from the equation G = P−1P .

This is one way of constructing a model for the enveloping group. The main idea is
to formally invert semigroup elements using an inductive limit procedure. Similar ideas
frequently appear in the literature (compare for instance [La]), and as we will see, this
idea will also play a role later on in this paper.

2.4. Reduced semigroup C*-algebras. The main goal of this paper is to compute
K-theory for reduced semigroup C*-algebras of left Ore semigroups whose constructible
right ideals are independent (under a certain K-theoretic assumption on the enveloping
group). In this subsection, let us briefly recall the construction of reduced semigroup
C*-algebras. The reader may consult [Li2] for details.

Let P be a left cancellative semigroup. Let `2(P ) be the Hilbert space of square
summable functions from P to C and let {εx : x ∈ P } be the canonical orthonormal
basis of `2(P ) given by εx(y) = δx,y (δx,y = 1 if x = y and δx,y = 0 if x 6= y). The
semigroup P acts on `2(P ) as follows: For every p ∈ P , the map εx 7→ εpx extends to
an isometry Vp on `2(P ) because our assumption that P is left cancellative implies that
P 3 x 7→ px ∈ P is injective. Now we simply set

Definition 2.4.1. C∗r (P ) := C∗({Vp : p ∈ P }) ⊆ L(`2(P )). This is the reduced
semigroup C*-algebra of P . In other words, the reduced semigroup C*-algebra is the
C*-algebra generated by the left regular representation of the semigroup.

Now consider the family J of right ideals of P from Definition 2.2.1. For every right
ideal X ∈ J , we let EX be the orthogonal projection on `2(P ) onto the subspace
`2(X) ⊆ `2(P ). As observed in [Li2, §2], the projections EX lie in C∗r (P ) for all X ∈ J .
Thus, the formula in

Definition 2.4.2. Dr(P ) := C∗({EX : X ∈ J }) ⊆ L(`2(P ))

defines a sub-C*-algebra of C∗r (P ). It is clear that Dr(P ) is a commutative C*-algebra,
and that multiplication on the generators is given by EXEY = EX∩Y . Moreover, Dr(P )
is Ad(Vp)-invariant for every p ∈ P . Therefore, the map τ : P → End(Dr(P )),
p 7→ τp := Ad(Vp)|Dr (P ), defines a semigroup action of P on Dr(P ).
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2.5. On reduced crossed products. Let us collect a few observations about reduced
crossed products. These results are included for the sake of completeness and also for
ease of reference. They are certainly well known and we do not claim any originality
here. In what follows we always assume that G is a discrete group although most of what
we say below has obvious analogues for general locally compact groups.

We denote by λ : G → U(`2(G)) the left regular representation of G and by M :
c0(G)→ L(`2(G)) the representation of c0(G) by multiplication operators on `2(G).

Recall that the reduced crossed product A oα,r G of the C*-dynamical system
(A,G, α) can be defined as the sub-C*-algebra of M(A ⊗ KG), with KG := K(`2(G)),
generated by the set

{ιA(a)ιG(g) : a ∈ A, g ∈ G},

where ιG(g) = 1⊗ λg and where ιA : A→ M(A⊗KG) is defined by the composition

A
α̃
−→ `∞(G,A) ⊆ M(A⊗ c0(G))

idA⊗M
−−−−→ M(A⊗KG).

Here α̃ sends a ∈ A to the function [g 7→ αg−1(a)] ∈ `∞(G,A). Every representation
ρ : A→ L(H) induces a homomorphism

Ind ρ : Aor G→ L(H ⊗ `2(G))

by applying the representation ρ ⊗ idKG
: A ⊗ KG → L(H ⊗ `2(G)) to A oα,r G ⊆

M(A⊗KG). It follows that Ind ρ is faithful if ρ is faithful. One easily checks that

(Ind ρ)(ιA(a))(ξ ⊗ εg) = ρ(αg−1(a))ξ ⊗ εg and (Ind ρ)(ιG(g)) = 1⊗ λg (2)

for all a ∈ A, ξ ∈ H and g ∈ G, where {εx : x ∈ G} denotes the standard orthonormal
basis of `2(G). Thus, if ρ : A → L(H) is faithful, we recover the classical spatial
definition of the reduced crossed product as a subalgebra of L(H ⊗ `2(G)).

Our first lemma is concerned with crossed products D oτ,r G where D is a closed,
left-translation invariant sub-C*-algebra of `∞(G) and τ : G → Aut(D) denotes the
left-translation action. Let M : D → L(`2(G)) be the representation by multiplica-
tion operators. One easily checks that (M, λ) is a covariant representation of (D,G, τ)
on `2(G). It therefore induces a representation M o λ : D oτ G→ L(`2(G)).

Lemma 2.5.1. Let (M, λ) be as above. Then (M ⊗ 1, λ ⊗ 1) is unitarily equivalent to
the regular representation ((IndM) ◦ ιD, (IndM) ◦ ιG) on `2(G × G). In particular,
M o λ : D oτ G→ L(`2(G)) factors through a faithful representation of D oτ,r G.

Proof. Consider the unitary operator W : `2(G × G) → `2(G × G), W(εx ⊗ εy) =
εyx ⊗ εx−1 ; its adjoint is given by the formula W ∗(εx ⊗ εy) = εy−1 ⊗ εxy . We then
compute for f ∈ `∞(G):

W((IndM) ◦ ιD)(f )W ∗(εx ⊗ εy) = W((IndM) ◦ ιD)(f )(εy−1 ⊗ εxy)

= W(f (x)(εy−1 ⊗ εxy))

= f (x)(εx ⊗ εy) = (M(f )⊗ 1)(εx ⊗ εy)



652 Joachim Cuntz et al.

and

W(1⊗ λg)W ∗(εx ⊗ εy) = W(1⊗ λg)(εy−1 ⊗ εxy) = W(εy−1 ⊗ εgxy) = εgx ⊗ εy

= (λg ⊗ 1)(εx ⊗ εy). ut

Our second lemma is about functorial properties of reduced crossed products.

Lemma 2.5.2. Suppose that (A,G, α) and (B,H, β) are C*-dynamical systems, where
G and H are discrete groups. Assume that ϕ : A → B is a homomorphism and that j :
G → H is an injective homomorphism such that βj (g)(ϕ(a)) = ϕ(αg(a)) for all a ∈ A
and g ∈ G. Then there exists a unique homomorphism ϕ or j : A oα,r G→ B oβ,r H
such that (ϕ or j)(ιA(a)ιG(g)) = ιB(ϕ(a))ιH (j (g)). If ϕ is faithful, then so is ϕ or j .

Proof. We may assume without loss of generality that G is a subgroup of H and that
j : G → H is the inclusion map. Restricting β to G, we first observe that we have a
homomorphism ϕ⊗idKG

: A⊗KG→ B⊗KG which we may extend to a homomorphism
(again denoted by ϕ ⊗ idKG

) Aoα,r G→ M(B ⊗KG) such that

(ϕ ⊗ idKG
)(ιA(a)) = ιB(ϕ(a)) and (ϕ ⊗ idKG

)(ιG(g)) = ιG(g).

Thus ϕ ⊗ idKG
maps Aoα,r G into B oβ,r G and ϕ ⊗ idKG

is faithful if ϕ is faithful.
To see that B oβ,r G imbeds into B oβ,r H , we first observe that `2(H) can be

identified with
⊕
[h]∈G\H `

2(G). An explicit isomorphism is given by choosing a cross
section c : G\H → H which induces a bijection G ×G\H → H , (g, [h]) 7→ gc([h]),
and hence an isomorphism `2(H) ∼=

⊕
[h]∈G\H `

2(G) by sending εgc[h] to εg in the
summand at [h] for all g ∈ G and [h] ∈ G\H . Under this isomorphism, for b ∈ B we get

ιHB (b) =
⊕
[h]∈G\H

(βc[h]−1 ⊗ idKG
)(ιGB (b)) ∈

⊕
[h]∈G\H

M(B ⊗KG) ⊆ M(B ⊗KH )

and ιH (g) =
⊕
[h]∈G\H ιG(g) for all g ∈ G (where the superscriptH indicates that ιHB (b)

belongs to the crossed product B oβ,r H ). Thus we see that the subalgebra of B oβ,r H
generated by {ιHB (b)ιH (g) : b ∈ B, g ∈ G} equals

⊕
[h]∈G\H (βc[h]−1⊗ idKG

)(Boβ,rG),
which is isomorphic to B oβ,r G via an isomorphism sending ιGB (b)ιG(g) to ιHB (b)ιH (g)
for all b ∈ B and g ∈ G. Combining this with the first part gives the lemma. ut

For the proof of the following lemma we refer to [Br-Oz, Chapter 4, Proposition 1.9].

Lemma 2.5.3. Let (A,G, α) be a C*-dynamical system withG discrete. Then there exists
a unique faithful conditional expectation E : Aoα,r G→ A such that E(ιA(a)ιG(g)) =
δg,ea, where δg,e = 1 if g is equal to the unit e of G and δg,e = 0 if g 6= e.

3. The strategy

Let P be a left Ore semigroup whose constructible right ideals are independent. Let G
be the enveloping group of P (see Theorem 2.3.3). Using Theorem 2.3.3, we will always
view P as a subsemigroup of G.
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Our goal is to compute K-theory for the reduced semigroup C*-algebra of P under
a K-theoretic assumption on G which we will make precise later on. Let us now present
our strategy:

First, we make use of the assumption that P is a left Ore semigroup to reduce our
K-theoretic problem to the problem of computing K-theory for a reduced crossed product
by the enveloping group G of P . The main idea has already appeared in the previous
section, namely to use inductive limit procedures to pass from P to G.

The main step is to compare the reduced crossed product we are interested in with
another, but much simpler reduced crossed product. The simpler one is given by an action
of G on a discrete space (simply a set). This step makes use of our K-theoretic assump-
tion on G. It allows us to apply the machinery of Baum–Connes which will reduce the
K-theoretic comparison of the reduced crossed products to the case of finite subgroups.
Here our assumption that the constructible right ideals of P are independent enters the
game, as we will see.

The last step is to compute K-theory for reduced crossed products associated with
an action of our group G on a discrete space. This amounts to applying imprimitivity
theorems.

4. Dilations of reduced semigroup C*-algebras

For what we are going to do in this section, it is enough to assume that our semi-
group P satisfies the left Ore condition. We would like to describe the reduced semigroup
C*-algebra C∗r (P ) as a reduced crossed product by the enveloping group G, at least up
to Morita equivalence. Following ideas of [La], we first of all construct a G-C*-algebra
which gives rise to the reduced crossed product.

Similarly to §2.3, we consider the following inductive system of C*-algebras indexed
by elements of P ordered by “≤”:

• the p-th C*-algebra is Dr(P ) for every p ∈ P ,
• given p, q ∈ P with p ≤ q, the structure map from the p-th to the q-th C*-algebra is
τqp−1 = Ad(Vqp−1) : Dr(P )→ Dr(P ).

LetD(∞)r (P ) be the inductive limit of this system, and denote by ιp : Dr(P )→ D
(∞)
r (P )

the inclusion of the p-th C*-algebra into the inductive limit. As explained in [La], there is
a G-action τ (∞) on D(∞)r (P ) which dilates the P -action τ on Dr(P ). To describe τ (∞),
it suffices to define τ (∞)p for every p ∈ P ⊆ G because the semigroup homomorphism
P 3 p 7→ τ

(∞)
p ∈ Aut(D(∞)r (P )) extends uniquely to G by Theorem 2.3.3. Now τ

(∞)
p is

given as follows: For q ∈ P and d ∈ Dr(P ), let r be an element in P such that p ≤ r
and q ≤ r . Then we set

τ (∞)p (ιq(d)) := ιrp−1(τrq−1(d)).

One can check that this formula gives rise to the desired automorphism τ
(∞)
p

of D(∞)r (P ) and that these automorphisms give rise to the semigroup homomorphism



654 Joachim Cuntz et al.

P → Aut(D(∞)r (P )), p 7→ τ
(∞)
p . Moreover, one can also verify that the automorphisms

we have constructed coincide with the ones in [La, §2].
In the following, we construct a covariant representation for the C*-dynamical sys-

tem (D
(∞)
r (P ),G, τ (∞)). First, we obtain a canonical faithful representation ofD(∞)r (P )

on `2(G) as follows: Using the inductive limit structure of D(∞)r (P ), it suffices to
construct a family {πp}p∈P of faithful representations of Dr(P ) on `2(G) which are
compatible with the structure maps. As Dr(P ) acts on `2(P ) by construction, we can
conjugate the identity representation of Dr(P ) by the canonical isometric embedding
`2(P ) ↪→ `2(G) to obtain a faithful representation π of Dr(P ) on `2(G). Then define
for every p ∈ P the representation πp := Ad(λ∗p) ◦ π . Here for every g ∈ G, we denote
by λg the unitary on `2(G) given by λg(εx) = εgx for the canonical orthonormal basis
{εx : x ∈ G} of `2(G). In other words, λg is the image of g ∈ G under the left regular
representation λ of G. These representations πp are faithful by construction. For a sub-
set Y of G, let EY ∈ L(`2(G)) be the orthogonal projection onto the subspace `2(Y ) of
`2(G). It is then immediate that for every X ∈ J , we have

πp(EX) = Ep−1·X. (3)

Note that p−1
· X is the subset {p−1x : x ∈ X} of G; it should not be confused with

p−1X = {q ∈ P : pq ∈ X}. From (3), it follows that the representations πp are compat-
ible with the structure maps, in the sense that for all p, q ∈ P with p ≤ q, we have

πq ◦ Ad(Vqp−1) = πp.

Therefore, the faithful representations {πp}p∈P give rise to a faithful representation π (∞)

of D(∞)r (P ) on `2(G). This representation is determined by π (∞)(ιq(EX)) = Eq−1·X.
We claim that this representation π (∞), together with the left regular representation λ

ofG, is a covariant representation of (D(∞)r (P ),G, τ (∞)). To show this, take p, q, r ∈ P
with p, q ≤ r , X ∈ J and compute

λp(π
(∞)(ιq(EX)))λ

∗
p = λpEq−1·Xλ

∗
p = Ep·q−1·X

= Ep·r−1·r·q−1·X = E(rp−1)−1·(rq−1)·X

= π (∞)(ιrp−1(τrq−1(EX))) = π
(∞)(τ (∞)p (ιq(EX))).

