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Abstract. Equivariant tree models are statistical models used in the reconstruction of phylogenetic
trees from genetic data. Here equivariant refers to a symmetry group imposed on the root distribu-
tion and on the transition matrices in the model. We prove that if that symmetry group is Abelian,
then the Zariski closures of these models are defined by polynomial equations of bounded degree,
independent of the tree. Moreover, we show that there exists a polynomial-time membership test for
that Zariski closure. This generalises earlier results on tensors of bounded rank, which correspond
to the case where the group is trivial and the tree is a star, and implies a qualitative variant of a
quantitative conjecture by Sturmfels and Sullivant in the case where the group and the alphabet
coincide. Our proofs exploit the symmetries of an infinite-dimensional projective limit of Abelian
star models.

Keywords. Phylogenetic tree models, tensor rank, noetherianity up to symmetry, applied algebraic
geometry

1. Introduction

Tree models are families of probability distributions used in modelling the evolution of
a number of extant species from a common ancestor. Here species can refer to actual
biological species, but tree models have also been applied to other forms of evolution,
e.g. of languages. The hypothesis underlying tree models is that DNA-sequences of those
extant species, arranged and suitably aligned in a table with one row for each species, can
be meaningfully read off column-wise. Indeed, these columns (or sites) are assumed to be
independent draws from one and the same probability distribution belonging to the model.

To describe that model, one fixes a finite rooted tree T whose leaves correspond to
the species and whose root r corresponds to the common ancestor. One also fixes a finite
alphabet B. The case where B = {A,C,G, T } is the alphabet of nucleotides is of most
interest in biology, but the theory developed here works for arbitrary finite B. Associated
to each vertex of the tree is a copy of B. To r one attaches a probability distribution π
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on B, and to each edge q → q ′, directed away from r , one attaches a B × B-matrix Aqq ′
of real nonnegative numbers whose row sums equal 1. Its entry Aqq ′(b, b′) at position
(b, b′) records the probability that the letter b at vertex q mutates into the letter b′ at
vertex q ′. The random process modelling evolution of the nucleotide at a single position
consists of drawing a letter b ∈ B from the distribution π and mutating it along the edges
with the probabilities given by the matricesAqq ′ . The probability that this leads to a given
word b ∈ B leaf(T ) equals

P(b) =
∑

b′∈Bvert(T ) extending b

π(b′r) ·
∏

q→q ′∈edge(T )

Aqq ′(b
′
q , b
′

q ′).

Now as the root distribution π and the transition matrices Aqq ′ vary, the set of all prob-
ability distributions P ∈ R(B leaf(T )) thus obtained is called the model. The fact that the
entries of P are polynomial functions of the parameters has led to an extensive study of
the algebraic variety swept out by this parameterisation, by which we mean the Zariski
closure in R(B leaf(T )) (or even C(B leaf(T ))) of the model [PS05, Chapter 4]; see also the
expository paper [Cip07]. The present paper also concerns that Zariski closure.

The model without further restrictions on the root distributions π or the transition ma-
trices Aqq ′ is known as the general Markov model for the tree T and the alphabet B. In
applications the number of parameters is often reduced by imposing further symmetry, re-
flecting additional biological (or, say, linguistic) structure. This is often1 done by choosing
a finite group G acting by permutations on the set B, requiring that π be a G-invariant
distribution (which when G acts transitively means that it is the uniform distribution),
and requiring that each transition matrix Aqq ′ satisfies Aqq ′(gb, gb′) = Aqq ′(b, b

′) for
all letters b, b′ ∈ B. The resulting model, which is a subset of R(B leaf(T )) contained in
the general Markov model, has been dubbed the equivariant tree model for the triple
(T , B,G) [DK09]; here we implicitly mean that the action of G on B is also fixed. The
special case where G is Abelian and B = G with the left action of G on itself is called
a group-based model. Our first two main theorems concern the class of equivariant tree
models for which G is Abelian, but does not necessarily act transitively on B. This class
includes the general Markov model (with G = {1}) as well as group-based models.

Theorem 1.1 (Main Theorem I). For any action of an Abelian group G on a finite al-
phabet B, there exists a uniform bound D = D(B,G) such that for any finite tree T
the Zariski closure of the equivariant tree model for (T , B,G) is defined by polynomial
equations of degree at most D.

In fact, we will prove the stronger statement that finitely many types of equations suffice
to define the Zariski closures of the equivariant tree models for all T . For the general
Markov model, this result first appeared in [DK14]. For group-based models, where the
Zariski closure of (the cone over) the tree model for (T , B,G) is a toric variety, a much

1 But not always! Most notably, the general time-reversible Markov model, where the only re-
striction on the transition matrices is that they be symmetric, is not of this form for |B| > 2. We
have not tried to generalise our results to this case.
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stronger conjecture was put forward in [SS05], namely, that for any tree T the ideal of
that toric variety is generated by binomials of degree at most |G|. This would imply that
D(B,G) = |G| suffices when G acts transitively on B. Our result is weaker in that
we do not prove the existence of a degree bound for polynomials generating the ideal—
our result is set-theoretic rather than ideal-theoretic—and that we do not find an explicit
bound. Nevertheless, Main Theorem I is the first general finiteness result even for the
restricted class of group-based models, though for group-based models more recent work
by Michałek [Mic13] gives finiteness results at the level of projective schemes, which are
somewhere between set-theoretic and ideal-theoretic results.

Theorem 1.2 (Main Theorem II). For any action of a finite groupG on a finite alphabet
B, there exists a polynomial-time algorithm that, on input a tree T and a probability
distribution P on B leaf(T ), determines if P lies in the Zariski closure of the equivariant
tree model for (T , B,G).

We hasten to say that our proofs are nonconstructive. In particular, they do not yield an
explicit bound D(B,G) and they do not give an explicit algorithm—though the over-
all structure of that algorithm is clear (see Section 6). This situation is reminiscent
of Robertson–Seymour’s nonconstructive proof that any minor-closed property of finite
graphs can be tested in polynomial time [RS95, RS04]. In Main Theorem II, the notion of
polynomial-time algorithm depends on the (machine) representation of the entries of P .
If they are rational numbers, then we mean polynomial-time in the bit-size of P (in a
nonsparse representation, i.e., zero entries count). If they are abstract real numbers, then
we mean a Blum–Shub–Smale machine [BSS89] whose number of arithmetic operations
on real numbers is bounded by some polynomial in |B||leaf(T )|.

Our Main Theorems I and II do not require that the trees T be trivalent. Indeed, for
the class of trivalent trees, or indeed for the class of trees with any fixed upper bound on
the valency of internal vertices, Main Theorems I and II are relatively easy consequences
of known results from [AR08, CS05, SS05, DK09], which express the ideal of equations
of an equivariant tree model in terms of ideals of equivariant tree models of star trees.
Bounding the degree of polynomial equations for large star models and the complexity of
testing membership of their Zariski closures is the real challenge in this paper. We stress
that this leaves open the question of actually finding (practical) algorithms for testing
membership of (Zariski closures of) tree models. Our results should be interpreted as a
theoretical contribution to the algebraic statistics of tree models.

However, we do believe that some of the techniques that go into the proofs of our Main
Theorems I and II can be of practical use. In particular, one crucial observation in our
proofs is the following. Consider the equivariant star model for the triple (T ,G,B), where
T is a star and where G need not be Abelian. Label the leaves of T with 0, . . . , m− 1, so
that B leaf(T ) can be identified with Bm. Fix a natural number n0 ≤ m and any probability
distributionQ on Bn0 that is invariant with respect to the diagonalG-action on Bn0 . Then
for any probability distribution P on Bm we can define a probability distribution PQ
on Bm−n0 by

PQ(b) =
∑

b′∈Bn0 P(b,b′)Q(b′)
Z
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where P(b,b′) is the probability of observing b at positions 0, . . . , m− n0 − 1 and b′ at
positions m − n0, . . . , m − 1. Here Z is a normalising factor, and a condition for this to
be well-defined is that Z is nonzero. Let T ′ be the tree obtained from T by deleting the
last n0 leaves. Our elementary but useful observation is that, for any fixed G-invariant Q,
the (partially defined) map P 7→ PQ maps the equivariant model for (T ,G,B) into the
equivariant model for (T ′,G,B). As a consequence, equations for the latter model pull
back to equations for the former model, and a necessary condition for P to be in (the
Zariski closure of) the former model is that for all G-invariant Q the distribution PQ lies
in the latter model.

In the course of proving Main Theorems I and II we show that for some suitable n0,
chosen after fixingG and its action on B, and for some suitably chosen set ofG-invariant
probability distributionsQ on Bn0 , the converse also holds: if a probability distribution P
on Bm withm� n0 has the property that PQ lies in the star model withm−n0 leaves for
all chosenQ on all cardinality-n0 subsets of the leaves, then P lies in the star model with
m leaves. We do this by constructing an infinite-dimensional limit of allm-star models for
the pair (G,B)—or rather n0 of these limits, one for each congruence class of m modulo
n0—and showing that this limit lies in some infinite-dimensional flattening variety that
is Noetherian up to its natural symmetries. This is also the technique followed in [DK14]
for the case where G = {1}; there n0 can be taken 1. We simplify some of the arguments
from that paper, but our present, more general results are more subtle since they really
require the use of jumps by some carefully chosen n0 > 1.

This paper is organised as follows. In Section 2 we briefly recall the well-known
tensorification of the set-up above (see, e.g., [AR08, DK09]) and state two theorems for
this setting. Then in Section 3 we give some properties of tensors in finite-dimensional
G-representations that will motivate the use of flattenings and our choice for n0.

In Section 4, after fixing any value for n0, we introduce an infinite-dimensional am-
bient space (again, n0 of these, one for each congruence class modulo n0), containing an
infinite-dimensional limit of the equivariant models for finite stars; we dub this the infinite
star model. In this section we define the flattening variety as well, a variety containing the
infinite star model. This variety is defined by determinantal equations of bounded degree,
roughly corresponding to the coarser star models where the leaves of a tree are partitioned
into two subsets. We prove that the flattening variety is defined by finitely many orbits of
determinantal equations under the natural symmetry group of the infinite tree model. Then
in Section 5 we prove that the flattening variety is Noetherian under this symmetry group.
Finally, our main theorems are derived from this in Section 6, and it is only here that we
need the infinite star model mentioned before.

We conclude this introduction with a list recording values of our uniform bound
D(B,G) that are known to us.
Binary general Markov model: Here G = {1} and B has cardinality two, and results

from [LM04] imply thatD(B,G) can be taken equal to 3; apart from linear equations
expressing that probabilities sum up to 1, the degree-3 equations are the determinantal
equations defining the flattening variety (see Section 4). The paper [Rai12] proves
the stronger statement, previously known as the GSS-conjecture [GSS05], that these
equations generate the ideal of (the cone over) the general Markov model.
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Binary Jukes–Cantor model: This is the group-based model with G = B = Z/2Z,
and results from [SS05] show that D(B,G) can be taken equal to 2. The nonlinear,
quadratic equations are determinantal equations defining the finer flattening variety
Y
≤(kχ )χ
[m] from Remark 3.7(v), and these generate the ideal of the cone over the model.

The algebra and geometry of this model for varying trees is further studied in [BW07].
Kimura 3-parameter model: This is the group-based model with G = B = Z/2Z ×

Z/2Z, and results from [Mic13] show that D(B,G) can be taken equal to 4. The
degree-4 equations were known from [SS05], where it was conjectured that they gen-
erate the ideal. The result of [Mic13] is slightly weaker than that but stronger than the
purely set-theoretic statements that we are after. The geometry of this model is also
studied in [CFS08, Mic14].

