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Abstract. Let K be a p-adic field, and let H = PSL2(K) endowed with the Haar measure de-
termined by giving a maximal compact subgroup measure 1. Let ALH (x) denote the number of
conjugacy classes of arithmetic lattices in H with co-volume bounded by x. We show that under
the assumption thatK does not contain the element ζ +ζ−1, where ζ denotes the p-th root of unity
over Qp , we have

lim
x→∞

log ALH (x)
x log x

= q − 1

where q denotes the order of the residue field of K .
The main innovation of this paper is the proof of a sharp bound on subgroup growth of lattices

in H as above.
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1. Introduction

Let H denote a simple non-compact Lie group endowed with a fixed Haar measure µ.
Recall that a lattice 0 < H is a discrete subgroup such that µ(0 \ H) < ∞. A theorem
of Wang [W] asserts that if H is not locally isomorphic to PSL2(R) or PSL2(C), then
for every 0 < x ∈ R the number LH (x) of conjugacy classes of lattices in H of co-
volume at most x is finite. In the last decade there have been several results towards a
quantitative version of Wang’s theorem in several cases (see the references in [BGLS]). If
H = PSL2(R) or H = PSL2(C), then LH (x) is not finite. In fact, in the case of PSL2(R)
it is well known that there are uncountably many conjugacy classes of lattices of bounded
co-volume. Nevertheless, it has been shown by Borel [B1] that the number ALH (x) of
conjugacy classes of arithmetic lattices with co-volume bounded by x in H is finite for
these groups as well. A very accurate asymptotic formula for ALH (x) has been proven
recently for H = PSL2(R) (see [BGLS]).

The theme of this paper is the estimation of ALH (x) for H = PSL2(K), where K is a
p-adic field. Note that here also there are uncountably many conjugacy classes of lattices
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of bounded co-volume (see [L2]). The main result is an asymptotic formula for a large
family of p-adic fields:

Theorem 1.1. Let K be a p-adic field (i.e. a finite extension field of some Qp) such that
ζ + ζ−1 /∈ K where ζ is the p-th root of unity in Qp. Let H = PSL2(K) be endowed with
the Haar measure that gives a maximal compact subgroup measure 1. Then

lim
x→∞

log ALH (x)
x log x

= q − 1

where ALH (x) denotes the number of conjugacy classes of arithmetic lattices 0 in H of
co-volume at most x, and q denotes the order of the residue field of K .

Note that in particular the theorem is valid for PSL2(Qp) for p 6= 2, 3. It is very likely
that the result remains true in general.

The proof of this result resembles the proof of the following theorem in several aspects
and differs in others.

Theorem 1.2 ([BGLS]). Let H = PSL2(R) endowed with the Haar measure induced
from the Riemannian measure of the hyperbolic plane H2

= PSL2(R)/PSO(2). Then

lim
x→∞

log ALH (x)
x log x

=
1

2π
.

In the proof of both results one is interested in showing that there are some constants
r, s > 0 such that

(rx)a(H)x ≤ ALH (x) ≤ (sx)a(H)x

where a(H) = 1/(2π) if H = PSL2(R) and a(H) = q − 1 if H = PSL2(K) and K is a
p-adic field with residue field of order q. It turns out that the proof of the upper bound is
the more difficult part in both cases.

The proof of the upper bound consists of two stages. First, it is shown that the rate
of growth of the number of conjugacy classes of maximal arithmetic subgroups of co-
volume < x is relatively slow. More precisely, we have the following:

Theorem 1.3. Let H = PGL2(R)a × PGL2(C)b ×
∏r
i=1 PGL2(Ki) where Ki are non-

archimedean local fields of characteristic zero. Let MALH (x) denote the number of con-
jugacy classes of maximal arithmetic lattices of co-volume at most x in H . Then, for
every ε > 0, there exists a positive constant β = β(ε) such that MALH (x) ≤ xβ(log x)ε

for x � 0.

In particular the conclusion is true for H = PGL2(K) for any local field K of character-
istic zero.

Denote by Sn(0) the number of subgroups of index at most n in 0. We prove the
following theorem:

Theorem 1.4. Let K be either R or a p-adic field such that ζ + ζ−1 /∈ K (ζ is as in
Theorem 1.1), and H = PSL2(K). Then there exists a constant c > 0, depending only
on H , such that sn(0) ≤ (cn)−χ(0)n for every lattice 0 < H and every n ∈ N.

Here χ(0) is the Euler characteristic of 0.
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Once Theorems 1.3 and 1.4 are proven, Theorem 1.1 is deduced just as Theorem 1.2
has been deduced in [BGLS]. For the convenience of the reader we sketch the argument:

One can write ALH (x) ≤ MALH (x) · max{sx/y(0) : y ≤ x, covol(0) = y} where
0 runs over the arithmetic lattices of co-volume at most x (and MALH (x) is as above).
Using Theorems 1.3 and 1.4 one gets

ALH (x) ≤ xb log x
·

(
c
x

y

)−χ(0)−a(H)x
χ(0)

≤ (sx)a(H)x

for some constant s. Here we use the fact that y = covol(0) = −2πχ(0) in the real case
(the Gauss–Bonnet formula), and y = covol(0) = − 1

q−1χ(0) in the p-adic case for our
normalization (see [S2, p. 134]).

The lower bound is achieved by counting the subgroups of finite index of a single
arithmetic lattice 0. Choose 0 such that Sn(0) ≥ (cn)−χ(0)n for some constant c. (For
all Fuchsian groups 0 one has sn(0) ≥ n−χ(0)n; see [BGLS, Proposition 4.11].) In the
p-adic case one can take a lattice which is a free group (see [LS, Chapter 2]). Thus, one
just has to check that there are not too many subgroups of 0 conjugate to each other inH .
To prove this, one uses an upper bound on the subgroup growth of congruence subgroups
of an arithmetic group, proven in [L1]. This enables one to say there are a lot (that is, of
order (c1n)

−χ(0)n) of subgroups with index bounded by n, with the same closure in the
congruence topology. One then shows that just a few (of order c2n) of these subgroups
with the same congruence closure can be conjugate. For the details see [BGLS].

Thus, in order to prove Theorem 1.1 we will have to prove Theorems 1.3 and 1.4 in
the p-adic case. The proof of Theorem 1.3 is in fact similar to the proof given in [BGLS]
for H = PGL2(R). The only work here is to check that several results used along the
proof of the theorem remain valid in the case where there are also p-adic factors in the
product of the groups PSL2 over local fields.

These are mainly results by Borel on the distribution of arithmetic lattices within
a commensurability class, and a lemma by Chinburg and Friedman (which has a close
connection with Borel’s work). These results where originally proven for products of the
form PGL2(R)a × PGL2(C)b, but it turns out that they are valid in our case as well with
no substantial change in the arguments.

The proof of Theorem 1.4 in the p-adic case on the other hand is very different from
the proof of the analogous theorem for the real case in [BGLS]. The proof there is based
mainly on the explicit presentation of Fuchsian groups and on the theory of characters
of the symmetric group, which is used in order to count permutation representations of
Fuchsian groups. We count the number of permutation representations of a lattice 0 in
PSL2 over a p-adic field using the presentation of such a group as the fundamental group
of a graph of groups. Note that in this case the proof is restricted to p-adic fields K as
in the formulation of Theorem 1.1. On the other hand we remark that the proof of Theo-
rem 1.4 is also valid in the case of uniform lattices in PSL2 over a local field of positive
characteristic. It is very probable that one can give a theorem analogous to Theorem 1.1
for the number of uniform arithmetic lattices in these groups. For this one has to check
if the results needed for the proof of Theorem 1.3 can be adapted to the case of positive
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characteristic, and so can be used to prove the analogue to this theorem in the positive
characteristic case.

The main bulk of this paper will deal with the proof of Theorem 1.4. We start in
Section 2 with the discussion of a theorem proven recently by J. C. Schlage-Puchta [SP,
Theorem 3]. We have the following invariant:

Definition 1.1. Let 0 be some finitely generated group. Denote by an(0) the number of
subgroups of index n in 0, and define

ν(0) = lim sup
n→∞

log an(0)
n log n

.

Schlage-Puchta’s theorem asserts that for finitely generated virtually free groups, the
value of ν(0) is the solution of a linear optimization problem with rational coefficients.

In the following sections we will make use of his theorem (and its proof) in order to
prove the following:

Theorem 1.5. Let 0 be a lattice in PSL2(K), where K is a p-adic field (i.e. a finite
extension field of some Qp). Assume there are no elements of order p in 0. Then ν(0)
= −χ(0).

(Here again χ(0) stands for the Euler–Poincaré characteristic of 0.) Note that the condi-
tion on the p-adic fieldK in Theorem 1.1 that ζ + ζ−1 /∈ K is equivalent to the condition
that PSL2(K) does not contain elements of order p, so in particular Theorem 1.5 is valid
for all lattices in PSL2(K) as in Theorem 1.1.

In Section 3 we will see, by means of two simple counterexamples, that the equal-
ity provided in Theorem 1.5 is far from being the rule for general virtually free finitely
generated groups, and need not hold even for co-compact tree lattices.

The proof of Theorem 1.5 consists of two parts. First, in Section 4 we give a sufficient
condition for a finitely generated virtually free group 0 to have ν(0) = −χ(0), using
the linear optimization problem constructed in [SP], and an elementary lemma from the
theory of linear optimization.

The proof of Theorem 1.5 is completed in Section 5. Lattices in p-adic PSL2 are
finitely generated virtually free groups. We show that for lattices as in Theorem 1.5 the
sufficient condition described in Section 4 is indeed fulfilled.

From Theorem 1.5 one can deduce the inequality sn(0) ≤ (cn)−χ(0)n for some con-
stant c, but this constant may depend on 0. We shall see nonetheless that from the proof
of Schlage-Puchta’s theorem one can easily deduce that the constant can be taken to be
independent of the lattice 0 chosen (although it may depend on the field K). This will be
shown in Section 6 and will thus finish the proof of Theorem 1.4.

