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Abstract. The Local Converse Problem is to determine how the family of the local gamma fac-
tors γ (s, π × τ, ψ) characterizes the isomorphism class of an irreducible admissible generic repre-
sentation π of GLn(F ), with F a non-archimedean local field, where τ runs through all irreducible
supercuspidal representations of GLr (F ) and r runs through positive integers. The Jacquet conjec-
ture asserts that it is enough to take r = 1, . . . , [n/2]. Based on arguments in the work of Henniart
and of Chen giving preliminary steps towards the Jacquet conjecture, we formulate a general ap-
proach to proving the Jacquet conjecture. With this approach, the Jacquet conjecture is proved under
an assumption which is then verified in several cases, including the case of level zero representa-
tions.

Keywords. Irreducible admissible representation, Whittaker model, local gamma factor, local con-
verse theorem

1. Introduction

Let π be an irreducible (admissible) generic representation of Gn := GLn(F ), where F
is a locally compact non-archimedean local field. We may assume that n ≥ 2, since the
discussion in this paper for n = 1 is trivial. Attached to π is the family of local gamma
factors γ (s, π×τ, ψ), with τ any irreducible generic admissible representation of any Gr ,
in the sense of Jacquet, Piatetski-Shapiro and Shalika [13], which can also be defined
through the Langlands–Shahidi method [19]. Here ψ is a non-trivial additive character
of F ; the definition of this family of local gamma factors is recalled in Section 2. It is
natural to ask how this family of invariants yields information about the representation π .

In this paper, we consider the Local Converse Problem for Gn, which is to find the
least integer n0 such that the family of local gamma factors γ (s, π×τ, ψ), with τ running
through all irreducible generic representations of Gr for r = 1, . . . , n0, determines the
irreducible generic representation π of Gn up to isomorphism. It is an easy consequence
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of the work of Jacquet, Piatetski-Shapiro and Shalika [13] that n0 ≤ n. The work of
Henniart [11] shows that n0 ≤ n−1, and the works of J.-P. Chen [7], [8] and Cogdell and
Piatetski-Shapiro [9] show that n0 ≤ n−2, for n ≥ 3. A stronger statement (when n > 4)
is the following conjecture, which is usually attributed to H. Jacquet.

Conjecture 1.1 (The Jacquet conjecture on the Local Converse Problem). Let π1
and π2 be irreducible generic smooth representations of Gn. If their local gamma fac-
tors γ (s, π1×τ, ψ) and γ (s, π2×τ, ψ) are equal, as functions in the complex variable s,
for all irreducible generic representations τ of Gr , with r = 1, . . . , [n/2], then π1 and π2
are equivalent as representations of Gn.

It is clear that the work in [11, 7, 9, 8] confirms that for 2 ≤ n ≤ 4, Conjecture 1.1 is a
theorem. Indeed, for n = 2, Conjecture 1.1 was proved in 1970 by Jacquet and Langlands
in their well-known book [12], and for n = 3 it was proved in 1979 by Jacquet, Piatetski-
Shapiro and Shalika [14]. Following a standard argument, which was already known to
the experts in the 1980s, we deduce in Section 2.4 that Conjecture 1.1 is equivalent to the
following conjecture.

Conjecture 1.2. Assume that π1 and π2 are irreducible unitarizable supercuspidal rep-
resentations of Gn. If their local gamma factors γ (s, π1 × τ, ψ) and γ (s, π2 × τ, ψ) are
equal as functions in the complex variable s, for all irreducible supercuspidal represen-
tations τ of Gr with r = 1, . . . , [n/2], then π1 and π2 are equivalent as representations
of Gn.

Since any irreducible supercuspidal representation of Gn has a non-trivial Whittaker
model, it is natural to use this property, combined with the local functional equation of
the local Rankin–Selberg convolution for Gn × Gr , to figure out a possible approach to
prove Conjecture 1.2. This is in fact the idea behind the previous attacks on the Local
Converse Problem [14, 11, 7, 8]. In this paper, we add a new idea to the argument in order
to attempt to reduce the twists down to r = 1, . . . , [n/2], i.e. Conjecture 1.2. The idea is
to find Whittaker functions satisfying some special properties.

Let Un be the unipotent radical of the standard Borel subgroup Bn of Gn, which con-
sists of all upper-triangular matrices. Denote by Pn the mirabolic subgroup of Gn, consist-
ing of matrices with last row equal to (0, . . . , 0, 1). We also fix a standard non-degenerate
character ψn of Un (see Section 2.1) so that all Whittaker functions are implicitly ψn-
Whittaker functions.

Definition 1.3. Let π be an irreducible unitarizable supercuspidal representations of Gn
and let K be a compact-mod-centre open subgroup of Gn. A (non-zero) Whittaker func-
tion Wπ for π is called K-special if it satisfies

Wπi (g
−1) = Wπi (g) for all g ∈ K,

and SuppWπ ⊂ UnK , where denotes complex conjugation.
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Definition 1.4. Let π1 and π2 be irreducible unitarizable supercuspidal representations
of Gn with the same central character. LetWπ1 andWπ2 be (non-zero) Whittaker functions
for π1 and π2, respectively. We call (Wπ1 ,Wπ2) a special pair (of Whittaker functions)
for (π1, π2) if there exists a compact-mod-centre open subgroup K of Gn such that Wπ1

and Wπ2 are both K-special and

Wπ1(p) = Wπ2(p) for all p ∈ Pn.

