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Abstract. The Trudinger–Moser inequality is a substitute for the (forbidden) critical Sobolev em-
bedding, namely the case where the scaling corresponds to L∞. It is well known that the original
form of the inequality with the sharp exponent (proved by Moser) fails to hold on the whole plane,
but a few modified versions are available. We prove a more precise version of the latter, giving
necessary and sufficient conditions for boundedness, as well as for compactness, in terms of the
growth and decay of the nonlinear function. It is tightly related to the ground state of the nonlinear
Schrödinger equation (or the nonlinear Klein–Gordon equation), for which the range of the time
phase (or the mass constant) as well as the energy is given by the best constant of the inequality.

Keywords. Sobolev critical exponent, Trudinger–Moser inequality, concentration compactness,
nonlinear Schrödinger equation, ground state

1. Introduction

There are several extensions of the critical Sobolev embedding

Ḣ 1(Rd) ⊂ L2d/(d−2)(Rd) (1.1)

from d ≥ 3 to d = 2, where the simple limit estimate fails:

H 1(R2) 6⊂ L∞(R2). (1.2)

One way is to replace the right hand side by BMO, Besov, Triebel–Lizorkin or Morrey–
Campanato spaces of the same type (scaling). These all take into account possible os-
cillations of functions in H 1(R2). If one is more interested in possible growth, another
substitute is given by the Trudinger–Moser inequality [38, 31, 32, 25]:
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Proposition 1.1. For any open set � ⊂ R2 with bounded measure |�| <∞, there exists
a constant κ(�) > 0 such that

u ∈ H 1
0 (�), ‖∇u‖L2(�) ≤ 1 ⇒

∫
R2
(e4π |u|2

− 1) dx ≤ κ(�). (1.3)

Moreover, this fails if 4π is replaced with any α > 4π . The constant κ(�) is bounded
by |�|, but in general unbounded as |�| → ∞.

The goal of this paper is to give a more precise version of this inequality in the whole
space R2, with necessary and sufficient conditions in terms of the growth of general non-
linear functionals (not only for eα|u|

2
− 1). Before stating our result, let us first recall

the following two versions of the Trudinger–Moser inequality on R2. The first one is for
smaller exponents.

Proposition 1.2. For any α < 4π , there exists a constant cα > 0 such that

u ∈ H 1(R2), ‖∇u‖L2(R2) ≤ 1 ⇒
∫
R2
(eα|u|

2
− 1) dx ≤ cα‖u‖2L2(R2)

. (1.4)

Moreover, this fails if α is replaced with 4π .

One can normalize to ‖u‖L2 = 1 by scaling. This version was proved in [9], using the
symmetric decreasing rearrangement as Moser did [31]. The necessity of α < 4π was
proved in [1], also using Moser’s example.

The second version is to strengthen the condition on ‖∇u‖L2(R2) to the wholeH 1(R2)

norm. Then the value α = 4π becomes admissible.

Proposition 1.3. There exists a constant κ > 0 such that

u ∈ H 1(R2), ‖u‖H 1(R2) ≤ 1 ⇒
∫
R2
(e4π |u|2

− 1) dx ≤ κ. (1.5)

Moreover, this fails if 4π is replaced with any α > 4π .

This version was proved in [34], again by Moser’s argument, while the failure for α > 4π
is clear from the sharpness in the previous two propositions.

In short, the failure of the original Trudinger–Moser (1.3) on R2 can be overcome
either by weakening the exponent α = 4π or by strengthening the norm ‖∇u‖L2 . It is
worth noting, however, that proving these two estimates on R2 is considerably easier than
the critical case 4π on �, which suggests that there is some room for improvement, even
though they are “sharp” in their formulations.

Then a natural question arises:

What if we keep both the conditions α = 4π and ‖∇u‖L2(R2) ≤ 1? (1.6)

Our answer to this question is to weaken the exponential nonlinearity as follows:
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Proposition 1.4. There exists a constant c > 0 such that

u ∈ H 1(R2), ‖∇u‖L2(R2) ≤ 1 ⇒
∫
R2

e4π |u|2
− 1

(1+ |u|)2
dx ≤ c‖u‖2

L2(R2)
. (1.7)

Moreover, this fails if the power 2 in the denominator is replaced with any p < 2.

Obviously this implies Proposition 1.2. It is less obvious that it also implies Proposi-
tion 1.3, but indeed this follows by the Hölder inequality only: see Section 6. Hence
Proposition 1.4 can be regarded as a unified improvement of those two previous versions,
while it can be easily deduced from part (B) of our full Theorem 1.5 below, by taking

2πK = 1, g(u) =
e4π |u|2

− 1
(1+ |u|)2

. (1.8)

The following theorem completely determines the growth order, not only among exponen-
tials and power functionals, but for general functions, in terms of necessary and sufficient
conditions, both for boundedness and for compactness.