If one restricts oneself to trivalent trees, then more is known for other models as well,
such as the strand-symmetric model [CS05] or the all-important 4-state general Markov
model [AR08, FG12, BO11] or further group-based models with small groups G [SS05].

One might wonder where the restriction to Abelian G comes from; after all, tree
models for whichG is not Abelian are used in practice. At this point, before going through
the proofs, all we can say is that they break down at the point where we prove that the
infinite-dimensional flattening variety is defined by finitely many orbits of equations; see
also Remark 5.9.

Finally, a word of self-criticism is in order here: it is unclear whether the degree bound
and the algorithm from our main theorems will be useful in phylogenetic practice, even
if they are made explicit. In phylogenetic reconstruction, certain determinantal equations
coming from edges often suffice to distinguish the model for one tree from the model for
another tree (with G and B fixed) [CFS11]. On the other hand, our characterisation of
general Abelian tree models using contractions and flattenings gives more insight into the
geometry of these models, and our infinite-dimensional methods will likely apply to other
models from algebraic statistics.

2. Tensor formulation of the main results

Before we recall the tensorification of the model mentioned in the introduction, we intro-
duce notation that will be used throughout this article. Let G be a finite Abelian group.
For us, aG-representation over a fieldK will be assumed to be finite-dimensional, unless
explicitly mentioned otherwise. LetK be an infinite field such that everyG-representation
overK splits into a direct sum of one-dimensional representations. For this it suffices, for
instance, thatK is algebraically closed and that charK does not divide |G|. Form ∈ Z≥0,
set [m] := {0, . . . , m − 1}. If Vi is a G-representation over K for each i ∈ [m] and if
I ⊆ [m], then we write VI :=

⊗
i∈I Vi for the tensor product of the Vi with i ∈ I . The

rank of a tensor ω in VI is the minimal number of terms in any expression of ω as a sum
of pure tensors

⊗
i∈I vi with vi ∈ Vi . A tensor ω has border rank at most k if it lies in the

Zariski closure of the set of tensors of rank at most k.
Given anm-tuple of linear maps φi : Vi → Ui , whereUi is also a vector space overK

for each i ∈ [m], we write φ[m] :=
⊗

i∈[m] φi for the linear map V[m]→ U[m] determined
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by
⊗

i∈[m] vi 7→
⊗

i∈[m] φi(vi). Clearly rkφ[m]ω ≤ rkω for any ω ∈ V[m], and this
inequality carries over to the border rank.

If I ⊆ [m] and ξ ∈
⊗

i∈I V
∗

i , then the tensor ξ induces a linear map V[m] → V[m]−I .
We call this map the contraction along the tensor ξ ; except for a normalising factor,
it is the tensorial analogue of the map P 7→ PQ from the introduction. This map is
G-equivariant if and only if ξ is G-invariant; moreover, it does not increase the rank or
the border rank of any element of V[m]. We can now state our third main theorem.

Theorem 2.1 (Main Theorem III). For all k ∈ Z≥0 there exists M such that for all
m > M and for all G-modules Vi over K with i ∈ [m], a tensor ω ∈ V[m] has border
rank at most k if and only if for all µ ≤ M , all its contractions in m − µ factors along
G-invariant tensors have border rank at most k.

The novelty in this theorem, compared to the results in [DK14], is that it suffices to
contract along G-invariant tensors rather than general tensors, at the cost of increasing
the dimension of those tensors to be contracted with. While not strictly necessary for our
other main results, Main Theorem III illustrates the general approach taken in this paper,
which is to replace “baby steps” forG = 1 with “giant steps” for general AbelianG. Our
fourth main theorem, which generalises our first main theorem, requires a bit more work
to formulate.

Definition 2.2. A G-spaced tree is a tree T together with for each vertex q a
G-module Vq , a distinguished basis Bq of Vq such that G acts on Bq and a nondegener-
ate symmetric bilinear form (·|·)q defined by the property that Bq is an orthonormal basis
with respect to (·|·). For vertices q, q ′, we say q ∼ q ′ if and only if (q, q ′) is an edge of T .
We denote by vert(T ), int(T ), respectively leaf(T ), the set of vertices, internal vertices,
respectively leaves, of T . We define

L(T ) :=
⊗

q∈leaf(T )

Vq and R(T ) :=
⊗

q∈vert(T )

V
⊗{q ′∼q}
q .

Let T be a G-spaced tree. A G-representation of T is a collection (Aq ′q)q ′∼q of
G-invariant elements of Vq ′ ⊗ Vq such that for any q ′ ∼ q, the tensor Aq ′q maps to
Aqq ′ via the natural isomorphism Vq ′ ⊗ Vq → Vq ⊗ Vq ′ . The set of G-representations
of T is denoted repG(T ).

Note that in the set-up of the introduction, each vertex of the tree has the same space
attached; in other words, there is some G-representation V with some fixed basis B,
some fixed symmetric bilinear form (·|·) (and some fixed action of G) such that Vq = V ,
Bq = B and (·|·)q = (·|·) for any vertex q of the tree. In this setting, we can view a
probability distribution P ∈ CB leaf(T )

as an element of L(T ); namely, we can identify P
with ∑

b=(bq )q∈leaf(T )∈B leaf(T )

P(b) ·
⊗

q∈leaf(T )

bq .

This is the tensorification of the set-up of the introduction. For our purposes, we will
need to use the more flexible setting of Definition 2.2, as we will want to apply theorems
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proved in [DK09]. Usually however, it will suffice to consider trees for which each vertex
has the same space attached; see for example Lemma 6.6.

There is a canonical isomorphism repG(T ) → R(T ), defined by the embedding of
elements in the tensor product of the Vq ′ ⊗ Vq ranging over the unordered pairs of edges
{q ′ ∼ q, q ∼ q ′} into R(T ). We denote by9 (or sometimes9T to indicate which tree we
are talking about) the composition of this map with the contraction R(T )→ L(T ) along
the (G-invariant) tensor

⊗
q ′∈int(T )

∑
b∈Bq′

(b| · )⊗{q∼q
′
}.

Definition 2.3. The equivarant model CV(T ) associated to a tree T is the Zariski closure
9(repG(T )) of the image of 9.

Note the slight discrepancy with the introduction, where the term “equivariant model”
was used for the image of 9 on stochastically meaningful parameters. But the present
definition is the one used in [DK09], from which we will use some results. While there
the groupG was allowed to be arbitrary, we stress once again that in the present paper we
only consider Abelian G. We can now state our fourth main theorem.

Theorem 2.4 (Main Theorem IV). If K is algebraically closed and of characteristic
zero, then for all k ∈ Z≥0, there exists a D ∈ Z≥0 such that for each G-spaced tree T
such that |Bq | ≤ k for each q ∈ int(T ), the variety CV(T ) is defined by the vanishing of
a number of polynomials of degree at most D.

The bound D will certainly have to depend on k. For instance, if G is the trivial group,
and T is a star tree, then the variety CV(T ) is the variety of tensors of rank at most k,
and no polynomials of degree less than k + 1 vanish on this variety. Main Theorem I is
a direct corollary of this theorem; the details for passing from the case of unrooted trees
without the restriction that the row sums of transition matrices are 1 to the case of rooted
trees with that additional restriction can be found in Section 3 of [DK09].

3. Tensors and flattening

In the proofs of our main theorems, in addition to contractions, we will use a second
operation on tensors, namely, flattening. Suppose that I, J form a partition of [m] into
two parts. Then there is a natural isomorphism [ = [I,J : V[m] → VI ⊗ VJ . The image
[ω is a 2-tensor called a flattening of ω. Its rank (as a 2-tensor) is a lower bound on the
border rank of ω. The first step in our proof below is a reduction to the case where all Vi
are isomorphic as G-representations. Here, i can be viewed either as an element of [m]
(in Main Theorem III) or as an element of leaf(T ) (in Main Theorem IV).

We have the following lemma, in which K[G] stands for the regular representation
of G.

Lemma 3.1. Let m, k, n be natural numbers with n ≥ k + 1, and let V0, . . . , Vm−1 be
G-representations over K . Then a tensor ω ∈ V[m] has rank (respectively, border rank)
at most k if and only if for all m-tuples of G-linear maps φi : Vi → K[G]n the tensor
φ[m](ω) has rank (respectively, border rank) at most k.

Moreover, if ω ∈ V[m] has border rank at most k, then there exist G-linear maps
φi : Vi → K[G]k and ψi : K[G]k → Vi (i = 1, . . . , m) such that ψ[m](φ[m](ω)) = ω.
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This lemma holds at the scheme-theoretical level, but we will not need that. For G the
trivial group, the lemma reduces to [AR08, Theorem 11].

Proof. The “only if” part follows from the fact that φ[m] does not increase rank or border
rank. For the “if” part assume that ω has rank strictly larger than k, and we argue that
there exist φ0, . . . , φm−1 such that φ[m](ω) still has rank larger than k. It suffices to show
how to find φ0; the remaining φi are found in the same manner. Let U0 be the image of ω
regarded as a linear map from the dual space V ∗

[m]−{0} to V0. Set

U ′0 := K[G]U0 =
{∑
g∈G

cggu : cg ∈ K, u ∈ U0

}
.

For each irreducible G-representation χ , let kχ be the multiplicity of χ in U ′0. If kχ is at
most n for each χ , then by elementary linear algebra and the fact that K[G] is the sum
of all irreducible representations of G there exist G-linear maps φ0 : V0 → K[G]n and
ψ0 : K[G]

n
→ V0 such that ψ0 ◦ φ0 is the identity map on U ′0, and hence on U0. Set

ω′ := (φ0⊗
⊗

i>0 idVi )(ω), so that by construction ω itself equals (ψ0⊗
⊗

i>0 idVi )(ω
′).

By the discussion above, we have the inequalities rkω ≥ rkω′ ≥ rkω, so that both ranks
are equal and larger than k, and we are done. If, on the other hand, there is χ such that
kχ > n, then let φ0 : V0 → K[G]n be any G-linear map that maps the χ -component
of U ′0 surjectively onto the χ -component of K[G]n for each χ with kχ > n. Then the
image of U0 must have rank at least n. Defining ω′ as before, we find that the image
of ω′ regarded as a linear map V ∗

[m]−{0}→ K[G]n has rank at least n. In other words, the
flattening [{0},[m]−{0}ω′ has rank at least n > k. This implies that ω′ itself has rank larger
than k. A similar argument applies to border rank.

For the second part, suppose ω has border rank at most k. Note that ω viewed as a
linear map from V ∗

[m]−{0} to V0 has rank at most k (since this is a closed condition that
is satisfied by all tensors of rank at most k). Then as above, one finds there are φ0, ψ0
such that ω equals (ψ0 ⊗

⊗
i>0 idVi )((φ0 ⊗

⊗
i>0 idVm)(ω)); the second part follows by

repeatedly applying this. ut

Remark 3.2. Note that ifω isG-invariant, then allUi will beG-stable and henceUi=U ′i .
Moreover, note that we can refine Lemma 3.1 in the following way: an element ω

of V[m] has (border) rank at most k if and only if there are m-tuples of G-linear maps
φi : Vi → K[G]k and ψi : K[G]k → Vi such that ψ[m](φ[m](ω)) = ω and such that
φ[m](ω) has (border) rank at most k.

