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Abstract. We prove a “Tverberg type” multiple intersection theorem. It strengthens the prime case
of the original Tverberg theorem from 1966, as well as the topological Tverberg theorem of Bárány
et al. (1980), by adding color constraints. It also provides an improved bound for the (topological)
colored Tverberg problem of Bárány & Larman (1992) that is tight in the prime case and asymptot-
ically optimal in the general case. The proof is based on relative equivariant obstruction theory.
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1. Introduction

Tverberg’s theorem from 1966 [18], [13, Sect. 8.3] states that any family of (d+1)(r−1)
+ 1 points in Rd can be partitioned into r sets whose convex hulls intersect; a look at the
codimensions of intersections shows that the number (d + 1)(r − 1) + 1 of points is
minimal for this.

In their 1990 study of halving lines and halving planes, Bárány, Füredi & Lovász
[2] observed, “we need a colored version of Tverberg’s theorem”, and provided a first
case, for three triangles in the plane. In response to this, Bárány & Larman [3] in 1992
formulated the following general problem and solved it for the planar case.
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The colored Tverberg problem. Determine the smallest number t = t (d, r) such that
for every collection C = C0 ] · · · ] Cd of points in Rd with |Ci | ≥ t , there are r disjoint
subcollections F1, . . . , Fr of C satisfying

(A) |Ci ∩ Fj | ≤ 1 for every i ∈ {0, . . . , d}, j ∈ {1, . . . , r}, and
(B) conv (F1) ∩ · · · ∩ conv (Fr) 6= ∅.

A family of disjoint subcollections F1, . . . , Fr of C satisfying condition (A), i.e., that con-
tain at most one point from each color class Ci , is called a colored r-partition. (We do
not require F1 ∪ · · · ∪ Fr = C for this.) We allow color classes to be multisets of points
in Rd ; in this case the cardinalities have to account for these. This convention is compati-
ble with the phrasing of the colored Tverberg problem and its topological generalization,
where one replaces the collection of points C in Rd by the images of the vertices of a
(|C| − 1)-simplex 1|C|−1 under an (affine resp. continuous) map to Rd .

A colored r-partition F1, . . . , Fr having in addition property (B) is a colored Tverberg
r-partition.

A trivial lower bound is t (d, r) ≥ r: Collections C of only (r − 1)(d + 1) points in
general position do not admit an intersecting r-partition, again for codimension reasons.

Bárány and Larman showed that the trivial lower bound is tight in the cases t (1, r) = r
and t (2, r) = r , presented a proof by Lovász for t (d, 2) = 2, and conjectured the follow-
ing equality that is the main content of the colored Tverberg problem.

The Bárány–Larman conjecture. t (d, r) = r for all r ≥ 2 and d ≥ 1.

Still in 1992, Živaljević & Vrećica [24] established for r prime the upper bound t (d, r) ≤
2r − 1. The same bound holds for prime powers according to Živaljević [23]. The bound
for primes also yields bounds for arbitrary r: For example, one gets t (d, r) ≤ 4r − 3,
since there is a prime p (and certainly a prime power!) between r and 2r .

As in the case of Tverberg’s classical theorem, one can consider a topological version
of the colored Tverberg problem.

The topological Tverberg theorem ([4], [14, Sect. 6.4]). Let r ≥ 2 be a prime power,
d ≥ 1, and N = (d + 1)(r − 1). Then for every continuous map f of an N -simplex 1N
to Rd there are r disjoint faces F1, . . . , Fr of 1N whose images under f intersect in Rd .

The topological colored Tverberg problem. Determine the smallest number t =
t t (d, r) such that for every simplex 1 with (d + 1)-colored vertex set C = C0 ] · · · ]Cd ,
with |Ci | ≥ t for all i, and for every continuous map f : 1 → Rd , there are r disjoint
faces F1, . . . , Fr of 1 satisfying

(A) |Ci ∩ Fj | ≤ 1 for every i ∈ {0, . . . , d}, j ∈ {1, . . . , r}, and
(B) f (F1) ∩ · · · ∩ f (Fr) 6= ∅.

A family of faces F1, . . . , Fr satisfying both conditions (A) and (B) is called a topological
colored Tverberg r-partition.

The argument from [24] and [23] gives the same upper bound t t (d, r) ≤ 2r−1 for r a
prime power, and consequently the upper bound t t (d, r) ≤ 4r − 3 for arbitrary r . Notice
that t (d, r) ≤ t t (d, r).
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The topological Bárány–Larman conjecture. t t (d, r) = r for all r ≥ 2 and d ≥ 1.

The Lovász proof for t (d, 2) = 2 presented in [3] is topological and thus also valid for
the topological Bárány–Larman conjecture. Therefore t t (d, 2) = 2.

The general case of the topological Bárány–Larman conjecture would classically be
approached via a study of the existence of an Sr -equivariant map

1r,|C0| ∗ · · · ∗1r,|Cd | −→
Sr

S(W⊕(d+1)
r ) = S(r−1)(d+1)−1, (1)

where Wr is the (r − 1)-dimensional real standard representation of Sr obtained by re-
stricting the coordinate permutation action on Rr to {(ξ1, . . . , ξr) ∈ Rr : ξ1 + · · · + ξr
= 0} and 1r,n denotes the r × n chessboard complex ([r])∗n1(2) (cf. [14, Remark after
Thm. 6.8.2]). However, we will establish in Proposition 4.1 that this approach fails when
applied to the colored Tverberg problem directly, due to the fact that the square chess-
board complexes 1r,r admit Sr -equivariant collapses that reduce the dimension.

