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Abstract. Let G := SO(n, 1)° and I’ < G be a geometrically finite Zariski dense subgroup with
critical exponent § greater than (n — 1)/2. Under a spectral gap hypothesis on Lz(l"\G), which is
always satisfied when § > (n — 1)/2 forn = 2,3 and when § > n — 2 for n > 4, we obtain an
effective archimedean counting result for a discrete orbit of I" in a homogeneous space H\G where
H is the trivial group, a symmetric subgroup or a horospherical subgroup. More precisely, we show
that for any effectively well-rounded family {B7 C H\G} of compact subsets, there exists > 0
such that
#eIl N Br = M(Br) + 0O(MB7)' ™)

for an explicit measure M on H\G which depends on I'. We also apply the affine sieve and describe
the distribution of almost primes on orbits of " in arithmetic settings.

One of key ingredients in our approach is an effective asymptotic formula for the matrix coeffi-
cients of L2(I'\G) that we prove by combining methods from spectral analysis, harmonic analysis
and ergodic theory. We also prove exponential mixing of the frame flows with respect to the Bowen—
Margulis—Sullivan measure.
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bution
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1. Introduction

Let n > 2 and let G be the identity component of the special orthogonal group SO(n, 1).
As is well known, G can be considered as the group of orientation preserving isometries
of the hyperbolic space H". A discrete subgroup I' of G is called geometrically finite if
the unit neighborhood of its convex core! has finite Riemannian volume. As any discrete
subgroup admitting a finite-sided polyhedron as a fundamental domain in H" is geomet-
rically finite, this class of discrete subgroups provides a natural generalization of lattices
in G. In particular, for n = 2, a discrete subgroup of G is geometrically finite if and only
if it is finitely generated.

In the whole introduction, let I" be a torsion-free geometrically finite, Zariski dense,
discrete subgroup of G. We denote by § the critical exponent of I". Note that any discrete
subgroup of G with § > max{(n—1)/2, n—2} is Zariski dense in G. The main aim of this
paper is to obtain effective counting results for discrete orbits of I' in H\G, where H is
the trivial group, a symmetric subgroup or a horospherical subgroup of G, and to discuss
their applications in the affine sieve on I"-orbits in an arithmetic setting. Our results are
formulated under a suitable spectral gap hypothesis for L2(I'\G) (see Defs. 1.1 and 1.3).
This hypothesis on I is known to be true if the critical exponent § is strictly greater than
max{(n — 1)/2,n — 2}. Though we believe that the condition § > (n — 1)/2 should be
sufficient to guarantee this hypothesis, it is not yet known in general (see 1.2).

For I lattices, i.e., when 8 = n — 1, both the effective counting and applications to an
affine sieve have been extensively studied (see [16], [17], [4], [46], [21], [42],[48], [20],
etc. as well as survey articles [51], [49], [36], [37]). Hence our main focus is when I is
of infinite covolume in G.

1.1. Effective asymptotic of matrix coefficients for L>(I'\G). We begin by describing
an effective asymptotic result on the matrix coefficients for L2(I'\G), which is a key
ingredient in our approach as well as of independent interest. When I' is not a lattice, a
well-known theorem of Howe and Moore [27] implies that for any ¥, ¥, € L2(F\G),
the matrix coefficient

(@Wy, W) = / W ()W (g) dg
NG

decays to zero as a € G tends to infinity (here dg is a G-invariant measure on I'\G).
Describing the precise asymptotic is much more involved. Fix a Cartan decomposition
G = KAK where K is a maximal compact subgroup and A is a one-parameter subgroup
of diagonalizable elements. Let M denote the centralizer of A in K. The quotient spaces
G/K and G/M can be respectively identified with H” and its unit tangent bundle T' (H"),
and we parameterize elements of A = {a; : t € R} so that the right translation action of
a; in G/M corresponds to the geodesic flow on T! (H") for time .

1 The convex core Cr ¢ T\H" of T is the image of the minimal convex subset of H" which
contains all geodesics connecting any two points in the limit set of T".
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We let {m, : x € H"} and {vy : x € H"} be I'-invariant conformal densities of
dimensions n — 1 and § respectively, unique up to scalings. Each v, is a finite mea-
sure on the limit set of I', called the Patterson—Sullivan measure viewed from x. Let
mBMS |y BR 5 BRx and mM2 denote, respectively, the Bowen—Margulis—Sullivan mea-
sure, the Burger—Roblin measures for the expanding and the contracting horospherical
foliations, and the Liouville measure on the unit tangent bundle T! ("\H"), all defined
with respect to the fixed pair of {m,} and {v,} (see Def. 2.1). Using the identification
TY(I'\H") = I'\G/M, we may extend these measures to right M-invariant measures
on I'\G, which we will denote by the same notation and call them the BMS, the BR, the
BR,, the Haar measures for simplicity. We note that for § < n— 1, only the BMS measure
has finite mass [52].

In order to formulate a notion of a spectral gap for L>(I'\G), denote by G and M
the unitary duals of G and M. A representation (w, H) € G is called tempered if for
any K-finite v € H, the associated matrix coefficient function g — (m(g)v, v) belongs
to L>T¢(G) for any € > 0, and non-tempered otherwise. The non-tempered part of G
consists of the trivial representation, and complementary series representations U (v, s —
n + 1) parameterized by v € M ands € I,, where I, C ((n — 1)/2,n — 1) is an interval
depending on v. This was obtained by Hirai [26] (see also [32, Props. 49, 50]). Moreover
U, s —n + 1) is spherical (i.e., has a non-zero K -invariant vector) if and only if v is
the trivial representation 1; see discussion in Section 3.2.

By work of Lax—Phillips [40], Patterson [55] and Sullivan [62], if § > (n — 1)/2,
then (1,8 — n + 1) occurs as a subrepresentation of L2(I"\G) with multiplicity one,
and L?(I'\G) possesses a spherical spectral gap, meaning that there exists (n — 1)/2 <
so < & such that L>(I"\G) does not weakly contain® any spherical complementary series
representation (1, s—n+1), s € (so, §). The following notion of a spectral gap concerns
both the spherical and non-spherical parts of L>(I'\G).

Definition 1.1. We say that L2(I"\G) has a strong spectral gap if

@) LZ(F\G) does not contain any U (v, § —n + 1) with v # 1;
(2) there exists (n — 1)/2 < so(I") < & such that I;Z(F\G) does not weakly contain any
U,s —n+ 1) withs € (so(T"), ) and v € M.

For 6 < (n — 1)/2, the Laplacian spectrum of L2(F\H”) is continuous [40]; this implies
that there is no spectral gap for L2(I'\G).

Conjecture 1.2 (Spectral gap conjecture). If ' is a geometrically finite and Zariski
dense subgroup of G with 8 > (n — 1)/2, then L*>(I'\G) has a strong spectral gap.

If8 > (n—1)/2forn =2,3,0orif § > (n — 2) for n > 4, then L>(I'\G) has a strong
spectral gap (Theorem 3.27).

Our main theorems are proved under the following slightly weaker spectral gap prop-
erty assumption:

2 For two unitary representations 7 and 7’ of G, 7 is said to be weakly contained in ' (or 7’
weakly contains ) if every diagonal matrix coefficient of w can be approximated, uniformly on
compact subsets, by convex combinations of diagonal matrix coefficients of 7’.
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Definition 1.3. We say that L>(I'\G) has a spectral gap if there exist (n — 1)/2 < 5o =
so(I") < 8 and ng = no(I") € N such that

(1) the myltiplicity of U(v, § —n + 1) contained in L2(I"\G) is at most dim(v)"° for any
veM,
2) LZ(F\G) does not weakly contain any U (v, s —n + 1) with s € (sp,§) and v € M.

The pair (so(I"), no(I")) will be referred to as the spectral gap data for I'.

In the rest of the introduction, we impose the following hypothesis on I':
L*(I'\G) has a spectral gap.

Theorem 1.4. There exist ng > 0 and £ € N (depending only on the spectral gap data
for T') such that for any real-valued W1, ¥ € C°(I'\G), as t — oo,

1 [ w(ga) et dn g
G

_ mBRy) - mBR ()

| BMS | + O(Se(W1)S(Wr)e ™)

where Sp(V;) denotes the £-th L?-Sobolev norm of V; foreachi = 1,2.

Remark 1.5. We remark that if either W or W, is K -invariant, then Theorem 1.4 holds
for any Zariski dense I with 6 > (n — 1)/2 (without the spectral gap hypothesis), as the
spherical spectral gap of L>(I"\G) is sufficient to study the matrix coefficients associated
to spherical vectors.

Let Hg denote the sum of of all complementary series representations of parameter §

contained in L2(I'\G), and let Ps denote the projection operator from L%(I'\G) to 7—[;
By the spectral gap hypothesis on L(I'\G), the main work in the proof of Theorem 1.4
is to understand the asymptotic of (a; Ps(\WV1), Ps(W2)) as t — oo. Building on the work
of Harish-Chandra on the asymptotic behavior of Eisenstein integrals (cf. [65], [66]),
we first obtain an asymptotic formula for (a;v, w) for all K-finite vectors v, w € 7—[;
(Theorem 3.23). This extension alone does not give a formula for the leading term of
(as Ps(¥1), Ps(W3)) in terms of the functions ¥; and W;; however, an ergodic theorem of
Roblin [56] and Winter [67] enables us to identify the main term as given in Theorem 1.4.

1.2. Exponential mixing of frame flows. Via the identification of the space I'\G with
the frame bundle over the hyperbolic manifold I'\H", the right translation action of a,
on I'\G corresponds to the frame flow for time 7. The BMS measure m®MS on '\ G is
known to be mixing for the frame flows ([18], [67]). We deduce the following exponential
mixing from Theorem 1.4; for a compact subset 2 of '\ G, we denote by C*°(£2) the set
of all smooth functions on I'\ G with support contained in €.
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Theorem 1.6. There exist ng > 0 and £ € N such that for any compact subset Q2 C I'\G,
and for any W1, W, € C®°(Q), ast — 00,

/ W (gar)Wa(g) dm®MS (g)
G

_ mPM ) - m BN ()

| BMS | + O(Se(W)S(¥2)e™™)

where the implied constant depends only on Q.

For I convex cocompact, Theorem 1.6 for W and W, M-invariant functions holds for any
& > 0 by Stoyanov [61], based on the approach developed by Dolgopyat [15]; however
when I has cusps, this theorem seems to be new even for n = 2.

1.3. Effective equidistribution of orthogonal translates of an H-orbit. When H is
a horospherical subgroup or a symmetric subgroup of G, we can relate the asymptotic
distribution of orthogonal translates of a closed orbit I'\I" H to the matrix coefficients of
L?*(I'\G). We fix a generalized Cartan decomposition G = H AK . We parameterize A =
{a;} as in Section 1.1, and for H horospherical, we will assume that H is the expanding
horospherical subgroup for a;, thatis, H = {g € G : a;ga_; — east — oo}. Let
phiaar and ;i8S be respectively the H-invariant measure on I'\I'H defined with respect to
{m,} and the skinning measure on '\I" H defined with respect to {v,}, introduced in [52]
(cf. (4.2)).

Theorem 1.7. Suppose that U\I" H is closed and that |[,L};_]s| < 00. There exist ng > 0 and
¢ € N such that for any compact subset @ C T'\G, any ¥ € C*(Q2) and any bounded
¢ e C°(T'NH\H), ast - 0,

1 [ wlhapoh) duli )
hel\TH 1

= mﬂ?@)mw(‘l’) + O(Se (W) - Sp(p)e ™)

with the implied constant depending only on Q.

For H horospherical, |u1;f’| < oo is automatic for I'\I"H closed. For H symmetric (and

hence locally isomorphic to SO(k, 1) x SO(n — k)), the criterion for the finiteness of ,ul;_ls

has been obtained in [52] (see Prop. 4.15); in particular, Iy,l;ls| < oo provided § > n — k.
Letting Yo := {h € (' N H)\H : ha; € Q2 for some ¢t > 0}, note that

/ W (hay) (h) dpl" = fy W (hay)¢ (h) d ™
Q

since W is supported in €2. In the case when /LZS is compactly supported, Y turns out to be
a compact subset and in this case, the so-called thickening method ([17], [30]) is sufficient
to deduce Theorem 1.7 from Theorem 1.4, using the wave front property introduced in
[17] (see [4] for the effective version). The case of /JLZS not compactly supported is much
more intricate. Though we obtain a thick-thin decomposition of Ygq with the thick part
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being compact, and control both the Haar measure and the skinning measure of the thin
part (Theorem 4.16), the usual method of thickening the thick part does not suffice, as
the error term coming from the thin part overtakes the leading term. The main reason
for this phenomenon is that we are taking the integral with respect to 4" as well as
multiplying by the weight factor e =179 on the left hand side of Theorem 1.7, whereas
the finiteness assumption is made on the skinning measure ,ul;f. However we are able
to proceed by comparing the two measures (a;)x ,ul;f and (a;)« /Llflaar via the transversal
intersections of the orbits I'\I" Ha, with the weak-stable horospherical foliations (see the
proof of Theorem 6.9 for more details).

In the special case of n = 2, 3 and H horospherical, Theorem 1.7 was proved in [35],

[34] and [41] by a different method.

1.4. Effective counting for a discrete I"-orbit in H#\G. In this subsection, we let H be
the trivial group, a horospherical subgroup or a symmetric subgroup, and assume that the
orbit [e]T" is discrete in H\G. Theorems 1.4 and 1.7 are key ingredients in understanding
the asymptotic of the number #([e]I" N Br) for a given family {By C H\G} of growing
compact subsets, as observed in [16].

We will first describe a Borel measure Mpy\g = MII; \G on H\G, depending on T,
which turns out to describe the distribution of [e]I". Let 0 € H" be the point fixed by K,
Xo € TH(H") the vector fixed by M, X D¢ o € 9(H") the forward and the backward end-
points of X¢ under the geodesic flow, respectively and v, the Patterson—Sullivan measure
on d(H") supported on the limit set of I', viewed from o. Let dm denote the probability
Haar measure of M.

Definition 1.8. For H the trivial subgroup {e}, define a Borel measure Mg = ./\/lg on
G as follows: for ¢ € C.(G),

Mg (¥) .

= 5] ¥ (kraymka)e® dvy (ki XT) dt dm dv, (k1 X[).

(K/M)x At xMx(M\K)

Definition 1.9. For H horospherical or symmetric, we have either G = HATK or G =
HATKUHA™K (as a disjoint union except for the identity element) where A* = {a4, :
t > 0}

Define a Borel measure M p\g = MI;I\G on H\G as follows: for ¢ € C.(H\G),

Muc ()

PS
|;|:1LS§IA|S| v v (lelamk)e™ dt dm dvo (k™' Xg) if G=HA*K,
A+ xMx(M\K)
T
Z|mgl\’/[is| N w([e]ai;mk)e‘”dtdmdvo(k_lXSF) otherwise,
ATXMx(M\K)

where /,Ll;_187 is the skinning measure on I' N H\ H in the negative direction, as defined in
(6.15).
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Definition 1.10. For a family {By C H\G} of compact subsets with M g\ (Br) tend-
ing to infinity as T — oo, we say that {Br} is effectively well-rounded with respect to T'
if there exists p > 0 such that for all small € > 0 and large 7 > 1

MG (Bf . —Br) = 0(e” - MG (Br))

where B}r’e = GeBrGe and By, = ﬂgl’gzeGe g1Brgy if H = {e}; and B}r’e = BrG.
and B, . =) 2€G. Brg if H is horospherical or symmetric. Here G, denotes a symmet-
ric e-neighborhood of e in G with respect to a left invariant Riemannian metric on G.

Since any two left invariant Riemannian metrics on G are Lipschitz equivalent to each
other, the above definition is independent of the choice of a Riemannian metric used in
the definition of G.

See Propositions 7.10, 7.14 and 7.16 for examples of effectively well-rounded fami-
lies. For instance, if G acts linearly from the right on a finite-dimensional linear space V
and H is the stabilizer of wy € V, then the family of norm balls By := {Hg € H\G :
lwogll < T} is effectively well-rounded.

If ' is a lattice in G, then Mg\ is essentially the leading term of the invariant
measure in H\G and hence Definition 1.10 is equivalent to the one given in [4], which is
an effective version of the well-roundedness condition given in [17]. Under the additional
assumption that HNT is a lattice in H, it is known that if {57} is effectively well-rounded,
then

#([e]T N Br) = Vol(Br) + O(Vol(Br)! =) (1.11)

for some 79 > 0, where Vol is computed with respect to a suitably normalized invariant
measure on H\G (cf. [16], [17], [46], [20], [4]).

We present a generalization of (1.11). In Theorems 1.12 and 1.14, we let {I"y : d € I}
be a family of subgroups of I' of finite index such that 'y N H = I' N H. We assume
that {I'y : d € I} has a uniform spectral gap in the sense that sup, so(I'y) < & and
sup, no(I'g) < oo.

For our intended application to the affine sieve, we formulate our effective results
uniformly for all I';’s.

Theorem 1.12. Let H be the trivial group, a horospherical subgroup or a symmetric
subgroup. When H is symmetric, we also assume that | [LI;IS| < oo. If {Br} is effectively
well-rounded with respect to T, then there exists ng > 0 such that for any d € I and for
any yg € I,

1
#(lelCayo N Br) = ———Mu\G(Br) + O(Mu\6 (Br)' ~™)
[I": Tal

where Mg\g = MI;I\G and the implied constant is independent of 'y and yy € T.