Observe that finding m-tuples of G-linear maps as required (or finding that such
m-tuples do not exist) is easily done by linear algebra. In essence, this means that the prob-
lem of finding whether the (border) rank of a tensor in some tensor product exceeds k can
be reduced to the problem of finding whether the (border) rank of a tensor in the m-fold
tensor product of the space V = K[G]k exceeds k.

Example 3.3. Consider the group G = Z/2Z = {e, g} and the 8-dimensional G-module
V0 = V1 = K[G]⊗[3]. Use shorthand notation such as [eeg] := e ⊗ e ⊗ g ∈ V0. The
tensor

ω := [eee] ⊗ [eee] + [ggg] ⊗ [eeg] ∈ V0 ⊗ V1
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has rank 2. It can be regarded as a linear map from V ∗1 to V0, and as such it has image
U0 := 〈[eee], [ggg]〉. This subspace is already G-stable, so that

U ′0 = K[G]U0 = 〈[eee] + [ggg], [eee] − [ggg]〉,

where the last two vectors correspond to the two different characters of G. Define φ0 :

V0 → K[G]2 by [eee] 7→ (e, 0), [ggg] 7→ (g, 0) and by sending all other three-letter
words over G to zero. This map is G-equivariant. Conversely, define ψ0 : K[G]

2
→ V0

byψ0(e, 0) = [eee],ψ0(g, 0) = [ggg] andψ0(0,K[G]) = {0}. Thisψ0 isG-equivariant.
We have used only one copy of K[G] as both characters have multiplicity one in U ′0.

Next, consider ω as a linear map from V ∗0 to V1, and let U1 = 〈[eee], [eeg]〉 be the
image of that linear map. We find

U ′1 = K[G]U1 = 〈[eee] + [ggg], [eee] − [ggg], [eeg] + [gge], [eeg] − [gge]〉.

Each character has multiplicity two in U ′1, and we will need the second factor K[G].
Define φ1 : V1 → K[G]2 by

[eee] 7→ (e, 0), [ggg] 7→ (g, 0), [eeg] 7→ (0, e), [gge] 7→ (0, g)

and by mapping all other words to zero. This map is G-equivariant and surjective. Let
ψ1 : K[G]

2
→ V1 be the unique map such that ψ1 ◦ φ1 restricts to the identity on U ′1.

Now we find that
ψ[2](φ[2]ω) = (ψ0 ⊗ ψ1)(φ0 ⊗ φ1)ω = ω

as stated in the lemma.

Let V be a G-representation. Let y0, . . . , yd−1 be a basis of V ∗. Let m ∈ Z≥0 and denote
by Om the coordinate ring of the affine space V⊗[m]. Let u = (u0, . . . , um−1) be an
element of [d]m, i.e., a word of length m over the alphabet [d] of length m. Then Om can
be viewed as the polynomial ring in the coordinates ξu =

⊗
i∈[m] yui .

Several groups act naturally on V⊗[m] in a G-equivariant way. First of all, denot-
ing by GLG(V ) the group of invertible G-equivariant automorphisms of V , observe that
GLG(V )m acts linearly on V⊗[m] by

(φ0, . . . , φm−1)(v0 ⊗ · · · ⊗ vm−1) = φ0v0 ⊗ · · · ⊗ φm−1vm−1,

and this action gives a right action on (V ∗)⊗[m] by

(z0 ⊗ · · · ⊗ zm−1)(φ0, . . . , φm−1) = (z0 ◦ φ0)⊗ · · · ⊗ (zm−1 ◦ φm−1).

Second, the group Sm of permutations of [m] acts by

π(v0 ⊗ · · · ⊗ vm−1) = vπ−1(0) ⊗ · · · ⊗ vπ−1(m−1).

This leads to the contragredient action of Sm on the dual space (V ∗)⊗[m] by

π(z0 ⊗ · · · ⊗ zm−1) = zπ−1(0) ⊗ · · · ⊗ zπ−1(m−1).
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Both of these extend to an action on all of Om by means of algebra automorphisms. De-
note by Hm the group generated by Sm and GLG(V )m in their representations on V⊗[m].

Let k ∈ Z≥0. Given any partition of [m] into I, J we have the flattening V⊗[m] →
V⊗I ⊗ V⊗J . Composing this flattening with a (k + 1) × (k + 1)-subdeterminant of the
resulting two-tensor gives a degree-(k+1) polynomial in Om. The linear span of all these
equations for all possible partitions I, J is an Hm-submodule of Om. Let Y≤k

[m] (or more

generally Y≤k
I ′

for a finite set I ′) denote the subvariety of V⊗[m] (or more generally V⊗I
′

)
defined by this submodule. This is an Hm-stable variety, which will be very useful later
on. Note that any contraction from V⊗[m]→ V⊗[m]−I maps Y≤k

[m] to Y≤k
[m]−I .

The following convention will be used in the remainder of this paper. Let m ∈ Z≥0
and let n ∈ [m]. If ξ ∈ (V ∗)⊗n, then when we speak of the contraction from V⊗[m] →

V⊗[m−n] along ξ , we mean the contraction along the tensor ξ viewed as an element of
(V ∗)⊗[m]−[m−n] in the natural way; abusing notation, we will usually denote this contrac-
tion by ξ . We can now state the following crucial lemma.

Lemma 3.4. Let V be a G-representation. Then there exists an n0 ∈ Z>0 and a
G-invariant tensor ξ0 ∈ (V ∗)⊗n0 such that for all k ∈ Z≥0 and m � k, a tensor
ω ∈ V⊗[m] lies in Y≤k

[m] if (and only if ) ξ(σ (ω)) lies in Y≤k
[m−n0]

for all σ ∈ Sm and
all G-equivariant contractions V⊗[m] → V⊗[m−n0] along a tensor ξ of the form φ(ξ0)

with φ ∈ GLG(V )n0 .

In this lemma, m � k means that m > M for some function M = M(k) of k, which we
will determine below. The lemma follows from the following lemma about contractions
of subspaces of tensor powers.

Lemma 3.5. Let V be a G-representation and set n1 := |G|. There exists a G-invariant
tensor ξ0 ∈ (V

∗)⊗n1 such that for all k ∈ Z≥0 and all m � k and all subspaces W ⊆
V⊗[m] the following holds: if the dimension of ξ(σ (W)) is at most k for all σ ∈ Sm and
for all tensors ξ ∈ (V ∗)⊗n1 with ξ = φ(ξ0) for some φ ∈ GLG(V )n1 , then dimW itself
is at most k.

Again, m � k means that m > M1 for some function M1 = M1(k) of k, which we will
determine below. To prove this lemma, we will make use of the following combinatorial
lemma concerning words over a finite alphabet.

Lemma 3.6. Let k, l ∈ Z≥0 and let A be a finite alphabet. Let w0, . . . , wk ∈ A
[l] be

words of length l over A, written down as a [k + 1] × [l]-array of letters from A. For
a ∈ A[k] write

Ja := {j ∈ [l] : ∀i ∈ [k + 1] : (wi)j = ai}

for the set of positions j where the array has column a, and for J ⊆ [l] write (wi)J ∈ AJ

for the restriction of the word wi to the positions in J . Then:

(i) There exists an a ∈ A[k+1] for which |Ja| ≥ dl/|A|
k+1
e.

(ii) If w0, . . . , wk are pairwise distinct, then there exists a subset J ⊆ [l] of cardinality
at most k such that (w0)J , . . . , (wk)J are pairwise distinct.
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Proof. The first statement follows immediately from
∑

a∈A[k+1] |Ja| = l. The second
statement is proved by induction. It is clearly true for k = 0, with J = ∅. Suppose k > 0.
By induction, we may assume that there is J ′ ⊆ [l] of cardinality at most k − 1 such that
(w0)J ′ , . . . , (wk−1)J ′ are pairwise distinct. In particular, (wk)J ′ can be equal to at most
one (wi)J ′ with i < k. If it is not equal to any of these, then take J = J ′. If it is equal
to some (wi)J ′ , i < k, then take j ∈ [l] such that (wk)j 6= (wi)j for this i and take
J := J ′ ∪ {j}. ut

Proof of Lemma 3.5. Let Ĝ be the group of characters of G. Note that V =
⊕

χ∈Ĝ Vχ
where Vχ = {v ∈ V : ∀g ∈ G : gv = χ(v)v}. Fix a basis of V of common
G-eigenvectors, say e0, . . . , ed−1, and let x0, . . . , xd−1 be the dual basis. Such a basis
exists since V splits into irreducibleG-representations of dimension 1. Observe that each
ei is an element of Vχ for some character χ . Similarly, each xi is an element of some V ∗χ .
For each character χ , let xχ =

∑
{i∈[d]: xi∈V

∗
χ }
xi . Note that xχ can in principle be any

nonzero element of V ∗χ , provided V ∗χ 6= {0}. Indeed, we only choose a basis for technical
reasons. Observe that xχ0 ⊗· · ·⊗xχµ−1 isG-invariant if the product of the corresponding
characters is the trivial character. Since Ĝ has cardinality |G| = n1, the n1-fold product
of any element of Ĝ is the trivial character, and therefore

ξ0 :=
∑
χ∈Ĝ

x⊗n1
χ ∈ (V ∗)⊗n1

is aG-invariant tensor. Let k ∈ Z≥0. We will show thatM1 = k+|G|
k+2
−|G|k+1 works

for this ξ0.
Let Gr(f, V⊗[m]) denote the Grassmannian of f -dimensional subspaces of V⊗[m],

which is a projective algebraic variety over K . Set

Z(f, k) := {W ∈ Gr(f, V⊗[m]) : dim ξ(σ (W)) ≤ k for all
ξ = φ(ξ0), φ ∈ GLG(V )n1 , σ ∈ Sm},

a closed subvariety of Gr(f, V⊗[m]). The assertion of the lemma is equivalent to the state-
ment that the set of K-points of Z(f, k) is empty if f > k and m > M1. So suppose the
set of K-points of Z(f, k) is nonempty for some f > k, m > M1. We will use the fact
that it is stable under GLG(V )m ⊆ Hm.

Let D ⊆ GLG(V ) denote the subset of diagonal matrices with respect to the basis
e0, . . . , ed−1. Then Dm is a connected, solvable algebraic group and hence by Borel’s
Fixed Point Theorem [Bor91, Theorem 15.2], Dm must have a fixed point W on the pro-
jective algebraic variety Z(f, k). Then also σ(W) is a fixed point of Dm for any σ ∈ Sm,
so we can rearrange factors if necessary. Any Dm-stable subspace is spanned by com-
mon eigenvectors for Dm (any algebraic representation of Dm is diagonalisable). Now
ω ∈ V⊗[m] is aDm-eigenvector if and only if ω = ei0 ⊗ ei1 ⊗· · ·⊗ eim−1 (up to a nonzero
scalar) for some i0, . . . , im−1 with ij ∈ [d] for each j ∈ [m]. Say ω0, . . . , ωf−1 form a ba-
sis ofW of commonDm-eigenvectors and sayωj = ej,0⊗ej,1⊗· · ·⊗ej,m−1 (with each ej,i
equal to some el). For a contradiction, it suffices to show that there exists a tensor ξ in the
GLG(V )n1 -orbit of ξ0 and an element σ ∈ Sm as above such that ξ(σ (ω0)), . . . , ξ(σ (ωk))

are linearly independent. Thus we will no longer need ωk+1, . . . , ωf−1.
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By Lemma 3.6(ii) there exists a subset J ⊆ [m] of cardinality at most k such that
the tensors ωj,J :=

⊗
l∈J ej,l for j ∈ [k + 1] are pairwise distinct (and hence linearly

independent). Rearranging factors we may assume that J ⊆ [k]. We will contract the ωi
in n1 positions that all lie beyond the first k positions. If those contractions are nonzero,
then they are automatically linearly independent since their parts in the first k positions
are.