In the following, we circumvent this problem by a different, particular choice of pa-
rameters, which produces chessboard complexes 1r,r−1 that are closed pseudomanifolds
and thus do not admit collapses.

2. Statement of the main results

Our main result is the following strengthening of (the prime case of) the topological
Tverberg theorem.

Theorem 2.1. Let r ≥ 2 be prime, d ≥ 1, and N := (r − 1)(d + 1). Let 1N be an
N -dimensional simplex with a partition of its vertex set intom+1 parts (“color classes”)

C = C0 ] · · · ] Cm,

with |Ci | ≤ r − 1 for all i. Then for every continuous map f : 1N → Rd , there is
a colored r-partition given by disjoint faces F1, . . . , Fr of 1N whose images under f
intersect, that is,

(A) |Ci ∩ Fj | ≤ 1 for every i ∈ {0, . . . , m}, j ∈ {1, . . . , r}, and
(B) f (F1) ∩ · · · ∩ f (Fr) 6= ∅.

The requirement |Ci | ≤ r−1 forces there to be at least d+2 nonempty color classes.
Theorem 2.1 is tight in the sense that there would exist counterexamples f if |C0| = r

and |C1| = · · · = |Cm| = 1.
Our first step will be to reduce Theorem 2.1 to the following special case.

Theorem 2.2. Let r ≥ 2 be prime, d ≥ 1, and N := (r − 1)(d + 1). Let 1N be an
N -dimensional simplex with a partition of its vertex set into d + 2 parts,

C = C0 ] · · · ] Cd ] Cd+1,

with |Ci | = r − 1 for all i ≤ d and |Cd+1| = 1. Then for every continuous map
f : 1N → Rd , there are r disjoint faces F1, . . . , Fr of 1N satisfying

(A) |Ci ∩ Fj | ≤ 1 for every i ∈ {0, . . . , d + 1}, j ∈ {1, . . . , r}, and
(B) f (F1) ∩ · · · ∩ f (Fr) 6= ∅.
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Reduction of Theorem 2.1 to Theorem 2.2. Suppose that we are given a continuous map
f : 1N → Rd and a coloring C0 ] · · · ] Cm of the vertex set of 1N . Let N ′ :=
(r − 1)(m + 1) and Cm+1 := ∅. We enlarge the color classes Ci by adding N ′ − N =
(r−1)(m−d) new vertices and obtain new color classesC′0, . . . , C

′

m+1 such thatCi ⊆ C′i
for all i, |C′0| = · · · = |C

′
m| = r − 1 and |C′m+1| = 1. Using f , we construct a new map

f ′ : 1N ′ → Rm, as follows: We regard Rd as the subspace of Rm where the last m − d
coordinates are zero. So we let f ′ be the same as f on the N -dimensional front face
of 1N ′ . We assemble the further N ′ − N vertices into m − d groups V1, . . . , Vm−d of
r − 1 vertices each. The vertices in Vi shall be mapped to ed+i , the (d + i)th standard
basis vector of Rm. We extend this map using barycentric coordinates to all of 1N ′ in
order to obtain f ′. We apply Theorem 2.2 to f ′ and the coloring C′0, . . . , C

′

m+1 and
obtain disjoint faces F ′1, . . . , F

′
r of1N ′ . Let Fi := F ′i ∩1N be the intersection of F ′i with

the N -dimensional front face of 1N ′ . By construction of f ′, the nonempty intersection
f ′(F ′1) ∩ · · · ∩ f

′(F ′r) lies in Rd . Therefore, already F1, . . . , Fr is a topological colored
Tverberg r-partition for f ′, and hence it is also a topological colored Tverberg r-partition
for f : we have f (F1) ∩ · · · ∩ f (Fr) 6= ∅. ut

Such a reduction previously appeared in Sarkaria’s proof for the prime power Tverberg
theorem [17, (2.7.3)]; see also de Longueville’s exposition [11, Prop. 2.5].

Either of our Theorems 2.1 and 2.2 immediately implies the topological Tverberg
theorem for the case when r is a prime, as any colored Tverberg partition, as provided
by Theorems 2.1 and 2.2, is, in particular, a Tverberg partition (if one ignores the color
constraints). Thus Theorems 2.1 and 2.2 are “constrained” Tverberg theorems as recently
discussed by Hell [9].

More importantly, however, Theorem 2.2 implies the topological Bárány–Larman
conjecture for the case when r + 1 is a prime, as follows.

Corollary 2.3. If r + 1 is prime, then t (d, r) = t t (d, r) = r .

Proof. We prove that if r ≥ 3 is prime, then t t (d, r − 1) ≤ r − 1. For this, let1N−1 be a
simplex where N = (r − 1)(d + 1) and with vertex set C = C0 ] · · · ] Cd , |Ci | = r − 1
for all i, and let f : 1N−1 → Rd be continuous. Extend this to a map 1N → Rd , where
1N has an extra vertex vN , and set Cd+1 := {vN }. Then Theorem 2.2 can be applied, and
yields a topological colored Tverberg r-partition. Ignore the part that contains vN . ut

Using estimates on prime numbers one can derive from this tight bounds for the colored
Tverberg problem also in the general case. The classical Bertrand postulate (“For every r
there is a prime p with r + 1 ≤ p < 2r”) can be used here, but there are also much
stronger estimates available, such as the existence of a prime p between r and r+ r6/11+ε

for arbitrary ε > 0 if r is large enough, according to Lou & Yao [12].

