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Abstract. In this paper we show that the multiplicities of holomorphic discrete series representa-
tions relative to reductive subgroups satisfy the credo “quantization commutes with reduction”.
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1. Introduction

The orbit method, introduced by Kirillov in the 1960s, proposes a correspondence be-
tween the irreducible unitary representations of a Lie group G and its orbits in the coad-
joint representation: the representation πGO should be the geometric quantization of the
Hamiltonian action of G on the coadjoint orbit O ⊂ g∗. The important feature of this
correspondence is the functoriality relative to inclusions G′ ↪→ G of closed subgroups.
This means that if we start with representations πGO and πG

′

O′ attached to coadjoint orbits
O ⊂ g∗ and O′ ⊂ (g′)∗, one expects that the multiplicity of πG

′

O′ in the restriction πGO |G′
can be computed in terms of the space

O ∩ π−1
g′,g(O

′)/G′, (1.1)

where πg′,g : g∗ → (g′)∗ denotes the canonical projection. Symplectic geometers recog-
nise that (1.1) is a symplectic reduced space in the sense of Marsden–Weinstein, since
πg′,g : O→ (g′)∗ is the moment map relative to the Hamiltonian action of G′ on O. Let
us give some examples where this theory is known to be valid.

For simply connected nilpotent Lie groups, Kirillov [Kir62] described the correspon-
dence O 7→ πGO , and Corwin–Greenleaf [CG88] proved its functoriality relative to sub-
groups: the multiplicity appearing in the direct integral decomposition of πGO |G′ is the
cardinality of the reduced space (1.1).

For compact connected Lie groups, Heckman [Hec82] proved that the multiplicity is
asymptotically given by the volume of the reduced space (1.1). Just after, Guillemin and
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Sternberg [GS82b] replaced this functoriality principle in a more geometric framework
and proposed another version of this rule for a good quantization process: quantization
should commute with reduction. This means that if QG′(M) is the geometric quantization
of a Hamiltonian action of a compact Lie group G′ on a symplectic manifold M , then
the multiplicity of the representation πG

′

O′ in QG′(M) should be the (dimension of the)
geometric quantization of the reduced space (8G

′

M )
−1(O′)/G′. Here 8G

′

M : M → (g′)∗

denotes the moment map.
A good quantization process for compact Lie group actions on compact symplectic

manifolds turns out to be the equivariant index of a Dolbeault–Dirac operator [Sja96,
Ver02]. In the late 1990s, Meinrenken and Meinrenken–Sjamaar proved that the principle
of Guillemin–Sternberg works in this setting [Mei98, MS99]. Afterwards, this quantiza-
tion procedure was extended to non-compact manifolds with a proper moment map by
Ma–Zhang and the author [Par09, MZ09, Par11, MZ14]. See also the work of Duflo–
Vergne on the multiplicities of tempered representations relative to compact subgroups
[DV11].

The purpose of this article is to show that the “quantization commutes with reduction”
principle holds in a case where the symmetry group is a real reductive Lie group. Loosely
speaking, we prove that if πGO and πG

′

O′ are holomorphic discrete series representations of
real reductive Lie groups G′ ⊂ G, then the multiplicity of πG

′

O′ in the restriction πGO |G′ is
equal to the quantization of the reduced space (1.1).

We now turn to a description of the contents of the consecutive sections, highlighting
the main features.

In Section 2, we clarify previous work of Weinstein [Wei01] and Duflo–Vargas
[DVa07, DVa10] concerning the Hamiltonian action of a connected reductive real Lie
group G on a symplectic manifold M . The main point is that if the action of G on M is
proper and the moment map 8GM : M → g∗ relative to this action is proper, then the
image of 8GM is contained in the open subset

g∗se := {ξ ∈ g∗ | the stabilizer subgroup Gξ is compact},

of strongly elliptic elements and the manifold has a decomposition

M ' G×K Y. (1.2)

Here K is a maximal compact subgroup of G, and Y is a closed K-invariant symplectic
submanifold of M . Thanks to (1.2), we remark that the reduced space (8GM)

−1(O)/G is
connected for any coadjoint orbit O ⊂ g∗; this is a notable difference with the nilpotent
case where the reduced space (1.1) can be disconnected.

The decomposition (1.2) will be the main ingredient of this paper to prove some
“quantization commutes with reduction” phenomenon. Note that Hochs [Hoc09] already
used this idea when the manifold Y is compact to get a “quantization commutes with re-
duction” theorem in the setting of KK-theory. He applied some induction process, while
we will use (1.2) to prove some functoriality relative to a restriction procedure.
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In this context, it is natural to look at the induced action of a reductive subgroup
G′ ⊂ G on M , and we have another decomposition M ' G′ ×K ′ Y ′ if the moment map
8G

′

M is proper. In Section 2.3, we give a criterion that ensures the properness of 8G
′

M .
In Section 3, we turn to a close study of holomorphic discrete series representations of

a reductive Lie groupG. Recall that the parametrization of those representations depends
on the choice of an element z in the centre of the Lie algebra of K such that the adjoint
map ad(z) defines a complex structure on g/k. Let T be a maximal torus in K , with Lie
algebra t. The existence of an element z forces t to be a Cartan subalgebra of g, and it
defines a closed cone Cρhol(z) ⊂ t∗ (see (3.2)). If3∗ ⊂ t∗ is the weight lattice, we consider
the subset

Ĝhol(z) := Cρhol(z) ∩3
∗
+

where 3∗+ is the set of dominant weights. The work of Harish-Chandra tells us that we
can attach a holomorphic discrete series representation VGλ to any λ ∈ Ĝhol(z).

In Section 4, we look at formal geometric quantization procedures attached to the
Hamiltonian action of G on a symplectic manifold M . We suppose that the properness
assumptions are satisfied and that

Image(8GM) ⊂ G · C
ρ
hol(z). (1.3)

We define the formal geometric quantization of the G-action on M as the formal sum

Q−∞G (M) :=
∑

λ∈Ĝhol(z)

Q(Mλ,G)V
G
λ , (1.4)

where Q(Mλ,G) ∈ Z is the geometric quantization of the compact symplectic reduced
space Mλ,G := (8

G
M)
−1(G · λ)/G.

Since the moment map 8KM is also proper, we define similarly the formal geometric
quantization of the K-action on M as

Q−∞K (M) :=
∑
µ∈3∗+

Q(Mµ,K)V
K
µ , (1.5)

where Mµ,K := (8
K
M)
−1(K ·µ)/K , and V Kµ denotes the irreducible representation of K

with highest weight µ. The formal quantization procedure Q−∞K , together with its func-
torial properties, has been studied by Ma–Zhang and the author [Par09, MZ09, Par11,
MZ14].

Let R−∞(G, z) be the Z-module formed by the infinite sums
∑
λ∈Ĝhol(z)

mλV
G
λ

with mλ ∈ Z. We also consider the Z-module R−∞(K) formed by the infinite sums∑
µ∈3∗+

nµV
K
µ with nµ ∈ Z. The following basic result will be an important tool in our

paper (see Lemma 3.11).

Lemma A. The restriction morphism rK,G : R−∞(G, z)→ R−∞(K) is injective.

We shall need to work under one of the following hypotheses:

A1. The set of critical points of the function ‖8GM‖
2 is compact,

A2. The map 〈8GM , z〉 : M → R is proper.
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We will see in Lemma 4.12 that A2 is automatically satisfied when g is simple. We can
now state state one of our main results (see Theorem 4.10).

Theorem B. Under Assumption A1 or A2,

rK,G(Q−∞G (M)) = Q−∞K (M), Q−∞K (M) = Q−∞K (Y )⊗ S•(p).

Here Q−∞K (Y ) is the formal geometric quantization of the slice Y , and S•(p) is the sym-
metric algebra of the complex K-module p := (g/k, ad(z)).

We will apply Theorem B to M = G · λ for λ ∈ Ĝhol(z). Here Q−∞G (G · λ) = VGλ
by definition, but we will restrict the action to a reductive subgroup G′ ⊂ G for which
z ∈ g′. It is not difficult to see that the moment map 8G

′

G·λ is proper, and we prove in
Proposition 3.13 that the inclusion (1.3) holds. The term Q−∞

G′
(G · λ) ∈ R−∞(G′, z) is

then well defined.
It is well known [Mar75, JV79, Kob98] that the representation VGλ admits an admis-

sible restriction to G′: the restriction VGλ |G′ is a discrete sum formed by holomorphic
discrete series representations VG

′

µ with µ ∈ Ĝ′hol(z). We can now state the major result
of this paper (see Theorem 4.11).

Theorem C. Let λ ∈ Ĝhol(z). Then

VGλ |G′ = Q−∞
G′

(G · λ).

This means that for any µ ∈ Ĝ′hol(z), the multiplicity of the representation VG
′

µ in VGλ |G′
is equal to the geometric quantization Q((G ·λ)µ,G′) ∈ Z of the (compact) reduced space
(G · λ)µ,G′ .

In [JV79], Jakobsen–Vergne proposed another formula for the multiplicity of VG
′

µ

in VGλ |G′ . In Section 4.4, we explain how to recover their result from Theorem C.
Section 5 is devoted to the proofs of the main results of this paper. We use previ-

ous work of the author on localization techniques in the setting of transversally elliptic
operators.

Notation. In this paper, G denotes a connected real reductive Lie group; we follow the
convention of Knapp [Kna04]. We have a Cartan involution 2 on G such that the fixed
point setK := G2 is a connected maximal compact subgroup. We have Cartan decompo-
sitions: g = k⊕ p at the level of Lie algebras and G ' K × exp(p) at the level of groups.
We denote by b aG-invariant non-degenerate bilinear form on g that is equal to the Killing
form on [g, g], and that defines aK-invariant scalar product (X, Y ) := −b(X,2(Y )). We
will use the K-equivariant identification ξ 7→ ξ̃ , g∗ ' g defined by (ξ̃ , X) := 〈ξ,X〉 for
ξ ∈ g∗ and X ∈ g.

When V and V ′ are two representations of a groupH , the multiplicity of V in V ′ will
be denoted [V : V ′].
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2. Hamiltonian actions of real reductive Lie groups

This section is mainly a synthesis of previous work by Weinstein [Wei01], Duflo–Vargas
[DVa07, DVa10] and Hochs [Hoc09], except the criterion that we obtain in Section 2.3.

Let G be a connected real reductive Lie group. We consider a Hamiltonian action
of G on a connected symplectic manifold (M,�M). The corresponding moment map
8GM : M → g∗ is defined (modulo a constant) by the relations

ι(XM)�M = −d〈8
G
M , X〉, ∀X ∈ g, (2.1)

where XM(m) := d
ds
e−sX ·m|s=0 is the vector field generated by X ∈ g.

Let g = k ⊕ p be a Cartan decomposition. Let K ⊂ G be the maximal compact
subgroup with Lie algebra k. Thus we have a decomposition

8GM = 8
K
M ⊕8

p
M

where 8KM : M → k∗ is the moment map relative to the action of K on (M,�M), and
8

p
M : M → p∗ is K-equivariant.

We will denote by κG, κK and κp the Hamiltonian vectors fields of the K-invariant
functions −1

2 ‖8
G
M‖

2, −1
2 ‖8

K
M‖

2, and −1
2 ‖8

p
M‖

2 respectively. Relations (2.1) give

κ−(m) =
[
8̃−M(m)

]
M
(m), ∀m ∈ M, (2.2)

for − ∈ {G,K, p}.

2.1. Proper actions

In this section we suppose

C1. The action of G on M is proper.

We then have the fundamental fact:

Lemma 2.1. • The map 8p
M : M → p∗ is a K-equivariant submersion, so for any

a ∈ p∗, the fibre Ya := (8
p
M)
−1(a) is either empty or a submanifold of M .

• The set of critical points of ‖8p
M‖

2
: M → R is Y0 := (8

p
M)
−1(0).