Theorem 1.5. For any Borel function g : R→ [0,∞), define a functional G by

G(ϕ) =

∫
R2
g(ϕ(x)) dx. (1.9)

Then for any K > 0 we have the following conditions.

(B) Boundedness: The following conditions are equivalent:

(1) lim|u|→∞ e−2|u|2/K
|u|2g(u) <∞ and limu→0 |u|

−2g(u) <∞.
(2) There exists a constant Cg,K > 0 such that

ϕ ∈ H 1(R2), ‖∇ϕ‖2
L2(R2)

≤ 2πK ⇒ G(ϕ) ≤ Cg,K‖ϕ‖
2
L2 . (1.10)

Moreover, if (1) fails then there exists a sequence ϕn ∈ H 1(R2) satisfying

‖∇ϕn‖
2
L2 < 2πK, ‖ϕn‖L2 → 0, G(ϕn)→∞ (n→∞). (1.11)

(C) Compactness: The following conditions are equivalent:

(3) lim|u|→∞ e−2|u|2/K
|u|2g(u) = 0 and limu→0 |u|

−2g(u) = 0.
(4) For any sequence of radial ϕn ∈ H 1(R2) satisfying ‖∇ϕn‖2L2 ≤ 2πK and

weakly converging to some ϕ ∈ H 1(R2), we have G(ϕn)→ G(ϕ).

Moreover, if (3) fails then there exists a sequence of radial ϕn ∈ H 1(R2) satisfying
‖∇ϕn‖

2
L2 < 2πK , converging to 0 weakly in H 1, and G(ϕn) > δ for some δ > 0.
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Remark 1. 1) This theorem shows that the true threshold for the L2 Trudinger–Moser
inequality in the whole space under the condition ‖∇ϕ‖L2(R2) ≤ 1 is given by the func-
tional in (1.7), and loss of compactness happens only for it.

2) As we will see in the proof, the concentration sequence constructed to show the ne-
cessity of (3) is very different from those in the higher dimensional case—it must contain
a nontrivial tail going to the spatial infinity which is the main contribution to L2, even
though the main contribution to G is the concentrating part. This is also different from
the concentration in the original Trudinger–Moser inequality (1.3) (see [27]).

3) In the Orlicz space corresponding to g(u) ∼ eα|u|
2
, [5] gives a more precise de-

scription of concentration compactness, in terms of the profile decomposition. However,
the above phenomena for g(u) ∼ e2|u|2/K

|u|−2 do not seem to be observable in a linear
setting such as in the Orlicz space.

4) For the original Trudinger–Moser inequality (1.3), the exponent 4π can be im-
proved if it is allowed to depend on ‖u‖L2/‖∇u‖L2 . Precisely, it is proved in [2] that

sup
u∈H 1

0 (�), ‖∇u‖L2=1

∫
R2
(e

4π |u|2(1+α‖u‖2
L2 ) − 1) dx <∞ (1.12)

if and only if α is less than the first Dirichlet eigenvalue of−1 on�. Our inequality (1.7)
does not admit such improvement because of scaling invariance.

In Section 2, we prove the necessity of (1) and (3) in Theorem 1.5, by constructing se-
quences ϕn obtained by rescaling Moser’s example. In Section 3, we study the optimal
growth of a function in the exterior of the ball when the L2 and Ḣ 1 norms are given. This
is used in proving the sufficiency or the main part of Theorem 1.5 in Section 4.

2. Proof of the necessity of (1) and (3): Moser’s example

First we consider the much easier case with the condition as u → 0. Let ϕn(x) be a
sequence of radial functions in H 1(R2) defined by

ϕn(x) =


an (|x| < Rn),

an(1− |x| + Rn) (Rn < |x| < Rn + 1),
0 (|x| > Rn + 1),

(2.1)

for some sequences an→ 0 and Rn→∞ to be chosen later. We have

‖ϕn‖
2
L2 ∼ a

2
nR

2
n, ‖∇ϕn‖

2
L2 ∼ a

2
nRn, G(ϕn) ≥ πR

2
ng(an). (2.2)

If (1) is violated by limu→0 |u|
−2g(u) = ∞, then we can find a sequence an ↘ 0

such that g(an) ≥ n|an|2. Let Rn = a
−1/2
n + a−1

n n−1/4. Then Rn →∞, anRn → 0 and
G(ϕn) ≥ na

2
nR

2
n →∞.
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If (3) is violated by limu→0 |u|
−2g(u) > 0, then we can find a sequence an ↘ 0 and

δ > 0 such that g(an) ≥ δ|an|2. Let Rn = 1/an. Then Rn → ∞, anRn = 1, a2
nRn → 0

and G(ϕn) ≥ δa2
nR

2
n ≥ δ.

