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Abstract. In this paper we consider the periodic Benjamin—Ono equation. We establish the in-
variance of the Gibbs measure associated to this equation, thus answering a question raised in
Tzvetkov [28]. As an intermediate step, we also obtain a local well-posedness result in Besov-type

spaces rougher than L2, extending the L? well-posedness result of Molinet [20].
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1. Introduction

In this paper we study the periodic Benjamin—Ono equation
us + Huyy =uuy, ({,x)el xT, (1.1)

where [ is a time interval and T = R/27Z. Also the Hilbert transform H is defined by
T-I\u(n) = —i-sgn(n)u(n), where we understand that sgn(0) = 0. Since equation (1.1), as
well as the truncated versions to be introduced below, preserves both reality and the mean
value of u, we shall assume throughout this paper that u is real-valued and has mean zero.
Under this restriction, (1.1) is a Hamiltonian PDE with conserved energy

1/2

Elu] = /(%mx ul® = tu?). (1.2)
T

Being completely integrable, it also has an infinite number of conserved quantities at the
level of H°/? for 0 < o € Z, including the L? mass.

We briefly summarize the relevant previous study of (1.1). First, the classical energy
method yields local well-posedness in H° (T) for ¢ > 3/2 (see [17]). By conservation
laws, this implies global well-posedness in (say) H2. In [24], Tao introduced a gauge
transform to prove the well-posedness result in H! for the Euclidean counterpart of (1.1).
This approach was then adapted by Molinet—Ribaud [21] to prove the H' well-posedness
in the periodic case. Then Molinet [19], [20] further improved this result to H 1/2 and
then L2. For the Euclidean version we now also have well-posedness in L? (see Burg—
Planchon [8] and Ionescu—Kenig [16]).
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Starting from the pioneering work of Lebowitz—Rose—Speer [18] and Bourgain [2],
there has been considerable interest in constructing Gibbs measures for Hamiltonian
PDEs and proving their invariance. From the dynamical system point of view, this pro-
vides the natural invariant measure for the system (which is the first step in studying this
system’s long time behavior); from the PDE aspect this is also important since it tells
us exactly how rough a space can be so that we still have strong solutions for generic
initial data. In this regard, such results can be viewed as variations on the theme of clas-
sical low-regularity well-posedness; see [12] for a general discussion about the notion
of well-posedness in probabilistic sense. We list here several important results in this
field: Bourgain [2, 3, 4, 6, 7], Burg—Thomann—Tzvetkov [9], Burq—Tzvetkov [10, 11],
Colliander—Oh [13], Nahmod—-Oh-Rey-Bellet—Staffilani [22], Tzvetkov [26, 27].

The study of (1.1) along these lines was initiated in Tzvetkov [28] where the Gibbs
measure was rigorously constructed (see [28] for details; this construction is also reviewed
in Section 4 below). In order to to prove its invariance, one has to construct global flow
on its support; since this measure is supported in spaces rougher than L? (namely L?(T)
has measure zero), the well-posedness result of Molinet [20] will not apply. Nevertheless,
in [28, Section 5], the author made several important observations regarding the behavior
of the gauge transform and second Picard iteration for random data, which suggest that
global well-posedness and measure invariance may still hold despite the low regularity.

In the current paper we will solve this problem by establishing the invariance of the
Gibbs measure. To be precise, we will construct an almost-surely defined (and unique)
global flow for (1.1) in some Besov-type space Z; rougher than L2, and prove that the
Gibbs measure is kept invariant by this flow.

Remark 1.1. Very recently, Tzvetkov—Visciglia [29, 30, 31] have constructed (and
proved the invariance of) weighted Gaussian measures associated to the conserved quan-
tities of (1.1) at the level of H%/? for o > 4, and Deng—Tzvetkov—Visciglia [15] proved
the o € {2, 3} case. The case o = 0 still seems out of reach with current techniques.

1.1. Notation and preliminaries

Throughout this paper, the standard notations, such as <, 2 and O(x), will always be
used in terms of absolute values. The Japanese bracket (x) will be (1 + Ix|%)1/2 and
N will denote the set of nonnegative integers; the characteristic function of a set E is
denoted by 1z and if E is finite, its cardinality is denoted by #E. We will use P, to
denote (spatial) frequency projections; for example P, (or P<g) will be the projection
onto strictly positive (or nonpositive) frequencies, and P>, will be the projection onto
frequencies with absolute value 2 A. We may use the same (Roman or Greek) letter in
different places, but its meaning will be clear from the context.

Define V to be the space of distributions on T that are real-valued and have mean
zero; in other words, f € V if and only if f(—n) = f(n) and f(O) = 0. Let Vy be the
subspace of V containing functions of frequency not exceeding N (so that Vy is identified
with R?V), and Vﬁ be its orthogonal complement. Let Ty and Hi be the projections to

the corresponding spaces; we actually have [Ty = P<y and HJA-, =P.y.
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We use a parameter s > 0 that will be chosen sufficiently small. The large con-
stants C and small constants ¢ may depend on s; any situation in which they are in-
dependent of s will be easily recognized. We choose a few other parameters, namely
(p,r,b,7,q,k, v, €), as follows:

_ 2
125
q=1+s3/2, K:l—s5/4, y=2—s2'5, €=ys

p +s52, r=1/2—1/p, b=1/2—5s"8 =838

7/4

When s is small enough, we have the following hierarchy of smallness factors:

P «2—yKr—s=1/2-1/p—s<K1/2—b
Lek8—TKg—-1<Kl—k<s<s'/? (1.3)

In (1.3) each <« symbol connects two numbers that actually differ in scale by a power of s.
We will also use 04 to denote some small positive number (whether it depends on s will
be clear from the context); the meanings of 0—, and a+, a— are then obvious. Finally,
using these parameters, we can define the space Z; by

_ rpd| 7y 1/p
I1£11z, —Zg(gdzp O (1.4)

Note that we are including n = 0 when d = 0.

In addition to (1.1), we will introduce finite-dimensional truncations of it. Fix a
smooth, even cutoff function ¥ on R which equals 1 on [—1/2, 1/2] and vanishes outside
[—3/4,3/4]. Let 1 — ¢ = . For a positive integer N, we define the multiplier Sy by

Sn T () =y (n/N) F (). (15)

We also allow N = oo, in which case So, = 1. The truncated equations are then
U+ Huyyy = Sy(Syu - Syuy). (1.6)
Notice that (1.6) conserves the L2 mass of u; also, if « is a solution of (1.6) whose spatial

Fourier transform #%(n) is supported in [n| < N for one time ¢, then this automatically
holds for all time.

1.2. The main results, and major difficulties

With these preparations, we can now state our main results. The most precise and detailed
versions are somewhat technical, and will be postponed to Section 13.
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Theorem 1.2 (Local well-posedness). For any A > 0, let T = T(A) = C~leCA4;
then for the metric space BOT in Definition 12.1 containing B*([—T, T] — Z1), which
denotes the space of bounded functions on [—T, T| valued in Z,, we have the following.
Forany f with || fllz, < A, there exists a unique function u € BOT such that u(0) = f,
and u satisfies (1.1) on [—T, T] in the sense of distributions (we may define uuy as a
distribution for allu € BOT ; for details see Remark 12.2). Moreover; if we write u = ®f,
then the map ®, from the ball {f : || fllz, < A} to the metric space BOT, will be
a Lipschitz extension of the classical solution map for regular data, and its image is
bounded away from the zero element in BOT by CeCA.

Theorem 1.3 (Measure invariance). Recall the Gibbs measure v on V defined in [28],
which is absolutely continuous with respect to a Wiener measure p (see Section 4.1 for
details). There exists a subset ¥ of V with full p measure such that for each f € %,
equation (1.1) has a unique solution u € (- BOT (in the sense described in Remark
12.2) with initial data f. If we denote u = ®f = (O f);, then for eacht € R we get a
map f +— @, f from X to itself. These maps form a one-parameter group, and each of
them keeps invariant the Gibbs measure v.

Since we are solving (1.1) in Z, we would like to know that the solution « is continuous in
t with values in Zy; this is not true. The discontinuity, which already exhibits the subtlety
of (1.1) below L2, is due to a modulation factor needed to eliminate one logarithmically
growing term (see Section 7.2), and can be characterized explicitly.

Theorem 1.4. (1) Let u € BOT be the local solution described in Theorem 1.2. Let
ur(t) denote the k-th Fourier coefficient at time t and define

t 1 n
8a0 = [ 3 et ar (1.7)
0 <=0

forn > 0and extend it to be odd for n < 0. Then A, (t) grows at most logarithmically
with n, and the function u*, defined by

W) (1) = e Dy, (1)

for all time, is continuous in t with values in Z;.
(2) Let f € X and let u be the global solution described in Theorem 1.3. Let the func-
tion u®, real-valued and having mean zero, be defined by

# _ itlogn
U")n (1) = € S up(1)
foralln > 0 and t. Then u* is continuous in t with values in Z;.

The first step in solving (1.1) (see [24] or [20]) is to use the gauge transform to obtain
a more favorable nonlinearity; this already becomes problematic with infinite L? mass.

In fact, when we use the gauge w = ]P’+(ue_%3; l”) as in [20], the evolution equation
satisfied by w would be

i i
(B — i0p)w = Eaxm(ax—lw -9, P_(wd; 'w)) + ZPO(uz)w +GT,  (1.8)
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where GT represents good terms. Here one can recognize the term Py (u?)w that can be
infinite for u € Z;. However, when we further analyze the cubic term above, we find an-
other contribution, namely the “resonant” one, which is basically some constant multiple
of Po(Jw|?)w. It then turns out that the coefficients match exactly to give a multiple of
||w||i2 — ||]P’+u||iz. Since (at least heuristically)

w :P+(ue_%a~;l“) =P,u ~e_%a;1”+GT, (1.9)

this expression will be finite even if « is only in Z.

The next obstacle to local theory is the failure of standard multilinear X*? estimates,
which play a crucial role in [20]. Recall from (1.8) that a typical nonlinearity of the
transformed equation looks like

Py (37w - 9, P_(wady 'w)). (1.10)

If the frequency of 8, 'w appearing in wWa_ "w is low, we may pretend this frequency
is zero, obtaining a quadratic nonlinearity which is similar to the KdV equation. In fact,
there is a similar failure of bilinear estimates in solving the KdV equation below H~!/2,
which is necessary in proving the invariance of white noise. This problem was solved in
[23] by considering the second iteration, a strategy already used in [5]. We will use the
same method, though the fact that our nonlinearity is only quadratic “to the first order”
makes the argument a little more involved.

There is also a special cubic term, omitted in (1.8), which involves the function z =
P_ (ue’%"’; l“). Recall that it is w, not z, that satisfies a good evolution equation; therefore
z is not supposed to be bounded in any X*? space where s is close to 0 and b close
to 1/2 (note z is basically w multiplied by a smoother function, but X** spaces are
not closed under such multiplications). In [20], Molinet introduced the space X ~17/8 to
accommodate z (he actually considered u, but the estimates for z will be the same). In our
case, not only do we need (a slightly different version of) this space, but we also have to
introduce an atomic space characterizing, roughly speaking, how z is “shifted” from w;
see Section 2.2 for details.

Passing from local theory to global well-posedness and measure invariance is another
challenge. The only known method is to produce finite-dimensional truncations such as
(1.5), exploit the invariance of the (finite-dimensional) truncated Gibbs measures, and use
a limiting procedure to pass to the original equation. This requires, among other things,
uniform estimates for solutions to (1.6). The major difficulty here is that the gauge trans-
form of [20] is now inadequate for eliminating all bad interactions. To see this, recall that
when w = P, (Mu) with some function M, then

(0 —10xx)w = Pp[—2iM - 0xP_u + u - (0y — 10xx) M ]
+Pi[M - S(Su - Suy) —2iMyuy],
where we assume u satisfies (1.6) with § = Sy. The terms in the first bracket enjoy a

smoothing effect and are (more or less) easier to bound, and those in the second bracket
will be most troublesome. If S = 1, this second bracket can be made zero by choosing

ig—1 C e . . .
M = e~ 2% “; but this is impossible when S = Sy with N finite but large. However, note
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that we only need to eliminate the “high-low” interactions where the factor Su contributes
very low frequency and Su, contributes high frequency, and this is indeed possible if we
replace multiplication by M with some carefully chosen operator defined from a com-
bination of S (which is a Fourier multiplier) and suitable multiplication operators. See
Section 5.1 for details.

Finally, in order for the limiting procedure to work, we must compare a solution to
(1.6) with a solution to (1.1). Since ¥ (n/N) equals 1 only for |n| < N /2, the difference
will contain some term involving factors like P> yu, which does not decay for large N
due to the /> nature of our Z; norm. Nevertheless, these bad terms eventually add up
to zero, at least to first order, which is enough for our analysis. Note that the bad terms
involve i factors which are unique to (1.6) and are not found in (1.1); this cancellation is
really something of a miracle. See Section 6 for details.

1.3. Plan of this paper

In Sections 2 and 3 we will define the spacetime norms needed in the proof, and prove
some linear estimates as well as auxiliary results. In Section 4 we provide the basic prob-
abilistic arguments. We next introduce the gauge transform for (1.6) and derive the new
equations; these will occupy Sections 5-7. From Section 8 to Section 12, we will prove
our main a priori estimates. Combining these estimates with the standard probabilistic
arguments, we will prove in Section 13 our main results, which are (local and almost sure
global) well-posedness for (1.1), invariance of Gibbs measure, and modified continuity.