Proof. Let us prove the first point. Let m ∈ M . Since the tangent map T8p
M(m) :

TmM → p∗ satisfies

〈T8p
M(m),X〉 = −ι(XM)�M |m, ∀X ∈ p, (2.3)

the orthogonal of the image of T8p
M(m) is pm := {X ∈ p |XM(m) = 0}. As the action of

G on M is proper, the stabilizer subgroup Gm is compact. This forces pm = Lie(Gm)∩ p
to be {0}. Thus T8p

M(m) is onto and the first point is proved.
Let m ∈ M be a critical point of ‖8p

M‖
2. The Hamiltonian vector field κp vanishes

at m, and (2.2) tells us that 8̃p
M(m) ∈ pm = {0}. The second point is proved. ut
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For the remaining part of this section, we consider the K-invariant submanifold Y :=
Y0 ⊂ M , which we suppose to be non-empty. Let us consider the restriction �Y of the
2-form �M to Y . For y ∈ Y , let p · y = {XM(y) | X ∈ p} ⊂ TyM . The tangent space
TyY is by definition the kernel of T8p

M(y). Relations (2.3) show that

TyY = (p · y)⊥ (2.4)

where the orthogonal is taken relative to the symplectic form. Hence the kernel of �Y |y
is equal to (p · y)⊥ ∩ p · y. For X,X′ ∈ p and y ∈ Y , we have

�M(XM(y),X
′

M(y)) = 〈8
G
M(y), [X,X

′
]〉 = 〈8KM(y), [X,X

′
]〉.

Hence (p · y)⊥ ∩ p · y ' gξ ∩ p for ξ = 8KM(y). Note that for ξ ∈ k, we have gξ =
gξ ∩ k⊕ gξ ∩ p. We have thus proved

Lemma 2.2. Let y ∈ Y . The 2-form �Y |y is non-degenerate if and only if gξ ⊂ k for
ξ = 8KM(y).

We have a canonical G-equivariant map π : G ×K Y → M that sends [g, y] to g · y.
Following Weinstein [Wei01], we consider the G-invariant open subset

g∗se = {ξ ∈ g∗ | Gξ is compact} (2.5)

of strongly elliptic elements. It is non-empty if and only if the groups G and K have the
same rank; real reductive Lie groups with this property are the ones admitting discrete
series. We note that k∗se := g∗se ∩ k

∗ is equal to {ξ ∈ k∗ | Gξ ⊂ K}, and

g∗se = Ad∗(G) · k∗se. (2.6)

Let us consider the invariant open subsets Mse = (8GM)
−1(g∗se) ⊂ M and Yse :=

Y ∩Mse ⊂ Y .

Lemma 2.3. • The 2-form �Y is non-degenerate on Yse.
• The action of the groupK on (Yse, �Yse) is Hamiltonian, with moment map the restric-

tion 8KYse
of 8GM to Yse.

• The map π induces a G-equivariant diffeomorphism πse : G×K Yse → Mse.

Proof. The first point is a direct consequence of Lemma 2.2. The second point is imme-
diate. Let us check the last point.

Relation (2.6) shows that πse is onto. Let [g0, y0], [g1, y1] be such that g0 ·y0 = g1 ·y1.
Then by taking the image by the moment map, we obtain Ad∗(g0)ξ0 = Ad∗(g1)ξ1 where
the ξk = 8KM(yk) belong to k∗se. Let h = g−1

1 g0 ∈ G. We have Ad∗(h)ξ0 = ξ1, and
Ad∗(2(h))ξ0 = ξ1 by taking the Cartan involution. Finally, h−12(h) ∈ Gξ0 . Since
Gξ0 ⊂ K , we find that h ∈ K , and finally [g0, y0] = [g1, y1] in G×K Yse. ut

Let us denote by �Mse the restriction of the symplectic form �M to the open subset Mse.
We will finish this section by giving a simple expression for the pull-back π∗se(�Mse) ∈

A2(G×K Yse).
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Let θG ∈ A1(G) ⊗ g be the canonical connection 1-form relative to the G-action
by right translations: ι(Xr)θG = X for all X ∈ g, where Xr(g) = d

dt
(getX)

∣∣
0. Let

θK ∈ A1(G) ⊗ k be the composition of θG with the orthogonal projection X → Xk

from g to k. We will use the G×K-invariant 1-form on G× Yse defined by 〈8KYse
, θK 〉.

Note that the space of differential forms onG×K Yse admits a canonical identification
with the space of K-basic differential forms on G× Yse.

Proposition 2.4. The 2-form π∗se(�Mse) is equal to the K-basic, G-invariant, 2-form
�Yse − d〈8

K
Yse
, θK 〉.

Proof. Let π1 : G × Yse → Mse be the map that factorizes πse. By G-invariance, we
need only show that π∗1 (�Mse) = �Yse − d〈8

K
Yse
, θK 〉 at the point (1, y) ∈ G × Yse. Let

(X′, v′), (X, v) ∈ g× TyYse = T(1,y)(G× Yse). We have

π∗1 (�Mse)((X
′, v′), (X, v)) = �M(−X

′

M(y)+ v
′,−XM(y)+ v)

= �M(v
′, v)+�M(X

′

M(y),XM(y))−�M(X
′

M(y), v)+�M(XM(y), v
′)

= �Yse(v
′, v)+ 〈8KYse

(y), [X′, X]k〉︸ ︷︷ ︸
A

+ d〈8KYse
, X′k〉|y(v)− d〈8

K
Yse
, Xk〉|y(v

′)︸ ︷︷ ︸
B

= �Yse(v
′, v)− d〈8KYse

, θK 〉((X′, v′), (X, v)).

The last equality is due to the fact that A = −〈8KYse
(y), dθK |1〉(X

′, X) since
dθK((X′)r , (X)r) = −[X′, X]k and B = −〈d8KYse

, θK 〉((X′, v′), (X, v)). ut

2.2. Proper moment map

In this section we consider “proper2” Hamiltonian G-manifolds: the Hamiltonian action
of the real reductive group G on a symplectic manifold (M,�M) satisfies the following
conditions:

C1. The action of G on M is proper.
C2. The moment map 8GM : M → g∗ is a proper map.

Condition C2 implies that the image of 8GM is a closed subset of g∗. Let Ã be a compact
subset of Image(8GM), and let A = (8GM)

−1(Ã) be the corresponding compact subset
of M . We then see that, for all g ∈ G,

g · A ∩ A 6= ∅ ⇔ g · Ã ∩ Ã 6= ∅.

Condition C1 tells us that {g ∈ G | g ·A∩A 6= ∅} is compact, so {g ∈ G | g · Ã∩ Ã 6= ∅}
is compact for any compact set Ã in the image of 8GM . By taking Ã equal to a point, we
get

Lemma 2.5. Under C1 and C2, the image of 8GM is contained in the open subset g∗se of
strongly elliptic elements (see (2.5)). In particular, 0 /∈ Image(8GM).



962 Paul-Emile Paradan

The previous lemma gives a strong condition on the reductive Lie group G: it may act
in a Hamiltonian fashion on a symplectic manifold, properly and with a proper moment
map only if g∗se 6= ∅.

If we use the last section we see that M = Mse. We summarize with

Proposition 2.6. • The set Y is aK-invariant symplectic submanifold ofM , with proper
moment map 8KY equal to the restriction of 8GM to Y .
• The manifold G×K Y carries an induced symplectic structure �Y − d〈8KY , θ

K
〉. The

corresponding moment map is [g, y] 7→ g ·8KY (y).
• The map π : G ×K Y → M is a G-equivariant diffeomorphism of Hamiltonian
G-manifolds.
• The manifold Y is connected.

Proof. Thanks to the Cartan decomposition, the third point implies that p× Y ' M and
then the last point follows. ut

Let t be the Lie algebra of a maximal torus T in K . We know that g∗se 6= ∅ if and only
if t is a Cartan subalgebra of g. Let k∗se = g∗se ∩ k∗ and t∗se = g∗se ∩ t∗. We have g∗se =

Ad∗(G) · k∗se = Ad∗(G) · t∗se.
Let 3∗ ⊂ t∗ be the weight lattice: α ∈ 3∗ if iα is the differential of a character of T .

Let R ⊂ 3∗ be the set of roots for the action of T on g⊗C. We have R = Rc∪Rn where
Rc and Rn are respectively the set of roots for the action of T on k ⊗ C and p ⊗ C. We
fix a system R+c of positive roots in Rc; let t∗

≥0 ⊂ t∗ be the corresponding Weyl chamber.
Let W = W(K, T ) be the Weyl group. We then have

t∗se = W · (t
∗
se ∩ t

∗

≥0) = W · {ξ ∈ t∗
≥0 | (ξ, α) 6= 0, ∀α ∈ Rn} = W · (C1 ∪ · · · ∪ CN ),

where each Cj is an open cone of the Weyl chamber.
We recover the following result due to Weinstein [Wei01].

Theorem 2.7. • The Kirwan set1K(Y ) := Image(8KY )∩ t
∗

≥0 is a closed convex locally
polyhedral subset contained in one cone Cj .
• Image(8GM)/Ad∗(G) ' 1K(Y ).

Proof. Since 8KY is proper and Y is connected, the Convexity Theorem [Ati82, GS82a,
Kir84, LMTW98] tells us that 1K(Y ) is a closed, convex, locally polyhedral subset
of the Weyl chamber. On the other hand, the image of 8KY is contained in k∗se. Thus
1K(Y ) ⊂ C1 ∪ · · · ∪ CN , but since 1K(Y ) is connected we have 1K(Y ) ⊂ Cj for a
unique cone Cj . The last point is obvious since the isomorphism π : G ×K Y → M

satisfies 8GM ◦ π([g, y]) = g ·8
K
Y (y). ut

We finish this section with

Theorem 2.8. Let (M,�M ,8GM) be a Hamiltonian G-manifold.

• If the G-action on M is proper, then 8GM is proper if and only if 8KM is proper.
• Under conditions C1 and C2, we have

∅ 6= Cr(‖8GM‖
2) = Cr(‖8KM‖

2) = Cr(‖8KY ‖
2) ⊂ Y.
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Proof. Let us prove the first point. As ‖8GM‖ ≥ ‖8
K
M‖ one implication trivially holds.

Suppose now that 8GM is proper. Thanks to Propositions 2.6 and 2.7 we know that M =
G×K Y where Y is a K-Hamiltonian manifold, with proper moment map 8KY , and with
Kirwan set 1K(Y ) being a closed set in t∗se. Let R > 0. We consider

• M≤R = {m ∈ M | ‖8
K
M(m)‖

2
≤ R},

• Y≤R = {y ∈ Y | ‖8
K
Y (y)‖

2
≤ R}, which is a compact subset of Y ,

• K = 1K(Y ) ∩ {ξ ∈ t∗ | ‖ξ‖2 ≤ R}, which is a compact subset of t∗se,

• c(K) = infξ∈K, α∈Rn

|(α,ξ)|2

2‖ξ‖ , which is strictly positive.

We have to show thatM≤R is a compact subset ofM . Takem = [keX, y] with k ∈ K and
X ∈ p. Since 8GM(m) = ke

X
·8KY (y), we have

‖8KM(m)‖
2
≥ −b(8GM(m),8

G
M(m)) = ‖8

K
Y (y)‖

2, ‖8KM(m)‖
2
= ‖[eX ·8KY (y)]k∗‖

2.

Hence if m = [keX, y] ∈ M≤R , we have y ∈ Y≤R and 8KY (y) = ko · ξo for some ko ∈ K
and ξo ∈ K. Hence, for X′ = k−1

o ·X ∈ p,

‖8KM(m)‖ = ‖[e
X′
· ξo]k∗‖ ≥

1
‖ξo‖

(eX
′

· ξo, ξo) =
1
‖ξo‖

∑
n∈N

1
2n!
‖ad∗(X′)nξo‖2

≥
1

2‖ξo‖
‖ad∗(X′)ξo‖2 ≥ c(K)‖X‖2.

Thus if m = [keX, y] ∈ M≤R , the vector X is bounded and y belongs to the compact
subset Y≤R . This proves that M≤R is compact.

Let us turn to the last point. First we note that since the map ‖8GM‖
2 is proper, then

its infimum is attained, and so Cr(‖8GM‖
2) 6= ∅. Let − ∈ {G,K}. Thanks to (2.2),

m ∈ Cr(‖8−M‖
2) ⇔ κ−(m) = 0 ⇔ 8̃−M(m) ∈ gm.

Since gm ⊂ gξ with8GM(m) = ξ = ξk⊕ξp, we havem ∈ Cr(‖8−M‖
2) only if [ξ̃p, ξ̃ ] = 0.

Since ξ is strongly elliptic the last condition implies that ξp = 0. We have proved that
Cr(‖8KM‖

2) and Cr(‖8GM‖
2) are both contained in {8p

M = 0} = Y . We have κG =
κK + κp and the vector field κp vanishes on Y . Finally,

Cr(‖8GM‖
2) = Cr(‖8KM‖

2) = {y ∈ Y | [8̃KM(y)]M(y) = 0} = Cr(‖8KY ‖
2).