We now set out to find those n1 positions. For each j ∈ [k + 1], consider the word
wj ∈ Ĝ

[m]−[k] of length m − k with letter χ at position i if ej,i ∈ Vχ (so we basically
consider ωj with the first k factors ej,i removed, and map the remaining factors to their
corresponding characters). By Lemma 3.6(i), there exists a χ = (χj )j∈[k+1] ∈ Ĝ

[k+1]

such that Jχ ⊆ [m] − [k] as in the lemma has cardinality at least d(m− k)/|Ĝ|k+1
e. The

latter expression is at least |G| by choice of M1.
Now, pick a single such χ and take I ⊆ Jχ of cardinality |G| = n1 as above; by

applying some σ2 if necessary, we may assume I = [m]−[m−n1]. Note that I ∩[k] = ∅
as promised. For each j ∈ [k + 1] and l ∈ I , we have ej,l ∈ Vχj and we observe that
ξ0(ωj,I ) = 1 for all j . One easily verifies that ξ(ωj ) = ωj,[m−n1] for each j ∈ [k+1], and
these k + 1 tensors are linearly independent since J ⊆ [k]. This concludes the proof. ut
Proof of Lemma 3.4. Let n0 = n1 = |G| and let ξ0 be as in the proof of the previous
lemma. Let k ∈ Z≥0 and let M = 2M1 = 2(k + |G|k+2

− |G|k+1). Let m > M and
let ω ∈ V⊗[m] be such that for all σ ∈ Sm, the image of σ(ω) under any G-equivariant
contraction V⊗[m] → V⊗[m−n0] along a tensor ξ = φ(ξ0) for some φ ∈ GLG(V )n0 is an
element of Y≤k

[m−n0]
.

Let [m] = I ∪ J be any partition and consider the corresponding flattening

[ : V⊗[m]→ V⊗I ⊗ V⊗J .

Replacing ω by σ1(ω) for some σ1 ∈ Sm if necessary, we may assume J = [m] − [µ]
and I = [µ] for some µ such that m−µ > M1. The statement that all (k+ 1)× (k+ 1)-
subdeterminants on [ω are zero is equivalent to [ω having rank at most k when regarded
as a linear map from (V ∗)⊗I to V⊗J , or, in other words, to the image W ⊆ V⊗[m]−[µ]

of this map having dimension at most k. Identify V⊗[m]−[µ] with V⊗[m−µ] in the natural
way.

Since |J | = m′ > M1 we may apply Lemma 3.5 to W . Indeed, all contractions along
tensors ξ ∈ (V ∗)⊗n0 of the form φ(ξ0) for some φ ∈ GLG(V )n0 map σ ′(W) to subspaces
of V⊗[(m−µ)−n0] of dimension at most k for all σ ′ ∈ Sm−µ. This follows from the fact
that this subspace is equal to the image W ′ of the map (V⊗I )∗ → V⊗[m−µ−n0] obtained
by first applying [ω and then contracting along ξ . This, on the other hand, is nothing
but the map [′(ω′) where ω′ is the image of ω under the same contraction but applied to
V⊗[m], and [′ is the flattening of [m − n0] along [µ], [m − µ − n0]. Since ω′ gives rise
to a map of rank at most k by assumption, dimW ′ ≤ k as claimed. Now this holds for all
contractions and all factors and we may conclude that, indeed, dimW ≤ k, and [ω has
rank at most k. ut

Note that in both lemmas, we do not need to compute ξ(σ (ω)) for all σ ∈ Sm: it suffices
to use one σ for each subset of [m] of cardinality n0 to ensure the right factors are being
contracted.
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Remark 3.7. (i) Since G is Abelian, there is a natural bijection between Ĝ and the
set of isomorphism classes of irreducibleG-representations. For this reason, we use
the letter χ both for irreducible G-representations and for elements of Ĝ.

(ii) It is easily seen that the rank of ξ0 as in Lemma 3.5 is bounded above by the number
N of distinct characters that are represented by common G-eigenvectors in V ∗; in
particular, the rank can generally be bounded above by |G|. Moreover, observe that
for any n ∈ Z>0, the elements x⊗nχ (with χ ranging over those characters with
V ∗χ 6= {0}) are linearly independent. Hence, clearly, any flattening (other than the
flattenings I = ∅, J = [|G|] and I = [|G|], J = ∅) of the ξ0 we constructed has
rank equal to N . Therefore, ξ0 has rank N as well.

(iii) Potentially, one may do better than n0 = |G|: one may take for n0 the least common
multiple of all orders of elements in G (i.e. the exponent of G), and reduce M
correspondingly. For example, for the Klein 4-group, one may take n0 = 2 and
M1 = k + 4k+1 instead of n0 = 4 and M1 = k + 4k+2

− 4k+1.
(iv) If G is nontrivial, then we can also take M1 = |G|

k+2
− |G|k+1 instead of k +

|G|k+2
− |G|k+1, or even take n0 to be the exponent expG of G and M1 =

(n0 − 1)|G|k+1.
(v) If we restrict ourselves to G-stable subspaces W of V⊗[m], then instead of consid-

ering merely the dimension of W , we can consider the |G|-tuple of multiplicities
of the characters that are represented by a common G-eigenvector in W . Using the
same n1 and ξ0 as in Lemma 3.5, for each tuple (kχ )χ∈Ĝ there is anM1 such that if
for all contractions as in the lemma the multiplicity of χ in ξ(σ (W)) is at most kχ
for each χ , then the multiplicity of χ in W is at most kχ . In this case, we can take

M1 = (n0−1)|G|maxχ (kχ )+1. Denoting by Y≤(kχ )χ
[m] the set ofG-invariant tensors ω

in V⊗[m] such that for each flattening, the multiplicity of χ in the image of ω is at
most kχ for each χ , we can prove an analogue of Lemma 3.4 for Y≤(kχ )χ

[m] as well.
This will be particularly useful in the case of theG-equivariant tree model later on.

(vi) In general, there may be many possible choices for ξ0 (in fact, nearly allG-invariant
tensors can be used, as the set of tensors such that the lemma is not satisfied is a
closed set that is not equal to the set of G-invariant elements of (V ∗)⊗n1 ). For
example, we could have taken ξ0 =

∑
χ1,...,χn1∈Ĝ:χ1·...·χn1=1

⊗n1
j=1 xχj ∈ (V

∗)⊗n1 .

In the specific case V = K[G], this yields ξ0 =
∑
g∈G x

⊗n1
g (for a proper choice

of a basis of G-eigenvectors of V ), where {xg} is a basis dual to the basis {g} of
K[G]. In this case, our original choice would give ξ0 =

∑
g1,...,gn: g1+···+gn=0 xg1⊗

· · · ⊗ xgn .
(vii) In Lemma 3.1, if we restrict ourselves toG-invariant tensors, then we can formulate

the following refinement. Let (kχ )χ∈Ĝ ∈ Z≥0
Ĝ and let k = maxχ (kχ ).

Let m, n be natural numbers with n ≥ k + 1, and let V0, . . . , Vm−1 be G-repre-
sentations over K . Let ω ∈ V[m] be G-invariant. Then the multiplicity of χ in the
image of [ω is at most kχ for each χ and each flattening [ if and only if there are
m-tuples of G-linear maps φi : Vi → K[G]k and ψi : K[G]k → Vi such that
ψ[m](φ[m](ω)) = ω and φ[m](ω) ∈ Y

≤(kχ )χ
[m] .
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(viii) In this lemma, we explicitly make use of the fact that G is Abelian. Indeed, if G
is non-Abelian, then the lemma is false. Suppose namely that G is non-Abelian,
and let V be an irreducible G-representation of dimension d > 1; observe that
GLG(V ) ∼= K∗. For n ∈ Z>0, let ξ ∈ (V ∗)⊗n be a G-invariant tensor. Let
m ∈ Z>0 with m ≥ n and consider the set of Sm-invariant tensors in V⊗[m]. This is
an
(
m+d−1
d−1

)
-dimensional subspace of V⊗[m]. The elements in this space that con-

tract to 0 along ξ are the elements of the (nontrivial) kernelW of a set of
(
m−n+d−1

d−1

)
linear equations. The actions of GLG(V )n and Sm do not give any additional lin-
early independent equations, so we have φ(ξ)(σ (W)) = {0} for any φ ∈ GLG(V )n

and σ ∈ Sm, while W 6= {0}. So Lemma 3.5 does not hold in this case. Likewise,
Lemma 3.4 does not hold if G is non-Abelian.

Example 3.8. ForG = Z/2Z, k = 2 and V = K[G]2, the proof of the lemma combined
with the remark shows we may use n0 = n1 = 2, M1 = 16− 8 = 8 and M = 16; taking
basis (e + g, 0), (0, e + g), (e − g, 0), (0, e − g) of V , with dual basis x0, x1, x2, x3 we
could take ξ0 = (x0 + x1)⊗ (x0 + x1)+ (x2 + x3)⊗ (x2 + x3).

In the case V = K[G] and (k1, k−1) = (1, 1), where we write Ĝ = {1,−1}, we may
use M1 = 4 and M = 8.

4. Infinite-dimensional tensors and the flattening variety

From now on, fix k ∈ Z≥0, and let V be a G-representation. Let d = dimV be the
dimension of V . For each character χ with V ∗χ 6= {0}, fix xχ ∈ V ∗χ − {0} and let xχ = 0
for all other characters. Let n0 = |G| and define

ξ0 =
∑
χ∈Ĝ

x⊗n0
χ ∈ (V ∗)⊗n0

as in Section 3. For m ∈ Z≥0, we denote by ξ0 the contraction from V⊗[m+n0] → V⊗[m]

along the tensor ξ0. More specifically, we have

ξ0(v0⊗ · · ·⊗ vm−1⊗ vm⊗ · · ·⊗ vm+n0−1) = ξ0(vm⊗ · · ·⊗ vm+n0−1) · v0⊗ · · ·⊗ vm−1.

Dually, this surjective map gives rise to the injective linear map

(V ∗)⊗[m]→ (V ∗)⊗[m+n0], ξ 7→ ξ ⊗ ξ0.

Let Om be the coordinate ring of V⊗[m]. We identify Om with the symmetric algebra
S((V ∗)⊗[m]) generated by the space (V ∗)⊗[m], and embed Om into Om+n0 by means of
the linear inclusion (V ∗)⊗[m]→ (V ∗)⊗[m+n0] above.

From now on, fix m0 ∈ [n0] and define the projective limit

A∞ := lim
←−

m∈m0+n0Z≥0

V⊗[m]

along the surjective linear contraction maps ξ0. This is, in the first place, an uncountable-
dimensionalG-representation overK (unless d = 1, in which case it is one-dimensional).
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But it is also the dual of the countable-dimensional direct limit of the (V ∗)⊗[m] along the
inclusion maps. As a consequence, A∞ is canonically isomorphic to the set of K-algebra
homomorphisms O∞ → K , where O∞ :=

⋃
m∈m0+n0Z≥0

Om. This gives A∞ a Zariski
topology, with closed sets given by the vanishing of subsets of O∞. Since we are only
concerned with set-theoretic statements, we do not need to worry about points of O∞
over K-algebras other than K; the topological space A∞ suffices for our purposes. The
same applies to closed subsets (subvarieties) of A∞ featuring below.