2. Spacetime norms

2.1. The easier norms

For a function u defined on R x T, we define its spacetime Fourier transform u, 3 by

u(t,x) = Z/ i{\n’gei(nx-‘rgt) dg,
R
n

and denote i, ¢ = U, Fi= Un g —njn- Thus we have three ways to represent u: u(t, x) as
a function of ¢ and x, i[n Fasa function of »n and &, and Zi,,,g as a function of n and &,

where the & andg are always related by E = & — |n|n. Since we will be dealing with more
than one function, n and £ may be replaced with other letters possibly with subscripts,
say m1 or fB,. To simplify the notation, when there is no confusion, we will omit the
“hat” and “tilde” symbols above u; for example, if we talk about an expression involving
Um.5, it will actually mean %, 5. The appearance of functions f defined on T will not be
too frequent, but when they do appear, we will adopt the same convention and write for
example f, instead of f(n).

We will need a number of norms in our proof. As a general convention, when we write
a norm as [2L!, this will mean the l,%Lé norm for some # (which equals the Z%Lé norm
for u); the meaning of L'/ will thus be clear. The spacetime Lebesgue norms will be



Invariant Gibbs measure 1113

denoted by LSL® etc. For example, in this notation system the expression ||u|| 15,07 L1
20"

~ 1/p
sup(3 el )

actually means

d=0 n~2d
Next, observe that up to a constant,
3 2
el =Y / /N o Tuwz| @ @.1)
neZ ! Rl +nytny=n JE1+62+86=¢ ;|

It follows that if |u, ¢| < v,¢, then |lull;6;6 < ||Vl 676. For any function u we define
NMu by (Nu)pe = lungl; then |[ullz676 is a norm of u. Now we list the norms we will
use:

lullx, = lln)* (&) ullp 2. (2.2)
lull = 16m) e o0 23)
lullxs = 1{n) " “Nullops, 2.4
lullx, = I1n) = (&) ully 2, (2.5)
lullxs = ”“”1320“1324’ (2.6)
2
lullxg = lln)" (€)' ull2, 2.7)
1/8
lullxy = 1) &) Pl o 1o 23)
We also recall the norm Z; defined in Section 1.1, and rewrite it as
£z = 10 Fliger 2.9)

2.2. Another norm

We will need another spacetime norm, denoted by Xg, which is a little tricky to define.
Consider the space of functions u of (n, &) € Z x R, normed by

lullo = llullzqp- (2.10)
The additive group Z acts on this space by
(Tngu)(n, &) = u(n +no, & + |n + nol(n + no) — |nin). (2.11)
If we write
S:ZxR—>ZxR, (n&) (n,é):(n,g+|n|n), (2.12)

then we would have

Tongt =08 0Ty oS!, (2.13)
where T, : Z x R — Z x R is the translation (n, E) — (n + ng, E). We then define the
atomic ) norm by

) 1/2
lully = mf[Z(m)s i tu =)o, |mauille < 1}. (2.14)

1 1
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The Xg norm is then defined by

lullxs = sup [IPpaully := sup [P pai]ly, (2.15)
d>0 d>0

where the last equality is due to our convention.

Remark 2.1. In (2.14), the convergence takes place in a suitable weighted L rll ¢ space.

Therefore, if v is rapidly decaying in n and & (for example, |v| < (In| + |€] + 1)1
will suffice), the sum ), o;(u;, v) will converge absolutely to (u,v) provided that

172 . . . .
Doin)® / || is finite, where (u, v) denotes (up to a constant) the standard pairing

(u, v)=/ u(t,x)v(t,x)dtdx:Z/ Un £ Un g dE. (2.16)
RxT — JR

2.3. The space in which we work
Define
lully, = llullx, + lulx, + Nullx, + lullxs + lulix;, (2.17)
lully, = llullx, + llullxs + llwllx, + lullxs- (2.18)
Here, for each space Z (which can be Y7, Y> or any other space) we define
lull zr = inf{{lvlz : vi[—7,77 = ul-7,77}- (2.19)

This [T, T] may also be replaced by any interval 1.
The main spacetime norms we shall use in the whole bootstrap argument are Y. 1T
and Y2T , while other norms may be introduced whenever necessary.

3. Linear estimates, and more

Here we shall prove our main linear estimates, as well as some auxiliary results.

Proposition 3.1 (Strichartz estimates). For any function u, we have
lull pepe S 11(m)7 (8)Pull 22 (3.1
provided that

(k, o, B) € {(2,0,0), (4,0,3/8), (6,5, 1/2+57), (00, 1/2+ 5>, 1/2+s°)}.  (3.2)

Proof. When (k, o, B) = (2,0, 0), the inequality (3.1) is simply Plancherel; when in-
stead (k, o, B) = (00, 1/2 + 2, 1/2 + SS), this can also be easily proved by combining
Hausdorff—Young and Holder. When (k, o, B) = (4, 0, 3/8), the inequality reduces, after
separating positive and negative frequencies and using time inversion, to the L* Strichartz
estimate for the linear Schrédinger equation on T, which is well-known: see for example
[1, Proposition 2.6] or [25, Proposition 2.13].
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When (k, o, ) = (6, s>, 1/2 + 5°), (3.1) basically reduces to the L° Strichartz esti-
mate proved in [1, Proposition 2.36]; for the reader’s convenience we also include a proof
here. By separating positive and negative frequencies and using time inversion, we only
need to consider the case for the Schrodinger semigroup, thus in this proof our convention
will change to & = & + n”. Now for any function u with the right hand side of (3.1) not
exceeding 1, we may write v, ¢ = (n)* (€)"/2+’u, . using our (different) convention,
and compute up to a constant that

3

Wyz= Y T100™ G S * fadim sz (3.3)

ni+ny+n3=nj=1

where

(Fde = (E)2 0, ¢ (3.4)

By our assumption we have || (&) 1/24s? Suillp2 S Ay, where {A,} is some sequence satis-
fying ||A|l;2 < 1. By (the Fourier version of) the product estimate for H° (R) spaces, we
deduce that

_ _ S
fay * fon * Fadn = 727 @aymansdns N 8nymansllzz S Any AnyAny. (3.5)

Therefore we can estimate
3

@gP < (2 TTe ™ E 4t e+ ™)

ni+tny+n3z=nj=|

2
X < Z |(gn1n2n3 )§+n%+n%+n§| )

ni+ny+n3=n
Now to finish the proof it will suffice to show

3
> o E+ndandend ¥ <c (3.6)

ny+ny+nz=ni=1

when n and E are fixed. Now suppose the maximum (in absolute value) of n; and E = E+

. —_ / . _ g _ 6 /
n%—i—n%—i—n% is comparable to 24 and B ~ 29'; then the summand is at most 2~9 —5° @d+d’)

so it will suffice to show that there are at most 2d/+57d choices for (n1, ny, n3). Since their
can be at most 2¢ possibilities for n% + n% + n%, we only need to show that there are at
most 2s7d choices for (n1, na, n3) if we require |n;| < 24 and fix ny + n2 + n3 = n and
n?+n3+n3. Butthenm; = 3n;—n will be integers fori € {1, 2}, and m}+mmy+m3 will
be a fixed integer not exceeding C23?. The result then follows from the divisor estimate
for the ring Z[e¥ /3], m]

By Proposition 3.1 and interpolation, we get a series of LXL¥ Strichartz estimates for all
2 < k < oo. It is these that we will actually use in the proof; we will not care too much
about the exact numerology because there will be enough room whenever we use these
estimates.
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Proposition 3.2 (Relations between norms). We have

lullxs < lullx, + lullx,,  lulixg S lellxs, (3.7
lullix, + lulx, + lullxs + lullx, < lellx. (3.8)

This in particular implies ||u||x; Slully, if 1 <j<8andj #6.

Proof. By Proposition 3.1 and hierarchy (1.3) we know that
_ S
lullxy S IHm) =2 ()2 )2 2. (3.9)

Comparing this with the definition of X| and X4, noticing that y < 2 and by (1.3) and
Holder,

lullx, = 1n)~</*&) 1212,

we will be able to prove the first inequality in (3.7) provided we can show

(T S e + )T (3.10)

But this is clear since by (1.3), the left hand side is controlled by the first term on the
right hand side if (§) > (n)1% and by the second term if (§) < (n)1% The second
inequality in (3.7) is also easy, since we only need to prove [lu|y S |lull;q;2, whichis a
direct consequence of the definition (2.14), if we choose to have only one term (with the
corresponding n; = 0) in the proposed atomic decomposition.

Now let us prove (3.8). The X norm is controlled by the X¢ norm because s < r,
b < 1/2+4 2, and 2 < p. For basically the same reason we can use Holder to show
lullx, + lullx; S llullx,. Finally, to prove |lullxs < |lullxs, we only need to show that

llgelle S I1(E) 1/ 2+S2gg |12, but this again follows from Holder since g > 1. O

Next, we introduce the (cutoff) Duhamel operator £ defined by

t
Eu(t,x) = X(t)/ X (@) (e” U oy (1)) (x) dr (3.11)
0

where x (¢) is a cutoff function (compactly supported and equal to 1 in a neighborhood
of 0). Here and below we shall use many such functions, but unless really necessary, we
will not distinguish them and will denote them all by yx (for example, we write x> = x).
We shall summarize the required linear estimates for £ in Proposition 3.4 below, but
before doing so, we need to introduce two more norms:

lullxy = ) ulye e - (3.12)

lullxig = 10" &) "l 1o (3.13)
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Lemma 3.3. Suppose v(t, x) = Eu(t, x). Then with constants c;,

PN (X * tn x) ~
Une =c1(X *(n l(X *Up s)y))e + C2</]R —nn sal dﬁ) - XE- (3.14)

Here the 1/n is to be understood as the principal value distribution. This operator obeys
the following basic estimates, valid for all o, B € Rand 1 < h, k < oco:

1) (VP Eull prge S 1) (&)Y ull e + 11Gm)° () ull i1, (3.15)
1) (€Y Eullpepn < IHm) (EYF ™ ull e pn 4 11()7 (E) ull g (3.16)

Note the reversed order of norms in the second term on the right hand side of (3.15). If
moreover B > 1 — 1/h, we can remove the I*L' norms. Finally, by commuting with P
projections, we get similar estimates for norms like X, and Xs.

Proof. The computation (3.14) is basically done in [5]. In our case, noticing that multi-
plication by y (¢) corresponds to convolution with ¥ on the “tilde” side, we only need to
express the Fourier transform of f(; u(t") dt’ (which is exactly the Duhamel operator on
the “tilde” side) in terms of u(¢). We compute

t
/ uHdt' = lu *sgn(t) + l/ u(t')sgn(t’ydr'. (3.17)
0 2 2 Jr

On the Fourier side, these two terms give exactly the two terms in (3.14) after another
convolution with ¥.

We will only prove (3.15), since the proof of (3.16) is basically the same; also notice
thatif 8 > 1 — 1/h, then

lwllepr = min{wllppn, Twl ) < ming[EPwllupn, 16E)Pwl i

for w, ¢ = (n)° (é)’lun,g, by Holder. Now to prove (3.15), we first consider the second
term of (3.14). Due to its structure, we only need to prove for any function z = z¢ that

/ (&% 20n dn‘ < IE 2l (3.18)
R n

By considering || 2 1 and |p| < 1 separately and using the cancelation coming
from the 1/n factor, we can control the left hand side by ()~ (z = Xyl (which
is easily bounded by the right hand side of (3.18)), plus another term bounded by
1{n) =18, (z * X)|l L. If we shift the derivative to X to get rid of it, we can again bound
this expression by the right hand side of (3.18).