So far, we have constructed a covariant representation (π (∞), λ) of the C*-dynamical
system (D

(∞)
r (P ),G, τ (∞)). Next we claim:

Lemma 4.1. The covariant representation (π (∞), λ) gives rise to a faithful representa-
tion π (∞)orλ of the reduced crossed productD(∞)r (P )oτ (∞),rG on `2(G). This represen-

tation is determined by (π (∞)or λ)(dUg) = π (∞)(d)λg for all d ∈ D(∞)r (P ) and g ∈ G.
Here Ug are the canonical unitaries in the multiplier algebra of D(∞)r (P ) oτ (∞),r G im-
plementing τ (∞).

Proof. Apply Lemma 2.5.1 to D = π (∞)(D(∞)r (P )). ut
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Using this representation π (∞) or λ, we will always think of D(∞)r (P ) oτ (∞),r G as a
concrete C*-algebra acting on `2(G).

Now consider the orthogonal projection EP ∈ L(`2(G)) onto the subspace `2(P ) ⊆

`2(G). This projection lies in D(∞)r (P )oτ (∞),r G.

Lemma 4.2. The projectionEP is a full projection inD(∞)r (P )oτ (∞),rG, and the corner

EP (D
(∞)
r (P )oτ (∞),r G)EP can be identified with C∗r (P ) via

C∗r (P ) 3 Vp 7→ EPUpEP ∈ EP (D
(∞)
r (P )oτ (∞),r G)EP .

Proof. The C*-algebra D(∞)r (P ) (or rather π (∞)(D(∞)r (P ))) is generated by the projec-
tions {Eq−1·X : q ∈ P,X ∈ J }. Thus the net (Eq−1·P )q∈P is an approximate unit of

D
(∞)
r (P ), hence of D(∞)r (P )oτ (∞),r G. As

Eq−1·P = U
∗
qEPUq ∈ (D

(∞)
r (P )oτ (∞),r G)EP (D

(∞)
r (P )oτ (∞),r G),

our first claim follows.
Now let us prove that the assignment Vp 7→ EPUpEP extends to an isomorphism

C∗r (P )→ EP (D
(∞)
r (P )oτ (∞),r G)EP .

The assignment Vp 7→ EPUpEP first of all extends to a homomorphism C∗r (P ) →

EP (D
(∞)
r (P ) oτ (∞),r G)EP because the operator EPUpEP , viewed as an operator on

`2(P ) ⊆ `2(G), is really nothing other than the isometry Vp itself (note that Up is
just λp since we view D

(∞)
r (P ) oτ (∞),r G as a concrete C*-algebra acting on `2(G)

via π (∞) or λ). This observation implies that the resulting homomorphism C∗r (P ) →

EP (D
(∞)
r (P ) oτ (∞),r G)EP must be injective. To show surjectivity, it is enough to

prove that for all p, q1, q2 ∈ P and X ∈ J , the element EPEq1−1·XUq−1
2 p

EP ∈

EP (D
(∞)
r (P )oτ (∞),r G)EP lies in the image. But

EPEq1−1·XUq−1
2 p

EP = (EPEq1−1·XEP )(EPU
∗
q2
EP )(EPUpEP )

= (EPEP∩(q−1
1 ·X)

EP )(EPUq2EP )
∗(EPUpEP )

= (EPEq1−1·XEP )(EPUq2EP )
∗(EPUpEP )

is the image of E
q−1

1 X
V ∗q2
Vp. ut

Corollary 4.3. The embedding ι : C∗r (P )→ D
(∞)
r (P )oτ (∞),r G determined by ι(Vp) =

EPUpEP induces a KK-equivalence in KK(C∗r (P ),D
(∞)
r (P )oτ (∞),r G).

5. From concrete to abstract

Corollary 4.3 tells us that if we are interested in the K-theory of C∗r (P ), we can equally
well study the reduced crossed product D(∞)r (P )oτ (∞),r G. The situation is as follows:

(i) D(∞)r (P ) is a commutative C*-algebra generated by the projections

{Eq−1·X : q ∈ P, ∅ 6= X ∈ J }.
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As P is countable, this family of projections is countable as well (J is countable as
P is). Moreover,

{Eq−1·X : q ∈ P, X ∈ J } = {Eq−1·X : q ∈ P, ∅ 6= X ∈ J } ∪ {0}

is multiplicatively closed because given q1, q2 ∈ P and X1, X2 ∈ J , we can choose
q ∈ P with q1 ≤ q and q2 ≤ q, and then

(q−1
1 ·X1) ∩ (q

−1
2 ·X2) = q

−1
· ((qq−1

1 ·X1) ∩ (qq
−1
2 ·X2))︸ ︷︷ ︸

∈J

,

so that
Eq1−1·X1

Eq2−1·X2
= E

q−1·((qq−1
1 ·X1)∩(qq

−1
2 ·X2))

lies in {Eq−1·X : q ∈ P, X ∈ J }.
(ii) Assume that the constructible right ideals of P are independent. Then we can prove

the following:
For all projectionsE,E1, . . . , En in {Eq−1·X : q ∈ P,X ∈ J }, the strict inequalities
E1, . . . , En � E imply

∨n
j=1 Ej � E. Here

∨n
j=1 Ej is the smallest projection in

D
(∞)
r (P ) which is greater than or equal to E1, . . . , En.

Here is the proof: Let Ej = Eqj−1·Xj
, j = 1, . . . , n, and let E = Eq−1·X with

q, q1, . . . , qn ∈ P and X,X1, . . . , Xn ∈ J . It follows that
∨n
j=1 Eqj−1·Xj

=

E⋃n
j=1 q

−1
j ·Xj

. We claim that Eqj−1·Xj
� Eq−1·X for all 1 ≤ j ≤ n implies∨n

j=1 Eqj−1·Xj
� Eq−1·X. Since for Y1, Y2 ⊆ G, the inequality EY1 ≤ EY2 is equiv-

alent to Y1 ⊆ Y2, we have to show that q−1
j · Xj ( q−1

· X for all 1 ≤ j ≤ n

implies
⋃n
j=1 q

−1
j · Xj ( q−1

· X. But this follows from our assumption that the
constructible right ideals of P are independent: Choose r ∈ P such that q ≤ r and
qj ≤ r for all 1 ≤ j ≤ n. Then q−1

j · Xj ( q−1
· X for all 1 ≤ j ≤ n implies

that (rq−1
j ) · Xj ( (rq−1) · X for all 1 ≤ j ≤ n. But (rq−1) · X = (rq−1)X and

(rq−1
j )·Xj = (rq

−1
j )Xj lie in J for all 1 ≤ j ≤ n. Thus the independence condition

tells us that

r
( n⋃
j=1

q−1
j ·Xj

)
=

n⋃
j=1

(rq−1
j )Xj ( (rq−1)X = r(q−1

·X).

Since left multiplication by r is injective, we deduce
⋃n
j=1 q

−1
j · Xj ( q−1

· X, as
claimed.

(iii) The G-action τ (∞) on D(∞)r (P ) leaves the set of projections

{Eq−1·X : q ∈ P, ∅ 6= X ∈ J }

invariant.

This is the situation we are interested in. In the following section, we look at it from an
abstract point of view.
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6. The general K-theoretic result

We first formulate our assumptions:

(I) D is a commutative C*-algebra generated by a countable family {ei}i∈I of pairwise
distinct (commuting) non-zero projections. Moreover, {ei}i∈I ∪ {0} is multiplica-
tively closed (i.e. for all ei , ej in {ei}i∈I , either eiej = 0 or there exists k ∈ I such
that eiej = ek).

(II) The family {ei}i∈I is independent, i.e. given e ∈ {ei}i∈I and finitely many e1, . . . , en
∈ {ei}i∈I with e1, . . . , en � e, we always have

∨n
i=1 ei � e, i.e. e −

∨n
i=1 ei is a

non-zero projection. Here
∨n
i=1 ei is the smallest projection in D which is greater

than (or equal to) all the ei , 1 ≤ i ≤ n. Note that sinceD is commutative,
∨n
i=1 ei =∑

∅6=J⊆{1,...,n}(−1)|J |−1∏
j∈J ej .

(III) G is a discrete countable group and τ is an action of G on D which leaves {ei}i∈I
invariant. This means that there is an action of G on the index set I such that
τg(ei) = eg·i .

Assume that we have a C*-dynamical system (D,G, τ) satisfying (I)–(III). In this situa-
tion, the homomorphisms φi : C → D, 1 7→ ei (for i ∈ I ), give rise to a KK-element
in KK(

⊕
i∈I C,D) ∼=

∏
i∈I KK(C,D) which can be viewed as an element in equivariant

KK-theory. This means that with respect to the G-action σ on
⊕

i∈I C given by shifting
the index set I and the G-action τ on D, the φi yield in a canonical way an element
x ∈ KKG(

⊕
i∈I C,D). This KK-element will be described in detail in §6.1. Here is our

main result:

Theorem 6.1. Assume that we are in the situation described above. Then for every finite
subgroup H of G, the element jH (resGH (x)) ∈ KK((

⊕
i∈I C) oσ H,D oτ H) is a KK-

equivalence. Here resGH is the canonical restriction map KKG → KKH and jH is the
descent KKH (

⊕
i∈I C,D)→ KK((

⊕
i∈I C)oσ H,D oτ H).

The proof of this theorem is the content of §6.1 to §6.4.
Just a remark on notation: From now on, we write c0(I ) for

⊕
i∈I C and c0(I,D) for⊕

i∈I D. Moreover, given a Hilbert module Z, we write `2(I, Z) for
⊕

i∈I Z (where the
direct sum is taken in the sense of Hilbert modules).

6.1. Description of the KK-element. Our goal is to describe the element x ∈
KKG(c0(I ),D). First of all, the element in KK(c0(I ),D) given by the homomorphisms
φi : C → D, 1 7→ ei (i ∈ I ), can be represented by the Kasparov module
(`2(I,D), φ, 0). The left action of c0(I ) on the Hilbert D-module `2(I,D) is given by

φ :=
⊕

φi : c0(I )→ c0(I,D) ⊆ K(`2(I,D)) ⊆ L(`2(I,D)).

Here c0(I,D) acts on `2(I,D) by diagonal operators. Let us write 1i ∈ c0(I ) for the ele-
ment whose i-th component is 1 and whose other components are 0, and 1j⊗d ∈ `2(I,D)

for the element whose j -th component is d ∈ D and whose remaining components van-
ish. Then

φ(1i)(1j ⊗ d) = (1i ⊗ φi(1))(1j ⊗ d) = (1i ⊗ ei)(1j ⊗ d) = δi,j (1i ⊗ eid).
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Since Im(φ) is contained in the set of compact operators on `2(I,D), the operator in our
Kasparov module may be chosen to be 0.

Now we want to interpret this Kasparov module as an element in KKG(c0(I ),D). So
we introduce a G-action on the Hilbert module `2(I,D) which is compatible with the
action τ of G on D so that φ becomes G-equivariant.

We let σ be the G-action on c0(I ) determined by σg(1i) = 1g·i . The G-action σ ⊗ τ
on the Hilbert module `2(I,D) is given by

(σ ⊗ τ)g(1i ⊗ d) = 1g·i ⊗ τg(d).

It can be checked immediately that thisG-action σ ⊗ τ is compatible with the HilbertD-
module structure on `2(I,D), in the sense that 〈(σ⊗τ)g(ξ), (σ⊗τ)g(η)〉D = τg(〈ξ, η〉D)
and (σ ⊗ τ)g(ξ · d) = (σ ⊗ τ)g(ξ) · τg(d) for all g ∈ G, ξ, η ∈ `2(I,D) and d ∈ D.
Conjugation yields a G-action Ad(σ ⊗ τ) of G on L(`2(I,D)) given by G 3 g 7→
Ad((σ ⊗ τ)g) ∈ Aut(L(`2(I,D))). To check that φ is G-equivariant with respect to the
G-action σ on c0(I ) and Ad(σ ⊗ τ), it suffices to consider elements 1i ∈ c0(I ) and
1j ⊗ d ∈ `2(I,D). We compute

(φ(σg(1i)))(1j ⊗ d) = (φ(1g·i))(1j ⊗ d) = (1g·i ⊗ eg·i)(1j ⊗ d)

= δg·i,j1g·i ⊗ (eg·id) = δi,g−1·j1g·i ⊗ (eg·id) = (σ ⊗ τ)g
(
δi,g−1·j1i ⊗ (eiτg−1(d))

)
= Ad(σ ⊗ τ)g(φ(1i))(1j ⊗ d).

This shows that the Kasparov module (`2(I,D), φ, 0) together with the G-action σ ⊗ τ
really gives rise to an element x ∈ KKG(c0(I ),D).

Let us summarize our construction in the following

Definition 6.1.1. Let x ∈ KKG(c0(I ),D) (where G acts on c0(I ) and D via σ and τ) be
represented by the Kasparov G-module for (c0(I ),D) consisting of

• the Hilbert D-module `2(I,D) with G-action σ ⊗ τ given by

(σ ⊗ τ)g(1i ⊗ d) = 1g·i ⊗ τg(d),

• the equivariant homomorphism

φ : c0(I )→ K(`2(I,D)) ⊆ L(`2(I,D))

determined by (φ(1i))(1j ⊗ d) = δi,j1i ⊗ eid ,
• the operator 0 ∈ L(`2(I,D)).

6.2. Descent of the restriction. Let H ⊆ G be a subgroup. Our goal is to describe
the element jHr (resGH (x)) ∈ KK(c0(I ) oσ,r H,D oτ,r H) given by the descent of the
restriction of x to H .