Corollary 2.4. (i) r ≤ t (d, r) ≤ t t (d, r) ≤ 2r − 2 for all d ≥ 1 and r ≥ 2.
(ii) r ≤ t (d, r) ≤ t t (d, r) ≤ (1+ o(1)) r for d ≥ 1 and r →∞.

Proof. The first, explicit estimate is obtained from Bertrand’s postulate: For any given r
there is a prime p with r + 1 ≤ p < 2r . We use |Ci | ≥ 2r − 2 ≥ p − 1 to derive the
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existence of a topological colored Tverberg (p − 1)-partition, which in particular yields
an r-partition since p − 1 ≥ r .

The second, asymptotic estimate uses the Lou & Yao bound instead. ut

Remark 2.5. The colored Tverberg problem as originally posed by Bárány & Larman [3]
in 1992 was different from the version we have given above (following Bárány, Füredi &
Lovász [2] and Živaljević & Vrećica [24]): Bárány and Larman had asked for an upper
bound N(d, r) on the cardinality of the union |C| that together with |Ci | ≥ r would force
the existence of a colored Tverberg r-partition. This original formulation has two major
disadvantages: One is that the Živaljević–Vrećica result does not apply to it. A second one
is that it does not lend itself to estimates for the general case in terms of the prime case.

However, our Corollary 2.3 also solves the original version for the case when r + 1 is
a prime.

The colored Tverberg problem originally arose as a tool to obtain complexity bounds in
computational geometry. As a consequence, our new bounds can be applied to improve
these bounds, as follows. Note that in some of these results t (d, d + 1)d appears in the
exponent, so even slightly improved estimates on t (d, d + 1) have considerable effect.
For surveys see [1], [13, Sect. 9.2], and [22, Sect. 11.4.2].

Let S ⊆ Rd be a set of size n in general position, that is, such that no d + 1 points
of S lie on a hyperplane. Let hd(n) denote the number of hyperplanes that bisect the set S
and are spanned by the elements of the set S. According to Bárány [1, p. 239],

hd(n) = O(n
d−εd ) with εd = t (d, d + 1)−(d+1).

Thus we obtain the following bound and equality.

Corollary 2.6. If d + 2 is a prime then

hd(n) = O(n
d−εd ) with εd = (d + 1)−(d+1).

For general d, we obtain e.g. εd ≥ (d + 1)−(d+1)−O(log d).

Let C ⊆ Rd be a finite set. A C-simplex is the convex hull of some collection of d + 1
points of C. The second selection lemma [13, Thm. 9.2.1] claims that for an n-point set
C ⊆ Rd and the family F of α

(
n
d+1

)
C-simplices with α ∈ (0, 1] there exists a point

contained in at least c · αsd
(
n
d+1

)
C-simplices of F . Here c = c(d) > 0 and sd are

constants. For dimensions d > 2, the presently known proof gives sd ≈ t (d, d + 1)d+1.
Again, Corollary 2.4 yields the following, much better bounds for the constant sd .

Corollary 2.7. If d + 2 > 4 is a prime then the second selection lemma holds for sd =
(d + 1)d+1, and in general e.g. for sd = (2d + 2)d+1.

Let X ⊂ Rd be an n-element set. A k-facet of X is an oriented (d − 1)-simplex
conv{x1, . . . , xd} spanned by elements of X such that there are exactly k points of X on
its strictly positive side. When n− d is even, (n−d2 )-facets of X are called halving facets.
From [13, Thm. 11.3.3] we have a new, better estimate for the number of halving facets.

Corollary 2.8. For d > 2 and n − d even, the number of halving facets of an n-set
X ⊂ Rd is O(nd−1/(2d)d ).
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3. The Configuration Space/Test Map scheme

According to the “deleted joins” version of the general “Configuration Space/Test Map”
(CS/TM) scheme for multiple intersection problems, as pioneered by Sarkaria, Vrećica &
Živaljević, and others, formalized by Živaljević, and beautifully presented by Matoušek
[14, Chap. 6], we proceed as follows.

Assume that we want to prove the existence of a topological colored Tverberg r-par-
tition for an arbitrary colored point set C = C0 ] C1 ] · · · ] Ck in Rd with |Ci | = ti . So
we have to rule out the existence of a (continuous or affine) map

f : C0 ∗ C1 ∗ · · · ∗ Ck → Rd

for which any r images of disjoint simplices from the simplicial complex (join of discrete
sets) C0 ∗ C1 ∗ · · · ∗ Ck have empty intersection in Rd (cf. Živaljević [22, Sect. 11.4.2]).

The “deleted joins” configuration space/test map scheme now suggests taking an
r-fold deleted join of this map f , where one has to take an r-fold 2-wise deleted join
in the domain and an r-fold r-wise deleted join in the range (cf. [14, Sect. 6.3]):

f ∗r1(2) : (C0 ∗ C1 ∗ · · · ∗ Ck)
∗r
1(2) −→

Sr

(Rd)∗r1 .