Next, we consider the first term of (3.14). Again we consider the terms with || 2 1
and || < 1 separately (by introducing a smooth, even cutoff, ¢, say). The part where
In| 2 1 is easy, since convolution with ¢ is bounded on any weighted mixed norm
Lebesgue space we have here, and 1/7 is comparable to ()~! when restricted to the
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region |n| 2 1. Now for the region |n| < 1, we can actually prove for y = yg¢ and
arbitrary K > 0 that

(e (o)),

which easily implies our inequality. To prove this, let X * y = z, and compute

~ (¢ — P2y — 20 Xe—n — X
(X * <_Zn = Xr———=dn + S Gy dn.
n o i n mgt

From this we can readily recognize a decay of (z)~X, and it will suffice to prove that
sup, <1zl S (€)X y]l,1, but this will be clear from the definition of z. O

SO KIE Kyl (3.19)

Proposition 3.4. We have

I€ullxe S IE  ullxg,  NEullx, SIE)  ullx, (3.20)
I€ullx, + I€ulx, S IE)  ullx, + 1E) ullx, S lullxy,. (3.21)
I1€ullx, < lullxy S lullxes  NEullxs < Nullx,- (3.22)

Moreover, suppose u is such that u, g is supported in {(n,&) : n ~ 24, & pe Zd}for
some d. Then

IEullxs + IEullx, S NE)  ullx, + I1E)  ullx,. (3.23)

Finally, notice that all these estimates naturally imply the dual versions for the bounded-
ness of £

Proof. By checking the numerology, we see that (3.20) is a direct consequence of Lem-
ma 3.3. To prove the first inequality in (3.21), we use Lemma 3.3 to conclude

IEullx, + N1Eullx, S IE)  ullx, + 166 ullx, + 1) &) ullyppr (3.24)

and note that the last term can be controlled by 16E) | x, also. To prove that
||($)’1u||x2 < llullx,. one first commutes with IP_,q, then controls the IPL' norm by
the L'/? norm, then uses Holder (note the hierarchy (1.3)). To prove that || (&)™ u/| x, S
lull x,,, one first replaces the |[(n)® * [|;» norm by the larger ||(n)" ”ldzf)’:ﬁd norm, then

commutes with P_,q, and controls the /7 L? norm by the L?/” norm and uses Holder
again. Along the same lines,

IEullx, S I4E) " ullx, + 1(6)  ullx,, (3.25)
1€ullxs S IHE ullge o o +1E) ™ ullxs, (3.26)

where the first term on the right hand side of (3.26) is bounded by || &y X,, and the
second terms on both right hand sides are bounded by the X ¢ norm, by controlling the
1P L? norm by the L2I? norm and using Holder. Also ||u|lx,, < llulx, by Holder. This
proves (3.22).
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Let us now prove (3.23). For the X7 norm we use (3.25), and the support condition will
easily allow us to control the second term on the right hand side of (3.25) by || (&) u/| X -
For the X5 norm, we only need to bound the second term on the right hand side of (3.26)
by || (§>_1M||X1- Since we can restrict to [n| ~ 2¢ and |£] > 24 we can bound this term
by

€)M ull o S IE ull 22 = 1(E) ull2y2
S 20PN ey b=y 0 < 2@ D ey Ty

where o’ = 1/2—1/p—s > 0,0 = —1/2—-1/2qg')sothatc +¢’ —b+1 < 0
by (1.3). O
Next we will prove two auxiliary results about our norms Y; and YjT, which are defined
in Section 2.3. They will be used to validate our main bootstrap argument.

Proposition 3.5. Suppose j € {1,2}, and u = u(t, x) € Y} is a function that vanishes at
t = 0. Then with a time cutoff x (recall our convention about such functions) we have,
uniformly in T < 1,

Ix (T Dully; S lully,. (3.27)
If u is smooth, then also

lim || x (T 'Hully, = 0. (3.28)

T—0 /

Proof. We first assume u € Y; and u(0) = 0. We may also assume that u is supported
in [t| < 1. Since on the “hat” or “tilde” side multiplication by x(T~'¢) is just con-
volution with T x7¢, we need to prove the uniform boundedness of these operators on
spaces involved in the definition of Y;, as well as the corresponding limit result when u
is smooth. The bound in X3 is obtained by decomposing this convolution into transla-
tions (which preserve the X3 norm) and integrating them using the boundedness of the
L! norm of Tj(}g. The bound in Xg follows from the bound in )/, which is valid be-
cause this convolution does not increase the & (or quz) norm, and commutes with the
action described in Section 2.2; the bounds in X, and X5 are shown in the same way.
The remaining bounds will follow if we can bound this convolution in weighted norms
1{(€)° yll;2, where 0 < o < 1, for complex-valued functions yg such that fR yedé = 0.
Namely, we need to prove

1m v * Txre)yllez S I1E)7 yell 2 (3.29)

Also, by Proposition 3.2 we can control the Y7 and Y; norms by X4 and Xg. Thus in order
to prove (3.28), we only need to prove that the left hand side of (3.29) actually tends to
zero when T — 0, for any fixed Schwartz y with integral zero. By taking inverse Fourier
transform, the problem can be reduced to proving

Ix (T~ Dyullge < lullge (3.30)

for T < 1, and the limit
Tlimo Ix (T~ 'u )| e =0, (3.31)

for u € C2° such that u(0) = 0. But these are proved, in a slightly different but equivalent
setting, in [14, Lemma 2.8]. O
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Proposition 3.6. Suppose u = u(t, x) is a smooth function defined on R x T. Then for
J € {1,2}, the function T > 0 +— M(T) = |lullyr satisfies M(T 4+ 0) < CM(T —0)
J

forall0 < T <1, and also M(0+) < Cllu(0)|lz,.

Proof. First we prove the estimate for M(0+). Let u(0) = f and v(f,x) =

u(t,x) — e "M% £(x). Since v is smooth and v(0) = 0, Proposition 3.5 shows that

lvllyr — O when T — 0. It then suffices to prove that for some cutoff x (¢), we have
J

Ilx (0)e™"H%x flly. < || fllz,. Note that on the “tilde” side, the function x (r)e~"H%x f
simply becomes Xz f,; thus this inequality is basically trivial if we take into account that
the Z| norm is stronger than the norm || (n) ~! f ||z, and the norm ”f”l;iolizd.

Next, we shall prove that M(T + 0) < M(T) for 0 < T < 1. Namely, suppose u
is a smooth function, and 0 < 7 < 1 is such that |u|,r < 1; we want to prove that
J

lleell 7 < 1 for some T’ > T. Actually we only need to prove ||u||Y[,T,T/] < 1, since
; .

J J
we can use the same argument to move the left point also. Now, due to the presence of
X» norm in the definitions of both Y;, our assumption implies [|u(T)[z, < 1, therefore

~

by what we have just proved, u; = e~ =T H%xy (T satisfies the estimate [|u lyr <1
J
forall T < T’ < 1. Thus we only need to bound ||“2||Y[—T,T’J for some T/ > T and

J
uy = u — uj. Since u>(T) = 0, by choosing § small enough we can produce a function v
coinciding with us on [T — 103, T + 105] such that ||v]|y, < 1 by Proposition 3.5. Also
since [luz|lyr < 1, we may choose w coinciding with up on [—T, T] such that ||w||y, < 1.
J

Note v(T) = w(T) = 0. Next, choose r; € C* supported on [—9, 10] that equals 1 on
[—1, 9]. Define

u3() = (1 =913~ = T + Y18~ ¢ = THv(@). (3.32)

Then we can verify that u3 = up on [T, T'] with T’ = T + 98, and by Proposition 3.5
we have [luzly; < 1, as desired.
Finally, let us prove that M(T) < M(T —0) forall0 < T < 1. Suppose Ty 1 T; we

can find u* coinciding with u on [—Tj, Tx] such that ||uk||yj < 1.Since T < 1, we may

assume u* are supported in |f| < 1. By the uniform boundedness in X4 norm, and the

fact that on the “tilde” side each u* equals itself convolved with some 5@, we conclude
that (uk)n,g has second order £-derivatives bounded by (say) (n)19. We therefore extract
a subsequence so that {¥*}, viewed as a sequence of maps from R¢ to some weighted l,%
space, converges uniformly in any |£| < R. In particular this implies the convergence as
spacetime distributions; thus the limit, denoted by u*, must coincide with u on [-T, T].
It therefore suffices to prove |lu* Iy < 1. The bounds for the X1, X5, X4 and X7 norms

immediately follow from distributional convergence; for X3, note that the |(uk)n,§| also
converge uniformly to |u, ¢| in any |§] < R for any fixed n, thus MNuk (recall Section
2.1 for definition) will converge to 9u* as spacetime distributions, therefore the X3 norm
of u* will also be bounded by O(1).

It remains to bound the X3 norm of u*. By commuting with P_,s, we may assume
that ||uk||y < 1. For any bounded function v = v, ¢ with compact (n, £)-support, we
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have (u*, v) — (u*, v) with the standard pairing (u, v) as in (2.16). By the definition of
the ) norm we can easily see that

16, )] < 1l - sup (10) ™ Ingvll e < sUp (n0) ™ Ingvll e (3.33)
no€Z no€Z

Denote the right hand side by ||v| z. Then |(u*, v)| < ||v||z for v with compact (n, §)-
support. Now consider any v with |[v]|z < 1 (so in particular v € L9'1%). We produce
a sequence vR = v - 1yjy/4 i ig)<k) 50 that [[vR]|z < 1, and vR — v in L7[2, thus
(u*, v®) — (u*, v) (notice that u* € X4 and is supported in some || ~ 2¢, thus we have
u* € L7[?). This implies |(u*, v)| < 1 for all v such that ||v]|z < 1. Since a priori we
have u* € L9412 C ), and it is easily checked that ) is a Banach space, we may invoke
the Hahn—Banach theorem to conclude ||u*||y) < 1, provided that we can identify the dual
space of ) with Z. Now clearly each element in Z gives a linear functional on ) whose
norm equals the Z norm; on the other hand, if we have a (bounded) linear functional on
Y, it must be bounded on L9/, thus it is given by pairing with an element of L91?, and
then by considering the action of Z on this function, we conclude that it is actually in Z.
O

4. Relevant probabilistic results

4.1. Review of the construction of Gibbs measure

In this section we briefly review the construction of the Gibbs measure v as given in [28].
This measure is defined by adding a weight to some Wiener measure p, so we first de-
scribe the Wiener measure.

Consider a sequence {g;, },~0 of independent complex Gaussian random variables liv-
ing on some ambient probability space (2, B, P), which are normalized so that E(|g,|?)
= 1. We may also assume that |g,| = O({(n)'?) everywhere on €; this assumption is just
in order to define the map f and is irrelevant otherwise. Letting g_,, = g,, we define the
random series

gn(w) inx
H;zﬂ % 4.1)

as a map from € to V (recall that V is the subset of D’(T) containing real-valued distri-
butions with vanishing mean). This then defines the Wiener measure p on V by p(E) =
P~ (E)). For each positive integer N, if we identify V with Vy x Vi, then the measure
dp is identified with dpy X d,of\,-, with the latter two measures defined by

pn(E) = P((TINHI(E)),  py(E) = P((TIxf) "' (E)).

Fix a compactly supported smooth cutoff £, 0 < ¢ < 1, which equals 1 on some
neighborhood of 0. Consider for each N the functions

On(f) = C(ITIy F12, — aw)es S8, 4.2)
65(f) = ¢TIy [ 112, — a)ed o@D’ 4.3)
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where we recall [Ty = P<y as in Section 2, Sy is as in (1.5), and

N
1
ay =)~ =E(INNfIZ,).

n=1

Clearly 6y and 91%, only depend on Iy f, thus they can also be understood as functions
on Vy. Define measures

dvy =6Oydp, dviy =6ydpy, dvi =06%dp, dvS =65 doy.

Then we could identify dvy and dvf\, with dvy, x dp,{,- and dvf\’, X d,o]JV-, respectively.
Moreover, if we identify Vy with R?" and thus denote the measure on Vy corresponding
to the Lebesgue measure on R2N by Ly, then with some constant Cy,

dvy = Cne(IfI72 — an)e 2N d Ly, (4.4)
dviy = Cne(If 172 —an)e 2EU N d Ly, (4.5)

with f here denoting some element of Vy, the Hamiltonian E as in (1.2), and the trun-
cated version Ey being

Exlf]= fT (L1822 — Lisw ). 4.6)

The main result of [28] now reads as follows.

Proposition 4.1 ([28, Theorem 1]). The sequence 9}{, converges in L" (dp) to some func-

tion 0 forall 1 <r < oo, and if we define v by dv = 0 dp, then vf\, converges strongly

to v in the sense that the total variation of their difference tends to zero. This v is defined
to be the Gibbs measure for (1.1).

Remark 4.2. Only weak convergence is claimed in [28], but an easy elaboration of the
arguments there actually gives a much stronger convergence as stated in Proposition 4.1
above.

Remark 4.3. We note that the measure v depends on the choice of ¢. In this regard we
have the following easy observation: there exists a countable collection {¢®}gen With
corresponding 6% such that the union of AR = {f : 6% (f) > 0} has full p measure. Note
that AR is the largest set on which p and v® are mutually absolutely continuous.

The finite-dimensional approximations we will actually use are vy instead of v?v, thus we
still need to prove the convergence of vy. However, the proof is essentially the same as
the proof of Proposition 4.1, so we shall omit it here and only state the result.

Proposition 4.4. The sequence Oy converges in L" (dp) to the 0 defined in Proposition
4.1 forall 1 <r < oo, and vy converges strongly to the v defined in Proposition 4.1 in
the sense that the total variation of their difference tends to zero.
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4.2. Compatibility with the Besov space
By elementary probabilistic arguments we can see that

p(feVilfll <o0)=0, 4.7
p(f eVilfllg-s <o0) =1, (4.8)

for all § > 0. Namely, the Wiener measure dp (and hence the Gibbs measure dv) is
compatible with A% but not L2, which is the essential difficulty in establishing the in-
variance result. In this section we show that this difficulty may be resolved by using the
Besov space Z defined in Section 1.1. First we prove a lemma.

Lemma 4.5. Suppose that g; (1 < j < N) are independent normalized complex Gaus-
sian random variables. Then

N
P() lgl* = an) < e~ VeN, 4.9)
=

for all o > 1600 and positive integer N.