Proposition 6.2.1. For every subgroup H of G, the KK-element jHr (resGH (x)) in
KK(c0(I )oσ,r H,D oτ,r H) is represented by the Kasparov (c0(I )oσ,r H,D oτ,r H)-
module consisting of
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• the Hilbert D oτ,r H -module `2(I,D oτ,r H),
• the homomorphism φ or H : c0(I ) oσ,r H → L(`2(I,D oτ,r H)) given by
(φ or H)(1iUh) = (1i ⊗ ei) ◦ (σh ⊗ Uh),
• the operator 0 ∈ L(`2(I,D oτ,r H)).

Here Uh are the canonical unitaries in the multiplier algebra of c0(I ) oσ,r H which
implement σ .

Proof. First of all, to obtain a Kasparov H -module for (c0(I ),D) with respect to the
restricted actions σ |H and τ |H (we will denote these actions again by σ and τ ) which
represents resGH (x), we can just take the Kasparov G-module from Definition 6.1.1 and
restrict the G-action σ ⊗ τ to H .

We now describe the element jHr (resGH (x)) ∈ KK(c0(I )oσ,r H,Doτ,r H) following
[Kas, §3.7]. The construction for full crossed products is also described in [Bla, Chap-
ter VIII, §20.6], and it is very similar to the one for reduced crossed products. Of course,
in the case of finite subgroups (which in view of Theorem 6.1 is the most interesting), it
does not matter at all whether we take full or reduced crossed products.

By definition, jHr (resGH (x)) is represented by the Kasparov module

(`2(I,D)oτ,r H,ψ, 0).

Let us start with the HilbertDoτ,rH -module `2(I,D)oτ,rH . It is the completion of the
pre-Hilbert Cc(H,D)-module whose underlying vector space Cc(H, `2(I,D)) consists
of all functions fromH to `2(I,D) with finite support (we are in the discrete case). Given
such a function ξ ∈ Cc(H, `2(I,D)) and an element b ∈ Cc(H,D), the right action of
Cc(H,D) on Cc(H, `2(I,D)) is given by

(ξ • b)(h) =
∑
h̃∈H

ξ(h̃)τ
h̃
(b(h̃−1h)). (4)

Given two functions ξ, η ∈ Cc(H, `
2(I,D)), the Cc(H,D)-valued inner product on

Cc(H, `
2(I,D)) is given by

〈ξ, η〉Cc(H,D)(h) =
∑
h̃∈H

τ
h̃−1(〈ξ(h̃), η(h̃h)〉D). (5)

ConsiderDoτ,rH as a Hilbert module over itself and form the direct sum `2(I,Doτ,rH).
We claim that the map

2 : Cc(H, `
2(I,D))→ `2(I,D oτ,r H), ξ 7→ ([h 7→ (ξ(h))i])i,

extends to an isomorphism 2 : `2(I,D) oτ,r H
∼=
−→ `2(I,D oτ,r H) of Hilbert

Doτ,r H -modules. Here we view functions from H to D with finite support as elements
of D oτ,r H , and a function f : H → D is often denoted by [h 7→ f (h)].

As 2 obviously has dense image in `2(I,D oτ,r H), it suffices to check that 2 pre-
serves the right D oτ,r H -actions as well as the inner products. It certainly suffices to
check this for elements in Cc(H, `2(I,D)) of the form (1i ⊗ d)Uh = [h̃ 7→ δ

h̃,h
1i ⊗ d].
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Such an element corresponds to 1i ⊗ (dUh) ∈ `2(I,D oτ,r H) under 2. Hereafter,
Uh is the characteristic function of h ∈ H . For the right D oτ,r H -actions, it certainly
suffices to look at elements in Cc(H,D) ⊆ D oτ,r H of the form b = dbUhb . For
ξ = (1i ⊗ dξ )Uhξ ∈ Cc(H, `

2(I,D)) and b = dbUhb , by (4) we have

(ξ • b)(h) =
∑
h̃∈H

δ
h̃,hξ

(1i ⊗ dξ )τh̃(δh̃−1h,hb
db) = δh−1

ξ h,hb
(1i ⊗ dξ )(τhξ (db))

= δ
h−1
ξ h,hb

1i ⊗ (dξ τhξ (db)) = (1i ⊗ dξ τhξ (db))Uhξhb (h),

so that

2(ξ • b) = 1i ⊗ (dξ τhξ (db)Uhξhb ) = 1i ⊗ (dξUhξ )(dbUhb ) = (1i ⊗ (dξUhξ ))(dbUhb )

= (2(ξ)) · b,

where in the last line, we let b act on 2(ξ) ∈ `2(I,D oτ H) using the right D oτ H -
module structure of `2(I,D oτ H).

Moreover, for ξ = (1i ⊗ dξ )Uhξ and η = (1j ⊗ dη)Uhη in Cc(H, `2(I,D)), by (5)
we have

〈ξ, η〉Cc(H,D)(h) =
∑
h̃∈H

τ
h̃−1(〈δh̃,hξ

1i ⊗ dξ , δh̃h,hη1j ⊗ dη〉D)

= δhξh,hητh−1
ξ
(δi,jd

∗
ξ dη) = δi,j δh,h−1

ξ hη
τ
h−1
ξ
(d∗ξ dη)

= δi,j (dξUhξ )
∗(dηUhη )(h)

= 〈1i ⊗ (dξUhξ ),1j ⊗ (dηUhη )〉Doτ,rH (h)

= 〈2(ξ),2(η)〉Doτ,rH (h).

This proves our claim that 2 extends to an isomorphism of Hilbert D oτ,r H -modules.
Finally, it remains to describe ψ , i.e. to describe the left c0(I ) oσ,r H -action on the

Hilbert module. Let a ∈ Cc(H, c0(I )) ⊆ c0(I ) oσ,r H . Then for ξ ∈ Cc(H, `2(I,D)),
ψ(a)ξ is given by

(ψ(a)ξ)(h) =
∑
h̃∈H

φ(a(h̃))
(
(σ ⊗ τ)

h̃
ξ(h̃−1h)

)
(see [Kas, §3.7] or [Bla, Chapter VIII, §20.6]). To explicitly compute the action, we again
take ξ = (1j ⊗ dξ )Uhξ and a = 1iUha . Then

(ψ(a)ξ)(h) =
∑
h̃∈H

δ
h̃,ha

φ(1i)
(
(σ ⊗ τ)

h̃
δ
h̃−1h,hξ

1j ⊗ dξ
)

= δ
h−1
a h,hξ

φi(1i)(1ha ·j ⊗ τha (dξ ))

= δ
h−1
a h,hξ

δi,ha ·j (1i ⊗ eiτha (dξ ))

= δi,ha ·j1i ⊗ ((eiUha )(dξUhξ )(h))

= 2−1((1iσha ⊗ eiUha )(1j ⊗ (dξUhξ )))(h).

Thus 2 ◦ ψ(a) ◦2−1
= (1i ⊗ ei) ◦ (σha ⊗ Uha ).
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So all in all, we have computed that jHr (resGH (x)) ∈ KK(c0(I )oσ,r H,D oτ,r H) is
represented by the Kasparov module

(`2(I,D oτ,r H), φ or H, 0)

where φ or H : c0(I )oσ,r H → L(`2(I,D oτ,r H)) is given by

c0(I )oσ,r H 3 1iUh 7→ (1i ⊗ ei) ◦ (σh ⊗ Uh) ∈ L(`2(I,D oτ,r H)). ut

6.3. Direct sum decomposition. Let H be a subgroup ofG. It is possible to decompose
c0(I )oσ,r H into direct summands corresponding to the H -orbits on I , i.e.

c0(I )oσ,r H =
⊕
[i]∈H\I

(c0(H · i)oσ,r H).

Let us denote the summand c0(H · i)oσ,r H corresponding to [i] ∈ H\I by C[i] and let
ι[i] be the embedding C[i]→ c0(I )oσ,r H .

As explained in [Bla, Theorem 19.7.1],∏
[i]∈H\I

(KK(ι[i])⊗ t) : KK(c0(I )oσ,r H,D oτ,r H)→
∏
[i]∈H\I

KK(C[i],D oτ,r H)

is an isomorphism. Here “⊗” stands for the Kasparov product.
It is immediate that under this isomorphism, the element jHr (resGH (x)) corresponds to

(x[i])[i]∈H\I where x[i] ∈ KK(C[i],D oτ,r H) is represented by the Kasparov module

(`2(H · i,D oτ,r H), (φ or H)[i], 0) (6)

with (φorH)[i] given by C[i] 3 1jUh 7→ (1j⊗ej )◦(σh⊗Uh) ∈ L(`2(H · i,Doτ,rH)).
In other words, we have

x[i] = KK(ι[i])⊗ jHr (resGH (x)). (7)

We describe x[i] alternatively as follows: Let ϕ[i] be the homomorphism

ϕ[i] : C[i]→ K(`2(H · i))⊗ (D oτ,r H), 1jUh 7→ ej,h−1·j ⊗ ejUh, (8)

where ej,h−1·j is the rank 1 operator 〈t, εh−1·j 〉εj ∈ L(`2(H · i)) ({εj : j ∈ H · i} is the
canonical orthonormal basis of `2(H · i)).

Existence of ϕ[i] can be seen as follows: Using a faithful representation of D on a
Hilbert space H, we can view D as a sub-C*-algebra of L(H). Hence, according to the
definition of the reduced crossed product, the C*-algebra K(`2(H · i))⊗min (D oτ,r H)
acts on the Hilbert space `2(H · i)⊗H⊗ `2(H). At the same time, using the definition of
the reduced crossed product C[i] = c0(H · i)oσ,rH , we obtain a faithful representation π
of C[i] sending 1jUh ∈ C[i] to the operator π(1j )(1⊗ 1⊗ λh) on `2(H · i)⊗H⊗ `2(H)

where π(1j ) is given by π(1j )(εk⊗ ξ ⊗εx) = (ex−1·j,x−1·j ⊗ ex−1·j ⊗1)(εk⊗ ξ ⊗εx) for
j, k ∈ H · i, ξ ∈ H and x ∈ H . Here ex−1·j,x−1·j is the rank 1 projection corresponding
to the basis vector εx−1·j ∈ `

2(H · i). Now, applying Fell’s absorption principle or rather
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adapting its proof, we consider the unitaryW on `2(H · i)⊗H⊗`2(H) given byW(εk⊗
ξ ⊗ εx) = εx·k ⊗ ξ ⊗ εx . Then a direct computation shows

Ad(W) ◦ (π(1j )(1⊗ 1⊗ λh)) = ej,h−1·j ⊗ ejUh.

Therefore, Ad(W) ◦ π is the desired homomorphism ϕ[i].
The homomorphism ei,i ⊗ idDoτ,rH : D oτ,r H → K(`2(H · i)) ⊗ (D oτ,r H),

b 7→ ei,i⊗b, gives a KK-equivalence betweenDoτ,r H and K(`2(H · i))⊗ (Doτ,r H).

Lemma 6.3.1. x[i] = KK(ϕ[i])⊗KK(ei,i ⊗ idDoτ,rH )
−1 where⊗ is the Kasparov prod-

uct.

Proof. ViewingDoτ,rH as a full corner in K(`2(H ·i))⊗(Doτ,rH) via ei,i⊗idDoτ,rH ,
it is clear that KK(ei,i⊗ idDoτ,rH )

−1 is represented by the Kasparov module given by the
(K(`2(H · i))⊗ (Doτ,r H))-Doτ,r H -imprimitivity bimodule `2(H · i,Doτ,r H). This
Kasparov module is explicitly given by the HilbertDoτ,r H -module `2(H · i,Doτ,r H)
and the left action

K(`2(H · i))⊗ (D oτ,r H)→ K(`2(H · i,D oτ,r H)), ej,h−1·j ⊗ b 7→ 1jσh ⊗ b.

Using the descriptions of x[i] and ϕ[i] from (6) and (8), it is clear that

x[i] = KK(ϕ[i])⊗ KK(ei,i ⊗ idDoτ,rH )
−1. ut

Corollary 6.3.2. Let B be a sub-C*-algebra of D oτ,r H such that for all j ∈ H · i
and h ∈ H , ejUh lies in B. Let ι be the inclusion B ↪→ D oτ,r H , let ϕ[i]|B be the
homomorphism C[i]→ K(`2(H · i))⊗B, a 7→ ϕ[i](a) (we just restrict the image of ϕ[i]),
and denote by ei,i ⊗ idB the homomorphism B → K(`2(H · i))⊗B, b 7→ ei,i ⊗ b. Then

KK(ϕ[i]|B)⊗ KK(ei,i ⊗ idB)−1
⊗ KK(ι) = x[i].

Proof. We have

KK(ϕ[i]|B)⊗ KK(ei,i ⊗ idB)−1
⊗ KK(ι)⊗ KK(ei,i ⊗ idDoτ,rH )

= KK(ϕ[i]|B)⊗ KK(ei,i ⊗ idB)−1
⊗ KK(ei,i ⊗ idB)⊗ KK(idK(`2(H ·i)) ⊗ ι)

= KK(ϕ[i]|B)⊗ KK(idK(`2(H ·i)) ⊗ ι)

= KK(ϕ[i]).

Now multiply on the right with KK(ei,i ⊗ idDoτ,rH )
−1 and use Lemma 6.3.1. ut

6.4. KK-equivalences for all finite subgroups. Now we consider finite subgroups.
Since in this case, we do not have to distinguish between full and reduced crossed prod-
ucts, we can omit the index r everywhere. Our goal is to prove
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Theorem 6.4.1. For every finite subgroup H of G, the element jH (resGH (x)) in
KK(c0(I )oσ H,D oτ H) is a KK-equivalence.

As both c0(I )oσ H andDoτ H satisfy the UCT being crossed products of commutative
C*-algebras by amenable groups, it suffices to prove that jH (resGH (x)) induces an isomor-
phism on K-theory. To show this, the strategy is to reduce everything to finite-dimensional
sub-C*-algebras. Therefore, we write both c0(I ) oσ H and D oτ H as inductive limits
of finite-dimensional C*-algebras and consider the corresponding inductive limit descrip-
tions of their K-groups.