See Corollaries 7.15 and 7.17 where we have applied Theorem 1.12 to sectors and norm
balls.
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Remark 1.13. Theorem 1.12 can be used to provide an effective version of circle-count-
ing theorems studied in [35], [41], [53] and [50] (as well as its higher-dimensional ana-
logues for sphere packings discussed in [51]).

We also formulate our counting statements for bisectors in the HAK decomposition,
motivated by recent applications in [7] and [8]. Let 7y € C°(H) and 75 € C*°(K), and
define &£, € C*°(G) as follows: for g = hak € HATK,

£77%(9) = Xap(@) / 1 (hm)t2(m™"k) dpas (m)
HNM

where x A% denotes the characteristic function of AJTr ={a;:0 <t <logT}and dynm

is the probability Haar measure of H N M. Since hak = h’ak’ implies that 7 = h'm and
k=m"k forsomem € HNM, é;"rz is well-defined.

Theorem 1.14. There exist no > 0 and £ € N such that for any compact subset Hy of H
which injects to T\G, any 11 € C*°(Hp), 70 € C®(K), any yop € ' and any d € I,

~PS *
71,72 1557 (t1) - v, (12) s 5—n
E = T° + T°™ "0
yelayo ) § [T : Tyl |mBMS O(GumSe(m) )

where v} (12) = fK fM T (mk) dm dv, (k™! X,y ) and /ll;_ls is the skinning measure on H
with respect to I and the implied constant depends only on I" and Hy.

Theorem 1.14 also holds when 1 and 1, are characteristic functions of so-called admis-
sible subsets (see Corollary 7.20 and Proposition 7.10).

We remark that unless H = K, Corollary 7.15, which is a special case of Theorem
1.12 for sectors in H\G, does not follow from Theorem 1.14, as the latter deals only with
compactly supported functions 7. For H = K, Theorem 1.14 was earlier shown in [9]
and [64] for n = 2, 3 respectively.

Remark 1.15. Non-effective versions of Theorems 1.7, 1.12, and 1.14 were obtained
in [52] for a more general class of discrete groups, that is, any non-elementary discrete
subgroup admitting finite BMS-measure.

1.5. Application to affine sieve. One of the main applications of Theorem 1.12 is con-
nected with Diophantine problems on orbits of I". Let G be a Q-form of G, that is, G is a
connected algebraic group defined over Q such that G = G(R)°. Let G act on an affine
space V via a Q-rational representation so that G(Z) preserves V (Z). Fix a non-zero vec-
tor wog € V(Z) and denote by H its stabilizer subgroup and set H = H(R). We consider
one of the following situations: (1) H is a symmetric subgroup of G or the trivial sub-
group; (2) woG U {0} is Zariski closed and H is a compact extension of a horospherical
subgroup of G.

In the case (1), woG is automatically Zariski closed by [23]. Set W := woG and
woG U {0} respectively for (1) and (2).
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Let I' be a geometrically finite and Zariski dense subgroup of G with§ > (n — 1)/2,
which is contained in G(Z). If H is symmetric, we assume that |/LI;{S| < 00.

For a positive integer d, we denote by I'y the congruence subgroup of I" which con-
sists of y € I" such that y = e mod d. For Theorems 1.16 and 1.17 we assume that there
exists a finite set S of primes that the family {I"; : d is square-free with no prime factors
in S} has a uniform spectral gap. This property always holds if § > (n —1)/2 forn = 2,3
and if § > n — 2 for n > 4 via the recent works of Bourgain, Gamburd and Sarnak ([6],
[5]) and Salehi Golsefidy and Varju [58] together with the classification of the unitary
dual of G (see Theorem 8.2).

Let F € Q[W] be an integer-valued polynomial on the orbit woI". Salehi Golsefidy
and Sarnak [57], generalizing [6], showed that for some R > 1, the set of x € wol
with F(x) having at most R prime factors is Zariski dense in woG. The following are
quantitative versions: Letting F' = Fj --- F, be a factorization into irreducible polyno-
mials in Q[W], assume that all F;’s are irreducible in C[W] and integral on woI". Let
{Br C woG : T > 1} be an effectively well-rounded family of subsets with respect to I".

Theorem 1.16 (Upper bound for primes). Forall T > 1,

My (Br)
(log Myyc (Br)"
Theorem 1.17 (Lower bound for almost primes). Assume further that max,cp, ||x| <

./\/leG(BT)'6 for some B > 0, where || - || is any norm on V. Then there exists R =
R(F, wol', B) > 1 such that for all T > 1,

{xewoI' N Br : Fj(x) is prime for j =1,...,r} €

MU}QG(BT)
(log My (Br))"

Observe that these theorems provide a description of the asymptotic distribution of almost
prime vectors, as Br can be taken arbitrarily.

{x € wol’ N Br : F(x) has at most R prime factors} >

Remark 1.18. In both theorems above, if all B are K -invariant subsets, our hypothesis
on the uniform spectral gap for the family {I";} can be disposed of again, as the uniform
spherical spectral gap property proved in [58] and [6] is sufficient in this case.

For instance, Theorems 1.16 and 1.17 can be applied to the norm balls Br = {x € woG :
x| < T} and in this case My, g (Br) =< T%/* where A denotes the log of the largest
eigenvalue of a; on the R-span of woG.

In order to present a concrete example, we consider an integral quadratic form
Q(x1, ..., xp41) of signature (n, 1) and for an integer s € Z, denote by Wy ; the affine
quadric given by

{x: Q0x) =s}.
As is well-known, Wy  is a one-sheeted hyperboloid if s > 0, a two-sheeted hyperboloid
if s < 0 and a cone if s = 0. We will assume that Q(x) = s has a non-zero integral
solution, so pick wo € Wg ((Z). If s # 0, the stabilizer subgroup G, is symmetric;
more precisely, locally isomorphic to SO(n — 1, 1) (if s > 0) or SO(n) (if s < 0) and if
s = 0, Gy, is a compact extension of a horospherical subgroup. By the remark following
Theorem 1.7, the skinning measure “%Swo is finite if n > 3. Forn = 2 and s > 0,
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Gy, 18 a one-dimensional subgroup consisting of diagonalizable elements, and ugsw is
infinite only when the geodesic in H? stabilized by G, is divergent and goes into a C(l)lsp
of a fundamental domain of I in HZ2; in this case, we call wo externally I'-parabolic,
following [52]. Therefore the following are special cases of Theorems 1.16 and 1.17:

Corollary 1.19. Let I" be a geometrically finite and Zariski dense subgroup of SO g (Z)
with § > (n — 1)/2. In the case when n = 2 and s > 0, we additionally assume that wq
is not externally T-parabolic. Fixing a K -invariant norm || - | on R"*!, we have, for any
l1<r<n+1:

(D) xewol: x| < T, xjisprimeforall j =1,...,r} K T’S/(log ",
(2) for some R > 1,

{x e wol" : |X|| < T, x1---x, has at most R prime factors} > T‘S/(log 7).

The upper bound in (1) is sharp up to a multiplicative constant. The lower bound in (2)
can also be stated for admissible sectors under the uniform spectral gap hypothesis (cf.
Corollary 7.17). Corollary 1.19 was previously obtained forn = 2,3 and s < 0 ([5], [33],
[35], [34], [41]).

To explain how Theorems 1.16 and 1.17 follow from Theorem 1.12, let I'y,,(d) =
{y € T' : woy = womodd} for each square-free integer d. Then Stabpwo(d)(wo) =
Stabr (wo) and the family {T",,, (d)} has a uniform spectral gap property as I'y < I'y,, (d).
Hence Theorem 1.12 holds for the congruence family {I'y, (d) : d is square-free, with no
small primes}, providing a key axiomatic condition in executing the combinatorial sieve
(see [28, 6.1-6.4], [25, Theorem 7.4], as well as [6, Sec. 3]). When an explicit uniform
spectral gap for {I"4} is known (see e.g., [19], [43]), the number R(F, wol") can also be
explicitly computed in principle.

The paper is organized as follows. In Section 2, we recall the ergodic result of Roblin
which gives the leading term of the matrix coefficients for L2(I'\G). In Section 3, we
obtain an effective asymptotic expansion for the matrix coefficients of the complemen-
tary series representations of G (Theorem 3.23) as well as for those of L?(I"\G), proving
Theorem 1.4. In Section 4, we study the reduction theory for the non-wandering compo-
nent of I'\I" Ha,, describing its thick-thin decomposition; this is needed as I'\T'H has
infinite Haar volume in general. We will see that the non-trivial dynamics of I'\I"Hay as
t — 00 can be seen only within a subset of finite PS measure. In Section 5, for ¢ com-
pactly supported, we prove Theorem 1.7 using Theorem 1.4 via thickening. For a general
bounded ¢, Theorem 1.7 is obtained via a careful study of transversal intersections in
Section 6. Theorem 1.6 is also proved in Section 6. Counting theorems 1.12 and 1.14 are
proved in Section 7, and sieve theorems 1.16 and 1.17 are proved in the final Section 8.

2. Matrix coefficients in L2(I"\G) by ergodic methods
Throughout the paper, let G be SO(n, 1)° = Isom™ (H") for n > 2, i.e., the group of

orientation preserving isometries of (H"”, d), and ' < G be a non-elementary torsion-
free geometrically finite group. Let d(H") denote the geometric boundary of H". Let
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A (") C 9(H™) denote the limit set of I, and § the critical exponent of I', which is known
to be equal to the Hausdorff dimension of A(I") [63].

A family {u, : x € H"} of measures is called a I'-invariant conformal density of
dimension 8, > 0 on d(H") if each u, is a non-zero finite Borel measure on d(H")
satisfying for any x, y € H", £ € 9(H") and y € T,

duy 3
Vslx = I/Ly)( and d—)(g) =e 8llﬁ§()’ax)’

M

where Y,y (F) = ,ux(y*1 (F)) for any Borel subset F' of 0(H"). Here B¢ (y, x) denotes
the Busemann function: B¢ (y, x) = lim;_, o (d (&, y) — d(&;, x)) where &; is a geodesic
ray tending to § as t — oo.

We denote by {vy} the Patterson—Sullivan density, i.e., a I'-invariant conformal den-
sity of dimension 4, and by {m, : x € H"} the Lebesgue density, i.e., a G-invariant
conformal density on the boundary d(H") of dimension n — 1. Both densities are deter-
mined uniquely up to scalar multiples.

Denote by {G' : ¢ € R} the geodesic flow on T!(H"). For u € T'(H"), we denote by
ut € 9(H") the forward and the backward endpoints of the geodesic determined by u,
ie., ut =lim,_ +o0 G' (u). Fixing 0 € H", the map

ur— W u,s= Bu- (0, T(u)))
is a homeomorphism between T'(H") and
(O(H") x 9(H") — {(§,&) : & € 9(H")}) x R.

Using this homeomorphism, we define measures mBMS ;BR 5BR, gy Haar o Tl (H") as
follows ([11], [44], [63], [12], [56)):

Definition 2.1. Set

dinBMS () = ut (0.7 W) 3B~ (0.7 gy, () dv, (™) ds,
dimnBR () = "~ DBut(0.71) o8B, = (0.7 W) gy (Y dvy(u™) ds,
AR (1) = Pt W) (=D~ W) g1, 1+ dimo (u™) dis.

dthaar(u) — (= DB+(0.1W)) ,(n=1)f,— (0,7 () dmo(u+) dm,(u") ds.

The conformal properties of {v,} and {m,} imply that these definitions are independent of
the choice of 0 € H". We will extend these measures to G; these extensions depend on the
choice of 0 € H" and Xg € Té(]HI”). Let K := Stabg (o) and M := Stabg(Xy), so that
H" ~ G/K and T'(H") ~ G/M.Let A = {a, : t € R} be the one-parameter subgroup of
diagonalizable elements in the centralizer of M in G such that G' (X)) = [M]a; = [a; M.

Using the identification TL(H") with G /M, we lift the above measures to G, which
will be denoted by the same notation by abuse of notation, so that they are all invariant
under M from the right.
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These measures are all left I'-invariant, and hence induce locally finite Borel measures
on I'\G, which we denote by mBMS (the BMS measure), mBR (the BR measure), mBR+
(the BR,, measure), m'%" (the Haar measure) by abuse of notation.

Let N* and N~ denote the expanding and the contracting horospherical subgroups,
ie.,

NT = {geeG:agay — east - Fo0}.

For g € G, define
gt = (gM)T € a(HM).

We note that mBMS| mBR and mBR+ are invariant under A, N* and N~ respectively
and their supports are respectively by {g € T\G : gT, ¢~ € A(D}, {g e T\G : g~ €
A} and {g € T\G : g7 € A(I')}. The measure m"" is invariant under both Nt
and N, and hence under G, as N* and N~ generate G topologically. That is, mH2 is a
Haar measure of G.

We consider the action of G on L?(I'\ G, m"#) by right translations, which gives
rise to the unitary action for the inner product:

(W1, W) = / W (¢)Wa(g) dm™ (g).
TG

Theorem 2.2. Let I" be Zariski dense. For any V1, ¥, € C.(I'\G),

BR BR.
. - m>t (W) - mP (W)
,l_lfgo (1 3)t<at\y]’ W,) = |mBMS|

Proof. Roblin [56] proved this for M-invariant functions W; and W;. His proof is based
on the mixing of the geodesic flow on T (I'\H") = I'\G/M. For I" Zariski dense, the
mixing of mBMS was extended to the frame flow on I'\ G in [67]. Based on this, the proof
given in [56] can be repeated verbatim to prove the claim (cf. [67]). O

3. Asymptotic expansion of matrix coefficients

3.1. Unitary dual of G. Let G = SO(n, 1)° for n > 2 and K a maximal compact
subgroup of G. Denoting by g and £ the Lie algebras of G and K respectively, let g = £¢®p
be the corresponding Cartan decomposition of g. Let A = exp(a) where a is a maximal
abelian subspace of p and let M be the centralizer of A in K.

Define the symmetric bilinear form (-, -) on g by

1
(X,Y) = 20— 1)B(X, Y) 3.D
where B(X, Y) = Tr(ad X ad Y) denotes the Killing form for g. The reason for this nor-
malization is that the Riemannian metric on G/K ~ H”" induced by (-, -) has constant
curvature —1.
Let {X;} be a basis for gc over C; set g;j = (X;, X;) and let g/ be the (i, j) entry of
the inverse matrix of (g;;). The element

C= Zginin
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is called the Casimir element of gc (with respect to (-, -)). It is well-known that this
definition is independent of the choice of a basis and that C lies in the center of the
universal enveloping algebra U (g¢) of gc.

Denote by G the unitary dual, i.e., the set of equivalence classes of irreducible unitary
representations of G. A representation 7w € G is said to be tempered if for any K-finite
vectors vy, v2 of 7, the matrix coefficient function g — (mw(g)v1, v2) belongs to L**(G)
for any € > 0. We describe the non-tempered part of G in the next subsection.

3.2. Standard representations and complementary series. Let o denote the simple
relative root for (g, a). The root subspace n of o has dimension n — 1 and hence p,
the half-sum of all positive roots of (g, a) with multiplicities, is given by %(n — Doa.
Set N = expn. By the Iwasawa decomposition, every element g € G can be written
uniquely as g = kan withk € K,a € Aandn € N. We write k(g) = k,expH(g) = a
and n(g) = n.

Forany g € G and k € K, we let kg (k) = «(gk), and H, (k) = H(gk) so that

gk = kg (k) exp(Hyg (k))n(gk).

Given a complex valued linear function A on a, we define a G-representation U * on
L?(K) by the prescription: for ¢ € L?>(K) and g € G,

U@ = WM g ok . 32)

This is called a standard representation of G (cf. [65, Sec. 5.5]). Observe that the
restriction of U* to K coincides with the left regular representation of K on L?(K):
UMk fk) = f (kl_lk). If R denotes the right regular representation of K on L*(K),
then R(m)U*(g) = U*(g)R(m) for all m € M. In particular each M-invariant subspace
of L?(K) for the right translation action is a G-invariant subspace of U*.

Following [65], for any v € M, we let Q(U)L?*(K) denote the isotypic R(M)-
submodule of L?(K) of type v. Choosing a finite-dimensional vector space, say V, on
which M acts irreducibly via v, it is shown in [65] that the v-isotypic space Q(v)LA(K)
can be written as a sum of dim(v) copies of U, (A) where

foreachm e M,
f(km) = v(m) f (k)for almostall k € K | °

Ifx € (n—1)/2 4+ iR)x, then Uy, (X) is unitary with respect to the inner product
(f1, o) = f k (f1(k), f2(k))vdk, and called a unitary principal series representation.
These representations are tempered. A representation Uy, (A) with A ¢ ((n — 1)/2 +iR)«x
is called a complementary series representation if it is unitarizable. For A = ra, we
will often omit « for simplicity. For n = 2, the complementary series representations of
G = SO(2, 1)® are Ui (s — 1) with 1/2 < s < 1; in particular they are all spherical. For
n > 3, arepresentation v € M is specified by its highest weight, which can be regarded
as a sequence of (n — 1)/2 integers with j; > --- > |ju—1),2| if n is odd, and as a se-
quence of (n — 2)/2 integers with j; > -+ > ju—2),2 = 0if n is even. In both cases, let
¢ = £(v) be the largest index such that j, 7% 0 and set £(v) = 0 if v is the trivial rep-
resentation. Then the complementary series representations are precisely Uy, (s —n + 1),
sel,:=((n—-1)/2,(n— 1) — £), up to equivalence.