The last equality is due to the fact that 8KY is the restriction of 8KM to Y . ut

2.3. Criterion

We have seen in Theorem 2.8 a situation where the properness of the moment map8GM is
equivalent to the properness of 8KM . In this section, we start with a symplectic manifold
(M,�M) admitting a Hamiltonian action of a compact connected Lie group K . We sup-
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pose that the moment map 8KM is proper. Let K ′ ⊂ K be a closed subgroup. The aim of
the section is to give a criterion under which the induced moment map8K

′

M is still proper.
We start by recalling basic facts concerning the notion of asymptotic cone.

For any non-empty subset C of a real vector space E, we define its asymptotic cone
As(C) ⊂ E as the set of all limits y = limk→∞ tkyk where (tk) is a sequence of non-
negative reals converging to 0 and yk ∈ C. Note that As(C) = {0} if and only if C is
compact.

We recall the following basic fact.

Lemma 2.9. Let Ci , i = 0, 1, be closed convex subsets of E. Then:

• Ci + As(Ci) ⊂ Ci .
• If C0 ∩ C1 is non-empty, we have As(C0) ∩ As(C1) = As(C0 ∩ C1).
• If C0 ∩ C1 is non-empty and compact, we have As(C0) ∩ As(C1) = {0}.

Proof. Let us check the first point. Take z ∈ Ci and y = limk→∞ tkyk ∈ As(Ci). Then
z+y = limk→∞((1− tk)z+ tkyk). Since (1− tk)z+ tkyk ∈ Ci if tk ≤ 1, and Ci is closed,
the term z+ y belongs to Ci .

The inclusion As(C0 ∩ C1) ⊂ As(C0) ∩ As(C1) follows from C0 ∩ C1 ⊂ Ci . Let
z ∈ C0∩C1 and y ∈ As(C0)∩As(C1). Thanks to the first point we know that z+R≥0y ⊂

C0∩C1. Then y = limt→0+ t (z+ t
−1y) ∈ As(C0∩C1). The second point is thus proved,

and the last point follows easily. ut

The following proposition is a useful tool for finding a proper moment map. For a closed
subgroup K ′ of K , we denote by πk′,k : k∗ → (k′)∗ the projection which is dual to the
inclusion k′ ↪→ k. Its kernel π−1

k′,k(0) is denoted (k′)⊥.

Proposition 2.10. Let (M,�M) be a Hamiltonian K-manifold with a proper moment
map 8KM . Let 1K(M) be its Kirwan polyhedron. Let K ′ ⊂ K be a closed subgroup. The
following statements are equivalent:

(a) the moment map 8K
′

M = πk′,k ◦8
K
M is proper,

(b) As(1K(M)) ∩K · (k′)⊥ = {0},
(c) there exists ε > 0 such that ‖8K

′

M ‖ ≥ ε‖8
K
M‖ − ε

−1 on M .

Proof. If (c) does not hold we have a sequence mi ∈ M such that ‖8K
′

M (mi)‖ ≤

i−1
‖8KM(mi)‖−i for all i ≥ 1. Then ‖8KM(mi)‖ → ∞ and ‖8K

′

M (mi)‖/‖8
K
M(mi)‖ → 0.

We write8KM(mi) = ki ·yi with ki ∈ K and yi ∈ 1K(M). The sequence πk′,k(ki ·yi/‖yi‖)
converges to 0. Here we can assume that ki → k ∈ K and yi/‖yi‖ → y ∈ As(1K(M)).
Then πk′,k(k · y) = 0. In other words, y is a non-zero element in As(1K(M))∩K · (k′)⊥.
We have proved (b)⇒(c).

The implication (c)⇒(a) is obvious. Let us prove (a)⇒(b). First, the properness
of 8K

′

M implies that the projection πk′,k is proper when restricted to the closed subset
Image(8KM) = K ·1K(M). Let k ∈ K and ξo ∈ k ·1K(M). Then

k ·1K(M) ∩ (ξo + (k
′)⊥) ⊂ Image(8KM) ∩ π

−1
k′,k(πk′,k(ξo))
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is non-empty and compact. If we apply the last point of Lemma 2.9 to the closed convex
sets k ·1K(M) and ξo + (k′)⊥ we find that

As(k ·1K(M)) ∩ As(ξo + (k′)⊥) = k · As(1K(M)) ∩ (k′)⊥

is {0}. Hence As(1K(M)) ∩ k · (k′)⊥ = {0} for any k ∈ K . ut

2.4. Kostant–Souriau line bundle

In the Kostant–Souriau framework, a Hamiltonian G-manifold (M,�M ,8GM) is pre-
quantized if there is an equivariant Hermitian line bundle LM with an invariant Hermitian
connection ∇M such that

L(X)− ι(XM)∇M = i〈8GM , X〉 and (∇M)
2
= −i�M , (2.7)

for every X ∈ g. The data (LM ,∇M) is called a Kostant–Souriau line bundle.
We now suppose that conditions C1 and C2 hold. Then M ' G×K Y where Y ⊂ M

is the K-invariant symplectic submanifold defined in Section 2.2. Let (LM ,∇M) be a
Kostant–Souriau line bundle on M . We denote by LY the restriction of LM over Y . The
connection ∇M induces a K-invariant connection ∇Y on LY → Y , and we check easily
that (LY ,∇Y ) is a Kostant–Souriau line bundle on Y .

Conversely, if (LY ,∇Y ) is a Kostant–Souriau line bundle on (Y,�Y ,8KY ), we define
on M the line bundle LM := (G× LY )/K equipped with the connection

∇M := ∇Y + d
G
+ i〈8KY , θ

K
〉,

where dG is the de Rham differential on G. Since �M = �Y − d〈8
K
Y , θ

K
〉, we check

easily that (LM ,∇M) is a G-equivariant Kostant–Souriau line bundle on (M,�M ,8GM).

2.5. The case of elliptic orbits

Let G be a connected real reductive Lie group, with maximal compact subgroup K . Let
T ⊂ K be a maximal torus.

In this section, we consider the examples given by elliptic coadjoint orbits G · λ for
some λ ∈ t∗. The Kirillov–Kostant–Souriau symplectic structure �G·λ is defined by

�G·λ|m(XG·λ|m, YG·λ|m) = 〈m, [X, Y ]〉

for m ∈ G · λ and X, Y ∈ g. The moment map relative to the G-action on G · λ is the
inclusion 8GG·λ : G · λ ↪→ g∗. We have the following well known fact [DHV84].

Lemma 2.11. The moment maps 8GG·λ and 8KG·λ are proper.

The Convexity Theorem tells us that the Kirwan polyhedron1K(G·λ) := Image(8KG·λ)∩
t∗
≥0 is a closed convex locally polyhedral subset of t∗. Duflo–Heckman–Vergne [DHV84]

show that1K(G ·λ) is defined by a finite number of inequalities (at least when λ is regu-
lar). In general1K(G ·λ) is not known, but we can use at least the following observation.
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Let Rn(λ) be the set of non-compact roots α such that (α, λ) > 0. Consider the
following cone in t∗:

C(λ) :=
∑

α∈Rn(λ)

R≥0α.

Lemma 2.12. The Kirwan polyhedron 1K(G · λ) is contained in λ+ C(λ).
Proof. The Lie algebra of the stabilizer subgroup Gλ has a decomposition kλ ⊕ pλ. Let
Cλ be the cone tangent to 1K(G · λ) at λ:

Cλ = R≥0
· {ξ − λ | ξ ∈ 1K(G · λ)} ⊂ t∗.

We have to show that Cλ is contained in C(λ). Thanks to a result of Sjamaar [Sja98], the
cone Cλ is determined by a local Hamiltonian model near K · λ ⊂ G · λ.

The maximal torus T of K is still a maximal torus for the stabilizer subgroup Kλ; let
t∗λ,≥0 be a Weyl chamber for (Kλ, T ) which contains t∗

≥0. Here, we consider the vector
space p/pλ equipped with the linear symplectic structure �λ(X, Y ) := 〈λ, [X, Y ]〉. The
group Kλ acts in a Hamiltonian fashion on (p/pλ, �λ). Let 1Kλ(p/pλ) ⊂ t∗λ,≥0 be the
corresponding Kirwan polytope (which is a rational cone). Since the K-stabilizer of the
point λ ∈ G · λ coincides with the stabilizer subgroup Kλ of its image by the moment
map 8KG·λ, the local form of Marle and Guillemin–Sternberg tells us that G · λ is sym-
plectomorphic toK×Kλ (p/pλ) in a neighbourhood ofK ·λ. Theorem 6.5 of [Sja98] tells
us then that Cλ = 1Kλ(p/pλ).

Consider the Hamiltonian action of the torus T on (p/pλ, �λ). Let Jλ be an invariant
complex structure on p/pλ which is compatible with �λ; the weights of the T -action on
(p/pλ, Jλ) are−α, for α ∈ Rn(λ). Hence1T (p/pλ) is equal to the cone generated by the
weights α ∈ Rn(λ). Finally, the proof is completed since Cλ = 1Kλ(p/pλ) is contained
in 1T (p/pλ) = C(λ). ut

3. Holomorphic discrete series

LetG be a connected real reductive Lie group and letK be a maximal connected compact
subgroup. Let ck, cg be the centres of k and g respectively. In what follows we assume that

Zg(ck) = k, (3.1)

i.e. the centralizer of ck in g coincides with k. Hence cg ⊂ ck ⊂ k.

Remark 3.1. The non-compact simple real Lie groups satisfying (3.1) are Sp(R2n),
SO∗(2n), SOo(2, n), SU(p, q), E6(−14) and E7(−25).

We choose a maximal torus T in K with Lie algebra t. Note that (3.1) forces t to be a
Cartan subalgebra of g. Let R = Rc ∪ Rn be the set of roots. We fix a system R+c of
positive roots in Rc. Condition (3.1) implies the existence of elements z ∈ ck∩[g, g] such
that ad(z) defines a complex structure on p (see [Kna04, Section 9]).

Remark 3.2. If G is the product of N simple real Lie groups belonging to the list of
Remark 3.1, then there are 2N choices for the element z.
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For such z, we define
Rn(z) := {α ∈ Rn | 〈α, z〉 = 1}.

which is invariant relative to the action of the Weyl group W = W(K, T ). The union
R+c ∪ Rn(z) defines a system of positive roots in R. We will be interested in several
closed W -invariant cones in t∗:

Chol(z) :=
{
ξ ∈ t∗ | (β, ξ) ≥ 0, ∀β ∈ Rn(z)

}
,

Cρhol(z) := 2ρn(z)+ Chol(z), (3.2)

C(z) :=
∑

β∈Rn(z)

R≥0β.

Here 2ρn(z) =
∑
β∈Rn(z)

β is W -invariant. We recall the following basic facts.

Lemma 3.3. We have

C(z) ⊂ Chol(z) ⊂ {ξ ∈ t∗ | 〈ξ, z〉 ≥ 0} and Cρhol(z) ⊂ Chol(z). (3.3)

Proof. Since (β0, β1) ≥ 0 for any β0, β1 ∈ Rn(z), we see that C(z) ⊂ Chol(z) and
ρn(z) ∈ Chol(z), so the inclusion Cρhol(z) ⊂ Chol(z) follows. On the other hand, we can
check that (X, z) := −Tr(ad(X)ad(z)) is equal to 2〈ρn(z),X〉 for any X ∈ t. Hence
2ρ̃n(z) = z and

〈ξ, z〉 = 2
∑

β∈Rn(z)

(ξ, β), ∀ξ ∈ t∗.

This proves that Chol(z) ⊂ {ξ ∈ t∗ | 〈ξ, z〉 ≥ 0}. ut

3.1. Holomorphic coadjoint orbits

The holomorphic coadjoint orbits are G · λ with λ in the interior of Chol(z). These sym-
plectic manifolds possess a G-invariant (integrable) complex structure Jλ which is com-
patible with the symplectic structure �G·λ (see [Par08]). Hence (G · λ,�G·λ, Jλ) is a
Kähler manifold when λ ∈ Interior(Chol(z)).

The real K-module p is equipped with the invariant linear symplectic structure
�p(A,B) := −b(z, [A,B]). We have two families of HamiltonianK-manifolds:K ·λ×p
and G · λ for λ ∈ Chol(z). We start with a fundamental fact.