Section 7 will deal with Theorem 1.3. We will mainly state the results of Borel and
the lemma of Chinburg and Friedman in a version adapted to our needs. Thus their results
will be stated in the setting of a product of PGL2 groups that may contain PGL2 factors
over p-adic fields. We will not however care to state precise numerical values correspond-
ing to a given normalization of the Haar measure, as this is not needed for the proof of
Theorem 1.3. As a rule, the proofs of the theorems stated are similar to the original proofs.
Using the same proof as in [BGLS, Section 3] one can thus prove Theorem 1.3.
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2. The linear optimization problem

To prove Theorem 1.5, we have to understand the explicit construction of the linear op-
timization problem that appears in the theorem of Schlage-Puchta formulated below. To
some extent it is also necessary to understand the proof of the theorem in order to later
derive Theorem 1.4. We shall therefore describe the proof and the linear optimization
problem. We shall supply details where this is important for our needs, or where we think
it helps to clarify some issues in [SP]. For full details see [SP, Section 2].

We first recall a few basic elements of the Bass–Serre theory of graphs of groups. For
the details see [S1]. A graph of groups is a pair (0,A) where 0 is an assignment of a
group 0v for all v ∈ V , and a group 0e for all e ∈ E, such that 0e = 0ē (where ē denotes
the opposite edge of e), and monomorphisms ψe : 0e → 0∂0(e) (where ∂0(e) denotes the
initial vertex of e).

The fundamental group π1(0,A, T ) of a graph of groups (0,A) at a maximal sub-
tree T of A is the group generated by the vertex groups {0v : v ∈ V } and by elements
{ge}e∈E , subject to the relations:
• gē = g

−1
e ,

• ge = 1 for all e ∈ E(T ),
• geψē(a)g

−1
e = ψe(a) for all e ∈ E and a ∈ 0e.

(This is independent of the choice of T up to isomorphism.)
A finite graph of finite groups is just a graph of groups for which the underlying

graph A is finite, and all vertex groups are finite. Recall that a group 0 is called virtually
free if it has a finite index free subgroup. One can show that if 0 is the fundamental group
of a finite graph of finite groups, then 0 is virtually free (see [S1, II.2.6]; 0 is obviously
also finitely generated).

It is a non-trivial fact (proven by Karras and Solitar) that the converse is also true, that
is, every finitely generated virtually free group is the fundamental group of a finite graph
of finite groups (see the reference in [S1]).

Let 0 be a group acting without inversion on a connected non-empty graph X. Then
one can construct a graph of groups (0,A) in a natural way so that A = X/0, and the
vertex and edge groups correspond respectively to stabilizers in 0 of vertices and edges
in a fundamental domain for the action of 0 on X. The monomorphisms from edge to
vertex groups are given by conjugation by elements in 0 (possibly trivial). One has the
following theorem [S1, Theorem 13]: If X is a tree, then 0 ∼= π1(0,A, T ).

We have defined above the growth coefficient

ν(0) := lim sup
n→∞

log an(0)
n log n

.

This quantity has been computed for a variety of cases (cf. [SP] and the references there).
In a recent paper [SP] J. C. Schlage-Puchta has shown the following:

Theorem 2.1. Let 0 be a finitely generated virtually free group, represented by a finite
graph of finite groups (0,A). Then the growth coefficient ν(0) is the solution of a lin-
ear optimization problem with rational coefficients which can be effectively computed
from (0,A).
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From this he concluded that ν(0) is always a rational number. In addition he showed that
every positive rational number can be obtained as the growth coefficient of some virtually
free group, and thus he concluded that the spectrum of the growth coefficient for virtually
free groups is exactly Q+.

Note that H = PSL2(K) for a K a non-archimedean local field acts on the Bruhat–
Tits tree X which is a q + 1-regular tree (q being again the order of the residue field). If
0 < H is a co-compact lattice then it acts on X with a finite fundamental domain (by co-
compactness) and with finite stabilizers (by discreteness). If K is p-adic, then all lattices
are co-compact. (See [S1, II] for all these facts.) Thus one can use the above theorem in
the case that interests us. (We actually do not even need the Karras–Solitar theorem, as
Schlage-Puchta’s theorem is proven purely in terms of the finite graph of finite groups
corresponding to the group.)

In order to prove the theorem one notes first that counting subgroups of index n is
essentially the same as counting homomorphisms to Sn and hence for a finitely generated
group 0 we have

ν(0) = lim sup
n→∞

log |Hom(0, Sn)|
n log n

− 1

(see [SP, Lemma 1]).
We assume that 0 is the fundamental group of a finite graph of finite groups (rel-

ative to a maximal subtree). We thus want to count permutation representations of the
fundamental group 0. Such a permutation representation is determined by giving homo-
morphisms φv : 0v → Sn for each v ∈ V (A), and choosing images for all the elements
ge, e ∈ E(A) \ E(T ), so that they satisfy the conditions imposed by the defining rela-
tions of 0. Thus, given a set {φv : 0v → Sn}v∈V of representations, they lift to some
representation of 0 if and only if the representations induced by 0∂0(e) and 0∂1(e) on 0e
are equivalent for all e ∈ E(A), and actually coincide for e ∈ E(T ).

For each v ∈ V , let ρv,1, . . . , ρv,mv be a complete list of transitive permutation rep-
resentations of 0v (up to equivalence). We will denote by nv,i the degree of ρv,i (that is,
the order of the set on which 0v acts by ρv,i).

Any permutation representation of a group is a direct sum of transitive representations.
This implies that a representation ρ : 0v → Sn is determined up to equivalence by the
multiplicities ξv,i of ρv,i (1 ≤ i ≤ mv) in ρ.

In a similar manner we denote by ρe,1, . . . , ρe,me the list of transitive representations
of 0e. (Here again ne,i will denote the order of ρe,i .) Let v = ∂0(e) or v = ∂1(e).
Given a representation of 0v , determined by ξv,i 1 ≤ i ≤ mv , the multiplicity of ρe,j
in the representation induced on 0e is given by a linear functional lve,j (ξv,1, . . . , ξv,mv )
with integral coefficients, where the coefficient of ξv,i is the multiplicity of ρe,j in the
representation induced by ρv,i .

Now, given a representation tuple (φv)v∈V , where φv : 0v → Sn, if (ξv,i)v∈V, 1≤i≤mv
are the multiplicities corresponding to (φv)v∈V , then we call the tuple (ξv,i)v∈V,1≤i≤mv
the type of (φv)v∈V .

We will call a type admissible if it is the type of a representation tuple of the vertex
groups induced from a representation of 0. Every tuple (ξv,i)v∈V,1≤i≤mv of non-negative
integers such that

∑mv
i=1 nv,iξv,i = n for all v ∈ V defines a type of a representation
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tuple, and from the discussion above it turns out that it is an admissible type if and only
if lve,j (ξv,1, . . . , ξv,mv ) = lue,j (ξu,1, . . . , ξu,mu) for all e ∈ E, e = [u, v], and for all
1 ≤ j ≤ me.

The number of types grows polynomially in n (see [SP]). One thus concludes that
in order to compute the growth coefficient ν(0), one just has to find the admissible type
giving the largest number of representations, and calculate the number of these.

The number of permutation representations of a given type can be computed in a quite
straightforward manner. First, one counts the number of permutation representations of
one 0v of type (ξv,i)

mv
i=1. This is standard combinatorics, and the result is that there are

n!/
∏mv
i=1(ξv,i)!n

ξv,i
v,i such representations.

Next, one counts the number of representations ‘along the maximal tree’, that is,
without yet taking into account the number of possible images of the elements ge with
e ∈ E(A) \ E(T ).

Starting with some vertex v, we have n!/
∏mv
i=1(ξv,i)!n

ξv,i
v,i permutation representa-

tions for this vertex. Continuing to a neighbouring vertex u, we now have the restricting
condition that every permutation representation induced on 0e, where e = [u, v], from
a representation of 0u has to coincide with a representation induced on 0e from 0v .
Thus, if we want to count the number of possible permutation representations, we have
to fix a representation of 0e and count in how many ways one can extend it to a per-
mutation representation of 0u. This is just the total number of representations of 0u
of type (ξu,i)

mu
i=1, divided by the number of representations of 0e of the induced type

(lue,i(ξu,1, . . . , ξu,mu))
me
i=1. These are computed by the formula above. Continuing for the

next vertices along the maximal tree in a similar fashion one finds that the number of
representations ‘along the tree’ is

∏
v∈V

n!∏mv
i=1(ξv,i)!n

ξv,i
v,i

·

∏
[u,v]=e∈Eg(T )

(
n!∏me

i=1(l
v
e,i(ξv,1, . . . , ξv,mv ))!n

lve,i (ξv,1,...,ξv,mv )

e,i

)−1

.

Here Eg(T ) denotes the geometric edges of T , thus we take in the product only one edge
e of any pair of opposite edges e, ē. Note that by admissibility we could have taken above

n!∏me
i=1(l

u
e,i(ξu,1, . . . , ξu,mu))!n

lue,i (ξu,1,...,ξu,mu )

e,i

instead of
n!∏me

i=1(l
v
e,i(ξv,1, . . . , ξv,mv ))!n

lve,i (ξv,1,...,ξv,mv )

e,i

.