In what follows, we write K∗ for the direct sum of K0 and K1 viewed as a Z/2Z-
graded abelian group.

We start with c0(I )oσH . We have already seen in §6.3 the decomposition c0(I )oσH
=
⊕
[i]∈H\I C[i]. Thus, it is clear that we have c0(I )oσ H ∼= lim

−→F

⊕
[i]∈[F ] C[i], where

the limit is taken over the finite subsets F of I and we denote the image of F un-
der the projection I → H\I by [F ]. Therefore we obtain lim

−→F

⊕
[i]∈[F ]K∗(C[i])

∼=

K∗(c0(I )oσ H), and this identification is induced by the homomorphisms∑
[i]∈[F ]

ι[i] :
⊕
[i]∈[F ]

K∗(C[i])→ K∗(c0(I )oσ H).

Now we consider D oτ H . For a finite subset F of I , let (D oτ H)F be the sub-C*-
algebra of D oτ H which is generated by {eiUh : i ∈ H · F, h ∈ H }. As before, we
certainly haveDoτH ∼= lim

−→F
(DoτH)F and thus lim

−→F
K∗((DoτH)F ) ∼= K∗(DoτH).

This identification is realized by the homomorphisms induced by the canonical inclusions
(D oτ H)F ↪→ D oτ H on K-theory.

We now compare these direct limit decompositions. Given a finite subset F of I , we
set

xF
[i] := KK(ϕ[i]|(DoτH)F )⊗ KK(ei,i ⊗ id(DoτH)F )

−1 (9)

using the notation from Corollary 6.3.2. Let K∗(xF[i]) be the homomorphism induced on
K-theory by xF

[i]. By (7) and Corollary 6.3.2, the diagram

K∗(C[i])
K∗(xF[i])
−−−−→ K∗((D oτ H)F )yK∗(ι[i]) y

K∗(c0(I )oσ H)
K∗(j

H (resGH (x)))
−−−−−−−−−−→ K∗(D oτ H)

(10)

commutes, where the right vertical arrow is induced by the canonical inclusion (DoτH)F
↪→ D oτ H . Therefore, for every finite subset F of I , we have a homomorphism∑
[i]∈[F ]K∗(x

F
[i]) : K∗(

⊕
[i]∈[F ] C[i]) → K∗((D oτ H)F ), and these homomorphisms

induce a homomorphism

lim
−→
F

∑
[i]∈[F ]

K∗(xF[i]) : lim−→
F

⊕
[i]∈[F ]

K∗(C[i])→ lim
−→
F

K∗((D oτ H)F )
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by a similar computation to the one in Corollary 6.3.2. By commutativity of (10), the
diagram

lim
−→F

⊕
[i]∈[F ]K∗(C[i])

lim
−→F

∑
[i]∈[F ]K∗(x

F
[i])

−−−−−−−−−−−−→ lim
−→F

K∗((D oτ H)F )y∼= y∼=
K∗(c0(I )oσ H)

K∗(j
H (resGH (x)))

−−−−−−−−−−→ K∗(D oτ H)

(11)

commutes as well.
In these inductive limits, it clearly suffices to only take those finite subsets F which

satisfy the condition that {ei : i ∈ H ·F }∪{0} is multiplicatively closed. Now the point is
that we will prove in the next proposition that for these finite subsets F ,

∑
[i]∈[F ]K∗(x

F
[i]) :⊕

[i]∈[F ]K∗(C[i]) → K∗((D oτ H)F ) is an isomorphism. This will then imply that the
homomorphism lim

−→F

∑
[i]∈[F ]K∗(x

F
[i]) : lim−→F

⊕
[i]∈[F ]K∗(C[i])→ lim

−→F
K∗((DoτH)F )

is an isomorphism, where we take the inductive limit over those F satisfying the condition
that {ei : i ∈ H · F } ∪ {0} is multiplicatively closed. Because diagram (11) commutes,
this will then imply our main observation that K∗(jH (resGH (x))) is an isomorphism.

Proposition 6.4.2. Let F be a finite subset of I such that {ej : j ∈ H · F } ∪ {0} is
multiplicatively closed. Then the KK-elements xF

[i], [i] ∈ [F ], induce a K-theoretic iso-
morphism ∑

[i]∈[F ]

K∗(xF[i]) :
⊕
[i]∈[F ]

K∗(C[i])→ K∗((D oτ H)F ).

Proof. We decompose (D oτ H)F into direct summands as follows: For every j ∈ F ,
set e(j) := ej −

∨
k∈H ·F, ek�ej ek , and for every i ∈ F , define e([i]) =

∑
j∈H ·i e(j). By

construction, the following facts hold:

• For every j in F , e(j) 6= 0 as {ei}i∈I is independent (see (II)) and because of our
assumption that ej 6= 0 for all j ∈ I .
• For i, j ∈ F with [i] 6= [j ], e([i]) ⊥ e([j ]).
•
∨
j∈H ·F ej =

∑
[i]∈[F ] e([i]).

• For every i in F , e([i]) is H -invariant with respect to the action τ .

The last fact implies that these projections e([i]) are central in (D oτ H)F . Thus, using
this, the second and third fact and also our condition that {ei : i ∈ H · F } ∪ {0} is
multiplicatively closed, we deduce

(D oτ H)F =
⊕
[i]∈[F ]

e([i])((D oτ H)F )e([i]).

Using the first two facts, it is straightforward to check that e([i])((D oτ H)F )e([i]) is
generated as a C*-algebra by the elements e(j)Uh for j ∈ H · i and h ∈ H , and that we
can identify e([i])((D oτ H)F )e([i]) with c0(H · i)oσ H = C[i] via

e(j)Uh 7→ 1jUh. (12)
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Thus we obtain an isomorphism

(D oτ H)F ∼=
⊕
[i]∈[F ]

C[i].

Let π [i]F : (D oτ H)F ∼=
⊕
[i]∈[F ] C[i] → C[i] be the composition of this isomor-

phism with the canonical projection
⊕
[i]∈[F ] C[i] → C[i]. It follows that in K-theory,⊕

[i]∈[F ]K∗(π
[i]
F ) : K∗((D oτ H)F ) →

⊕
[i]∈[F ]K∗(C[i]) is an isomorphism. This

means that to show that
∑
[i]∈[F ]K∗(x

F
[i]) is an isomorphism, we can equally well prove

that the composition⊕
[i]∈[F ]

K∗(C[i])

∑
[i]∈[F ]K∗(x

F
[i])

−−−−−−−−−→ K∗((D oτ H)F )
⊕
[i]∈[F ]K∗(π

[i]
F )

−−−−−−−−−−→

⊕
[i]∈[F ]

K∗(C[i])

is an isomorphism.
This composition can be described by the [F ] × [F ]-matrix whose ([i], [j ])-th entry

is K∗(π
[i]
F ) ◦ K∗(x

F
[j ]) (here ◦ is composition of homomorphisms). Going through our

constructions, it is clear that

K∗(π
[i]
F ) ◦K∗(x

F
[j ]) 6= 0 only if

∨
l∈H ·j

el ≥ e([i])⇔
∨
l∈H ·j

el ≥
∨
k∈H ·i

ek. (13)

It is immediate that [j ] ≥ [i] :⇔
∨
l∈H ·j el ≥

∨
k∈H ·i ek defines a partial order relation

on [F ]. If we arrange the elements of [F ] in increasing order with respect to this partial or-
der (increasing means that the elements [j ] which come after an element [i] do not satisfy
[j ] ≤ [i]), then (13) tells us that (K∗(π

[i]
F ) ◦K∗(x

F
[j ]))[i],[j ] becomes an upper triangular

matrix. Hence the [F ]×[F ]-matrix describing (
⊕
[i]∈[F ]K∗(π

[i]
F ))◦(

∑
[i]∈[F ]K∗(x

F
[i])) is

the sum of a nilpotent matrix and a diagonal matrix whose ([i], [i])-th entry is K∗(π
[i]
F ) ◦

K∗(xF[i]). To prove that the matrix (K∗(π
[i]
F ) ◦ K∗(x

F
[j ]))[i],[j ] is invertible, it remains to

prove that the diagonal entries of this matrix are invertible, i.e. K∗(π
[i]
F ) ◦ K∗(x

F
[i]) :

K∗(C[i])→ K∗(C[i]) is an isomorphism for all [i] ∈ [F ].
Recall that

xF
[i] = KK(ϕ[i]|(DoτH)F )⊗ KK(ei,i ⊗ id(DoτH)F )

−1,

so that
K∗(xF[i]) = K∗(ei,i ⊗ id(DoτH)F )

−1
◦K∗(ϕ[i]|

(DoτH)F ).

As
(ei,i ⊗ idC[i]) ◦ π

[i]
F = (idL(`2(H ·i)) ⊗ π

[i]
F ) ◦ (ei,i ⊗ id(DoτH)F ),

we obtain

K∗(π
[i]
F ) ◦K∗(x

F
[i]) = K∗(π

[i]
F ) ◦K∗(ei,i ⊗ id(DoτH)F )

−1
◦K∗(ϕ[i]|

(DoτH)F )

= K∗(ei,i ⊗ idC[i])
−1
◦K∗(idL(`2(H ·i))⊗π

[i]
F ) ◦K∗(ϕ[i]|

(DoτH)F )

= K∗(ei,i ⊗ idC[i])
−1
◦K∗((idL(`2(H ·i))⊗π

[i]
F ) ◦ϕ[i]|

(DoτH)F ).

Note that L(`2(H · i)) = K(`2(H · i)) as H is finite.
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To prove thatK∗(π
[i]
F )◦K∗(x

F
[i]) is an isomorphism, it therefore suffices to check that

K∗((idL(`2(H ·i)) ⊗ π
[i]
F ) ◦ ϕ[i]|

(DoτH)F ) is an isomorphism. By (8) and (12), the element
(idL(`2(H ·i)) ⊗ π

[i]
F ) ◦ ϕ[i]|

(DoτH)F is given by the homomorphism

C[i]→ L(`2(H · i))⊗ C[i], 1jUh 7→ ej,h−1·j ⊗ 1jUh.

Let s : H · i → H be a map satisfying s(h · i) · i = h · i. Define

W :=
∑
j∈H ·i

σs(j) ⊗ 1j ∈ L(`2(H · i))⊗ C[i].

We finally claim that W is a unitary such that

Ad(W ∗) ◦ (idL(`2(H ·i)) ⊗ π
[i]
F ) ◦ ϕ[i]|

(DoτH)F = ei,i ⊗ idC[i] .

This follows from the following computations:

W ∗W =
∑
j∈H ·i

σ ∗s(j)σs(j) ⊗ 1j = 1⊗ 1,

WW ∗ =
∑
j∈H ·i

σs(j)σ
∗

s(j) ⊗ 1j = 1⊗ 1

and

W ∗(ej,h−1·j ⊗ 1jUh)W =
∑

k,l∈H ·i

σ ∗s(k)ej,h−1·jσs(l) ⊗ 1k1jUh1l︸ ︷︷ ︸
=δk,j δj,hl1jUh

= σ ∗s(j)ej,h−1·jσs(h−1·j) ⊗ 1jUh = ei,i ⊗ 1jUh = (ei,i ⊗ idC[i])(1jUh).

Thus (idL(`2(H ·i))⊗π
[i]
F )◦ϕ[i]|

(DoτH)F is unitarily equivalent to ei,i⊗idC[i] . As ei,i⊗idC[i]
induces an isomorphism on K-theory, we are done. ut

Proof of Theorem 6.1. Theorem 6.1 now follows from Proposition 6.4.2 and commuta-
tivity of diagram (11). ut

6.5. Baum–Connes. Under certain K-theoretic assumptions on our group G, we may
now apply the Baum–Connes machinery to our situation.

Corollary 6.5.1. Assume that the conditions of Theorem 6.1 are satisfied, i.e. conditions
(I)–(III) from §6 hold. Moreover, assume that the group G satisfies the Baum–Connes
conjecture with coefficients in c0(I ) and D with respect to the G-actions σ and τ . Then
the descent jGr (x) ∈ KK(c0(I )oσ,r G,D oτ,r G) induces an isomorphism on K-theory.

Proof. We have proven in Theorem 6.1 that for all finite subgroups H of G, the descent
jH (resGH (x)) is a KK-equivalence. Now our corollary follows from [E-N-O, Proposi-
tion 2.1(i)]. ut

Under additional assumptions, we even obtain
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Corollary 6.5.2. In addition to the requirements of the previous corollary, assume that
both reduced crossed products c0(I ) oσ,r G and D oτ,r G satisfy the UCT. Then jGr (x)
is a KK-equivalence.

Proof. This follows immediately from the previous corollary. ut

To conclude that jGr (x) is a KK-equivalence, we can also proceed as follows:

Corollary 6.5.3. In addition to the requirements of Corollary 6.5.1, assume thatG satis-
fies the strong Baum–Connes conjecture with coefficients in c0(I ) and D with respect to
the G-actions σ and τ . Then jGr (x) is a KK-equivalence.

Proof. This follows from Theorem 6.1 and [E-N-O, Proposition 2.1(iii)]. ut

The conditions of this corollary are for instance satisfied if G is amenable.

6.6. Imprimitivity theorems. Consider the direct sum decomposition

c0(I )oσ,r G =
⊕
[i]∈G\I

(c0(G · i)oσ,r G).

As before, we denote the summand c0(G · i)oσ,r G corresponding to [i] ∈ G\I by C[i],
and let ι[i] be the embedding C[i]→ c0(I )oσ,r G.

Under the isomorphism∏
[i]∈G\I

(KK(ι[i])⊗ t) : KK(c0(I )oσ,r G,D oτ,r G)→
∏
[i]∈G\I

KK(C[i],D oτ,r G)

from [Bla, Theorem 19.7.1], the element jGr (x) ∈ KK(c0(I ) oσ,r G,D oτ,r G) corre-
sponds to (x[i])[i]∈G\I with x[i] := KK(ι[i])⊗ jGr (x). By Lemma 6.3.1, we have

x[i] = KK(ϕ[i])⊗ KK(ei,i ⊗ idDoτ,rG)
−1 (14)

where the homomorphisms ϕ[i] and ei,i ⊗ idDoτ,rG are given by

ϕ[i] : C[i]→ K(`2(G · i))⊗min (D oτ,r G), 1jUg 7→ ej,g−1·j ⊗ ejUg,

and

ei,i ⊗ idDoτ,rG : D oτ,r G→ K(`2(G · i))⊗min (D oτ,r G), T 7→ ei,i ⊗ T .