Proposition 3.4. Let λ ∈ Interior(Chol(z)). We have

(a) 1K(G · λ) ⊂ λ+ C(z) ⊂ Chol(z),
(b) 1K(G · λ) = 1K(K · λ× p),
(c) As(1K(G · λ)) = 1K(p).

Proof. Point (a) is the translation of Lemma 2.12 since the cone C(λ) is equal to C(z).
Point (b) is proved in [Par08]. Another proof is given by Deltour [Del13], by showing the
stronger result that the HamiltonianK-manifoldsG·λ andK ·λ×p are symplectomorphic.
Point (c) follows easily from (b). ut
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Remark 3.5. The generators of the cone 1K(p) can be defined in term of strongly or-
thogonal roots (see Section 5 in [Par08]). Note also that Deltour [Del10, Del12] has com-
pletely described the facet of the polytopes 1K(G · λ) when λ ∈ Interior(Chol(z)).

Let S•(p) be the symmetric algebra of the complex K-module (p, ad(z)); it is an admis-
sible representation of K . Let K ′ be a closed connected subgroup of K . We denote
by 8K

′

G·λ and 8K
′

p the corresponding moment maps.

Proposition 3.6. Let λ ∈ Interior(Chol(z)). The following assertions are equivalent:

(a) 8K
′

G·λ : G · λ→ (k′)∗ is a proper map,
(b) 1K(p) ∩K · (k′)⊥ = {0},
(c) 8K

′

p : p→ (k′)∗ is a proper map,
(d) {8K

′

p = 0} reduces to {0},
(e) [S•(p)]K

′

= C.

Proof. The equivalences (a)⇔(b) and (b)⇔(c) follow from Propositions 2.10 and 3.4.
The equivalences (c)⇔(d)⇔(e) are well known (for proofs, see for example [Par09, Sec-
tion 5]). ut

Let us consider the moment map 8Kp : p→ k∗. Via the identification k∗ ' k, the moment
map 8Kp is defined by 8Kp (X) = −[X, [z,X]] for X ∈ p. Hence we see that 〈8Kp , z〉 :
p→ R is a proper map. This simple fact together with Proposition 3.6 gives

Corollary 3.7. Let G′ be a connected reductive subgroup of G, and let λ ∈

Interior(Chol(z)). The moment map 8G
′

G·λ is proper when Rz ⊂ g′.

Example 3.8. The condition Rz ⊂ g′ is fulfilled in the following cases:

1. G′ = SOo(2, p) ⊂ G = SOo(2, n) for 0 ≤ p ≤ n.
2. G′ is the identity component ofGσ , where σ is an involution ofG such that σ(z) = z.

For example G = U(p, q) and G′ = U(i, j)× U(p − i, q − j).
3. G′ is the diagonal in G := G′ × · · · ×G′.

3.2. Holomorphic discrete series

Let3∗ ⊂ t∗ be the lattice of characters of T . The set3∗+ := 3
∗
∩t∗
≥0 parametrizes the set

K̂ of irreducible representations of K: for any µ ∈ 3∗+, we denote by V Kµ the irreducible
representation of K with highest weight µ. We will be interested in the following subset
of dominant weights:

Ĝhol(z) := 3
∗
+ ∩ C

ρ
hol(z),

where the cone Cρhol(z) is defined in (3.2).

Theorem 3.9 (Harish-Chandra). For any λ ∈ Ĝhol(z), there exists an irreducible uni-
tary representation of G, denoted VGλ , such that the vector space of K-finite vectors is
VGλ |K := V

K
λ ⊗ S

•(p).
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Moreover the K-type of VGλ |K satisfies the following well known relations:

[V Kµ : V
G
λ |K ] = 1 if µ = λ, (3.4)

[V Kµ : V
G
λ |K ] 6= 0 ⇒ µ ∈ λ+ C(z) ⊂ Cρhol(z).

Note that for µ ∈ λ + C(z) we have ‖µ‖ > ‖λ‖ unless µ = λ. Finally, the condition[
V Kµ : V

G
λ |K

]
6= 0 implies that ‖µ‖ > ‖λ‖ or µ = λ.

We will see in Section 4.2 that (3.4) is a consequence of the “quantization commutes
with reduction” principle.

3.3. Restriction

We now consider a connected reductive subgroup G′ ⊂ G such that Rz ⊂ g′. The group
G′ satisfies (3.1). Let K ′ ⊂ K be the maximal compact subgroup in G′, and let T ′ ⊂ T
be a maximal torus in K ′. Let Chol(z), Cρhol(z) ⊂ t∗ and C′hol(z), C

′ρ
hol(z) ⊂ (t′)∗ be the

corresponding convex cones. Recall that the set Ĝ′hol(z) parametrizes a subset of the holo-
morphic discrete series of G′.

3.3.1. Restriction to K

Definition 3.10. We denote by K̂hol(z) ⊂ K̂ the subset 3∗+ ∩ C
ρ
hol(z).

We see that K̂hol(z) and Ĝhol(z) are the same set but they parametrize representations of
different groups (K and G respectively). Let us denote by

R−∞(G, z) (3.5)

the Z-module formed by the infinite sums
∑
λ∈Ĝhol(z)

mλV
G
λ with mλ ∈ Z. Similarly,

we define R−∞(K, z) ⊂ R−∞(K) as the submodule formed by the infinite sums∑
µ∈K̂hol(z)

mµV
K
µ . The following basic result will be used in the next sections.

Lemma 3.11. • The restriction to K defines an injective morphism

rK,G : R−∞(G, z)→ R−∞(K, z). (3.6)

• The product by S•(p) defines a map from R−∞(K, z) into itself.

Proof. Let us prove the first point. Thanks to (3.4), we have VGλ |K =
∑
µ∈3∗+

n
µ
λV

K
µ

where nµλ 6= 0 only if µ ∈ λ + C(z); this condition implies that µ ∈ K̂hol(z) with
‖µ‖ ≥ ‖λ‖. Let A =

∑
λ∈Ĝhol(z)

a(λ)VGλ be an element of R−∞(G, z). Then

rK,G(A) :=
∑

λ∈Ĝhol(z)

a(λ)VGλ |K =
∑

µ∈K̂hol(z)

( ∑
λ∈Ĝhol(z)

a(λ)n
µ
λ

)
V Kµ ∈ R

−∞(K, z),

where each sum r(µ) :=
∑
λ a(λ)n

µ
λ has a finite number of non-zero terms since nµλ = 0

if ‖λ‖ > ‖µ‖. Suppose that A is non-zero, and let λo ∈ Ĝhol(z) be such that ‖λo‖
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is minimal in the set {‖λ‖ | a(λ) 6= 0}. Let rK,G(A) =
∑
µ r(µ)V

K
µ . Then r(λo) =

a(λo) +
∑
λ6=λo

a(λ)n
λo
λ . But nλoλ = 0 if λ 6= λo and ‖λ‖ ≥ ‖λo‖. And the term a(λ) is

zero if ‖λ‖ < ‖λo‖. We have checked that r(λo) = a(λo) 6= 0 and so rK,G(A) 6= 0.
The second point follows from the first. Let AK=

∑
µ∈K̂hol(z)

a(µ)V Kµ ∈R
−∞(K, z).

Take AG =
∑
µ∈Ĝhol(z)

a(µ)VGµ ; then AK ⊗ S•(p) = rK,G(AG) is well defined. ut

3.3.2. Restriction: the algebraic part. Let λ ∈ Ĝhol(z). Since the representation VGλ is
discretely admissible relative to the circle group exp(Rz), it is also discretely admissible
relative to G′. We can be more precise [Mar75, JV79, Kob98]:

Proposition 3.12. We have a Hilbertian direct sum

VGλ |G′ =
⊕

µ∈Ĝ′hol(z)

mλ(µ)V
G′

µ ,

with mλ(µ) finite for any µ.

3.3.3. Restriction: the geometric part. For l ∈ {t, k, g}, we denote by πl′,l : l∗ → (l′)∗

the canonical projection. We have the following important fact.

Proposition 3.13. We have

(a) πt′,t(Chol(z)) ⊂ C′hol(z),
(b) πk′,k(K · Chol(z)) ⊂ K

′
· C′hol(z),

(c) πk′,k(K · C
ρ
hol(z)) ⊂ K

′
· C′ρhol(z),

(d) πg′,g(G · C
ρ
hol(z)) ⊂ G

′
· C′ρhol(z).

Proof. Let α ∈ t∗ be a non-compact root of (g, t). Let gα ⊂ p⊗ C be the corresponding
1-dimensional weight space. Then there exists hα ∈ i[gα, gα]∩t such that α = −b(hα, ·).
Note that the half-line R>0hα does not depend on the bilinear form b, and the condition
(α, ξ) ≥ 0 is equivalent to 〈ξ, hα〉 ≥ 0 for any ξ ∈ t∗.

Let α ∈ t∗ be a non-compact root of (g, t) whose restriction α′ = πt′,t(α) is a non-
compact root of (g′, t′). Since the 1-dimensional weight spaces gα and g′

α′
coincide, we

have R>0hα = R>0hα′ ⊂ t′. Then 〈ξ, hα〉 ≥ 0 is equivalent to 〈πt′,t(ξ), hα′〉 ≥ 0.
Finally, we have proved (a): if 〈ξ, hα〉 ≥ 0 for any positive non-compact root α of (g, t),
then 〈πt′,t(ξ), hα′〉 ≥ 0 for any positive non-compact root α′ of (g′, t′).

Let ξ ∈ Chol(z) and ξ ′ ∈ πk′,k(K · ξ) ∩ (t′)∗. Then ξ ′ ∈ πt′,t ◦ πt,k(K · ξ). By the
Convexity Theorem [Ati82, GS82a, Kir84, LMTW98], the projection πt,k(K · ξ) is equal
to the convex hull of Wξ . But ξ belongs to the W -invariant convex cone Chol(z), and so
πt,k(K · ξ) ⊂ Chol(z). Finally, ξ ′ ∈ πt′,t(Chol(z)) ⊂ C′hol(z) thanks to (a).

Let ξ ∈ Chol(z). Since 2ρn(z) isK-invariant, we haveK ·(2ρn(z)+ξ) = 2ρn(z)+K ·ξ .
Thanks to (b),

πk′,k(K · (2ρn(z)+ ξ)) = πk′,k(2ρn(z))+ πk′,k(K · ξ) ⊂ K ′ ·
(
πk′,k(2ρn(z))+ C′hol(z)

)
.
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The K ′-invariant term πk′,k(2ρn(z)) belongs to (t′)∗ and is equal to 2ρ′n(z) + πt′,t(A)
where A is the sum of the positive non-compact roots α such that gα 6⊂ p′ ⊗ C. Hence
A ∈ Chol(z) and thanks to (a) the projection πt′,t(A) belongs to C′hol(z). Thus (c) is proved.

Let λ ∈ Cρhol(z). The coadjoint orbit G · λ is contained in g∗se, and the moment map
8G

′

G·λ is proper since z ∈ g′ (see Corollary 3.7). Then, πg′,g(G · λ) = Image(8G
′

G·λ)

= G′ · (πg′,g(G · λ) ∩ (k
′)∗) and

πg′,g(G · λ) ∩ (k
′)∗ ⊂ πk′,k ◦ πk,g(G · λ) ⊂ πk′,k(K ·1K(G · λ))

⊂ πk′,k(K · C
ρ
hol(z)) ⊂ K

′
· C′ρhol(z).

The last but one inclusion is due to the fact that 1K(G · λ) ⊂ λ + C(z) ⊂ Cρhol(z) when
λ ∈ Cρhol(z) (see Lemma 3.4); and the last one corresponds to (c). ut

Remark 3.14. When the Lie algebra g is simple, the set G · Chol(z) ⊂ g∗se is a maximal
closed convex G-invariant cone. See [Vin80, Pan83].

4. Quantization commutes with reduction

Let us first recall the definition of the geometric quantization of a smooth and compact
Hamiltonian manifold. Then we show how to extend the notion of geometric quantization
to the case of a non-compact Hamiltonian manifold.

4.1. Formal geometric quantization

Let K be a compact connected Lie group. Let (M,�M ,8KM) be a Hamiltonian K-mani-
fold which is pre-quantized by the Hermitian line bundle LM (see Section 2.4).