As the join and deleted join operations for simplicial complexes commute [14, Lemma
6.5.3], we get the sequence of isomorphisms of simplicial complexes

(C0 ∗ C1 ∗ · · · ∗ Ck)
∗r
1(2)
∼= (C0)

∗r
1(2) ∗ (C1)

∗r
1(2) ∗ · · · ∗ (Ck)

∗r
1(2)

∼= 1|C0|,r ∗1|C1|,r ∗ · · · ∗1|Ck |,r , (2)

where 1r,|Ci | = (Ci)
∗r
1(2) is the chessboard complex on r rows and |Ci | columns, on

which Sr acts by permuting the r rows. Thus we arrive at an Sr -equivariant map

f ∗r1(2) : 1r,|C0| ∗1r,|C1| ∗ · · · ∗1r,|Ck | −→
Sr

(Rd)∗r1 ⊂ Rr×(d+1)
\T ' S(W⊕(d+1)

r ). (3)

Here make the following observations.

(i) The simplicial complexX := (C0∗C1∗· · ·∗Ck)
∗r
1(2)
∼= 1r,|C0|∗1r,|C1|∗· · ·∗1r,|Ck |

on the left hand side is an Sr -simplicial complex on r(|C0| + |C1| + · · · + |Ck|) vertices,
of dimension |C0| + |C1| + · · · + |Ck| − 1 if |Ci | ≤ r for every i, and of dimension
min{|C0|, r} +min{|C1|, r} + · · · +min{|Ck|, r} − 1 in general.

Points inX can be represented as convex combinations λ1x1+· · ·+λrxr , where xi is
a point in (a simplex of) the i-th “join component” of the iterated deleted join (C0 ∗ C1 ∗

· · · ∗ Ck)
∗r
1(2), with λi ≥ 0 for all i and

∑
i λi = 1.

(ii) (Rd)∗r1 := {α1y1 + · · · + αryr ∈ (Rd)∗r : αi ≥ 0,
∑
i αi = 1}\

{ 1
r
y + · · · + 1

r
y :

y ∈ Rd
}

is a deleted join, which Sr -equivariantly embeds into the space of all real
r × (d + 1)-matrices for which not all rows are equal, and where Sr acts by permuting
the rows. The diagonal T is the (d + 1)-dimensional subspace of all matrices for which
all rows are equal. To project on the orthogonal complement of the diagonal T we sub-
tract from each row the average of all the rows. This operation yields an Sr -equivariant
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orthogonal projection to W⊕(d+1)
r \{0}, the space of all real r × (d + 1)-matrices with

column sums equal to zero but for which not all rows are zero, and where Sr still acts
by permuting the rows. This in turn is homotopy equivalent to the sphere S(W⊕(d+1)

r ) =

(Sr−2)∗(d+1)
= S(r−1)(d+1)−1

= SN−1, where π ∈ Sr reverses the orientation exactly if
(sgnπ)d+1 is negative.

(iii) The action of Sr is nonfree exactly on the subcomplex A ⊂ X = (C0 ∗ C1 ∗

· · · ∗Ck)
∗r
1(2) given by all the points λ1x1+· · ·+λrxr ∈ (C0 ∗C1 ∗ · · · ∗Ck)

∗r
1(2) such that

λi = λj = 0 for two distinct indices i < j . These lie in simplices that have no vertices in
the i-th and j -th “join component” of the iterated deleted join (C0 ∗ C1 ∗ · · · ∗ Ck)

∗r
1(2),

so the transposition πij := (ij) =
(
...i...j ...
...j ...i...

)
fixes these simplices pointwise.

(iv) The map f ∗r1(2) : X → Rr×(d+1) suggested by the “deleted joins” scheme takes
the point λ1x1 + · · · + λrxr and maps it to the r × (d + 1)-matrix in Rr×(d+1) whose
`-th row is (λ`, λ`f (x`)). For an arbitrary map f , the image of A under f ∗r1(2) does not
intersect the diagonal T : if λi = λj = 0, then not all rows (λ`, λ`f (x`)) can be equal,
since

∑
` λ` = 1.

However, for the following we replace f ∗r1(2) by the map F0 : X → Rr×(d+1) that
maps λ1x1+· · ·+λrxr to the r×(d+1)-matrix whose `-th row is (λ`, (

∏r
h=1 λh)f (x`)).

The two maps f ∗r1(2) and F0 are homotopic as maps A → Rr×(d+1)
\ T by a linear

homotopy, so the resulting extension problems are equivalent by [8, Prop. 3.15(ii)]. The
advantage of the map F0 is that its restriction toA is independent of f . Indeed, for λ1x1+

· · · + λrxr ∈ A and any map f the corresponding F0-image is the r × (d + 1)-matrix
whose `-th row is (λ`, 0).

Thus we have established the following.

Proposition 3.1 (CS/TM scheme for the generalized topological colored Tverberg prob-
lem). If for some parameters (d, r, k; t0, . . . , tk) no Sr -equivariant extension (3) of the
map F0|A : A→ Rr×(d+1)

\T exists, then for each continuous f : C0∗C1∗· · ·∗Ck → Rd
with |Ci | ≥ ti for all i there exists a topological colored Tverberg r-partition.

Živaljević & Vrećica [24] achieved this for (d, r, d; 2r − 1, . . . , 2r − 1) and prime r by
applying a Borsuk–Ulam type theorem to the action of the cyclic subgroup Zr ⊂ Sr ,
which acts freely on the join of chessboard complexes if r is a prime. However, they lose
a factor of 2 from the fact that the chessboard complexes 1r,t , for r ≤ t , of dimension
r−1 are homologically (r−2)-connected only if t ≥ 2r−1 (compare [5], [20], and [16]).