At a crucial step in our arguments we will use the following more concrete description
of O∞. Extend ξ0 to a basis ξ0, ξ1, . . . , ξdn0−1 of (V ∗)⊗n0 of G-eigenvectors. Moreover,
let y0, . . . , yd−1 be any basis of V ∗ (not necessarily consisting of G-eigenvectors). Let
m be an element of m0 + n0Z≥0. Then for any p ∈ Z≥0, (V ∗)⊗[m+pn0] has a basis in
bijection with the pairs (u,w) with u a word in [d]m and w = (i0, . . . , ip−1) a word of
length p over the alphabet [dn0 ], namely,

ζm,u,w := yu0 ⊗ yu1 ⊗ · · · ⊗ yum−1 ⊗ ξi0 ⊗ · · · ⊗ ξip−1 .

The algebra Om+pn0 is the polynomial algebra in the variables ζm,u,w with w running
over all words of length p, and u running over all words in [d]m. In O∞, the coordinate
ζm,u,w is identified with the variable ζm,u,w′ where w′ is obtained from w by appending
an infinite string of zeros at the end of w. If w = 0, then we also write ζm,u = ζm,u,w.

We conclude that O∞ is a polynomial ring in countably many variables that are (for
fixed m ∈ m0 + n0Z≥0) in bijective correspondence with triples (m, u, (i0, i1, . . .)) in
which all but finitely many ij are 0. The finite set of positions j with ij 6= 0 is called the
support of the word (i1, i2, . . .); likewise, the set of positions j with uj 6= 0 is called the
support of u. Note that this gives a different set of variables for each m ∈ m0 + n0Z≥0;
we will generally use the set of variables that is most convenient for our purposes.

Observe that for each m in Z≥0 we have natural embeddings GLG(V )m →
GLG(V )m+n0 , which render the contraction maps V⊗[m+n0] → V⊗[m] equivariant with
respect to GLG(V )m. Therefore the union of GLG(V )m for all m ∈ m0 + n0Z≥0 acts
on A∞ and O∞ by passing to the limit.

Let S∞ :=
⋃
m∈m0+n0Z≥0

Sm, where Sm is embedded in Sm+n0 as the subgroup fixing
{m, . . . , m + n0 − 1}. Then S∞ is the group of all bijections π : Z≥0 → Z≥0 whose set
of fixed points has a finite complement. This group acts on A∞ and on O∞ by passing to
the limit.

The action of S∞ on O∞ has the following fundamental property: for each f ∈ O∞
there exists an m ∈ m0 + n0Z≥0 such that whenever π, σ ∈ S∞ agree on the initial
segment [m] we have πf = σf . Indeed, we may take m equal to m0 + (n0 times (1
plus the maximum of the union of the supports of words w for which ζm0,u,w appears
in f )). In this situation, there is a natural left action of the increasing monoid Inc(Z≥0) =

{π : Z≥0 → Z≥0 : π(0) < π(1) < · · · } by means of injective algebra endomorphisms
on O∞ (see [HS12, Section 5]). The action is defined as follows: for f ∈ O∞, let m be
as above. Then to define πf for π ∈ Inc(Z≥0) take any σ ∈ S∞ that agrees with π on the
interval [m] (such a σ exists) and set πf := σf .

By construction, the Inc(Z≥0)-orbit of any f ∈ O∞ is contained in the S∞-orbit of f .
Note that the left action of Inc(Z≥0) on O∞ gives rise to a right action of Inc(Z≥0) by



726 Jan Draisma, Rob H. Eggermont

means of surjective linear maps A∞→ A∞. A crucial argument in Section 5 uses a map
that is not equivariant with respect to S∞ but is equivariant relative to Inc(Z≥0).

Recall that Hm is the group generated by Sm and GLG(V )m. We can now define

H∞ :=
⋃

m∈m0+n0Z≥0

Hm.

This group acts on A∞ and O∞ by passing to the limit.
Now we get back to flattenings. Recall that ξ0 : V

⊗[m+n0] → V⊗[m] maps Y≤k
[m+n0]

to Y≤k
[m]; this means we can define a variety

Y≤k∞ := lim
←−

m∈m0+n0Z≥0

Y
≤k
[m] ⊆ A∞.

We describe the determinants of flattenings in more concrete terms in the coordinates
ζm,u,w. Let u = (u0, . . . , uk) be a (k + 1)-tuple of pairwise distinct words in [d]m. Let
u′ := (u′0, . . . , u

′

k) be another such (k + 1)-tuple. Suppose that the support of each ui
is disjoint from that of each u′j . In this case, it makes sense to speak of ui + u′j , which
is again a word in [d]m. We let ζ [u;u′] = ζm[u;u′] be the (k + 1) × (k + 1) matrix
with (i, j)-entry ζm,ui+u′j . For each m ∈ m0 + n0Z≥0, the variety Y≤k

[m] is defined by the

determinants of all matrices ζ [u;u′]. Then the variety Y≤k∞ is defined by the determinants
of all matrices ζ [u;u′] (viewed as elements of O∞) with m ∈ m0 + n0Z≥0.

Moreover, if w = (w0, . . . , wk) and w′ = (w′0, . . . , w
′

k) are k + 1-tuples of pairwise
distinct infinite words with letters in [dn0 ] with finite support, if u and u′ are as above,
and if the support of each wi is disjoint from that of each w′j for all i, j ∈ [k], then we
can define a (k + 1)× (k + 1)-matrix ζ [u,w;u′,w′] in a way analogous to the above.

We now have the following important proposition.

Proposition 4.1. The flattening variety Y≤k∞ is the common zero set of finitely many
H∞-orbits of (k + 1)× (k + 1)-determinants det ζ [u;u′] with u,u′ as above.

Proof. Let M be an integer such that the conclusion of Lemma 3.4 holds for the triple
(M, n0, ξ0). Let f0, f1, . . . , fN−1 ∈ Oµ be finitely many (k+ 1)× (k+ 1)-determinants
that define Y≤k

[µ] , where µ is the largest element of m0 + n0Z≥0 that satisfies µ ≤ M . Of
course, in the inclusion Oµ ⊂ O∞, each fi may be assumed to be one of the det ζ [u;u′]
for u,u′ each lists of k + 1 words supported in [µ].

We will now show that ω ∈ A∞ is an element of Y≤k∞ if and only if fi(h(ω)) = 0 for
all i and all h ∈ H∞. Note that fi(h(ω)) is equal to fi((h(ω))µ) where (h(ω))µ is the
image of h(ω) in V⊗[µ] under the canonical projection A∞ → V⊗[µ]. Now if ω ∈ Y≤k∞ ,
then obviously so is h(ω) for each h ∈ H∞, and hence (h(ω))µ is an element of Y≤k

[µ] .
This shows the “only if” part.

For the converse, suppose that fi(h(ω)) = 0 for all i and all h ∈ H∞. We need to show
that ω ∈ Y≤k∞ . Equivalently, we need to show that for all m ≥ µ (and m ∈ m0 + n0Z≥0),
the image ωm ∈ V⊗[m] of ω lies in Y≤k

[m]. Suppose m = µ + pn0 with p ∈ Z≥0. Recall
that fi ∈ Oµ is identified in Oµ+pn0 with fi precomposed with the contraction ξ of
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the last pn0 factors V along ξ = ξ
⊗p

0 . This means fi(ξ((hω)m)) = 0 for all i ∈ [N ]
and all h ∈ H∞ and hence ξ((hω)m) ∈ Y

≤k
[µ] for all h ∈ H∞. Hence in particular,

ξ((hω)m) ∈ Y
≤k
[µ] for all h ∈ Hm of the form φ ◦ σ with φ ∈ GLG(V )[m]−[µ] and σ ∈ Sm.

Note that for such h, one has (hω)m = h(ω)m, and moreover the element ξ((hω)m)
can be obtained by performing consecutive contractions of σ(ωm) along tensors of the
form φ′(ξ0) (and in fact, all contractions of this form can be obtained in this way using
some suitable h). By repeatedly applying Lemma 3.4 this means that ωm ∈ Y

≤k
[m], and we

are done. ut

Remark 4.2. Again, this proof can be extended to a proof for Y
≤(kχ )χ∈Ĝ
∞ .

Example 4.3. For G = Z/2Z, k = 2, m0 = 0 and V = K[G]3, we have M = 16,
hence µ = 16. Following the proof of the proposition, we find that Y≤2

∞ is defined
by the H∞-orbits of the equations that determine Y≤2

[16]. Let y0, y1, y2, y3, y4, y5 ∈ V
∗

be a basis dual to the basis (e, 0, 0), (g, 0, 0), (0, e, 0), (0, g, 0), (0, 0, g), (0, 0, e) of V .
For i ∈ [6] and I ⊆ [20], let ui,I ∈ [6]I be the word each of whose letters is
an i. It is now an easy exercise to show that Y≤2

∞ is defined by the H∞-orbits of
det(ζ [(u0,[n], u2,[n], u4,[n]); (u0,[16]−[n], u2,[16]−[n], u4,[16]−[n])]) for n ∈ {1, 2, . . . , 8}.
Here, we make use of the fact that the GLG(V )-orbit of any triple of elements
v0, v1, v2 ∈ V is dense in V provided that their projections to the commonG-eigenspaces
of V are linearly independent as well. This holds in a somewhat larger generality as well
for general k-tuples and (k + 1)-tuples of elements in V .

For G = Z/2Z and (k1, k−1) = (1, 1), things are somewhat more subtle. Let V =
K[G] and m0 = 0. We have M = 8; let y0, y1 ∈ V

∗ be a basis dual to the basis e + g,
e − g of V . Using the proof in [SS05] that the group-based model for G = Z/2Z is
defined by linear and quadratic polynomials, we can show that Y≤(1,1)∞ is defined by the
H∞-orbits of ζ8,u where the cardinality of {i ∈ [8] : ui = 1} is odd and by the H∞-orbits
of ζ8,u0ζ8,u1 − ζ8,u2ζ8,u3 such that:

(a) For each i ∈ [8], the multiset {(u0)i, (u1)i} equals the multiset {(u2)i, (u3)i}.
(b) For each j ∈ {1, 2, 3, 4}, the cardinality of {i ∈ [8] : (uj )i = 1} is even.

We will give some more details about this in Example 6.10.

5. Equivariantly Noetherian rings and spaces

We briefly recall the notions of equivariantly Noetherian rings and topological spaces,
and proceed to prove the main result of this section, namely that Y≤k∞ is H∞-Noetherian
(Theorem 5.6).