Let us recall the notion of geometric quantization when M is compact. Choose a
K-invariant almost complex structure J on M which is compatible with �M in the sense
that the symmetric bilinear form �M(·, J · ) is a Riemannian metric. Let ∂LM be the Dol-
beault operator with coefficients in L, and let ∂

∗

LM
be its (formal) adjoint. The Dolbeault–

Dirac operator on M with coefficients in LM is DLM =
√

2(∂LM + ∂
∗

LM
), considered as

an elliptic operator from A0,even(M,LM) to A0,odd(M,LM). Let R(K) be the representa-
tion ring of K .

Definition 4.1. The geometric quantization of a compact Hamiltonian K-manifold
(M,�M ,8

K
M) is the element QK(M) ∈ R(K) defined as the equivariant index of the

Dolbeault–Dirac operator DLM .

Let us consider the case of a proper pre-quantized HamiltonianK-manifoldM: the mani-
fold is perhaps non-compact but the moment map8KM : M → k∗ is supposed to be proper.
In this setting, we have two ways of extending the geometric quantization procedure.

First way: Q−∞K . One defines the formal geometric quantization of M as an element
Q−∞K (M) that belongs to R−∞(K) := homZ(R(K),Z) [Weits01, Par09, MZ09, Par11,
MZ14]. Let us recall the definition.
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For any µ ∈ K̂ which is a regular value of the moment map8, the reduced space1 (or
symplectic quotient)

Mµ := (8
K
M)
−1(K · µ)/K (4.1)

is a compact orbifold equipped with a symplectic structure �µ. Moreover

Lµ := (L|(8KM )
−1(µ) ⊗ C−µ)/Kµ

is a Kostant–Souriau line orbibundle over (Mµ, �µ). The definition of the index of the
Dolbeault–Dirac operator carries over to the orbifold case, hence Q(Mµ) ∈ Z is defined.
This notion of geometric quantization extends further to the case of singular symplectic
quotients [MS99, Par01]. So the integer Q(Mµ) ∈ Z is well defined for every µ ∈ K̂; in
particular, Q(Mµ) = 0 if µ is not in the Kirwan polytope 1K(M).

Definition 4.2. Let (M,�M ,8KM) be a proper Hamiltonian K-manifold which is pre-
quantized by a Kostant–Souriau line bundle L. The formal quantization of (M,�M ,8KM)
is the element of R−∞(K) defined by

Q−∞K (M) =
∑
µ∈K̂

Q(Mµ)V
K
µ .

When M is compact, the fact that

QK(M) = Q−∞K (M) (4.2)

is known as the “quantization commutes with reduction” theorem. This was conjectured
by Guillemin–Sternberg in [GS82b] and was first proved by Meinrenken [Mei98] and
Meinrenken–Sjamaar [MS99]. Other proofs of (4.2) were also given by Tian–Zhang
[TZ98] and the author [Par01]. For complete references on the subject the reader should
consult [Sja96, Ver02]. One of the main features of the formal geometric quantization
Q−∞ is summarized in

Theorem 4.3 (Restriction to subgroups [Par09]). LetM be a pre-quantized Hamiltonian
K-manifold which is proper. Let H ⊂ K be a closed connected Lie subgroup such that
M is still proper as a Hamiltonian H -manifold. Then Q−∞K (M) is H -admissible and
Q−∞K (M)|H = Q−∞H (M) in R−∞(H).

Second way: Q8
K . When M is a proper pre-quantized Hamiltonian K-manifold, we can

define another formal geometric quantization of M through a non-abelian localization
procedure à la Witten [Wit92]. In [MZ09, Par11, MZ14], it is proved that an element

Q8
K(M) ∈ R

−∞(K) (4.3)

is well defined by localizing the index of the Dolbeault–Dirac operator DLM on the set
Cr(‖8KM‖

2) of critical points of the square of the moment map (see Section 5.3).
The crucial result is that these two procedures coincide [MZ09, Par11, MZ14].

1 The symplectic quotient will be denoted Mµ,K when we need more precise notation.
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Theorem 4.4 (Ma–Zhang, Paradan). Let M be a proper pre-quantized Hamiltonian
K-manifold. Then

Q−∞K (M) = Q8
K(M) in R−∞(K). (4.4)

4.2. Formal geometric quantization of holomorphic orbits

Let us come back to the holomorphic discrete representation VGλ . Consider a coadjoint
orbit G · λ for λ ∈ 3∗+ in the interior of the chamber Chol(z), so that λ is strongly elliptic.
The action of G on G · λ is Hamiltonian, and the line bundle

L := G×Kλ Cλ

is a Kostant–Souriau line bundle overG ·λ ' G/Kλ. Here Cλ denotes the 1-dimensional
representation of the stabilizer subgroup Kλ that can be attached to the weight λ.

By Lemma 2.11, the moment map 8KG·λ relative to the action of K on G · λ is proper.
Hence the reduced spaces

(G · λ)µ := (8
K
G·λ)
−1(K · µ)/K

are compact for any µ ∈ 3∗+, and the generalized character Q8
K(G · λ) ∈ R

−∞(K) is
well defined. We have proved in [Par03, Par08] the following

Theorem 4.5. Let λ ∈ 3∗+ ∩ Interior(Chol(z)). Then

Q8
K(G · λ) = V

K
λ ⊗ S

•(p) in R−∞(K).

This result will be generalized in Theorem 4.10. When λ ∈ Cρhol(z), the generalized char-
acter Q8

K(G · λ) coincides with the vector space of K-finite vectors of the holomorphic
discrete representation VGλ . Theorems 4.5 and 4.4 give the following information con-
cerning the K-multiplicities of V Kλ ⊗ S

•(p).

Corollary 4.6. Let λ ∈ 3∗+ ∩ Interior(Chol(z)), and µ ∈ 3∗+. Then:

•
[
V Kµ : V

K
λ ⊗ S

•(p)
]
= Q((G · λ)µ),

•
[
V Kλ : V

K
λ ⊗ S

•(p)
]
= 1,

• [V Kµ : V
K
λ ⊗ S

•(p)] 6= 0→ µ ∈ λ+ C(z) ⊂ Chol(z).

Proof. The first point follows from Q8
K(G · λ) = Q−∞K (G · λ). The second point is due

to the fact that the reduced space (G · λ)λ reduces to a point [Par11, Section 2.4]. Hence
if [V Kµ : V

K
λ ⊗ S

•(p)] 6= 0, the weight µ belongs to the Kirwan polytope 1K(G · λ), and
1K(G · λ) ⊂ λ+ C(z) thanks to Lemma 2.12. ut



974 Paul-Emile Paradan

4.3. Formal geometric quantization of G-actions

In this section we consider the Hamiltonian action of a connected real reductive Lie
group G on a symplectic manifold (M,�M). We suppose that the action of G on M
is proper and that the moment map 8GM : M → g∗ is proper. We have proved in Sec-
tion 2.2 that we have a global slice Y ⊂ M such thatM ' G×K Y , and that theG-orbits
in the image of 8GM are parametrized by the Kirwan polytope 1K(Y ).

Suppose that there exists of a G-equivariant pre-quantum line bundle LM → M .
Note that LM is completely determined by its restriction LY → Y to the subman-
ifold Y ; here LY is a K-equivariant pre-quantum line bundle over (Y,�Y ). For any
dominant weight µ, the reduced space Mµ,G := (8GM)

−1(G · µ)/G coincides with
Yµ,K := (8

K
M)
−1(K · µ)/K . Hence its quantization

Q(Mµ,G) := Q(Yµ,K) ∈ Z

is well defined (see Section 4.1).
We also suppose that G satisfies (3.1), and we fix a complex structure ad(z) on p. Let

Cρhol(z) ⊂ t∗ be the corresponding cone.

Lemma 4.7. Let (M,�M ,8GM) be a pre-quantized proper2 Hamiltonian manifold such
that the image of 8GM is contained in G · Cρhol(z). Then:

(a) the Kirwan polytopes 1K(Y ) ⊂ 1K(M) are contained in Cρhol(z),
(b) the functions 〈8KY , z〉 and 〈8KM , z〉 take strictly positive values.

Proof. We have

1K(M) ⊂ πk,g(G · Cρhol(z)) ∩ t
∗

≥0 =
⋃

λ∈Cρhol(z)

1K(G · λ) ⊂ Cρhol(z),

where the last inclusion follows from Proposition 3.4(a). The first point is proved, and the
second follows from the first. ut

We will use the following notion of formal geometric quantization that extends the case
of compact Lie group actions.

Definition 4.8. Let (M,�M ,8GM) be a pre-quantized proper2 Hamiltonian manifold
such that the image of 8GM is contained in G · Cρhol(z). We define the formal geometric
quantization of M as the following element of R−∞(G, z):

Q−∞G (M) :=
∑

µ∈Ĝhol(z)

Q(Mµ,G)V
G
µ .

In the setting of Definition 4.8, the moment maps 8KM and 8KY are proper (see Theo-
rem 2.8). Then the formal geometric quantization of M and Y relative to the K-action
is well defined, and by Lemma 4.7(a) the generalized characters Q−∞K (M) and Q−∞K (Y )

belong to R−∞(K, z).
We have proved in Theorem 2.8 that the sets of critical points of the functions ‖8GM‖

2,
‖8KM‖

2 and ‖8KY ‖
2 are equal. We will need to work under one of the following hypothe-

ses:
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Assumption 4.9.

A1. The set Cr(‖8GM‖
2) is compact.

A2. The map 〈8GM , z〉 : M → R is proper.

Let rK,G : R−∞(G, z) → R−∞(K, z) be the restriction morphism defined in Lemma
3.11. We can now state the main result of this section.

Theorem 4.10. If Assumption A1 or A2 is satisfied, then:

(a) Q−∞K (M) = Q−∞K (Y )⊗ S•(p),
(b) rK,G(Q−∞G (M)) = Q−∞K (M).

Proof. Point (a) will be proved in Sections 5.4 and 5.6. We can compute

rK,G(Q−∞G (M)) =
∑

µ∈Ĝhol(z)

Q(Mµ,G)V
G
µ |K

=

( ∑
µ∈K̂hol(z)

Q(Yµ,K)V Kµ
)
⊗ S•(p)

= Q−∞K (Y )⊗ S•(p),

hence (b) follows from (a). Note that the products are well defined thanks to Lemma
3.11. In the last equality we use the fact that Q−∞K (Y ) =

∑
µ∈K̂hol(z)

Q(Yµ,K)V Kµ since
the Kirwan polytope 1K(Y ) is contained in Cρhol(z) (see Lemma 4.7). ut

We now consider a connected reductive subgroupG′ ⊂ G for which z ∈ g′. The coadjoint
orbit G · λ is pre-quantized when λ ∈ Ĝhol(z), and obviously

Q−∞G (G · λ) = VGλ .

The moment map8G
′

G·λ : G ·λ→ (g′)∗ relative to theG′-action onG ·λ is proper. In fact
we have more: the map 〈8G

′

G·λ, z〉 = 〈8
G
G·λ, z〉 is proper, thus Assumption A2 holds.

We are interested in the compact reduced spaces

(G · λ)µ,G′ := (8
G′

G·λ)
−1(G′ · µ)/G′

for µ ∈ Ĝ′hol(z). We are now able to prove

Theorem 4.11. Let λ ∈ Ĝhol(z). Then

VGλ |G′ = Q−∞
G′

(G · λ) in R−∞(G′, z).

This means that for any µ ∈ Ĝ′hol(z), the multiplicity of the representation VG
′

µ in VGλ |G′
is equal to the geometric quantization Q((G·λ)µ,G′) ∈ Z of the (compact) reduced space
(G · λ)µ,G′ .

Proof. Since the restriction morphism rK ′,G′ : R−∞(G′, z) → R−∞(K ′, z) is injective
(see Lemma 3.11), it suffices to prove that

rK ′,G′(VGλ |G′) = rK ′,G′(Q−∞G′ (G · λ)). (4.5)
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But the left hand side of (4.5) is equal to VGλ |K ′ , while the right hand side is Q−∞
K ′

(G · λ)

thanks to Theorem 4.10. Theorem 4.5 tells us that Q−∞K (G · λ) = VGλ |K , and the func-
toriality of the quantization process Q−∞ (see Theorem 4.3) ensures that the restriction
VGλ |K ′ = Q−∞K (G · λ)|K ′ is equal to Q−∞

K ′
(G · λ). ut

We finish this section by exhibiting cases where Assumption A1 or A2 is satisfied.