To further examine x[i], let us now describe C[i] = c0(G · i) oσ,r G up to Morita
equivalence with the help of concrete homomorphisms. For i ∈ I , let Gi be the stabilizer
of i, i.e.Gi := {g ∈ G : g · i = i}. Then we have a bijection G/Gi ∼= G · i, gGi 7→ g · i,
which isG-equivariant. Thus we can identify C[i] = c0(G ·i)oσ,rGwith c0(G/Gi)orG
where we take the translation action of G on c0(G/Gi) for the second reduced crossed
product. Moreover, the homomorphism

C∗r (Gi)→ c0(G/Gi)or G, λg 7→ 1eGiUg,
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exists by Lemma 2.5.2 and induces a KK-equivalence in KK(C∗r (Gi), c0(G/Gi) or G).
The last assertion follows from the observation that the projection 1eGi ∈ c0(G/Gi)orG
is a full projection and that the above homomorphism yields an isomorphism C∗r (Gi)

∼=

1eGi (c0(G/Gi) or G)1eGi , λg 7→ 1eGiUg (injectivity follows from Lemma 2.5.2, and
surjectivity can be seen immediately).

Composing the homomorphism C∗r (Gi)→ c0(G/Gi)or G and the above canonical
identification c0(G/Gi)or G ∼= c0(G · i)oσ,r G = C[i], we obtain the homomorphism

ϕi : C
∗
r (Gi)→ C[i], λg 7→ 1iUg. (15)

By our observations, KK(ϕi) is a KK-equivalence in KK(C∗r (Gi), C[i]). For two different
choices of the representative i of the class [i] ∈ G\I , the stabilizers will be different in
general, but they will always be conjugate. So the choices of the particular representatives
do not really matter.

Finally, let us compute the Kasparov product KK(ϕi) ⊗ x[i]. As a preparation, note
that (ϕ[i] ◦ ϕi)(λg) = ei,i ⊗ eiUg ∈ K(`2(G · i)) ⊗min (D oτ,r G) for g ∈ Gi . Thus
composing ϕ[i] ◦ ϕi with the canonical identification ei,i ⊗ D oτ,r G ∼= D oτ,r G, we
obtain a homomorphism 8i : C

∗
r (Gi)→ D oτ,r G, λg 7→ eiUg . By construction,

ϕ[i] ◦ ϕi = (ei,i ⊗ idDoτ,rG) ◦8i . (16)

Thus

KK(ϕi)⊗ x[i] = KK(ϕi)⊗ KK(ι[i])⊗ jGr (x)
(14)
= KK(ϕi)⊗ KK(ϕ[i])⊗ KK(ei,i ⊗ idDoτ,rG)

−1

(16)
= KK(8i)⊗ KK(ei,i ⊗ idDoτ,rG)⊗ KK(ei,i ⊗ idDoτ,rG)

−1

= KK(8i). (17)

Let us summarize our observations.

Proposition 6.6.1. Let R be a complete system of representatives for G\I . The homo-
morphism ⊕

i∈R
ϕi :

⊕
i∈R

C∗r (Gi)→
⊕
i∈R

C[i] = c0(I )oσ,r G

(the ϕi are given by (15)) induces a KK-equivalence in KK(
⊕

i∈R C
∗
r (Gi), c0(I )oσ,rG).

Moreover,
KK(ϕi)⊗ KK(ι[i])⊗ jGr (x) = KK(8i) (18)

where 8i is the homomorphism

8i : C
∗
r (Gi)→ D oτ,r G, λg 7→ eiUg.

Proof. Since each of the ϕi identifies C∗r (Gi) with a full corner of C[i], the homomor-
phism

⊕
i∈R ϕi identifies the direct sum

⊕
i∈R C

∗
r (Gi) with a full corner of

⊕
i∈R C[i]

= c0(I )oσ,r G. This proves our first assertion. The second one is just (17). ut
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7. From abstract to concrete

Let us now go back to the situation of semigroup C*-algebras and summarize what we
have obtained so far. We just have to apply our general results from the previous section to
the case of reduced semigroup C*-algebras. We use the same notation as in §2. For a left
Ore semigroup P whose constructible right ideals are independent, set P−1

· (J \ {∅}) =
{q−1

· X : q ∈ P, ∅ 6= X ∈ J } and let G be the enveloping group of P . The G-action
on P−1

· (J \ {∅}) via left multiplication (i.e. g · (q−1
· X) = g · q−1

· X) induces in a
canonical way aG-action on c0(P

−1
· (J \ {∅})) by shifting indices. In the following, we

will consider the conditions

(A1) P is a left Ore semigroup whose constructible right ideals are independent, and the
enveloping groupG of P satisfies the Baum–Connes conjecture with coefficients in
the G-C*-algebras c0(P

−1
· (J \ {∅})) and D(∞)r (P ).

(A2) Condition (A1) holds, and c0(P
−1
·(J \{∅}))oσ,rG andD(∞)r (P )oτ (∞),rG satisfy

the UCT or G satisfies the strong Baum–Connes conjecture with coefficients in the
G-C*-algebras c0(P

−1
· (J \ {∅})) and D(∞)r (P ).

Theorem 7.1. If condition (A1) is satisfied, then the descent

jGr (x) ∈ KK
(
c0(P

−1
· (J \ {∅}))oσ,r G,D(∞)r (P )oτ (∞),r G

)
of the element x from Definition 6.1.1 induces an isomorphism on K-theory. If the stronger
assumption (A2) is valid, then jGr (x) is a KK-equivalence.

Proof. We have checked at the beginning of §5 that under the present assumptions, all the
conditions in Theorem 6.1 are satisfied. Hence the first part of the present theorem follows
from Corollary 6.5.1, and the second part follows from Corollaries 6.5.2 and 6.5.3. ut

Recall that the embedding ι : C∗r (P )→ D
(∞)
r (P )oτ (∞),r G, Vp 7→ EPUpEP , induces a

KK-equivalence in KK(C∗r (P ),D
(∞)
r (P )oτ (∞),rG) by Corollary 4.3. Also recall that for

X ∈ J \ {∅}, we have introduced the homomorphism ϕX : C
∗
r (GX)→ c0(G ·X)oσ,r G,

λg 7→ 1XUg , in §6.6. Here GX = {g ∈ G : g · X = X}. Let ι[X] be the embedding
c0(G ·X)oσ,r G ↪→ c0(P

−1
· J \ {∅})oσ,r G.

Lemma 7.2. For every X in J \ {∅}, there exists a homomorphism

9X : C
∗
r (GX)→ C∗r (P ), λq−1p 7→ EXV

∗
q VpEX,

which satisfies

KK(9X) = KK(ϕX)⊗ KK(ι[X])⊗ jGr (x)⊗ KK(ι)−1. (19)

Proof. LetX be an element of J \{∅}. Recall that8X is the homomorphism C∗r (GX)→

D
(∞)
r (P ) oτ (∞),r G, λg 7→ EXUg = EXUgEX. It is clear that Im(8X) ⊆ Im(ι), so that

we can define 9X := ι−1
◦ (8X|

Im(ι)). This homomorphism has the desired properties.
Equation (19) follows from ι ◦9X = 8X (by construction) and (18). ut
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Now let X be a complete system of representatives for G\(P−1
· (J \ {∅})) such that

X ⊆ J \ {∅}. The homomorphisms {9X}X∈X from the previous lemma give rise to
the Kasparov (

⊕
X∈X C

∗
r (GX), C

∗
r (P ))-module (`2(X , C∗r (P )),

⊕
X∈X 9X, 0) with the

homomorphism⊕
X∈X

9X :
⊕
X∈X

C∗r (GX)→ c0(X , C∗r (P )) ⊆ K(`2(X , C∗r (P ))) ⊆ L(`2(X , C∗r (P ))).

Here c0(X , C∗r (P )) acts as diagonal multiplication operators on the Hilbert C∗r (P )-mod-
ule `2(X , C∗r (P )). Let 9 be the KK-element in KK(

⊕
X∈X C

∗
r (GX), C

∗
r (P )) repre-

sented by the Kasparov module (`2(X , C∗r (P )),
⊕

X∈X 9X, 0). Let ιGX be the inclusion
C∗r (GX) ↪→

⊕
X∈X C

∗
r (GX). By construction,

KK(ιGX )⊗9 = KK(9X). (20)

Theorem 7.3. If condition (A1) is valid, then the above KK-element 9 induces an iso-
morphism on K-theory. If the stronger assumption (A2) holds, then 9 is a KK-equiv-
alence.

Proof. By Corollary 4.3, KK(ι) is a KK-equivalence. By the first part of Proposition
6.6.1, KK(

⊕
X∈X ϕX) is a KK-equivalence. And going through the identification

KK
(⊕
X∈X

C∗r (GX), C
∗
r (P )

)
∼=

∏
X∈X

KK(C∗r (GX), C
∗
r (P ))

from [Bla, Theorem 19.7.1], it follows from equation (19) of the previous lemma and (20)
that

9 = KK
(⊕
X∈X

ϕX

)
⊗ jGr (x)⊗ KK(ι)−1.

Therefore, the first part of the present theorem follows from the first part of Theo-
rem 7.1, and the second part follows from the second part of the same theorem. ut

Corollary 7.4. If condition (A1) is satisfied, then the homomorphism∑
X∈X

K∗(9X) :
⊕
X∈X

K∗(C
∗
r (GX))→ K∗(C

∗
r (P ))

is an isomorphism. And under the stronger assumption (A2), the homomorphism∏
X∈X

K∗(9X) : K
∗(C∗r (P ))→

∏
X∈X

K∗(C∗r (GX))

is an isomorphism. Here K∗ is K0 ⊕ K1 and K∗ is K0
⊕ K1, viewed as Z/2Z-graded

abelian groups.

Proof. By (20), these homomorphisms are just the compositions of taking the Kasparov
product with 9 and the canonical isomorphisms⊕
X∈X

K∗(C
∗
r (GX))

∼= K∗

(⊕
X∈X

C∗r (GX)
)

and K∗
(⊕
X∈X

C∗r (GX)
)
∼=

∏
X∈X

K∗(C∗r (GX)).

ut
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Our last goal in this section is to show that whenever P is a left Ore semigroup whose
constructible right ideals are independent, there exists a canonical ring structure on the
K-homology of C∗r (P ), and the isomorphism

∏
X∈X K

∗(9X) from the last corollary is a
ring isomorphism.

Lemma 7.5. Let P be a left Ore semigroup whose constructible right ideals are indepen-
dent. Then there exists a homomorphism

1P : C
∗
r (P )→ C∗r (P )⊗min C

∗
r (P ) determined by Vp 7→ Vp ⊗ Vp.

Note that we always have such a homomorphism in the case where the left regular rep-
resentation C∗(P ) → C∗r (P ) is an isomorphism because an analogous homomorphism
always exists on the full semigroup C*-algebra (see [Li2, proof of Proposition 2.24]).

Proof. Since the constructible right ideals of P are independent, there exists a homomor-
phismDr(P )→ Dr(P )⊗minDr(P ) sending EX to EX⊗EX for allX ∈ J . This can be
seen as follows: By [Li2, Corollary 2.26], the restriction of the left regular representation
to the commutative sub-C*-algebraD(P ) of the full semigroup C*-algebra C∗(P ) yields
an isomorphism D(P ) ∼= Dr(P ) if (and only if) the constructible right ideals of P are
independent. But we can always construct a homomorphismD(P )→ D(P )⊗minD(P ),
eX 7→ eX ⊗ eX, by restricting the homomorphism C∗(P ) → C∗(P ) ⊗min C

∗(P ),
vp 7→ vp ⊗ vp, to D(P ) (as observed above, such a homomorphism always exists; see
also [Li2, proof of Proposition 2.24]).

The homomorphism Dr(P )→ Dr(P ) ⊗min Dr(P ), EX 7→ EX ⊗ EX, is obviously
equivariant with respect to the P -actions τ and τ ⊗ τ . By definition of D(∞)r (P ) (see
the beginning of §4), we obtain a homomorphismD

(∞)
r (P )→ D

(∞)
r (P )⊗minD

(∞)
r (P ),

EY 7→ EY⊗EY (for Y ∈ P−1
·J ). This homomorphism is again obviouslyG-equivariant

with respect to the actions τ (∞) and τ (∞)⊗τ (∞). Therefore, applying Lemma 2.5.2 to this
homomorphism and the diagonal embeddingG ↪→ G×G, we obtain the homomorphism

D(∞)r (P )oτ (∞),r G→ (D(∞)r (P )⊗min D
(∞)
r (P ))oτ (∞)⊗τ (∞),r (G×G),

EYUg 7→ (EY ⊗ EY )U(g,g).

Composing this map with the canonical identification

(D(∞)r (P )⊗min D
(∞)
r (P ))oτ (∞)⊗τ (∞),r (G×G)

∼= (D
(∞)
r (P )oτ (∞),r G)⊗min (D

(∞)
r (P )oτ (∞),r G),

(EY1 ⊗ EY2)U(g1,g2) 7→ EY1Ug1 ⊗ EY2Ug2 ,

we obtain the homomorphism

D(∞)r (P )oτ (∞),r G→ (D(∞)r (P )oτ (∞),r G)⊗min (D
(∞)
r (P )oτ (∞),r G),

EYUg 7→ EYUg ⊗ EYUg.
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Since this map sends EPUpEP to EPUpEP ⊗ EPUpEP , we just have to restrict this
homomorphism to EP (D

(∞)
r (P )oτ (∞),r G)EP and to use the identification

C∗r (P )
∼= EP (D

(∞)
r (P )oτ (∞),r G)EP , Vp 7→ EPUpEP ,

from Lemma 4.2 to obtain our desired homomorphism 1P . ut

Now, whenever there exists such a diagonal homomorphism

1P : C
∗
r (P )→ C∗r (P )⊗min C

∗
r (P ), Vp 7→ Vp ⊗ Vp,

we obtain a canonical graded ring structure on K∗(C∗r (P )) in analogy to the group case.
Multiplication in this ring structure is given by the following composition:

K i(C∗r (P ))×K
j (C∗r (P ))

∼= KKi(C∗r (P ),C)× KKj (C∗r (P ),C)
⊗
−→ KKi+j (C∗r (P )⊗min C

∗
r (P ),C)

KK(1P )⊗t
−−−−−−→ KKi+j (C∗r (P ),C) ∼= K

i+j (C∗r (P )).

