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Abstract. We describe unicorn paths in the arc graph and show that they form 1-slim triangles and
are invariant under taking subpaths. We deduce that all arc graphs are 7-hyperbolic. Considering
the same paths in the arc and curve graph, this also shows that all curve graphs are 17-hyperbolic,
including closed surfaces.
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1. Introduction

The curve graph C(S) of a compact oriented surface S is the graph whose vertex set is the
set of homotopy classes of essential simple closed curves and whose edges correspond to
disjoint curves. This graph has turned out to be a fruitful tool in the study of both mapping
class groups of surfaces and of hyperbolic 3-manifolds. In particular, the curve graph was
a crucial element in the proof of the ending lamination conjecture [Min10, BCM12], the
rank conjecture for the mapping class group [BM08,Ham05], and quasi-isometric rigidity
of the mapping class group [BKMM12, Ham05].

One prominent feature is that C(S) is a Gromov hyperbolic space (when one endows
each edge with length 1), as was proven by Masur and Minsky [MM99]. The main result
of this paper is to give a new (short and self-contained) proof with a low uniform constant:

Theorem 1.1. If C(S) is connected, then it is 17-hyperbolic.

Here, we say that a connected graph 0 is k-hyperbolic if all of its triangles formed by
geodesic edge-paths are k-centred. A triangle is k-centred at a vertex c ∈ 0(0) if c is at
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distance ≤ k from each of its three sides. This notion of hyperbolicity is equivalent (up to
a linear change in the constant) to the usual slim-triangle condition [ABC+91].

After Masur and Minsky’s original proof, several other proofs for the hyperbolicity of
C(S) were given. Bowditch [Bow06] proved that k can be chosen to grow logarithmically
with the complexity of S. A different proof of hyperbolicity was given by Hamenstädt
[Ham07]. Recently, Aougab [Aou13], Bowditch [Bow14], and Clay, Rafi and Schleimer
[CRS14] have proved, independently, that k can be chosen independent of S.

Our proof of Theorem 1.1 is based on a careful study of Hatcher’s surgery paths
in the arc graph A(S) [Hat91]. The key point is that these paths form 1-slim triangles
(Section 3), which follows from viewing surgered arcs as unicorn arcs1 introduced as one-
corner arcs in [HOP14]. We then use a hyperbolicity argument of Hamenstädt [Ham07],
which provides a better constant than a similar criterion due to Masur and Schleimer
[MS13, Thm. 3.15], [Bow06, Prop. 3.1]. This gives rise to uniform hyperbolicity of the
arc graph (Section 4) and then also of the curve graph (Section 5). Thus, we also prove:

Theorem 1.2. A(S) is 7-hyperbolic.

The arc graph was proven to be hyperbolic by Masur and Schleimer [MS13], and recently
another proof has been given by Hilion and Horbez [HH12]. Uniform hyperbolicity, how-
ever, was not known.

We note that the Gromov boundary of the curve graph was identified by Klarreich
as the ending lamination space [Kla99]. A sequence of papers studying its topology
[LS09, LMS11, Gab09, HP11] culminated in Gabai proving that for punctured spheres
the boundary is the Nöbeling space [Gab14].

2. Preliminaries

Let S be a compact oriented topological surface. We consider arcs on S that are properly
embedded and essential, i.e. not homotopic into ∂S. We also consider embedded closed
curves on S that are not homotopic to a point or into ∂S. The arc and curve graph AC(S)
is the graph whose vertex set AC(0)(S) is the set of homotopy classes of arcs and curves
on (S, ∂S). Two vertices are connected by an edge in AC(S) if the corresponding arcs or
curves can be realised disjointly. The arc graph A(S) is the subgraph of AC(S) induced
on the vertices that are homotopy classes of arcs. Similarly, the curve graph C(S) is the
subgraph of AC(S) induced on the vertices that are homotopy classes of curves.

Let a and b be two arcs on S. We say that a and b are in minimal position if the
number of intersections between a and b is minimal in the homotopy classes of a and b.
It is well known that this is equivalent to a and b being transverse and having no discs in
S − (a ∪ b) bounded by a subarc of a and a subarc of b (bigons) or bounded by a subarc
of a, a subarc of b and a subarc of ∂S (half-bigons).

1 Uni stands for one, and corn abbreviates corner.
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3. Unicorn paths

We now describe Hatcher’s surgery paths [Hat91] in the guise of unicorn paths.