Uy (L) = {f e L*(K,V):
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In particular, the spherical complementary series representations are exhausted by
{hi(s—n+1):(n—1)/2<s<n—1}.

The complementary representation 4, (A) contains the minimal K -type, say o,,, with
multiplicity one.

The classification of G says that if & € G is non-trivial and non-tempered, then &
is (equivalent to) the unique irreducible subquotient of the complementary series repre-
sentation U, (s —n + 1), s € [, containing the K-type o,,, which we will denote by
U(v, s —n + 1). This classification was obtained by Hirai [26]; see also [32, Props. 49
and 50] and [3].

Note that U (v, s — n + 1) is spherical if and only if ¢/, (s — n + 1) is spherical if and
only if v = 1. For convenience, we will call (v, s — n 4+ 1) a complementary series
representation of parameter (v, s).

Observe that non-spherical complementary series representations exist only when
n>4For(n—1)/2 <s <n—1,wewill set H; :=U(l,s —n + 1), i.e., the spherical
complementary series representation of parameter s. Our normalization of the Casimir
element C is so that C acts on H as the scalar s(s —n + 1).

In order to study the matrix coefficients of complementary series representations, we
work with standard representations, which we first relate to Eisenstein integrals.

3.3. Generalized spherical functions and Eisenstein integrals. Fix a complex valued
linear function A on a, and the standard representation U”. By the Peter—Weyl theorem,

we may decompose the left regular representation V = L>(K) as V = D, <k Vo, where

V, = L?*(K; o) denotes the isotypic K -submodule of type o, and V, ~ d,, - o where d,,
denotes the dimension of o.

SetQg =14+wg=1-Y Xl2 where {X;} is an orthonormal basis of €c. It belongs
to the center of the universal enveloping algebra of £c. By Schur’s lemma, Qg acts on V;;
by a scalar, say, c(o). Since Qg acts as a skew-adjoint operator, c(o) is real. Moreover

c(o) = 1 (see [65, p. 261]), and ||Ql}<v|| = c(0)|v|| for any smooth vector v € V.
Furthermore it is shown in [65, Lemma 4.4.2.3] that if £ is large enough, then
Z d? - c(o)™" < oo (3.3)
oek

Foro € K and k € K define
Xo (k) :=dy - Tr(o (k))

where Tr is the trace operator.
For any continuous representation W of K, and o € K, the projection operator from
W to the o -isotypic space W (o) is given as follows:

P, = / o )W (K) d.
K

For v € M, we write v C o if v occurs in oy, and we write v C o N T if v
occurs both in oy and 7| . We remark that for 0 € K, any given v € M occurs at
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most once in o |y ([14]; [65, p. 41]). For v C o, we denote by P,, the projection operator
from V, to the v-isotypic subspace V,(v) =~ d; - v so that any w € V, can be written
as w = ), Pu(w). By the theory of representations of compact Lie groups, for any
f € L*(K; o) we have

(fs Xo) = fle).

In the rest of this subsection, we fix o, T € K. Define an M-module homomorphism
Tp: Vo — V. by

To(w) = Y (Py(w), Py(Xo))Pu(Xe)-

vCoNt

Set E := Homc(Vy, V7). Then E is a (t, o)-double representation space, a left
7-module and a right o-module. We set

Ey ={T € E:t(m)T = To(m) forallm € M}.

Denote by U2 and U the representations of K obtained by restricting U* | to the sub-
space V, and V; respectively. Define T) € E by

T, = / UM m)ToUX(m™") dm
M

where dm denotes the probability Haar measure of M. It is easy to check that 7 € Ey.
An integral of the form [, U (k (ak)) T, U2 (k=1)e*H@R) df is called an Eisenstein
integral.
Clearly, the matrix coefficients of the representation U* are understood if we under-
stand P;U* (a)P, forall t,0 € K , which can be proved to be an Eisenstein integral:

Theorem 3.4. Forany a € A, we have
P:U*a)Ps = / U2 (i (ak)) T, UL (k1) H @) g,
K

Proof. Fore € K and ¢ € L*(K; o), we write U (k™) = 3", bk, that is, ¢, =
P, (U} (k™). In particular, ¢ (k) = Y, -, Px,v(e) and

Dk (€) = (Pr,vs Xo) = (UL, Pu(Xe))-

Letyp € Vy, and y € V;.Forany g € G,

(U (GNTOUL (k™ g, ) = Y (U2K(H)9), Py (o)) (P (Re), UL (e (k)™ )

vCoNt

= Y @V .o (@). (3.5)

vCoNt
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On the other hand, we have

({UH@)p, ) = fK ok (@~ k) (kye~ @20 HG0) g

= / o) (k (ak)ye* H @) g
K

- /K<Z ‘p"*”(e)> S Veano(e) HH@ dr, (3.6)

vCo vCt

We now claim that if v; # vy, then

/ Dk,v1 () Vi (aky v, (@)™ @D qje = 0.
K

To see this, first note that M and a commute, and hence H (amk) = H (ak), and k (amk)
= mk (ak). We also note that

Ok, € Vo(u1) and  Yqak),v, € Vi(v2).

Now if v # v2, then by Schur’s orthogonality of matrix coefficients,

/ Pk, vy (m_])wl((ak),uz (mil) dm
M

= /M<U§(m)<ﬂk,u1 s Py (X)W UL ) Wi 1y Poy (X)) dm = 0;

we get

/ Dkv1 () Ve (aky. v, ()™ H @D g
K

= / </ Pmk, v, (e)l///c(amk),vz (e)eA(H(amk)) dm> dk
M\K \UM

= f e+ (@) ( f kv, (ml)wk(am,m(ml)dm) dk =0,
M\K M

implying the claim.
Therefore, it follows from (3.5) and (3.6) that for any ¢ € V; and ¢ € V,

(PrU)\(Cl)ngo, vy = (U)»(a)w, V) = /K Z (pk,v(e)wx(gk),u(e)e)”(H(“k» dk

vCoNt

= / (U?(K(ak))TOUé(kil)go, I/,)e?»(H(ak)) dk
K

=/ (U@ UL (Y, gyt H @D g,
K

we have used k (akm) = k(ak)m and H (akm) = H (ak) for the last equality.
It follows that

P.U*a)P, = / U (e (ak)) TLUX (k1) e* H @R g, O
K
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For the special case of t = o, this theorem was proved by Harish-Chandra (see
[66, Thm. 6.2.2.4]), where Ty was taken to be To(w) = (w, Xo)Xo and T =
[uy Um)ToUL(m™") dm.

Lemma 3.7. Forany A € C,
IT3ll < dy - d?

where || T, || denotes the operator norm of T.

Proof. Since ||, | < d? forany v € M,

IHIP= Y s Y d= (X a) (Y d2)=d-da

vCoNt vCoNt vCo vCT

Since ||T; || < [|Toll - llo |l - Izl = || Tol|, the claim follows. ]

3.4. Harish-Chandra’s expansion of Eisenstein integrals. Fix o, 7 € K. Let E and
E s be as in the previous subsection.
GivenT € Ey,r € C,and a, € AT, we investigate an Eisenstein integral

/ T(K(atk))Tirozpr—(k_l)e(ira_p)(H(a[k)) dk.
K

We recall the following fundamental result of Harish-Chandra:

Theorem 3.8 (cf. [66, Theorem 9.1.5.1]). There exists a subset Oy ¢ of C, whose com-
plement is a locally finite set, such that for any r € Qg 1 there exist unique functions
c+(r),c_(r) € Homc(Ey, Ep) such that forall T € Eyy,

,o(a[)/ T(k (ark))To (k~1)ere=PH@R) qp — @ (r : a))e (T + S (—r : a)e_(r)T
K

where ® is a function on Oy 1 X AT taking values in Homc (Ey, Ey), defined in (3.12)
below.

Let us note that, fixing T and a,, the Eisenstein integral on the left hand side above is an
entire function of r (see [66, Section 9.1.5]).

Much of the difficulties lie in the fact that the above formula holds only for Oy ;
but not for the entire complex plane, as we have no knowledge of which complementary
series representations appear in L?(I"\G). We need to understand the Eisenstein integral
[x Tk (ark)) Tyq—2p0 (k1)@ =20 H@K) g for every s € ((n — 1)/2,n — 1). We will
not be able to have as precise a formula as Theorem 3.8, but will be able to determine a
main term with an exponential error term.

We begin by discussing the definition and properties of the functions ® and c4..

3.4.1. The function ®. As in [66, p. 287], we will recursively define rational functions
{I’¢ : £ € Z>o} which are holomorphic except at a locally finite subset, say Sy . The
subset O, in Theorem 3.8 is indeed C — (U, 5, {£r}
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More precisely, let [ be the Lie algebra of the Cartan subalgebra (= the centralizer
of A). Let Hy € I¢ be such that B(H, Hy,) = a(H) for all H € [¢.

Let X4y € g%a be chosen so that [Xy, X_o] = Hy and [H, Xy] = a(H)X,. In
particular, B(Xy, X—o) = 1. Write X1y = Y14 + Z1y Where Yi, € £c and Z4,, € pc.

Letting €237 denote the Casimir element of M, given S € Homc(E s, Epr), we define
f(S) by

f(ST =8STo(Qy) forall T € Ey.

We now define I'y := [p(ir — (n — 1)/2)’s in Q(ac) ® Homc (Eys, Epy) by the

following recursive relation (see [66, p. 286] for the definition of Q(ac)): 'g = I and

€Qir—n+1) -0l —n+1) — f}Ty = Z((2ir —n4+1) =2 —2j)_2;
Jj=1
+8) Q2j = Dt(Yu)o (Y-a)Trj-1) =8 j{t(Ya¥—o) + 0(Ya¥-0)} Teaj.
Jj=1 j=1

The set Oy ¢ consists of r’s such that {£(2ir —n+ 1) — £({ —n + 1) — f} is invert-
ible so that the recursive definition of the I';’s is meaningful.

Lemma 3.9. Fix any ty > 0 and a compact subset ® C Qg 1. There exist b,, (depending

only on ty and w) and Ny > 1 (independent of o, T € K) such that for any r € w and
LeN,
ITe(ir — (0 — D)/2)]| < budodMoet™.

Proof. Our proof uses an idea of the proof of [66, Lemmas 9.1.4.3-4]. For s = ir —
(n—1)/2and T € Homc(E, Ey), define
Ag(T) = (—0*+2@2s —n+1) - f)T.

For g, and g which are the highest weights for o and 7 respectively, since ¢, < do
with implied constant independent of o € K,

max{[|7(Ye)o (Y-)l, 1T YaY-e)ll, 0 YaY-)lI} < co-(Goqr +q2 +q2)ded; < chd>d?

for some cg, c6 > ( independent of o and t. Hence for some c; = ¢j(w), forall r € w,

ITeGr — (n =D/ < £ A7 - c1dld? > el (3.10)
j<t

Let N be an integer such that £ - A, - (1 — e™) "¢ 1d3d? < Ny forall £ > 1.
Since ||Ae_l | <« €72 as £ — oo and the coefficients of f depend only on the eigenvalues
of @y for those v € M contained in o, we can take N| = N|(w) so that N| < czd(lfvzdiv2
for some Ny > 1 and ¢ = c2(w) > 1 (independent of o and 7).

Set

M(ty, ) ;= max ||[¢(ir — (n — l)/2)||e%t0.
{<Ni,rew
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By (3.10) together with the observation that both N; = Nj(w) and max,<y;, ||A,;1 I

are bounded by a polynomial in d, and d;, we have M (ty, w) < byd0dNo for some
No > 1and b, > 0.
We shall now show by induction that for all € w and all £ > 1,

ITe(ir — (n — 1)/2)|l < M(t, w)e™™. (3.11)

First note that (3.11) holds for all £ < N;p by the definition of M(#y, w). Now for any
N1 > N, suppose (3.11) holds for each £ < N. Then

ITnGr — (0 = 1)/ < NTHN2|AR leididd) Y ITy—jir — (n — 1)/2)]
Jj<N

< NN — e )M (19, @) Y eV < M1, w)e™",
j<N

finishing the proof. O
Following Warner (cf. [66, Theorem 9.1.4.1]), we define

D@ :a) =e" ZF@(ir —(n—1)/2)e Y, (3.12)
>0

which converges for all large enough 7 by Lemma 3.9.
3.4.2. The function cx. Let N~ = exp(n~) be the root subspace corresponding to —«,

and dy- a Haar measure on N~ normalized so that fN_ e 2PHM) g\ (n) = 1.
The following is due to Harish-Chandra (see [66, Thm. 9.1.6.1]).

Theorem 3.13. Forr € Oy ¢ with I(r) < 0, c4(r) is holomorphic and given by
cr(NT = / To (k(n)~He WretmHMm) g ().
N-
The integral fN, e~ ratp)(HM) g, (n) is absolutely convergent iff J(r) < 0, shown by

Gindikin and Karpelevich ([66, Cor. 9.1.6.5]).

Corollary 3.14. Foranyr € Og  with 3(r) < 0, the operator norm |c(r)|| is bounded
above by [y eSOe=pIHE) g ()

Proof. Since the operator norm ||o (k)| is 1 for any k € K, the claim is immediate from
Theorem 3.13. o

Proposition 3.15. Fix a compact subset w contained in Og ; N {J(r) < 0}. There exist
d1 = dij(w) and Ny > 1 such that for any r € w, we have

”Cj:(r)T:I:ira—p” <d;- di\’zd(lf\/z-
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Proof. By the assumption on w, the integral |, e~ Canatp)(HM) g (n) converges uni-
formly for all » € w. Hence the bound for ¢4 (r)T;;o—, follows from Corollary 3.14
together with Lemma 3.7. To get a bound for c_(r)T_;,o—p, We recall that

e(*ir+(n71)/2)f/ .L,(K(atk))To.(kfl)e(irolfp)(H(a,k)) dk
K
=e O a)e (T 4+ e " (—r : a))e_(r)T.

Then e " ®(—r : a;) = I + Y oes1 Te(=ir — (n — 1)/2)e~", and applying Lem-
ma 3.9 with o = 1, we get

S ITe(ir — (0 = 1)/2)e ™8| < bpdodo 3~ 1=,
= >1

Fix 19 > 0 50 that budy’dy® Y1 /070 < 1/2; then 1 3> log(dydy). Now A, :=
eI (—r ay,) is invertible and for some Ny and b,

1A < bl ra. (3.16)

Since the map k +— H (ay k) is continuous, we have fK lelira=P (H @) g < 4,
for all r € w, and hence

lc— (M) Tira—pll

—1
=lAa -

e(—ir+(ﬂ—1)/2)l()[ ‘E(K(atok))T,‘m_pG(k_l)e(im_p)(H(a’Ok)) dk‘
K

AT e 0D ag)er () Tirampl
= 1471 do (max (@) Tra o DI+ e () vl ).

Hence the claim on |[c_(r)T;,«—, || now follows from (3.16), Lemma 3.7 and the bound
for le+ (M) Tira—pll- o

3.5. Asymptotic expansion of the matrix coefficients of the complementary series.

Fix a parameter (n — 1)/2 < 5o < n — 1, and recall that 2p = (n — 1)a. We apply the

results of the previous subsections to the standard representation U o=+De — gysoe=2p
The following theorem is a key ingredient of the proof of Theorem 3.30.

Theorem 3.17. There exist ng > 0 and N > 1 such that for any o, T € k,for allt > 2,
we have

P U () Py = 07" D e () Tisy—nttya + O(d) - dyY S0+,

with the implied constant independent of o, t.

Proof. Setry := —i(s — p) € Cforall s € C. In particular, J(ry) < Ofor (n — 1)/2 <
s<n—1.
Fix t > 0, and define F; : C — Ej; by

Fi(s) := P U™ (a;) Py.
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By Theorem 3.4,
Fi(s) = / T (k (ark)) Tyg—2,p0 (k™ 1)e$e 20 H@R) gp
K

As was remarked following Theorem 3.8, for each fixed ¢ > 0, the function F;(s) is ana-
lytic on C. Thus in view of Theorem 3.13, we have, whenever r; € O, and J(ry) < 0,

Fi(s) — e Dlc (1) Tyg—2, is analytic. (3.18)

Recall the notation Sy 7, thatis, Oy ; = C— UreSm {£r}, and set Sg’, ={s:r; €Ssr}
Define
Gi(s) = Fi(s) — "Dy (r) Tyq2p.

Indeed the map s +— G/(s) is analytic on {s : J(rs) < 0} — S'U,T. Since Ua’,r’el% :I:(SN'U/J/
is countable, we may choose a small circle ' of radius at most 1/2 centered at so such
that {ry : s € @'} N (Ua/,r’ek 1Sy 01) = 0.