If a special pair of Whittaker functions as in Definition 1.4 exists for (π1, π2), we can
prove that the representations π1 and π2 are distinguished by their families of local
gamma factors γ (s, πi × τ, ψ), for τ irreducible supercuspidal representations of Gr ,
with r = 1, . . . , [n/2], by using a refinement of the argument in [7] and [8]. This ap-
proach was successfully carried out by the second-named author [17] for general linear
groups over finite fields. The key point is to find a refined decomposition for Gn which
reflects the symmetry carried in Definition 1.3. We recall this refined decomposition in
Section 3.1.

Theorem 1.5. Let π1 and π2 be irreducible unitarizable supercuspidal representations
of Gn. Assume that a special pair (Wπ1 ,Wπ2) exists for (π1, π2). If the local gamma
factors γ (s, π1 × τ, ψ) and γ (s, π2 × τ, ψ) are equal as functions in the complex vari-
able s, for all irreducible supercuspidal representations τ of Gr with r = 1, . . . , [n/2],
then Wπ1 = Wπ2 and π1 and π2 are equivalent as representations of Gn.

In certain cases, one can prove the existence of special pairs for irreducible unitarizable
supercuspidal representations of Gn by using the construction of supercuspidal represen-
tations in terms of maximal simple types of Bushnell and Kutzko [6] and the explicit
construction of Bessel functions of supercuspidal representations due to Paškūnas and
the third-named author [18]. Given an irreducible supercuspidal representation π of Gn,
one of the invariants associated to it, by Bushnell and Henniart [2], is its endo-class2(π).
We prove:

Proposition 1.6. Let π1, π2 be irreducible unitarizable supercuspidal representations
of Gn with the same endo-class. Then there is a special pair (Wπ1 ,Wπ2) for (π1, π2).

Theorem 1.5 with Proposition 1.6 implies, for example, that two level zero irreducible
unitarizable supercuspidal representations π1, π2 of Gn can be distinguished by the set of
local gamma factors γ (s, πi × τ, ψ), for all irreducible supercuspidal representations τ
of Gr with r = 1, . . . , [n/2]. In fact, this is a special case of a more general result, as
follows.

Attached to an irreducible supercuspidal representation π of Gn, via its endo-class
2(π), is an invariant which we call its degree deg(π). The degree is an integer dividing n:
for example, deg(π) = 1 if and only if π is a twist of a level zero representation; and
if deg(π) < n then π is invariant under a non-trivial unramified character twist, though
the converse is not true. By using formulae for the conductors of pairs of supercuspidal
representations from [5, 4], we immediately obtain the following corollary.
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Corollary 1.7. Let π1 and π2 be irreducible unitarizable supercuspidal representations
of Gn and suppose that deg(π1) < n. If the local gamma factors γ (s, π1 × τ, ψ)

and γ (s, π2 × τ, ψ) are equal as functions in the complex variable s, for all irreducible
supercuspidal representations τ of Gr with r = 1, . . . , [n/2], then π1 and π2 are equiv-
alent as representations of Gn.

We end the paper with some discussion of the scope of the methods used here, in particular
of the obstacles to extending to the case deg(π1) = n (see Remark 5.3).

2. Basics on the local Rankin–Selberg convolution

We start by recalling the basic facts about Whittaker models of irreducible generic rep-
resentations of Gn and local gamma factors of Rankin–Selberg convolution type over the
locally compact non-archimedean local field F . We denote by oF the ring of integers
in F , by pF the prime ideal in oF , and by kF the residue field of F , of cardinality q and
characteristic p; we also write | · | for the absolute value on F , normalized to have im-
age qZ. We use analogous notation for extensions of F . We also fix, once and for all, an
additive character ψ of F which is trivial on pF but non-trivial on oF .

2.1. Whittaker models

Let Qn be the standard parabolic subgroup of Gn corresponding to the partition (n−1, 1).
Then

Qn = ZnPn,

where Zn is the centre of Gn, and Pn is the mirabolic subgroup.

Definition 2.1. A character ψUn of Un is called non-degenerate if its normalizer in Bn
is ZnUn. We denote by ψn the standard non-degenerate character given by

ψn(u) = ψ
(n−1∑
i=1

ui,i+1

)
for u = (ui,j ) ∈ Un.

We call an irreducible smooth representation (π, Vπ ) of Gn generic if there is a non-
degenerate character ψUn of Un such that the Hom-space

HomGn(Vπ , IndGn
Un(ψUn))

is non-zero. By the uniqueness of local Whittaker models, this Hom-space is at most one-
dimensional. Since the non-degenerate characters of Un are all conjugate under Bn, we
see that π is generic if and only if

HomGn(Vπ , IndGn
Un(ψn))

∼= HomUn(Vπ |Un , ψn)

is non-zero, where the isomorphism comes from Frobenius reciprocity.
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Assume that π is generic. We fix a non-zero functional ` in HomUn(Vπ |Un , ψn)

(which is unique up to a scalar). The Whittaker function attached to a vector v ∈ Vπ
is defined by

Wv(g) := `(π(g)(v)) for g ∈ Gn.
It is easy to see that Wv belongs to IndGn

Un(ψn) and

W(π, ψn) := {Wv | v ∈ Vπ }

is called the ψn-Whittaker model of π, or simply the Whittaker model of π . It is clear that
the Whittaker model of π is independent of the choice of the non-zero functional `.