It remains to treat the case where the condition for |u| → ∞ fails. First, we recall the
following fundamental example of Moser. Let fα be defined by:

fα(x) =


0 if |x| ≥ 1,
−

log |x|
√

2απ
if e−α ≤ |x| ≤ 1,√

α
2π if |x| ≤ e−α,

where α > 0. One can also write fα as

fα(x) =

√
α

2π
L
(
− log |x|

α

)
, (2.3)

where

L(t) =

 0 if t ≤ 0,
t if 0 ≤ t ≤ 1,
1 if t ≥ 1.

Straightforward computations show that ‖fα‖2L2(R2)
=

1
4α (1 − e−2α) − 1

2e
−2α and

‖∇fα‖L2(R2) = 1.
In order to fit this example into our estimate on R2, we need to make sure that the L2

norm does not go to zero. This requires a rescaling of Moser’s example. Choose sequences
1� bk ↗∞ and Kk ↗ K such that

ck := e
−2b2

k/Kkb2
kg(bk)→ lim

|u|→∞
e−2|u|2/K

|u|2g(u), (2.4)

and let Rk = e−b
2
k/Kk . We define a radial function ψk(r) ∈ H 1(R2) by

ψk(r) =


bk (r < Rk),

bk
|log r|
|logRk |

(Rk ≤ r < 1),

0 (r ≥ 1).

(2.5)

Then we have

‖∇ψk‖
2
L2 = 2πb2

k

∫ 1

Rk

dr

r|logRk|2
= 2πKk < 2πK,

‖ψk‖
2
L2 ∼

2πb2
k

|logRk|2
=

2πK2
k

b2
k

, G(ψk) ≥ 2πR2
kg(bk) =

2πck
b2
k

,

(2.6)

and so G(ψk)‖ψk‖−2
L2 ≥ ck/K

2.
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Now let ϕk = ψk(x/Sk), where we choose Sk = bk if (3) fails (i.e. if ck > 0), and
Sk = o(bk) such that S2

k ck/b
2
k → ∞ if (1) fails (i.e. if ck = ∞). In both cases ϕk is

bounded in H 1 and satisfies

‖∇ϕk‖
2
L2 = ‖∇ψk‖

2
L2 = 2πKk < 2πK,

‖ϕk‖
2
L2 = S

2
k‖ψk‖

2
L2 ∼ 2πK2

k

S2
k

b2
k

, G(ϕk) ≥ 2πR2
kg(bk) =

2πckS2
k

b2
k

.
(2.7)

Moreover, ϕk(x)→ 0 for every x 6= 0, because |ϕk(x)| . ε if |x| ≥ Ske−εbk = o(1) for
any ε > 0. This ends the proof for the necessity of (1) and (3).

3. Radial Trudinger–Moser and optimal descending

In this section, we prove the following theorem that will be used in the proof of point (2)
of the main theorem 1.5. This can be regarded as the exponential version of the radial
Sobolev inequality.

Theorem 3.1. There exists a constant C > 0 such that for any radial ϕ ∈ H 1(R2), and
any K,R > 0,

‖∇ϕ‖2
L2(|x|>R)

≤ 2πK ⇒
e2ϕ(R)2/K

ϕ(R)2/K2 ≤ C‖ϕ/R‖
2
L2(|x|>R)

or ϕ(R)2 ≤ K. (3.1)

Note that the second case is as if the (false) critical radial Sobolev inequality

ϕ ∈ H 1
radial(R

2) ⇒ ‖ϕ‖L∞(|x|>R) . ‖∇ϕ‖L2(|x|>R) (3.2)

were recovered. Hence the first case is essential for the Trudinger–Moser type inequali-
ties, for which the function eϕ

2
/ϕ is optimal. More precisely, we have

Theorem 3.2. Let

µ(h) := inf{‖ϕ‖L2(|x|>1) | ϕ ∈ H
1
radial, ϕ(1) = h, ‖ϕr‖

2
L2(|x|>1) ≤ 2π} (3.3)

for h > 1, where ϕr = ∂rϕ. Then µ(h) ∼ eh
2
/h for h > 1.

Obviously, the first theorem follows from the second one, by rescaling. To prove the latter,
we consider the discrete version:

µd(h) := inf{‖a‖(e) | ‖a‖1 = h, ‖a‖2 ≤ 1} (3.4)

for h > 1, where the norms of any sequence a = (an)∞n=0 are defined by

‖a‖
p
p =

∞∑
n=0

|an|
p, ‖a‖2(e) =

∞∑
n=0

e2na2
n. (3.5)
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Lemma 3.3. We have µ(h) ∼ µd(h) for h > 1.

Proof. µd is naturally obtained by optimizing the energy for given values on the lattice.
For µ(h), it suffices to consider radial ϕ ∈ H 1 satisfying ϕr ≤ 0 ≤ ϕ.