Proof. Let X = Zj].vzl lg; |*. Since E(lg; [4m) = (2m)!, we can estimate, for each integer
k > 1, the k-th moment of X by

k!
EXH = Y ———— xEdg" - len ")
my+--+my=k mpi---my:

N , N
<k Y H(Zij]!)!kok > I[me

my+-+my=k j=1 my+--+my=k j=1

since (2’::1) < 4™ From this, we see that (for ¢ > 0)
JeX ek . (8e)k
E(e )§2E(cosh¢eX)§2+zz—E(x)52+Z SN ks
(2k)! k! ’
k>1 k>1
where
N
Sve= > [[mi (4.10)
mi+--+my=k j=1
which we shall now estimate. By identifying the nonzero terms in (m1, ..., my), we can

rewrite Sy x as

N
Svk= Y. (r)s,’”, (4.11)
1<r<min{N,k}

r
S,/(’r = Z l_[mj!.

my+--+my=k,mj>1j=1

where
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k—1

“~1) < 2%, and for each such

Clearly the number of choices of (m1, ..., m,) is at most (
choice we have

[Tmst < m--my x [Tom; = Dt < te/r (Dm; = 1)
j=1 j=1 Jj=1

< Tk —r)! < 3%k — ).
Therefore S,’{’r < 6%(k — r)!. Next, notice that there are at most k < 2% choices of r, and

(7) < N"/r!, so we have

k N"(k —r)!
Snk <12° max —————.
' 1<r<k r!

4.12)

If the maximum in (4.12) is attained at = k, it will be bounded by N*/k!; otherwise
it is attained at some r < k, which yields N < (r 4+ 1)(k — r) < 2r(k — r). Therefore the
maximum in this case is bounded by

Nk —r)! _ 25" (k=) (k —r)*"
r! - r!

Altogether we have Sy ; < 216k! + (12N)*/k!, and hence

JeX ‘ (384€N)k
E(e )§2+];(17286) +];—(2k)! , (4.13)

< (6k)F < 18%k!.

which is clearly bounded by 4620VeN if we choose € = ﬁ. Now if & > 1600, we have

P(X > aN) < e VVE(@EeVeX) < 4e~ VN, -

Now we can prove that the Wiener measure dp is compatible with our Besov space Z;:

Proposition 4.6. With the measure p defined in Section 4.1, we have p(Z1) = 1; more
precisely,
—1 g2
p({f eVilfllzy, <KD =1-Ce € K (4.14)

forall K > 0.

Proof. We only need to prove (4.14). Setting C large, this inequality will be trivial when
K < 100. When K > 100, we deduce from the definition that

pUf €V ilfllzy > 100k =Y P( Y leal? = KP27). (@15

Jj=0  0<n~2J

By Hoélder, Y _,~0i |gal? > K72/ implies Y _,»i lga|* > K*2/. By Lemma 4.5,

71K22j/2

the latter has probability not exceeding Ce~¢ provided K > 100. Summing up

over j, we see that

pUf €Vilfllz, > KN <Y Ce €K < cem €K, o
j=0
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5. The gauge transform I: Beating the derivative loss

From this section to Section 7, we will introduce the gauge transform for (1.6), and use
it to derive the new equations. We fix a large positive integer N throughout, and drop
the subscript N in Sy (we are allowing N = oo, in which case the arguments should
be modified slightly but no essential difference occurs). We also fix a smooth solution u
to (1.6); note that smooth solutions are automatically global. When N is finite, we also
assume that % is supported in |r| < N for all time.

The gauge transform we use is defined as a power series, thus in many occasions we
will have to deal with summations over sequences of the form (my, ..., m,). To simplify
the notation we will define, for such a sequence, the partial sums

mij =mi +---+mj.

This notation will also be used for other sequences, say p;, which will always be nonneg-
ative integers.

5.1. The definition of w

Let F be the unique mean-zero antiderivative of u, namely F, = %un for n # 0 and
Fo = 0. Define the operators Qo : ¢ +— (Su) -¢p and Py : ¢ — (SF) - ¢, as well as
Q0 = S5Q¢S and P = SPyS. Further, define the operator

M=e 7 :Zi(—iy;m. .1)
oM\ 2
The function w will be defined by
w =Py (Mu). (5.2)

We also define v = Mu, so that w, = v, when n > 0, and w,, = 0 otherwise. The
evolution equation satisfied by w can be computed as follows:

(0 — i10xx)w = Py M (9 — 10xx)u + P[0, M]u — iP4[0xx, M]u
= 2P (MP_uyy) + P, ([0;, M]u — i[Oy, [0x, M]]u)
P, (MS(Su - Suy) — 2i[0x, Mluy)
= 2P, 3 (MP_uy) (5.3)
_2iP, ([ax, Ml + %MQ) ty (5.4)
+ 2P [0y, MIP_uy + P ([0;, M] —i[0y, [0x, M]Du.  (5.5)

5.2. The termin (5.3)

By expanding M using (5.1), we can write

G3H=Y (—D™ K. (5.6)

1231 |
1 20 !
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where in Fourier space
1 . 1
Khomg =20 > A iy =+t Vit (5.7)
VESL
Here, the spatial frequency set is defined to be
1 1
SnO 0 ={v=0my,...,my ,n1)€ /SRR, #0, no >0, n1 <0, my,, +n1=np},

and the weight is

K1 1 ; M1 i+
=T () < [ (e pone () (5)

As the next step, we rewrite part of the weight as

1 1 L 1

My - M Mig] - My,

my---my, no —ni

By renaming the variables, we obtain
(=Dm
(5.3) = )
MZ:] zZ: 20 ! Ml
where in Fourier space

Tpyi
/t]l § : Ay (”ml "'”mul—l)unlunr

veS,,0 1

The frequency set here is

11 : 1
Sporpy =V=(mi,...omy,ny,n) v e ZMT m; £0, ng > 0,

ny <0, my -1 +n1+n2=no},

and the weight is

np—1 M1
i 1 m;j mi_ _1+n
i _ | | J | | 2 J—Lui—1 1
A= ’”jw<N> v ( N )

j=i+1

i 2
mju ,—1+n+n noni n;
) wz( - N ) “1'//( ])'
> Inol +Inil 55~ \N

0

5.3. The termin (5.4)

Since

[9x, P1 = 0,

(5.8)

(5.9)

(5.10)

(.11

(5.12)

(5.13)
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we may compute

1 i ©i 1 AN 1 n2
M =Y —(-=) [, Pr1= > —— (= PrQP
[ =2 < 2) [ =2 (Mlz—i—l)!( 2) ¢

o ! [
= MO Y ( i)MP’“[Q Pr2) (5.14)
T2 A Gt i\ 2 o '

By expanding the commutator in (5.14), we can write

w41 i mi2+1
5.4) = — —_— == P, P*Q, P1P*2u,. 5.15
(5.4) u%(mHZ)’( 2) L PMLQ, PIP"2u, (5.15)
Notice that
[0, P] = S(QoS*Py — PyS*Q0)S, (5.16)

we can thus write

—1)H12 1
(5.4) = Z % 2 (5.17)
o 2T (2 4 2)!
where in Fourier space
. 2
Koudno =1 > W2 Wy -ty Vit Uyl (5.18)
VGS'%O#HQ
Here the frequency set is
Sr%o pin, = V=(m, ... my,,ni,n2,n3) 1V E (Z"2F3 i £ 0, ninans # 0,

no >0, myu, +n1+n2+n3=no}, (5.19)

and the weight is

2#1#2 _n3 11[1//< )ﬁ ]l W(%) ﬁ¢2<n3 +mNul+i,mz>

i=1

mi+1
+ny 43+
9 1—[ " <n1 ny +n3 mzmz)

i=2 N
% wz N2 +N3 + My 41,01, . wz ny+n3+my41,up
N N
Note that SnO 18 Symmetric with respect to ny and n3, so we can swap these two

variables and rearrange terms to obtain

. 2
(’CMIHZ) =1 Z Avulluz(uml ce umﬂlz)unlunzumy (5.20)

2
VES,IO’MW2



1128 Yu Deng

where the frequency set Sno i 18 @s 10 (5.19), and the weight is

= s T () [ e () T (Pt

i=2

“2
2f M2+ N3+ My, 2 M3 + My +ipn
X |n | | s .
[ v ( N ) v ( N

i=1

ny+n3+my 41, 2 n3 4+ my, 4,
—n31//2< ~ M1 Mlz)l‘[wz %

2(”1 +n2 +mm+1 mz) Hl/ﬂ(”l + My, uu)
)ﬁw2<m>]_(5.21)

+my

—

2( 11 +n3+mm+1 12
—ny (

—

5.4. The termin (5.5)

Clearly we have

1 i\ Azl p p
0, M] = —_——= PH*[o,, P1PH2, 5.22
[3,, M] Ez(mz“)!( 2) 3. P] (5.22)
where
[0, P]: ¥ — S(SF; - Sy); (5.23)

also we may compute

1 i\ Hetl
[0, [95, MI1 = —(—5> [9x, PM1 QP2

= i+ D)
Z 1 ( i)mﬂizﬂ
=y ———(-5 P [d,, Q1P
b, (2 + DI 2
Z 1 i\ #13t2
+2 ( —) PHLQPH2Q PH3,
s (P13 DI\ 2
Using the fact that
[0:, P]—i[dx, O] : ¢ > S(SG - Sy), (5.24)
where
G = F, — iFqy = —2iP_uy + 3(S((Sw)®) — Po((Su)?)). (5.25)
we may write
(—=1)rn f (—=1Histl 5
(5.5) = — (K3 +K )+ —_— .
M|Zuz 2M12(U«12 + 1)' 32 23 M|,M¥u3 2M13+2(M13 _{_2)[ K123

(5.26)
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Here, ICi |1, 18 defined in Fourier space as

3 : Spip
K =1 > A2yt ity (5.27)
VESR w1

with frequency set

S,Slo it ={v=(m1,...,my,,n1,n2) 1 VE ZHt2 gy #0,n1 #0, ng >0,
ny < 0,my u, +n1+ny=no} (5.28)
and weight
w2

A _ 1—[ w("’)l‘[w()lj[vﬂ(*;”’)

1"

[ (”2+mll«1+l Mlz) l_[ (”1 + My, M]Z)]

The term IC;‘;I 1 is defined as

(K o —P()((Su)) S AV gy -t it (5.29)
VESioin

with frequency set

s4 ={v=(m1,...,my,,n1):VE zratl gy #0,n1 #0, ng >0,

no, wim2
M, +11= no} (5.30)

and weight
n12
dpn ng ni 1 mi
A = — Y —
() () (5)
af(m Mt \ T2 ”1+mlu
X Y —‘ 12 W 12 ). (5.31)
i=2
5
The term ’Cumzm is defined as
. 5
(,CMIH«ZIM) =1 Z AVMIMZM3 (uml te Mmﬂn)unlunzung? (5.32)
ves?
nQsH1 U213
with frequency set
5 _ . n13+3 .
Sno [ ot ={v=(0my,...,my,,n1,h2,n3):VeEL ,mi #0, nynynz # 0,

ng > 0, My, +11+n2+n3 = no} (5.33)

and weight
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i+l
ny+ny+n3+m
Agmuzus _ I l " ( 1 2 N3 um)
i=2

T () T () [ (et s
=1 Mi i=0 i=1 N

2 ny+ny prtl (nl+n2+n3+mﬂl+lﬂli)
X[w ( ) [Tv N

- (nl+n2>l_[1/f (n3 +m1<]u+z ms)

+1

N

Next, we shall rewrite a part of the weight A%M 12 ag

1 1 ni
= Yo
mp-- My, Mp-e--mp |nol + [n2]

1 n K12 1
+ v Z :
|nol + |n2| —n1 -~ \nol + |n2| My - MMy e My,

then rename the variables (separating the cases i < @1 and i > p1) to obtain

Z O p Z izj (=1Hr 3
o= TR 0—|—ICM#)_|_ K i
T 2012 (puyp + 1)1 2 112 e s 22 (pugp + D) Pk
])M13+1 s
) 5y 57 ’ (5.35)
M%ua 2M13H2 (g 3 4 2)1 AN
where in Fourier space
(K?Lsz)no =1 Z A?}Mlﬂzo(uml cee umulz)lfinlunz, (5.36)
VESSO’MH/-Z

with frequency set S> as in (5.28), and new weight

no, M pn2
12

30 _ ni+na+mip, 1 1 mi ni
o Hw ( N ) 2wo<|n0|+|n2|)Hmzw<N)Hl/j<N>
X |:1_[ Ip2<”2""”;\L/Hrt)mz) _ 1—[ I/fz(”l +m1;:71+i»mz)]’ (5.37)
i=1 i=1

the other term will be

3

o 3pipai
Hl/f-zl) =1 Z A (uml e umulz—l)unlunzu”lS’ (538)

VS
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where the new frequency set is

3.1 . 2
Sn() M2 {V = (mla L 7m;L12—17 nlv n2a n3) ve ZM12+ ’ mi 75 Oa nlnz 75 07

no >0, n3 <0, my y,—1+n1+ny+n3=ng} (5.39)
and the new weight is

3 ppi n3 np w2l 1 mj
AV = v [T v+
|nol + |n3| —nq lnol + |n3l /) -3 m; N

Jj=1

y l_llff(nj>l_[1// <n1+n2+n]\3]+m],m 1> l—[ wz(”1+”3+ijl,mzl>

Jj=i+1

n3+m i—1,n12—1 ny+m i—1, 121
Xl:l_[w2< M;’J K12 )_Hw2< M;;] K12 )i| (5.40)

=1 j=1

for1 <i < up,and

Admmi _ n3 1//< n )Mﬁlll/f< )
Y Inol + In3l —n1 " \Inol + In3| ) 1% m;

j=1
3 nitl
n ny+ny+n3z+m; 1
X Hw( J) l_[ w ( N Js 12— )
j=0
gl ny 4 n3 + My 4,1 [ n3 4 My i1 -1
% |:1_[ wz( HitJs112 ) 1_[ wz( HitJ— LK1z )
Jj=1 N Jj=i—pi+1 N
_lﬁl W(”‘ +”2+mm+j,mzl> 1“—2[ 1//z(nl +mm+jl,ml>] (5.41)
Jj=1 N j=i—pi+l N

forur +1<i < pup.