For any Wv ∈W(π, ψn), define

W̃v(g) := Wv(wn ·
tg−1) for g ∈ Gn,

where wn is the longest Weyl group element of Gn, with 1’s on the second diagonal
and zeros elsewhere, and tg denotes the transpose of g. Then one can check that the
function W̃v belongs to the ψ−1

n -Whittaker model of the contragredient π̃ of π , that is,

W̃v ∈W(π̃, ψ−1
n ) ⊂ IndGn

Un(ψ
−1
n ).

It is a basic fact that any irreducible supercuspidal representation of Gn is generic [10,
Theorem B]. We recall the following properties of the restriction of an irreducible generic
representation (π, Vπ ) of Gn to the subgroup Pn, which can be viewed as the starting
point of our approach to proving the Jacquet conjecture for Gn.

Theorem 2.2 ([1, §5]). With the notation as above, the following hold.

(i) IndPn
Un(ψn) is irreducible as a representation of Pn.

(ii) If π is a generic representation of Gn, then IndPn
Un(ψn) is a Pn-subrepresentation

of W(π, ψn)|Pn .
(iii) If π is an irreducible supercuspidal representation of Gn, then π |Pn is equivalent

to IndPn
Un(ψn) as representations of Pn.

2.2. Local gamma factors

Next we review the basic setting of local gamma factors attached to a pair of irreducible
generic representations, for details of which we refer to [13].

Let n, r ≥ 1 be integers and let π and τ be irreducible generic representations of Gn
and Gr , respectively, with central characters ωπ and ωτ respectively. LetWπ ∈W(π, ψn)

be a Whittaker function of π and Wτ ∈ W(τ, ψ−1
r ) be a Whittaker function of τ . We

suppose that n > r , since this is the only case of interest to us here.
If j is an integer for which n− r − 1 ≥ j ≥ 0, a local zeta integral for the pair (π, τ )

is defined by

Z(Wπ ,Wτ , s; j) :=

∫
g

∫
x

Wπ

g 0 0
x Ij 0
0 0 In−r−j

Wτ (g)|det g|s−(n−r)/2 dx dg,

where the integration in g is over Ur\Gr and the integration in x is over Matj×r(F ).
Jacquet, Piatetski-Shapiro, and Shalika [13] proved the following theorem.
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For g ∈ Gn, we denote by Rg the right translation action of g on functions from Gn
to C, and we set wn,r =

( Ir 0
0 wn−r

)
.

Theorem 2.3 ([13, Section 2.7]). With the notation as above, the following hold.

(i) Each integral Z(Wπ ,Wτ ,8, s; j) is absolutely convergent for Re(s) sufficiently
large and is a rational function of q−s . More precisely, for fixed j , the inte-
grals Z(Wπ ,Wτ , s; j) span a fractional ideal (independent of j)

C[qs, q−s]L(s, π × τ)

of the ring C[qs, q−s], where the local L-factor L(s, π × τ) has the form P(qs)−1

with P ∈ C[x] and P(0) = 1.
(ii) For n− r − 1 ≥ j ≥ 0, there is a factor ε(s, π × τ, ψ), independent of j , such that

Z(Rwn,r W̃π , W̃τ , 1− s; n− r − j − 1)
L(1− s, π̃ × τ̃ )

= ωτ (−1)n−1ε(s, π × τ, ψ)
Z(Wπ ,Wτ , s; j)

L(s, π × τ)
.

(iii) There are c ∈ C× and f = f (π × τ, ψ) ∈ Z such that

ε(s, π × τ, ψ) = cq−f s .

The local gamma factor attached to a pair of representations π and τ is defined in [13] by

γ (s, π × τ, ψ) = ε(s, π × τ, ψ)
L(1− s, π̃ × τ̃ )
L(s, π × τ)

. (2.4)

Then the functional equation in Theorem 2.3(ii) can be rewritten as

Z(Rwn,r W̃π , W̃τ , 1− s; n− r − j − 1) = ωτ (−1)n−1γ (s, π × τ, ψ)Z(Wπ ,Wτ , s, j).

(2.5)
We also remark that the local gamma factor γ (s, π × τ, ψ) determines the conduc-
tor f (π × τ, ψ), since it is the leading power of q−s in a power series expansion
for γ (s, π × τ, ψ).

2.3. Central characters

In this section, we show that the well-known result that local gamma factors determine
the central character. We begin by recalling the following result on the stability of local
gamma factors, which follows from [15, Proposition 2.7].

Proposition 2.6. Let π be an irreducible generic representation of Gn with n ≥ 2. Then
there exists mπ such that, for any character χ of F× of conductor m ≥ mπ and any
c ∈ p−m satisfying χ(1+ x) = ψ(cx) for x ∈ p

[m/2]+1
F , we have

L(s, π × χ) = 1 and ε(s, π × χ,ψ) = ωπ (c)
−1ε(s, 1× χ,ψ)n.

Proof. Although this is not quite the statement of [15, Proposition 2.7], this statement is
included in the proof (see op. cit., p. 323). ut
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Corollary 2.7. Let π1, π2 be irreducible generic representations of Gn. If their local
gamma factors γ (s, π1×χ,ψ) and γ (s, π2×χ,ψ) are equal as functions in the complex
variable s for any character χ of F×, then ωπ1 = ωπ2 .