If a monoid5 has a left action by means of endomorphisms on a commutative ring R
(with 1), then we call R equivariantly Noetherian, or 5-Noetherian, if every chain I0 ⊆

I1 ⊆ · · · of 5-stable ideals stabilises. This is equivalent to the statement that every
5-stable ideal in R is generated by finitely many 5-orbits. Similarly, if 5 acts on a
topological space X by means of continuous maps X→ X, then we call X equivariantly
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Noetherian, or 5-Noetherian, if every chain X1 ⊇ X2 ⊇ · · · of 5-stable closed subsets
stabilises. If R is a K-algebra, then we can endow the set X of K-valued points of R,
i.e., K-algebra homomorphisms R → K (sending 1 to 1), with the Zariski topology. An
endomorphism 8 : R → R gives a continuous map φ : X → X by pull-back, and if R
has a left 5-action making it equivariantly Noetherian, then this induces a right 5-action
onX makingX equivariantly Noetherian. This means, more concretely, that any5-stable
closed subset ofX is defined by the vanishing of finitely many5-orbits of elements of R.
If 5 happens to be a group, then we can make the right action into a left action by taking
inverses. Here are some further easy lemmas; for their proofs we refer to [Dra10].

Lemma 5.1. If X is a 5-Noetherian topological space, then any 5-stable closed subset
of X is 5-Noetherian with respect to the induced topology.

Lemma 5.2. If X and Y are 5-Noetherian topological spaces, then the disjoint union
X ∪ Y is also 5-Noetherian with respect to the disjoint union topology and the natural
action of 5.

Lemma 5.3. If X is a 5-Noetherian topological space, Y is a topological space with
5-action (by means of continuous maps), and φ : X→ Y is a 5-equivariant continuous
map, then imφ is 5-Noetherian with respect to the topology induced from Y .

Lemma 5.4. If5 is a group and5′ ⊆ 5 a subgroup acting from the left on a topological
space X′, and if X′ is 5′-Noetherian, then the orbit space X := (5 × X′)/5′ is a left-
5-Noetherian topological space.

In this lemma, 5 × X′ carries the direct-product topology of the discrete group 5 and
the topological space X′, the right action of5′ on it is by (π, x)σ = (πσ, σ−1x), and the
topology on the quotient is the coarsest topology that makes the projection continuous.
The left action of 5 on the quotient comes from left-action of 5 on itself. As a conse-
quence, closed5-stable sets inX are in one-to-one correspondence with closed5′-stable
sets in X′, whence the lemma. Next we recall a fundamental example of an equivariantly
Noetherian ring, which will be crucial in what follows.

Theorem 5.5 ([Coh67, HS12]). For any Noetherian ring Q and any l ∈ Z≥0, the ring
Q[xij : i = 0, . . . , l − 1; j = 0, 1, 2, 3, . . .] is equivariantly Noetherian with respect to
the action of Inc(Z≥0) by πxij = xiπ(j).

Main Theorems III and IV will be derived from the following theorem, whose proof
occupies the rest of this section.

Theorem 5.6. For every natural number k the variety Y≤k∞ is an H∞-Noetherian topo-
logical space.

We will proceed by induction on k. For k = 0 the variety Y≤k∞ consists of a single
point, the zero tensor, and the theorem trivially holds. Now assume that the theorem
holds for k − 1. By Proposition 4.1 there exists m ∈ m0 + n0Z≥0 and there exist
k-tuples u0, . . . ,uN−1,u′0, . . . ,u′N−1 of words in [d]m such that ζ [ua;u′a] is defined



Finiteness results for Abelian tree models 729

for all a ∈ [N ] (i.e., the supports of the words in ua are disjoint from the supports of
the words in u′a) and such that Y≤k−1

∞ is the common zero set of the polynomials in⋃N−1
a=0 H∞ det(ζ [ua;u′a]). For each a ∈ [N ] let Za denote the open subset of Y≤k∞ where

not all elements of H∞ det(ζ [ua;u′a]) vanish; hence we have

Y≤k∞ = Y
≤k−1
∞ ∪ Z0 ∪ · · · ∪ ZN−1.

We will show that each Za , a ∈ [N ], is an H∞-Noetherian topological space, with the
topology induced from the Zariski topology on A∞. Together with the induction hypoth-
esis and Lemmas 5.2 and 5.3, this then proves that Y≤k∞ is H∞-Noetherian, as claimed.

To prove that Z := Za is H∞-Noetherian, consider u := ua = (u0, . . . , uk−1) and
u′ := u′a = (u′0, . . . , u

′

k−1) with all ui, u′j in [d]m. Let Z′ denote the open subset of Y≤k∞
where det(ζ [u;u′]) is nonzero. This subset is stable under the group S′∞ of all permuta-
tions σ in S∞ that restrict to the identity on [m] and such that there is τ ∈ S∞ such that
σ(m+pn0+i) = m+τ(p)n0+i for any p ∈ Z≥0 and i ∈ [n0]. Note that for such σ , one
has σ(ζm,u,w) = ζm,u,τ(w) where τ(w)p = wτ−1(p). More explicitly, S′∞ consists of all
permutations in S∞ that restrict to the identity on [m] and that permute the set of blocks
of the form [m+ (p + 1)n0] − [m+ pn0] with p ∈ Z≥0.

Lemma 5.7. The open subset Z′ ⊆ Y≤k∞ is an S′∞-Noetherian topological space.

Proof. We will prove that Z′ is Inc(Z≥0)
′-Noetherian, where Inc(Z≥0)

′ is the set of all
increasing maps π ∈ Inc(Z≥0) that restrict to the identity on [m] and are such that there
is τ ∈ Inc(Z≥0) such that π(m + pn0 + i) = m + τ(p)n0 + i for any i ∈ [n0]; consult
Section 4 for the action of Inc(Z≥0). Since the Inc(Z≥0)

′-orbit of an equation is contained
in the corresponding S′∞-orbit, this will imply that Z′ is S′∞-Noetherian.

We start with the polynomial ring R in the variables ζm,u,w, where w runs over all in-
finite words over the alphabet [dn0 ] with the property that the support ofw has cardinality
at most 1. Among these variables there are dm for which w = 0, namely the ζm,u with
u ∈ [d]m, and the remaining variables are labelled by [d]m × ([dn0 ] − {0})×Z≥0, where
the element of [dn0 ]−{0} denotes the nonzero letter of w and the element of Z≥0 denotes
the position at which this nonzero letter occurs. On these variables acts Inc(Z≥0)

′, fixing
the first dm variables and acting only on the last (position) index of the last set of vari-
ables. By Theorem 5.5 with Q the ring in the first dm variables and l = dm × (dn0 − 1),
the ring R is Inc(Z≥0)

′-Noetherian. Let S = R[det(ζ [u;u′])−1
] be the localisation of

R at the determinant det ζ [u,u′]; again, S is Inc(Z≥0)
′-Noetherian. We will construct an

Inc(Z≥0)
′-equivariant map φ from the set of K-valued points of S to A∞ whose image

contains Z′. We do this, dually, by means of an Inc(Z≥0)
′-equivariant homomorphism 8

from O∞ to S.
To define 8 recursively, we first fix a partition I, J of [m] such that the support of

each ui is contained in I and the support of each u′j is contained in J . Now if ζm,u,w ∈ O∞
is one of the variables in R, then we set 8(ζm,u,w) := ζm,u,w. Suppose that we have
already defined 8 on variables ζm,u,w such that supp(w) has cardinality at most b, let
w be a word for which supp(w) has cardinality b + 1 and let u be a word in [d]m. We
will define the image of ζm,u,w. Let p be the maximum of the support of w, and write
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w = wk + w
′

k , where the support of w′k is {p} and the support of wk is contained in [p].
Likewise, write u = uk + u′k where the support of uk is contained in I and the support of
u′k is contained in J . Consider the determinant of the matrix

ζ [(u0, . . . , uk), (w0, . . . , wk); (u
′

0, . . . , u
′

k), (w
′

0, . . . , w
′

k)],

where w0, . . . , wk−1 and w′0, . . . , w
′

k−1 are all equal to the infinite word over [dn0 ] con-
sisting of zeroes only. This determinant equals

det(ζ [(u0, . . . , uk−1); (u
′

0, . . . , u
′

k−1)]) · ζm,u,w − f,

where f ∈ O∞ is a polynomial in variables that are of the form ζm,ui+u′j ,wi+w
′
j

with
i, j ≤ k but not both equal to k. All of these wi + w′j have support of cardinality at
most b (since only wk and w′k have nonempty support and moreover, these two words
have support of cardinality at most b), so 8(f ) has already been defined. Then we set

8(ζm,u,w) := det(ζ [u,u′])−18(f ).

The map 8 is Inc(Z≥0)
′-equivariant by construction.

The set Z′ ⊆ Y≤k∞ is contained in the image of the map φ. Indeed, this follows directly
from the fact that the determinant of the matrix

ζ [(u0, . . . , uk), (w0, . . . , wk); (u
′

0, . . . , u
′

k), (w
′

0, . . . , w
′

k)].

vanishes on Z′ while det(ζ [u,u′]) does not. More precisely, Z′ equals the intersection
of Y≤k∞ with imφ, and hence by Lemmas 5.3 and 5.1 it is Inc(Z≥0)

′-Noetherian. We have
already pointed out that this implies that Z′ is S′∞-Noetherian. ut

Now that Z′ is S′∞-Noetherian, Lemma 5.4 implies that the H∞-space (H∞ ×Z′)/S∞ is
H∞-Noetherian. The map from this space to A∞ sending (g, z′) to gz′ isH∞-equivariant
and continuous, and its image is the open set Z ⊆ Y≤k∞ . Lemma 5.3 now implies that Z
is S∞-Noetherian. We conclude that, in addition to the closed subset Y≤k−1

∞ ⊆ Y
≤k
∞ , also

the open subsets Z0, . . . , ZN−1 are S∞-Noetherian. As mentioned before, this implies
that Y≤k∞ = Y

≤k−1
∞ ∪ Z0 ∪ · · · ∪ ZN−1 is S∞-Noetherian, as claimed in Theorem 5.6.

Remark 5.8. Since Y≤(kχ )χ∞ is an H -stable closed subset of Y
≤
∑
χ kχ

∞ , it is an H∞-Noe-
therian topological space as well.

Remark 5.9. A natural question regarding our Main Theorems is why we restrict to
Abelian groups G. Do our results carry over to general G, so that they apply to other
phylogenetic models? Frankly, we do not know. Certainly the fact that G is Abelian is
used in the proof of Lemma 3.5. This is used in Proposition 4.1 to prove that Y≤k∞ is de-
fined by finitely many polynomials up to symmetry, which in turn is used in the induction
proof in this section that Y≤k∞ is Noetherian. In the non-Abelian case, we have no idea
whether (a suitable variant of) Y≤k∞ is defined by finitely many orbits of equations; and (a
variant of) A∞ seems simply too large to work with directly. On the other hand, in the
case whereG has a normal Abelian subgroup that acts transitively on B, finiteness results
are proved in [Mic14].
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6. Proofs of the main theorems

Recall that in Section 4, we fixed n0 ∈ Z>0, a G-representation V , a tensor ξ0 (viewed
as a contraction ξ0 : V

⊗[m+n0] → V⊗[m] for each m ∈ Z≥0) and a k ∈ Z≥0. Moreover,
for each m0 ∈ [n0] we defined the flattening variety Y≤k∞ which implicitly depends on
all of these. In this section, n0 and ξ0 are still defined as before; however, we wish to
stress that some of the theorems that follow hold for any k ∈ Z≥0 and any m0 ∈ [n0];
in these cases, we explicitly mention them in the statement of the theorems. If we do not
mention them, then they will be defined implicitly as above. Finally, we will sometimes
use specific G-representations V in our theorems.

Here are a few theorems that follow from Theorem 5.6.

Theorem 6.1. For any fixed natural number k, any closed H∞-stable subset Z∞ of Y≤k∞
is the common zero set in A∞ of finitely many H∞-orbits of polynomials in O∞.