Our Theorem 2.2 claims this for (d, r, d+ 1; r− 1, . . . , r− 1, 1). To prove it, we will
use relative equivariant obstruction theory, as presented by tom Dieck in [8, Sect. II.3].

4. Proof of Theorem 2.2

First we establish that the scheme of Proposition 3.1 fails when applied to the colored
Tverberg problem (d, r, d; r, . . . , r) associated with the Bárány–Larman conjecture di-
rectly.
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Proposition 4.1. For all r ≥ 2 and d ≥ 1, with N = (r − 1)(d + 1), there exists an
Sr -equivariant map

F : (1r,r)
∗(d+1)

−→
Sr

W⊕(d+1)
r \ {0} ' SN−1.

Proof. Let M := r(d + 1)− 1, and let 1M be an M-dimensional simplex whose vertex
set C = C0 ]C1 ] · · · ]Cd is colored by d + 1 colors such that |Ci | = r for every i. For
an arbitrary continuous map f : 1M → Rd the “deleted join” configuration space/test
map scheme, as in (3), induces an Sr -equivariant map F :

(C0 ∗ C1 ∗ · · · ∗ Cd)
∗r
1(2)
∼= (1r,r)

∗(d+1)
−→
Sr

Rr×(d+1)
−→
Sr

W⊕(d+1)
r ,

where the second map is the projection on the orthogonal complement of the diagonal.
The Sr -action on the configuration space (1r,r)∗(d+1) is not free; let A denote the

subcomplex of (1r,r)∗(d+1) on which Sr does not act freely. As we have seen in Sec-
tion 3, item (iv), the F -image of A avoids the origin in W⊕(d+1)

r .
For any facet of the (r−1)-dimensional chessboard complex1r,r there is an elemen-

tary collapse which removes the facet together with its subfacet (ridge of the chessboard
complex) obtained by deleting the vertex in the r-th column. Performing these collapses
simultaneously, we see that 1r,r collapses Sr -equivariantly to an (r − 2)-dimensional
subcomplex of 1r,r , and thus (1r,r)∗(d+1) equivariantly retracts to a subcomplex X ⊂
(1r,r)

∗(d+1) whose dimension is only (d + 1)(r − 1)− 1 = N − 1. Now it is enough to
construct an Sr -equivariant map X→Sr

S(W
⊕(d+1)
r ) = SN−1.

The Sr -action on X is also not free. The subcomplex of X on which Sr does not
act freely is X ∩ A. Since dimX = dim SN−1, SN−1 is (N − 1)-simple and SN−1 is
(N − 2)-connected, by relative equivariant obstruction theory, there is no obstruction to
the existence of an Sr -equivariant map X →Sr

SN−1 provided that an Sr -equivariant
map X ∩ A→Sr

SN−1 on the nonfree part of the domain can be exhibited.
Since the F -image ofA avoids the origin inW⊕(d+1)

r , the restriction F |X∩A composed
with the Sr -equivariant radial projection to the sphere induces the required Sr -equiv-
ariant map X ∩ A→Sr

W
⊕(d+1)
r \{0} →Sr

SN−1. ut

We now specialize the general scheme of Proposition 3.1 to the situation of Theorem 2.2.
Let [n] := {1, . . . , n} denote the 0-dimensional simplicial complex on n vertices. Then
we have to show the following.

Proposition 4.2. Let r ≥ 2 and d ≥ 1 be integers, and N = (r − 1)(d + 1). There exists
an Sr -equivariant map

F : (1r,r−1)
∗d
∗1r,r−1 ∗ [r] −→

Sr

W⊕(d+1)
r \ {0}

that extends the equivariant map F0|A from Section 3, item (iv), if and only if

r | (r − 1)!d .
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F :

C0

0

1

2

3

1r,r−1

∗ · · · ∗

∗ · · · ∗

Cd−1

8

9

10

11

1r,r−1

∗

∗

Cd Cd+1

12
13

14
15

16

1r,r−1 ∗ [r]

Sr




Rr×(d+1)

Fig. 1. The vertex set, and one facet in 8 of the combinatorial configuration space for r = 5.

The vertex set of the join (1r,r−1)
∗d
∗ 1r,r−1 ∗ [r] may be represented by a rectangular

array of size r×((r−1)(d+1)+1), which carries the d+1 chessboard complexes1r,r−1
lined up from left to right, and in the last column has the chessboard complex1r,1 = [r],
which is just a discrete set. (See Figure 1.)

The join of chessboard complexes (1r,r−1)
∗d
∗1r,r−1∗[r] has dimension (r−1)(d+1)

= N , while the target sphere has dimensionN−1. On both of them, Sr acts by permuting
the rows.

While the chessboard complexes 1r,r collapse equivariantly to lower-dimensional
complexes, the chessboard complexes 1r,r−1 are closed oriented pseudomanifolds of di-
mension r − 2 and thus do not collapse; for example, 13,2 is a circle and 14,3 is a torus.
We will read the maximal simplices of such a complex from left to right, which yields the
orientation cycle in a special form with few signs that will be very convenient.

Lemma 4.3 (cf. [5], [16], [10, p. 145]). For r > 2, the chessboard complex 1r,r−1 is a
connected, orientable pseudomanifold of dimension r − 2. Therefore

Hr−2(1r,r−1;Z) = Z

and an orientation cycle is

zr,r−1 =
∑
π∈Sr

(sgnπ)〈(π(1), 1), . . . , (π(r − 1), r − 1)〉. (4)

Sr acts on 1r,r−1 by permuting the rows; this affects the orientation according to
π · zr,r−1 = (sgnπ)zr,r−1.