Observe that the intersection of o’ and the real axis is contained in the interval
((n — 1)/2, n — 1). Note that there exists 7 > 0 such that for all s € o,

m—1)—so+n<NR@Gs) <so+1—n. 3.19)
Thus G;(s) is analytic on the disc bounded by «’. Hence by the maximum principle,
G (so)|| < max |G, (s)]. (3.20)
SEW

Since w := {ry : s € @'} C Og, ¢, Theorems 3.4 and 3.8 imply that for all s € ', we
have

Gi(s) = e~ (37 T (iry — (= 1)/2)e+ () Toa—2p )
=1

e (3 e Te(=iry = (1 = 1)/2)e- () Tra2)-
£>0
Fixing any #p > 0, by Lemma 3.9, there exists bg = by(fo, @) > 0 such that for all » € w,

ITetir — (n = 1)/2)|| < bo-do-dMo . et (3.21)
By Proposition 3.15, for all r € w,
lex (N Tira—pll < di - d2? - d22.

Lett > t9 + 1 so that Zezo e t=1) <2 Then forany s > Oand s € o/,

[ > e rutin = 0= D/2)es ) T2y |
>1
< d;VO+N2d.{.VO+N2 . bg,r Lo el Zefe(tfto) < (Zelo by - déVOJrNZ . d?’OJFNZ)e*f
£>0

and

HZe‘“Fz(—irs —(n—1)/2)c_(r)) Tsa—2p H < 2bg - dNotN2 . gNotN2 (3 29
>0
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We now combine these and the expression for G;(s) for s € ' to get for all r > 19 + 1,

1G sl = 2bo(e" + D™ - dg0 - max (M7 4 e 7N
Sew

< b/ . déV()—FNz . d,LI,VO+N2€(SO_(n_1)_n)I

where n > O is as in (3.19) and b’ > 0 is a constant independent of o, T € K.
Since P,U S0+ (q) P, = o=+ Dic, (r VT —n+1)a + G (s0), this finishes the
proof. O

By Theorem 3.4, Theorem 3.17 implies:

Theorem 3.23. Let (n — 1)/2 < 5o < (n — 1). There exist no > 0 and N > 1 such that
forallt > 2 and for any unit vectors v,y € Vs and vy € V¢,

(U= a) (vg), ve)
= YD e (1) Tsp-nt 1o (Vo) ve) + O(dY dY eSo7mHI=m00),

with the implied constant independent of o, T, Vs, Vz.

3.6. Decay of matrix coefficients for L>(I'\G). LetI" < G be a torsion-free geometri-
cally finite group with § > (n — 1)/2.

By Lax—Phillips [40], Patterson [55] and Sullivan [62], /(1,5 — n + 1) occurs as
a subrepresentation of L>(I'\G) with multiplicity one, and L>(I'\G) does not weakly
contain any spherical complementary series U (1, s —n + 1) of parameter s strictly greater
than §. In particular, § is the maximum s such that (1, s — n + 1) is weakly contained
in L2(I'\G).

The following proposition then follows from [60, Prop. 3.5] and Theorem 3.23:

Proposition 3.24. LZ(F\Q) does not weakly contain any complementary series
U,s —n+ 1) withv e M and s > 4.

Definition 3.25 (Spectral gap). We say L>(I'\G) has a spectral gap if the following two
conditions hold:

(1) there exists ng > 1 such that the multiplicity of any complementary series U (v, § —
n + 1) of parameter § occurring in L2(F\G) is at most dim(v)™° for all v € M;

(2) there exists (n — 1)/2 < 59 < § such that no complementary series with parameter
S0 < § < 4 is weakly contained in LZ(F\G).

We set no(I') and so(I") to be the infima of all ng and of all 5o satisfying (1) and (2)
respectively. The pair (ng(I"), so(I")) will be referred to as the spectral gap data for I.

In other words, the spectral gap property of L>(I"\G) is equivalent to the decomposition
L*(T\G) =H} & W (3.26)

where ”Hg = @ueM m(v)U (v, § —n+1) with m(v) < dim(v)"°, and no complementary
series representation with parameter so(I') < s < & is weakly contained in W.
We recall the strong spectral gap property from Definition 1.1.
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Theorem 3.27. Suppose that § > (n — 1)/2 forn = 2,3 or that § > n — 2 forn > 4.
Then L>(T'\G) has a strong spectral gap property.

Proof. By the the classification of the unitary dual G explained in Subsection 3.2, any
non-spherical complementary series representation is of the form U(v,s —n 4 1) for
some v € M — {l}and s € ((n —1)/2,n — 2) (see [26] and [32]). Together with the
aforementioned work of Lax—Phillips on the spherical complementary series representa-
tions occurring in L>(I'\G), this implies the claim. O

For ¥ € C*®°(T'\G), ¢ € Nand 1 < p < oo, we consider the following Sobolev norm:

Sp.e(W) =Y IIX W), (3.28)

where the sum is taken over all monomials X in a fixed basis B of g of order at most £ and
| X (¥)|, denotes the L”(I"\G)-norm of X (V). Since we will be using S ¢ most often,
we will set S = Sa 4.

For a unitary G-representation space W and a smooth vector w € W, Sy (w) is defined
similarly: Sg(w) = " || X.w||2 where the sum is taken over all monomials X in BB of order
at most £.

Proposition 3.29. Fix (n—1)/2 < so < (n —1). Let W be a unitary representation of G
which does not weakly contain any complementary series representation U(v, s —n + 1)
with parameter s > sg and v € M. Then for any € > 0, there exists cc > 0 such that for
any smooth vectors wi, wy € W and for any t > 0, we have

Harwi, wa)| < ce - Sgy(w1) - Sgy(wp) - eS0T

where £y > 1 depends only on G and K.

Proof. This proposition is proved in [35, proof of Prop. 5.3] for n = 3 (based on an
earlier idea of [60]), and its proof easily extends to general n > 2. ]

In the following two theorems, we assume that I is Zariski dense in G and that L3*(I'\G)
has a spectral gap with the spectral gap data (so(I"), no(I")).

Theorem 3.30. There exist n > 0 (depending only on so(I")), and £ € N (depending
only on no(I")) such that for any real-valued functions W1, W, € C°(I'\G), as t — oo,

mBR(W ) - mBR« (1)
|mBMS|

1D W) = + 0(e Sy (¥1)Sp (W7)).

Proof. Asin (3.26), we write
LAT\G) =H, W

where H} = @, _; mU(v, (6 — n + Da) with m(v) < dim(v)"™), and no com-
plementary series representation with parameter so(I') < s is weakly contained in W.
For simplicity, set so := so(I") and ng := no(I'). Weset V = H; and V- = W. Given

Wy, W, € CX(I'\G), we write W; = W/ + W, where W/ and Wi are the projections of
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W; to ’Hg and W respectively. Then by Proposition 3.29, there exist £g > 1 such that for
any € > 0,
(@ Ui, W) = O(Sey (WD) Sgy (W2)e 010, (3.31)

If § = n — 1 and hence if ’H; = C, it is easy to see that (3.31) finishes the proof. Now
suppose § <n — 1.

For each v € M, the K -representation Uy, (§ — n + 1)|g is isomorphic to the in-
duced representation Indllf,l(v) and hence by Frobenius reciprocity, the multiplicity of o
inUy,(s —n + 1)|g is equal to the multiplicity of v in |y, which is denoted by [o : v].
Therefore as a K-module,

Uw.s —n+ Dk = P mu@)o
oek

where m, (o) < [o : v].
As a K-module, we write

H = D mU©, 6 —n+Da) = P m(u)<@ mv(o)o> = P m©)o
veM veM oek oek
where m(o) < ZueM veo M)[o = v]. Note that m(o) < ngH for ng = no(I).
Foreacho € K, let ©, be an orthonormal basis in the K -isotypic component, say V;,
of ’H;, which is formed by taking the union of orthonormal bases of each irreducible

component of V,;. Then #0, < dnt?,
By Theorem 3.23 and our discussion in Section 3.2, there exist 59 > 0 and N € N
such that for any v, € ®, and v; € ®; we have, forall > 1,

(a1V5, V1) 1= c(Vg, V)T L O (@N gl O—rt1=moty (3.32)

where ¢(vy, v7) = <C+(r8)T(8—n+1)aUa’ Ve).
As W] = Zaek Zugeé)g (¥;, v )V, for each t € R we have

<at“piv ‘Ié): Z Z (\yl’vg).(\pz’ vT>'<atvg,vr)
o,7€k Vo €00, V€O

where the convergence follows from the Cauchy—Schwarz inequality. Therefore, by
(3.32),

@i w) =(3 Y ()T e, ) )

0,7€K Vo €00,V €O
N N —_ Sl n s
+ Z Z dNdN (W1, v,) (W, v7) O (@710t
0.7k Vo €00, vr€0;

Set
E(WL W)= > Y (W, v) (W2, v )e(vg, V).

o,rel& Vg €04 ,0: €0,

By (3.3), there exists £ > £( (depending only on n¢) such that
D altmrgV i) re(r) T < o0 (3.33)

o,teK
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where c(0) is as in (3.3). Since for any unit vector v € V,,
(W, v)] < (o)~ Sp(W),
we now deduce that
(ary, W) = E(W, Wp)e® D! 4 0 (07 HITIIS, (W) Sy (W2)).
Hence, together with (3.31), this implies that there exists > 0 such that
(@ W1, W2) = E(W1, Wp)e® "D 4 0 (OIS, (01) 8¢ (W2)).
On the other hand, by Theorem 2.2,

BR BR.
. i m>t (W) - mP% (W)
,l_lfgo (1 3)t<at\y]’ W,) = |mBMS|

It follows that the infinite sum £(W¥, W;) converges and

mBR(Wy) - mBR (W)

This finishes the proof. O

As (a_; V1, W) = (a;V,, V1) for W;’s real valued, we deduce the following from Theo-
rem 3.30:

Corollary 3.34. There exist n > 0 and £ € N such that, as t — 00,

mBR: (W) . mBR (W)

—1-6
e(”l » (a—tq‘jls \I]2> = |mBMS|

+ 0 "8 (V)S(¥2)).

4. Non-wandering component of '\I"Ha; as t — o0

4.1. Basic setup. Let H be either a symmetric subgroup or a horospherical subgroup
of G. For the rest of the paper, we will set K, M, A = {a;} in each case as follows. If
H is symmetric, that is, H is equal to the group of o-fixed points for some involution o
of G, then up to conjugation and commensurability, H is SO(k, 1) x SO(n — k) for some
1 <k <n—1.Let0 be a Cartan involution of G which commutes with ¢ and set K to be
the maximal compact subgroup fixed by 6. Let G = K exp p be the Cartan decomposition
and write g as a direct sum of do eigenspaces: g = h & q where b is the Lie algebra of H
and q is the —1 eigenspace for do. Let a C p N q be a maximal abelian subspace and set
A =expa = {a, :=exp(tYp) : t € R} where Y is a norm one element in a with respect
to the Riemannian metric induced by (, ) defined in (3.1). Let M be the centralizer of A
in K.

If H is a horospherical subgroup of G, we let A = {a;} be a one-parameter subgroup
of diagonalizable elements so that H is the expanding horospherical subgroup for a;.
Letting M be the maximal compact subgroup in the centralizer of A, we may assume that



862 Amir Mohammadi, Hee Oh

the right translation action of a; corresponds to the geodesic flow on T!(H") = G/M.
Let K be the stabilizer of the base point of the vector in T! (H") corresponding to M.

In both cases, let 0 € H” and X € T'(H") be points stabilized by K and M respec-
tively. Let N and N~ be the expanding and contracting horospherical subgroups of G
with respect to a;, respectively.

4.2. Measures on gH constructed from conformal densities. Set P := MAN™,
which is the stabilizer of X0+. Via the visual map g — gT, we have G/P ~ 3(H").
Since G/P ~ K /M, we may consider the visual map as a map from G to K /M. In both
cases, the restriction of the visual map to H induces a diffeomorphism from H/H N M
to its image inside K /M.

Letting {u, : x € G/K} be a I'-invariant conformal density of dimension §,,, we will
define an H N M-invariant measure [ty on each g € G/H. Setting H = H/(HNM),
first consider the measure on g H given by

dfiyg(gh) = e Pant @8 qu, ((gh)').

We denote by i,y the H N M-invariant extension of this measure on gH, that is, for
[ ramdanem = [ [ pighm dunion di g s
¢H JHNM

where dgnp(m) is the probability Haar measure on H N M.

By the I'-invariant conformality of {i,}, this definition is independent of 0 € H" and
figy is invariant under I', and hence if I'\I'g H is closed, fioy induces a locally finite
Borel measure gy on M'\I'gH.

Recall the Lebesgue density {m,} of dimension n — 1 and the Patterson—Sullivan

density {v,} of dimension §. We normalize them so that |m,| = |v,| = 1. We set
~ Has ~ ~P ~
g =rign and  figy = Vgu,

and for a closed orbit I'\I'g H, we denote by M?;‘,ar and ME;SL, the measures on I'\I'g H

induced by them respectively.

Lemma 4.1. For each g € G, dﬁ?}‘;‘r(gh) = d,&%aar(h) and dh = d/lzaar(h) is a Haar
measure on H.

Proof. As m, is G-invariant, we have
dmo((gh)*) = dm g1 oy (hF) = "= DP @871 gy, ().
Since
Bt (0. 871 (0)) + Bigny+ (0. gh) = By+(0. 87" (0)) + By (871 (0), h) = By+ (0. ),
we have

djiggi (gh) = "~V @8 o ((ghy*) = VPO o (hh) = dE (),
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proving the first claim. The first claim shows that d i ; is left H-invariant. Since dyny is
an H N M-invariant measure, the product measure d i g (hm)Haar — g g (Wdunp (m) is
a Haar measure of H. o

4.3. Let I be a torsion-free, non-elementary, geometrically finite subgroup of G. For any
given compact subset 2 of I'\ G, the goal of the rest of this section is to describe the set

{h e '\I'H : ha; € Q2 for some t > 0}.

For H horospherical, this turns out to be a compact subset. For H symmetric, we will
obtain a thick-thin decomposition, and give estimates of the size of thin parts with respect
to the measures MZS and ,ulg,aar (Theorem 4.16).

An element y € I' is called parabolic if there exists a unique fixed point of y in
d(H"), and an element & € A(I') is called a parabolic fixed point if it is fixed by
a parabolic element of I'. Let A,(I') C A(I") denote the set of all parabolic fixed
points of I'. Since I' is geometrically finite, each parabolic fixed point & is bounded,
i.e., Stabr (£) acts cocompactly on A(I") — {£}. Recall the notation g™ = g(X¢)* and
g~ =gXo)™.

Consider the upper half-space model for H": H" = {(x,y) : x € R"™, y € R.o}.
We set R := {(x,y) : x € R""!,y € Rog}, so that 9(R™) = {(x,0) : x € R*"1}.
Suppose that co is a parabolic fixed point for I'. Set [, := Stabr(co) and let I'(c0)
be a normal abelian subgroup of ', Which is of finite index; this exists by a theorem of
Bieberbach. Let L be a minimal I's-invariant subspace in R"~!. By [10, Prop. 2.2.6],
I’ (00) acts as translations and cocompactly on L. We note that L may not be unique, but
any two such are Euclidean-parallel.

Let dgyc and || - || denote the Euclidean distance and the Euclidean norm in R” respec-
tively. Following Bowditch [10], for each r > 0 we write

C(L,r):={x e RLUIRY) : dpuc(x, L) > r}. 4.2)
Each C(L, r) is I'so-invariant and called a standard parabolic region (or an extended
horoball) associated to & = oco.

Theorem 4.3 ([10, Prop. 4.4]). For any €y > O, there exists ro > 0 such that for any
r = ro,

(1) yC(L,r)=C(L.r)ify € Teo;
() ify €T =T, deuc(C(L, 1), yC(L, 1)) > €.

Corollary 4.4. Suppose that oo is a bounded parabolic fixed point for T'. Then for any
sufficiently large r, the natural projection map

Coo\(C(L,r) NH") — T'\H"

is injective and proper.

Proof. We fix ¢p > 0, and let r9p > O be as in Theorem 4.3. Let r > rg, and set Coo =
C(L,r)NH" for simplicity. The injectivity is immediate from Theorem 4.3(2). Since C
is closed in H", so is yCx for all y € I'. Hence to prove properness, it is sufficient to
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show that if F' is a compact subset of H", then F intersects at most finitely many distinct
¥ Cx’s. Now suppose there exists an infinite sequence {y; € I'} such that y;T"w’s are all
distinct and F N y;Coo 7# ¥. Choosing y; € F N y;Cso, by Theorem 4.3(2), we have
d(yi, yj) = €o forall i # j, which contradicts the assumption that F* is compact. m}

4.4. H horospherical

Theorem 4.5. Let H = N be a horospherical subgroup. Suppose that T\I' N M is closed
in T\ G. For any compact subset Q2 of U\ G, the set '\I'N M N QA is relatively compact.

Proof. We may assume without loss of generality that the horosphere NK /K in G/K ~
H" is based at co. Note that I'oo C N M and that the closedness of '\I'V M implies that
s \NM — I'\G is a proper map.

Therefore, if the claim does not hold, there exists a sequence n; € NM which is
unbounded modulo I'« such that y;n;a;, — x forsome#; e R, y; e I"and x € G.

It follows that, passing to a subsequence, n;a;, (0) — oo and d(n;ay,, yflx) — Oas
i — 00. Therefore yi_lx(o) — oo and hence co € A(T").