5.5. Summary

Now we have obtained a first version of the equation satisfied by w, namely

(=D D2 (ur +1)
(O — 10w = Z sz 1M ! M1l + Z 2#12+1(M12+2)!KMM2

pi=li=1
(=1)r2 4 H12 (—1ym2 .
’ 2 + Dt wr " ook .
MIZM et 1)‘( " e MH—ZMD] ; 22 (pyp 4 1)1 HIH2
(—1)/113+1 S
) P ’ 5.42
m%“,m 2m3H2 (g3 2)1 KIS (5.42)

where:
e K! . isdefined in (5.10)—(5.12);

i

° ’Cimz is defined in (5.19)-(5.21);
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K?uu o s defined in (5.28), (5.36)~(5.37);

3
ICMW is defined in (5.38)—(5.41);

4
’Cmuz is defined in (5.29)—(5.31);

o K3, 1op15 18 defined in (5.32)~(5.34).

In the next section we will further examine the structure of these terms.

6. The gauge transform II: A miraculous cancellation

In this section we identify the bad resonant terms coming from each K/ term in (5.42).
Our computation will show that these bad terms will eventually add up to zero, leaving
only the better-behaved ones. Throughout this section we will use a variable &, and define

=y (k/N),n=y'(k/N).

6.1. The resonant terms in K
In the expression (5.10), let n; 4+ ny = 0. Noticing that n; < 0, we get a sum
. uml e Uy 1
—ing Y lw> Y. A ——H (6.1)
k>0 my+emy, _1=ng My« My —|
where we always assume m; # 0, and the factor

s=TT(2) ] vt

j=1 j=i¥l

T M k noy. 2 f)
XE‘”( i () ()

We then replace each variable in this expression, except k, by zero (strictly speaking, we
should replace n by m ;,, 1 and cancel each m; in the numerator before this process, but
the results will be the same and no estimate is affected), and get a term which reads

mi—1
—ing Y fux? > =i+ T m— 6.2)
i=1 !

k>0 my+-tmy, —1=ng

Noting that the summation over the m;’s gives exactly (i F Y=l ng» WE Can sum over (i
and i to get

— 11 ‘
(Rl)n0=—12|uk|2 Z )“ iy . Zez(mﬂﬂ)

k>0 /Ll>1 i=1
_ _Zlu | Z = 1) (8 (IF)Ml—l) i92(ﬂl—i+l)
- 2H1— *

k>0 M1>1 i=1

S5 L)

=0 1z0 (BT D!
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where
Cl= —L(u+ 1)@+ 0% ... 4 0%, (64)

and we have dropped the dependence of C! on k and p for simplicity.

6.2. The resonant terms in K>

In the expression (5.20), let n, 4+ n3 = 0 to obtain a term

Uy * U,
—Z|Mk| Z A- #Mnl, (6.5)

k#0 npAn ey, =ng

()G () T (5)

g2 P41 2 kA i
X[ v < N )U‘” ( N >
k+n +m K2 k+m
+ wz( 1 ni+1, M12> 1_[ < MH—! Mlz)

i=1

ny o ”1+mul+1ulz K\ 15 nl+mﬂ1+lu12
_71/, < )l_[ 2Pt e

where

+';_11/, <”l+mu|+lu|z+k)ﬁ (n1+mul+lﬂl2)i|_ (6.6)

We then discard the last two summands in the bracket, and in what remains replace each
variable except k by zero to get

u PR u
5 Z Jus | > (@Ua+d _ gty L Ty, (67)

k;ﬁO nytmy+etmy , =no My My,

Since the summation over m; and n; gives exactly (u - (i F)*12),,, we can then sum over
w1 and po to obtain an expression which involves a sum over all k£ # 0. We may include
a factor of 2 and restrict to k > 0 (since 6 is even in k), and then take into account the
symmetry with respect to n| and n3 (namely, we are considering also the term where
n1 + ny = 0) to include another factor of 2, and the final expression will be

(R*)py =21 ) |ui]? Zwl( +2),<u(1F>“)nOZ(u pa+ 1) (O —p2at2)

k>0 n=>0 n2=0
=0 =0 (L t2! 2 no

where
C2 = —(u+ 0%+ (0" + - + 67+, (6.9)
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The other possibility is when n1 + n3 = 0. In this case we rename n, as n and get

u ..uu " u
_Z|l/lk| 3 PR (6.10)
My« -my —1n|

k;é() n1+m1+~-~+mﬂ12="0

= (o) v (o) T () T ()
Xkl:w <k+n1+mm+1 u12>1_[1// <k+mm+l Mlz)
k= =y 2 k=Mt
p(rpees ) v (=)
o2 ML (12 (K Mg
v v ()

H2
2f Mui+1, 12 2 k= muitipn

_ —= . 6.11

“”( N )H"’( N )} ©1h

Next, we examine the terms in the bracket, which basically can be written, for some o;
which are linear combinations of 7| and m;, as Hj 1//2((k+aj)/N) — Hj Iﬂz((k—oj)/N).
We then replace this expression by 4024~ 1y > i Tj /N, where  is the number of factors.
If we plug into (6.11) this and the expression for each o, cancel each ny or m; factor with
the corresponding denominator in (6.10), and finally replace each variable other than k
by zero, we will get a term which, up to a rearrangement of variables, reads

uml .. .um
HY R Y S,

where

k#0 nyHmy ey, =no L M
1 2 1
y <(“2+)2¢92m+3,7 _ %92%4‘17}). 6.12)

We may restrict to k > 0 since 7 is odd, and then sum over p£1 and p> to obtain

(R*?)g —412—|u 2y Z 2u+1( +2),(u<iF>“>n0(u—m+ )

k>0 n>=0 =0
« (2 + D(u2 +2) g2at3 _ ma(pa + 1)92M2+1
2 2
ik iF\"
_ZZ i 77|Mk| '( ( 1_) ) 'DZ, (6.13)
oo N +2) 2 no

where
D? =20 4+ 4 (e + DO 4 (4 D(p +2)0% 3, (6.14)
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6.3. The resonant terms in K3
In the expression (5.36), let n; 4+ ny = 0. Noting that n, < 0, we obtain a term

u .-.u
iZ'“"'z Z AL e (6.15)

k>0 mitetmy ,=ng mp---Muy,

() (v )Mﬁlw("”“‘ﬁ“‘”(m’)

e e

Then we replace the term in the bracket by —402%2=1yn 3" (m,, i ,,/N), cancel the
corresponding m; factor in the denominator, and replace all the variables except k by
zero to obtain, after a rearrangement of variables, the sum

l u .;-u _
4IZ_| |2M92M2+1 Z M”m- 6.17)

k>0 2 nyHmytmy - 1=no My« -Myp-1

where

Then we sum over | and 7 to obtain

u+1 “
3.1 . wa(uz + 1) 2ur+1
R*Y,, = 41](2—| k2 Z 2u+1( +2)'(u(1F)V‘)nO<Z R A
>0 =0
ik F
_ZZ 1 7}|l/lk| ‘< ( 1_) ) ~'D3, (6.18)
oo Nwk+2) 2 no
where
D’ =—(20° + -+ pu(u+ DO+ (u+ D +20%7).  (6.19)
Next, in the expression (5.38), let ny + n3 = 0; noting that n3 < 0, we get a term
u .« . u
iz |uk|2 Z A - wum, (6.20)
k>0 nytmytetmy ,—1=ng my---Myp—1
where

e T
= s ) () T (5 (%

j=1

i i+l
2 1+ mj,—1 2 k—n1—mj—1 -1

X —_—
,I:Ij/’ ( N ) [1v ( N )

j=i+1

A k—mu +j—1u-1 2 ny+ My 4j—1 -1
x [1_[ 1)0,2( M1TJ s 12 ) _ 1_[ ,(//_2< M1TJ s 12 >}
" N N

j=l

for1 <i < up,and
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A —k w( n >w2<£> Mz_lw(ﬁ) M+lw2<nl+mi,u|2—l)
|k| + |no| — ny |k| + |nol N/ - 1 N ) - N

j= ]:2

% Hw(”])[lﬁl " <mu1+]J\'}mz—l> ﬁ 1//2<k - mum;vj—l,mz%)

j=1 Jj=i—p1+1
_ 1_—“[1 wz("‘*‘”l +mu|+j-,u12—l) 1“—2[ 1/f2<n1 +mm+j—1.,mz—1)}
j=1 N j=i—mt N

for w1 + 1 <i < p1 + up. Then we replace every variable other than k by zero, and sum
over i to obtain

. 2 my Myyp—1
—1 E |t E L
1-

k>0 My, o 1=no T M1
M1 . . Mn12 . .
% (Z(92u12721+4 — g2ty | Z (pPH12=2i+2 _ 92172M+2))‘
i=1 i=p1+1

We then sum over p1 and p» to get

Hut! .
R32),, = —i uy u(iF)*
(R 1;| | ;)2““( 551 @GP Dy
<H+1M+im 2u—2i+6 2u—2i—241r4+6 lijl li:l 2u—2i+4 2i2pp—2
x ® n—2i+6 _ g2p—2i— #2+)_|_ C H—2i+4 _ glit+2po— M))
u2=0 =1 u2=0i=p+2—pus
P\ M
ZZ l|uk| '< ( 1_) ) 'C3, (621)
paer e M 2 no

where

CP = J((+ DO+ (== DO + (—p + DO+ (= DO, (6.22)

6.4. The resonant terms in K*

The whole term K* should be viewed as resonant. Here we simply expand Po((Su)?) =
23 0 62 |ug |2, and replace every variable in (5.31) by zero (after extracting the [ [; m; !
factor, as before) to obtain

(R = —Ze Juk| ZZM( +1),( uGF)" )y % Z I

k>0 n=0 n2=0
. _
-y ilug '<M(—1—)> Nead (6.23)
=00k + 2! 2 no

where
Ct =L+ D +20% (6.24)
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6.5. The resonant terms in K>

In the expression (5.32), consider the contribution where ny + ny = 0, np +n3 = 0, or
where n1 + n3 = 0. For each of these cases, we perform the same operation as in the
above sections, and collect all the resulting terms (and rearrange the variables) to obtain

. um ...um
Y uil? > A- #um, (6.25)

k20 My 1 =ng LT

= () T (5 T () T1(5)

|:2W ( an)ﬁw (k+mﬂ12+l Mm) 1_+[ " <”1+mlm+l Ml})

i=1

—n k+m k+m
+ 2y ( 1)1_[1/f ( Mlzﬂﬂn)Hl// < ll«1+lltn>
i k4 my,4i e My, i
2 M2+ 113 2 w1+, 3

_2.1_“ ( N ) H v < N )

1= 1=

A ny+my, g feas ny+my,
_}_1_[1//2( JI\L/12+1>M13) 1_[ wz( Nlil+l,ll13>

i=1 =2

oMt Mg Oy oM+ My
_}_1_[1//2( ]l\tllz l,ltls)l_[w2< 151 hMm)

i=1 i=1

A ny+my, i Mol k+ni+my i
_2 2 Hi2+i 13 2 Hiti, 13
[[v < N [Tv N

i=1 i=1

U3 k+m Ho+1 k+n;+m .
-2 2<M> ( [ RAIE) )}
Ew H W v

Then we replace each variable other than £ by zero, obtaining

u .. .u
P> Jugl? 3 L s 20292 _ g2t ] g2y (6.26)
k0 Myt s Fni=ng My« My,

where

Again we restrict to k > 0 and sum over p1, 12, (3 to get
—1utl

ROy =41y |} 5 M( 370 52y M) g

k>0 n=>0
x Z (92ﬂ3+4 —gAatd L g2 92M3+2)

M1+ +p3=N0

_ ug] N s
-y ((-5)), e

k>0 u>0
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where

CO = =L+ 10 + uo* + (u — DO® + - + 207 4 9212, 6.27)

6.6. When put together...

Now we can directly verify from the above computations that

e+ +ct+c’ =0, (6.28)
D>+ D3 =0, (6.29)

which then implies
R'+R¥M +R*Z2+RM + R+ RV + R =0. (6.30)

6.7. What remains?

Here we analyze what remains after we subtract from each K/ term the resonant con-
tribution, and deduce a second version of the equation satisfied by w. To simplify the
argument, we need to introduce a few more notions.

Definition 6.1. We say a function f : Z — R is slowly varying of type 1, or f € SV, if
|f(n)] < Cand

lf(r+1) = f)] < C(n)™! (6.31)
for some constant C. We say f is slowly varying of type 2, or f € SV», if we have
Ifn4+1) = f@] < C) ' (f@)]+1f 0+ D) (6.32)

for some constant C. For a function f : Z* — R, we say it is slowly varying of type 1
or 2 if it satisfies the above inequalities for each single variable when the other variables
are fixed, with uniformly bounded constants.