Proof of Proposition 4.2. For r = 2, since 2 - 1, we have to prove that there is no
equivariant map SN → SN−1, where both spheres are equipped with the antipodal action:
This is the Borsuk–Ulam theorem (and the Lovász proof). Thus we may now assume that
r ≥ 3.

Let X := (1r,r−1)
∗(d+1)

∗ [r] be our combinatorial configuration space, A ⊂ X the
nonfree subcomplex, and F0 : A →Sr

S(W
⊕(d+1)
r ) the prescribed map that we are to

extend Sr -equivariantly to X.
Since

• dimX = N and dim S(W
⊕(d+1)
r ) = N − 1, with

• conn S(W⊕(r+1)
r ) = N − 2 and

• S(W
⊕(r+1)
r ) being (N − 2)-simple,
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by [8, Sect. II.3] the existence of an Sr -equivariant extension of the map F0 : A →Sr

S(W
⊕(d+1)
r ) to a Sr -equivariant map X→Sr

S(W
⊕(d+1)
r ) is equivalent to the vanishing

of the primary obstruction

o ∈ HN
Sr

(
X,A;πN−1(S(W

⊕(d+1)
r ))

)
.

The Hurewicz isomorphism gives an isomorphism of the coefficient Sr -module with a
homology group,

πN−1(S(W
⊕(r+1)
r )) ∼= HN−1(S(W

⊕(r+1)
r );Z) =: Z.

As an abelian group, this module Z = 〈ζ 〉 is isomorphic to Z. The action of the permuta-
tion π ∈ Sr on the module Z is given by

π · ζ = (sgnπ)d+1ζ.

Computing the obstruction cocycle. We will now compute an obstruction cocycle cf in
the cochain group CNSr

(X,A;Z). Then we show that the cocycle cf is not a cobound-
ary (that is, it does not vanish when passing to o = [cf ] in the cohomology group
HN

Sr
(X,A;Z)) if and only if r - (r − 1)!d .

For this, we use a specific general position map f : 1N → Rd , which induces a
map F : X→ Rr×(d+1); the value of the obstruction cocycle cf on an oriented maximal
simplex σ of X is then given by the signed intersection number of F(σ) with the test
space, the diagonal T , or in other words by the mapping degree deg(F |∂ σ : ∂ σ →
S(W

⊕(d+1)
r )) (cf. [8] and [6]).

Let e1, . . . , ed be the standard basis vectors of Rd , set e0 := 0 ∈ Rd , and denote by
v0, . . . , vN the set of vertices of the N -simplex 1N in the given order, that is, such that
Ci = {vi(r−1), . . . , v(i+1)(r−1)−1} for i ≤ d andCd+1 = {v(d+1)(r−1)}. Let f : 1N → Rd
be the affine map defined on the vertices by

vi
f
7−→ ebi/(r−1)c for 0 ≤ i ≤ N − 1, vN

f
7−→

1
d + 1

d∑
i=0

ei,

that is, the vertices in Ci are mapped to the vertex ei of the standard d-simplex for i ≤ d,
while vN ∈ Cd+1 is mapped to the center of this simplex.

This induces an affine map f : C0 ∗ C1 ∗ · · · ∗ Cd+1 → Rd and thus an equivariant
map F : X→ Rr×(d+1), taking λ1x1 + · · · + λrxr to the r × (d + 1)-matrix whose `-th
row is (λ`, (

∏r
h=1 λh)x`), which extends the prescribed map F0 : A→ Rr×(d+1)

\T . The
intersection points of the image of F with the diagonal T correspond to the topological
colored Tverberg r-partitions of the configuration C = C0 ] · · · ] Cd+1 in Rd . Since
λ1 = · · · = λr = 1/r at all these intersection points, we find that F is in general position
with respect to T .

The only Tverberg r-partitions of the point configuration C (even ignoring colors) are
given by r − 1 d-simplices with its vertices at e0, e1, . . . , ed , together with one singleton
point (0-simplex) at the center. Clearly there are (r − 1)!d such partitions.
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v0

v1
v2

v3
. . .

v14
v15

v16

f (v16)

f (v0)

f (v1)

f (v2)

f (v3)

f (v4)

f (v5)

f (v6)

f (v7)

f (v8)

f (v9)

f (v10)

f (v11)

f (v12)

f (v13)

f (v14)

f (v15)

Fig. 2. The map f : 116
→ R3 in the case d = 3 and r = 5.

We take representatives for the Sr -orbits of maximal simplices of X such that from
the last 1r,r−1 factor, the vertices (1, 1), . . . , (r − 1, r − 1) are taken.

On the simplices of X we use the orientation that is induced by ordering all vertices
left-to-right on the array of Figure 1. This orientation is Sr -invariant, as permutation of
the rows does not affect the left-to-right ordering.

The obstruction cocycle evaluated on subcomplexes of X. Let us consider the follow-
ing chains of dimensions N resp. N −1 (illustrated in Figure 3), where zr,r−1 denotes the
orientation cycle for the chessboard complex 1r,r−1, as given by Lemma 4.3:

8 = (zr,r−1)
∗d
∗ 〈(1, 1), . . . , . . . , . . . , (r − 1, r − 1), (r, r)〉,

�j = (zr,r−1)
∗d
∗ 〈(1, 1), . . . , . . . , . . . , (r − 1, r − 1), (j, r)〉 (1 ≤ j < r),

2i = (zr,r−1)
∗d
∗ 〈(1, 1), . . . , (̂i, i), . . . , (r − 1, r − 1), (r, r)〉 (1 ≤ i ≤ r),

2i,j = (zr,r−1)
∗d
∗ 〈(1, 1), . . . , (̂i, i), . . . , (r − 1, r − 1), (j, r)〉 (1 ≤ i, j < r).