Let hk = ϕ(ek) and ak = hk − hk+1 for k = 0, 1, 2 . . . . We can optimize the energy
on each interval [ek, ek+1

] by replacing ϕ with

ψ(r) = ak|log(e−k−1r)| + hk+1 (ek ≤ r ≤ ek+1). (3.6)

Then ψ(1) = h0 = ϕ(1) = h and∫ ek+1

ek
ψr(r)

2r dr = a2
k = (ϕ(e

k)− ϕ(ek+1))2 ≤

∫ ek+1

ek
ϕr(r)

2r dr, (3.7)

where the last inequality follows from the Schwarz inequality. For the L2 norm we have

‖ψ‖2
L2(r>1) .

∞∑
k=0

h2
ke

2k . h2
0 +

∫
∞

0
‖ϕ‖2

L2(r>1), (3.8)

where h2
0 is estimated by using the energy as follows. For 1 < r < e1/4 we have

ϕ(1)− ϕ(r) ≤
∫ 1

r

ϕr(s) ds ≤

√∫ e1/4

1
ϕ2
r r dr

∫ e1/4

1

dr

r
≤

1
2
, (3.9)

which implies ϕ(r) ≥ h0/2 since h0 = h > 1, and so

h2
0 .

∫ e1/4

1
ϕ2r dr . ‖ϕ‖2

L2 . (3.10)

Hence for µ(h) it suffices to consider such ψ . Moreover we have

‖a‖22 ≤ ‖ψr‖
2
L2(|x|>1)/(2π) ≤ 1, ‖a‖1 = h0 = h, (3.11)

and

‖ψ‖2
L2(r>1) ∼

∑
j≥0

h2
j e

2j
=

∑
j

∑
k,l≥j

akale
2j

=

∑
k,l

akal
∑

j≤min(k,l)

e2j
∼

∑
k≤l

akale
2k
∼ ‖a‖2(e), (3.12)

where . for the last equivalence follows from the Young inequality on Z. ut

Now, Theorem 3.2, and hence Theorem 3.1, follows from

Lemma 3.4. For h > 1 we have

µd(h) ∼ e
h2
/h. (3.13)
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This is essentially achieved by constant sequences of finite length, corresponding to
Moser’s function in the continuous version. The (e) norm determines the fall-off or the
length of the sequence, and then optimization of the embedding `2

⊂ `1 on the finite
length forces it to be a constant.

Proof. Since µd(h) is increasing in h, it suffices to show µd(
√
n) ∼ en/

√
n for all inte-

ger n. Now . is easily seen by choosing a = (1, . . . , 1)/
√
n, so we consider &. Suppose

for contradiction that for some ε � 1 and n� 1 and some sequence a we have

‖a‖2 ≤ 1, ‖a‖1 =
√
n, ‖a‖2(e) ≤ ε

2e2n/n. (3.14)

From the last condition we get

n ≤ j ⇒ |aj | .
ε
√
n
en−j , (3.15)

and so letting a′j = aj for j ≤ n and a′j = 0 for j > n, we get

‖a′‖1 ≥ ‖a‖1 −
∑
j>n

|aj | ≥
√
n−

Cε
√
n
. (3.16)

Then by the support of a′ we have

n− Cε ≤ ‖a′‖21 = n‖a
′
‖

2
2 −

∑
j,k≤n

(aj − ak)
2/2 ≤ n−

∑
j,k≤n

(aj − ak)
2/2, (3.17)

hence ∑
j,k≤n

(aj − ak)
2 . ε. (3.18)

Choose m ≤ n so that minj≤n |aj | = |am|. Then from the above estimate we get

‖a′‖1 − n|am| ≤ ‖aj − am‖`1(j≤n) ≤
√
n ‖aj − am‖`2(j≤n) .

√
nε. (3.19)

Combining this with (3.16), we get

|am| &
√
n/n = 1/

√
n, (3.20)

provided that ε > 0 is small enough. Since |an| ≥ |am|, we obtain ‖a‖(e) & en/
√
n,

which yields a contradiction. Hence, we deduce that µd(h)2 ∼ e2h2
/h2. ut
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4. Proof of (2) and (4) of Theorem 1.5

To prove (2) of Theorem 1.5, it suffices to show that

G(ϕ) =

∫
R2

min(|ϕ|2, |ϕ|−2)e2|ϕ|2 dx . ‖ϕ‖2
L2 (4.1)

for all nonnegative, radially decreasing ϕ ∈ H 1(R2) satisfying ‖∇ϕ‖2
L2 = 2π . Here we

took K = 1. Fix such a radial function ϕ(x) = ϕ(r) and let g(s) = min(|s|2, |s|−2)e2|s|2 .
Choose R0 > 0 such that ‖∇ϕ‖2

L2(r>R0)
= 2πK0, where K0 = κ ∈ (2/3, 1) is a

constant which will be determined later, below (4.25). It is obvious by scaling invariance
that R0 depends on ϕ, but we do not need any bound on R0. Let

R := inf{r > 0 | ϕ(r) ≤ 1}. (4.2)

Then the desired estimate (4.1) in the region {r > R} follows from g(ϕ) . ϕ2
≤ 1, which

is enough if R = 0. Otherwise we have R > 0 and ϕ(R) = 1.
First we dispose of the easiest case ϕ(R0)

2
≤ K0, the second case in Theorem 3.1.