Finally, we count the total number of representations by adding to the account the
possible images of the ge. If [u, v] = e ∈ E(A) \ E(T ) then the image of ge has to
conjugate the representation induced on 0e by 0v to the representation induced on 0e
by 0u, and this is the only restriction on the image of ge. Thus the set of possible images is
a coset of the centralizer of the representation of 0e induced by 0v . As Sn acts transitively
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by conjugation on the representations of 0e of a given type, the order of the centralizer of
a representation is just

|Sn|

|{φ : 0e → Sn}|
=

me∏
i=1

(lve,i(ξv,1, . . . , ξv,mv ))!n
lve,i (ξv,1,...,ξv,mv )

e,i

where the denominator on the left side denotes the number of permutation representations
of 0e. All in all, the number of permutation representations of 0 of type (ξv,i)v∈V, 1≤i≤mv
is

n!|(E(A)\E(T ))
g
|
∏
v∈V

n!∏mv
i=1(ξv,i)!n

ξv,i
v,i

×

∏
e=[u,v]∈E(A)g

(
n!∏me

i=1 l
v
e,i(ξv,1, . . . , ξv,mv )!n

lve,i (ξv,1,...,ξv,mv )

e,i

)−1

.

Here againEg denotes the geometric edges , and as above we take only one representative
of each pair e, ē. As above, for each edge e = [u, v] one chooses only one of the products

me∏
i=1

(lve,i(ξv,1, . . . , ξv,mv ))!n
lve,i (ξv,1,...,ξv,mv )

e,i .

Now one takes the logarithm of this expression, and uses the estimate m! =

n!m/neO(m), following essentially from Stirling’s formula, in order to replace each term

log((ξv,i)!n
ξv,i
v,i ) by (ξv,i/n) log n! + O(n), and log(lve,i(ξv,1, . . . , ξv,mv )!n

lve,i (ξv,1,...,ξv,mv )

e,i )

by (lve,i(ξv,1, . . . , ξv,mv )/n) log n! +O(n). One also uses the fact that |Eg(T )| = |V | − 1
and concludes that the logarithm of the number of representations is

n log n
(

1−
∑
v∈V

mv∑
i=1

ξv,i/n+
∑
[u,v]∈Eg

me∑
i=1

lve,i(ξv,1, . . . , ξv,mv )/n
)
+O(n).

In the above formula and in the following, Eg := Eg(A).
Dividing by n log n and subtracting 1 one gets

log |Hom(0, Sn)|
n log n

−1 = −
∑
v∈V

mv∑
i=1

ξv,i/n+
∑
e∈Eg

me∑
i=1

lve,i(ξv,1, . . . , ξv,mv )/n+O

(
1

log n

)
for a choice of a type (ξv,i)v∈V,1≤i≤mv maximizing the expression on the right.

Remark. Note that the error term is the sum of the error terms corresponding to each

of the terms log((ξv,i)!n
ξv,i
v,i ) and log(lve,i(ξv,1, . . . , ξv,mv )!n

lve,i (ξv,1,...,ξv,mv )

e,i ) in the product
above. These error terms do not depend on 0. As there are all in all

∑
v∈V mv+

∑
e∈Eg me

such terms we conclude that we can write the error term above as (
∑
v∈V mv +∑

e∈Eg me)O(1/log n) whereO(1/log n) is independent of 0. This fact will be used later
on in Section 6.
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Now one considers the following optimization problem: Maximize the linear form

−

∑
v∈V

mv∑
i=1

xv,i +
∑

e=[u,v]∈Eg

me∑
i=1

lve,i(xv,1, . . . , xv,mv )

(with the same convention for the second sum as in the formulae above) subject to the
following constraints:

1. xv,i ≥ 0 for all v ∈ V, 1 ≤ i ≤ mv .
2.
∑mv
i=1 nv,ixv,i = 1 for all v ∈ V (recall nv,i is the degree of ρv,i).

3. lve,j (xv,1, . . . , xv,mv ) = lue,j (xu,1, . . . , xu,mu) for all e ∈ E, e = [u, v], and all 1 ≤
j ≤ me.

This is a linear program with rational coefficients. Let (xv,i)v∈V, 1≤i≤mv denote the opti-
mal solution, and let ν0(0) denote the value of the functional on (xv,i)v∈V, 1≤i≤mv , that
is, the optimal value. These are both rational because all the coefficients of the linear pro-
gram are rational. Let m be the l.c.m. of the denominators of all the xv,i . Whenever m | n
we obtain a set of positive integers ξv,i = nxv,i defining an admissible type, for which
the number of representations is (up to the error term) ν0 and thus ν(0) ≥ ν0(0). On the
other hand, from every admissible type we get a solution to the constraints of the linear
program (by dividing by n), so the number of representations (up to the error term) is
bounded by ν0(0). Thus ν(0) = ν0(0) is the solution of the above linear optimization
problem.

3. Two counterexamples

Before proving Theorem 1.5 we add a few remarks, and give two examples in order to
put the theorem in some context. A measure of subgroup growth related to ν(0) is

νf(0) = lim sup
n→∞

log af
n(0)

n log n
,

where af
n(0) denotes the number of free subgroups of 0 of index at most n.

From results of Müller [Mü] that give the asymptotic behavior of af
n(0) it immedi-

ately turns out that for every virtually free group 0, one has νf(0) = −χ(0), where
χ(0) denotes the Euler characteristic. Clearly νf(0) ≤ ν(0). Thus, for finitely generated
virtually free groups one has ν(0) ≥ −χ(0).

There are many cases where one has equality ν(0) = −χ(0), e.g. for free groups
and finite free products of cyclic groups. There are however cases where there is strict
inequality. In the following we give two examples of finitely generated virtually free
groups for which the inequality is strict.

We first give a somewhat trivial example. Take 0 to be the product of a free group Fr
on r generators and a finite non-trivial group S. An elementary result from the theory of
subgroup growth states that if G is a group and H < G is a subgroup of finite index m
in G, then sn(G) ≤ (mn)[logm]sn(H) (see [LS, p. 14]), thus clearly ν(0) ≤ ν(Fr). On
the other hand, obviously sn(Fr) ≤ sn(0) as Fr is a quotient of 0. So ν(0) = ν(Fr).
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Furthermore we have (1/|S|)χ(Fr) = χ(Fr × S). Moreover, taking the group S to be
larger and larger we also conclude that ν(0)/χ(0) is unbounded for virtually free groups.

The next example is from the family of uniform tree lattices, i.e. co-compact lattices in
Aut(Xk), whereXk denotes the k-regular tree. The family of uniform tree lattices consists
of virtually free groups, and contains also the lattices in PSL2(K) over a p-adic field (the
examples we give are of course not in PSL2(K)) . Here again we claim that there is a
family of co-compact lattices 0r < Aut(Xk) (with k fixed, at least for k ≥ 4) such that
the set {ν(0r)/χ(0r)} is unbounded.

This can be seen as follows: Suppose we can find a sequence of lattices 0r < Aut(Xk)
such that on the one hand χ(0r) → 0, and on the other hand all 0r map onto the free
group F2 on two generators. Then ν(0r) ≥ ν(F2) = 1 for all r , and clearly the values of
ν(0r)/χ(0r) are unbounded. To find such sequences one can slightly modify examples
given in [BK, Section 7]. Thus we look at the following graph of groups:

&%
'$

&%
'$r rVr Vr

Vr Vr

Wr

Here Vr = M(Z/rZ) where M is a group of order m ≥ 2 and Wr = {x ∈ Vr | x(0) =
1 ∈ M}. The mappings from the edge group Wr to the vertex groups Vr are the identity
mappings on Wr . There are two mappings from an edge group Vr to a single vertex
group Vr . Take one of them to be the identity mapping, and the other to be αr ∈ Aut(Vr)
defined by αr(x)(i) = x(i + 1) (see also [BK, Example 7.4]). The sequence of graphs
of groups indexed by r gives rise to the sequence {0r} of the fundamental groups of
these graphs of groups. By an elementary result of Bass (see [Ba, p. 11]) the fundamental
groups 0r act on the m + 2-regular tree, and the action is co-compact by construction.
These groups act faithfully on the tree and thus embed into Aut(Xm+2). This results from
the same considerations as in [BK, Section 7] showing that, in the terminology of [Ba],
the graph of groups is effective (see [Ba, p. 14]). One sees easily that all the 0r map onto
the free group F2, by sending the vertex groups to 1, and the elements corresponding to
the two loops to the generator of F2. On the other hand we have χ(0r) = −1/mr−1

→ 0
as required (see [S2, Proposition 14]). This proves the claim for all Xk where k ≥ 4.

In the following sections we would like to show that for lattices in PSL2(K) where
K is a p-adic field as in Theorem 1.1 (or more generally for all uniform lattices in PSL2
over a non-archimedean field with no elements of order p) we have the equality ν(0)
= −χ(0).

4. A sufficient condition for ν(0) = −χ(0)

The first stage in the proof of Theorem 1.5 will be the proof of Lemma 4.2 below that
provides a sufficient condition for the fundamental group of a finite graph of finite groups
0 to have ν(0) = −χ(0). One should note though that this is certainly not a necessary
condition. (Indeed, there are examples of p-adic fields K such that ζ + ζ−1

∈ K , where
ζ is as in Theorem 1.1, such that there are lattices 0 < PSL2(K) where ν(0) = −χ(0)
whereas the conditions of Lemma 4.2 are not satisfied.)
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Let us denote by ρmv , respectively ρme , the regular representation of 0v , respec-
tively 0e, for all v ∈ V and e ∈ E.

If we set
xv,mv =

1
|0v|

∀v ∈ V, xv,i = 0 otherwise, (4.1)

then one sees that this is a so called feasible solution of the linear optimization problem,
that is, it is a solution of the system of constraints. The only condition that we have to
check and which is not altogether trivial is condition 3.

This is easily seen to be fulfilled by noting that the regular representation of 0v in-
duces on 0e the representation which is the direct sum of [0v : 0e] times the regular
representation of 0e. So, the coefficient of xv,mv in lve,i is [0v : 0e] for i = me, and 0
otherwise. Thus for the proposed solution (4.1) we have

lve,i

(
0, . . . , 0,

1
|0v|

)
= 0 for all v ∈ V, i 6= me,

lve,me

(
0, . . . , 0,

1
|0v|

)
= [0v : 0e] ·

1
|0v|
=

1
|0e|
= [0u : 0e] ·

1
|0u|

= lue,me

(
0, . . . , 0,

1
|0u|

)
.