Proof. For i = 1, 2, let mπi , mπ̃i be the numbers given by Proposition 2.6 and define
m0 = max{mπi , mπ̃i | i = 1, 2}. For χ a character of F× of conductor m ≥ m0, we
have ε(s, πi × χ,ψ) = γ (s, πi × χ,ψ), by (2.4) and Proposition 2.6.

For any c ∈ p−m \ p1−m, with m ≥ m0, there exists a character χc of conductor m
such that χc(1+ x) = ψ(cx) for x ∈ p

[m/2]+1
F ; thus Proposition 2.6 implies

ωπ1(c) = ωπ2(c).

Since any element of F× can be expressed as the quotient of two elements of valuation at
most −m, we deduce that ωπ1 = ωπ2 . ut

2.4. Reduction from generic to supercuspidal

This section is devoted to reducing Conjecture 1.1 to Conjecture 1.2. In other words, if
the Local Converse Theorem for twisting by generic representations of rank up to [n/2]
holds for unitarizable supercuspidal representations, then it also holds for general generic
smooth representations.

Let π be an irreducible generic smooth representation of Gn. From the classification
of irreducible smooth representations of Gn [20, Theorem 9.7], π is the unique irreducible
generic subquotient of a standard parabolically induced representation

τ1| · |
z1 × · · · × τt | · |

zt ,

where each τi is an irreducible unitarizable supercuspidal representation of Gni , with n =∑t
i=1 ni , and

z1 ≥ · · · ≥ zt

are real numbers. Moreover (τ1, . . . , τt ) and (z1, . . . , zt ) are uniquely determined up to a
permutation σ such that zσ(i) = zi , and any such tuples give rise to an irreducible generic
representation of Gn in this way. By the multiplicativity of the local gamma factors [13,
Theorem 3.1], we have

γ (s, π × τ, ψ) =

t∏
i=1

γ (s + zi, τi × τ, ψ) (2.8)

for all irreducible generic representations τ of Gr . We also observe that there is at most
one index i such that ni > [n/2].

Proposition 2.9 ([16, Section 3.2]). With notation as above, assume that τ is irreducible,
unitarizable and supercuspidal.

(i) If
∏t
i=1 γ (s+zi, τi×τ, ψ) has a real pole (respectively, zero) at s = s0, then τ ' τ̃i

and s0 = 1− zi (respectively, s0 = −zi) for some i ∈ {1, . . . , t}.
(ii) For each j = 1, . . . , t , the product

∏t
i=1 γ (s + zi, τi × τ̃j , ψ) has a real pole and

zero. Moreover, if j = 1 then there is a zero at s = −z1, and if j = t then there is a
pole at s = 1− zt .



998 Dihua Jiang et al.

Note that the assumption in [16], that F is of characteristic zero, is not used in the proof
since this result requires only the multiplicativity of local gamma factors.

Corollary 2.10. With notation as above, suppose also that τ ′i are irreducible unitariz-
able supercuspidal representation of Gn′i for 1 ≤ i ≤ t ′, with n =

∑t ′

i=1 n
′

i , and
that z′1 ≥ · · · ≥ z

′

t ′
are real numbers. Suppose m ≥ [n/2] and

t∏
i=1

γ (s + zi, τi × τ, ψ) =

t ′∏
i=1

γ (s + z′i, τ
′

i × τ, ψ)

for all irreducible unitarizable supercuspidal representations τ of Gr with r = 1, . . . , m.
Then t = t ′ and there is a permutation σ of {1, . . . t} such that:

(i) ni = n′σ(i) for all i = 1, . . . , t;
(ii) γ (s + zi, τi × τ, ψ) = γ (s + z′σ(i), τ

′

σ(i) × τ, ψ) for all irreducible unitarizable
supercuspidal representations τ of Gr with r = 1, . . . , m and i = 1, . . . , t;

(iii) τi ' τ ′σ(i) and zi = z′σ(i) for all i such that ni ≤ [n/2].

Proof. The proof is by induction on t . If t = 1 but t ′ > 1 then n′j ≤ [n/2] for some j , and,
by Proposition 2.9(i),

∏t ′

i=1 γ (s+z
′

i, τ
′

i× τ̃
′

j , ψ) has a real pole while γ (s+z1, τ1× τ̃
′

j , ψ)

does not, which is absurd. Thus t ′ = 1 and there is nothing more to prove.
Now assume t ≥ 2 and note that either n1 or nt is at most [n/2]. Suppose first

that nt ≤ [n/2]. Then
∏t
i=1 γ (s + zi, τi × τ̃t , ψ) has a pole at 1 − zt so, by Proposi-

tion 2.9(i), there is an integer 1 ≤ j ≤ t ′ such that τ ′j ' τt and z′j = zt . Hence τ ′j | · |
z′j '

τt | · |
zt and γ (s + zt , τt × τ, ψ) = γ (s + z′j , τ

′

j × τ, ψ) for all irreducible generic repre-
sentations τ of Gr , for all r . In particular, we deduce

t−1∏
i=1

γ (s + zi, τi × τ, ψ) =

t ′∏
i=1, i 6=j

γ (s + z′i, τ
′

i × τ, ψ)

for all irreducible unitarizable supercuspidal representations τ of Gr with r = 1, . . . , m.
The result now follows from the inductive hypothesis.