And on
∏
X∈X K

∗(C∗r (GX)), there is a canonical ring structure given by the canonical
ring structure on each of the K-homology groups K∗(C∗r (GX)) (it is constructed in the
same way as forK∗(C∗r (P ))). Our last observation in this section is that the isomorphism
on K-homology from the last corollary is compatible with these ring structures.

Theorem 7.6. If condition (A2) is satisfied, then the homomorphism∏
X∈X

K∗(9X) : K
∗(C∗r (P ))→

∏
X∈X

K∗(C∗r (GX))

is a ring isomorphism.

Proof. In view of the last corollary, all we have to prove is that
∏
X∈X K

∗(9X) is mul-
tiplicative. Let us check this for K0; the remaining cases are similar. Let 1GX be the
diagonal homomorphism C∗r (GX)→ C∗r (GX)⊗min C

∗
r (GX), λg 7→ λg ⊗ λg . Using the

natural identificationK0(·) ∼= KK(·,C) and the definition of the multiplicative structures,
our assertion amounts to saying that for allX ∈ X and all y, z in KK(C∗r (P ),C), we have

KK(9X)⊗ (KK(1P )⊗ (y⊗ z)) = KK(1GX )⊗
(
(KK(9X)⊗ y)⊗ (KK(9X)⊗ z)

)
.

It is immediate that

1P ◦9X = (9X ⊗min 9X) ◦1GX . (21)
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Thus

KK(1GX )⊗
(
(KK(9X)⊗ y)⊗ (KK(9X)⊗ z)

)
= KK(1GX )⊗ (KK(9X)⊗ KK(9X))⊗ (y⊗ z)
= KK(1GX )⊗ KK(9X ⊗min 9X)⊗ (y⊗ z)

(21)
= KK(9X)⊗ (KK(1P )⊗ (y⊗ z)). ut

8. Semigroups attached to Dedekind domains

In this section, we apply our general K-theoretic results from §7 to specific semigroups
attached to Dedekind domains. Let R be a Dedekind domain. This means that R is a
noetherian, integrally closed integral domain with the property that every non-zero prime
ideal is a maximal ideal (compare [Neu, Chapter I, Definition (3.2)]). By an integral
domain, we mean a commutative ring without zero divisors.

We would like to treat the multiplicative semigroup R× = R \ {0}, the semigroup of
principal ideals of R and the ax+ b-semigroup RoR×. The semidirect product RoR×
is taken with respect to the multiplicative action of the multiplicative semigroup R× on
the additive group R.

Examples of Dedekind domains are given by rings of integers in number fields or
function fields. These rings and the corresponding semigroups have actually been our
motivating examples.

Since it will be important later on, let us briefly recall the definition of the class group
of R. Let Q(R) be the quotient field of R.

Definition 8.1. A fractional ideal of Q(R) (or R) is a non-zero, finitely generated sub-
R-module of Q(R). A principal fractional ideal of Q(R) (or R) is a fractional ideal of
the form a · R for some a ∈ Q(R)× = Q(R) \ {0}.

As explained in [Neu, Chapter I, §3], the set of fractional ideals of Q(R) is an abelian
group under multiplication. Furthermore, the subset of principal fractional ideals ofQ(R)
is multiplicatively closed, hence it forms a subgroup.

Definition 8.2. The ideal class group (or simply class group) ClQ(R) of Q(R) is the
quotient of the group of fractional ideals by the subgroup of principal fractional ideals
of Q(R).

Remark 8.3. It follows directly from the definition that we can equivalently describe
ClQ(R) (at least as a set) as follows: The multiplicative group Q(R)× = Q(R) \ {0} acts
on the set of fractional ideals of Q(R) by multiplication, and ClQ(R) is given by the set
of orbits of this action.

8.1. Multiplicative semigroups. We first consider the multiplicative semigroupR×. Let
R∗ be the group of units in R, or in other words, R∗ is the subgroup of invertible elements
of R×.
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Our goal is to apply our general K-theoretic results from §7 to prove:

Theorem 8.1.1. C∗r (R×) and
⊕

γ∈ClQ(R)
C∗r (R

∗) are KK-equivalent. Furthermore,
choose for every γ ∈ ClQ(R) an ideal Iγ of R which represents γ . Then there is a
homomorphism 9Iγ : C

∗
r (R
∗) → C∗(R×) determined by 9Iγ (Va) = EIγ Va . These

homomorphisms give rise to isomorphisms∑
γ∈ClQ(R)

(9Iγ )∗ :
⊕

γ∈ClQ(R)

K∗(C
∗
r (R
∗))→ K∗(C

∗
r (R
×))

and ∏
γ∈ClQ(R)

(9Iγ )
∗
: K∗(C∗r (R

×))→
∏

γ∈ClQ(R)

K∗(C∗r (R
∗)).

The last isomorphism
∏
γ∈ClQ(R)

(9Iγ )
∗ on K-homology is a ring isomorphism.

Proof. We just have to check the assumptions in Theorem 7.3. First of all, R× is a left
Ore semigroup because it is cancellative and abelian. Moreover, the constructible right
ideals of R× are independent. This can be proven analogously to [Li2, Lemma 2.29]. The
enveloping group of R× is Q(R)×. Since Q(R)× is abelian, it is amenable, hence it sat-
isfies the strong Baum–Connes conjecture for all coefficients. Therefore the conditions in
the second part of Theorem 7.3 are satisfied. For the semigroup R×, J \{∅} is given by all
non-zero ideals of R. This can be proven analogously to the case of the ax+b-semigroup
over R which is explained in [Li2, second half of §2.4]. Therefore, (R×)−1

· (J \ {∅}) is
the set of fractional ideals of Q(R), and the set of orbits Q(R)×\(P−1

· (J \ {∅})) coin-
cides with ClQ(R) by Remark 8.3. And finally, for a non-zero ideal I of R, the stabilizer
Q(R)×I = {a ∈ Q(R)

×
: a · I = I } is given by R∗. The first part of our theorem now

follows from the second part of Theorem 7.3 and from the second part of Corollary 7.4.
That

∏
γ∈ClQ(R)

(9Iγ )
∗ is a ring isomorphism follows from Theorem 7.6. ut

Remark 8.1.2. Let L be an ideal in R. We define a (non-unital) endomorphism αL of
C∗r (R

×) by Vp 7→ VpEL, EI 7→ ELI . Then αJαL = αJL and αL is inner if L is a
principal ideal.

As a consequence we obtain an action of the class group ClQ(R) on the K-theory
and K-homology of C∗r (R

×) (in fact this defines a multiplicative map ClQ(R) →

KK(C∗r (R
×), C∗r (R

×))). It is clear that this action of ClQ(R) corresponds under∑
γ∈ClQ(R)

(9Iγ )∗ to the obvious action of ClQ(R) on
⊕

γ∈ClQ(R)
K∗(C

∗
r (R
∗)), and simi-

larly on K-homology.

We also discuss the multiplicative semigroup of principal ideals over a Dedekind domain
R. It is clear that this semigroup can be identified with R×/R∗. Note that the family
JR×/R∗ of ideals for this semigroup can be identified with the corresponding family JR×
for the multiplicative semigroup of the ring R via JR×/R∗ 3 X/R∗ ↔ X ∈ JR× , where
X/R∗ is the image of X in R×/R∗ under the canonical projection R× � R×/R∗. With
this observation, we can, in complete analogy to the case of R×, apply Theorem 7.3,
Corollary 7.4 and Theorem 7.6 to deduce
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Theorem 8.1.3. C∗r (R×/R∗) and
⊕

γ∈ClQ(R)
C are KK-equivalent. Furthermore, choose

for every γ ∈ ClQ(R) an ideal Iγ of R which represents γ . Then the canonical ho-
momorphisms 9Iγ : C → C∗(R×/R∗) determined by 9Iγ (1) = EIγ /R∗ give rise to
isomorphisms ∑

γ∈ClQ(R)

(9Iγ )∗ :
⊕

γ∈ClQ(R)

Z→ K∗(C
∗
r (R
×))

and ∏
γ∈ClQ(R)

(9Iγ )
∗
: K∗(C∗r (R

×))→
∏

γ∈ClQ(R)

Z.

The last isomorphism
∏
γ∈ClQ(R)

(9Iγ )
∗ is a ring isomorphism, where we take the canon-

ical ring structure on Z.

We also remark that we obtain an analogous action of the class group ClQ(R) on the
K-theory and K-homology of C∗r (R

×/R∗) as in the previous remark.

8.2. ax + b-semigroups. Let us now treat the case of the ax + b-semigroup R o R×
over R. First, we apply our general results from §7 to compute K-theory, and secondly,
we show that the corresponding semigroup C*-algebras are purely infinite.

Again, let R∗ be the group of units in R and choose for every γ ∈ ClQ(R) an ideal Iγ
of R which represents γ .

Applying our general K-theoretic results from §7, we obtain

Theorem 8.2.1. The C*-algebras C∗r (R o R×) and
⊕

γ∈ClQ(R)
C∗r (Iγ o R∗) are KK-

equivalent. Here we form the semidirect product Iγ oR∗ with respect to the multiplicative
action of R∗ on the additive group Iγ .

Moreover, for every γ ∈ ClQ(R) there is a homomorphism 9Iγ : C
∗
r (Iγ o R∗) →

C∗(R o R×) determined by 9Iγ (V(b,a)) = EIγ×I×γ V(b,a). These homomorphisms give
rise to isomorphisms∑

γ∈ClQ(R)

(9Iγ )∗ :
⊕

γ∈ClQ(R)

K∗(C
∗
r (Iγ o R

∗))→ K∗(C
∗
r (R o R

×))

and ∏
γ∈ClQ(R)

(9Iγ )
∗
: K∗(C∗r (R o R

×))→
∏

γ∈ClQ(R)

K∗(C∗r (Iγ o R
∗)).

The last isomorphism
∏
γ∈ClQ(R)

(9Iγ )
∗ on K-homology is a ring isomorphism.

Proof. Again, we just have to check the assumptions in Theorem 7.3. First of all, RoR×
is a left Ore semigroup by [Li1, §5.1]. And the constructible right ideals of R o R×

are independent by [Li2, Lemma 2.29]. The enveloping group of R o R× is given by the
ax+b-groupQ(R)oQ(R)× overQ(R). SinceQ(R)oQ(R)× is solvable, it is amenable,
hence it satisfies the strong Baum–Connes conjecture for all coefficients. Therefore the
conditions in the second part of Theorem 7.3 are fulfilled. For the semigroup R o R×,
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J \ {∅} is given by {(r + I )× I× : r ∈ R, (0) 6= I GR}. This is explained in the second
half of §2.4 of [Li2]. Therefore,

(RoR×)−1
· (J \ {∅}) = {(a−1b+ a−1I )× (a−1I )× : (b, a) ∈ RoR×, (0) 6= I GR},

and we see using Remark 8.3 that

ClQ(R)→ (Q(R)oQ(R)×)\((R o R×)−1
· (J \ {∅})), J 7→ [J × J×],

is a bijection. And finally, for a non-zero ideal I ofR, the stabilizer (Q(R)oQ(R)×)I×I×
= {(b, a) ∈ Q(R)oQ(R)× : b+ a · I = I } is given by I oR∗ ⊆ RoR×. The first part
of our theorem now follows from the second part of Theorem 7.3 and the second part of
Corollary 7.4, and Theorem 7.6 implies that

∏
γ∈ClQ(R)

(9Iγ )
∗ is a ring isomorphism. ut

Finally, let us study the inner structure of semigroup C*-algebras of ax + b-semigroups
over Dedekind domains. We start with two definitions:

Definition 8.2.2. A C*-algebraA is purely infinite ifA has no non-zero abelian quotients
and for every pair of positive elements a and b inAwith b ∈ AaA, there exists a sequence
(xn)n in A such that limn→∞ x

∗
naxn = b.

The reader may consult [Rør], [Pas-Rør] or [Kir-Rør1] for more details.

Definition 8.2.3. A C*-algebra has the ideal property if projections separate ideals.

Further explanations can be found in [Pas-Rør].
Our final goal is to prove

Theorem 8.2.4. For every Dedekind domain which has infinitely many pairwise distinct
prime ideals, the semigroup C*-algebra C∗r (R o R×) is purely infinite and has the ideal
property.

For us, the following result of C. Pasnicu and M. Rørdam [Pas-Rør, Proposition 2.11] is
important:

A C*-algebra is purely infinite and has the ideal property if and only if every non-zero
hereditary sub-C*-algebra in any quotient contains an infinite projection.

Actually, we will only need the implication “⇐”. Our goal is to prove that for every
ideal I of C∗r (R o R×), every non-zero hereditary sub-C*-algebra of C∗r (R o R×)/I
contains an infinite projection.

Let us start with a general observation. Let D be a unital C*-algebra with an action α
of a semigroup P by injective endomorphisms. Form the semigroup crossed product

D
e
oαP in the sense of [La] or [Li1, §A1]. Recall thatD

e
oαP is a unital C*-algebra which

comes by definition with a unital homomorphism iD : D → D
e
oα P and a semigroup

homomorphism v : P → Isom(D
e
oα P), p 7→ vp, such that vpiD(d)v∗p = iD(αp(d))

for all p ∈ P and d ∈ D. The triple (D
e
oα P, iD, v) has the universal property that given

a unital C*-algebra T , a unital homomorphism jD : D→ T and a semigroup homomor-
phism w : P → Isom(T ) such that wpjD(d)w∗p = jD(αp(d)) for all p ∈ P and d ∈ D,
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there is a unique homomorphism jD
e
ow : D

e
oα P → T satisfying (jD

e
ow) ◦ iD = jD

and (jD
e
o w) ◦ v = w.