Definition 3.1. Let a and b be arcs in minimal position. Choose endpoints α of a and β
of b. Let a′ ⊂ a and b′ ⊂ b be subarcs with endpoints α, β and a common endpoint π in
a ∩ b. Assume that a′ ∪ b′ is an embedded arc. Since a, b were in minimal position, the
arc a′∪b′ is essential. We say that a′∪b′ is a unicorn arc obtained from aα, bβ . Note that
it is uniquely determined by π , although not all π ∈ a ∩ b determine unicorn arcs, since
the components of a − π, b − π containing α, β might intersect outside π .

We linearly order unicorn arcs obtained from aα, bβ so that a′ ∪ b′ ≤ a′′ ∪ b′′ if
and only if a′′ ⊂ a′ (equivalently b′ ⊂ b′′). Denote by (c1, . . . , cn−1) the ordered set of
unicorn arcs. The sequence P(aα, bβ) = (a = c0, c1, . . . , cn−1, cn = b) is called the
unicorn path between aα and bβ .

The homotopy classes of ci do not depend on the choice of representatives of the homo-
topy classes of a and b.

Remark 3.2. Consecutive arcs of the unicorn path represent adjacent vertices in the arc
graph. Indeed, suppose ci = a′ ∪ b′ with 2 ≤ i ≤ n − 1 and let π ′ be the first point
on a − a′ after π that lies on b′. Then π ′ determines a unicorn arc. By definition of π ′,
this arc is ci−1. Moreover, it can be homotoped off ci , as desired. The fact that c0c1 and
cn−1cn form edges follows similarly.

We now show the key 1-slim triangle lemma.

Lemma 3.3. Suppose that we have arcs with endpoints aα, bβ , dδ , mutually in minimal
position. Then for every c ∈ P(aα, bβ), there is c∗ ∈ P(aα, dδ) ∪ P(dδ, bβ) such that
c, c∗ represent adjacent vertices in A(S).
Proof. If c = a′ ∪ b′ is disjoint from d , then there is nothing to prove. Otherwise, let
d ′ ⊂ d be the maximal subarc with endpoint δ and with interior disjoint from c. Let
σ ∈ c be the other endpoint of d ′. One of the two subarcs into which σ divides c is
contained in a′ or b′. Without loss of generality, assume that it is contained in a′, and
denote it by a′′. Then c∗ = a′′ ∪ d ′ ∈ P(aα, dδ). Moreover, c∗ and c represent adjacent
vertices in A(S), as desired. ut

Note that we did not care whether c was in minimal position with d or not. A slight
enhancement shows that the triangles are 1-centred:

Lemma 3.4. Suppose that we have arcs with endpoints aα, bβ , dδ , mutually in mini-
mal position. Then there are pairwise adjacent vertices on P(aα, bβ), P(aα, dδ) and
P(dδ, bβ).
Proof. If two of a, b, d are disjoint, then there is nothing to prove. Otherwise for unicorn
arcs ci = a′ ∪ b′, ci+1 = a

′′
∪ b′′ let π, σ be their intersection points with d closest to δ

along d. There is 0 ≤ i < n such that π ∈ a′, σ ∈ b′′. Without loss of generality assume
that π is not farther than σ from δ. Let π ′ be the intersection point of a with the subarc
δσ ⊂ d that is closest to α along a. Then ci+1, the unicorn arc obtained from dδ, bβ

determined by σ , and the unicorn arc obtained from aα, dδ determined by π ′, represent
three adjacent vertices in A(S). See Figure 1. ut
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Fig. 1. The three required arcs in Lemma 3.4, dotted and homotoped off a, b, d .

We now prove that unicorn paths are invariant under taking subpaths, up to one exception.

Lemma 3.5. For every 0 ≤ i < j ≤ n, either P(cαi , c
β
j ) is a subpath of P(aα, bβ), or

j = i + 2 and ci, cj represent adjacent vertices of A(S).

Before we give the proof, we need the following.

Sublemma 3.6. Let c = cn−1, which means that c = a′ ∪ b′ with the interior of a′

disjoint from b. Let c̃ be the arc homotopic to c obtained by homotopying a′ slightly off a
so that a′ ∩ c̃ = ∅. Then either c̃ and a are in minimal position, or they bound exactly one
half-bigon, shown in Figure 2. In that case, after homotopying c̃ through that half-bigon
to c̄, the arcs c̄ and a are already in minimal position.