Now suppose we could show that (4.1) is an optimal solution. Then we could easily
compute the optimal value of the linear form, using the same argument used above to
prove that condition 3 is fulfilled, and we get

ν(0) = −
∑
v∈V

1
|0v|
+

∑
e∈E

[0v : 0e] ·
1
|0v|
= −

∑
v∈V

1
|0v|
+

∑
e∈E

1
|0e|

.

Now recall that covol(0) = 1
2
∑
v∈V

1
|0v |
=

1
q+1

∑
e∈Eg

1
|0e|

(see [S1, p. 84]), and so

−

∑
v∈V

1
|0v|
+

∑
e∈E

1
|0e|
= −2 covol(0)+ (q+ 1) covol(0) = (q− 1) covol(0) = −χ(0)

as required. In the last equality we have used the fact that in our normalization
(q − 1) covol(0) = −χ(0) (see [S2, p. 134]). One could actually derive the last equation
also directly from the expression on the left e.g. by [S2, Prop. 14].

So it would suffice to find a condition for (4.1) to be an optimal solution.

Remark. Note that the existence of this particular solution confirms again that ν(0) ≥
−χ(0). Moreover, using the computations in the proof of Schlage-Puchta’s theorem (see
Section 2) we get a new proof of the fact resulting from Müller’s work that νf(0) =

−χ(0) (see Section 3). Indeed, let m be the g.c.d. of the orders of the vertex groups 0v .
If m | n then taking ξv,i = nxv,i where the xv,i are given by the feasible solution (4.1)
defined above, we get a representation type which is the unique type for which all the ver-
tex groups act regularly (with no fixed points in {1, . . . , n}). There is a correspondence
between transitive permutation representations of 0 and subgroups of 0 (the correspon-
dence is (n− 1)! to 1), and the transitive representations of this type correspond precisely
to the free subgroups of 0. To see this, recall that this correspondence is given by taking
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for a transitive permutation representation φ : 0→ Sn the stabilizer H of 1 ∈ {1, . . . , n}
(see [LS, p. 12]). Thus for a representation of the above type the intersections of H with
all the conjugates of the 0v are trivial, and thus H is free (see also [S1, p. 122]). Con-
versely, if H is a free subgroup, then it is easy to see from similar considerations that the
0v have to act regularly. Note also that in case m does not divide n, there are no repre-
sentations where 0v acts regularly for all v ∈ V , and there are also no free subgroups of
index n. Denote by Homr(0, Sn) the set of homomorphisms φ : 0→ Sn such that the 0v
act regularly under φ. By the same arguments as in [SP, proof of Lemma 1] we have

νf(0) = lim sup
n→∞

log |Homr(0, Sn)|

n log n
− 1.

From the computations in the proof of Schlage-Puchta’s theorem we now conclude that

log |Homr(0, Sn)|

n log n
− 1 = −χ(0)+

1
log n

(for m | n), and so νf(0) = −χ(0).
We start by rewriting the linear form in the formulation of our linear program as

−

∑
v∈V

mv∑
i=1

xv,i +
1
2

∑
v∈V

∑
e∈st(v)

me∑
i=1

lve,i(xv,1, . . . , xv,mv ). (4.2)

Here e ∈ st(v) means that ∂0(e) = v. This gives the same value as the original functional
on the solutions of the system of constraints.

In order to find a sufficient condition for (4.1) to be an optimal solution, we shall
actually find a condition for (4.1) to be the solution of the linear program given by the
linear functional (4.2) and the constraints of types 1 and 2, disregarding the constraints of
the third type.

First, we recall some basic notions, and an elementary lemma from the theory of linear
optimization. We use [P] as a reference.

One can write our linear optimization problem in the form min{cx : Ax = b, x ≥ 0},
where A is some m × n matrix with full row rank, x is the vector of variables, with n
entries, c ∈ Rn is a row vector, b ∈ Rm is a column vector, and x ≥ 0 means every
coordinate is ≥ 0. (We take min instead of max just to keep with the convention in [P].)
This is called a linear program in standard form. We call x ∈ Rn a feasible solution if it
satisfies the constraints Ax = b, x ≥ 0, and we call it an optimal solution if it minimizes
cx on the set defined by the constraints.

Choosing any m columns of A one gets a submatrix B. Call such a matrix a base if
rank(B) = m. Suppose B is a base, and B−1b ≥ 0. Suppose also that B was obtained
by choosing from A the columns indexed by i1, . . . , im. Define now the vector x by
xik = (B

−1b)k and xi = 0 if i /∈ {i1, . . . , im}. Then x is a feasible solution. We call it the
solution defined by B. Let cB ∈ Rm be a row vector defined by (cB)k = cik . We have the
following elementary lemma (for a proof see e.g. [P, p. 43]):

Lemma 4.1. If c − cBB−1A ≥ 0 then the solution x defined by B is optimal.

Here again, saying a vector is ≥ 0 means every coordinate is ≥ 0.
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Let us now turn to our case. Let V = {v1, . . . , vk} denote the vertices of the graph of
groups of 0, in particular let |V | = k. In our case, A is a k ×

∑
v∈V mv matrix, given by

nv1,1 . . . nv1,mv1
nv2,1 . . . nv2,mv2

. . .

nvk,1 . . . nvk,mvk

 .
The vector b ∈ Rk is just

b =

1
...

1

 .
Let us write l

vj
e,i(xvj ,1, . . . , xvj ,mvj ) =

∑mvj
r=1 η

r
i,jxvj ,r , that is, ηri,j is the multiplicity of

ρe,i in the representation induced on 0e from the representation ρvj ,r of 0vj .
Now, the vector c in our linear program is given as follows. We have, for 1 ≤ r ≤ mv1 ,

cr = 1−
1
2

∑
e∈st(v1)

me∑
i=1

ηri,1.

Next we have

cmv1+r
= 1−

1
2

∑
e∈st(v2)

me∑
i=1

ηri,2

for 1 ≤ r ≤ mv2 and so on; that is, in general,

cmv1+···+mvj−1+r
= 1−

1
2

∑
e∈st(vj )

me∑
i=1

ηri,j

where 1 ≤ r ≤ mvj . (Note we have changed the sign. As mentioned before, this is done
just in order to keep the convention of [P].)

Now take the base B to be the k × k matrix defined by the columns mv1 , . . . , mvk :

B =


|0v1 |

|0v2 |

. . .

|0vk |

 .
So,

B−1A =


nv1,1
|0v1 |

. . .
nv1,mv1
|0v1 |

nv2,1
|0v2 |

. . .
nv2,mv2
|0v2 |

. . .
nvk ,1
|0vk |

. . .
nvk ,mvk
|0vk |

 .
Moreover,

cB =

(
1−

1
2

∑
e∈st(v1)

me∑
i=1

η
mv1
i,1 , . . . , 1−

1
2

∑
e∈st(vk)

me∑
i=1

η
mvk
i,k

)
.
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We have

η
mvj
i,j =

{
[0vj : 0e] if i = me,
0 otherwise,

where we remind the reader that for e ∈ st(vj ), η
mvj
i,j denotes the multiplicity of the

i-th transitive representation of 0e in the representation induced on 0e from the regular
representation of 0vj , and that theme-th representation of 0e is the regular representation
of this group. Consequently,

cB =

(
1−

1
2

∑
e∈st(v1)

[0v1 : 0e], . . . , 1−
1
2

∑
e∈st(vk)

[0vk : 0e]

)
.

We can now compute c̄ = c − cBB
−1A. As c̄ is a bit to messy to write down as a row

vector, we just say that the coordinate of c̄ corresponding to the r-th representation of the
j -th vertex vj is given by

1−
nvj ,r

|0v|
+

1
2

∑
e∈st(v)

(
nvj ,r

|0e|
−

me∑
i=1

ηri,j

)
.

Now, the solution defined by the base B is just the one given by (4.1), so by Lemma 4.1
we get a sufficient condition for the solution defined in (4.1) to be an optimal solution,
stated in the following lemma.

Lemma 4.2. A sufficient condition for ν(0) = −χ(0) is

1−
nv,r

|0v|
+

1
2

∑
e∈st(v)

(
nv,r

|0e|
−

me∑
i=1

ηri

)
≥ 0

for every v ∈ V and 1 ≤ r ≤ mv .

(We now no longer need the subscript j ; the notation in the lemma should therefore be
clear.) Another simple lemma makes the computation easier:

Lemma 4.3. If 0e = 1 then nv,r/|0e| −
∑me
i=1 η

r
i = 0.

Indeed, if 0e = 1 then nv,r/|0e| −
∑me
i=1 η

r
i = nv,r − nv,r = 0.