Here we use the usual notation 〈w0, . . . , ŵi, . . . , wk〉 for an oriented simplex with ordered
vertex set (w0, . . . , ŵi, . . . , wk) where the vertex wi is omitted.

Explicitly the signs in these chains are as follows. If σ denotes the facet 〈(1, 1), . . . ,
(r − 1, r − 1)〉 of 1r,r−1 such that πσ = 〈(π(1), 1), . . . , (π(r − 1), r − 1)〉, then 8 is
given by

8 =
∑

π1,...,πd∈Sr

(sgnπ1) · · · (sgnπd) π1σ ∗ · · · ∗ πdσ ∗ 〈(1, 1), . . . , (r − 1, r − 1), (r, r)〉

and similarly for �j , 2i , and 2i,j .
The evaluation of cf on 8 picks out the facets that correspond to topological colored

Tverberg r-partitions: Since the last part of the partition must be the singleton vertex vN ,
we find that the last rows of the chessboard complex1r,r−1 factors are not used. We may
define the orientation on S(W⊕(d+1)

r ) such that

cf (σ ∗ · · · ∗ σ ∗ 〈(1, 1), . . . , (r − 1, r − 1), (r, r)〉) = +ζ.
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8 = (1r,r−1)
∗d ∗

2i = (1r,r−1)
∗d ∗ i

�j = (1r,r−1)
∗d ∗

j

2i,j = (1r,r−1)
∗d ∗

j

i

2j,j = (1r,r−1)
∗d ∗

j

Fig. 3. Schemes for the combinatorics of the chains 8, �j , 2i , and 2i,j .

Then we get

cf
(
π1σ ∗ · · · ∗ πdσ ∗ 〈(1, 1), . . . , (r − 1, r − 1), (r, r)〉

)
=

{
(sgnπ1) · · · (sgnπd)ζ if π1(r) = · · · = πd(r) = r,

0 otherwise.

The sign (sgnπ1) · · · (sgnπd) comes from the fact that F maps σ ∗ · · · ∗ σ ∗ 〈(1, 1), . . . ,
(r − 1, r − 1), (r, r)〉 and π1σ ∗ · · · ∗πdσ ∗ 〈(1, 1), . . . , (r − 1, r − 1), (r, r)〉 to the same
simplex in W⊕(d+1)

r , however with a different order of the vertices. Thus,

cf (8) = (r − 1)!d ζ.

Furthermore, for any topological colored Tverberg r-partition in our configuration
the last point vN has to be a singleton, while the facets of �j correspond to colored
r-partitions where the j -th face pairs vN with a point in Cd . Thus the cochains �j do not
capture any Tverberg partitions, and we get

cf (�j ) = 0 for 1 ≤ j < r.

Is the cocycle cf a coboundary? Let us assume that cf is a coboundary. Then there is
an equivariant cochain h ∈ CN−1

Sr
(X,A;Z) such that cf = δh, where δ is the coboundary

operator.
In order to simplify the notation, from now on we drop the join factor (1r,r−1)

∗d

from the notation of the subcomplexes8,2i and�i . Note that the join with this complex
accounts for a global sign of (−1)d(r−1) in the boundary/coboundary operators, since in
our vertex ordering the complex (1r,r−1)

∗d , whose facets have d(r − 1) vertices, comes
first.
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Thus we have

∂8 = (−1)d(r−1)
r∑
i=1

(−1)i−12i

and similarly for 1 ≤ j < r ,

∂�j = (−1)d(r−1)
(r−1∑
i=1

(−1)i−12i,j + (−1)r−12r

)
.

Claim 1. For 1 ≤ i, j < r , i 6= j we have h(2i,j ) = 0.

Proof. We consider the effect of the transposition πir := (ir) =
(
...i...r
...r...i

)
. The simplex

〈(1, 1), . . . , (̂i, i), . . . , (r − 1, r − 1), (j, r)〉

has no vertex in the i-th and in the r-th row, so it is fixed by πir . The d chessboard
complexes in 2i,j are invariant but change orientation under the action of πir , so the
effect on the chain 2i,j is πir ·2i,j = (−1)d2i,j and hence

h(πir ·2i,j ) = h((−1)d2i,j ) = (−1)dh(2i,j ).

On the other hand, h is equivariant, so

h(πir ·2i,j ) = πir · h(2i,j ) = (−1)d+1h(2i,j )

since Sr acts on Z by multiplication with (sgnπ)d+1. Comparing the two evaluations of
h(πir ·2i,j ) yields (−1)dh(2i,j ) = (−1)d+1h(2i,j ). ut

Claim 2. For 1 ≤ j < r we have h(2j,j ) = −h(2j ).

Proof. The interchange of the j -th row with the r-th moves 2j,j to 2j , where we have
to account for d orientation changes for the chessboard join factors.