Proposition 6.2. The following functions are in SV

(1) ¢(fi, .-, fr), where f; € SVy and ¢ : R¥ — R is Lipschitz;
2) ¢(f1,..., fx), where f; € SV2, ¢ is smooth and is constant outside some compact
set.

The following functions are in SV;:

(3) any monomial (say n% or nan3), or characteristic function of any set generated by
{nj > 0} and {n; < 0};

(4) products and reciprocals of functions in SV, (with 1/ f defined to be 1 at points where
f =0); max(f, g), min(f, g) and f + g for nonnegative f, g € SV,

(5) |fl, (f) and (max(f, 0))*, where f € SV and A > 0.

Proof. Omitted. O



Invariant Gibbs measure 1139

Proposition 6.3. We have
@ —idew=H=Y CuHy, (6.33)
0

where |Cy| < C*/u! with some absolute constant C, and H,, = HIZL + Hz + ’Hi. The
HJ terms can be written as

2 1
. . u i
(Hp)ny = i > min{(no), (1), (n2)} - O, [ Jun [ [ =5, (6.39)
ny+nomi e my=ng =1 =1 M
. . . ‘] lad um_
(H)ng =1 > of [Tun [T, 3.4 (6.35)
nyteetnjtmy+emy =ng =1 i=1 "t
for positive ng. For each (i, j), the function
O = O/ (no. ny.....nj.my,....my), jef2,3,4},

is a linear combination of products 1 - ©®, where E is some set generated by the sets
{np +n;=0},1 <h <1 < j,and O is slowly varying of type 1 (later we may slightly
abuse the notation and use the term “® factor” or “®/ factor” to refer to both the @{L
and the © here); note in particular they are real-valued. Moreover:

(i) When j = 2, © is nonzero only when

max (mi) < (u+ D)2 min{(no), (n1), (n2)}. (6.36)
(ii)) When j = 3, if E is contained in {n1 + ny = 0} but not {|n1| = |nz| = |n3|}, we
must have
|®] §min{1, M} (6.37)
(n1)

The same holds for other permutations of (1, 2, 3).
(iii)) When j = 4, we have
01 5 ( max (m)) g (6.38)
0<I<4
Proof. The estimate on the coefficients C;,, whose choice will be clear from the expres-
sions we have, is elementary based on the factorial decay we have, and the simple obser-
vation that
(1 + -+ ) < Jt
el T ’
where in practice we always have (say) k < 30. Next we shall examine the terms left
after the subtraction of resonant ones, and define the ® factors. We will first prove the
boundedness of ® and properties (i)—(iii), and then show that ® € SV.
Before proceeding, let us make one useful observation. If we have a term (temporarily
called a ferm of type R for convenience) of type (6.34) in which the ® factor is bounded
and is accompanied by some 1g with E C {n; + ny # 0}, then we can use a smooth

(6.39)
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cutoff (similar to yr; or ¥») to separate the part where (6.36) holds, and the part where
(mi) 2 (u+ 1)_2 min{(ng), (n1), (n2)} for some 1 < i < u; in the former case we
have 7—[,2“ and in the latter case we promote m; and rename it n3 to obtain ’Hi_l (since

here the ®3 factor is bounded, n| +ny # 0, and if n; +n3 = 0 for [ € {1, 2}, then the ®3
factor will have an n3 in the denominator, and at most (rng) in the numerator). Also we
may assume that all the n; and m; variables are nonzero and < N.

The first contribution we need to consider is when none of the equalities we proposed
in obtaining the R/ terms hold; these include the contribution from each K/ which we
discuss separately.

For the part in K!

wi We have n; + ny # 0. If (ny) 2 (ng) + (n1), then we have a
term of type R and obtain either ’H2 _ or HM - Now if (n2) <« (ng) + (n1), then
(mj) 2 (no) + (n1) for at least one ], so we can promote that m; and rename it n3 to

obtain 7—[3 2 due to a similar argument as above and the restriction ny + ny # 0.

For the part of ICMM, no njy 4+ n; = 0 happens. In the expression (5.21), first assume
(n3) (or, by symmetry, (n1)) is < min{(ng), (rn1), (n3)}. Then the first two terms in the
bracket on the right hand side of (5.21) contribute at most O ({n3)), so for these terms we
may relegate n, (rename it by some m;) to obtain a contribution of type R. For the last
two terms in the bracket, the contribution is at most N~ (n;)({n2) + (n3)), which is a sum
of two terms. One of them is at most (ng) and can be treated as above; the other can be
canceled by the n, ! factor and we get H3  (since we have pre-assumed that no nj, + n;
can be zero).

Next suppose (say) (ng) < (n3) < (n1). In this case the first two terms in the bracket
on the right hand side of (5.21) contribute at most (n3), and at least one of (m;) or (nz)
mustbe 2 (n1) here, so we get 'Hilz_ | after making appropriate promotion or relegations;

H“12

the last two terms contribute at most N ~!(n1)((n2) + (n3)), which is bounded either by
(n3) (which can be treated the same way as above), or N~ (n1)(n2) (which is canceled
by the ”2_1 to obtain ’Hilz_l).

The only remaining possibility is (ng) < (n1) ~ (n3). We may write

tl(n) l_['(ﬁ (n +mM1+l M12)’ (640)
Tz(l’l) — 1/f2<n +n2 +Nn1ll«1+1,11«12>.r1(n)’ (64])

so the net contribution in the bracket will be
(n3m2(n3) + nir2(nn)) — ¥ (n371(n3) + ny7i(ny))
with some factor . Since we can write
n3ti(n3) +nitj(ny) = (n1 +n3)7t;(n3) + n1(z;j(n1) — tj(n3)), (6.42)

and n| + n3 is a linear combination of ng, ny and m;, the first term on the right hand side
of (6.42) will be bounded either by (n¢) (in which case we have a term of type R), or
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by (n3) (in which case we obtain Hfm_l ), or by some (m;) (in which case we relegate n,
and promote m; to obtain 7—[/3“271 under the restriction (n1) ~ (n3)). The contribution of

the second term will be bounded by N~!(n}) times either (no) (in which case we have a
term of type R), (n2) (in which case we have a part of "Hilz_l), or some (m;) (in which

case we relegate ny and promote m; to get Hilz_l).

For the part of IC?“ 1,0 We have ny 4 na # 0. By the assumptions about this term, if
(ng) 2 (n2), we will have a term of type R. Now assuming (ng) < (nz), we can extract
from the bracket in (5.37) a factor of ng/N or m;/N. If we have an ng/N factor then the
net ® factor will be < (ng) and we again have a term of type R; if we have an m; /N factor
then we may cancel it with the 1/m; factor, promote this m; and rename it n3, to obtain
’Hzlz_z. Notice that in this case the © factor is bounded by (n2)/N < 1,n1 +ny # 0,
and if ny + n3 = 0, we must have (n;) = (n7).

For the part of ICimzi we have ny +n3 # 0. We claim that this part is ’Hf’“ _1- Infact,
this will be the case if both n| +n3 and n| +n, are nonzero since the ® factor is bounded;

if n1 4+ n3 = 0, then from the assumptions about the ICZ1 i term we have (ng) = (n3),

so we also have ’HZ}Z_I; if ny 4+ ny = 0, then either (no) or (n3) must be 2 (n1), so we
still have H3 .
12

For the part of ICZIMM, no ny, + n; = 0 happens. In this case the ® factor is clearly

bounded, thus we obtain Hil 5

Next, we have the “error term” which is some resonant contribution in K/ (for ex-
ample, the contribution in C! . where n; + n, = 0) minus the corresponding R/. In

nii
this term we may specify some k (for example, in the term corresponding to IC}“ ; we
will have n1 = —k and n, = k). From the computations made before, we can see that

the corresponding terms may be written in an appropriate form so that the ® factor is
bounded even without subtracting R/. Note that here we may need to promote some m;
so that we can include mi_1 in ® to cancel certain factors (for example when dealing
with ICIIW»). Therefore, before subtracting the R/ terms, the resonant contributions can
be written in the form of (6.35), with j = 3, the ® factor bounded, and (say) ny = —k,
ny = k. In particular, if (ng) + (n3) = (k), we will obtain 743 and subtraction of R/ will
not affect this. Now we assume (ng) + (n3) < (k).

After the subtraction of the R/ factors, the ©® will remain bounded; moreover, it can
be checked case-by-case that in the remaining term, we gain an additional factor of

I
min{l, %(mo) + (n3) + me)}, (6.43)
i=1

if n1 = —k and np = k. For example, say we are replacing ]_[j V2 ((k + 0j)/N) —
]_[j Y2 ((k — 0j)/N) by 49211y Zj oj/N; then the error term we introduce is at most
O(N’z(aj)z), which is then at most O(N’Z(nl)z) or O(N’Z(mi)z) for some i and
[ € {0, 3}. Since this contribution can be canceled by other factors to produce a bounded
® even if we replace the power of 2 by 1 (which will be the case if we do not subtract
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the R/), we will have in the error term an additional factor as in (6.43). The other factors
are treated in the same way, provided that in some cases we replace the N in the denomi-
nator by something larger than (k). This guarantees that either we obtain >, or we may
promote some n1; to obtain H*.

Next, notice that in obtaining R21 we have discarded the last two terms in the bracket
on the right hand side of (6.6). However, they add up to produce a factor of at most
N1 (n1), thus they can be included in H3. Finally, there are terms where at least two of
the proposed equalities hold (these terms appear due to the inclusion-exclusion principle),
for example we have the term where ny + ny = ny +n3 = 0in Kfmuzua; but by the
discussion above, the corresponding ® factor will be bounded, thus they can also be
included in 7.

Now we only need to show ® € SVy. This will follow from Proposition 6.2, since it
can be checked that all the ® factors are formed using rules (1) through (5) in that propo-
sition, with rule (2) used at least once (in particular, all the cutoff factors we introduce
will be in V). ]

7. The gauge transform III: The final substitution

Starting from equations (6.33)—(6.35), we need to make further substitutions before we
can state and prove the main estimates. Here we introduce one more notation, namely
when we write g¢ for a function g, where w € {—1, 1}, this will mean g if o = 1, and g
if w = —1. Also in the following, we will use the letter v to represent a function that can
be either u or v.

7.1. Fromu to w

Recalling that v = Mu and w = P v, we have

i#

U= E PHy,
[
m 214!

which then implies, for n > 0,

1 r U,
”"=Zzu,u 3 . wﬂ.vnlnm—i, (7.1)
n ny+mi+-+my=n i=1
where
vV, =V, (n,n,my,...,my)

is a product of ¢ factors. When n < 0, since u,, = u_,, we have instead
(=DH T Um
=y o > W @ 1‘[ e (7.2)
w nyt+mi+-+my=n i=1

where we note (v), = v_,. By replacing each u,, in (6.34) and (6.35) with one of the
above expressions, we can prove
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Proposition 7.1. We have

@ —id)w =T =Y CuTy, (73)
"

where |C| S C*/u! and the nonlinearity is written as

with

Ju= ) gy (7.4)

j€{2,3,3.5,4,4.5) we—1,1}L/]

J 1z
(T =1 3 o [ Tawn [T (15)

nyteetnjtmyetmy=ng - I=1 i=1 "

for j € {2, 3}, and

Ll n

(T )y =1 3 o [ T m [T 22 (7.6)
[

Ayt myteetmyg=ng =1 i=1 M

for j € {3.5,4,4.5}. Here the real-valued weights

¢i:¢,];;(n07nlv"'sn\_jj’ml""’mﬂ)’ .7

where j € {2, 3, 3.5, 4, 4.5}, satisfy the following.

®

(i)

(iii)

When j = 2, we have
5| < min{(no), (n1), (n2)};
also qbi is nonzero only when

min{(no), (n1), (n2)} > (1 + 1>2ml_ax (m;).

When j = 3, we have |¢3| < 1, also when n| + ny = 0, and neither ny nor ny is
related to n3 by m (here and after, we say two n variables are “related by m” if their
sum or difference belongs to some fixed, finite set of linear combinations of the m
variables), we have

631 < min{l, (no) + (n3) }

(n1)
and the estimate also holds for other permutations of (1,2, 3). Also, when all three
of (n1, na, n3) are related by m, we are allowed to have (v*'),, instead of (W),
in (7.5) for j = 3.
When j = 3.5, we have

|¢i_5| < min{(no), (n1), (n2 + n3)}
max{{(n2), (n3)}

Moreover, we can replace the v in (V*"),, in (7.6) for j = 3.5 by w; also, if

(7.8)

12
(max (nl)) < min (ng),
0<i<3 0<i<3

then ny and n3 must have opposite sign.
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(iv) When j = 4, we have
—1
4 < ( 1/20 . )
91 < (gmax, o) + min n)
(v) When j = 4.5, we have n1 + n> # 0, and

61 S ((n3) + (na) ",
and this factor is nonzero only if

max{(n3), (na)} + max(m;) < (max{{no), (m), (na)H'/19;

also, whenever
(1) 2 (max{(no), (n1), (n2))'/"°
for some l € {1, 2}, we can replace the v in (V*™),, in (7.6) for j = 4.5 by w.