Proof. As Z∞ is a closed H∞-stable subsets of Y≤k∞ , and as Y≤k∞ is an H∞-Noetherian
topological space (Theorem 5.6), Z∞ is cut out from Y

≤k
∞ by finitely many H∞-orbits

of equations. Moreover, Y≤k∞ itself is cut out from A∞ by finitely many H∞-orbits of
Equations (Proposition 4.1), and hence the same is true for Z∞. ut

Theorem 6.2. Let Z∞ be the projective limit in A∞ of certain Hm-stable closed subsets
Zm ⊆ Y

≤k
[m] for m running through m0 + n0Z≥0 that satisfy ξ0(Zm+n0) ⊆ Zm for any

m ∈ m0 + n0Z≥0. Suppose moreover that there exists a tensor ε0 ∈ V
⊗[n0] such that the

inclusion maps ι : V⊗[m] → V⊗[m+n0], ω 7→ ω ⊗ ε0, map Zm into Zm+n0 and ξ0 ◦ ι =

idV⊗[m] (i.e. ξ0(ε0) = 1). Then there exists D ∈ Z≥0 such that for all m ∈ m0 + n0Z≥0,
Zm is defined by the vanishing of a number of polynomials of degree at most D.

Proof. By Theorem 6.1 there exists aD such that Z∞ is defined inA∞ by polynomials of
degree at mostD; we prove that the sameD suffices. Indeed, suppose that all polynomials
of degree at most D in the ideal of Zm vanish on a tensor ω ∈ V⊗[m]. Let ω∞ be the
element of A∞ obtained from ω by successively applying ι. More precisely, ω∞ is the
element in A∞ defined by (ω∞)m+pn0 = ω ⊗ ε

⊗p

0 for any p ∈ Z≥0. Here, (ω∞)m+pn0

denotes the image of ω∞ under the natural projection A∞→ V⊗[m+pn0].
We claim that ω∞ lies in Z∞. Indeed, otherwise some Om′ contains a polynomial

f of degree at most D that vanishes on Zm′ but not on ω∞. Now m′ cannot be smaller
thanm, because then f vanishes on Zm but not on ω. But ifm′ = m+pn0 ∈ m+n0Z≥0,
then f ◦ ιp is a polynomial in Om of degree at most D that vanishes on Zm but not on ω.
This contradicts the assumption on ω. ut

The next theorem will be rather more subtle than the previous ones, as it involves con-
tractions alongG-invariant tensors that are not necessarily of length pn0. For this reason,
we will assume the existence of closed subsets Zm of Y≤k

[m] for each m ∈ Z≥0, rather than
just for each m ∈ m0 + n0Z≥0.

Theorem 6.3. For eachm ∈ Z≥0, letZm ⊆ Y
≤k
[m] be anHm-stable closed subset. Suppose

that all contractions V⊗[m] → V⊗[µ] along G-invariant tensors in (V ∗)⊗m−µ map Zm
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to Zµ. Suppose moreover that there exists a G-invariant vector e0 ∈ V such that the
inclusion maps ι : V⊗[m] → V⊗[m+1], ω 7→ ω ⊗ e0, map Zm into Zm+1 for each
m ∈ Z≥0 and ξ0 ◦ ι

n0 = idV⊗[m] for each m ∈ Z≥0. Then there exists M ∈ m0 + n0Z≥0
such that for all m ∈ M + n0Z>0 and for all ω ∈ V⊗[m] the following are equivalent:

(i) ξ(σ (ω)) ∈ Zµ for all σ ∈ Sm, and all contractions ξ : V⊗[m] → V⊗[µ] along
G-invariant tensors in (V ∗)⊗m−µ with µ ≤ M .

(ii) ω ∈ Zm.

Proof. The implication (ii)⇒(i) is trivial; we will show the implication (i)⇒(ii). Let Z∞
be the projective limit in Y≤k∞ of Zm form ∈ m0+n0Z≥0. By Theorem 6.1, Z∞ is defined
(in A∞) by finitely many H∞-orbits of polynomials in O∞. This implies that there exists
an M ∈ m0 + n0Z≥0 such that the H∞-orbits of the equations of ZM define Z∞. We
claim that this value of M suffices.

Indeed, suppose that ω ∈ V⊗[m] with m ∈ M + n0Z>0 has the property that (for
any rearrangement of its terms) all its G-equivariant contractions along tensors to V⊗[µ]

lie in Zµ and construct ω∞ ∈ A∞ as in the proof of Theorem 6.2 (using ιn0 instead
of ι). We claim that ω∞ lies in Z∞. For this it suffices to show that for each f in the
ideal of ZM and each h ∈ H∞ the polynomial hf vanishes on ω∞. Let h ∈ H∞ and
let m′ = M + pn0 = m + p

′n0 ∈ m + n0Z≥0 be such that h ∈ Hm′ . By construction,
f ∈ OM is identified with the function in Om′ obtained by precomposing f with the
contraction V⊗[m

′
]
→ V⊗[M] along the tensor ξ⊗p0 on the last m′−M factors. Hence hf

is the same as contraction V⊗[m
′
]
→ V⊗[M] along some G-invariant tensor (in some of

the factors), followed by h′f for some h′ ∈ HM . Evaluating hf at the tensor ω∞ is the
same as evaluating it at

ω ⊗ e
⊗p′n0
0 ,

and boils down to contracting some, say l, of the factors e0 andm′−M−l of the remaining
factors V along a tensor in (V ∗)⊗I (with |I | = m′−M), and evaluating h′f at the result.

But this is the same thing as first applying some σ ∈ Sm to ω (to ensure the right
factors of ω will be contracted), then contracting σ(ω) ⊗ e⊗l0 ∈ V

⊗[m+l] to an element
ω′ ∈ V⊗[µ] along some G-invariant tensor ξ ′ in (V ∗)⊗m+l−µ (where m − µ = |J |) and
evaluating h′f at σ ′(ω′⊗ e⊗M−µ0 ) for some σ ′ ∈ SM . Note that σ and σ ′ are merely used
to reorganise the terms of ω and ω′ ⊗ e⊗M−µ0 to avoid some cumbersome notation.

Viewing e⊗l0 as a contraction from (V ∗)⊗m+l−µ to (V ∗)⊗m−µ in the natural way, we
have ξ̃ := e⊗l0 (ξ

′) ∈ (V ∗)⊗m−µ. Observe that ω′ = ξ̃ (σ (ω)) and ξ̃ is G-invariant since
both ξ ′ and e0 are.

Now by assumption ω′ lies in Zµ (since µ ≤ M), hence ω′ ⊗ e⊗M−µ0 lies in ZM and
hence σ ′(ω′ ⊗ e⊗M−µ0 ) ∈ ZM as well. This proves that h′f vanishes on it, so that hf
vanishes on ω∞, as claimed. Hence ω∞ lies in Z∞. But the projection A∞ → V⊗[m]

sends ω∞ to ω and Z∞ to Zm. Hence ω lies in Zm, as required. ut

With these results, we can now prove our main theorems.

Proof of Main Theorem III. By Lemma 3.1 it suffices to show that for fixed k ∈ Z≥0
and for V = K[G]n for some fixed n ∈ Z≥0 with n > k, there exist M,n0 such that a
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tensor in V⊗[m], m ≥ M , m ∈ m0 + n0Z≥0, is of border rank at most k as soon as all
its G-equivariant contractions along m − µ-tensors to V⊗[µ] have border rank at most k
(possibly after rearranging terms).

Recall that we have defined ξ0 using xχ ∈ V ∗χ . Denoting the trivial character by 0, note
that V ∗0 is nontrivial since the sum of all basis elements of V is G-invariant, so x0 6= 0.
Moreover, x0 vanishes outside of V0, hence there must be an element e0 ∈ V0 such that
x0(e0) = 1. For such e0, observe that ξ0(e

⊗n0
0 ) = 1 and e0 is G-invariant because V0 is

the set of G-invariant elements of V . Now apply Theorem 6.3. ut

Our fourth Main Theorem requires a bit more work. We define a G-spaced star to be a
G-spaced tree for which the underlying tree structure is that of a star.

Lemma 6.4. Let T be aG-spaced star with centre r and leaves [m]. Let I ( [m] and let
T ′ be the G-spaced star with centre r and leaves [m] − I (and the same spaces attached
to each vertex it shares with T ). Let ξ be aG-invariant tensor in

⊗
q∈I V

∗

i . Then the map
ξ : L(T ) → L(T ′) defined by

⊗
q∈[m] vq 7→ ξ(

⊗
q∈I vq) ·

⊗
q∈[m]−I vq maps CV(T )

to CV(T ′).

Proof. We show that ξ(9(T )) ⊆ 9(T ′). Assume without loss of generality that I =
{µ, . . . , m − 1}. Let A = (Arq)q∼r ∈ repG(T ). Write Arq =

∑
b∈Br

b ⊗ vb,q for any
q ∈ leaf(T ). Note that gArq =

∑
b∈Br

(gb)⊗(gvb,q) =
∑
b∈Br

b⊗(gvg−1b,q). SinceArq
is G-invariant, we find that g−1vb,q = vg−1b,q for any b ∈ Br , g ∈ G and q ∈ leaf(T ).

Then ξ(9T (A)) =
∑
b∈Br

ξ(
⊗
p∈I vb,q) ·

⊗
q∈[µ] vb,q . Let cb := ξ(

⊗
q∈I vb,q). Ob-

serve that we now have cb = (gξ)(
⊗

q∈I vb,q) = ξ(g
−1⊗

p∈I vb,q) = ξ(
⊗

q∈I vg−1b,q)

= cg−1b for any g ∈ G.
For q ∈ [µ−1], define A′rq = Arq and define A′rµ =

∑
b∈Br

b⊗cbvb,µ. Observe that
A′rq is G-invariant for each each q ∈ [µ], using g−1cbvb,µ = cbvg−1b,µ = cg−1bvg−1b,µ

for any g ∈ G and b ∈ Br . This meansA′ := repG(T
′). We now easily see that9T ′(A′) =

ξ(9T (A)), which after taking the closure concludes the proof. ut

Suppose V has a distinguished basis B such that G acts on B. It is easily seen that for a
G-spaced star T with centre r , leaves [m] and such that Vq = V for each q ∈ [m], CV(T )
is Hm-stable. From now on, assume that V has a distinguished basis B such that G acts
on B.

Now, form ∈ Z≥0, let Tm be aG-spaced star with centre r with space Vr and base Br
of cardinality k, leaves [m], and such that Vq = V for each q ∈ [m]. Denote CVm =
CV(Tm). Observe that CVm consists of tensors of rank at most k, hence CVm ⊆ Y

≤k
[m]. Fix

m0 ∈ Z≥0. We can now define CV∞ ⊆ Y
≤k
∞ ⊆ A∞ as the projective limit of the CVm

with m ∈ m0 + n0Z≥0. This is the infinite star model alluded to in the introduction.

Proposition 6.5. For any fixed space Vr with basis Br , the set CV∞ is the common zero
set of finitely many H∞-orbits of polynomials in O∞.

Proof. As CV∞ is a closed H∞-stable subset of Y≤k∞ (with k = |Br |) one can apply
Theorem 6.1. ut
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Now, we will see how we can reduce from a star with arbitrary spaces attached to the
leaves to a star for which each leaf has the space V attached. This is the analogue of
Lemma 3.1 for star models.