Proof. Let α̃ be the endpoint of c̃ corresponding to α in c. The arcs c̃ and a cannot bound
a bigon, since then b and a would bound a bigon, contradicting minimal position. Hence
if c̃ and a are not in minimal position, then they bound a half-bigon c̃′a′′, where c̃′ ⊂ c̃,
a′′ ⊂ a. Let π ′ = c̃′ ∩ a′′. The subarc c̃′ contains α̃, since otherwise a and b would
bound a half-bigon. Since the interior of a′ is disjoint from b, by minimal position of
a and b the interior of a′′ is also disjoint from b. In particular, a′′ does not contain α,
since otherwise a′ ( a′′ and π would lie in the interior of a′′. Moreover, π and π ′ are
consecutive intersection points with a on b (see Figure 2).

∂S

b

a a

π π ′

c̃ c̄

a′ a′′

α

Fig. 2. The only possible half-bigon between c̃ and a.
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Let b′′ be the component of b − π ′ containing β. Let c̄ be obtained from a′′ ∪ b′′ by
homotopying it off a′′. Applying to c̄ the same argument as to c̃, but with the endpoints of
a interchanged, we see that either c̄ is in minimal position with a or there is a half-bigon
c̄′a′′′, where c̄′ ⊂ c̄, a′′′ ⊂ a. But in the latter case we have α ∈ a′′′, which implies
a′ ( a′′′, contradicting the fact that the interior of a′′′ should be disjoint from b. ut

Proof of Lemma 3.5. We can assume i = 0, so that ci = a, and j = n − 1, so that
cj = a′ ∪ b′, where a′ intersects b only at its endpoint π distinct from α. Let c̃ be
obtained from c = cj as in Sublemma 3.6. If c̃ is in minimal position with a, then points
in (a∩b)−π determining unicorn arcs obtained from aα, bβ determine the same unicorn
arcs obtained from aα, c̃β , and exhaust them all, so we are done.

∂S

π π ′

α

β

c1

c̄
∂Sa′

b′′

a∗

Fig. 3. Since π ′ is the last intersection point with b on a, the unicorn arc a∗ ∪ b′′ is first in the
order.

Otherwise, let c̄ be the arc from Sublemma 3.6 homotopic to c and in minimal position
with a. The points (a ∩ b) − π − π ′ determining unicorn arcs obtained from aα, bβ

determine the same unicorn arcs obtained from aα, c̄β . Let a∗ = a − a′′. If π ′ does
not determine a unicorn arc obtained from aα, bβ , i.e. if a∗ and b′′ intersect outside π ′,
then we are done as in the previous case. Otherwise, a∗ ∪ b′′ = c1, since it is minimal
in the order on the unicorn arcs obtained from aα, bβ . See Figure 3. Moreover, since the
subarc ππ ′ of a lies in a∗, its interior is disjoint from b′′, hence also from b′. Thus a∗∪b′′

precedes c in the order on the unicorn arcs obtained from aα, bβ , which means that j = 2,
as desired. ut

4. Arc graphs are hyperbolic

Definition 4.1. To a pair of vertices a, b of A(S) we assign the following family P(a, b)
of unicorn paths. Slightly abusing the notation we realise them as arcs a, b on S in mini-
mal position. If a, b are disjoint, then let P(a, b) consist of a single path (a, b). Otherwise,
let α+, α− be the endpoints of a and let β+, β− be the endpoints of b. Define P(a, b) as
the set of four unicorn paths: P(aα+ , bβ+),P(aα+ , bβ−),P(aα− , bβ+), and P(aα− , bβ−).

The proof of the next proposition follows along the lines of [Ham07, Prop. 3.5] (or [BH99,
Thm. III.H.1.7]). See also [MS13, Thm. 3.15], [Bow14, Prop. 3.1] for a similar criterion
for hyperbolicity.
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Proposition 4.2. Let G be a geodesic in A(S) between vertices a, b. Then any vertex
c ∈ P ∈ P(a, b) is at distance ≤ 6 from G.

In the proof we need the following lemma, which is immediately obtained by applying
Lemma 3.3 k times.

Lemma 4.3. Let x0, . . . , xm with m ≤ 2k be a sequence of vertices in A(S). Then for
any c ∈ P ∈ P(x0, xm) there is 0 ≤ i < m with c∗ ∈ P∗ ∈ P(xi, xi+1) at distance ≤ k
from c.