(vi) When j = 3, suppose no = ny = n,—ny = n3 =k, (k) < (u+ 3)7”<n), and
(if necessary) restrict to the set {k > 0} or {k < 0}, then the d)i factor will be a
function of n, k and other variables. This function can then be divided into two parts,
with the first part satisfying

min{(n), (k)}

3
3 kv 9 e ey < TR 7.9
B komyml S (7.9)
and the second part satisfying
|6, (W) — ¢ (W) < (k)1 (7.10)
wherew = (n, k, my, ..., my), and w’ differs from w by 1 in exactly one component;

if this component is n or k, then the right hand side of (7.10) should be replaced
by (n)~".
Proof. We will first prove (i) through (v) as well as (7.9); the proof of (7.10) will be left to
the end. Since each H* term is also a J* term, we only need to consider the expressions
(6.34) and (6.35) with j € {2, 3}. We replace each u,,, where 1 <[ < j, by either (7.1)
or (7.2), depending on whether n; is positive or negative, to obtain

wi" RN
J — T g
Hyy = Z Cho 25 ! - ..ijHNO“'ﬂj (7.11)

WLy
for all o and j € {2, 3}, where w = (w1, ..., w;) € {—1, 1}/, and
. L oy,
G W SN C e ﬂ(vwl>n; [T (7.12)

WeVit g 1=0i=1

Here the frequency set is
V;%],,LO.--M ={w = (1, "D 1<1<j, (MDD 1<i<ppo<i<j) 1 = n) + (m)1y,, wmy > 0,
ni4 -+ nj 4 mO1, =no).  (7.13)

Note that the free variables are n; and (ml )i, and they satisfy a constraint
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as well as several inequalities. Also the weight is

2
Oy = ®i0(no, ni,na, m%, ..., (m%),,)
j
. l l

X min (1) 'll]%z(nz,né, (M), (m)y,), (7.14)

O = @3 (no. ... n3, (mO)1. ... (m°),)
j
x [T % (. nf Gmyi, . () ). (7.15)

=1

Our argument will be an enumerative examination of all the possible terms, and this can
be greatly simplified with the following lemma, which we will assume for now, and prove
after the proof of this main proposition.

Lemma 7.2. We say a term has type A if it has the form (7.12), with some factor ©®' in
place of O M which is bounded by

, o ((m');) o
CABS Or§r1/1r§12<n,> -mm{l, T o o } Jj=2, (7.16)
, . ((m');) .
< R — =
@' < mm{l, ) } j =3, (7.17)

for somel > 1 and 1 < i < ;. Moreover assume that (1) either there is some h # |
such that ny 4+ nj = 0, or no n; + n) = 0 regardless of whether j or k is equal to ;
(2) either (m[),'n; < 0,orthevin (v“”)n; is replaced by w. Then this term will be J" for
some b € {3,3.5,4,4.5}.

We now start to analyze the sum (7.12). Note that the ©2 in (7.14) and the ©; in (7.15)
are fixed linear combinations of products 1 - ® (recall Proposition 6.3), so we only need
to consider one product of this type.

First, we collect the terms in (7.12) where n;l + n} =0forsomel <h #1 < j.
We fix such a pair (h,1) and fix a k > 0 (the case k = 0 being trivial) so that nj = k
and n; = —k, then we fix w and all the s except for w, and p;, and fix all the variables
except for (m™); and (m");. There are then two possibilities.

() If (wp, 1) # (1, —1), say oy = 1, then from (7.13) we have (ml)m, —k >0,
which implies (k) < ((m');) for some i, and we may assume that (m"); has opposite sign
to k. Therefore we get a term of type A and reduce to Lemma 7.2.

) If (wp, w;) = (1, —1), then in particular we may replace the v in (v“’h)n;l and
(v“”)n; by w in (7.12). Now we make the restriction that ((mh)i) < (u+ 1)_2(k) for all
1 <i < py and the same for /, where u is the sum of all w;, including w;, and w;. It is
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important to notice that this restriction depends only on up + w;; also, the remaining part
is of type A and can be treated using Lemma 7.2.

Next, assume uy, + ;> 0; we will replace the W, factor in (7.14) and (7.15) by
Y2# (n) /N and the same for /; thus the modified version of W,,, W,,, will depend only

on uj + (. Also we may replace the nj, and n; appearing in ® factors of ®k/m functions,
as well as ming<;<2(n;), by nj, (= k) and n; (= —k); note that we are not doing this
for the 1g factor. Now, since the ® factors and the W factors are in SV, ming<;<2(n;) is
in SV;, and we already have (ny) ~ (n}l) and the same for /, we can easily show that the
error introduced in this way will be of type A.

Now, apart from the 1 factors, we have replaced ®% "/’ with some ©’ independent
of the (m™); and the (m'); variables. Regarding the 1z factor, let us consider the case
E = {ny+ny =0} .If{l', k'} = {I, h}, this factor will again be independent of the chosen
m variables (since it only depends on (mh)l wn T+ (ml )1, Which is fixed). Therefore, up
to an error term which only involves the summation where j = 3, the weight @4 " 33
factor is bounded, and all three of (n}, n, n’;) are related by m (thus it will be J 3, we
may assume that ©' is completely independent of the (m"); and (m'); variables.

Next, we will fix uj; and yuy, so that we are summing over (m™); and (m');, the re-
striction being

(m") 1y, + D1y = est, max{(on™)), (D)) < (+D72K),  (7.18)
where the constant depends on the other fixed variables, and the summand will be
Mgy ony, w0
(m"); (m');
. (7.19)
E (m™); [1 (m),;

i=1

Note that when each (mh) ; and (ml) i+ 1s small, the restriction
m"y,, > =k, (mhy, <k, (7.20)

which comes from (7.13), will be void. Now we can see that this sum actually depends
only on up + py, thus when we sum over wj, fixing u, + @y, we will get zero, since

> ED" (7.21)

11!
ur+ur=pn>0 K12

Therefore all the terms in this case can be treated using Lemma 7.2.
We still need to consider when pu; = u; = 0. In this case we have n;, = k and
n; = —k. Note in particular we must have j = 3 due to the restriction (i) in Proposition

6.3; we may assume & = 1 and [ = 2, so the @ﬁo'"“ﬁ factor is bounded by
(no) + (n3) }
(k)

provided n3 # =k, which we may assume since otherwise all three of (n}, n, n’;) will
be related by m and we will get 7>. Now if ((m?);) < (u3 + 1)72(n3) for all i, then

min{ 1, (7.22)
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(n3) ~ (n’3) and the v in (v“)»‘)n; may be replaced by w, thus we will have [73; otherwise

we may promote some (m>); and rename it n4, and it can be easily checked that this part
will be J4.

Now we collect the terms where no two n; add to zero. Among these, we will first
take out the part where ((m');) 2 (nor + 1)~2(n;) for at least one 1 < [ < j and at
least one 1 < i < py, since this again will be of type A. In what remains, we will have
(n}) ~ (ny), and that wln; > 0, and we may replace the v in (v“’l)n; by w. Now when

j = 3, we already obtain a part of 7. Finally, when j = 2 we separate the cases where

rr;a;x((mlm < (roj + 1)"2min{(ng), (n1), (n2)} (7.23)

or otherwise, again by inserting smooth cutoffs. If (7.23) holds we get a part of J2;
if (7.23) fails, we can promote some (m"); and call it n3 so that the new © factor is
bounded, and then replace u,, by (7.1) or (7.2), introducing the n’3 and (m3); variables.
Now, if ((m3);) <« (n3) for all i, so that (ng) ~ (n3) and the v in (v“’3)n% may be
replaced by w, we get 7> due to the same argument as in the proof of Proposition 6.3;
otherwise we could promote some (m3); to be n4. We then obtain J* if one of n3, n’3, ng
or the remaining m variables is > (max{(ng), (n1), (n2)})!'/', and obtain a part of J*>
otherwise.

Finally, to prove part (vi), first notice that in (7.10) we may assume each (m;) < (k)
also, since otherwise we will have J4 or J#>. It can then be checked that in this par-
ticular case, every term in J° will involve no characteristic functions other than 1y, o,
(which can always be ignored) or 1{x~0y or 1jx <o} (Which is taken care of when we restrict
to positive or negative k); in particular any 1 factor introduced before will be constant
here. What remains in the ¢> factor are simple linear fractions and cutoff functions, and
for them (7.10), which is a stronger property than being in SV, can be directly verified.

O

Proof of Lemma 7.2. Fix the [ and the i in (7.17), and first suppose j = 2. We may
assume [ = 2 and promote the (m?); by calling it n3. Then the new © factor will be
bounded by

min{(no), (n1), (n2)}
max{(n2), (n3), (ny)}
Notice that

(n1) S (nh) 4D (mi),  (na) S (nh+n3) + Y (m)),

thus the ® factor will be bounded either by
min{(no), (n'), (ny +n3)}

max{(n}), (n3)}

(7.24)

or by some

. { ((m");) }
ming 1, )
max{(n2), (n3), (n})}

lefl,2}, 1 <i<w.
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In the former case the bound (7.8) is already verified, and we will have a part of J 35 4f
win’ > 0 and n), has different sign with n3. If win| < 0, we find for some 1 < i <
that (n1) + (n’l) < ((m");) and we are reduced to the latter case above. Now in the latter
case, we promote (m'); and call it n4, so that we get an expression of the form

4 14

3 o-TTwwm ] L:nl, (7.25)

ny+engtmy 4 tmy=ng =1 i=l

where we may assume w;(n;+2X;) > 0, where A; is some linear combination of the m vari-
ables, and the v in (v*),,, can be replaced by v for/ € {1, 2}; also the ® factor is bounded
by ((n2) + (n3) + (n4))~'. Now if one of n; (2 <1 < 4) or m; is > max{(no), (n1)}"/?°
we will obtain a part of 7 4. otherwise we must have win; > 0 and thus we are in J*.

Now, if we have some term similar to 73- (i.e. with © factor bounded by (7.24)),
with winy > 0 but ny and n3 have the same sign (note the n; here was n'. before we
renamed it), then from the definition of type A terms, we can replace the v in (ij)n;
by w for j e {1, 2}. Next, we replace u,, by (7.1) or (7.2) according to the sign of ns3,
introducing the ng and (m?>); variables. Under the assumption (n3) > maxoslfg(nl)‘/ 2,
we may assume ((m®);) <« (n3)1/4, otherwise we will have 7+, In particular we have
(w“’3),,/3 and the weight will be bounded by min{(ng), (rn1)}/max{(n,), (ng)}. Since ny
will have the same sign as n’3 we cannot have ng = n| or ny + n/3 = 0; then we can check
that this term will be 72, and that it satisfies (7.9).

Now assume j = 3. We may assume / = 3, and by a similar argument we will obtain
an expression of form (7.25), but with @ factor bounded only by ({n3) + (na)~L If we
can assume that some other n; (say ny) is related to n3 + n4 by m, then we can reduce to
the case just studied. Otherwise we must have n; +n, # 0. Now we may assume that n3,
n4 and all the m variables are < (max{(ng), (n1), (ng)})l/20 or we are in J*4; also, if for
some [ € {1,2} we have (n;) 2 (max{{no), (n1), (n2)H/10 (we make this restriction by
inserting a smooth cutoff), then w;n; > 0 and we can replace v in (v*'),,, by w. Therefore
we will have J43. O

7.2. From w to w*

We still need to remove from the right hand side of (7.3) the part that cannot be controlled
directly, by means of a substitution which will be described in the following proposition.

Proposition 7.3. We can define w*, for each fixed time, by
Wy = e 4wy, (7.26)
where the A factors are

t
Ap(t) = / 8, () dr, (7.27)
0

and the § factors are

2 (Y 203 (Y (2] S 2
8y = [va (N>+ a4 <N)"’ (w)};'wk' (7.28)
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for n > 0; notice we may replace the wy by (w*)y in this expression. We then extend 8,
and A, to n < 0 so that they are odd in n, and define u* and v* by

Wy = e Py, v e {u, vl
With these definitions, we have
@ — ide)w* = N * w) + Y N, (7.29)

je{3,2.5,4,4.5)

where N/ = Dou D we(—1.1)L) Cﬁj./\fﬁ)j for each j with |C,°fj| < CH*/ul. The nonlinear-
ities are

"
2 2 iW(Ap,+A, —A Um;
(Nﬁ) . g))no = Z (DH ’ el( A no)(fwl)nl (ng)nZ l_[ _.l’
nyt+ny+mi+---+my=ng i=1 i
3 3 iA 3 r U
N2 (f. )y = @3 e o [T [ 22,
ni+ny+n3+mi+--+my=ng =1 i=p Mi

L] n

> ), e o [T [T
I=1 1

A1+t +Am=ng =1 Mi

N g

forng > 0and j € {3.5,4,4.5}. Here d)ft = d)ft(nl, .oy, m, ..., my), and these
factors (and the corresponding terms they come from) satisfy the requirements in parts
(1), (iii), (iv), (v) of Proposition 7.1 for j = 2, 3.5, 4, 4.5, respectively.

Finally, when j = 3 and we only consider the case where @i # 0, we have one
of the following: (a) either three of the four variables (—ng, n1, n2, n3) are related by
m (in which case we are allowed to have v instead of w), or no two of them add up
to zero, and |<DZ| < 1; (b) up to some permutation, ny + np = 0 # ng — n3 and
|<1>Z| < min{l, ({ng) + (n3))/(n1)}; (c) up to some permutation, ny = ny, and either
ny+n3 #0and |P}| S 1, or ny = —n3 and | O3 | < min{(ng), (n2)}/max{(ng), (n2)}.