Finally, if n1 ≤ [n/2] then
∏t
i=1 γ (s+ zi, τi × τ̃1, ψ) has a zero at−z1 so, by Propo-

sition 2.9(i), there is an integer 1 ≤ j ≤ t ′ such that τ ′j ' τ1 and z′j = z1. The result then
follows as in the first case. ut

Putting Corollary 2.10 with m = [n/2] together with the multiplicativity of local gamma
factors (2.8) and the classification of irreducible generic representations [20, Theorem
9.7], we see that Conjecture 1.2 implies Conjecture 1.1.

3. Special pairs and the local converse theorem

3.1. Preliminary results

We begin by recalling some useful lemmas, which form the technical steps of the proof.
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Lemma 3.1 ([15, Section 3.2]). Let t be a positive integer and let H be a complex
smooth function on Gt with compact support modulo Ut satisfying

H(ug) = ψt (u)H(g) for all u ∈ Ut , g ∈ Gt .

If ∫
Ut\Gt

H(g)Wτ (g) dg = 0 for all Wτ ∈W(τ, ψ−1
t ),

with τ running through all irreducible generic representations of Gt , then H ≡ 0.

From [8, Section 3.1], we have the generalized Bruhat decomposition

Gn =
n−1⊔
i=0

UnαiQn, where α =

(
0 In−1
1 0

)
.

Definition 3.2. Given two functions H1 and H2 on Gn, if

H1(x) = H2(x) for all x ∈ UnαiQn,

then we say that H1 and H2 agree on height i.

Assume that (Wπ1 ,Wπ2) is a special pair for (π1, π2), as in Definition 1.4, so that Wπ1

and Wπ2 agree on height i = 0. The condition on local gamma factors in the statement
of Conjecture 1.2, via Corollary 2.7 and the following proposition, implies the agreement
of Wπ1 and Wπ2 on height i for i = 0, . . . , [n/2].

Proposition 3.3 ([8, Proposition 3.1]). Fix an integer 1 ≤ r < n. Let π1 and π2 be
irreducible supercuspidal representations of Gn with the same central character, and
let Wπ1 ,Wπ2 be Whittaker functions for π1, π2 respectively, which coincide on Pn. If
the local gamma factors γ (s, π1 × τ, ψ) and γ (s, π2 × τ, ψ) are equal as functions in
the complex variable s ∈ C for all irreducible generic representations τ of Gr , then the
two Whittaker functions Wπ1 , Wπ2 agree on height r .

We are going to use the functional equations together with the properties of special pairs
of Whittaker functions in order to show that if a special pair (Wπ1 ,Wπ2) agrees on height i
for i = 0, . . . , [n/2], then they are in fact equal. To do so, we apply a refined decompo-
sition of Gn, whose finite field version was a key ingredient in the proof of the Jacquet
conjecture on the Local Converse Problem for Gn over finite fields in [17].

Proposition 3.4 ([17, Proposition 3.8]). The following (non-disjoint) decomposition
holds:

Gn =
⋃

0≤r≤[n/2], n−[n/2]≤k≤n

UnαrQnαkUn.
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3.2. Proof of Theorem 1.5

Let π1, π2 be irreducible supercuspidal representations of Gn and let (Wπ1 ,Wπ2) be a
special pair for (π1, π2). Let K be the compact-mod-centre open subgroup of Gn such
that the Wπi are K-special. By hypothesis, the local gamma factors γ (s, π1 × τ, ψ)

and γ (s, π2 × τ, ψ) are equal as functions in the complex variable s for all irreducible
supercuspidal representations τ of Gr with r = 1, . . . , [n/2]. This condition can be ex-
tended to all irreducible generic smooth representations τ of Gn by the multiplicativity of
local gamma factors. Moreover, by Corollary 2.7, π1, π2 have the same central character.
The proof goes in three steps.

Step 1. By Proposition 3.3, Wπ1(g) = Wπ2(g) for

g ∈
⋃

0≤r≤[n/2]

UnαrQn =
⋃

0≤r≤[n/2]

UnαrQnαnUn.

Step 2. For g = qαku ∈ QnαkUn ∩K with n− [n/2] ≤ k ≤ n and i = 1, 2, we have

Wπi (qα
ku) = Wπi ((qα

ku)−1) = Wπi (u
−1αn−kq−1),

since Wπi is K-special. Since u−1αn−kq−1
∈ Unαn−kQn, from Step 1 it follows that

Wπ1(qα
ku) = Wπ2(qα

ku).

Thus Wπ1 , Wπ2 agree on QnαkUn ∩ K and hence on QnαkUn ∩ UnK, since they are
bothψn-Whittaker functions. Since SuppWπi ⊂ UnK,we deduce thatWπ1(g) = Wπ2(g)

for all
g ∈

⋃
n−[n/2]≤k≤n

QnαkUn =
⋃

n−[n/2]≤k≤n

Unα0QnαkUn.