Lemma 4.12. • Suppose that we are in the algebraic setting: the manifold M is real
algebraic and 8GM is a proper algebraic map. Then Cr(‖8GM‖

2) is compact.
• Suppose that the Lie algebra g is simple. Then, in the context of Definition 4.8, the map
〈8GM , z〉 : M → R is proper.

Proof. Let us prove the first point. The map ϕ := ‖8GM‖
2
: M → R is a real algebraic

map on a real algebraic manifold. Thus Cr(ϕ) is an algebraic variety, and by a standard
theorem of Whitney, it has a finite number of connected components C1, . . . , Cp. Each
Ci is contained in ϕ−1(ϕ(Ci)), which is compact since ϕ is proper. The proof is complete.

For the second point we use Proposition 2.10 and the facts that, since g is simple,
[p, p] = k and the centre ck of k reduces to Rz.

The function 〈8GM , z〉, which is the moment map for the S1-action, is proper if and
only if As(1K(M)) ∩ (Rz)⊥ = {0}. Since 1K(M) ⊂ Cρhol(z) (see Lemma 4.7), it is
sufficient to prove that Chol(z) ∩ (Rz)⊥ = {0}. Let ξ ∈ Chol(z). We have 〈ξ, z〉 =
2
∑
β∈Rn(z)

(ξ, β). If 〈ξ, z〉 = 0, we must have (β, ξ) = 0 for all β ∈ Rn(z), or equiv-
alently [ξ̃ , p] = 0. Then ξ̃ commutes with all elements in [p, p] = k, i.e. ξ̃ ∈ ck = Rz.
Thus, we have proved that ξ ∈ (Rz)⊥ and ξ̃ ∈ Rz, hence ξ = 0. ut

4.4. Geometric quantization of the slice Y

Let λ ∈ Ĝhol(z). Consider the coadjoint orbitG ·λ associated to the holomorphic discrete
series representation VGλ . LetG′ be a reductive subgroup ofG such that Rz ⊂ g′. We have
a geometric decomposition G · λ ' G′ ×K ′ Y where Y ⊂ G′ · λ is a closed K ′-invariant
symplectic submanifold.

In [JV79], Jakobsen and Vergne proved that the multiplicitymλ(µ) := [VG
′

µ : V
G
λ |G

′ ]

is equal to the multiplicity of the representation V K
′

µ in S•(p/p′)⊗ V Kλ |K ′ . On the other
hand, Theorem 4.11 tells us that

mλ(µ) = Q((G · λ)µ,G′) = Q(Yµ,K ′).

We would like to understand a priori why Q(Yµ,K ′) = [V K
′

µ : S
•(p/p′)⊗ V Kλ |K ′ ] for

any µ ∈ K̂ ′hol(z), or equivalently why

Q−∞
K ′

(Y ) = S•(p/p′)⊗ V Kλ |K ′ . (4.6)

Note that Assumption A2 holds in this setting: the map 〈8G
′

G·λ, z〉 is proper.
Let us consider a more general situation. Let (M,�M ,8G

′

M ) be a pre-quantized
proper2 Hamiltonian G′-manifold. We suppose that the moment map 8G

′

M takes values
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in G′ · C′ρhol(z). We suppose furthermore that Assumption A2 holds. Let Y ⊂ M be the
symplectic slice. The aim of this section is to compute Q−∞

K ′
(Y ) in a way similar to (4.6).

Let X be a connected component of the fixed point submanifold Y z = Cr(〈8G
′

M , z〉);
the submanifold X is compact since 〈8G

′

M , z〉 is proper. Fix a K ′-invariant almost com-
plex structure on X which is compatible with the symplectic structure. Let RRK

′

(X ,−)
be the corresponding Riemann–Roch character (see Section 5.2). Recall that if LX de-
notes the restriction of the Kostant–Souriau line bundle LM over X , then QK ′(X ) =
RRK

′

(X , LX ).
Let NX → X be the normal bundle of X in Y ; it inherits a complex structure JX and

a linear endomorphism L(z) on the fibres. We have a decomposition NX =
∑
a∈RN a

X
where N a

X = {v ∈ NX |L(z)v = aJX (v)} is a subbundle of NX . We define the vector
bundle N±,zX :=

∑
±a>0 NX and

|NX |
z
= N+,zX ⊕N−,zX .

The following theorem will be proved in Section 5.5.

Theorem 4.13. We have

Q−∞
K ′

(Y ) =
∑
X
(−1)rX RRK

′(
X , LX ⊗ det(N+,zX )⊗ S•(|NX |

z)
)

in R−∞(K ′),

where rX is the complex rank of N+,zX , and the sum runs over the connected components
of the fixed point submanifold Y z.

Let us explain how the formulas of Jakobsen–Vergne can be recovered from Theorem
4.13. WhenM = G·λ, the submanifolds Y z andMz are both equal toK ·λ. The restriction
of the Kostant–Souriau line bundle LM → M over Y z is [Cλ] := K ×Kλ Cλ → K · λ.
Relation (2.4) tells us that the normal bundle N1 of Y in M is equal to the trivial bundle
p′ × Y , and the normal bundle N2 of Y z in M is Y z × p. Hence the normal bundle of Y z

in Y is
N = N2/(N1|Y z) = Y

z
× (p/p′).

We check that N+,z = 0: this is due to the fact that the function 〈8G
′

G·λ, z〉 takes its
minimal value on Y z (see [Par01, Lemma 7.3]). So |N |z = N is the trivial complex
bundle with fibre (p/p′, ad(z)). Theorem 4.13 gives

Q−∞
K ′

(Y ) = RRK
′

(K · λ, [Cλ] ⊗ S•(p/p′)) = RRK(K · λ, [Cλ])|K ′ ⊗ S•(p/p′)

= V Kλ |K ′ ⊗ S
•(p/p′).

In the last equality, we use RRK(K · λ, [Cλ]) = V Kλ thanks to the Borel–Weil theorem.

5. Transversally elliptic operators

The aim of this section is to prove Theorems 4.10 and 4.13. In the first subsection, we
briefly introduce the material we need from the theory of transversally elliptic operators.
And in Section 5.3 we recall the definition of the geometric quantization process Q8. In
what follows, K denotes a connected compact Lie group.
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5.1. Transversally elliptic operators

Here we give the basic definitions from the theory of transversally elliptic symbols (or
operators) defined by Atiyah–Singer [Ati74]. For an axiomatic treatment of the index
morphism see Berline–Vergne [BV96a, BV96b] and Paradan–Vergne [PV09]. For a short
introduction see [Par01].

Let X be a compactK-manifold. Let p : TX → X be the projection, and let (−,−)X
be aK-invariant Riemannian metric. IfE0, E1 areK-equivariant complex vector bundles
over X , a K-equivariant morphism

σ ∈ 0(TX , hom(p∗E0, p∗E1))

is called a symbol on X . The subset of all (x, v) ∈ TX where2 σ(x, v) : E0
x → E1

x is not
invertible is called the characteristic set of σ , and is denoted by Char(σ ).

In the following, the product of a symbol σ by a complex vector bundle F → M is
the symbol σ ⊗ F defined by σ ⊗ F(x, v) = σ(x, v)⊗ IdFx from E0

x ⊗ Fx to E1
x ⊗ Fx .

Note that Char(σ ⊗ F) = Char(σ ).
Let

TKX = {(x, v) ∈ TX | (v,XX (x))X = 0 for all X ∈ k}.

A symbol σ is elliptic if σ is invertible outside a compact subset of TX (i.e. Char(σ )
is compact), and is K-transversally elliptic if the restriction of σ to TKX is invertible
outside a compact subset of TKX (i.e. Char(σ ) ∩ TKX is compact). An elliptic symbol
σ defines an element in the equivariant K0-theory of TX with compact support, which
is denoted by K0

K(TX ), and the index of σ is a virtual finite-dimensional representation
of K , denoted by IndexKX (σ ) ∈ R(K) [ASe68, AS68a, AS68b, AS71].

A K-transversally elliptic symbol σ defines an element of K0
K(TKX ), and the in-

dex of σ is defined as a trace class virtual representation of K , which we still denote
IndexKX (σ ) ∈ R

−∞(K) [Ati74].
Using the excision property, one can show that the index map IndexKU : K

0
K(TKU)→

R−∞(K) is still defined when U is a K-invariant relatively compact open subset of a
K-manifold (see [Par01, Section 3.1]).

Suppose now that the group K is a product K1 × K2. An intermediate notion be-
tween the “ellipticity” and “K1 × K2-transversal ellipticity” is the “K1-transversal el-
lipticity”. When a K1 × K2-equivariant symbol σ is K1-transversally elliptic, its index
IndexK1×K2

X (σ ) ∈ R−∞(K1 × K2), viewed as a generalized function on K1 × K2, is
smooth relative to the variable in K2 [Ati74, BV96b, PV09]. This implies that:

• IndexK1×K2
X (σ ) =

∑
λ∈K̂1

θλ ⊗ V
K1
λ with θλ ∈ R(K2),

• we can restrict IndexK1×K2
X (σ ) to the subgroup K1 and

IndexK1×K2
X (σ )|K1 =

∑
λ∈K̂1

dim(θλ)V
K1
λ = IndexK1

X (σ ). (5.1)

Here dim : R(K2)→ Z is the morphism induced by restriction to 1 ∈ K2.

2 The map σ(x, v) will also be denoted σ |x(v).
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Let us recall the multiplicative property of the index map for the product of manifolds
proved by Atiyah–Singer [Ati74]. Consider a compact Lie group K2 acting on two mani-
folds X1 and X2, and assume that another compact Lie group K1 acts on X1 commuting
with the action of K2. The external product of complexes on TX1 and TX2 induces a
multiplication (see [Ati74])

� : K0
K1×K2

(TK1X1)×K0
K2
(TK2X2)→ K0

K1×K2
(TK1×K2(X1 × X2)).

Let us recall the definition of this external product. For k = 1, 2, we consider equiv-
ariant morphisms3 σk : E+k → E−k on TXk . We consider the equivariant morphism on
T(X1 × X2),

σ1 � σ2 : E+1 ⊗ E+2 ⊕ E−1 ⊗ E−2 → E−1 ⊗ E+2 ⊕ E+1 ⊗ E−2 ,

defined by

σ1 � σ2 =

(
σ1 ⊗ Id −Id⊗ σ ∗2
Id⊗ σ2 σ ∗1 ⊗ Id

)
. (5.2)

We see that the set Char(σ1�σ2) ⊂ TX1×TX2 is equal to Char(σ1)×Char(σ2). We
now suppose that the morphisms σk are Kk-transversally elliptic. As TK1×K2(X1 × X2)

6= TK1X1×TK2X2, the morphism σ1�σ2 is not necessarilyK1×K2-transversally elliptic,
but it is so if σ2 is taken almost homogeneous (see [PV09]). So the exterior product a1�a2
is the K-theory class defined by σ1�σ2, where ak = [σk] and σ2 is almost homogeneous.

The following property is a useful tool (see [Ati74, Lecture 3] and [PV09]).

Theorem 5.1 (Multiplicative property). For any [σ1] ∈ K0
K1×K2

(TK1X1) and any [σ2]

∈ K0
K2
(TK2X2) we have

IndexK1×K2
X1×X2

([σ1] � [σ2]) = IndexK1×K2
X1

([σ1])⊗ IndexK2
X2
([σ2]).

5.2. Riemann–Roch character

Let M be a compact K-manifold equipped with an invariant almost complex structure J .
Let p : TM → M be the projection. The complex vector bundle (T∗M)0,1 is K-equiv-
ariantly identified with the tangent bundle TM equipped with the complex structure J .
Let hM be an Hermitian structure on (TM,J). The symbol

Thom(M, J ) ∈ 0(TM, hom(p∗(
∧even

C TM), p∗(
∧odd

C TM)))

at (m, v) ∈ TM is equal to the Clifford map

cm(v) :
∧even

C TmM →
∧odd

C TmM, (5.3)

where cm(v).w = v∧w−ι(v)w forw ∈
∧
•

C TmM . Here ι(v) :
∧
•

C TmM →
∧
•−1
C TmM

denotes the contraction map relative to hM . Since cm(v)2 = −‖v‖2 Id, the map cm(v) is
invertible for all v 6= 0. Hence the characteristic set of Thom(M, J ) corresponds to the
0-section of TM .