Then R < R0 since K0 < 1. Hence in the region {r < R}, by the Schwarz inequality,

ϕ(r)− 1 =
∫ R

r

|ϕr | dr ≤
√
(1−K0) log(R/r), (4.3)

and so, setting K̂ := 1−K0/2, we have

ϕ(r)2

K̂
≤
(ϕ(r)− 1)2

1−K0
+

1

K̂ − (1−K0)
≤ log(R/r)+

2
K0
, (4.4)

where we have used the Young inequality (a + b)2/(α + β) ≤ a2/α + b2/β. Thus we
obtain ∫ R

0
e2ϕ(r)2r dr .

∫ R

0
(R/r)2K̂r dr . R2

≤ 2
∫ R

0
ϕ(r)2r dr, (4.5)

since ϕ(r) ≥ 1 for r ≤ R. The implicit constants can be chosen respectively as

e2(2−κ)/κ , 1/κ. (4.6)

Combining the above estimate with that on r > R, we deduce the desired (4.1) in the case
ϕ(R0)

2
≤ K0.

Therefore, in the rest of the proof, we assume that ϕ(R0)
2 > K0, which is the main

case. The region r > R0 is subcritical and easily estimated by the same argument as
above. Since the region r > R is already estimated, it suffices to consider the case
R0 < R. Then in the region {R0 < r < R}, we argue in the same way as in (4.3)–(4.5),
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putting K ′ := (1+K0)/2 < 1:

ϕ(r)− 1 =
∫ R

r

|ϕr | dr ≤
√
K0 log(R/r),

ϕ(r)2

K ′
≤
(ϕ(r)− 1)2

K0
+

1
K ′ −K0

≤ log(R/r)+
2

1−K0
,∫ R

R0

e2ϕ(r)2r dr .
∫ R

R0

(R/r)2K
′

r dr . R2
− R2

0 ≤ 2
∫ R

R0

ϕ(r)2r dr.

(4.7)

The above implicit constants can be chosen respectively as

e2(1+κ)/(1−κ),
1

1− κ
. (4.8)

Combining the above estimate with that for r > R, we obtain∫
|x|>R0

g(ϕ(x)) dx .
∫
|x|>R0

ϕ(x)2 dx = 2πM0. (4.9)

Now we proceed to the main part r < R0. Let

Rj = R0e
−j , hj = ϕ(Rj ), aj =

√∫ Rj−1

Rj

|ϕr |2r dr,

Kj =

∫
∞

Rj

|ϕr |
2r dr, M0 =

∫
∞

R0

ϕ2r dr.

(4.10)

Then Theorem 3.1 gives

e2h2
0/K0

h2
0

R2
0 . M0/K

2
0 ∼ M0. (4.11)

By the monotone convergence theorem, we may assume that ϕ is constant on |x| < RN
for some N ∈ N. Then it suffices to show that

N∑
j=0

e
2h2
j

h2
j

R2
j . M0. (4.12)

First we derive a bound for each j . By the Schwarz inequality, we have

hj − hj−1 =

∫ Rj−1

Rj

|ϕr | dr ≤ aj , (4.13)

and so, using that Kj = Kj−1 + a
2
j , we get

h2
j ≤ (hj−1 + aj )

2
=
Kjh

2
j−1

Kj−1
+Kj −

(ajhj−1 −Kj−1)
2

Kj−1
≤
Kjh

2
j−1

Kj−1
+Kj . (4.14)



Trudinger–Moser inequality with the exact growth condition 829

Hence,
h2
j

Kj
≤
h2
j−1

Kj−1
+ 1.

Now, we define Hj and ξj by

H0 = h0, Hj = Hj−1 + aj , ξj = H
2
j /Kj . (4.15)

Then we have

hj ≤ Hj , ξj ≤ ξj−1 + 1 ≤ ξ0 + j, (4.16)

which implies that

ηj := e
2H 2

j /KjR2
j = e

2(ξj−j)R2
0 (4.17)

is decreasing in j . This is not sufficient to sum over j , for which we have to sharpen the
above estimate.

The idea is to exploit the room given by the factor 1/Kj in the exponential to show
that the sum (4.12) is essentially dominated by the first term η0. The possible growth of
the denominator h2

j will not play any role for the summability and so h2
j can be replaced

by h2
0.

Let J = {1, . . . , N} and define

A := {j ∈ J | ajHj−1 ≤ Kj−1 −Kj/3}, B := J \ A. (4.18)

On A, the sequence ηj decays fast enough to be summed without using the factor 1/Kj ,
while on B, the decrease of 1/Kj is effective enough to supply the summability.