Since the image of the horosphere N (o) in '\H" = I'\G/K is closed, it follows that
oo is a bounded parabolic fixed point for I" by [13]. Therefore I', acts cocompactly on an
r-neighborhood of a minimal I'w-invariant subspace L in 8 (H") — {oo} = R"~! for some
r > 0. Write n;a; (0) = (x;, yi) € R"~! x R.. Since {n;} is unbounded modulo I's,
after passing to a subsequence if necessary we have dgyc(x;, L) — oo. It follows that
for any r, (x;, y;) € C(L,r) for all large i. Since n; is unbounded modulo I'5,, we see
that n;a;, = (x;, ;) is unbounded in I'sc\C (L, 7). Thus by Corollary 4.4, n;a; must be
unbounded modulo I', which is a contradiction. O

4.5. H symmetric. We now consider the case when H is symmetric. Then H (o) =
H/H N K is a totally geodesic submanifold in G(0) = G/K = H". We denote by 7 the
canonical projection from G to G/K = H". We set S = H(o).

Fixing a compact subset 2 of I'\G, define

Hgo :={h € H :T'\T"ha, € 2 for some ¢t > 0}
and set S‘Q = Hq(0).

Lemma 4.6. Ler & € d(8). If € ¢ A(T), then there exists a neighborhood U of & in H'"
such that U N Sq = .

Proof. Let Q2 be a compact subset of G such that 2 = I'\I'Q2q. If the claim does not
hold, then there exist h, € H, y, € I" and ¢, > 0 such that y, h,a;, € Qo and h,(0) — §.
Note that {h,a;(0) : t > 0} denotes the (half) geodesic emanating from 7 (%,) and or-
thogonal to S. Since h,(0) converges to & € 9H", it follows that h,4a;, (0) — §.

Now since €2¢ is compact, by passing to a subsequence if necessary, we may assume
Ynhpa;,, — x. As G acts by isometries on H", we get yn_l(x(o)) — &. This implies
& € A(T"), which is a contradiction. ]

Fix a Dirichlet domain D for H N T in S and set
Dqo =DN Sq. 4.7)
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Corollary 4.8. Assume that the orbit T\I'H is closed in I'\G. There exist a compact
subset Yy of D and a finite subset {&1, ..., &,} C Ap(I) N O(S) such that

Do c Youl JU &)

i=1

where U (&;) is a neighborhood of &; in H". In particular if Ap(T") N B(S') =, then Dg
is relatively compact.

Proof. For each & € a(S) N a(D), let U (£) be a neighborhood of £ in H". When
& ¢ A(I'), we may assume by Lemma 4.6 that U(§) N Sq = 0. By the compactness
of 3(S) N (D), there exists a finite covering U;cj U (&;). Set Yy := D — U; U (§;), which
is a compact subset. Now Do — Yy C Uiel,g,-eA(l‘) U (§;) by the choice of U(&;)’s. On
the other hand, by [52, Proposition 5.1], we have A(I') N 9D C A,(I"). Hence the claim
follows. ]

In the rest of this subsection, we fix § € A,(I') N a(S), and investigate Do N U (€). We
consider the upper half-space model for H"” and assume that § = oo. In particular, S is
a vertical plane. Let I'n, I/ (00), L and C(L, r) be as in Subsection 4.3. Without loss of
generality, we assume O € L. We consider the orthogonal decomposition R"~! = L@ L+
and let P, : R"~! — L denote the orthogonal projection map.

Lemma 4.9. There exists Ry > 0 such that | P, L (h™)| < Ro for any h € Hg.

Proof. Let Q0 be a compact subset of G such that 2 = I'\I'Q2g. Then by Corollary 4.4
and Theorem 4.3(1), there exists R(, > 0 depending on £ such that

ifx € C(L, Rj)) NH", then x ¢ I'Q. (4.10)

Suppose now that h € Hg, thus ha; (o) € I'Q2y for some #p > 0. This, in view
of (4.10) and the definition of C(L, R;), implies dgyc(haz,(0), L) < Ry

As discussed above, {ha; : t > 0} is the geodesic ray emanating from A (o) and
orthogonal to S, i.e. a Euclidean semicircle orthogonal to the vertical plane. Hence there
exists some absolute constant sg such that

lgn;o dguc(ha; (0), L) < dguc(hay(0), L) + 5o < R6 + s0,

which implies || P, L (h1)|| < Rp := R(/) + 50, as we wanted to show. ]

For N > 1, set
Un(00) :={x € R UDRY) : [Ix[lgue > N}. (4.11)
Let A := I'’(00) N H and let p be the difference of the rank of I''(0c0) and the rank

of A. Suppose p > 1. Let y = (y1,...,¥p) be a p-tuple of elements of I'” such that the
subgroup generated by y U A has finite index in I''. Fork = (k, ..., k,) € Z”, we write

yk = ylkl e y;{p. The notation |k| means the maximum norm of (ki, ..., kp).
The following gives a description of cuspidal neighborhoods of Dgq:
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Theorem 4.12. There exist co > 1 and a compact subset F of R"~ such that for all
large N > 1,

(Wt eR"™':heH, n(h) e DaNUe,n(o0)} C | AYEF.
|k|>N

Proof. In [52, Prop. 5.8], it is shown that for some ¢y > 1 and a compact subset F
of R*~1,

{(h* e AC):he H, w(h) e DNUg,n(o0)} C | ] AYEF (4.13)
K[> N

for all large N > 1. However, the only property of At € A(T") used in this proof is
that supycy p+ea) 1Pt (k)| < oo. Since this property holds for the set involved in
Lemma 4.9, the proof of Proposition 5.8 of [52] can be used. O

4.6. Estimates on the size of the thin part. For & € d(H"), let Uy (&) be g(Upy (c0))
where g € G is such that £ = g(o0) and Uy (00) is defined as in (4.11).

Proposition 4.14. Let & € SN Ap(I') and pg := rank(I's) — rank(I's N H). For all
N > 1, we have
ibo{h € H : w(h) € Dg N Uy ()} « NP,
i {h € H : m(h) € Do NUN(§)}) < NP,

with the implied constants independent of N.

Proof. The first claim is shown in [52, Prop. 5.2]. Without loss of generality, we may
assume that £ = oco. By replacing § by n — 1 and v, by m,, in the proof of [52, Prop. 5.2],
we get

/ eM=DBE @) gy ) o (]
hteykF

where y, k and F are as in Theorem 4.12 and f (k) =< g(k) means that the ratio of f (k)
and g (k) lies in between two bounded constants independent of k.
Hence by Theorem 4.12,

AYthe H:n() e DeNUn() < ) k™"« NP> g
KeZPoo, |K|>N

Recall the notion of the parabolic corank of I with respect to H, introduced in [52]:

Pb-coranky (") := max (rank(l"g) —rank(I'e N H)) .
E€A,(MNA(S)

The following is shown in [52, Thm. 1.14]:
Proposition 4.15. We have:

e Pb-coranky (I') = 0 if and only if the support of u};{s is compact;
e Pb-coranky (') < & if and only if u%? is finite.
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It is also shown in [52, Lem. 6.2] that Pb-coranky(I") is bounded above by n —
dim(H/(H N K)). Therefore if H is locally isomorphic to SO(k, 1) x SO(n — k) and
§ > n — k, then ,ul;ls is finite.

For h € I'\G, we denote by rj, the injectivity radius, that is, the map g +— hg is
injective on the set d(g, e) < rj. By Corollary 4.8, (4.13), Proposition 4.14, and by the
structure of the support of MFI;S obtained in [52], we have the following:

Theorem 4.16. Suppose that T\I" H is closed. For any compact subset 2 of ['\G, there
exists an open subset Yo C I'\I'H containing supp(,ufl;s) Uf{h € T\I'H : ha; € Q for
some t > 0} and satisfying the following properties:

(1) if Pb-coranky (I") = 0, Yq is relatively compact;
(2) if Pb-coranky (I") > 1, then:

(@) Ye :={h € Yq : rp > €} is relatively compact;

(b) there exist&y, --- , &y € Ap(I') N A(S) and ¢1 > 0 such that for all small € > 0,
YSZ - Ye - Ul"n:l qu*'(é:i);

(c) forall small € > 0,

1w (Yo —Yo) < €770 and  phf (Yo — Yo < €71TP0

for po := Pb-corank g (T").

5. Translates of a compact piece of I'\I" H via thickening

Let I" be a non-elementary geometrically finite subgroup of G. Let H be either symmetric
or horospherical, and let A = {a;}, M, K, N=E, o, X be as in Subsection 4.1.

5.1. Decomposition of measures. Set P := M AN, which is the stabilizer of X a’ . The

measure
(1=D)f, - ©.10)

dng =e dmy(ng)

can be seen to be a Haar measure on N~ by a similar argument to that in Lemma 4.1.
Then for p = npa;m € N™AM,

dp :=dnodt dm

is a right invariant measure on P where dm is the probability Haar measure of M and dt
is the Lebesgue measure on R.
For g € G, consider the measure on g P given by

dvgp(gp) = " dv,((gp)7)dt  fort = By, -1(0, gp). (5.1
For ¥ € C.(G), we have

e (g = / / W(gpn)dn dp, (5.2)
gP JN
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PR (w) =/P/N‘P(gpn)dﬁlg{,?%(gpn)dvgp(gp), (5.3)
8

M8 () =/P/N‘I'(gpn)d/lgﬁzv(gpn)dvgp(gp)- (5.4)
8

5.2. Approximations of W. We fix a left invariant metric d on G, which is right H N M-
invariant and which descends to the hyperbolic metric on H* = G/K. For a subset S of
G and € > 0, S¢ denotes the e-neighborhood of e in S: Se = {g € S : d(g,e) < €}.

We fix a compact subset 2 of '\ G. Let ro := rq denote the infimum of the injectivity
radius over all x € Q. That is, for all x € €2, the map g +> xg is injective on the set
{geG:d(g,e) <rg}.

We fix a function kg € C°(I'\G) such that 0 < kg < 1, kq(x) = 1 for all x in the
ro/2-neighborhood of 2 and kg (x) = 0 for x outside the ro-neighborhood of €.

Fix ¥ € C*°(R2). For all small ¢ > 0, set

\Ilj'(x) = sup W(xg) and WY¥_ (x) = inf W(xg). 5.5)
geGe 8€Ge

Foreach0 < e <rg,x € I'\G and g € G, we have
W (x) < W(xg) < W (x) (5.6)
and
IWEX) — W(x)| < c1€Sn0,1(W)ka(x)

for some absolute constant ¢y > 0.

For ¢ = Haar, BR, BR, or BMS, we define

AY = Soo,1 (W) - m* (supp(V)).
Define, for each g € G,
Po(g) = |Vg(o)|-

Then ¢y is left I"-invariant and right K -invariant, and hence induces a smooth function in
C>®(I'\G)X = C*(H"). Moreover ¢y is an eigenfunction of the Laplacian with eigen-
value §(n — 1 — §) [63].
Lemma 5.7. For a compact subset Q of I'\G,
(1) mPR(Q) < sup,cq do(x) - MM (QK);
(2) mPR(Q) < sup,cq do(x) - MM (QK);
(3) mPMS(Q) < sup,cq do(x)? - mH(QK).
Proof. The first two claims follow since for any K -invariant function ¥ in [\G, mBR+ ()

= mBRy) = fF\G V(g)¢o(g) dmM¥(g). The third one follows from the smearing ar-
gument of Sullivan [63, proof of Prop. 5]. O

On the other hand, there exists £ € N such that Soo 1 (W) K S¢ (W) for all ¥ € C*°(Q2) [1].
Hence it follows from Lemma 5.7 that there exists £ € N such that for all ¥ € C*° (),
any e = Haar, BR, BR, or BMS, and any 0 < € < rg,

AY K Sso,1(W) - mP ¥ (supp(¥)) < Se(W)  and S (VF) < S(¥)  (5.8)

where the implied constants depend only on €2.



Counting for orbits of geometrically finite groups 869

5.3. Thickening of a compact piece of yH. For the rest of this section, fix y € I'\G
and Hy C H be a compact subset such that the map & + yh is injective on Hy. Fix
0 < €9 < rg which is smaller than the injectivity radius of y Hyp.

Fix non-negative functions ¥ € C*®(Q) and ¢ € C®(yHp). Let M’ C M be a
smooth cross section for H N M in M and set P’ := M'AN~. As hp = I’p’ implies
h=MWmand p=m~'p' form € HN M, it follows that the product map H x P’ — G
is a diffeomorphism onto its image, which is a Zariski open neighborhood of e. Let dp’
be a smooth measure on P’ such that dp = dynymdp’ for p = mp’. For 0 < € < ¢,
we let pe € C*°(P/) be a non-negative function such that [ p. dp’ = 1, and we define
P € C(I'\G) by

¢(yh)pe(p) if g = yhp € yHo P,

5.9
0 otherwise. (59)

D (g) = {
Lemma 5.10. Forall0 <€ < e€gandt > 0,

/ ‘I’Q(gaz)d%(g)ng/ W(yha;)$(yh) dh 5/ U (ga,)Pc(g) dg.
NG heH, NG

Proof. Forall p € P/,h € Hyandr > 0, yhpa; = yha,(a_; pa;) € yha, Pc and hence
[ wonarsomdn < [ wrohpansmdh.
heHy heHy
Integrating against p., we have

/ Y (yha)¢(yh) dh < f Wt (yhpa,)p (yh)pe(p) dh dp
hEH() Vh[JEyHoPE/

_ f W (ga) D (g) dg.
G

The other direction is proved similarly. O
Lemma 5.11. Forall 0 < € < €,
mPRe(Dc) = (1+ O(e)uly; (9).

Proof. Choose gy € G so that y = I'\I'g, and set ¢~)(gyh) = ¢(yh) and &Je(gyhp) :
cf)(gyh),oe (p) for hp € HyP/ and zero otherwise. As 0 < € < €, we have mBR«(d,) =
mBR+(d,) and ,ﬂy’ﬁ, (@) = [ﬂ;z (¢). By the definition,

A0 = [ [ bam e D0 ) )
geG/M I M

where s = B¢- (0, g). For simplicity, we set g, = y € G by abuse of notation. For

g = yhp € HoP..as |Bg+(yh, g)| < d(yh. yhp) = d(e. p) < €, we have ¢t "9 =
14 O(e). Since g+ = (yh) T,

P D, (1) = (14 0(€)eon M av, (yi)) = (1 + 0()dts, (vh).
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On the other hand, as {m,} is G-invariant,

-1
dmy(g™) = dm(yh)—](o)(pi) — o= DBy (0.(yh) ™ (0)) dmy(p7).

Since p~ = ng for p = noa,m, we have
Bg-(0.8) + By (0. (yh) "' (0)) = B, (yh) "' (0). p) + By~ (0. (y1) "' (0))
= B,-(0, p) = ﬂn(; (0, noay) = ﬁxa (0,ar) + ﬂ,,a (0,n0) = —1 + ﬁ,,(; (0, ng).

As nga;m € P., we have e~ "~ = 1 4 O(€) and hence

(DB 00 o (o dsdm = DB @O 0. 0M 7O gy
—1B (o,
= ef(”fl)te(n )ﬁ"O © nO)dmo(na)dtdm = e " Dgnodidm = (1 + O(€))dp.
Since dp = dyny (m)dp' for p = mp’, for ¢(yh) = anM & (yhm) dgnp(m) we have
@0 =+ o) [ [ Brm)pe(p) dilS (vh) dp’
¢ JyheyHy/(HNM)

= (1+ 0, @). .

Corollary 5.12. There exists £ € N such that for any ¢ € C*°(yHy), ,u];{S (D) < Se(@)
where the implied constant depends only on the compact subset y Hy.

Proof. By Lemmas 5.11 and 5.7, and (5.8), there exists £ € N such that
1y (§) K mPR (D) K Se(Pr) K Se(@)Se(pey) K Se()
where the implied constants depend only on €p and y Hy. O

Theorem 5.13. Suppose that T is Zariski dense in G and L>*(T'\G) has a spectral gap.
Then there exist ny > 0 and £ > 1 such that for any ¥ € C*®°(2) and ¢ € C*°(yHy), we
have

(1 / W(yhay)$(yh)dh
yheyH

= s (R @) + 7 OSUWISU@)),

with the implied constant depending on Q2 and y H.

Proof. 1t suffices to prove the claim for ¥ and ¢ non-negative. Let £ > 1 be greater than
the £’s in Theorem 3.30, (5.8) and Corollary 5.12. Let g, > 0 (depending only on the
dimension of P’) be such that Sy (pe) = O (e 9¢), so that

Se(Pe) K Se(P)Se(pe) K Se()e™ .
Note that Sy (W) <« Sp(¥) and mBR(WE) = mBR(W) + 0(eABR).



Counting for orbits of geometrically finite groups 871

By Lemma 5.10,

(@Wo, o) < / W(yha))g (vh) dh < (@, WF, D).
yheyH

By Lemma 5.11 and Theorem 3.30, there exists n > 0 such that

IO UE @) = mBREYmBR(D ) + 77 O (S (W) Sy ($)e ™)

|mBMS|

= s (WL (@) + OATA (@) + 7 O(Se(W)Su(@)e ™).

By taking € = ¢~ ""/(%40) and ny = n/(1 + ¢¢), we obtain

(—1-0) f Y (yha))e(yh) dh
yheyH

= s (WA @) + e O @) + Se(9)Si(@)).

By (5.8) and Corollary 5.12, this proves the theorem. O

We remark that we do not need to assume that y H is closed in the above theorem, as ¢ is
assumed to be compactly supported.