Proof of Proposition 4.2. Let c ∈ P ∈ P(a, b) be at maximal distance k from G. Assume
k > 1. Consider the maximal subpath P ′ ⊂ P containing c with endpoints a′, b′ at
distance ≤ 2k from c. Consequently, either |c, a′| = 2k or a′ = a, and similarly either
|c, b′| = 2k or b′ = b. By Lemma 3.5 we have P ′ ∈ P(a′, b′). Let a′′, b′′ ∈ G be closest
to a′, b′. Thus |a′′, a′| ≤ k, |b′′, b′| ≤ k, and in the case where a′ = a or b′ = b, we have
a′′ = a or b′′ = b as well. Hence |a′′, b′′| ≤ 6k. Consider the concatenation of a′′b′′ with
any geodesic paths a′a′′, b′′b′. Denote the consecutive vertices of that concatenation by
x0, . . . , xm, where m ≤ 8k. By Lemma 4.3 applied to c ∈ P ′, the vertex c is at distance
≤ dlog2 8ke from some xi . If xi /∈ G, say xi ∈ a′a′′, then |c, xi | ≥ |c, a′| − |a′, xi | ≥ k,
so that dlog2 8ke ≥ k. Otherwise if xi ∈ G, then we also have dlog2 8ke ≥ k, this time by
the definition of k. This gives k ≤ 6. ut

Proof of Theorem 1.2. Let abd be a triangle in A(S) formed by geodesic edge-paths.
By Lemma 3.4, there are pairwise adjacent vertices cab, cad , cdb on some paths in
P(a, b), P (a, d), P (b, d). We now apply Proposition 4.2 to cab, cad , cdb, finding ver-
tices on ab, ad, bd at distance≤ 6 from cab, cad , cdb, respectively. Thus abd is 7-centred
at cab. ut

5. Curve graphs are hyperbolic

In this section let |·, ·| denote the combinatorial distance in AC(S) instead of in A(S).

Remark 5.1 ([MM00, Lem 2.2]). Suppose that C(S) is connected and hence S is not the
four holed sphere or the once holed torus. Consider a retraction r : AC(0)(S) → C(0)(S)
assigning to each arc a boundary component of a regular neighbourhood of its union with
∂S. We claim that r is 2-Lipschitz. If S is not the twice holed torus, the claim follows
from the fact that a pair of disjoint arcs does not fill S. Otherwise, assume that a, b are
disjoint arcs filling the twice holed torus S. Then the endpoints of a, b are all on the
same component of ∂S and r(a), r(b) is a pair of curves intersecting once. Hence the
complement of r(a) and r(b) is a twice holed disc, so that r(a), r(b) are at distance 2 in
C(S) and the claim follows.

Moreover, if b is a curve in AC(0)(S) adjacent to an arc a, then b is adjacent to r(a)
as well. Thus the distance in C(S) between two nonadjacent vertices c, c′ does not exceed
2|c, c′|−2. Consequently, a geodesic in C(S) is a 2-quasigeodesic in AC(S). Here we say
that an edge-path with vertices (ci)i is a 2-quasigeodesic if |i − j | ≤ 2|ci, cj |.
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Proof of Theorem 1.1. We first assume that S has nonempty boundary. Let T = abd be
a triangle in the curve graph formed by geodesic edge-paths. By Remark 5.1, the sides
of T are 2-quasigeodesics in AC(S). Choose arcs ā, b̄, d̄ ∈ AC(0)(S) that are adjacent to
a, b, d , respectively.

Let k be the maximal distance from any vertex c̄ ∈ P ∈ P(āb̄) to the side G = ab.
Assume k > 2. As in the proof of Proposition 4.2, consider the maximal subpath a′b′ ⊂ P
containing c̄ with a′, b′ at distance ≤ 2k from c̄. Let a′′, b′′ ∈ G be closest to a′, b′, so
that |a′′, b′′| ≤ 6k. Consider the concatenation (xi)mi=0 of a′′b′′ with any geodesic paths
a′a′′, b′′b′ in AC(S). Since a′′b′′ is a 2-quasigeodesic, we havem ≤ 2k+2|a′′, b′′| = 14k.
For i = 0, . . . , m − 1 let x̄i ∈ AC(0)(S) be an arc adjacent (or equal) to both xi and
xi+1. Note that then all paths in P(x̄i, x̄i+1) are at distance 1 from xi+1. By Lemmas 3.5
and 4.3, the vertex c̄ is at distance ≤ dlog2 14ke from a path in some P(x̄i, x̄i+1). Hence
dlog2 14ke + 1 ≥ k. This gives k ≤ 8.

By Lemma 3.4, there are pairwise adjacent vertices on some paths in P(ā, b̄),
P(ā, d̄), and P(b̄, d̄). Let c̄ be one of these vertices. Then c̄ is at distance ≤ 9 from
all the sides of T in AC(S). Consider the curve c = r(c̄) adjacent to c̄, where r is the
retraction from Remark 5.1. Then T considered as a triangle in C(S) is 17-centred at c,
by Remark 5.1. Hence C(S) is 17-hyperbolic for ∂S 6= ∅.