Indeed, for j ∈ A we have, by the same computation as in (4.14),

ξj ≤ ξj−1 + 8/9, (4.19)

whereas for j ∈ B we have

a2
j &

K2
j−1

H 2
j−1
=
Kj−1

ξj−1
&

1
ξ0 + j − 1

. (4.20)

For the sum over A we have∑
j∈A

ηj ≤

#A∑
k=1

e−2k/9η0 . η0 = e
2h2

0/K0R2
0, (4.21)

and so

∑
j∈A

e
2H 2

j /Kj

h2
j

R2
j .

e2h2
0/K0

h2
0

R2
0 . M0. (4.22)
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To bound the sum over B, let a, a+ 1, . . . , b be any maximal consecutive sequence in B.
Then for any j ∈ {a, . . . , b} we have

ξj ≤ ξa + j − a, a2
j+1 ≥

δ

ξa + j − a
, (4.23)

for some fixed constant δ > 0. Now let

ζj := Kj (ξa + j − a)− j. (4.24)

Then we have H 2
j − j ≤ ζj and

ζj − ζj−1 = a
2
j (ξa + j − 1− a)+Kj − 1 ≥ δ + κ − 1. (4.25)

Now we choose κ sufficiently close to 1 so that the right hand side is greater than δ/2.
Then we have

b∑
j=a

e
2H 2

j R2
j ≤

b∑
j=a

e2ζjR2
0 ≤

b−a∑
k=0

e2ζb−δkR2
0 . e2ζbR2

0 ≤ ηa ≤ ηa−1, (4.26)

and so ∑
j∈B

e
2H 2

j R2
j . η0 +

∑
j∈A

ηj . η0, (4.27)

which implies, together with (4.22), the desired estimate in (2).
Finally we prove (4) from (3) using the boundedness (B) proved above. By the radial

Sobolev inequality we have

|ϕ(r)|2 . ‖ϕ‖L2‖ϕr‖L2/r, (4.28)

and hence ϕn(r)→ 0 as r →∞ uniformly in n. Moreover,

[ϕn]
R1
R0
=

∫ R1

R0

∂rϕn dr (4.29)

converges as n → ∞ for any 0 < R0 < R1 < ∞. Hence ϕn(r) → ϕ(r) at every
r ∈ (0,∞). By the radial Sobolev inequality and since g(ϕ) = o(|ϕ|2) as ϕ→ 0, for any
ε > 0 there is R > 0 independent of n such that∫

∞

R

g(ϕn)r dr ≤

∫
∞

R

ε|ϕn|
2r dr . ε‖ϕn‖

2
L2 . (4.30)

By (2) and the fact that g(ϕ) = o(exp(2|ϕ|2)|ϕ|−2) as |ϕ| → ∞, there is L > 1 indepen-
dent of n such that∫

|ϕn|>L

g(ϕn) dx ≤

∫
|ϕn|>L

ε exp(2|ϕn|2)|ϕn|−2 dx . ε‖ϕn‖
2
L2 . (4.31)
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Now define gL by

gL(u) =

{
g(u) (|u| ≤ L),

g(Lu/|u|) (|u| > L).
(4.32)

Then we have

lim
n→∞
|G(ϕn)−G(ϕ)| . ε + lim

n→∞

∫
|x|<R

|gL(ϕn)− g
L(ϕ)| dx = ε, (4.33)

by the dominated convergence theorem. This ends the proof of (4). ut

5. Elliptic equation

Now we consider the existence of solutions for the nonlinear elliptic equation

−1Q+ cQ = f ′(Q), (5.1)

for Q : R2
→ R, c > 0, and an exponential nonlinearity f . The existence of the ground

state, namely the positive radial solution with the least energy among all solutions, has
been studied by the ODE technique in [3, 18] including supercritical nonlinearity, and by
the variational technique in [6] for subcritical nonlinearity, and in [9] including the critical
nonlinearity.

Combining the above more precise Trudinger–Moser inequality with the argument
in [22], we deduce the following. Let D be the operator defined by Df (u) = uf ′(u).

Theorem 5.1. Assume that f : R→ R satisfies f (u) = o(u2) as u→ 0, (D − 2)f ≥
εf ≥ 0 for some ε > 0, and there exists κ0 ≥ 0 such that for all κ+ > κ0 > κ−,

lim
|u|→∞

Df (u)e−κ+|u|
2
= 0, lim

|u|→∞
f (u)e−κ−|u|

2
= ∞, (5.2)

and lim|u|→∞Df (u)/f (u) = ∞. Then there exists c∗ ∈ (0,∞] such that there is a
positive radial solution Qc of (5.1) for each c ∈ (0, c∗], which has the least energy
among all solutions. Moreover, c∗ = Cf,κ0 in (2) of Theorem 1.5 when it is finite, while
c∗ = ∞ is equivalent to

lim
|u|→∞

f (u)e−κ0|u|
2
|u|2 = ∞. (5.3)

In addition,

κ0‖∇Qc‖
2
L2 ≤ 4π, (5.4)

where equality holds if and only if c = c∗.