Lemma 8.2.5. Assume that P is a left Ore semigroup and the enveloping group G of P
is amenable. Moreover, assume that

v∗piD(d)vp ∈ iD(D) for all d ∈ D. (22)

Then there exists a faithful conditional expectation E : D
e
oα P → D which is uniquely

determined by
E(v∗q iD(d)vp) = δq,pi

−1
D (v∗piD(d)vp). (23)

Proof. In the situation of the lemma, we have

D
e
oα P = span{v∗q iD(d)vp : p, q ∈ P, d ∈ D}

by [La, Remark 1.3.1]. This explains why (23) completely determines E.
To prove existence of E, let (D∞,G, α(∞)) be the minimal automorphic dilation in

the sense of [La, Definition 2.1.2]. By [La, Theorem 2.2.1], we have canonical embed-

dings i : D ↪→ D∞, i(o) : D
e
oα P ↪→ D∞oα(∞) G and D∞

⊆

↪→ D∞oα(∞) G such that
the diagram

D
e
oα P

i(o)
−−−−→ D∞ oα(∞) GxiD x⊆

D
i

−−−−→ D∞

commutes. It follows that iD is injective. Moreover, Theorem 2.2.1 in [La] tells us that
Im(i(o)) = i(1D)(D∞ oα(∞) G)i(1D).

Now, as G is amenable, D∞ oα(∞) G ∼= D∞ oα(∞),r G. And since G is also discrete,
Lemma 2.5.3 implies that there is a faithful conditional expectationE∞ : D∞oα(∞)G→
D∞ determined by

E∞(d∞ug) = δg,ed∞.

Here ug are the canonical unitaries in the multiplier algebra of D∞ oα(∞) G which im-
plement α(∞). As E∞(i(1D)) = i(1D), the composition

D
e
oα P

i(o)
−→ D∞ oα(∞) G

E∞
−→ D∞

has image in i(1D)(D∞ oα(∞) G)i(1D) = Im(i(o)), so that we can form

E′ := (i(o))−1
◦ (E∞ ◦ i

(o))|Im(i
(o)).

E′ is a faithful conditional expectation determined by

E′(v∗q iD(d)vp) = δq,pv
∗
piD(d)vp. (24)
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By our assumption (22), v∗piD(d)vp lies in iD(D) for all p ∈ P and d ∈ D. Thus
Im(E′) = iD(D), and since iD is injective, we may set

E := i−1
D ◦ (E

′
|
iD(D)).

This is the desired faithful conditional expectation. It satisfies (23) because of (24). ut

Lemma 8.2.6. In the situation of the previous lemma, let I be an ideal of D
e
oα P . Then

ID := i
−1
D (iD(D) ∩ I)

is an ideal of D such that for every p ∈ P , the endomorphism

α̇p : D/ID → D/ID, d + ID 7→ αp(d)+ ID,

is well-defined and injective. Denote the corresponding P -action on D/ID by α̇ and

the associated semigroup crossed product by ((D/ID)
e
oα̇ P, iD/ID , v̇). Let π be the

canonical projection D � D/ID . By the universal property of (D
e
oα P, iD, v), there

exists a homomorphism π
e
o P : D

e
oα P → (D/ID)

e
oα̇ P determined by

(π
e
o P)(v∗q iD(d)vp) = v̇

∗
q iD/ID (d + ID)v̇p.

This homomorphism π
e
o P induces an isomorphism

(π
e
o P )̇ : D

e
oα P/〈iD(ID)〉

∼=
−→ (D/ID)

e
oα̇ P

determined by

(π
e
o P )̇ (v∗q iD(d)vp + 〈iD(ID)〉) = v̇

∗
q iD/ID (d + ID)v̇p. (25)

Here 〈iD(ID)〉 is the ideal of D
e
oα P generated by iD(ID).

Proof. If d lies in ID , then iD(αp(d)) = vp(iD(d))v∗p lies in I as iD(d) lies in I. At the
same time, vp(iD(d))v∗p = iD(αp(d)) lies in iD(D). Thus iD(αp(d)) lies in iD(D) ∩ I,
and hence αp(d) lies in i−1

D (iD(D) ∩ I) = ID . Therefore α̇p is well-defined. To see
injectivity of αp, observe that for d ∈ D, αp(d) ∈ ID implies

d = i−1
D iD(d) = i

−1
D (v∗pvpiD(d)v

∗
pvp) = i

−1
D (v∗piD(αp(d))vp).

Now v∗piD(αp(d))vp lies in I as iD(αp(d)) lies in iD(ID) ⊆ I, and v∗piD(αp(d))vp lies in
iD(D) by (22). Hence v∗piD(αp(d))vp lies in iD(D)∩I, and thus d= i−1

D (v∗piD(αp(d))vp)

lies in i−1
D (iD(D) ∩ I) = ID . So far, we have proven the first part of the lemma.

Finally, the homomorphism π
e
o P : D

e
oα P → (D/ID)

e
oα̇ P determined by

(π
e
o P)(v∗q iD(d)vp) = v̇

∗
q iD/ID (d + ID)v̇p

vanishes on iD(ID), hence on 〈iD(ID)〉. Therefore π
e
oP factorizes through the quotient

D
e
oαP/〈iD(ID)〉. This gives rise to the desired homomorphism (π

e
oP )̇. To prove that it

is an isomorphism, we use the universal property of ((D/ID)
e
oα̇P, iD/ID , v̇) to construct
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an inverse. The composition

D
iD
−→ D

e
oα P

π (o)
� D

e
oα P/〈iD(ID)〉

(π (o) is the canonical projection) obviously vanishes on ID , giving a homomorphism

(iD )̇ : D/ID → D
e
oα P/〈iD(ID)〉. It is straightforward to see that (iD )̇ and P 3 p 7→

π (o)(vp) ∈ Isom(D
e
oα P/〈iD(ID)〉) satisfy the covariance relation Ad(π (o)(vp)) ◦

(iD )̇ = (iD )̇◦ α̇p. Therefore, by the universal property of ((D/ID)
e
oα̇ P, iD/ID , v̇), there

exists a homomorphism

(iD )̇
e
o P : (D/ID)

e
oα̇ P → D

e
oα P/〈iD(ID)〉

determined by

((iD )̇
e
o P)(v̇∗q iD/ID (d + ID)v̇p) = v

∗
q iD(d)vp + 〈iD(ID)〉. (26)

Comparing (25) and (26), we see that (iD )̇
e
o P is the inverse of (π

e
o P )̇. ut

Corollary 8.2.7. In the situation of the previous two lemmas, let E : D
e
oα P → D be

the faithful conditional expectation from Lemma 8.2.5. Let I be an ideal of D
e
oα P as in

Lemma 8.2.6. Then for all x ∈ (D
e
oα P)+, E(x) ∈ I implies x ∈ I.

Proof. Condition (22) is satisfied for iD/ID and v̇ from Lemma 8.2.6 since

v̇∗piD/ID (d + ID)v̇p = (π
e
o P )̇ (v∗piD(d)vp︸ ︷︷ ︸

∈iD(D)
by (22)

) ∈ (π
e
o P )̇ (iD(D)) = iD/ID (D/ID).

Thus, by Lemma 8.2.5 applied to the C*-dynamical semisystem (D/ID, P , α̇), there
exists a faithful conditional expectation

Ė : (D/ID)
e
oα̇ P → D/ID

which is determined by

Ė(v̇∗q iD/ID (d + ID)v̇p) = δq,p(iD/ID )
−1(v̇∗piD/ID (d + ID)v̇p). (27)

Comparing (23) and (27) and using the homomorphism π
e
o P from Lemma 8.2.6, we

see that the diagram

D
e
oα P

π
e
oP

−−−−→ (D/ID)
e
oα̇ P

E

y Ė

y
D

π
−−−−→ D/ID

(28)

commutes.
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Now take x ∈ (D
e
oα P)+ with E(x) ∈ I. This means that

0+ ID = π(E(x))
(28)
= Ė((π

e
o P)(x)).

As Ė is faithful, we conclude that (π
e
oP)(x) = 0 in (D/ID)

e
oα̇ P . From Lemma 8.2.6,

it follows directly that the kernel of π
e
o P is 〈iD(ID)〉. Thus x ∈ 〈iD(ID)〉 ⊆ I. ut

Let us now return to the situation of interest. Let R be a Dedekind domain, and let RoR×
be the ax+b-semigroup over R. As explained in [Li2, second half of §2.4], the family J
of right ideals of R o R× is

J = {(r + I )× I× : r ∈ R, (0) 6= I G R} ∪ {∅}. (29)

By [Li2, Proposition 3.13] and because the constructible right ideals of RoR× are inde-
pendent by Lemma 2.29 in [Li2], the left regular representation

λ : C∗(R o R×)→ C∗r (R o R
×)

from [Li2, §2.1] is an isomorphism. Using λ, we will from now on always identify the
full and the reduced semigroup C*-algebras of R o R× (i.e. we may write vp for Vp
and eX for EX using the notation from [Li2]). Moreover, for a subset X of R o R×, let
eX ∈ L(`2(R o R×)) be the orthogonal projection onto `2(X) ⊆ `2(R o R×). This is
consistent with the notation from [Li2]. We sometimes write e[X] for eX if the expression
for X is rather long.

Now set

D(R o R×) = C∗({e(r+I )×I× : r ∈ R, (0) 6= I G R}),

and let τ be the action of R o R× on D(R o R×) given by τp = Ad(vp) for all p
in RoR×. By [Li2, Lemma 2.14], we can canonically identify C∗(RoR×) (hence also

C∗r (R o R×)) with D(R o R×)
e
oτ (R o R×). As τp is given by conjugation with an

isometry, it is injective. Moreover, we have already seen in the proof of Theorem 8.2.1
that RoR× is a left Ore semigroup whose enveloping group is amenable. As (22) is also
satisfied for (D(RoR×), RoR×, τ ) by [Li2, Corollary 2.9], we can apply Lemma 8.2.5
to (D(R o R×), R o R×, τ ). Using the canonical identification of C∗r (R o R×) with

D(RoR×)
e
oτ (RoR×), we obtain a faithful conditional expectationE : C∗r (RoR×)→

D(R o R×) which is determined by

E(v∗qe(r+I )×I×vp) = δq,pv
∗
pe(r+I )×I×vp.

Corollary 8.2.7 then tells us the following:

Corollary 8.2.8. Let I be an ideal of C∗r (R o R×). For a positive element y in
C∗r (R o R×), E(y) ∈ I implies y ∈ I.

Our first goal is to prove the following variation of [C-D-L, Lemma 4.12]:
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Lemma 8.2.9. Let R be a Dedekind domain with infinitely many pairwise distinct prime
ideals, let I be an ideal of C∗r (R o R×), and let y be a positive element in the ∗-algebra
generated by the isometries vp, p ∈ R o R×, i.e.

y ∈ (∗-alg({vp : p ∈ R o R×}))+.

If y does not lie in I, then there is a projection δ in C∗r (R o R×) of the form

δ = e
[(r+I )×I×\

⋃n
k=1(sk+Jk)×J

×

k ]
(30)

with r, s1, . . . , sn ∈ R and non-zero ideals I, J1, . . . , Jn of R such that

1. δ does not lie in I,
2. δyδ = (‖E(y)+ I‖C∗r (RoR×)/I)δ.

Note that in (30), the case n = 0 is possible; it corresponds to δ = e[(r+I )×I×].

Proof. As y lies in ∗-alg({vp : p ∈ R o R×}), it is of the form

y = d +

m∑
i=1

v∗qidivpi (31)

with p1, . . . , pm, q1, . . . , qm in R o R× such that qi 6= pi for all 1 ≤ i ≤ m and where
d and di (1 ≤ i ≤ m) are finite linear combinations of the projections eX, X ∈ J . The
condition qi 6= pi for all 1 ≤ i ≤ m implies E(y) = d. Moreover, we can write d
as a finite sum d =

∑
X λXeX. Now we can orthogonalize the projections eX which

appear in this finite sum, and we obtain pairwise orthogonal projections eY and a pre-
sentation d =

∑
Y µY eY . By Corollary 8.2.8, y /∈ I implies d = E(y) /∈ I. Thus

0 < ‖E(y) + I‖C∗r (RoR×)/I = sup({µY }) where the supremum is taken over all coeffi-
cients µY corresponding to eY /∈ I appearing in the sum above which represents d. Since
this sum is finite and the {eY } are pairwise orthogonal, there exists a projection eY such
that the corresponding coefficient precisely coincides with ‖E(y)+ I‖C∗r (RoR×)/I. This
implies that this projection satisfies

eY deY = (‖E(y)+ I‖C∗r (RoR×)/I)eY . (32)

Moreover, since the projections {eY } were obtained by orthogonalizing the commuting
projections {eX}, the subset Y of R o R× must be of the form

Y = (r̃ + Ĩ )× Ĩ× \

n⋃
k=1

(s̃k + J̃k)× J̃
×

k (33)

with r̃ , s̃1, . . . , s̃n ∈ R and non-zero ideals Ĩ , J̃1, . . . , J̃n of R such that J̃k ⊆ Ĩ for all
1 ≤ k ≤ n. The case n = 0 is allowed; it corresponds to Y = (r̃ + Ĩ )× Ĩ×. That Y is of
this form follows from (29).