Thus in Lemma 4.2 we have only to consider the edges e ∈ st(v) such that 0e 6= 1.
We summarize all this in the following proposition:

Proposition 4.1. Let 0 be a finitely generated virtually free group given as the funda-
mental group of a graph of groups (0,A). A sufficient condition for ν(0) = −χ(0) is

1−
nv,r

|0v|
+

1
2

∑
e∈st(v), 0e 6=1

(
nv,r

|0e|
−

me∑
i=1

ηri

)
≥ 0 (4.3)

for any v ∈ V (A) and 1 ≤ r ≤ mv , where nv,1, . . . , nv,mv are the degrees of the transitive
permutation representations ρv,1, . . . , ρvmv of 0v , and ηr1, . . . , η

r
me

denote the multiplici-
ties of the transitive permutation representations ρe,1, . . . , ρeme of 0e in the representation
induced on 0e from ρv,r .
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5. Proof of Theorem 1.5

We wish to prove that for a lattice 0 in H = PSL2(K), where K is a p-adic field, such
that ζ + ζ−1 /∈ K , we have ν(0) = −χ(0). Note again that the restricting condition
is equivalent to the condition that there are no elements of order p in PSL2(K), and this
is the fact we will use in the following. Thus, we actually show that if a lattice 0 <

PSL2(K) (where K is any p-adic field) does not contain an element of order p, then
ν(0) = −χ(0). As already mentioned, these lattices act on the q+1-regular Bruhat–Tits
tree X, where q is the order of the residue field F . As a vertex stabilizer in PSL2(K) is
compact, vertex stabilizers in a lattice 0 < PSL2(K) are finite. The only possible finite
subgroups of 0 (and therefore the only groups that can appear as vertex stabilizers) are
the dihedral groupsD2n and the cyclic group Cn, where n | q+1

2 or n | q−1
2 , the alternating

groups A4, A5, and the symmetric group S4. This can be seen as follows: Each finite
subgroup of PSL2(K) is contained in a vertex stabilizer, which is isomorphic to PSL2(O),
where O denotes the ring of integers ofK . As there are no elements of order p, each such
subgroup maps isomorphically to PSL2(F ), since Ker(PSL2(O)→ PSL2(F )) is a pro-p
group. The claim above results from the fact that the groups mentioned above are the only
subgroups of PSL2(F ) that do not contain elements of order p (cf. [H, p. 213], see also
[LW, Section 3]).

Recall that the graph of groups corresponding to 0 is obtained by taking Y := X/0
as the underlying graph. Then one takes a maximal subtree Z of Y , and a lift of Z to X.
Finally, one extends the lift to a section V (Y ) ∪ E(Y )→ X. The vertex and edge groups
of the graph of groups then correspond to the vertex and edge stabilizers of the lifted
vertices and edges. As a consequence, if v is a vertex in the graph of groups of 0 that lifts
to ṽ, then there is an obvious bijection between the orbits of 0v := 0ṽ on st(ṽ) and the
edges in st(v).

Thus, given a vertex ṽ ∈ X and a group 0v < Gṽ from the list above, we need
to analyze the action of 0v on st(ṽ). This means in our case finding the various orbits of
edges in st(ṽ)with non-trivial stabilizers, and finding those stabilizers (up to conjugation).

0v is mapped isomorphically to PSL2(F ), and its action on st(v) is given by the action
of its image in PSL2(F ) on P 1(F ). Thus we might as well think of 0v as a subgroup of
PSL2(F ), and consider its action on P 1(F ).

Note that an element g ∈ PSL2(F ) whose order (denoted by o(g)) is not divisible by
p, is either contained in a non-split torus and has no fixed points in P 1(F ), or is contained
in a split torus and has two fixed points in PSL2(F ). The first case occurs when o(g) | q+1

2 ,
and the second when o(g)| q−1

2 (see e.g. [H, II.8]). This also implies that two elements fix
the same edge if and only if they commute (which is the same as being in the same split
torus). This makes the analysis above quite easy, and these facts will be repeatedly used
in the following discussion.

Next we have to find the transitive permutation representations of 0v , and for each
e ∈ st(v) the representation induced on 0e by each transitive representation of 0v .

Finally we just have to calculate the expression on the left hand side of (4.3) for all
transitive representations of the groups above, and hope the result will always be ≥ 0
(which is fortunately the case).
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So in the following we just analyze case by case, first in more detail, in order to
explain the method, and then just stating the results.

5.1. D2n

As the transitive permutation representations of a group G correspond to conjugacy
classes of its subgroups (through the action on cosets), we need to have a list of con-
jugacy classes of subgroups of D2n. The subgroups of D2n are all isomorphic to D2m or
Cm, for m | n (we allow also m = 1). We have the following simple

Lemma 5.1. Letm | n. If n/m is even, then there are two conjugacy classes of subgroups
isomorphic to D2m in D2n. If n/m is odd, then there is just one conjugacy class.

Proof. Let H be the cyclic subgroup of index 2 in D2n. A subgroup isomorphic to D2m
is generated by the unique cyclic subgroup Hm of H of order m, and some reflection.
Under conjugation, Hm goes to itself, and reflections go to reflections. So two subgroups
isomorphic to D2m are conjugate iff they contain conjugate reflections.

If n is odd, then all reflections are conjugate, so in this case the assertion of the lemma
is true.

If n is even, then there are two conjugacy classes of reflections. They are easily de-
scribed as follows: If y is a generator ofH then the conjugacy classes are {xy2i

}, {xy2i+1
}

for some (any) reflection x. Now Hm is generated by yn/m. If n/m is even, then all the
reflections in a subgroup isomorphic to D2m are in the same conjugacy class. From this
it is clear that there are two conjugacy classes of subgroups isomorphic to D2m (corre-
sponding to the two conjugacy classes of reflections).

If on the other hand n/m is odd, then a subgroup isomorphic to D2m contains reflec-
tions of both conjugacy classes, and so all such subgroups are conjugate.

We now turn to checking if the condition we described in Proposition 4.1 is fulfilled
in the case 0v = D2n. We divide into four cases:

(a) 2 | q+1
2 and n | q+1

2 .
(b) 2 | q+1

2 and n | q−1
2 .

(c) 2 | q−1
2 and n | q+1

2 .
(d) 2 | q−1

2 and n | q−1
2 .

In case (a) the cyclic index 2 subgroup of 0v acts with no fixed points on st(v), as its
image under the projection to PSL2(F ) is contained in a non-split torus. The reflections
also act with no fixed points as they also project to (other) non-split tori. So there is no
edge in st(v) with non-trivial edge stabilizer. So in this case (4.3) clearly holds.

In case (b), reflections in 0v act freely, and the cyclic index 2 subgroup has two fixed
edges in st(ṽ), which are interchanged by the reflections. So there is one edge e ∈ st(v)
with a non-trivial edge group Cn < D2n = 0v . Note that in this case n is odd.

In case (c), each reflection stabilizes two edges, and the cyclic index 2 subgroup acts
freely on st(ṽ). Note that here again n is odd. The orbit of an edge stabilized by a reflection
is of order n, so there are two such orbits. As n is odd in this case, all reflections are
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conjugate. In particular, each of the orbits above contains exactly one edge stabilized by
a given reflection, and all edge stabilizers are conjugate.

Finally in case (d), the cyclic index 2 subgroup stabilizes two edges, which are again
interchanged by the reflections. Here n is either odd or even. If n is odd, then in (c),
we have two orbits of edges stabilized by reflections, with all the edge stabilizers of
both orbits conjugate. If n is even, then there are again two orbits of edges stabilized by
reflections, but this time, the stabilizers of edges in one orbit are not conjugate to those of
the second orbit. (That is, each orbit contains the edges stabilized by the reflections of one
conjugacy class.) All in all we thus have in this case one edge in st(v) stabilized by Cn,
and two edges stabilized by reflections. If n is even, then the edge groups of the latter two
edges are the (groups generated by) non-conjugate reflections in D2n. (If n is odd then of
course the edge groups are conjugate.)

We now introduce a table showing the various transitive actions (= coset actions) of
D2n, and the actions induced on the possible edge groups. In the case of an edge group
generated by a reflection, the only possibilities are the trivial action, that is, a fixed point,
or a transitive action. In the case of Cn < D2n the actions are given by the coset actions
of Cn on Cn/Cm for m | n.

In the table, τ represents a reflection, while if n is even, τ ′ represents another reflec-
tion, which is not conjugate to τ . If n is odd, one should disregard τ ′, as all reflections are
conjugate.

In case both n and n/m are even, there are two different coset representations corre-
sponding to the two conjugacy classes of D2m. We denote by D2m a subgroup containing
reflections conjugate to τ , and by D′2m a subgroup containing reflections conjugate to τ ′.
The box for the action of 〈τ ′〉 is left empty when the action is similar to that of 〈τ 〉.

Coset action Order Action of 〈τ 〉 Action of 〈τ ′〉 Action of Cn

D2n/D2m (n/m odd) n/m 1× fixed point,
(n/m− 1)/2× reg. action

1× action of
Cn onCn/Cm

D2n/D2m (n/m even) n/m 2× fixed point,
(n/m− 2)/2× reg. action

n/(2m)× reg. action 1× action of
Cn onCn/Cm

D2n/D
′
2m (n/m even) n/m n/(2m)× reg. action 2× fixed point,

(n/m− 2)/2× reg.
action

1× action of
Cn onCn/Cm

D2n/Cm 2n/m n/m× reg. action 2× action of
Cn onCn/Cm

We explain the table briefly. A coset gD2m is a fixed point of τ iff τ ∈ Dg2m. It is clear
that there is precisely one conjugate of D2m containing τ (because τ generates with the
unique subgroup Cm a group isomorphic toD2m); we can assume that τ ∈ D2m. Suppose
first that n/m is odd. So gD2m is a fixed point of τ iff g ∈ ND2n(D2m). But as each of
the n reflections belongs to exactly one conjugate of D2m, and as each such conjugate
contains m reflections, it turns out that there are n/m such conjugates, and so D2m must
be self-normalizing. So the only fixed point of τ is D2m.

In the case that n/m is even, τ has no fixed points acting on the cosets ofD′2m as it does
not belong to any conjugate of it. On the other hand,D2m has now n/(2m) conjugates. So
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D2m is an index 2 subgroup of its normalizer. As here again, gD2m is a fixed point for τ if
and only if g ∈ ND2n(D2m), it clearly follows that τ has two fixed points,D2m and gD2m
for some g ∈ ND2n(D2m) \D2m.

It is clear that 〈τ 〉 acts with no fixed points on the cosets of Cm < D2n (as τ /∈ Cgm
= Cm).

As to the action of Cn, one can see that if Cn = 〈y〉, then D2m, yD2m, . . . ,

yn/m−1D2m is a complete list of cosets of D2m, because yi /∈ D2m for 1 ≤ i < n/m.
From this it is clear that it acts as stated. Similar considerations apply to the action on
cosets of Cm, where a list of cosets may be given by Cm, yCm, . . . , yn/m−1Cm, τCm,

yτCm, . . . , y
n/m−1τCm.