832 Slim Ibrahim et al.

The subcritical nonlinearity is covered by taking κ0 = 0, while the supercritical nonlin-
earity such as those in [18, Theorem 6] is also covered by taking κ0 > 0. Although it is
not easy to fully compare the conditions in [3, 18] with our variational condition, there is
certainly a new case, namely when

f (u)� eκ0|u|
2
/|u|2, f ′(u) = o(eκ0|u|

2
) (|u| → ∞). (5.5)

Such a nonlinearity has been investigated for the Dirichlet problem

−1u = f ′(u) in �, u = 0 on ∂� (5.6)

on a bounded domain �, including the threshold case f ′(u) = eκ0|u|
2
/u (see [13]). The

ground state for c = 1 was constructed in [9] under the conditions |f ′(u)| . e4πu2
,

(D − 2)f ≥ εf and, for some p ∈ (2,∞),

Df (u) ≥
p

2
|u|p

(
ε

2+ ε

)1−p/2

inf
0 6=u∈H 1(R2)

‖u‖
p

H 1

‖u‖
p

Lp(R2)

. (5.7)

It seems difficult to compare this and our condition 1 ≤ Cf,κ0 .
We omit a proof of the above theorem, for it was completely proved in [22] except

for the necessary and sufficient condition for c∗ = ∞, but it was stated in the form (2) in
Theorem 1.5. Note that in [22] we chose c = min(1, c∗) (with c∗ = C∗TM in the notation
therein) simply because the mass coefficient of the Klein–Gordon equation, correspond-
ing to c in the static equation (5.1), was fixed to 1, but there was no reason for choosing 1.
In other words, we could obviously choose any c ∈ (0, c∗).

It is worth noting that the compactness (4) of Theorem 1.5 does not seem useful for
the above problem, but the compactness on a minimizing sequence comes from the su-
perpower growth Df (u)/f (u) → ∞ together with a variational constraint (see [22]).
A related fact is that the best constants in (1.3) and in (1.5) are not attained by any con-
centrating sequences (see [10, 15, 34]).

A natural question is what happens if c > c∗. We do not have any existence or nonex-
istence result in this range, but the Pokhozhaev identity yields

〈−1Q+ cQ+ f ′(Q) | x · ∇Q〉 =

∫
R2
[c|Q|2 − f (Q)] dx, (5.8)

and so any solution of (5.1) must have supercritical kinetic energy κ0‖∇Q‖
2
2 > 4π for

the Trudinger–Moser inequality. This implies that the constrained minimization in terms
of the energy Ec(ϕ) :=

∫
R2

( 1
2 [|∇ϕ|

2
+ c|ϕ|2] − f (ϕ)

)
dx,

mc := inf{Ec(ϕ) | 0 6= ϕ ∈ H 1(R2), 〈E′c(ϕ) | x · ∇ϕ〉 = 0}, (5.9)

does not have any minimizer, but mc = mc∗ = 2π/κ0 = Ec∗(Qc∗) for any c > c∗.
See [22] for more details, including other constraints. This leads to a different dynamical
picture on the threshold energy mc for the nonlinear Klein–Gordon equation

ü−1u+ cu = f ′(u), (5.10)

from the standard power nonlinearity f ′(u) = up. See [23] for the details.
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6. From TM with the exact growth to TM with H 1

In this section we show how one can derive Proposition 1.3 from our inequality (1.7) using
the Hölder inequality only. Let u ∈ H 1(R2) satisfy ‖∇u‖L2 ≤ 1. The first observation is
that by Taylor expansion of exp, there is a constant C0 > 0 such that

∀n ∈ N,
∫
R2
(4π |u|2)n dx ≤ C0(n+ 1)!‖u‖2

L2 , (6.1)

hence there is a constant C1 > 0 such that for any p ≥ 1,

‖|u|2‖Lp ≤ C1p‖u‖
2/p
L2 , (6.2)

which is extended to noninteger p by the Hölder inequality.
Next, if ‖u‖2

H 1 ≤ 1 then for some θ ∈ (0, 1) we have

‖u‖2
L2 ≤ θ, ‖∇u‖2

L2 ≤ 1− θ. (6.3)

If we can take θ ≥ 1/2, then (1.5) follows from (1.4) applied to
√

2 u with α = 2π . So
we may assume that θ < 1/2. Let A := {x ∈ R2

| |u(x)| ≥ 1}. Then by the Hölder
inequality,∫

A

e4π |u|2 dx ≤

[∫
A

e4π |u|2/(1−θ)

|u|2/(1− θ)
dx

]1−θ∥∥|u|2/(1− θ)∥∥1−θ
L(1−θ)/θ (A)