Step 3. It remains to consider the case of g ∈ UnαrQnαkUn with 1 ≤ r ≤ [n/2] and n−
[n/2] ≤ k ≤ n− 1. For any fixed u ∈ Un and p ∈ Pn, Step 2 implies that

RpαkuWπ1(q) = RpαkuWπ2(q)

for all q ∈ Pn, where we recall that Rg denotes the right translation action by g on
the Whittaker functions. We apply the functional equation (2.5) for j = n− r − 1 to the
Whittaker functionsRpαkuWπi for i = 1, 2 and any Whittaker functionWτ in W(τ, ψ−1

r ).
The local zeta function Z(RpαkuWπi ,Wτ , s; n− r − 1) is given by the integral

∫
h

∫
x

RpαkuWπi

h 0 0
x In−r−1 0
0 0 1

Wτ (h)|deth|s−(n−r)/2 dx dh,

where the integration in h is over Ur\Gr and the integration in x is over Mat(n−r−1)×r(F ).
Hence we obtain

Z(RpαkuWπ1 ,Wτ , s; n− r − 1) = Z(RpαkuWπ2 ,Wτ , s; n− r − 1).
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Since γ (s, π1×τ, ψ) = γ (s, π2×τ, ψ), by the functional equation (2.5) for j = n−r−1
we obtain

Z
(
Rwn,r

˜RpαkuWπ1 , W̃τ , 1− s; 0
)
= Z

(
Rwn,r

˜RpαkuWπ2 , W̃τ , 1− s; 0
)
.

Thus, from the definition of these zeta integrals,∫
g

(
Rwn,r

˜RpαkuWπ1 − Rwn,r
˜RpαkuWπ2

) (g 0
0 In−r

)
|det(g)|s−(n−r)/2W̃τ (g) dg = 0

for all generic representations τ of Gr , where the integration in g is over Ur\Gr . From
Lemma 3.1, we deduce that

Rwn,r
˜RpαkuWπ1

(
g 0
0 In−r

)
= Rwn,r

˜RpαkuWπ2

(
g 0
0 In−r

)
for all p ∈ Pn, u ∈ Un and g ∈ Gr . Now by definition, for i = 1, 2,

Rwn,r
˜RpαkuWπi

(
g 0
0 In−r

)
= RpαkuWπi

(
wn

(
tg−1 0

0 In−r

)
tw−1
n,r

)
= Wπi

((
0 In−r

wr
tg−1 0

)
pαku

)
.

Hence we obtain the identity

Wπ1

((
0 In−r

wr
tg−1 0

)
pαku

)
= Wπ2

((
0 In−r

wr
tg−1 0

)
pαku

)
for all p ∈ Pn, u ∈ Un and g ∈ Gr . In particular, taking g = wr we obtain

Wπ1(α
rpαku) = Wπ2(α

rpαku),

for all p ∈ Pn and u ∈ Un. This proves that Wπ1(g) = Wπ2(g) for g ∈ UnαrQnαkUn
with 1 ≤ r ≤ [n/2] and n− [n/2] ≤ k ≤ n− 1. This completes Step 3.

By combining the results from all three steps above, we obtain

Wπ1(g) = Wπ2(g) for all g ∈ Gn.

By the uniqueness of local Whittaker models for irreducible smooth representations
of Gn, the two Whittaker models W(π1, ψn) and W(π2, ψn) have trivial intersection
unless π1 and π2 are equivalent as representations of Gn, which completes the proof of
Theorem 1.5.

4. Supercuspidals with the same endo-class

K-special Whittaker functions are Whittaker functions of Gn with certain symmetry when
restricted to K. The Bessel functions of irreducible supercuspidal representations of Gn
constructed by Paškūnas and the third-named author [18] are such examples. We recall
from [18] the basics of these Bessel functions, which rely on the construction theory of
supercuspidal representations of Gn in terms of maximal simple types of Bushnell and
Kutzko [6]. We will use the standard notation from [6] and [18].
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4.1. Bessel functions

We begin by recalling from [18, Section 5] the general formulation of Bessel functions.
Let K be an open compact-modulo-centre subgroup of Gn and let U ⊂ M ⊂ K be
compact open subgroups of K. Let τ be an irreducible smooth representation of K and
let 9 be a linear character of U . Take an open normal subgroup N of K, which is con-
tained in Ker(τ ) ∩ U . Let χτ be the (trace) character of τ . The associated Bessel func-
tion J : K→ C of τ is defined by

J (g) := [U : N ]−1
∑

u∈U/N
9(h−1)χτ (gu).

This is independent of the choice of N . The basic properties of this Bessel function which
we will need are given below.

Proposition 4.1 ([18, Proposition 5.3]). Assume that the data introduced above satisfy
the following:

• τ |M is an irreducible representation of M;
• τ |M ∼= IndMU (9).

Then the Bessel function J of τ enjoys the following properties:

(i) J (1) = 1;
(ii) J (hg) = J (gh) = 9(h)J (g) for all h ∈ U and g ∈ K;

(iii) if J (g) 6= 0, then g intertwines 9; in particular, if m ∈M, then J (m) 6= 0 if and
only if m ∈ U .

When the representation τ is also unitarizable, the Bessel function enjoys another sym-
metry property, as in the finite field case in [17].

Lemma 4.2. In the situation of Proposition 4.1, assume further that τ is unitarizable.
Then

J (g) = J (g−1) for g ∈ K.

Proof. Note that 9 is unitary, since it is a character of the compact group U ; that is,
9(g−1) = 9(g). Since χτ is also unitary and χτ (gh) = χτ (hg) for g, h ∈ K, we get

J (g−1) := [U : N ]−1
∑

u∈U/N
9(u−1)χτ (g−1u) = [U : N ]−1

∑
u∈U/N

9(u)χτ (u
−1g)

= [U : N ]−1
∑

u∈U/N
9(u)χτ (gu

−1) = [U : N ]−1
∑

u∈U/N
9(u−1)χτ (gu)

= J (g) for g ∈ K.