When H is horospherical or symmetric with Pb-coranky (I') = 0, Theorem 1.7 is a
special case of Theorem 5.13 by Theorem 4.5 and Proposition 4.15.

6. Distribution of I'\I" Ha; and transversal intersections

LetTI', H, A = {a;}, P = MAN™, etc. be as in Section 5. We set N = NT. Let {11y}
be a I'-invariant conformal density of dimension §, > 0 and let jigy and fiyn be the
measures on g H and gN respectively defined with respect to {14y }.

6.1. Transversal intersections. Fix x € I'\G. Let €g > 0 be the injectivity radius at x.
In particular, the product map Pe, x N¢, — I'\G given by (p,n) — xpn is injective.
For any € < ¢y we set B, := PcNe.

For some ¢; > 1, we have NCI—IGPCI—IG C Be := PcNe C NeyePeye foralle > 0.
Therefore, in the arguments below, we will frequently identify B with N¢ P, up to a
fixed Lipschitz constant.

In the next lemma, let W € C2(xB.,)#™ and ¢ € C(yH)" ™ . For 0 < € < ¢,
define X € C*®(x P) by

Y (xp) = / N\Pf(xpn) dpepn (xpn)
xp

where \Ilei are as given in (5.5).
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Define ¢ € C°(yH) by

oL (yh) = sup ¢(yhh') and ¢_ (yh) = inf ¢(yhh"). (6.1)
neH, heH,

Since the metric d on G is assumed to be left G-invariant and right H N M -invariant,
we have mH.m~! = H, and mN.m~! = N,. Therefore the functions wf and ¢>€i are
H N M-invariant.

The following lemma is analogous to [52, Cor. 2.14]; however, as opposed to [52], we
are here working in '\ G rather than in T!(I"\H"). Let

Py (1) :={p € Pey/(H N M) : supp(dp)a; N xpNe,(H N M) 3 @}

Lemma 6.2. Forany 0 < € < €, we have

(I=ce) Y @, (pa_)pz(ap) < e / W(yhar)(yh) dpym (vh)

peP(n) yH
<(+ce) Y ¢h i (pa-)ViExp),

peP(t)

where ¢ > 0 is an absolute constant, depending only on the injectivity radii of supp(¢)
and supp(W¥).

Proof. By considering a smooth partition of unity for the support of ¢, it suffices to prove
the lemma, assuming supp(¢) C yNe Pe N yH C yBe. Fix g, g € Gsothat y =I'g and
x=Tg ThenforH=H/HNM,

| wonasondnnon = ¥ [ wGha)son dia e
yH yerngHg=\r *78H

= X [ wohamehm dndq,g e
ygH JHNM

ye(TNgHg=\I

-7 /_wyha,)myh)dﬁygg(ygh)
vgH

ye(TNgHg=H\T

as ¥ and ¢ are H N M-invariant and dm is the probability Haar measure of H N M.
Suppose yh € supp(¢) N yH, and write h = nj, pp, where n, € N¢ and p, € Pe. As
ht = n;[ and d(h,np) = O(¢), forany y € I we have

dit,.(vgh)

=14 O(e). 6.3
d/lygN(Vgnh) +06) (©63)

Lety € (TNgHg Y\I.If ygha; = g’ pn.inn, € g PeyNe,» then we claim that

esﬂt d/lygN(Vgnh)

p = 0(ef). (6.4)
d“g’ph,,N(g’Ph,znh,z)
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Note that ygha; = g’ pn.tnp implies ygnpa; = g’ph,tnh,,(af]pha,). Hence & :=
(ygnw)* = (¢'phann.)*. and for p, , == (a; ' paay) € Pe,
Bz (0, ygny) = Be (0. &' prinns) + Be (&' Pranns & Prinn.i P,
+ Be (&' Pttt Pl gs & Phoittn. Py 1a—1)
= B (o, g/ph,tnh,t) + O(e) —t,

proving the claim (6.4).
Note that x B, is the disjoint union UpePeo xpNe,. Since np; € N¢, and ygh =

g phia_i(amp a_y) with anp a_; € N-1¢,, in view of (6.3) and (6.4) we have

[ wOhadeoh) ditygq e
veH

= (1+ 0(e)) Z‘p;*’eo (xpa_;) - / W (xpn)diig (g pn)
7 g'pN

=(1+0() Y o). (xpa) - ¥t (xp)
P

where both sums are taken over the set of p € P, /(H N M) such that ygHca, N
&' PNe,(H N M) # @ and ¢ > 0 is an absolute constant.

Summing over y € (I' N gHg~")\I', we obtain one side of the inequality, and the
other side follows if one argues similarly using W, . O

By a similar argument, we can prove the following lemma. Let ¢ € C.(yH YAOM and
/NS Coo(xPEO)HmM, and assume that wypn(xpNe,) > 0 for all p € P, so that a
function W € C*(x B,) can be defined by

1
W(xpn) = —— (xp)
MxpN(xpNéo)
for each pn € Pe Ne,.

Lemma 6.5. There exists ¢ > 1 such that for all small 0 < € < €,

(1—ce) / W (vhan @, 1 (V) ity (yh) < e Y y(xp)p(xpa)
yH PpEP:(t)

< +co) / R ) dity 1 51
y

ce~leg
Similarly to the definitions of Ay, for ¢ € C(yH) and ¢ € C(x P,) we define

AES 1= Soo 1(9) - 13 (supp(@)). A, = Seo.1(¥) - vip (supp(¥)),

where vy p is defined as in (5.1).
By a similar argument to (5.8), we have Ags <« S¢(¢) and A"w < S¢(yr) for some
¢ eN.
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Lemma 6.6. Let v € C(xPGO)HmM. For ¥ € Cm(xBEO)HﬂM given by W(xpn) =

I S
M?ﬁ?v’(XPNsO) Y (xp), we have

mPRW) =vep(¥) and AR < A},
Proof. For g = xpn, we have g~ = (xp)”~ and B(p)-(0, xpn) = PBupy-(0, xp).
Based on this, the claims follow from the definition. The second claim follows from
mBR (supp(V)) = v, p (supp(¥)) and Seo 1 (V) Key Soo,1(¥). u]

In the rest of this section, we assume that
I is Zariski dense and L>(I'\G) has a spectral gap.

Theorem 6.7. There exist B > 0 and £ € N such that for any 0 < € <K €y and any
Y € C®Py)"™ and ¢ € C°(yH)™  we have

1
e Y wxp)as(xpa_z):mvxpwm];?,(@+e*ﬂ’0<sz<xu)8z(¢>>,
PEP(1)

where Py (t) :={p € Pe,/(H N M) : supp(¢)a; N xpNe,(H N M) # B} and the implied
constant depends only on the injectivity radii of supp(¢r) and supp(¢).

Proof. Define

WE(xpn) = YE(xp).

N (xpNe)
Then mBR(WE) = v, p(¥F) by Lemma 6.6.
We take ¢ large enough to satisfy Theorem 5.13, Corollary 5.12 and AGR < A, <

Se() and AR < Si(@).
By Theorem 5.13, for some 7y > O,

S(n—1-5)1 f WE(yha)$ L., (vh) dh
yH

—l¢

1
= mPRWE) P GE,, )+ e 0SS BE,)

= mPR(W)u]3 (@) + O (e + eTHAGRAT) + e O(Sp(W)Se(9))
= vep ()b (@) + O™ + S () Se(9))-

Therefore the claim now follows by applying Lemma 6.5 for duyg(yh) = dh and
8, =n— 1 with B =no/2 and € = e~ M/2, O

Using Theorem 6.7, we now prove the following theorem, which is analogous to Theo-
rem 5.13 with dh replaced by d,ul;%(yh). Translates of du?ﬁfr and dufy)% on yH are
closely related, as their transversals are essentially the same. More precisely, Theorem
6.7 provides a link between translates of these two measures.
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Theorem 6.8. There exist B > 0 and £ € N such that for any ¥ € C*(x BEO)H M ond
¢ € CX(yH)IM,

1
f LY (vha) (yh) dply (yh) = VS| m®MS (W) 8% () + 0 (e 7P S (W) Si(9)).
y

Proof. Define ¥ € C™(x Pe,))1™ by
Y (xp) = / W (xpn) dp,E[S;N(xpn).
XpNe

We apply Theorem 6.7 and Lemma 6.2 for the Patterson—Sullivan density {u,} and with
this . It follows from the definition of ¥ (see (5.4)) that vep () = mBPMS(W) and
AI‘;/ <& S¢(W) for some £ > 1. We take ¢ large enough to satisty Theorem 6.7.

Let 8 be as in Theorem 6.7 and let € = ¢ ~#!. Now by Lemma 6.2, we get

/ W (yha)g (vh) dpby (vh) = (14 0()e™ Y~ ¢, (xpa-) ¥ (xp).
yH pEPx(1)

By Theorem 6.7,

e Y pa)VE (xp)
PEP (1)
)+ e PLO(S (¥)Se(9))

1 +y,,PS +
= |mBMS| VxP(WE )MyH (¢L‘_t€0

1
= mvxp(w)u‘y’i,(@ 1+ 0(e + e PYS (1) Se($)).

Since vy p (¥) = mBMS (W) and Sy (), A, < S¢(W), this finishes the proof. o

6.2. Effective equidistribution of '\I"Ha,. We now extend Theorems 5.13 and 6.8 to
bounded functions ¢ € C*°((I' N H)\ H) which are not necessarily compactly supported.
Hence the goal is to establish the following, where we set 'y :=T N H.

Theorem 6.9. Suppose that T\T'H is closed and | ,ufl;sl < 0. There exist B > 0 and
€ > 1 such that for any compact subset Q@ C T'\G, any ¥ € C*(Q) and any bounded
¢ € C®(T'y\H), we have, ast — 00,

(n=1-0)1 Wi (@) g b
o /h ) \H‘I/(haz)¢(h) dh = ImBMSIm () + 0(e P Si(1)Si(¢))
elg

where the implied constant depends only on Q.
We first prove the following analogue of Theorem 6.9 for MZSI
Theorem 6.10. Suppose that T'\I' H is closed and |MIID_IS | < oo. There exist By > 0 and

¢ > 1 such that for any compact subset @ C T\G, any ¥ € C®(Q)"™M and any
bounded ¢ € C®((I' N H)\H)™ we have

1y (9) _
f W (hay)p (h) dpp (h) = —Heem®MS (W) + 0(e 7' Sp(¢)Sp(W)).
hely\H |mBPMS|
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Proof. Fix £ € N large enough to satisfy Theorem 6.8, Ags < S¢(¢) and AE,MS <
S¢(\W). If H is horospherical, set Yo = {h € T\I'HM : ha, € Q for some ¢t € R}; if H
is symmetric, let Yo and Y, be as in Theorem 4.16 and set pg := Pb-coranky (I"). For
€ > 0, we choose 7. € C*®°(Yq) which is an H N M-invariant smooth approximation of
theset Ye: 0 < 7. <1, 7.(x) = 1forx € Ye and 7. (x) = O for x ¢ Y./2; we refer to
[4] for the construction of such .. Let g, > 1 be such that Sz(TE) = O(e9). By the
definition of Yq, we may write the integral f hely\H W (ha)p(h)d u (h) as the sum

/F\H‘I’(/wtz)(a5 7o) (h) dply (h)+/ W (ha) (@ — ¢ - 7) (h) dilg} (h).

Yo
Note that by Theorem 4.16(3), we have /,L (YQ — Y.) <« €%7P0 and hence /L (q) ¢ -
Te) K APS 8=10 & Sy(¢)e®~P0. Now by Theorem 6.8,

/ W(hay)($ - o) () duES (h)
I\TrH

_ % BMS (1) 4 0/(e e P! Sy ($)Se (W)

_ wi (@) mBMS (@) 1 O(ABS ABMSD=10) 1 07010 P S,(6) S, (W)
|mBMS|

N f““éff?l mEMS (W) + O (€770 + e " e ) S(@)Se (D)),

On the other hand,
/Y W(ha) (@ — ¢ - 1) (W) dubs (h) < Soo1 (W)Seo,1 (B)EF (Yo — Ye)
Q

L Se(W)Si ().

By combining these two estimates, and taking € = e A#/0—P0ta0) and gy =
e*ﬁ(sfpo)/((S*PO‘HN)’ we Obtaln
MH > () mBMS Bot
A W (har)p (h) dply (h) = mBVS|" (W) + O™ Se(@)Se(W)). O
ely\H

Proof of Theorem 6.9. We will divide the integration region into three different regions:
compact part, thin part, and intermediate range. The compact part is the region where we
get the main term using Theorem 5.13. The thin region can be controlled using Theorem
4.16. However there is an intermediate range where we need some control. This is in some
sense the main technical difference from the case where I' is a lattice. We control the
contribution from this range, using results proved in this section in particular by relating
this integral to summation over the “transversal” (see Lemmas 6.2 and 6.5).

‘We use the notation from the proof of Theorem 6.10. In particular, if H is horospheri-
cal,set Yo = {h e T'\I'HM : ha; € Q for some ¢ € R}; if H is symmetric, let Y and Y,
be as in Theorem 4.16 and set pg := Pb-coranky (I"). Let 0 < €1 < €o. Here, we regard
Y, as a thick part, Y, — Y, as an intermediate range and I'y \ H — Y, as a thin part.
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As above, we choose 7, € C*°(Y) which is an H N M-invariant smooth approxima-

tion of Y, and recall that /L};S(YQ YY) K eg_po by Proposition 4.14.
We may write

/ W (han) (k) dh
heTy\H

= /F " W (ha) (¢ - Te))(h) dh + / V(ha;)(¢p — ¢ - Te,) (h) dh.

Yo

Then by Theorem 5.13 with ng > 0 therein and Theorem 4.16, we get the asymptotic for
the thick part:

Sn-1-51 / W (ha;) (@ - 7e,) (h) dh
Fu\H

“];15(‘17) BR 8—po —not . —q¢
= ImBMSIm (\I’)—l-(eo 470 € )O(Se(P)Se(W)). (6.11)

On the other hand, by Theorem 4.16, for 7¢, := 7, — ¢, We have
/ W (ha))(p — ¢ - ) (h) dh
Yo

< 800,1@)( / W(ha)Te, (h) dh + / w(haodh). 6.12)
Yo Yo

_Y61

Set W(x) := meM W (xm) dm. Applying Lemma 6.2 for the Haar measure duga‘“ = dh
and Lemma 6.5 for the PS measure MI;IS, and for the function 7 := 7,, with the notation
as in the proof of Theorem 6.7, we get the following estimate of the integral over the
intermediate range Y¢, — Y¢;:

(=101 / W (hay)Te, () dh < =170 / Y (han)Te, () dh
Yo Yo

- —+ TR
e N YL apTr, (xpa-y) K /F - W, (ha)TE, () di7 (h)
PEP(1)

& Soot (OB (Yo, = Yep) < Se(W)ey ™. (6.13)

Using Theorem 4.16, we also get the following estimate of the integral over the thin part,
which is the complement of Y, :

e(n—l—S)tf W (ha,)dh < Se(\p)e(n—l—ﬁ)teil71+])o. (6.14)
YQ*YEI

Therefore by (6.11)—(6.14),
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1= / U (ha;)¢ (h) dh
hel'y\H

MI;IS(¢) BR 8—po —not . —qe (n—1-8)t _n—1—po
= |mBMS|m (W) + O(¢ +e M € te € )Se()Se (V).

Recalling 8§ > po, define €y and € by g = e M0!/G=rota0) apd E;l—l—po
eg""’e“—"“)'. We may assume that €; < ¢€p by taking £ and hence g, large enough.

Finally, we obtain the claim with 8 := n9(6 — po)/(6 — po + q¢). m]

We can also prove an analogue of Theorem 6.9 with a; replaced by a_;, by following a
similar argument step by step but using Corollary 3.34 in place of Theorem 3.30. Consider
the H N M-invariant measure Ml;_ on 'y \ H induced by the measure eSBi=0.1) gy, (h™)

on H = H/(HNM):
duyy _(hm) = =@M dv,(h™)dpnp (m). (6.15)

Theorem 6.16. Suppose that | ul;f_| < 00. There exist > 0 and € > 1 such that for
any compact subset Q in T'\G, any ¥ € C*®°(Q2) and any bounded ¢ € C*(I'y\H), we
have, ast — oo,

PS
i wy () -
[ whas g dh = TSR () + 0SS
hel y\H Im Yo
where the implied constant depends only on Q.
6.3. Effective mixing of the BMS measure. In this subsection we prove effective mix-
ing for the BMS measure:

Theorem 6.17. There exist B > 0and £ € N such that for any compact subset Q@ C I'\G,
and any ¥, ® € C°(R),

/ \I/(gat><1><g)deMS(g>=| ;MS|mBMS<W>mBMS<d>>+O(e—ﬂfse(\msz«b))
G m

with the implied constant depending only on Q.