We now choose (b, a) ∈ R o R× satisfying

1b,a . v(b,a)eY = eY v(b,a),
2b,a . v(b,a)v∗(b,a)v

∗
qi
divpiv(b,a)v

∗

(b,a) = 0 for all 1 ≤ i ≤ m.
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Let qi = (b′i, a
′

i) ∈ R o R
× and pi = (bi, ai) ∈ R o R×. Then

v(b,a)v
∗

(b,a)v
∗
qi
divpiv(b,a)v

∗

(b,a)

= v∗qivqi e(b+aR)×(aR)×v
∗
qi
divpi e(b+aR)×(aR)×v

∗
pi
vpi

= v∗qidie[(b′i+a
′
ib+a

′
iaR)×(a

′
iaR)

×]e[(bi+aib+aiaR)×(aiaR)×]vpi

= v∗qidie[((b′i+a
′
ib+a

′
iaR)×(a

′
iaR)

×)∩((bi+aib+aiaR)×(aiaR)
×)]vpi

vanishes if
(b′i + a

′

ib + a
′

iaR) ∩ (bi + aib + aiaR) = ∅ (34)
for all 1 ≤ i ≤ m. If for all 1 ≤ i ≤ m, we have b′i + a

′

ib − (bi + aib) = (b
′

i − bi) +

(a′i − ai)b /∈ aR, then certainly (34) holds.
We claim that we can choose b ∈ R such that

1b. b ∈ J̃1 ∩ · · · ∩ J̃n (or b ∈ Ĩ if n = 0),
2b. (b′i − bi)+ (a

′

i − ai)b 6= 0 for all 1 ≤ i ≤ m.

The reason is that we have by assumption (b′i, a
′

i) 6= (bi, ai) for all 1 ≤ i ≤ m. This
implies that for all 1 ≤ i ≤ m, either a′i = ai ∧ b

′

i 6= bi or a′i 6= ai . If a′i = ai ∧ b
′

i 6=

bi , then (b′i − bi) + (a
′

i − ai)b = b′i − bi 6= 0 for all b ∈ R, and if a′i 6= ai , then
(b′i − bi)+ (a

′

i − ai)b 6= 0 for all b ∈ R with b 6= −(a′i − ai)
−1(b′i − bi). This shows that

there are only finitely many ring elements which do not satisfy 2b. On the other hand, by
our assumption that R is a Dedekind domain with infinitely many pairwise distinct prime
ideals, J̃1 ∩ · · · ∩ J̃n (or Ĩ if n = 0) is an infinite set. Thus we can find b in R satisfying
1b and 2b at the same time. Let us fix such a choice for b ∈ R.

As a next step, we claim that we can choose a ∈ R× such that

1a . a ∈ 1+ J̃1 ∩ · · · ∩ J̃n (or a ∈ 1+ Ĩ if n = 0).
2a . (b′i − bi)+ (a

′

i − ai)b /∈ aR for all 1 ≤ i ≤ m.

To see this, first note that if
∏m
i=1((b

′

i−bi)+(a
′

i−ai)b) does not lie in aR, then 2a follows.
By 2b, the element

∏m
i=1((b

′

i−bi)+ (a
′

i−ai)b) is not zero. Thus, by our assumption that
R is a Dedekind domain with infinitely many pairwise distinct prime ideals, there exists
a prime ideal P of R such that

∏m
i=1((b

′

i − bi) + (a
′

i − ai)b) does not lie in P and also
J̃1 ∩ · · · ∩ J̃n * P (or Ĩ * P if n = 0). By the Chinese Remainder Theorem (see for
example [Neu, Chapter I, Theorem (3.6)]), there exists a non-zero element a of the prime
ideal P such that a ∈ 1+ J̃1 ∩ · · · ∩ J̃n (or a ∈ 1+ Ĩ if n = 0). This a obviously satisfies
1a and 2a .

Finally, we claim that this choice for (b, a) ∈ RoR× satisfies 1b,a and 2b,a . First, by
our observations, 2a implies (34), hence 2b,a . To prove 1b,a , note that 1a implies that aR
is coprime to each of the ideals Ĩ , J̃1, . . . , J̃n, so that

(ar̃ + aĨ )× (aĨ )× \

n⋃
k=1

(as̃k + aJ̃k)× (aJ̃k)
×

=

(
(ar̃ + Ĩ )× Ĩ× \

n⋃
k=1

(as̃k + J̃k)× J̃
×

k

)
∩ (aR × (aR)×). (35)
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Thus

v(0,a)eY v
∗

(0,a)
(33)
= e

[(ar̃+aĨ )×(aĨ )×\
⋃n
k=1(as̃k+aJ̃k)×(aJ̃k)

×]

(35)
= e

[(ar̃+Ĩ )×Ĩ×\
⋃n
k=1(as̃k+J̃k)×J̃

×

k ]
eaR×(aR)×

= e
[(ar̃+Ĩ )×Ĩ×\

⋃n
k=1(as̃k+J̃k)×J̃

×

k ]
v(0,a)v

∗

(0,a)

1a
= e

[(r̃+Ĩ )×Ĩ×\
⋃n
k=1(s̃k+J̃k)×J̃

×

k ]
v(0,a)v

∗

(0,a)

= eY v(0,a)v
∗

(0,a).

Multiplication on the right with v(0,a) implies

v(0,a)eY = eY v(0,a).

Furthermore, 1b implies
v(b,1)eY = eY v(b,1).

Thus we obtain

v(b,a)eY = v(b,1)v(0,a)eY = v(b,1)eY v(0,a) = eY v(b,1)v(0,a) = eY v(b,a).

This proves 1b,a . So we have seen that (b, a) satisfies 1b,a and 2b,a .
Now we set δ := v(b,a)eY v∗(b,a). Then δ is a projection in C∗r (R o R×) of the desired

form as in (30) by construction. In addition, δ does not lie in I because eY does not lie
in I. And finally, we have

δ = v(b,a)eY v
∗

(b,a)

1b,a
= eY v(b,a)v

∗

(b,a) = v(b,a)v
∗

(b,a)eY (36)

and hence

δyδ
(31)
= δdδ +

m∑
i=1

δv∗qidivpi δ

(36)
= v(b,a)v

∗

(b,a)eY deY v(b,a)v
∗

(b,a) +

m∑
i=1

eY v(b,a)v
∗

(b,a)v
∗
qi
divpiv(b,a)v

∗

(b,a)︸ ︷︷ ︸
=0 by 2(b,a)

eY

(32)
= (‖E(y)+ I‖C∗r (RoR×)/I)eY v(b,a)v

∗

(b,a)

(36)
= (‖E(y)+ I‖C∗r (RoR×)/I)δ.

Therefore this projection δ has the desired properties and satisfies conditions 1 and 2 of
the lemma. ut

To proceed, we need

Lemma 8.2.10. In the situation of the previous lemmma, the projection δ gives rise to a
properly infinite projection δ + I in the quotient C∗r (R o R×)/I.
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Proof. The projection δ is of the form δ = e
[(r+I )×I×\

⋃n
k=1(sk+Jk)×J

×

k ]
by (30). Again,

n = 0 is allowed. Now choose c ∈ R× and r1, r2 ∈ R such that

(∗c) c is not invertible and c lies in 1+
⋂n
k=1 Jk (or 1+ I if n = 0),

(∗r ) r1, r2 lie in
⋂n
k=1 Jk (or I if n = 0) but r1 + cR 6= r2 + cR.

This is possible because by our assumption that R is a Dedekind domain with infinitely
many pairwise distinct prime ideals, we can first find an element c ∈ R× satisfying
(∗c) using strong approximation (compare [Bour, Chapitre VII, §2.4, Proposition 2]).
Then, as (∗c) implies that cR and

⋂n
k=1 Jk (or I for n = 0) are coprime, the Chinese

Remainder Theorem tells us that we can find elements r1 and r2 in R satisfying (∗r ).
Then, by analogous computations to those in the proof of the previous lemma, (∗c) and
(∗r ) imply

v(ri ,c)δ = δv(ri ,c) for i = 1, 2. (37)

Set δi = v(ri ,c)δv
∗

(ri ,c)
for i = 1, 2. Then we certainly have δi ∼ δ for i = 1, 2, where

∼ stands for “Murray–von Neumann equivalent”. Moreover, for i = 1, 2, we obtain

δi = v(ri ,c)δv
∗

(ri ,c)

(37)
= δv(ri ,c)v

∗

(ri ,c)
≤ δ.

And finally,

δ1δ2 = v(r1,c)δv
∗

(r1,d)
v(r2,c)δv

∗

(r2,c)

(37)
= δv(r1,c)v

∗

(r1,d)
v(r2,c)v

∗

(r2,c)
δ

= δe(r1+cR)×(cR)×e(r2+cR)×(cR)×δ

= δe[((r1+cR)×(cR)×)∩((r2+cR)×(cR)×)]δ = 0

as r1 + cR 6= r2 + cR by (∗r ). As δ + I is a non-zero projection in C∗r (R o R×)/I by
condition 1 in Lemma 8.2.9, this proves our claim. ut

With these preparations, we are ready for

Proof of Theorem 8.2.4. Let R be a Dedekind domain with infinitely many pairwise dis-
tinct prime ideals. By [Pas-Rør, Proposition 2.11], we have to prove that every non-zero
hereditary sub-C*-algebra in any quotient of C∗r (RoR×) contains an infinite projection.
Let I be an ideal of C∗r (RoR×). It suffices to show that every hereditary sub-C*-algebra
of C∗r (R o R×)/I of the form

(z+ I)(C∗r (R o R×)/I)(z+ I)

for some z ∈ C∗r (R o R×)+ \ I contains an infinite projection because every non-zero
hereditary sub-C*-algebra of C∗r (R o R×)/I contains a subalgebra of that form.

First of all, z /∈ I implies E(z) /∈ I by Corollary 8.2.8. As ∗-alg({vp : p ∈ R o R×})
is dense in C∗r (R o R×), there exists a positive element y in ∗-alg({vp : p ∈ R o R×})
such that

‖z− y‖ < 1
3‖E(z)+ I‖C∗r (RoR×)/I.
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It follows that

‖E(z)− E(y)+ I‖C∗r (RoR×)/I ≤ ‖E(z)− E(y)‖ ≤ ‖z− y‖

< 1
3‖E(z)+ I‖C∗r (RoR×)/I,

so that
‖E(y)+ I‖C∗r (RoR×)/I >

2
3‖E(z)+ I‖C∗r (RoR×)/I > 0. (38)

This implies that E(y) does not lie in I and hence, by Corollary 8.2.8, y does not lie in I.
By Lemmas 8.2.9 and 8.2.10, there exists a projection δ in C∗r (R o R×) such that δ + I
is a properly infinite projection in C∗r (R o R×)/I and

δyδ = (‖E(y)+ I‖C∗r (RoR×)/I)δ. (39)

We get

‖δzδ − δyδ + I‖C∗r (RoR×)/I ≤ ‖δ‖ ‖z− y‖ ‖δ‖ <
1
3‖E(z)+ I‖C∗r (RoR×)/I

and(
δyδ − 1

3‖E(z)+ I‖C∗r (RoR×)/I
)
+

(39)
=
(
(‖E(y)+ I‖C∗r (RoR×)/I)δ −

1
3‖E(z)+ I‖C∗r (RoR×)/I

)
+

=
(
‖E(y)+ I‖C∗r (RoR×)/I −

1
3‖E(z)+ I‖C∗r (RoR×)/I

)︸ ︷︷ ︸
=:C

δ

with C > 1
3‖E(z) + I‖C∗r (RoR×)/I > 0 by (38). In this situation, by Lemma 2.2 in

[Kir-Rør2] (applied to A = C∗r (R o R×)/I, a = δyδ + I, b = δzδ + I and ε =
1
3‖E(z)+I‖C∗r (RoR×)/I), there exists x′ ∈ C∗r (RoR×)/I with Cδ+I = x′(δzδ+I)x′∗.
Now set x := C−1/2x′(δ + I). Then δ + I = x(z+ I)x∗ is a properly infinite projection
(see Lemma 8.2.10). We conclude that

(z+ I)1/2x∗x(z+ I)1/2

is a projection in
(z+ I)(C∗r (R o R×)/I)(z+ I)

which is Murray–von Neumann equivalent to δ + I, hence properly infinite itself. ut

Combining Theorems 8.2.1 and 8.2.4 with the K-theoretic results for ring C*-algebras
from [Cu-Li] and [Li-Lü], we obtain

Corollary 8.2.11. For every ring of integers R in a number field, the semigroup C*-
algebra C∗r (RoR×) is purely infinite, has the ideal property but does not have real rank
zero.
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Proof. Let R be the ring of integers in a number field. Comparing universal proper-
ties, it is clear that the ring C*-algebra A[R] of R is a quotient of the semigroup C*-
algebra C∗(R o R×) of the ax + b-semigroup over R. Thus A[R] is also a quotient of
C∗r (R o R×). We have proven in [Cu-Li] and [Li-Lü] that K0(A[R]) cannot be finitely
generated, whereas it follows from Theorem 8.2.1 thatK0(C

∗
r (RoR×)) is finitely gener-

ated. Hence the quotient map fromC∗r (RoR×) to A[R] cannot be surjective onK0. In the
language of [Pas-Rør], this means that C∗r (R o R×) is not K0-liftable. As we have seen
in Theorem 8.2.4 that C∗r (R o R×) is purely infinite, Theorem 4.2 in [Pas-Rør] implies
that C∗r (R o R×) cannot have real rank zero. This shows the last part of our assertion.
The first part follows from Theorem 8.2.4. ut

Remark. For a cancellative semigroup, we do not only have the left regular representa-
tion, but also the right regular one. For groups, the C*-algebras generated by these rep-
resentations are isomorphic due to invertibility of the group elements. But for a genuine
(and let us say non-abelian) semigroup, the left and right regular representations generate
in general different C*-algebras. For our present piece of work, the C*-algebra generated
by the left regular representation of the ax + b-semigroup over the ring of integers of a
number field was the motivating example. A natural question would be:

What about the C*-algebra generated by the right regular representation of such an
ax + b-semigroup?

It turns out that although the C*-algebras for the left and right regular representations
of such semigroups are quite different (the one for the right regular representation is
not purely infinite), their K-theoretic invariants do coincide. In a forthcoming paper, the
authors plan to discuss the C*-algebras of the right regular representations of such ax+b-
semigroups in a general context.
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