3 To simplify the notation, we do not distinguish between vector bundles on TX and on X .
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Definition 5.2. To any K-equivariant complex vector bundle E → M , we associate its
Riemann–Roch character

RRK(M,E) := IndexKM(Thom(M, J )⊗ E) ∈ R(K).

Remark 5.3. The character RRK(M,E) is equal to the equivariant index of the Dol-
beault–Dirac operator DE :=

√
2(∂E + ∂

∗

E), since Thom(M, J )⊗ E corresponds to the
principal symbol of DE (see [BGV91, Proposition 3.67]).

5.3. Definition of Q8

Let (M,�M ,8KM) be a compact Hamiltonian K-manifold pre-quantized by an equivari-
ant line bundle LM . Let J be an invariant almost complex structure compatible with �.
Let RRK(M,−) be the corresponding Riemann–Roch character. The topological index
of Thom(M, J )⊗LM ∈ K0

K(TM) is equal to the analytical index of the Dolbeault–Dirac
operator

√
2(∂LM + ∂

∗

LM
):

QK(M) = RRK(M,LM). (5.4)

When M is not compact, the topological index of Thom(M, J )⊗ LM is not defined.
In order to extend the notion of geometric quantization to this setting, we deform the
symbol Thom(M, J ) ⊗ L in the “Witten” way [Par01, Par03, MZ09, MZ14]. Consider
the identification ξ 7→ ξ̃ , k∗→ k defined by aK-invariant scalar product on k∗. We define
the Kirwan vector field on M:

κm =
(
8̃KM(m)

)
M
(m), m ∈ M. (5.5)

Definition 5.4. The symbol Thom(M, J ) ⊗ L pushed by the vector field κ is the sym-
bol cκ defined by setting

cκ |m(v) = Thom(M, J )⊗ L|m(v − κm)

for any (m, v) ∈ TM . More generally, if E → M is an equivariant complex vector
bundle, one defines cκE by the same relation (with E in place of L).

Note that cκ |m(v) is invertible unless v = κm. If furthermore v belongs to the subset
TKM of tangent vectors orthogonal to the K-orbits, then v = 0 and κm = 0. Indeed, κm
is tangent to K ·m while v is orthogonal.

Since κ is the Hamiltonian vector field of the function −1
2 ‖8

K
M‖

2, the set of zeros of κ
coincides with the set of critical points of ‖8KM‖

2. Finally, we have

Char(cκ) ∩ TKM ' Cr(‖8KM‖
2).

In general Cr(‖8KM‖
2) is not compact, so cκ does not define a transversally ellip-

tic symbol on M . In order to define a kind of index of cκ , we proceed as follows. For
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any invariant open relatively compact subset U ⊂ M the set Char(cκ |U ) ∩ TKU '
Cr(‖8‖2) ∩ U is compact whenever

∂U ∩ Cr(‖8‖2) = ∅. (5.6)

When (5.6) holds we denote by

Q8
K(U) := IndexKU (c

κ
|U ) ∈ R

−∞(K) (5.7)

the equivariant index of the transversally elliptic symbol cκ |U .
Let us recall the description of the critical points of ‖8KM‖

2 when the moment map
8KM is proper. We know thatm ∈ Cr(‖8KM‖

2) if and only if β̃M(m) = 0 for β = 8KM(m).
Hence the set Cr(‖8KM‖

2) has the decomposition

Cr(‖8KM‖
2) =

⋃
β∈k∗

M β̃
∩ (8KM)

−1(β) =
⋃
β∈B

K · (M β̃
∩ (8KM)

−1(β))︸ ︷︷ ︸
Zβ

,

where B is a subset of the Weyl chamber t∗
≥0. We denote by Br ⊂ t∗ the open ball

{ξ ∈ t∗ | ‖ξ‖ < r}. The following proposition is proved in [Par11].

Proposition 5.5. • For any r > 0, the set B ∩ Br is finite.
• The set of singular values of ‖8KM‖

2
: M → R is a sequence 0 ≤ r1 < r2 < · · · which

is finite if and only if Cr(‖8KM‖
2) is compact. In the other case limk→∞ rk = ∞.

For any β ∈ B, we consider a relatively compact open invariant neighbourhood Uβ of
Zβ such that Cr(‖8KM‖

2) ∩ Uβ = Zβ . The excision property tells us that the generalized
character Q8

K(Uβ) = IndexKUβ (c
κ
|Uβ ) does not depend of the choice of Uβ . In order to

simplify the notation we make the following

Definition 5.6. • We denote by Qβ
K(M) ∈ R

−∞(K) the equivariant index4 of the trans-
versally elliptic symbol cκ |Uβ .
• When E→ M is an equivariant complex vector bundle, we denote by RRKβ (M,E) the

equivariant index of the transversally elliptic symbol cκE |Uβ .

The following crucial property is proved in [MZ09, Par11, MZ14].

Theorem 5.7. A representation V Kλ occurs in the generalized character Qβ
K(M) ∈

R−∞(K) only if ‖λ‖ ≥ ‖β‖.

Definition 5.8. The generalized character Q8
K(M) ∈ R

−∞(K) is defined by

Q8
K(M) =

∑
β∈B

Qβ
K(M). (5.8)

4 The index of cκ |Uβ was denoted RRKβ (M,L) in [Par01].
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The sum (5.8) converges in R−∞(K) since by Theorem 5.7 the multiplicity of V Kλ in
Qβ
K(M) is zero when ‖β‖ > ‖λ‖.

We finish this section by recalling a result that will be needed in Section 5.5. Suppose
that k = k1 ⊕ k2 where [k1, k2] = 0 and the ki are the Lie algebras of closed connected
subgroups Ki . We assume that the moment map 8K1

M : M → k∗1 relative to the K1-action
is proper. Let us explain how we can use the K-invariant proper map ‖8K1

M ‖
2 instead of

‖8KM‖
2 in order to define the generalized character Q8

K(M).
Choose t = t1 ⊕ t2 such that ti ⊂ ki is a maximal abelian subalgebra. We start from

a decomposition

Cr(‖8K1
M ‖

2) =
⋃
β∈B1

K · (M β̃
∩ (8

K1
M )
−1(β))︸ ︷︷ ︸

Z1
β

(5.9)

with B1 ⊂ t∗1.
Let κ1 be the Hamiltonian vector field of −1

2 ‖8
K1
M ‖

2, and let cκ1 be the corresponding
pushed symbol. For any β ∈ B1, we consider a relatively compact open K-invariant
neighbourhood U1

β of Z1
β such that Cr(‖8K1

M ‖
2) ∩ U1

β = Z
1
β . We denote by Qβ,1

K (M) ∈

R−∞(K) the equivariant index of the K1-transversally elliptic symbol cκ1 |U1
β
. Theorem

5.7 admits the following extension:

Theorem 5.9. A representation V Kλ occurs in the generalized character Qβ,1
K (M) only if

‖λ1‖ ≥ ‖β‖. Here λ ∈ 3∗ ⊂ t∗ decomposes into λ = λ1 ⊕ λ2 with λi ∈ t∗i .

As in Definition 5.8, we can define the generalized character

Q81
K (M) =

∑
β∈B1

Qβ,1
K (M). (5.10)

In [Par11, Section 4.1], we prove

Theorem 5.10. Let (M,�M ,8KM) be a proper Hamiltonian K-manifold that is pre-
quantized. If the moment map 8K1

M : M → k∗1 is proper, then

Q8
K(M) = Q81

K (M) in R−∞(K).

5.4. Proof of Theorem 4.10 under Assumption A1

In this section we consider the manifold M = G ×K Y , where (Y,�Y ,8KY ) is a Hamil-
tonian K-manifold pre-quantized by a line bundle LY . We suppose that the moment map
8KY is proper, and that the Kirwan polytope1K(Y ) is contained in the cone Cρhol(z) ⊂ t∗se.

Then on M we have an induced G-invariant symplectic form �M and a moment
map 8GM : M → g∗ defined by 8GM([g, y]) = g · 8KM(y). The line bundle LM =
(G×LY )/K pre-quantizes the Hamiltonian manifold (M,�M ,8GM). Let us consider the
K-action on M; the moment map 8KM is also proper.
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We are then in a setting where the formal geometric quantizations ofM and Y relative
to the K-action are well defined: Q8

K(M),Q
8
K(Y ) ∈ R

−∞(K). The aim of this section is
to prove that

Q8
K(M) = Q8

K(Y )⊗ S
•(p) (5.11)

whenever (M,�M ,8GM) satisfies Assumption A1. The set

Cr(‖8GM‖
2) = Cr(‖8KM‖

2) = Cr(‖8KY ‖
2) =

⋃
β∈B

K · (Y β̃ ∩ (8KY )
−1(β))︸ ︷︷ ︸

Zβ

is compact: the parametrizing set B is finite (see Theorem 2.8). So we have Q8
K(M) =∑

β∈B Qβ
K(M) and Q8

K(Y ) =
∑
β∈B Qβ

K(Y ), and we are reduced to proving

Theorem 5.11. For any β ∈ B,

Qβ
K(M) = Qβ

K(Y )⊗ S
•(p) in R−∞(K). (5.12)

Proof. Let κM be the Kirwan vector field on M associated to the moment map 8KM . Let
JM be a K-invariant almost complex structure compatible with �M , and let Uβ be a
(small) neighbourhood of Zβ in M .

The symbol Thom(M, JM) ⊗ LM pushed by the vector field κM is denoted cκM . By
definition Qβ

K(M) is the equivariant index of the K-transversally elliptic symbol cκM |Uβ .

Note that Qβ
K(M) does not depend on the choice of the neighbourhood Uβ or of the almost

complex structure on Uβ .
We use the K-diffeomorphism ϕ : p × Y ' M defined by ϕ(X, y) = [eX, y]. The

Kirwan vector field κp×Y := ϕ∗(κM) is defined by κp×Y (X, y) = (κ1(X, y), κ2(X, y))

∈ T(p× Y ) where

κ2(X, y) = AY (y), κ1(X, y) = −[A,X], A = [eX · 8̃KY (y)]k.

Here [Z]k, [X]p are respectively the k and p components of Z ∈ g.
The Kostant–Souriau line bundle ϕ∗(LM) is K-diffeomorphic to LY since Y is a

deformation retract of p×Y . Let us compute the pull-back of the symplectic form�p×Y =

ϕ∗(�M) at (0, y). For v, v′ ∈ TyY and η, η′ ∈ T0p = p, we have

�p×Y (η ⊕ v, η
′
⊕ v′) = �M(v ⊕ η · y, v

′
⊕ η′ · y) = �Y (v, v

′)+ 〈8KY (y), [η, η
′
]〉.

Lemma 5.12. 〈ξ, [η, ad(z)η]〉 = −([ξ̃ , η], [z, η]) < 0 for any ξ ∈ K · Cρhol(z) and any
η ∈ p \ {0}.

Proof. Recall that the scalar product on g is defined by (X, Y ) = −b(X,2(Y )). Hence

〈ξ, [η, ad(z)η]〉 = −b(ξ̃ ,2([η, ad(z)η])) = (ad(z)ad(ξ̃ )η, η) = (ad(z)ad(ξ̃ ′)η′, η′)

where ξ = k · ξ ′ with ξ ′ ∈ Cρhol(z) and η = k · η′ for some k ∈ K . We can then check that
the symmetric endomorphism ad(z)ad(ξ̃ ′) : p→ p is negative definite when ξ ′ ∈ Cρhol(z);
the lemma is proved. ut



984 Paul-Emile Paradan

If JY is aK-invariant almost complex structure on Y compatible with�Y , the last lemma
tells us that (−ad(z), JY ) is a K-invariant almost complex structure on p× Y compatible
with �p×Y in a neighbourhood of Y .

Fix Uβ such that ϕ−1(Uβ) = Br × Vβ where Vβ is a neighbourhood of Zβ in Y
and Br := {X ∈ p | ‖X‖ < r}. The almost complex structure JM on Uβ defined by
ϕ∗(JM) = (−ad(z), JY ) is compatible with �M if Vβ and Br are small enough. Finally,
the symbol ϕ∗(cκM |Uβ ) is equal to the product σ1 � σ2|Br×Vβ , where

σ2(X, y; η, v) = c(v − κ2(X, y)), (X, y; η, v) ∈ T(p× Y ),

acts on
∧
∗

C TyY ⊗ LY , and

σ1(X, y; η, v) = c(η − κ1(X, y)), (X, y; η, v) ∈ T(p× Y ),

acts on
∧
∗

C p− (here p− denotes the complex K-module (p,−ad(z))).
Let κY be the Kirwan vector field on Y associated to the moment map8KY . We denoted

by cκY the symbol Thom(Y, JY )⊗LY pushed by the vector field κY . By definition Qβ
K(Y )

is the equivariant index of the K-transversally elliptic symbol cκY |Vβ .
The Atiyah symbol Atp on p is defined by setting, for (X, η) ∈ Tp,

Atp(X, η) := c(η + [z,X]) :
∧even

C p−→
∧odd

C p−. (5.13)

Lemma 5.13. The symbols σ1 � σ2|Br×Vβ and Atp � cκY |Br×Vβ define the same class in
K0
K(TK(Br × Vβ)).