, (6.4)

where the first term on the right is bounded by (1.7),∫
A

e4π |u|2/(1−θ)

|u|2/(1− θ)
dx ≤ C2

‖u‖2
L2

1− θ
≤ C2

θ

1− θ
, (6.5)

while the second term is bounded by (6.2),∥∥∥∥ |u|21− θ

∥∥∥∥
L(1−θ)/θ (A)

≤ C1
1− θ
θ

∥∥∥∥ u
√

1− θ

∥∥∥∥ 2θ
1−θ

L2
≤ C1

[
1− θ
θ

] 1−2θ
1−θ

. (6.6)

Putting them into (6.4), we obtain∫
A

e4π |u|2 dx .

[
θ

1− θ

]1−θ[1− θ
θ

]1−2θ

≤

[
θ

1− θ

]θ
, (6.7)

which is bounded for 0 < θ < 1/2. The estimate on R2
\ A is trivial.
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[30] Malý, J., Pick, L.: An elementary proof of sharp Sobolev embeddings. Proc. Amer. Math. Soc.
130, 555–563 (2002) Zbl 0990.46022 MR 1862137

[31] Moser, J.: A sharp form of an inequality by N. Trudinger. Indiana Univ. Math. J. 20, 1077–
1092 (1971) Zbl 0213.13001 MR 0301504

[32] Pokhozhaev, S. I.: The Sobolev embedding in the case pl = n. In: Proc. Tech. Sci. Conf.
on Adv. Sci. Research 1964–1965, Mathematics Section, Moskov. Energet. Inst., Moscow,
158–170 (1965) (in Russian)

[33] Rao, M.-M., Ren, Z.-D.: Applications of Orlicz Spaces. Monographs Textbooks Pure Appl.
Math. 250, Dekker (2002) Zbl 0997.46027 MR 1890178

[34] Ruf, B.: A sharp Trudinger–Moser type inequality for unbounded domains in R2. J. Funct.
Anal. 219, 340–367 (2005) Zbl 1119.46033 MR 2109256

[35] Runst, T., Sickel, W.: Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlin-
ear Partial Differential Equations. De Gruyter Ser. Nonlinear Anal. Appl. 3, de Gruyter, Berlin
(1996) Zbl 0873.35001 MR 1419319

[36] Strauss, W.-A.: Existence of solitary waves in higher dimensions. Comm. Math. Phys. 55,
149–162 (1977) Zbl 0356.35028 MR 0454365

[37] Struwe, M.: Critical points of embeddings of H 1,n
0 into Orlicz spaces. Ann. Inst. H. Poincaré

Anal. Non Linéaire 5, 425–464 (1988) Zbl 0664.35022 MR 0970849
[38] Trudinger, N. S.: On imbeddings into Orlicz spaces and some applications. J. Math. Mech.

17, 473–484 (1967) Zbl 0163.36402 MR 0216286

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1130.46018&format=complete
http://www.ams.org/mathscinet-getitem?mr=2280178
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1270.35132&format=complete
http://www.ams.org/mathscinet-getitem?mr=2872122
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1302.35260&format=complete
http://www.ams.org/mathscinet-getitem?mr=3256178
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0922.46030&format=complete
http://www.ams.org/mathscinet-getitem?mr=1674639
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0144.14501&format=complete
http://www.ams.org/mathscinet-getitem?mr=0140822
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0704.49006&format=complete
http://www.ams.org/mathscinet-getitem?mr=0850686
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0704.49005&format=complete
http://www.ams.org/mathscinet-getitem?mr=0834360
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0541.49009&format=complete
http://www.ams.org/mathscinet-getitem?mr=0778970
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0704.49004&format=complete
http://www.ams.org/mathscinet-getitem?mr=0778974
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0990.46022&format=complete
http://www.ams.org/mathscinet-getitem?mr=1862137
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0213.13001&format=complete
http://www.ams.org/mathscinet-getitem?mr=0301504
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0997.46027&format=complete
http://www.ams.org/mathscinet-getitem?mr=1890178
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1119.46033&format=complete
http://www.ams.org/mathscinet-getitem?mr=2109256
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0873.35001&format=complete
http://www.ams.org/mathscinet-getitem?mr=1419319
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0356.35028&format=complete
http://www.ams.org/mathscinet-getitem?mr=0454365
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0664.35022&format=complete
http://www.ams.org/mathscinet-getitem?mr=0970849
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0163.36402&format=complete
http://www.ams.org/mathscinet-getitem?mr=0216286

	Introduction
	Proof of the necessity of (1) and (3): Moser's example
	Radial Trudinger–Moser and optimal descending
	Proof of (2) and (4) of Theorem 1.5
	Elliptic equation
	From TM with the exact growth to TM with H1
	References