Lemma 6.6. Letm ∈ Z≥0 and suppose T is aG-spaced star with centre r , with space Vr
and base Br of cardinality k, and leaves [m], with spaces Vq for each q ∈ [m]. Let
V = K[G]n for some n ∈ Z≥0 with n > k and let B = {gfi : g ∈ G, fi is the
i-th standard basis vector of K[G]n viewed as a K[G]-module}. If CVm is defined by
polynomials of degree at most D, then so is CV(T ).

Proof. The set CV(T ) is contained in L(T ) =
⊗

q∈[m] Vq and CVm is contained in
L(Tm) =

⊗
q∈[m] V . Recall that CV(T ) is the Zariski closure of 9(T ) and CVm

is the closure of the image of 9(Tm). A generic element of 9(T ) is of the form∑
b∈Br

⊗
q∈[m] vq,b with

∑
b∈Br

b ⊗ vq,b a G-invariant element of Vr ⊗ Vq for each
leaf q. From this, we can easily conclude that any element of CV(T ) has border rank at
most k. Likewise, any element of CVm has border rank at most k.

Suppose ω ∈ L(T ) − CV(T ). We show that there is an m-tuple of G-linear maps
φq : Vq → V such that φ[m](ω) 6∈ CVm. Note that such a φ[m] maps CV(T ) to CVm.
If this is the case, then we can immediately conclude that there is f ∈ OL(Tm) of degree
at most D that vanishes on CVm but not on φ[m](ω), hence φ∗

[m](f ) ∈ OL(T ) has degree
at most D, vanishes on CV(T ) and does not vanish on ω. Hence CV(T ) is defined by
polynomials of degree at most D.

If ω has border rank at most k, then by Lemma 3.1, we can find m-tuples of G-linear
maps φq : Vq → V andψq : V → Vq such thatψ[m](φ[m](ω)) = ω. Sinceψ[m](φ[m](ω))
6∈ CV(T ) by assumption (and ψ[m](CVm) ⊆ CV(T )), we conclude that φ[m](ω) 6∈ CVm.

If ω has border rank exceeding k, then by Lemma 3.1, there is an m-tuple of G-linear
maps φi : Vi → V such that φ[m](ω) has border rank exceeding k, which implies
φ[m](ω) 6∈ CVm. ut

Remark 6.7. (i) We may in fact assume n = k; in this case, we first test whether some
flattening of ω has rank exceeding k; this can be done by equations of degree k + 1.
If not, then we can find m-tuples of G-linear maps φq : Vq → V and ψq : V → Vq
such that ψ[m](φ[m](ω)) = ω and proceed with the proof as above.

(ii) If Vr has multiplicity kχ for each irreducible representation χ , then we may take
V = K[G]maxχ {kχ } instead of K[G]n. In fact, we may use V = Vr , using the fact
that because of the given basis of V , we have kχ = kχ−1 for each χ .

Moreover, observe that CVm ⊆ Y
≤(kχ )χ
[m] .

Example 6.8. If B = G, then K[G] ∼=
⊕

χ∈Ĝ χ (identifying characters and irreducible
representations in the natural way), and hence if Vr = K[G], then CVm ⊆ Y

≤(1)χ
[m] .

We now show that the (Zariski closure of the) equivariant model for a G-spaced star is
defined in bounded degree, given a bound on the cardinality of the basis of the centre of
the star. After we show this, we can finally prove Main Theorem IV.
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Theorem 6.9. Let Vr be a G-module with basis Br of cardinality k ∈ Z≥0. Then there
exists D ∈ Z≥0 such that for each m ∈ Z≥0 and each G-spaced star T with centre r
with leaves [m], the set CV(T ) is defined by the vanishing of a number of polynomials of
degree at most D.

Proof. By Lemma 6.6 it suffices to prove that for fixed k ∈ Z≥0 and V = K[G]n with
n > k, there exists a D ∈ Z≥0 such that for all m0 ∈ [n0] and for all m ∈ m0 + n0Z≥0
the variety CVm is defined in V⊗[m] by polynomials of degree at most D.

As in the proof of Main Theorem III, observe that there is someG-invariant element e0
such that ξ0(e

⊗n0
0 ) = 1. Let ε0 = e

⊗n0
0 .

Consider the inclusion maps

ι : V⊗m→ V⊗m+n0 , ω 7→ ω ⊗ ε0.

Observe that ι(9Tm(A)) = 9Tm+n0
(A′) where A′rq := Arq if q ∈ [m] and A′rq =

(
∑
b∈Br

b)⊗ e0 otherwise. Moreover, each A′rq is G-invariant.
Hence this map sends CVm into CVm+n0 and we easily see that it satisfies ξ0 ◦ ι

= idV⊗[m] .
Thus we can apply Theorem 6.2. ut

Example 6.10. Let B = G = Z/2Z and let T be a G-spaced tree with m leaves with
space V = K[G] attached to each node. Let y0, y1 ∈ V

∗ be a basis dual to the basis e+g,
e − g of V .

Using the proof in [SS05] that the group-based model for Z/2Z is defined by linear
and quadratic polynomials, we can show that CVm is defined by the H∞-orbits of ζm,u
where the cardinality of {i ∈ [m] : ui = 1} is odd and by the H∞-orbits of ζm,u0ζm,u1 −

ζm,u2ζm,u3 such that:

(a) For each i ∈ [m], the multiset {(u0)i, (u1)i} equals the multiset {(u2)i, (u3)i}.
(b) For each j ∈ {1, 2, 3, 4}, the cardinality of {i ∈ [m] : (uj )i = 1} is even.

Note the similarity with Example 4.3. Indeed, these equations all vanish on Y≤(1,1)
[m] , hence

Y
≤(1,1)
[m] ⊆ CVm and therefore Y≤(1,1)

[m] is in fact equal to CVm in this specific case. By Ex-
ample 4.3, we find that we can take M = 8 in Theorem 6.3. A more precise examination
shows that we may take M = 5 in this case.

Proof of Main Theorem IV. Let T be a G-spaced tree (over an algebraically closed field
of characteristic 0) satisfying the conditions of the theorem. By Theorem 1.7 in [DK09],
one has I (CV(T )) =

∑
r∈vert(T ) I (CV([rT )) where [rT is aG-spaced star with centre r .

From this, we can easily conclude that if CV([rT ) is defined by polynomials of degree at
most D for each r , then so is CV(T ). Now apply Theorem 6.9. ut

Remark 6.11. The proof of this theorem, along with the previous remark, shows that to
describe the equations that define the equivariant model for any G-spaced tree, it suffices
to describe the equations that define the equivariant model for anyG-spaced star for which
all nodes have the same space attached.



736 Jan Draisma, Rob H. Eggermont

Proof of Main Theorem I. For the field K = C, by Main Theorem IV there is D ∈ Z≥0
depending on G and k = |B| such that CV(T ) is defined by polynomials of degree at
most D. The tensorification of the model in the introduction is the closure of the set of
tensors of the form 9(A) with A ∈ repG(T ) such that A satisfies an additional set of
linear equalities and inequalities (certain sums must be equal to 1 and certain coefficients
must be nonnegative). Since9 is linear, these translate to linear equalities and inequalities
for 9(A). Then, clearly, the closure of the set of tensors of the form 9(A) with A in
repG(T ) such that A satisfies the linear equalities mentioned is defined by polynomials
of degree at most max(D, 1), since linear equalities can be tested by linear polynomials.
The latter however equals the closure of the set of tensors of the form 9(A) with A in
repG(T ) such that A satisfies both the linear equalities and the inequalities. Hence the
tensorification of the model in the introduction is defined by polynomial equations of
degree at most max(D, 1). ut

Proof of Main Theorem II. Let ω ∈ L(T ). We will first test whether ω ∈ CV(T ); after
that, we can verify whether ω satisfies the additional linear equalities mentioned in Main
Theorem I. For each vertex r , view ω as an element of [r(T ); say [r(T ) has leaves [m]
and space Vq for each q ∈ [m]. Use the construction of Lemma 3.1 to produce φ[m], ψ[m]
such that ψ[m](φ[m](ω)) = ω, where φq : Vq → V = K[G]|B|+1. If some flattening of
ω occurring in the construction has image of rank exceeding k = |B|, then conclude that
ω 6∈ CV(T ).

Consider ω′ = φ[m](ω). Take M as in Theorem 6.3. Let I be a subset of [m] of
cardinality pn0 with m − pn0 ≤ M; the number of such subsets is polynomial in m (it
is O(mM)).

Take a basis ξ1, . . . , ξN of G-invariant tensors in (V ∗)⊗I ; let f1, . . . , fN ′ be a set
of polynomials that defines CV(T[m]−I ). We can symbolically describe the composition
of a contraction of ω′ along the formal linear combination

∑
xiξi with some fj as a

polynomial and test whether this polynomial is identically 0. If the latter is true for all I
and for all flattenings, then conclude that ω lies in CV(T ) because of Theorem 6.3. ut

The set-up of our algorithm (givenM) starting from Tm is as follows. In the deterministic
setting:

Precomputation: Compute, once and for all, a set Eµ of equations for CVµ for all
µ ≤ M .

Input: ω ∈ V⊗[m].
Output: True or false (the answer to the question whether ω ∈ CVm).
Algorithm: For each I ⊆ [m] with |I | ≥ m − M , check whether the composition of

the equations in Em−|I | with the formal contraction of ω along a general G-invariant
element of (V ∗)⊗I is identically 0. If this is the case for all I , then output ‘true’, else
output ‘false’.

The number of scalar arithmetic operations in this algorithm is bounded by a polyno-
mial in dm, where the degree of that polynomial depends on the degrees of the equations
found in the pre-computation step. Observe that running with I over all sufficiently large
subsets of [m] contributes only a factor O(mM), which is poly-logarithmic in dm. In the
probabilistic setting:
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Precomputation: Compute, once and for all, a set Eµ of equations for CVµ for all
µ ≤ M .

Input: ω ∈ V⊗[m].
Output: True or false (the (probable) answer to the question ω ∈ CVm?).
Algorithm: For each I ⊆ [m] with |I | ≥ m − M , generate a random element ξ of

(V ∗)⊗I and compute whether all equations in Em−|I | vanish on ξ(ω) (with ξ viewed
as a contraction V⊗[m] → V⊗[m]−I ). If this is the case for all I , then output ‘true’,
else output ‘false’.

The number of scalar arithmetic operations in this case is linear in dm ·mM .

Acknowledgments. We thank Bernd Sturmfels and an anonymous referee for many helpful sugges-
tions for improving the text.

Both authors are supported by the first author’s Vidi grant from the Netherlands Organisation
for Scientific Research (NWO)

References

[AR08] Allman, E. S., Rhodes, J. A.: Phylogenetic ideals and varieties for the general Markov
model. Adv. Appl. Math. 40, 127–148 (2008) Zbl 1131.92046 MR 2388607

[BO11] Bates, D. J., Oeding, L.: Toward a salmon conjecture. Experiment. Math. 20, 358–370
(2011) Zbl 1262.14056 MR 2836258

[BSS89] Blum, L., Shub, M., Smale, S.: On a theory of computation and complexity over the
real numbers: NP-completeness, recursive functions and universal machines. Bull. Amer.
Math. Soc. 21, 1–46 (1989) Zbl 0681.03020 MR 0974426

[Bor91] Borel, A.: Linear Algebraic Groups. Springer, New York (1991) Zbl 0726.20030
MR 1102012
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