Now, all that is left is to check (4.3) for cases (b)–(d), for each transitive representation
of D2n.

As a consequence of the following simple lemma it will suffice to check the condition
only for case (d), and this will imply all other cases:

Lemma 5.2. nv,r/|0e| ≤
∑me
i=1 η

r
i .

Recall that nv,r denotes the degree of the r-th permutation representation ρv,r of 0v , and
ηri denotes the multiplicity of the transitive permutation representation ρe,i of 0e induced
from ρv,r . The proof of the lemma is immediate: nv,r/|0e| = |0e|−1∑me

i=1 η
r
i ne,i ≤∑me

i=1 η
r
i (where ne,i is the degree of ρe,i). As a consequence, all the summands on the

right hand side of (4.3) are ≤ 0, and thus we only have to check case (d).
Having all the information at hand, this is just a simple computation. If n is odd, we

calculate, for the action on the cosets of D2m,

1−
1

2m
+

1
2

[
2 ·
(
n

2m
− 1−

n/m− 1
2

)
+

1
m
− 1

]
= 0.

For the action on the cosets of Cm we get

1−
1
m
+

1
2

[
2 ·
(
n

m
−
n

m

)
+

2
m
− 2

]
= 0.

If n is even, then, when n/m is odd, the calculation for the action on the cosets of D2m
is similar to the calculation for n odd. If n/m is even, then for the action on the cosets of
D2m we get

1−
1

2m
+

1
2

[
n

2m
− 2−

n/m− 2
2

+
n

2m
−

n

2m
+

1
m
− 1

]
= 0.

The calculation of the action on the cosets ofD′2m is similar. The calculation of the action
on the cosets of Cm for n is even is the same as when n is odd.

5.2. Cn

We divide into two cases. If n | q+1
2 then Cn acts freely on st(ṽ), and so (4.3) is clearly

true.
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If n | q−1
2 then Cn will have two fixed edges in st(ṽ). In this case for every transitive

representation ρv,r of Cn, (4.3) is 1− nv,r
n
+

nv,r
n
− 1 = 0 (as the restriction of an action

of Cn to itself is just the same action).

5.3. A4

We divide again into different cases:

(a) Neither 2 nor 3 divides q−1
2 .

(b) 3 | q−1
2 but 2 does not.

(c) 2 | q−1
2 but 3 does not.

(d) 2, 3 | q−1
2 .

In case (a) there is no non-trivial element of A4 fixing an edge, so (4.3) is true. In case
(b), every order 3 cyclic subgroup of A4 has two fixed edges in st(ṽ). The order of the
orbit is 4. As there are four cyclic groups of order 3 in A4, each with two fixed points, we
conclude that A4 has two orbits of edges with stabilizers of order 3. So, in the graph of
groups we have two edges with non-trivial edge groups, both isomorphic to C3.

In case (c), every order 2 subgroup has two fixed edges. There are three such sub-
groups, and the order of the orbit is 6, so all edges with non-trivial stabilizer belong to the
same orbit of A4. We conclude that in the graph of groups there is a unique edge with a
non-trivial edge group, isomorphic to C2.

Case (d) is just a combination of (b) and (c), and in the graph of groups one gets two
edges with stabilizers C3, and one edge with stabilizer C2.

We now present a table, showing the various transitive actions of A4, and the action
induced on subgroups isomorphic to C2 and C3. Note that it does not depend on the
specific group chosen, as all groups isomorphic to C3 are conjugate, as are all groups
isomorphic to C2 (f.p. stands for fixed points, reg. action stands for regular action).

Coset action Order Action of C2 Action of C3

A4/A4 1 1× f.p. 1× f.p.
A4/C3 4 2× reg. action 1× f.p., 1× reg. action

A4/Z2 × Z2 3 3× f.p. 1× reg. action
A4/C2 6 2× f.p., 2× reg. action 2× reg. action
A4/1 12 6× reg. action 4× reg. action

Once again we have to check (4.3) in cases (b)–(d), for all transitive actions of A4. Here
again by Lemma 5.2 it is enough to check case (d). It turns out (4.3) is always≥ 0. (Actu-
ally, in case (d), it is always 0. A similar phenomenon occurs for all the vertex stabilizers
below for the case with maximal number of edges with non-trivial edge stabilizer.)

5.4. S4

We note that S4 can appear as a vertex stabilizer only when q ≡ ±1 (mod 8) (see [H], or
[LW] as above). In these cases, if 2 | q−1

2 then also 4 | q−1
2 .
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Keeping this fact in mind, we divide again into four different cases:

(a) Neither 2 nor 3 divides q−1
2 .

(b) 3 | q−1
2 but 2 does not.

(c) 4 | q−1
2 but 3 does not.

(d) 3, 4 | q−1
2 .

Case (a) is again trivial. In case (b), using the same kind of reasoning as the one used
for A4, and noting we have four subgroups isomorphic to C3 which are all isomorphic,
we see that we have one orbit of edges with stabilizer isomorphic to C3, and so in the
graph of groups there is one edge with a non-trivial edge group isomorphic to C3.

In case (c) we have two kinds of cyclic groups that are the edge stabilizers of edges
in st(ṽ): subgroups isomorphic to C4, and subgroups isomorphic to C2. Again using argu-
ments similar to those employed in the study of A4, we see that in the graph of groups we
have just one edge with edge group C4 and one edge with edge group C2 in st(v). Note
that there are three subgroups isomorphic to C4 that are all conjugate, as are the six edge
groups isomorphic to C2 (the latter are generated by transpositions—all other elements
of order 2 in S4 belong to groups isomorphic to C4).

Finally, case (d) is again a combination of (b) and (c), and we get one edge with edge
group C2, one with edge group C3 and one with C4.

We now present a table for S4. Note thatC4 has three transitive actions: trivial, regular,
and its action on the cosets of C2 < C4.

Coset action Order Action of C2 Action of C3 Action of C4

S4/S4 1 1× f.p. 1× f.p. 1× f.p.
S4/A4 2 1× reg. action 2× f.p. 1× action on C4/C2
S4/D8 3 1× f.p.,

1× reg. action
1× reg. action 1× f.p.,

1× action on C4/C2
S4/S3 4 2× f.p.,

1× reg. action
1× f.p.,
1× reg. action

1× reg. action

S4/Z2 × Z2
(1) 6 3× reg. action 2× reg. action 3× action on C4/C2

S4/Z2 × Z2
(2) 6 2× f.p.,

2× reg. action
2× reg. action 1× action on C4/C2,

1× reg. action
S4/C4 6 3× reg. action 2× reg. action 2× f.p.,

1× reg. action
S4/C3 8 4× reg. action 2× f.p.,

2× reg. action
2× reg. action

S4/C2
(1) 12 2× f.p.,

5× reg. action
4× reg. action 3× reg. action

S4/C2
(2) 12 6× reg. action 4× reg. action 2× action on C4/C2,

2× reg. action
S4/1 24 12× reg. action 8× reg. action 6× reg. action

A few comments are in order.D8 is the 2-Sylow subgroup of S4. The first Z2×Z2 denotes
the group 〈(12)(34), (14)(23)〉, the second is (conjugate to) 〈(12), (34)〉. The first C2 is
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(conjugate to) 〈(12)〉, while the second is (conjugate to) 〈(12)(34)〉. Filling the table up
is just a matter of routine reasoning, similar to that used for the previous cases. We only
note that the action of C4 = 〈y〉 on the orbit of some coset is the one on C4/C2 if y2 has
a fixed point, but y does not.

Here again one has to perform the now quite tedious work of checking that (4.3) is
≥ 0 for all transitive representations of S4, for cases (b)–(d). Again, by Lemma 5.2 it is
enough to check case (d).

5.5. A5

Here we divide again into different cases:

(a) Neither 2 nor 3 nor 5 divides q−1
2 . (e) 2, 3 | q−1

2 but 5 does not.
(b) 2 | q−1

2 but 3, 5 do not. (f) 2, 5 | q−1
2 but 3 does not.

(c) 3 | q−1
2 but 2, 5 do not. (g) 3, 5 | q−1

2 but 2 does not.
(d) 5 | q−1

2 but 2, 3 do not. (h) 2, 3, 5 | q−1
2 .

One can check that for each p ∈ {2, 3, 5} that divides (q − 1)/2 we have exactly one edge
in the corresponding graph of groups with edge group isomorphic to Cp, and if p does not
divide (q − 1)/2 then there is no such edge group. Note that all subgroups isomorphic to
Cp (p ∈ {2, 3, 5}) are conjugate.

Following is the table for A5. The maximal subgroups of A5 are known to be isomor-
phic to A4, D10 or S3, and all subgroups isomorphic to each of them are conjugate. (The
coset actions on them are known to be the primitive actions of A5.) So we can take them
and their subgroups to give a full list of a transitive actions of A5.

Coset Action Order Action of C2 Action of C3 Action of C5

A5/A5 1 1× f.p. 1× f.p. 1× f.p.
A5/A4 5 1× f.p.,

2× reg. action
2× f.p.,
1× reg. action

1× reg. action

A5/D10 6 2× f.p.,
2× reg. action

2× reg. action 1× f.p.,
1× reg. action

A5/S3 10 2× f.p.,
4× reg. action

1× f.p.,
3× reg. action

2× reg. action

A5/C5 12 6× reg. action 4× reg. action 2× f.p.,
2× reg. action

A5/Z2 × Z2 15 3× f.p.,
6× reg. action

5× reg. action 3× reg. action

A5/C3 20 10× reg. action 2× f.p.,
6× reg. action

4× reg. action

A5/C2 30 2× f.p.,
14× reg. action

10× reg. action 6× reg. action

A5/1 60 30× reg. action 20× reg. action 12× reg. action
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Once again, one checks that (4.3) is ≥ 0 for all transitive actions of A5. Here (by Lemma
5.2) it is enough to check case (h).