Proof. We consider the paths [0, 1] 3 s 7→ As := [esX · 8̃KY (y)]k, κs2(X, y) = A
s
Y (y),

and κs1(X, y) = −[A
s, X]. We then define the paths at the level of symbols, σ s1 and σ s2 .

We check that

Char(σ s1 � σ
s
2 ) ∩ TK(Y × p) = {(X, y; v, η) | v = AsY (y) = 0 and η = [As, X] = 0}.

But since 8KY (y) ∈ k∗se, the condition [As, X] = [eX · 8̃KY (y),X]p = 0 forces X to be
zero. Hence

Char(σ s1 � σ
s
2 ) ∩ TK(Y × p) ' Cr(‖8KY ‖

2)× {0}, ∀s ∈ [0, 1].

We have proved that [0, 1] 3 s 7→ σ s1 � σ
s
2 |Br×Vβ is a homotopy of transversally elliptic

symbols, so σ1 � σ2 and σ 0
1 � σ

0
2 define the same class in K0

K(TK(Br × Vβ)).
We see that σ 0

2 = cκY and

σ 0
1 (X, y; η, v) = c(η + [8̃KY (y),X]).

We consider another path of symbols,

τ t (X, y; η, v) = c(η + [t8̃KY (y)+ (1− t)z,X]), t ∈ [0, 1].
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We check that if (X, y; η, v) ∈ Char(τ t � cκY ) ∩ TK(p × Y ) then the vector η ⊕ v ∈

T(X,y)(p × Y ) is orthogonal to the vector field generated by 8̃KY (y), and moreover v =

κY (y) and η = −[t8̃KY (y)+ (1− t)z,X]. Thus

0 = ‖κY (y)‖2 +
(
[t ξ̃ + (1− t)z,X], [ξ̃ , X]

)
= ‖κY (y)‖

2
+ t ‖[ξ̃ , X]‖2 + (1− t)

(
[z,X], [ξ̃ , X]

)︸ ︷︷ ︸
δ

where ξ = 8KY (y) ∈ K · C
ρ
hol(z). Since ξ is strongly elliptic, and by Lemma 5.12 the

term δ is strictly positive if X 6= 0, we have κY (y) = 0 and X = 0.
We have proved that [0, 1] 3 t 7→ τ t � cκY |Br×Vβ is a homotopy of K-transversally

elliptic symbols, so that σ 0
1 � σ

0
2 and Atp � cκY define the same class in the group

K0
K(TK(Br × Vβ)). ut

At this stage, Qβ
K(M) = IndexK

Br×Vβ (Atp|Br � cκY |Vβ ). Since cκY � Atp is also
K-transversally elliptic on Vβ × p, the excision property also gives Qβ

K(M) =

IndexKp×Vβ (Atp � cκY |Vβ ).
Let S1 be the circle subgroup of K with Lie algebra Rz. We can consider p as

an S1
× K-manifold. We note that the Atiyah symbol Atp is S1

× K-equivariant and
S1-transversally elliptic. Its index is computed in [Ati74] (see also [Par01, Section 5]):

IndexS
1
×K

p (Atp) = S•(p) in R−∞(S1
×K).

Consider the classes Atp ∈ K0
S1×K

(TS1p) and cκY |Vβ ∈ K0
K(TKVβ). By the multi-

plicative property (see Theorem 5.1), the product Atp � cκY has the following S1
× K-

equivariant index:

IndexS
1
×K

p×Vβ (Atp � cκY |Vβ ) = IndexS1×K
p (Atp)⊗ IndexKVβ (c

κ
Y |Vβ )

= S•(p)⊗ IndexKVβ (c
κ
Y |Vβ ) = S

•(p)⊗Qβ
K(Y ) ∈ R

−∞(S1
×K).

Finally, by the restriction property (5.1), the term

Qβ
K(M) = IndexKp×Vβ (Atp � cκY |Vβ ) ∈ R

−∞(K)

is equal to the restriction of

IndexS
1
×K

p×Vβ (Atp � cκY |Vβ ) = S
•(p)⊗Qβ

K(Y ) ∈ R
−∞(S1

×K)

to the subgroup K ↪→ S1
×K . The theorem is thus proved. ut

5.5. Proof of Theorem 4.13

Here we work with a pre-quantized Hamiltonian K-manifold (P,�P ,8KP ), and we as-
sume that the map 〈8KP , z〉 is proper. Here Rz is the Lie algebra of a circle subgroup
S1
⊂ K contained in the centre of K .
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We are in the context of Theorem 5.10. We have a decomposition k = k1 ⊕ k2 where
k1 := Rz and k2 are ideals of k and the moment map 〈8KP , z〉 relative to the S1-action is
proper. Then

Q−∞K (P ) = Q8
K(P ) = Q〈8,z〉K (P ) ∈ R−∞(K) (5.14)

where the right hand side is computed via a localization procedure on the set Cr(ϕP ) of
critical points of the proper map ϕP := 〈8KP , z〉

2. We note that

Cr(ϕP ) = ϕ−1
P (0) ∪ P z.

We are interested in the following cases:

1. P is a proper Hamiltonian G-manifold (M,�M ,8GM) with a moment map taking
values in G · Cρhol(z), and which satisfies Assumption A2.

2. P is the symplectic slice Y of the former case M := G×K Y .

By Lemma 4.7, the map ϕP is strictly positive in the two cases described above: hence
ϕ−1
P (0) = ∅. Let us compute the generalized character Q〈8,z〉K (P ) in this case.

Let κϕ be the Hamiltonian vector field of −1
2 ϕP . The symbol Thom(P, JP ) ⊗ LP

pushed by the vector field κϕ is denoted cϕP . Let BP be the set of connected components
of P z. For any X ∈ BP , we consider a relatively compact open K-invariant neighbour-
hood UX of X such that Cr(ϕP ) ∩ UX = X . We denote by QX

K (P ) ∈ R
−∞(K) the

equivariant index of the S1-transversally elliptic symbol cϕP |UX .
When ϕ−1

P (0) = ∅, the generalized character Q〈8,z〉K (P ) is defined by

Q〈8,z〉K (P ) =
∑

X∈BP
QX
K (P ) ∈ R

−∞(K). (5.15)

For X ∈ BP , we denote by

• LX the restriction of the Kostant–Souriau line bundle LP on X ,
• NX the normal bundle of X in P , and |NX |z,N+,zX its z-polarized versions (see Sec-

tion 4.4).

If we use (5.14) and (5.15), the proof of Theorem 4.13 is reduced to

Proposition 5.14. We have

QX
K (P ) = (−1)rX RRK

(
X , LX ⊗ det(N+,zX )⊗ S•(|NX |

z)
)

in R−∞(K), (5.16)

where rX is the complex rank of N+,zX .

Proof. Relations (2.1) show that κϕ = 〈8KP , z〉zP . Since 〈8KP , z〉 > 0 in a neighbourhood
of UX , we can replace κϕ by the vector field zP without changing the index of the cor-
responding transversally elliptic operator. This means that QX

K (M) is equal to the index
of σ z|UX , where the symbol σ z is defined by setting, for (m, v) ∈ TP ,

σ z(m, v) := c(v − zP (m)) :
∧even

C TmP ⊗ LP |m→
∧odd

C TmP ⊗ LP |m. (5.17)
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We have proved in [Par01, Theorem 5.8] that the index of σ z|UX is equal to the right hand
side of (5.16). ut

We now want to clarify the convergence of the sum that appears in (5.15) when P z is
non-compact. Let T be a maximal torus in K; it contains the circle subgroup S1. Let
3 ⊂ t be the lattice which is the kernel of exp : t → T . Let zo ∈ R>0z ∩ 3 generate
the sublattice Rz ∩ 3; the torus S1 acts on an irreducible representation V Kµ through
the character t 7→ tn with n = 〈µ, zo〉/(2π) ∈ Z. We then have a gradation R(K) =∑
n∈Z Rn(K) where Rn(K) is the group generated by the representations V Kµ such that
〈µ, zo〉/(2π) = n. We see that Rn(K) · Rm(K) ⊂ Rn+m(K).

For any n ∈ Z, we denote by R≥n(K) (resp. R−∞≥n (K)) the subgroup formed by the
finite (resp. infinite) sums

∑
l≥n El where El ∈ Rl(K). We have the following basic

lemma (the proof is left to the reader).

Lemma 5.15. • If A ∈ R−∞≥n (K) and B ∈ R−∞≥m (K), then the product A · B is well
defined and belongs to R−∞≥n+m(K).
• An infinite sum

∑
n≥0An with An ∈ R−∞≥n (K) converges in R−∞

≥0 (K).

For X ∈ BP , the action of S1 is trivial on X , and (2.7) shows that S1 acts on the fibres
of the Kostant–Souriau line bundle LX through the character t 7→ tn(X ), where n(X ) =
〈8KP (X ), zo〉/(2π) is a strictly positive integer.

Proposition 5.16. • The generalized character QX
K (P ) belongs to R−∞

≥n(X )(K).

• The sum
∑

X∈BP QX
K (P ) converges in R−∞

≥0 (K).

Proof. The generalized character QX
K (P ) is equal to (−1)r(X )

∑
p≥0 Ep with Ep =

RRK(X , LX ⊗ det(N+,zX ) ⊗ Sp(|NX |z)) ∈ R(K). Since S1 acts on the fibres of the
polarized bundles N+,zX and |NX |z through the characters tn with n > 0, we see that
Ep ∈ R≥n(X )+p(K). Hence QX

K (P ) = (−1)r(X )
∑
p≥0 Ep converges in R−∞

≥n(X )(K).

For the second point we see that
∑

X∈BP QX
K (P ) =

∑
n≥0An with

An =
∑

n(X )=n
QX
K (P ) ∈ R

−∞
≥n (K).

The former sum is finite (and so well defined) because the map 〈8KP , zo〉 is proper: for
any C > 0, we have only a finite number of X ∈ BP such that 〈8KP (X ), zo〉 ≤ C. The
second point is thus proved. ut

5.6. Proof of Theorem 4.10 under Assumption A2

If Assumption A2 is satisfied, the conclusion of Theorem 4.10 follows directly from the
results of Section 5.5 applied to the following two cases:

1. (M,�M ,8GM) is a proper Hamiltonian G-manifold with a moment map taking values
in G · Cρhol(z), and which satisfies Assumption A2.

2. Y is the symplectic slice of the former case.
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Note that the fixed point sets Mz and Y z coincide. For a connected component X of Y z,
let NX (resp. N ′X ) be the normal bundle of X inM (resp. Y ). Since the normal bundle of
Y in M is the trivial bundle Y × p, we have NX = N ′X ⊕ p. A small computation shows
that

N+,zX = (N ′X )
+,z and |NX |

+,z
= |N ′X |

+,z
⊕ (p, ad(z)).

Finally, (5.14) and Proposition 5.16 give

Q−∞K (M) =
∑
X
(−1)rX RRK

(
X , LX ⊗ det(N+,zX )⊗ S•(|NX |

z)
)

=

∑
X
(−1)rX RRK

(
X , LX ⊗ det(N ′X )

+,z
⊗ S•(|N ′X |

z)⊗ S•(p)
)

=

(∑
X
(−1)rX RRK

(
X , LX ⊗ det(N ′X )

+,z
⊗ S•(|N ′X |

z)
))
⊗ S•(p)

= Q−∞K (Y )⊗ S•(p).

By Proposition 5.16, the term
∑

X (−1)rX RRK(X , LX ⊗ det(N ′X )
+,z
⊗ S•(|N ′X |

z)) be-
longs toR−∞

≥0 (K). We see also that S•(p) ∈ R−∞
≥0 (K). Hence their product is well defined

(see Lemma 5.15).

Acknowledgments. I thank the referee for useful suggestions.
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