Proof. Using a smooth partition of unity for €2, it suffices to prove the claim for ¢ €
Cc(xBgy) for x € Q, Be, = PeyN¢, and €y > 0 smaller than the injectivity radius of €.
By Theorem 6.8 with H = N and for each p € P,

f W (xpnag)® (xpn) dusyy (xpn)
xpNeO

1 -
= sy (DI (@lapy) + ¢ OSSPl )

for some B > 0 and £ € N. As

/P HEIS7N(¢|XpNeo)dvxp(xp) = mBMS (@),
X €0
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we have

/ V)@ ™)
xB

= / f W (xpnay)® (xpn) duby y (xpn) dvyp (xp)
xpexPEO )cpN60

1 _
= |mBMs|mBMS(\I’)mBMS(‘D) + 0(e P)Su(w) - / Se(Plxpn,) dvxp(xp).
x Pe,
Since
Se(®xpn,,) dvep(xp) K Se(®)m"R (supp ®) Kq Se(®P),
x Pe,
this finishes the proof. O

7. Effective uniform counting

7.1. The case when H is symmetric or horospherical. Let G, H, A = {a; : t € R},
K, etc. be as in Section 5. Let I' be a Zariski dense and geometrically finite group with
8 > (n — 1)/2. Suppose that [e]I" is discrete in H\G, equivalently I'\I"' H is closed in
I'\G, and that |u5?| < cc.

In this section, we will obtain effective counting results from Theorem 6.9 with ¢
being the constant function 1 on (I' N H)\ H.

Definition 7.1 (Uniform spectral gap). A family {I'; < T" : i € I} of subgroups of finite
index is said to have a uniform spectral gap property if

supso(I';) <6 and  supng(l;) < oo.
iel iel
where so(I";) and no(I";) are defined as in (1.3).
The pair (sup;c; so(I';), sup;<; no(I';)) will be referred to as the uniform spectral gap
data for the family {I"; : i € I}.

As we need to keep track of the main term when varying I" over its subgroups of finite
index for our intended applications to affine sieve, we consider the following situation:
Let 'y < T be a subgroup of finite index with ' " H = ' N H and fix yp € T.
Throughout this section, we assume that both I" and I'¢ have spectral gaps; hence {I", I'g}
is assumed to have a uniform spectral gap. By Theorem 3.27, this assumption is automatic
if§ >m—1)/2forn=2,3andif § > n —2forn > 4.

For a family By C H\G of compact subsets, we would like to investigate
#[elToyo N Br.

Define a function Fr := Fp, on I'0)\G by

Frg):= Y. x5 (lelyg)

yeHNI\Ty
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where xp, denotes the characteristic function of Br. Note that
Fr(yo) = #lelloyo N Br.

Denote by {v,} the Patterson—Sullivan density for I' normalized so that |v,| = 1.
Clearly, {v} is the unique PS density for I'g with |v,| = 1. Recall the Lebesgue density
{my} with |m,| = 1.

Therefore if mBMS, 7BR and mH%r are the BMS measure and the BR measure, the
Haar measure on G, the corresponding measures m?é\/ls, m?? and mlgé‘ar on I'g\G are
naturally induced from them. In particular, for each ¢ = BMS, BR, Haar, |m1'~0| =
[T : To]-|m®|. Since HNT' = HNT, we have [ub?| = |u1;§’H| and |}y _| = |M$§’H,_|.

7.2. Weak convergence of counting functions. Fix v € C2°(G). Fork € K and y €

T, define ¥, ¥, € CX(G) by ¥*(g) = ¥ (gk) and ¥, (g) = ¥ (yg). Also define
W, U, € CX(I'\G) by

W(g)i= Y Yo and W,(g):= > ¥(y'e).

y'€lo v'€lo

For a function f on K, define a function i xx f, or simply ¥ * f, on G by

v f(8) =/ Y (gk) f (k) dk.
keK

For a subset B C H\G, define a function fBi on K by

fi k) = f e dt.

as,eBk-1N[e] A%

We write };l]_?_R = mBR and mBR = /#BR+ below. Recall that mBMS means mI]%MS in the
whole section.

Proposition 7.2. There exist f1 > 0 and £ > 1 (depending only on the uniform spectral
gap data of T' and I'g) such that for any T >> 1, and any y € T, the pairing (Fr, ¥, ) in
To\G is given by

PS
[y |

Wﬁﬂm(w * fgr) + o(mag( e6—B1 -&z(l/f)) ifG = HA*K,

ar BT

|t BR +
— M * + O(max A DL ) otherwise.
2R s 1 (U * f,) + O max oY)
Proof. For the Haar measure dm™® (g) = dg, we may write dg = p(t) dhdt dk where
g = ha;k and p(t) = e~V (1 + O (e=*1I")) for some a; > 0 (cf. [52]).

Setting «*(Fo) := |ufs  1/ImPM], we have = (I'g) = [F}—Fo]xi(r). We will only
prove the claim for the case G = HA™T K, as the other case can be deduced in a similar
fashion, based on Theorem 6.16. We apply Theorem 6.9 to obtain
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(Fr,W¥y) = / </ W, (ha;k) dh),o(t) dt dk
[ela;keBr (HND)\H

=« (T O BR(WE) o () dt dk
[ela;keBr

n / O =Pl bty dt dk - O(Se(W))
[ela;keBr

= kT (T) PR (k) di dic + 0( max e@=AV . Sg(w))

lela;keBr a;€Br

where 81 = min{B, a1}.
By the left I'-invariance of mBR, we have nﬁBR(l//l;) = mBR(y%). Hence

/ PR (YY) dt dk = / / PR (k) dt dk = PRy x 7).
lelaskeBr kek Ja,eBrk-! g
This finishes the proof. o

7.3. Counting and the measure M pg\g. We denote by Xg € TL(H") the vector fixed
by M. In the rest of this section, we define the measures d vf(k) on K as follows: for
f e C(K),

/f(k)dvf(k):/ /f(km)dmdv(,(kX(jf) (7.3)
K M\K JM

where dm is the probability Haar measure of M.
Define a measure Mpy\g = MZ\G on H\G: for ¢ € C.(H\G),

PS
|PLH|

——H d(ark)e® drdv (k) ifG=HATK,
[mBMS| J, reatk ' ¢
Mmc(p) = S| (7.4)
Zﬁ e ¢ (axk)e’ dr dvE(k™") otherwise.
ay ke ATK

Observe that the measure M g\ depends on I' but is independent of the normalization
of the PS-density.

Theorem 7.5. If {Br C H\GY} is effectively well-rounded with respect to T (see Def.
1.10), then there exists ny > 0 (depending only on the uniform spectral gap data for T’
and Tg) such that for any yy € T,

#([e]Coyo N Br) = MG (Br) + O(M g (Br)' =)

1
[I" - Tol

with the implied constant independent of I'g and yy € T
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Proof. Let ¢ € C*°(G) be a smooth e-approximation of e: 0 < ¢ < 1, supp(¥€) C
Geand [y€dg =1.Set B} . := BrG. and By, :=,ci, Brg. Then

<FB’;,5’ q’;{)—l) S FT(VO) S (FB;G’ \IJ;O—1>

Again, we will provide a proof only for the case G = HATK; the other case

can be done similarly, based on Proposition 7.2. By Proposition 7.2, for kt(I'g) :=

PS BMS
|M1"0,H|/|ml“o [,

(Fgs WS- = k(o™ (0 x fgz )+ 0 max 0=

a,EBT

where gy is such that Sy (¥ ¢) = O(e~9¢). For g = a,nk’ € ANK, define H(g) = r and
k(g) =K.

Now, using the strong wave front property for AN K decomposition [24], and Defini-
tion 1.10, there exists ¢ > 1 such that forany g € Gc and T > 1,

oz D) < f, (k7 9)) < frgr (kD).
We use the formula for mBR (cf. [52]):
dimnBR(ka,n) = e=*" dndr dv; (k)
and deduce

kT (D)mBR (€ % I Yy =k T() / Ve kapnk’) fgy (k"Ye™®" dk' dn dr dv, (k)

'eK JKAN

= (D) / / Ve (ke) gt (c(g))eHI=IH® go iy (k)
kek JG T.e
= k() / / V() fgr (k(k™ " g))eHHI=HED) o gy (f)
kek JG T.e
<+ oent® [ [ vy, «dgdv; ®)
keK JG ,c€
=1+ 0(E)Mu\GBf ) =1+ 0 MmcBr) (7.6)

since [ Y¢dg =1and k(1) [ g /B, (k™1 dv, (k) = Mp\c(Br).
Similarly,

KRR * S ) = (1+ 0 Mg (Br).
Since maxg, eB; eGPl « Mme (Br)'=" for some n > 0,

#Toyo N Br) = MG (Br) + 0(e? MG (Br)) + O(e 4 Mg (Br)' ™).

[I" : To]

Hence by taking € = MH\G(BT)_”/(/’J””) and 79 = —pn/(p + q¢), we complete the
proof. O
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7.4. Effectively well-rounded families of H\G

7.4.1. Sectors. For w C K, we consider the following sector in H\G:
St(w) :=[el{a; : 0 <t <logT}w.

In this subsection, we show that the family {S7(w) : T > 1} of sectors is effectively
well-rounded provided w is admissible in the following sense:

Definition 7.7. We will call a Borel subset w C K with v, (@~ > 0 admissible if there
exists 0 < p < 1 such that for all small € > 0,

v(,(w_lKg - ﬂ w_lk) 34 (7.8)
keKe

with the implied constant depending only on w.

Lemma 7.9. Let w C K be a Borel subset. If vo_(w_l) > 0 and B(a)_lXa) NAT) =0,
then w is admissible.

Proof. As 3w} X, ) and A(T") are compact subsets, we can find € > 0 such that the
€g-neighborhood of B(w’lXa) is disjoint from A(I"). Hence we can find €; > 0 such
that 3(w~ ") K¢, X, is disjoint from A(T'); s0 v, (3(w™ ") K¢, X)) = 0. O

Proposition 7.10. Let «, := maxgen ,(r) rank(§). If
6 > max{n — 2, (n — 2+ xg)/2},

then any Borel subset w C K such that v, (™Y > 0and 3(w™") is piecewise smooth is
admissible.

Proof. Let ss = {§ : t € [0, 00)} be a geodesic ray emanating from o toward & and let
b)) € H" be the Euclidean ball centered at & whose boundary is orthogonal to s at &;.
Then by Sullivan [63], there exists a I'-invariant collection {H¢ : & € A,(I')} of pairwise
disjoint horoballs for which the following holds: there exists a constant ¢ > 1 such that
forany £ € A(I') and any ¢t > O,

o8 dE T RE=D) <y, (p(,)) < e dETO)KE) =)

where k(&) is the rank of " if &, € He: for some & e A, (I"), and § otherwise.
Therefore, using 0 < d(&;, I'(0)) < ¢, it follows that for any £ € A(I") and 7 > 1,

C2kE
Vo (b)) < {2_5, LikGE) 28, 7.11)

otherwise.

By standard computations in hyperbolic geometry, there exists cp > 1 such that
B(¢, cale_’) C b(&) C B(E, cope™") where B(E, r) denotes the Euclidean ball in 9 (H")
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of radius r. Hence it follows from (7.11) that if we set ko := maxgea, () rank(£¢’), then
for all small € > 0 and & € A(T"),

Vo(B(E, €)) < € 4 2%,

Clearly, this inequality holds for all £ € d(H"), as the support of v, is equal to A(T").
Now if 8(w™!) is a piecewise smooth subset of K, we can cover its e-neighborhood
by O(e!~9F) many e-balls, where d is the dimension of K.
Since for any k € K,

vl (B(k, €)) < €M vy (B(X(), €)) « €M 4 2oty

where dy; is the dimension of M, we find that the v, measure of an e-neighborhood of
9(w~ 1) is at most of order

Stdm—dx+1 | 28—kotdy—di+1 _ S-nt+2 4 28—ko—n+2,
Hence w is admissible if § is greater than both n — 2 and (n — 2 + k¢)/2. ]

Corollary 7.12. If§ > n — 2 and rank(§) < 6 for all § € Ap(I"), then any Borel subset
o C K such that v, (™Y > 0and d(w™") is piecewise smooth is admissible.

The following strong wave front property of HAK decomposition is a crucial ingredient
in proving an effective well-roundedness of a given family:

Lemma 7.13 (Strong wave front property [24, Theorem 4.1]). There exist ¢ > 1 and
€0 > 0 such that forany 0 < € < ey and any g = ha;k € HATK witht > 1,

8Ge C (hHee)(arAce)(kKee)
where H.e = H N G¢c and Ao and K¢ are defined similarly.

Proposition 7.14. Let w C K be an admissible subset. Then the family {St(w) : T > 1}
is effectively well-rounded and

|- vy (@)
Mina (@) = = (T = 1.

Proof. We compute

|uBS) ploeT / ISR 172 4 R el (O3
M S = — Tdt d k ——H o~ ‘(78 _ ),

By Lemma 7.13, there exists ¢ > 1 such that forall 7 > 1 and € > 0,
S7(@)Ge C [ella; : log(l — ce) <t < log(l + ce)T}w

where w:; = wKe and K, is the ce-neighborhood of ¢ in K. Hence with p > 0 given
in (7.8),
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— (-1
M6 (ST(w)Ge) K [ |8 7 ;(;:SCT) )(1 +ce)’T?
1+ 0Py (!
|,U« 1 ( +|m;€M;TU (w )(1 4TS = (1 + 0(€P) M\ (St ().

Similarly, we can show that
Mg () Sr@g) = (1 + 0N Mg (Sr ().
8€Ge
Hence the family {S7(w)} is an effectively well-rounded family for I. ]
Therefore we deduce from Theorem 7.5:

Corollary 7.15. Let « C K be an admissible subset. Then there exists nyg > 0
(depending only on the uniform spectral gap data for T" and T'g) such that for any yy € T,

1B vy (@071
[T : o] [mBMS|. s

#([elCoyo N St (w)) = T8 4+ 0o(T? M),

7.4.2. Counting in norm-balls. Let V be a finite-dimensional vector space on which G
acts linearly from the right and let wg € V. We assume that woI” is discrete and H := G,
is either a symmetric subgroup or a horospherical subgroup. We let A = {a;}, K, M be
as in Section 5.3. Let 1 € N be the log of the largest eigenvalue of a; on the R-span of
woG (cf. [52, Remark before Theorem 1.2]), and set

w(jf)‘ = lim e Mwoay,.
11— 00
Fixing anorm || - || on V, let By := {v € woG : ||v| < T}.

Proposition 7.16. For any admissible  C K, the family {Br N woA*w} is effectively
well-rounded. In particular, {Bt} is effectively well-rounded. Moreover, for some 0 <
n < §/A,

B

MG (Br NwoA*w) = —BMS|

f lwE k)| =* dvE&=" - T + o).
Proof. By the definition of A and wo, it follows that woa;k = e* wok + O(eM?) for some

A1 < A. Noting that |woa,k|| < T implies that e* = O(T) and e*! = O(T*/*), we
have

Mg (Br N w0A+a))

8[ 1
dr dv; (k)
mBMSl /kew /woa,k||<T

8t —7—1
e'dtdv, (k™)
|mBMS| /kew/e”ﬂlwokll T_,'_O(T)LI/A) 0

|MH|

) -4 — (L=
:mT /)»\/];ew ||w())‘k|| /}‘dvo (k 1)+0(T’7)
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for some n < §/A. The claim about M g\g(Br N woA~ ) can be proven similarly. To
show the effective well-roundedness, we first note that by Lemma 7.13, for some ¢ > 1,

(Br NwoATw)Ge C Bscor NwoA Tk

Therefore, using the admissibility of w, and with p given in (7.8), we deduce

MG ((Br NwoAtw)Ge — (Br NwoAT w))

< / f Adrdv; (k7Y
kewk —w J|woark| <(14ce)T

+ / / Aldrdv; (k1
kewd JT<|lwoark||<(14ce)T

L €P T 4 (14 ce)T)* — Ty « ePTY* & €? My (Br NwoAT w).
Similarly we can show that

MG ((Br NwoATw) — () (Br NwoAtw)g) < €’ M6 (Br N woAT w).
8€Ge

This finishes the proof for the effective well-roundedness of { B N woA™ w}. The claims

about {Br N woA~w} can be shown in a similar fashion. O
Set
i Skl =™ dvy (k! ifG = HA"
5 mons| [, Iwokll = dvy () if G = HAK,
Huy (1) = s
Z S |nfBiMS| / IIw(f)‘k”_‘s/)‘de(k—l) otherwise.
: K

We deduce the following from Proposition 7.16 and Theorem 7.5:

Corollary 7.17. (1) For any admissible o C K, there exists ny > 0 such that for any
yvoerl,

#v € woloyo NwoA T w : |[v]| < T}

|| o _
- §-[T: FOI]-I |mBMS| / ||w();k|| 5/)Ld\}0 (k I)T‘S/A + O(T(S/A ;70).
’ ®

(2) There exists no > 0 (depending only on the uniform spectral gap data for I' and I'¢)
such that for any yg € T,

1 —
#v € wolopo : IVl < T} = ———— By (OTY* + O(T%/*7M0),
[T": Tol
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7.5. The case when H is trivial. In this subsection, we will prove the following theorem
directly from the asymptotic of the matrix coefficient functions in Theorem 3.30.

Recall from the introduction the following Borel measure Mg = Mg on G: for
¥ € Ce(G),

1
Mc(W) = —3vs ¥ (kiacky)e® dvf (ky)dtdvy (ky").

ImBMS| Ji a ek Atk t ’ 02
Theorem 7.18. Let T'g < I' be a subgroup of finite index. If {Br C G} is effectively
well-rounded with respect to I" (see Def. 1.10), then there exists no > 0 (depending only
on the uniform spectral gap data for I and T'g) such that for any yo € T,

#(Toyo N Br) = Mg (Br) + O(Mg(Br)' ™)

[T :To]
with the implied constant independent of T'g and yy € T.