The penultimate equality follows from the substitution u 7→ u−1 and the normality of N
in U . ut
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4.2. Maximal simple types

Following [6, Section 6], the irreducible supercuspidal representations of Gn are classified
by means of maximal simple types (J, λ), where J is a compact open subgroup of Gn
and λ is an irreducible representation of J . More precisely, (J, λ) is introduced as follows.
We refer to [6] for precise definitions of the objects introduced here.

Let V = F n, an n-dimensional vector space over F with standard basis. Thus we iden-
tify AutF (V ) with Gn and A = EndF (V ) with Matn×n(F ). Let A be a principal heredi-
tary oF -order in A with Jacobson radical P. Define U0(A) = U(A) = A× and form ≥ 1,
define Um(A) = 1+Pm. Form ≥ 0, choose β ∈ A such that β ∈ P−m\P1−m,E = F [β]
is a field extension of F , andE× normalizes A. Provided an additional technical condition
is satisfied (namely kF (β) < 0), these data give a principal simple stratum [A, m, 0, β]
of A. Take J = J (β,A), J 1

= J 1(β,A), and H 1
= H 1(β,A) as defined in [6, Sec-

tion 3]. Denote by C(A, β, ψ) the set of simple (linear) characters of H 1 as defined in [6,
Section 3].

Recall from [6, Section 6] the following definition of maximal simple types.

Definition 4.3. The pair (J, λ) is called a maximal simple type if one of the following
holds:

(a) J = J (β,A) is an open compact subgroup associated to a simple stratum [A, m, 0, β]
of A as above, such that, if E = F [β] and B = EndE(V ), then B = A ∩ B is a
maximal oE-order in B. Moreover, there exists a simple character θ ∈ C(A, β, ψ)
such that

λ ∼= κ ⊗ σ,

where κ is a β-extension of the unique irreducible representation η of J 1
= J 1(β,A),

which contains θ , and σ is the inflation to J of an irreducible cuspidal representation
of

J/J 1 ∼= U(B)/U1(B) ∼= GLr(kE),

where r = n/[E : F ].
(b) (J, λ) = (U(A), σ ), where A is a maximal hereditary oF -order in A and σ is the

inflation to U(A) of an irreducible cuspidal representation of

U(A)/U1(A) ∼= GLn(kF ).

We will regard case (b) formally as a special case of case (a) by setting β = 0 andE = F ,
and θ, η, κ trivial. In either case, we write J = E×J . With these data, any irreducible
supercuspidal representation π of Gn is of the form

π ∼= c-IndGn
J (3)

for some choice of (J,3), where 3|J = λ. We call such a pair (J,3) an extended maxi-
mal simple type.

For π an irreducible supercuspidal representation of Gn, any two extended maximal
simple types in π are conjugate in Gn. This fact allows one to associate some invariants
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to π . The simple character θ in the construction of an extended maximal simple type for π
determines an endo-class 2 = 2(π) as defined in [2]. We do not recall precisely the
definition of endo-class: it is a class for a certain equivalence relation on functions which
take values in simple characters. For i = 1, 2, let θi ∈ C(Ai, βi, ψ) be simple characters
for Gn. If θ1, θ2 have the same endo-class then they intertwine in Gn; if, moreover, the
hereditary orders A1,A2 are isomorphic then θ1, θ2 are conjugate in Gn.

Although the field extension E/F involved in the construction of a maximal simple
type in π is not uniquely determined, its residue degree and ramification index are in fact
invariants of the endo-class 2 = 2(π) and we write

f (2) = f (E/F), e(2) = e(E/F), deg(2) = [E : F ].

These are then also invariants of π so we write deg(π) = deg(2) and call it the degree
of π . We also remark that the oF -period of the hereditary order A in the construction of
any maximal simple type in π is e(2).

4.3. Explicit Whittaker functions

Let π be an irreducible unitarizable supercuspidal representation of Gn. By [3, Proposi-
tion 1.6], there is an extended maximal simple type (J,3) in π such that

HomUn∩J(ψn,3) 6= 0.

Since 3 restricts to a multiple of some simple character θ ∈ C(A, β, ψ), one finds
that θ(u) = ψn(u) for all u ∈ Un ∩H 1. As in [18, Definition 4.2], one defines a charac-
ter 9n : (J ∩ Un)H 1

→ C× by

9n(uh) := ψn(u)θ(h) (4.4)

for all u ∈ J ∩ Un and h ∈ H 1. By [18, Theorem 4.4], the data

K = J, τ = 3, M = (J ∩ Pn)J 1, U = (J ∩ Un)H 1, and 9 = 9n

satisfy the conditions in Proposition 4.1 and hence define a Bessel function J .
Now we define a function Wπ : Gn→ C by

Wπ (g) :=

{
ψn(u)J (j) if g = uj with u ∈ Un, j ∈ J,
0 otherwise,

(4.5)

which is well-defined by Proposition 4.1(ii). Then, by [18, Theorem 5.8], Wπ is a Whit-
taker function for π . Moreover, since π is unitarizable, the same is true of 3, so Wπ is
a J-special Whittaker function for π , by Lemma 4.2. By Proposition 4.1, the restriction
of Wπ to Pn has a particularly simple description: for g ∈ Pn,

Wπ (g) =

{
9n(g) if g ∈ (J ∩ Un)H 1,

0 otherwise.
(4.6)
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4.4. Proof of Proposition 1.6

Let π1, π2 be irreducible unitarizable supercuspidal representations of Gn with the same
endo-class 2. We will use all the notation of Definition 4.3 but with subscripts 1, 2.