This completes the proof of the theorem.

6. Proof of Theorem 1.4

We still have to show how to deduce Theorem 1.4 from Theorem 1.5. We have an(0) =
tn(0)/(n− 1)!, where tn(0) denotes the number of transitive permutation representations.
Let 0 be a lattice as in Theorem 1.4. By the discussion in Section 2 and Theorem 1.5 we
see that:

log an(0)
n log n

≤
log
(
|Hom(0,Sn)|
(n−1)!

)
n log n

=
log |Hom(0, Sn)|

n log n
−

log((n− 1)!)
n log n

≤ −χ(0)+O0

(
1

log n

)
+ ε(n)

where ε(n) = 1− log((n−1)!)
n log n = O(1/n) by standard computations. From this it is easy to

see that an(0) ≤ (cn)−χ(0)n, but as the first error term might depend on 0 (as is suggested
by the subscript), the constant may also depend on 0.

We thus have to examine this error term more closely. From the proof of Schlage-
Puchta’s Theorem 2.1 one can see that the error term is a sum of error terms (each inde-
pendent of 0), one for each summand in the sum defining the linear optimization problem.
One can thus write the error term as (

∑
v∈V mv +

∑
e∈Eg me)O(1/log n) where the error

term is independent of 0 (see the remark following the computations in Section 2).
As we saw above, in our case the vertex and edge stabilizers belong to a finite set

of groups (up to isomorphism), thus the numbers mv, me are bounded. We conclude that
O0(1/log n) = (|V | + |E|)O(1/log n), where the error term on the right is independent
of 0.

Now recall that

covol(0) =
1
2

∑
v∈V

1
|0v|
=

1
q + 1

∑
e∈Eg

1
|0e|

(see [S1, p. 84]). Using again the fact that we deal with a finite set of possible vertex and
edge groups, we have |0v|, |0e| < c′ for some constant c′.

Thus, |V | ≤ 2c′ · covol(0), |E| ≤ (q + 1)c′ · covol(0). So, the sum |V | + |E| is
linearly bounded by −χ(0), and we have O0(1/log n) = −χ(0) ·O(1/log n) where the
error term on the right is independent of 0.

In conclusion we have

log an(0)
n log n

≤ −χ(0)

(
1+O

(
1

log n

))
+O

(
1
n

)
.

This gives an(0) ≤ (cn)−χ(0)n for a constant c independent of 0, and consequently the
same is true for sn(0).
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7. Counting maximal arithmetic lattices

Here we would like to indicate how one proves Theorem 1.3, using the same arguments
used in [BGLS].

Let H = PGL2(R)a × PGL2(C)b ×
∏r
i=1 PGL2(Ki) where the Ki are p-adic fields.

Arithmetic lattices in H are obtained as follows: Let k be a number field with exactly
b complex places, and at least a real places. Suppose also that there are finite places
v1, . . . , vr such that the completion of k at vi is isomorphic to Ki . Let A be a quaternion
algebra over k such that A splits at exactly a real places, and A splits also at v1, . . . , vr .
(Recall that A splits at a place v if A(kv) = M2(kv) ≡ M2(R), while A ramifies at v—
where v is not complex—if A(v) is isomorphic to the unique division algebra over kv .)
Let S = {v1, . . . , vr} and let RS be the ring of S-integers in k, i.e. of elements in k which
are integral at all places not in S. Let O be an S-order inA, that is, a full rank finitely gen-
erated RS-lattice which is also a ring with 1. Let O∗ denote the invertible elements of O.
Then O∗ embeds naturally in GL2(R)a × GL2(C)b ×

∏r
i=1 GL2(Ki), and the projection

to H of this image, which we denote by 0, is discrete of finite co-volume. A subgroup
of H that is commensurable to 0 is called an arithmetic subgroup of H . This definition
coincides with the usual definition of (irreducible) arithmetic subgroups of a semisimple
group. All arithmetic subgroups obtained from an RS-order in a quaternion algebra A are
commensurable. We note by CS(A) the commensurability class of all arithmetic lattices
commensurable to an arithmetic subgroup obtained from anRS-order inA. (For the above
see e.g. [V, Chapter 4].)

Note that in the case interesting us in this paper, of PSL2(K) for a p-adic field K , the
field k above has to be totally real, A has to ramify at all real places, k has a place v such
that kv = K and A splits at v, and S = {v}.

In what follows we cite various results of Borel concerning maximal arithmetic sub-
groups inH . These results are presented in a setting which is more general than the origi-
nal setting that concerns only groups of the form PGL2(R)a ×PGL2(C)b, but it turns out
that one can prove the results in the general case (where H may contain p-adic factors)
using the same arguments as in the original proofs. These proofs can be found either in
Borel’s paper [B1] or in [MR, Chapter 11]. We note that in some volume calculations we
do not give a precise numerical value with respect to a fixed Haar measure (as is done in
[B1] for the Haar measure induced from the hyperbolic measure on the product of hyper-
bolic planes and hyperbolic 3-spaces), but give an expression that is fixed up to scaling,
where the scaling depends only on the choice of the Haar measure. This is sufficient for
our needs.

In the following we fix a set S of places. We shall therefore omit the subscript S in the
notation CS(A). We will consider RS-orders in A for this fixed S, and we will call them
just orders for short.

We start with a description of a subset of lattices in C(A) that contains all maximal
lattices.

Let O be a maximal order in A (with respect to inclusion). The completion Ov at
the place v is then a maximal order for every v /∈ S. Let Ram(A) denote the set of
places where A ramifies. If v /∈ Ram(A), then Av = M2(kv). If v is a finite place,
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v /∈ S ∪ Ram(A), this implies that Ov corresponds to a vertex in the corresponding
Bruhat–Tits lattice, that is, Ov = End(L) for some lattice L in a 2-dimensional vector
space over kv .

An important tool in the construction below is the local-global principle for orders in
quaternion algebras, which says the following:

Proposition 7.1. Fix an RS-order D of A. There is a bijection between the collection
of RS-orders O of A and the set {(Ov)v /∈S | Ov an order of Av , Ov = Dv almost
everywhere} given by O 7→ (Ov)v /∈S . The inverse is given by (Ov)v /∈S 7→ O = {x ∈ A |
x ∈ Ov ∀v /∈ S}.

(See [V, p. 83]. The proposition is actually valid for all ideals inA.) In particular note that
in this correspondence maximal orders correspond to sequences of maximal local orders.

Now fix a maximal order O as above, and let T be a finite set of finite places such
that T ∩ (S ∪ Ram(A)) = ∅. For every v ∈ T choose (Ov)

′
:= End(L′) where [L′] is

a neighbour of [L] := Ov in the Bruhat–Tits tree. Then (Ov)
′ is a maximal order in Av .

Let now O′ be the maximal order of A defined by (O′)v = Ov for v /∈ T ∪ S, and
(O′)v = (Ov)

′ for v ∈ T . This defines a maximal RS-order by the above proposition. Let
E = O ∩O′. Now define

0T ,O := P(N(E)).

Here N(E) denotes the normalizer of E in A∗, and P denotes the projection modulo the
centre.

The group 0T ,O depends on the choices of the local maximal orders (Ov)
′ (that is, on

the choice of a certain neighbour to the vertex stabilized by Ov), only up to conjugation by
an element x ∈ O1. (See [MR, p. 354]. One uses there a strong approximation theorem.
For our needs one should use its formulation as in [V, p. 81].)

We note that every lattice in C(A) can be taken to be a subgroup of P(A∗) as it is
contained in the commensurator of φ(O1) which is equal to φ(A∗) (see [V, p. 106]).
Thus we think of C(A) as a family of subgroups of P(A∗) commensurable to P(N(O))
(and to any other member of the family {0T ,O}).

We say that an element x ∈ PGL2(kv) is odd if in its action on the Bruhat–Tits tree
it interchanges the two orbits of vertices under the action of PSL2(kv). We will say that
an element x ∈ 0 (0 ∈ C(A)) is odd at a prime v if it is odd as an element of PGL2(kv)

(which in this case means it inverts an edge). We now have the following theorem:

Theorem 7.1. Let 0 ∈ C(A). Let T (0) denote the set of places v of k where 0 contains
an element odd at v. Then 0 is conjugate to a subgroup of 0T (0),O for some maximal
order O.

In particular, the collection of lattices 0T ,O, where T runs over finite sets of places not
in Ram(A) ∪ S, and O runs over the maximal orders of A, contains the set of maximal
arithmetic subgroups in C(A).

Note that if O and O′ are conjugate maximal orders, then 0T ,O and 0T ,O′ are also
conjugate. Thus, in the theorem above we can take the family of 0T ,O where O runs just
over representative maximal orders from each conjugacy class of orders. The number of



Counting arithmetic subgroups 949

conjugacy classes is called the type number of A, and it is finite. (In our case, as we are
interested in RS-orders, this would more precisely be called the S-type number, which is
still finite.)

The lattices 0∅,O are maximal lattices; indeed, we will later see they are the lattices
of minimal co-volume in C(A). On the other hand, there may be other lattices 0T ,O that
are not maximal (and then they are contained in some 0T ′,O for some T ′ ⊂ T ).

This theorem enables one to study the distribution of co-volumes of elements ofC(A).
In particular one can show that all these co-volumes are integer multiples of a single
number. For our needs we are just interested in finding the lattices of minimal co-volume,
and calculating this volume (with respect to a given Haar measure). We first have the
following theorem showing that the lattices of minimal co-volume in C(A) are those of
type 0∅,O. The index notation in the theorem is the generalized index:

[01 : 02] = [01 : 01 ∩ 02][02 : 01 ∩ 02]
−1.