The curve graph C(S) of a closed surface (if connected) is known to be a 1-Lipschitz
retract of the curve graph C(S′), where S′ is the once punctured S [Har86, Lem. 3.6],
[RS11, Thm. 1.2]. The retraction is the puncture forgetting map. A section C(S)→ C(S′)
can be constructed by choosing a hyperbolic metric on S, realising curves as geodesics
and then adding a puncture outside the union of the curves. Hence C(S) is 17-hyperbolic
as well. ut
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the Nöbeling curve. J. London Math. Soc. (2) 84, 103–119 (2011) Zbl 1246.57033
MR 2819692

[HH12] Hilion, A., Horbez, C.: The hyperbolicity of the sphere complex via surgery paths.
J. Reine Angew. Math. (2015) (online); arXiv:1210.6183 (2012)

[Kla99] Klarreich, E.: The boundary at infinity of the curve complex. http://www.
ericaklarreich.com/research.html (1999)

[LMS11] Leininger, C. J., Mj, M., Schleimer, S.: The universal Cannon–Thurston map and
the boundary of the curve complex. Comment. Math. Helv. 86, 769–816 (2011)
Zbl 1248.57003 MR 2851869

[LS09] Leininger, C. J., Schleimer, S.: Connectivity of the space of ending laminations. Duke
Math. J. 150, 533–575 (2009) Zbl 1190.57013 MR 2582104

[MM99] Masur, H. A., Minsky, Y. N.: Geometry of the complex of curves. I. Hyperbolicity.
Invent. Math. 138, 103–149 (1999) Zbl 0941.32012 MR 1714338

[MM00] Masur, H. A., Minsky, Y. N.: Geometry of the complex of curves. II. Hierarchical
structure. Geom. Funct. Anal. 10, 902–974 (2000) Zbl 0972.32011 MR 1791145

[MS13] Masur, H., Schleimer, S.: The geometry of the disk complex. J. Amer. Math. Soc. 26,
1–62 (2013) Zbl 1272.57015 MR 2983005

[Min10] Minsky, Y.: The classification of Kleinian surface groups. I. Models and bounds. Ann.
of Math. (2) 171, 1–107 (2010) Zbl 1193.30063 MR 2630036

[RS11] Rafi, K., Schleimer, S.: Curve complexes are rigid. Duke Math. J. 158, 225–246 (2011)
Zbl 1227.57024 MR 2805069

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0988.53001&format=complete
http://www.ams.org/mathscinet-getitem?mr=1744486
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1253.57009&format=complete
http://www.ams.org/mathscinet-getitem?mr=2925381
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:06390552&format=complete
http://www.ams.org/mathscinet-getitem?mr=3302964
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1165.57015&format=complete
http://www.ams.org/mathscinet-getitem?mr=2470969
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:06378488&format=complete
http://www.ams.org/mathscinet-getitem?mr=3285223
http://arxiv.org/abs/math/0512429
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1162.32010&format=complete
http://www.ams.org/mathscinet-getitem?mr=2349677
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0592.57009&format=complete
http://www.ams.org/mathscinet-getitem?mr=0830043
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0727.57012&format=complete
http://www.ams.org/mathscinet-getitem?mr=1123262
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:06356606&format=complete
http://www.ams.org/mathscinet-getitem?mr=3268774
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1246.57033&format=complete
http://www.ams.org/mathscinet-getitem?mr=2819692
http://arxiv.org/abs/1210.6183
http://www.ericaklarreich.com/research.html
http://www.ericaklarreich.com/research.html
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1248.57003&format=complete
http://www.ams.org/mathscinet-getitem?mr=2851869
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1190.57013&format=complete
http://www.ams.org/mathscinet-getitem?mr=2582104
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0941.32012&format=complete
http://www.ams.org/mathscinet-getitem?mr=1714338
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0972.32011&format=complete
http://www.ams.org/mathscinet-getitem?mr=1791145
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1272.57015&format=complete
http://www.ams.org/mathscinet-getitem?mr=2983005
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1193.30063&format=complete
http://www.ams.org/mathscinet-getitem?mr=2630036
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1227.57024&format=complete
http://www.ams.org/mathscinet-getitem?mr=2805069

	Introduction
	Preliminaries
	Unicorn paths
	Arc graphs are hyperbolic
	Curve graphs are hyperbolic
	References