Consider the following function on I'g\G x I'9\G: for a compact subset B C G,

Fa(g.h) ==Y xp(g~'vh)
vel

where xp is the characteristic function of B. We set Fr := Fp, for simplicity. Observe
that Fr (e, yo) = #(Toyo N Br). Let B%E be as in Definition 1.10 and let ¢¢ € C*°(G)
and ®€ € C*(I'p\G) be as in the proof of Theorem 7.5. Then

(Fg- , @ ®@®°_,) < Fr(e, ) < (Fg+ , P ® ®°_)).
T.e Yo T.e )

Note that for W1, ¥, € C.(I'g\G),

(Fr, W1 @ W2)T)\GxTp\G = / 5 (W1, 8-92) 12(r\6) dm™a (g),
8EDT

For a Borel subset B of G, consider a function fg on K x K given by

fBlki, k) = / Odt,

areky ' By 'na+

and define a function on G x G by
(W @Y) * fp)(g. h) = /K B v (gky Y (hka) [k, ko) dky dk;.

By applying Theorem 1.4 and using the left I'-invariance of the measures #mBR and mBR
we deduce that for some 1/, n > 0,

(Fp, W ® W )r\Gxro\G = / / WE(QWE_, (gx) dmp™ () dx
0 xeB Jro\G Yo

-/ ( / \Iff(gkl‘>\Iﬁ_.(gwkz)dm?(?af(g))e("—”’(1+0<e—"’f>)drdk1 ks
kiarkoeB \JTo\G Yo
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1

|mBMS| ' (1+ 0™ ™M))mp (kijé—l)m

kla[k268

(k; Lye )dt dky dky

*FO

1

S € 0T oy ) di dy di
Iy 1atk2 €

Therefore

<FB¥.6’ PR @;_] )T\GxTo\G

1
- MS|(m R @i (U @ Y) * f2 ) + O(max - We‘ﬂ) (7.19)

|mr 7€BT
Recall
dmBR (ka,nt) = ef‘srdnerrdv;(k) forka,n™ € KANT,
dmBR (ka,n™) = "dn~drdv, (k)  forka,n” € KAN~

and dg = dm"™ (q,n*k) = drdn* dk.

For x € G, let k*(x) denote the K -component of x in ANT K decomposition and let
H*(x) be uniquely given by the requirement x € e" @ NEK.

We obtain
(i @ P (Y° ® ) * f)

= / Y (gik; DY (hika) falky, ko) dinBRe (1) dimnPR (hy) diy dka
KxK JGxG

N / Y k)Y (koh) 3™ (8) ™1,k ()@= DUH ()= HT ()
KxK JGxG _
dg dh dv, (ko) dv, (k)
B / YRV () fis(e ™ (gk ™)™ i (kg 1))@ TG D= kg )
KxK JGxG +
dgdhdv, (ko)dv, (k),
first replacing k; with kl_l, substituting g, = ka,n € KAN™T and h| = koayyng €
K AN™ and again substituting a,nk; = g and a,,nok = h.

Therefore, using the strong wave front property for AN*K decompositions [24] and
the assumption that f v€dg = 1, we have, for some p > 0,

(P @ P (W @ )+ fgt ) = (1 + O(e") /K  JBr kg D dvg () dvy (ko)

=1+ 0(eP)) e dv} (k) dv; (ko)
kasky '€ Br

= (1+ 0(eP)) e dvf (k) dv, (k") = (1+ 0(e”) M (Br)
kark()EBT
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with Mg defined as in Definition 1.8. Since [mpY'S| = [mEMS| - [T : T, putting the
above together, we get
1 _
Fr(e, y0) = ——=Mc(Br) + O(Mg(Br)' ™)
[T : o]

for some nyp > 0 depending only on the uniform spectral gap data of I" and I'g. This
proves Theorem 7.18.

Corollary 7.20. Let wy, wy C K be Borel subsets in K such that wfl and wy are admis-
sible in the sense of (7.7). Set St(w1, w2) = wif{a; : 0 <t < log T }wy. Then the family
{ST (w1, w2) : T > 1} is effectively well-rounded with respect to T', and for some nog > 0,

Vi) vy (@)

8 85—
. |mBMS| . []" : FO]T + O(T no)

#Toyo N St (w1, w2)) = 3

with the implied constant independent of I'g and yy € T.

Using Proposition 7.13 for H = K, we can prove the effective well-roundedness of
{ST (w1, w2) : T > 1} with respect to I" in a similar fashion to the proof of Proposi-
tion 7.14. Hence Corollary 7.20 follows from Theorem 7.18; we refer to Lemma 7.9 and
Proposition 7.10 for admissible subsets of K.

7.6. Counting in bisectors of HATK coordinates. We state a counting result for bi-
sectors in H A" K coordinates.

Let 1y € C°(H) with its support injecting into I'\G and 7o € C*°(K), and define
&7 € C*(G) as follows: for g = hak € HATK,

@) = x4 @ [ aitmyrn o dn
HNM

where x AF denotes the characteristic function of AT = {a, : 0 <t < log T} for T > 1.

Since if hak = Wak’, then h = W'm and k = m~ 'k’ for some m € H N M, the above
function is well-defined.

Theorem 7.21. Let I'g < I' be a subgroup of finite index. There exist ng > 0 (depending
only on the uniform spectral gap data for I and T'0) and £ € N such that for any yy € T,

~PS *
Wy (T1) - v, (12) _
Y Erom) = e e T O TS Se()

velo

where vi(12) := [ Ta(k) dvy (k7).
Proof. Define a function Fr on ')\ G by

Fr(e)= )Y &r(rg).

v€lo
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For any ¥y € C°(G), set W € C°(I'p\G) to be W(g) = Zyero ¥(yg). Then
(Fr. e = [ w0 ( | atwaak dh)p(r) dkdr.
keK a,eA}r heH

As W € C(I'g\G), supp(ty) injects to 'o)\G and H NT" = H NIy, we have /ngi’H(rl) =
Ay (v) and

/ 71 (W)W (hask) dh = [ 1 (W) (hask) dh.
heH helo\T'0H
Therefore, by applying Theorem 5.13 to the inner integral, we obtain n > 0 and £ € N
such that
53 (x1) BR 8t 8~
(FT,¥)T)\G = —hms / / n(kymp; (Wp)e” dkdt + O(Se(t)Se(Y)T°™T)
|mF0 | Jkek areA¥

~PS ~BR
_ g ) -mt(rx ) 5
= S BB Ty | T OSHES@STT. (7.22)

Let rf’i be e-approximations of t;; tf’i(x) are respectively the supremum and the
infimum of t; in the e-neighborhood of x. Then for a suitable £ > 1, ,&l])f (1:1e g rf ) =
O(e - S¢(11)) and 1)(,_(1:26’Jr —1,7) = 0(e - Se(m)).

Let F;’i be a function on I'\ G defined similarly to Fr, with respect to S;’i(hak) =
@ Son T (hmyty T (m~ k) dm.

As before, let ¥¢ € C°°(G) be a smooth e-approximation of e: 0 < ¢¥¢ < 1,
supp(¢¥€) C G, and f Yve€dg = 1. Let \IJ;O,I be defined as in Subsection 7.2 with re-

spect to ¥€. Lemma 7.13 implies that there exists ¢ > 0 such that for all g € G,
Fr™(ng) = Fr(n) < F7'" (ng),

XA

and hence
(Fp ™, W) < Frn) < (F™, v, (7.23)
0 0

By a similar computation to the proof of Theorem 7.5 (cf. [52, proof of Prop. 7.5]), we
have mBR (Y€ * 12) = v¥(12) + 0(€)Si(12).

Therefore, for gy given by S¢(¥¢) = O (e %), we deduce from (7.22) and (7.23) that,

using the left I"-invariance of the measure mBR,

§ - [mPMS| [ : ol Fr(y)
= @ (1) - mPRWE k1) - TP + O(Se(11) Se () Se (W) TP )
= @ () TP + 0(T? + e TSy (1)Si(12)
= @S @I @) T + O(TP )8, (1) Se(v2)

for some 19 > 0, by taking € = 7"/ (1440, O

Corollary 7.20 as well as its analogues in the HAK decomposition can be deduced easily
from Theorem 7.21 by approximating admissible sets by smooth functions.



Counting for orbits of geometrically finite groups 891

8. Affine sieve

In this final section, we prove Theorems 1.16 and 1.17. We begin by recalling the combi-
natorial sieve (see [25, Theorem 7.4]).

Let A = {a,} be a sequence of non-negative numbers and let B be a finite set of
primes. Forz > 1, let P = Hp¢B,p<z p. We set

SAP)= > a.
(n,P)=1
To estimate S(A, P), we need to understand how A is distributed along arithmetic pro-
gressions. For d square-free, define

Agi=l{an € A:n=0(d))

and set |Ag| := ), () -
We will use the following combinatorial sieve:

Theorem 8.1. Suppose that:
(A1) Ford square-free with no factors in B,

|Adl = g(d)X +ra(A)

where g is a function on square-free integers with 0 < g(p) < 1, g is multiplicative
outside B, i.e., g(didy) = g(d1)g(d>) if d\ and dy are square-free integers with
(d1,d2) = 1 and (did2, B) = 1, and for some c; > 0, g(p) < 1 — 1/cy for all
prime p ¢ B.

(A2) A has level distribution D(X) in the sense that for some € > 0 and C¢ > 0,

D lraA)] < €X'
d<D
(A3) A has sieve dimension r in the sense that there exists co > 0 such that for all
2<w=yg

Z
—2< Y. gp)logp—rlog= <ca.
(p.B)=1, w<p=<z w

Then for s > 9r, z = D5 and X large enough,

SAA, P) x ————.
(log X)’

LetG, G,V = C", T, wg € V(Z), etc. be as in Theorem 1.16. We consider the spin
cover G — G. Noting that the image of G(R) is precisely G = G(R)°, we replace I by
its preimage under the spin cover. This does not affect the orbit woI" and all our counting
statements hold equally. Set W := woG (resp. woG U {0}) if woG (resp. woG U {0}) is
Zariski closed,

Let F € Q[W] be an integer valued polynomial on woI" and let F = F} - - - F, where
F; € Q[W] are all irreducible also in C[W] and integral on the orbit woI". We may assume
without loss of generality that gcd{F(x) : x € wol'} = 1, by replacing F by m~'F for
m = gcd{F(x) : x € wol'}.
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Let {Br C woG} be an effectively well-rounded family of subsets with respect to I'.
Set O :=wol'.Forn,d € N,and T > 1, we also set

an(T) =#x e ONBr : F(x) =n}, Tyd) :={y el 1woy =wp (d)},
IA(T)| ==Y ay(T) = #0O N Br,

Al == Y an(T) =#x € ONBr: F(x) =0 (d)}.
n=0 (d)

Letl'y:={yel:y=e ()}

Theorem 8.2. If§ > max{(n—1)/2, n —2}, then there exists a finite set S of primes such
that the family {T'; : d is square-free with no factors in S} has a uniform spectral gap.

Proof. Asé§ > (n—1)/2, by [58] and by the transfer property obtained in [6], there exists
a finite set S of primes such that the family L?(I'y\H") has a uniform spectral gap where
d runs over all square-free integers with no prime factors in S, that is, there exists s1 < §
such that L?(I"y\G) does not contain a spherical complementary series representation of
parameter s; < s < 8. By Theorem 3.27 and the classification of G [32], L2(Fd\G)
does not contain a non-spherical complementary series representation of parameter s >
max{(n — 1)/2,n — 2}.

It follows that L>(I'y\G) = Hs ® Wy where Hs = U1, (5 — n + 1a) is the
spherical complementary series representation of parameter §; hence no(I'y) = 1 and
W, does not weakly contain any complementary series representation of parameter
max{(n — 1)/2,n — 2,51} < s < 4. So supso(I'y) < max(n — 2,s1) < 4 and
supng(I'y) = 1 where d runs over all square-free integers with no prime factorsin S. O

Denote by I'(d) the image of I" under the reduction map G — G(Z/dZ) and set Oy to
be the orbit of wg in (Z/d7Z)™ under I'(d); so #Oy4 = [I" : 'y, (d)]. We also set
Ord)={xe04: F(x)=0()}.

Corollary 8.3. Write M., (Br) = X. Suppose that for some finite set S of primes, the
family {T'g : d is square-free with no factors in S} has a uniform spectral gap. Then there
exists no > 0 such that for any square-free integer d with no factors in S, we have

|Aa(T)| = g(d)X +ra(A)
where g(d) = #Op(d) /#0y4 and rg(A) = #Op(d) - O(X170),
Proof. Since I'y C TI'y,(d), the assumption implies that the family {I',,(d)
d is square-free with no factors in S} has a uniform spectral gap. Therefore, Theorem
1.12 on #(wo Iy, (d)y N Br) implies that for some uniform €y > 0,
Ad(T)| = > #(wol'wy (d)y N Br)
Y €lwg (\T, F(woy)=0 (d)

( . X+o<x1—f°)>.
Y €luy (\T, F(woy)=0 (d) (= Py ()]

Since #OF (d) = #{y € T'y,(d)\I" : F(woy) = 0 (d)}, the claim follows. O
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In the following we verify the sieve axioms (A1)—(A3) in this set-up. This step is very
similar to [48, Sec. 4] as we use the same combinatorial sieve and the only difference
is that we use the variable X = M, g (Br) instead of T. This is necessary, as we are
working with very general sets Br; however, if My,,g(Br) < T* for some o > 0, we
could also use the parameter 7.

Using a theorem of Matthews, Vaserstein and Weisfeiler [45], and enlarging S if nec-
essary, the diagonal embedding of T is dense in [ | s G(Fl,). The multiplicative property
of g on square-free integers with no factors in S follows from this (see [48, proof of Prop.
4.1)).

The set W; = {x € W : F;j(x) = 0} is an absolutely irreducible affine variety
over Q of dimension dim(W) — 1 and hence by Noether’s theorem, W; is absolutely
irreducible over I, for all p ¢ S, on enlarging S if necessary. We may also assume that
W(IF,) = woG(F,) (possibly after adding {0}) for all p ¢ S by Lang’s theorem [38].
Using the Lang—WEeil estimate [39] on #W (IF,) and #W; (F,), we find that for p ¢ S,

#OF(P) =r. pdim(W)—l + 0(pd1m W—3/2) and #Op — pdlmW + 0(pd1m W—1/2).
Hence
gp)=r-p~t+00p
for all p ¢ S. This implies (A3) (cf. [47, Thm 2.7]), as well as the last claim of (A}).
Moreover this together with Corollary 8.3 implies that
r(A,d) < d™ Wyt

Hence for D < X0/CdmW) and ¢y = 59/2,

Yo r(Ad) < DIV I < 1T,
d<D

providing (Aj). Therefore for any z = DYs < xmo/@sdimW) anq g = 9r. and for all

large X', we have
X

SAA, P) x ———. 8.4
AP = oo (8.4)
Proof of Theorem 1.16. Using arguments in the proof of Corollary 8.3, we first observe
(cf. [48, Lem. 4.3]) that there exists > O such that for any k € N,
#x e ONBr: Fi(x) =k} < x'70.
Fixing 0 < €1 < n, this implies that

#x € ONBr @ |Fj(x)] < X9} g Al (8.5)
Now
-
#x € ON Br :all Fj(x) prime} < Z#{x e ONBr:|Fjx)| < X}
j=1
+#x e ONBr : |Fj(x)| = X forall I < j <r andall Fj(x) prime}.
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Now for z < x70/@sdimW) qch that P = [1,-. p < X', we have

{x e ONBr : |Fj(x)| = X' forall 1 < j <randall Fj(x) prime}
C{xeONBr:(Fix),P)=1}

and the cardinality of the latter set is S(A, P) according to our definition of a,’s.
Therefore, we obtain the desired upper bound:

XX
(log X)"  (log X)"’

#{x ceOnN BT < all F](x) prime} < XI—VH‘Gl +

Proof of Theorem 1.17. By the assumption, for some 8 > 0,

max ||| < My, (Br)f = xP. (8.6)
XEBT
It follows that
max |F(x)| < My (Br)Pdeet) = ypdee(F) (8.7)
xebr

Then for z = /M) and P = [l pes p. R = (8 deg(F)2s dim W)/, e
ave

{(xeONBr:(F(x),P)=1} C {x € ONBr : F(x) has at most R prime factors},

since all prime factors of F(x) have to be at least the size of z if (F(x), P) = 1 and
|F(x)| <« XPdeeF) if x € Br. Since S(A, P) = #{x € ON By : (F(x), P) = 1}, we
get the desired lower bound X'/(log X)" from (8.4).

Remark 8.8. When I' is an arithmetic subgroup of a simply connected semisimple alge-
braic Q-group G, and H is a symmetric subgroup, the analogue of Theorem 1.12 has been
obtained in [4], assuming that H N T is a lattice in H. Strictly speaking, [4, Theorem 1.3]
is stated only for a fixed group I'; however it is clear from its proof that the statement also
holds uniformly over its congruence subgroups with the correct main term, as in Theorem
1.12. Based on this, one can use the combinatorial sieve 8.1 to obtain analogues of Theo-
rems 1.16 and 1.17, as was done for a group variety in [48]. Theorem 1.17 on the lower
bound for I' arithmetic was obtained in [21] further assuming that H N I is cocompact
in H.
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