Theorem 7.2. Let O be a maximal order in A. Then

[0∅,O : 0T ,O] = 2−m
∏
v∈T

(N(v)+ 1)

for some 0 ≤ m ≤ |T |. If O′ is another maximal order, then [0∅,O : 0∅,O′ ] = 1.

Here N(v) denotes the norm of the prime v.
Next we give a formula for the co-volume of the image of O1, the group of elements

in O with reduced norm 1, in H with respect to a fixed Haar measure. We will denote
this image by 0O1 . The formula will be given in terms of the arithmetic information on k,
and of the information coming from A (essentially Ram(A) that determines A). It will be
independent of the choice of the maximal order O.

In [B1, Section 7] there is a precise calculation of vol(H/0O1) for the measure in-
duced from the hyperbolic measure on the product of hyperbolic planes and hyperbolic
3-spaces. For our needs, however, it is enough to know that for a fixed Haar measure µ
on H ,

vol(H/0O1) = C ·
1

3/2
k ζk(2)

∏
v∈Ramf(A)

(N(v)− 1)

(4π2)|Ram∞(A)|

where C is a fixed constant depending only on the choice of µ (and not on the maxi-
mal order O), 1k is the discriminant of k/Q, ζk is the Dedekind zeta function of k, and
Ram∞(A) and Ramf(A) denote the sets of archimedean, respectively finite places where
A ramifies.

In particular, in the case that interests us, of an arithmetic lattice in PSL2(K), we have
(up to a constant as above)

vol(PGL2(K)/0O1) =
1

3/2
k ζk(2)

∏
v∈Ramf(A)

(N(v)− 1)

(4π2)dk

where dk is the degree of k/Q.
For the case of lattices in PGL2(R) see e.g. [MR, p. 333], where the volume is nor-

malized to be the one induced from the Riemannian measure on the hyperbolic plane.
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Borel’s formula for the minimal co-volume of a lattice in a commensurability class
now follows from a calculation of the index [0∅,O : 0O1 ]. This is done using the inter-
mediary subgroup 0Rf = P(ARf) where ARf = {α ∈ N(O) | n(α) ∈ R∗f } where Rf is
the ring of elements of k which are integral at all finite places of k not in Ramf(A) ∪ S,
and n denotes the reduced norm on A. Note that O1

= {α ∈ N(O) | n(α) = 1}, and so
0O1 ⊂ 0Rf .

Let R∗f,∞ be the group of α ∈ (Rf)
∗ such that α > 0 at all real places of k where A

ramifies. (In particular, in the case of PGL2(K) over a p-adic fieldK , these are the totally
real elements in (Rf)

∗.) We have

Theorem 7.3. 0Rf/0O1 ∼= R∗f,∞/(R
∗

f )
2.

Note that in particular [0Rf : 0O1 ] ≤ 2r1+r2+rf , where r1 (resp. r2) is the number of real
(resp. complex) places of k, and rf = |S ∪ Ramf(A)|, by the (generalized) Dirichlet unit
theorem.

We now recall the following notation presented by Borel, and used also in [MR], with
the slight adaptation to fit our case:
Ik = Group of fractional ideals of the ring RS of S-integers in k.
Pk = Subgroup of principal fractional ideals.

Pk,∞ = Subgroup of principal fractional ideals with a generator that is positive at all real
ramified places of A.

M1 = Subgroup of Ik generated by Pk,∞ and the ideals P ∈ Ramf(A), (that is, the
ideals corresponding to the places in Ramf(A)).

J1 = Ik/M1.
J2 = Image of Pk in J1.

2J1 = Kernel of the mapping y 7→ y2 in J1.
We then have the following result, which completes the calculation of the minimal co-
volume of a lattice in C(A):

Theorem 7.4. [0O : 0Rf ] = [2J1 : J2].

Note that the number [2J1 : J2] divides the order of the ideal class group of RS and so
also the order of the ordinary ideal class group of k (see [N, p. 75]).

In conclusion we get the following

Corollary 7.1. The smallest co-volume of a group in the commensurability class C(A)
of an arithmetic group in H , for a fixed Haar measure µ on H , is (up to multiplication
by a constant depending only on µ) equal to

1
3/2
k ζk(2)

∏
v∈Ramf(A)

(N(v)− 1)

(4π2)|Ram∞(A)|[R∗f,∞ : (R
∗

f )
2][2J1 : J2]

.

In particular in the caseG = PGL2(K) for a p-adic fieldK the expression above reduces
to

1
3/2
k ζk(2)

∏
v∈Ramf(A)

(N(v)− 1)

(4π2)dk [R∗f,+ : (R
∗

f )
2][2J1 : J2]

(3.2)

(where Rf,+ is the subgroup of totally real units in Rf).
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Finally, there is another result we need, due to Chinburg and Friedman [CF]. The
result deals again with products of the form PGL2(R)a × PGL2(C)b and is based on
Borel’s work. Once more, their work generalizes easily to our case.

Proposition 7.2. Let 0 be an arithmetic lattice in C(A). Then

covol(0) > C1 exp
(

0.37dk −
19.08

h(k, 2, A)

)
.

Here C1 is a constant depending only on H and the Haar measure µ, and h(k, 2, A) :=
|J1/J2 · J

2
1 |. In particular h(k, 2, A) is a positive integer. In [CF] a specific constant C is

calculated corresponding to the Haar measure induced from the hyperbolic measure on the
product of hyperbolic planes and hyperbolic 3-manifolds. For our needs the formulation
above suffices as it yields the following lemma (see [BGLS, Lemma 3.1]):

Lemma 7.1. There exist constants c1, c2 such that if 0 ∈ C(A), where A is a quaternion
algebra over the number field k, and covol(0) < x then dk ≤ c1 log x + c2.

There is only a slight change needed in [CF], which is the formulation of Lemma 7.2
below.

Lemma 7.2.
[R∗f,∞ : (R

∗

f )
2
][2J1 : J2] = 2rf+a+r2 [K(A) : k]

where r2 is the number of complex places in k, rf = |S ∪ Ramf(A)|, and where K(A) is
the maximal abelian extension of k which is unramified at all finite places, whose Galois
group is an elementary abelian 2-group and where the primes in Ramf(A) and S are
completely decomposed.

(The change consists in the addition of S to the definition of rf and K(A).) The proof of
this lemma remains essentially the same.

The rest of the proof in [CF] is based on Borel’s results stated before, and on number-
theoretic considerations which stay unaltered for the generalized case interesting us.

Having all the needed information at hand we can now prove Theorem 1.3 using the
same proof as in [BGLS, Section 3]. Fix a number x. The proof is in three stages:

(1) One first bounds the number of possible fields k which can contribute a maximal
arithmetic lattice of co-volume at most x. By this we mean that for k there exists a
quaternion algebra A over k such that there exists a lattice of co-volume at most x
which belongs to C(A).i

(2) Given k, one bounds the number of quaternion algebras A over k that contribute
maximal arithmetic lattices of co-volume at most x.

(3) Given A one finds a bound on the number of maximal arithmetic subgroups in C(A)
of co-volume at most x.

Combining these bounds one gets the required bound on the total number of maximal
arithmetic subgroups of co-volume at most x.
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We will describe how these bounds are obtained. We indicate the slight changes
needed for the general case in all three stages. (The numbering (1)–(3) does not exist
in the original).

In (1) one uses Borel’s formula for the minimal co-volume. One has to use the esti-
mate [R∗f,∞ : (R

∗

f )
2
][2J1 : J2] ≤ 2|Ramf(A)|+|S|hk (adding S to the formula). In (2) the

quaternion algebra A is ramified at dk − a real places. One uses the fact that a quaternion
algebra over a number field k is completely determined by the places where it ramifies,
and one bounds (polynomially in x) the number of sets of finite places in k where A
may ramify if C(A) contains a lattice with co-volume bounded by x. Here we only add
that in order to bound the number of possible quaternion algebras one has to multiply
this number by

(
d
a

)
; but using Stirling’s formula and the lemma of Chinburg and Fried-

man one easily shows that
(
d
a

)
is polynomially bounded by x and so also the number of

possible quaternion algebras is bounded polynomially by x. In (3) one uses the fact that
covol(0∅,O) is bounded from below by a fixed constant. For PSL2(R) this is a well known
result by Siegel, and for PSL(C) this is a result of Kazhdan and Margulis. For PSL2 over
a p-adic field (p 6= 2) see [LW]. For the other cases this is a result of [B2].
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MR 1978431
[LW] Lubotzky, A., Weigel, T.: Lattices of minimal covolume in SL2 over local fields. Proc.

London Math. Soc. (3) 78, 283–333 (1999) Zbl 1026.22013 MR 1665245

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0805.57001&format=complete
http://www.ams.org/mathscinet-getitem?mr=1239551
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0734.05052&format=complete
http://www.ams.org/mathscinet-getitem?mr=1065928
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1214.22002&format=complete
http://www.ams.org/mathscinet-getitem?mr=2726109
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0473.57003&format=complete
http://www.ams.org/mathscinet-getitem?mr=0616899
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0658.22004&format=complete
http://www.ams.org/mathscinet-getitem?mr=0983603
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0643.57011&format=complete
http://www.ams.org/mathscinet-getitem?mr=0860679
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0217.07201&format=complete
http://www.ams.org/mathscinet-getitem?mr=0224703
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0848.20036&format=complete
http://www.ams.org/mathscinet-getitem?mr=1312501
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0786.22017&format=complete
http://www.ams.org/mathscinet-getitem?mr=1132296
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1071.20033&format=complete
http://www.ams.org/mathscinet-getitem?mr=1978431
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1026.22013&format=complete
http://www.ams.org/mathscinet-getitem?mr=1665245


Counting arithmetic subgroups 953

[MR] Maclachlan, C., Reid, A.: The Arithmetic of Hyperbolic 3-Manifolds. Grad. Texts in
Math. 219, Springer (2003) Zbl 1025.57001 MR 1937957
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