Thus πjr2j,j = (−1)d2j , which yields

(−1)dh(2j ) = h((−1)d2j ) = h(πjr2j,j ) = πjr · h(2j,j ) = (−1)d+1h(2j,j ). ut

We now use the two claims to evaluate h(∂�j ). Thus we obtain

0 = cf (�j ) = δh(�j ) = h(∂�j ) = (−1)d(r−1)((−1)j−1h(2j,j )+ (−1)r−1h(2r)
)

and hence
(−1)jh(2j ) = (−1)rh(2r).

The final blow now comes from our earlier evaluation of the cochain cf on 8:

(r − 1)!d · ζ = cf (8) = δh(8) = h(∂8) = h((−1)d(r−1)
r∑

j=1

(−1)j−12j )

= −(−1)d(r−1)
r∑

j=1

(−1)jh(2j ) = −(−1)d(r−1)
r∑

j=1

(−1)rh(2r)

= (−1)(d+1)(r−1)r h(2r).
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Thus, the integer coefficient of h(2r) should be equal to (r−1)!d
r

ζ , up to a sign. Conse-
quently, when r - (r−1)!d , the cocycle cf is not a coboundary, i.e., the cohomology class
o = [cf ] does not vanish and so there is no Sr -equivariant extension X → S(W

⊕(d+1)
r )

of F0|A.
On the other hand, when r | (r − 1)!d we can define

h(2j ) := +(−1)(d+1)(r−1)+j+r (r−1)!d
r
· ζ for 1 ≤ j ≤ r,

h(2j,j ) := −(−1)(d+1)(r−1)+j+r (r−1)!d
r
· ζ for 1 ≤ j < r,

h(2i,j ) := 0 for i 6= j, 1 ≤ i ≤ r, 1 ≤ j < r.

(5)

Here we employ obstruction theory with respect to the filtration (1r,r−1)
∗d
∗

(1r,r−1 ∗ [r])
(n) of X, where (1r,r−1 ∗ [r])

(n) denotes the n-skeleton of1r,r−1 ∗ [r]. The
“cells” are of the form (1r,r−1)

∗d
∗F , where F ranges over the faces of1r,r−1∗[r]. They

are connected oriented pseudomanifolds with boundary, their boundary being the pseu-
domanifolds (1r,r−1)

∗d
∗∂F . If dim(1r,r−1)

∗d
∗∂F = N−1 = dim S(W

⊕(d+1)
r ), then a

map (1r,r−1)
∗d
∗∂F → S(W

⊕(d+1)
r ) can be nonequivariantly extended to (1r,r−1)

∗d
∗F

→ S(W
⊕(d+1)
r ) if and only if its degree is zero; this uses a standard obstruction theory

argument. Similarly, if dim(1r,r−1)
∗d
∗ F = N − 1 = dim S(W

⊕(d+1)
r ), then the set of

nonequivariant extensions of a map (1r,r−1)
∗d
∗∂F → S(W

⊕(d+1)
r ) to (1r,r−1)

∗d
∗F →

S(W
⊕(d+1)
r ) corresponds bijectively to the elements inHN ((1r,r−1)

∗d
∗(F, ∂F );Z)= Z;

the bijection depends on the choice of one extension that should correspond to 0 ∈ Z. The
obstruction cocycle cf can thus be regarded as an element in the simplicial cochain com-
plex

Cr−1
Sr

(1r,r−1 ∗ [r], B;Z ⊗H(r−1)d−1((1r,r−1)
∗d
;Z)),

where B denotes the subcomplex of 1r,r−1 ∗ [r] on which Sr does not act freely. The
coefficients are twisted with the top homology of (1r,r−1)

∗d in order to account for the
Sr -action on the orientation of the cells. The coboundary of h as defined in (5) is cf .
Since h is only nonzero on the cells2j and2j,j , which are only invariant under id ∈ Sr ,
we can solve the extension problem equivariantly. Note also that this map still coincides
with F0 on A.

Hence for r | (r − 1)!d there exists an Sr -equivariant extension X → S(W
⊕(d+1)
r )

of F0|A. ut

Remark 4.4 (February, 2013). We are happy that our work has attracted a lot of atten-
tion immediately after the first presentation in October 2009.

Soon after completion of the first version of the preprint for this paper we noticed (see
[7, Sect. 2]) that the nonexistence part of Proposition 4.2 can also be phrased in more
elementary terms using degrees rather than by using equivariant obstruction theory; this
was also noticed by Vrećica and Živaljević [19].

We note that despite the condition r | (r−1)!d obtained from evaluation of the obstruc-
tion cocycle on a particular subcomplex, the correct value for the degree of the equivariant
map in question is (r−1)!d+1, so that the degree approach only yields the necessary con-
dition r | (r − 1)!d+1 for the existence of the map.
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We provide the degree formulation of the proof of nonexistence part of Proposition 4.2
in [7] as a special case of a Tverberg–Vrećica type transversal theorem, accompanied
by much more complete cohomological index calculations, which also yield a second
new proof that establishes Theorem 2.1 directly, without a reduction to Theorem 2.2.
Matoušek, Tancer & Wagner [15] have presented an elementary version of the degree-
based proof for the nonexistence part of Proposition 4.2.

The proof in terms of degrees, however, does not imply that the Sr -equivariant map
proposed by the natural configuration space/test map scheme of Theorem 4.2 exists if r
divides (r − 1)!d . Moreover, the nonexistence of an induced equivariant map in the case
d = 1 and r = 4 can only be captured by the use of equivariant obstruction theory.

See [21] for an exposition of the history and context of this subject.
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