Let (J1,31) be an extended maximal simple type in π1 such that

HomUn∩J1(ψn,31) 6= 0.

By [18, Remark 4.15], we may assume that the pair (Un, ψn) arises from the construction
of [18, Theorem 3.3]. This construction, which produces a particular maximal unipotent
subgroup and a non-degenerate character, depends only on the simple character θ1. Thus,
by [18, Corollary 4.13], the space HomUn∩J1(ψn,3) is non-zero for any extended maxi-
mal simple type (J1,3) containing θ1.

Now let (J2,32) be any extended maximal simple type in π2. The hereditary or-
ders Ai have the same period e(2) so are conjugate in Gn; replacing A2 by a conjugate
if necessary, we assume they are equal. Then the simple characters θ1, θ2 are conjugate
in Gn, by definition of endo-equivalence; again, replacing θ2 by a conjugate if necessary,
we assume they are equal. Now Ji is the Gn-normalizer of θi so we have J1 = J2. Hence,
by the remarks above,

HomUn∩J1(ψn,32) 6= 0.

Thus the characters 91
n , 92

n as defined in (4.4) are equal. Finally, by (4.6), the J1-special
Whittaker functionsWπ1 ,Wπ2 defined by (4.5) agree on Pn. Thus (Wπ1 ,Wπ2) is a special
pair for (π1, π2), which completes the proof of Proposition 1.6.

Remark 4.7. In the proof of the existence of a special pair, we do not in fact use the
assumption that the endo-classes for π1, π2 coincide, but only that J1, J2 are contained
in a common compact-modulo-centre open subgroup of G, that H 1

1 ∩ Pn = H 1
2 ∩ Pn and

that θ1, θ2 coincide onH 1
1 ∩Pn. This is significantly weaker: for example, if deg(π1) = n

and β1 is a minimal element (see, for example, [6, Section 1.4] for the definition)
then H 1

1 ∩ Pn = U [m/2]+1(A1) ∩ Pn.

5. Conductors of pairs

In this section we will prove Corollary 1.7. The techniques here are entirely different, re-
lying on the explicit computation of conductors of pairs of supercuspidal representations
from [5] and their application in [4].

5.1. Endo-classes

In [4], Bushnell and Henniart define a function F of pairs of endo-classes with the property
that, for π, τ irreducible supercuspidal representations of Gn,Gr respectively, with n >
r ≥ 1, the conductor satisfies

f (π × τ̃ , ψ) = nr(F(2(π),2(τ))+ 1). (5.1)
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Moreover, [4, Theorem C] says that this function characterizes endo-classes in the fol-
lowing way: for endo-classes 21,22,

F(21,22) ≥ F(21,21), (5.2)

with equality if and only if 21 = 22.
The final ingredient we need is that, given an endo-class 2, there is an irreducible

supercuspidal representation τ of Gr with endo-class 2 whenever r is a multiple of the
degree deg(2). This is immediate from the definitions of endo-class in [3] and of maximal
simple types.

5.2. Proof of Corollary 1.7

Let π1, π2 be unitarizable irreducible supercuspidal representations of Gn, with endo-
classes 21, 22 respectively, and suppose that deg(π1) < n. Suppose the local gamma
factors γ (s, π1 × τ, ψ) and γ (s, π2 × τ, ψ) are equal as functions in the complex vari-
able s, for all irreducible supercuspidal representations τ of Gr with r = 1, . . . , [n/2].

Set r := deg(π1), which is a proper divisor of n; in particular, r ≤ [n/2]. Let τ be
an irreducible supercuspidal representation τ of Gr with endo-class 2(τ) = 21. Then,
by (5.1) and hypothesis, we have

F(21,21) =
f (π1 × τ̃ , ψ)

nr
− 1 =

f (π2 × τ̃ , ψ)

nr
− 1 = F(22,21).

We deduce from (5.2) that 21 = 22. Then Proposition 1.6 and Theorem 1.5 combine to
imply that π1 is equivalent to π2.

Remark 5.3. The restriction of a simple character θ ∈ C(A, β, ψ) to the groupsH t+1
=

H 1
∩ Ut+1(A), t ≥ 0, determines a family of endo-classes. By considering these endo-

classes, rather than just those coming from the simple character θ , it seems likely that one
could prove a more general version of Corollary 1.7 by generalizing the function F.

However, even in the most optimistic scenario, this will leave the case where, for
i = 1, 2, we have deg(πi) = n and any simple character θi ∈ C(A, βi, ψ) in πi has βi a
minimal element. One would need to prove that the equality of local gamma factors im-
plies that one can assume β1 ≡ β2 (modP−[m/2]) to enable us to construct a special pair
of Whittaker functions (see Remark 4.7). However, even the case n = 3 seems to be very
difficult to analyze directly via the explicit construction of supercuspidal representations,
even in the tame case.
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