Proof. In the nonlinearity in Proposition 7.1, we will call any contribution a “manageable
error” if it can be included in J/ with Jj € {2,3.5,4,4.5}, or it belongs to J? with
ng = ny = n and —np = n3 = k as in part (vi) of Proposition 7.1, with the ¢ factor
satisfying (7.9). Now we collect the terms in J3 where ng = ny, ny +n3 = 0, (ny) <«
(u + 3)"2(ny), as well as the terms corresponding to other permutations. The sum of
these terms can be written as

m
H Um:
RS DT DD DI i [ fd (7.30)
0<k<ng u=0 mi+--~4my=0 i= M

where I is a certain function of ng, k and m; satisfying (7.10). Now, up to manageable
errors, we can assume that I depends only on ng (effectively we replace k and m; by zero
in the expression of I'); then the right hand side of (7.30) will be exactly i8,,w,,, where

Sng = (Lag(F)o - Y wxl?, (7.31)

O<k<ng
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where (-)o means the projection onto zero frequency, and £, is some holomorphic func-
tion depending on ng, and F is the mean-zero antiderivative of u as before. Now we can
define the §,, and A, factors accordingly and make the substitution, thus getting rid of the
term in (7.30). The terms 7 7 with j # 3 are transformed into N’ J without any change;
for the remaining terms in 7>, we can see by an easy enumeration that the coefficient Cbi
will meet our requirements.

Now, to compute the function £, in (7.31), we need to track every part of the J 3 term
as enumerated in Sections 5 and 6, and in the proof of Proposition 7.1 (also we disregard
those satisfying (7.9) since they will be manageable errors). For each of them we perform
the reduction above and obtain a corresponding contribution to £,,. It turns out that the
computations here are very similar to those in Section 6 (although we will have slightly
different terms), and each single contribution to £,,, will be of the form

i62F 1 iF\* non
(50 ) L grml) (6 )

w

similar to those appearing in Section 6, where 8 = v (ng/N), n = ¥'(ng/N), € and F are
simple expressions involving a power of 6, similar to the C and D expressions appearing
in Section 6.

Note that the above computations are completely algebraic; in the end we add up all
contributions to find that £,,(F) is actually a constant (depending on 7n¢), namely

EnO(F) = 59 + 79 n.
Finally in (7.31), the sum corresponding to k ~ n is a manageable error, thus we get
(7.28). O

Remark 7.4. In fact, all we need for the estimates below is that §,, grows (in some ap-
propriate sense) at most logarithmically in 7, and that it is real-valued. The first property
does not require any computation and follows immediately from the boundedness of the
coefficients involved in 73, while the second property is also heuristically clear due to
conservation of mass (and Gibbs measure).

8. The a priori estimate I: The general setting

In this section we state our main estimate that works for a single solution. Its proof will
occupy Sections 9-11. There will be another version concerning the difference of two
solutions, which will be stated and proved in Section 12.

8.1. The bootstrap

Let us fix a smooth solution u, defined on R x T, to the equation (1.6), with the parameter
1 « N < oo. In what follows we will assume N < 00, since the case N = oo will follow
from a similar (and simpler) argument. The main estimate can then be stated as follows.
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Proposition 8.1. There exists an absolute constant C such that the following holds. Sup-
pose [u(0)||z, < A for some large A. Then within a short time T = Cle=CA, for
the functions v and w defined in Section 5, and the functions u*, v* and w* defined in
Section 7, we have

I llyr + Ho"llyg + lallyy < CeCA, 8.1)

3
160x) ™" ull (x,nx3nx,7 < CA. (3.2)

Here the space X2 N X3 N Xy is normed by || - |x, + || - | x; | + I - llx,, for which we can
easily show that Proposition 3.6 still holds.

Remark 8.2. The constant C will depend on the constants in the inequalities in earlier
sections, such as Propositions 3.6 and 7.3. To make this clear, we will now use Cy to
denote any (large) constant that can be bounded by the constants appearing in those in-
equalities.

In the proof of Proposition 8.1 we will use a bootstrap argument. The starting point is

Proposition 8.3. The estimates (8.1) and (8.2) are true, with C replaced by Cy, when
T > 0 is sufficiently small.

Proof. Noting that u*(0) = u(0) and the same holds for v* and w*, and also w(0) =
P v(0), by invoking Proposition 3.6, we only need to prove that [u(0)]|z, < CpA and
lv(0)]lz, < Cpe€0A . The first inequality follows from our assumption, so we only need
to prove that || Mu| z, < CoeCollulizy By the definition of M, we only need to prove that

1
1P ullz, < Cy IIMIIMJr (8.3)
for all . Now we clearly have

(PP gl S Yty |+ Zngny - (8.4)
ny

where

_ r |l"m,-|
wm= > J]=. (8.5)

my+etmy=m =1 (mi)

Since when m = m1,, we have (m) < C(’)‘ (my)---{my), we conclude that

S )zl < C“HZ ' ’"'3/4 < (Colullz)™, (8.6)

m i=1 m;

where the last inequality follows from

||
Z( ;;/4 < 7—3d/4 Z i |<Zz( 3411/ p=n)d | ()7 | 2
m d m~

m~2d

—d/4
<Y 2 /IIMIIZINIIMIIZI-
d
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Now using (8.6), we will be able to prove (8.3) once we can prove

I ntmdnezllzy S m) 4 lull z,. (8.7)

To prove this, by definition we need to control |[{n)" u,4mll;» . for each d. If m <« 2¢
n~2

this is easy, since we then have n + m ~ 24 and also (n)" < (m)Y*(n + m)". Now if
m ~ 2% >24 we canuse (n)" < (m)'/8(n 4+ m)" and

N ) el SN0 wly S @+ Dllullzy S m)Plullz, (838)
n~ n 2

to complete the proof. O

Starting from Proposition 8.3 and with the help of Proposition 3.6, it is easily seen that
we only need to prove

Proposition 8.4. Suppose C; is large enough depending on Cj_y for 1 < j < 2, and
0<T< Cz_le_CZA. If the inequalities

I llyr + 10"l + la*llyy < C1e14, (8.9)
3
1€0:x) ™" ull (x,nx5nx7 < C1A (3.10)
hold, then they must hold with Cy replaced by Cy.

The rest of this section, as well as Sections 9 and 10, is devoted to the proof of the estimate
for w* in Proposition 8.4; in Section 11 we consider the other three functions. During the
whole proof, the inequalities (8.9) and (8.10) will be assumed.

8.2. The extensions

By the definition of ¥ norms, we have globally defined functions u”, v”, w” and u"”’
which agree with u*, v*, w* and u respectively on [—T, T], and satisfy the inequalities
(8.9) and (8.10) with the superscript 7 in the norms removed. By inserting a time cutoff
x (), we may assume that they are all supported in |f] < 1. We then define the factors
8, and A, for all time as in (7.27) and (7.28), with w* and u replaced by w” and u”’
respectively. We may also define functions u’ by (u'),, = ¢ (u”),; the functions v’ and
w’ are defined similarly.

Now we could interpret the bilinear form /> and terms N/ on the right hand side of
(7.29), by replacing each u with u’”, each w with w’, each v with v’ (note v is either u
or v), each 8, and A, with what we defined above. If we then choose some 0 <7 < T
and define the function z by z(t) = w”(t) fort € [T, 7] and (8; — i10,x)z(t) = 0
on both (—oo, — 7] and [T, +00), then we can check that this function z satisfies the
equation

@ — 100z = 17 ON2 @D+ n() Y. A, @.11)
j€{3,3.5,4,4.5}
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with initial data z(0) = w(0). Using the time cutoff x (¢), we can define y(¢) = x (¢)z(¢).
From (8.11) we conclude that

y=x®P w0 + EAr - N+ Y. Edr N (8.12)
j€{3,3.5,4,4.5}

Since w” is smooth on [T, T], we conclude that 7 — y is a continuous map from
(0, T] to Y1; also it is clear that when 7 is sufficiently small we have |y[ly, < Coe©oA,
Thus in order to prove the estimate for w*, we only need to prove

Proposition 8.5. Suppose y € Y1 is a function satisfying (8.12) with0<T <C; le=C2A,

and ||y|ly, < C1e“14. Then ||ylly, < Coe©0A.
1,-C2A
A, (1)

In what follows, we will use 7 instead of 7 for simplicity; note that T < cy
Before proceeding, let us prove a few results concerning the exponential factors e
The first lemma is a general feature.

Lemma 8.6. Suppose hj = hj(t), j € {0, 1}, are two functions of t, and define J;i(t) =
x e i D, where H;(t) = [y hj(t')dt'. Then

1) (U1 = Jo) " E)ll ok S Ny = k)M 1 (1 + Il 1 + ol 1) (8.13)
forall 1 <k < oo.

Proof. Recall from Section 3 that y = y (¢) is some time cutoff that may vary from place
to place. Thanks to this factor, we only need to prove (8.13) for k = 1. Next, noticing that

1
Ji—Jo=ix - (Hi — Ho)/ O+ =0H0) gg, (8.14)
0

we only need to prove (8.13) for a fixed 6. Let h = hy — hy and hg = 0h; + (1 — 0)ho,
let H, Hp be defined accordingly, and define y - Hel® = &. Then

0®=(x"-H+x -h+ix Hhp)e', (8.15)
which implies

1EYPE 1 S NPl + 18Pl 1
SN - Akl + IxHI + X Hlixell )
Sl M0 - ARl + I Hlg + I H I (T + oli))
SRl A+ Mol + Il 02,

where H! is the standard Sobolev norm. O
Proposition 8.7. We have

82111 < CoC1eC14 Tog(2 + |nl), (8.16)
[ng1 — 82) M1 < CoCreC0C1 4 (n) =12, (8.17)
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Proof. Recall from Proposition 7.3 that
n
S =Cn) - Y 1wl (8.18)
k=0

where clearly [C(n)] < 1and [C(n + 1) — C(n)| < (n)~!. Now, using the fact that
gl < Il lIgl L1, we obtain

18allr S > I il ™)kl 1
k<)

Sl pllw’llz 10 S CoCire®“ M log2+ nl).  (8.19)
k< (n) kSin)
Here we have used the fact that

Ilw"lllk2<( L < log(2+ [n) - ||w"||1;;‘;01k% L < log(2 + [n)llw”llx,, (8.20)

and the same estimate for w”.

The estimate for the difference is proved in the same way, by using the inequality
|IC(n+1)—Cm)| < (n)~!. In fact, we get a power (n)~!log(2 + |n|), which is better
than (n)~1/2. o

Remark 8.8. Note that all our norms are invariant under complex conjugation. Occa-
sionally we will make restrictions such as n; > 0 which breaks this symmetry, but such
information is only used in controlling the weights and the nonresonance factors, thus in
terms of norm estimates for a single function, we will basically view w and w as the same
function.

Proposition 8.9. For any function h, let b’ be defined by (h'), = x (t)e*®rh,, for each
fixed time. Then

_3
)™ h'llx, < Oc, (e 4| h]|x, (8.21)
forl <j<T.

Proof. Apart from X3, all the other norms we are considering are (some Besov versions
of) 1(n) (€)YPullkpn or |[(n)° (&)Pul|ap with B < 1, and in the latter case we have
o = B = 0. Since the map & +— K’ commutes with P projections, we only need to
consider these kinds of norms. Notice that on the u side, this map is just a convolution
with the Fourier transform of x (1)e*2n® for each i,. Thus to prove the result for the
I¥L" norm, we only need to prove that convolution with this function is bounded with
respect to the weighted norm || (£)# - | h by Oc, (1)eCoCiA (n)‘vg. An elementary argument
show that this bound does not exceed the norm

IE) (x (e AN &)1 1,

which is bounded by CoC ?eCUC‘A(log(Z + |n|))3, thanks to Lemma 8.6 and Proposi-
tion 8.7.
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Now let us consider the L"I*¥ norm and the X3 norm. Let I, (£) be the Fourier trans-
form of x ()T 21 Then we conclude that

_3 _¢3
14m) ™" (o Nl g S/RIHn) g —n In ()|l Ly d

_$3
S A‘QSUP(n) S - 1A e dis (8.22)
n
note the same argument also works for X3. Therefore we need to bound the expression
_$3
/ sup (n) " |1, (§)| d§
R n
by Oc, (1)e“€14, By performing a dyadic summation in 1, we only need to bound
max |1,(§)] d§ (8.23)

R n~2

by Oc, (1)e“€14(d + 2)9M Now suppose |£] < 2'%¢. Then we simply use Proposition
8.7 as well as the L°° estimate of Lemma 8.6 to bound this contribution by Oc, (1)eCOClA
times (d 4 2)2(M Jie1<a20a E)lde = (d +2)°W If |€] > 2'% we may replace the

“maximum” in this expression by summation (during which we lose a power 2¢), then
use the L! estimate of Lemma 8.6 and the largeness of & to gain a power 2!%¢. Thus in
any case we obtain the desired estimate. O

9. The a priori estimate II: Quadratic and cubic terms

We now begin the proof of Proposition 8.5, the starting point being (8.12). The linear
term is clearly bounded in Y; by Cpe04, so we only need to bound the A// terms. There
will be a large number of cases, and they are ordered according to the difficulty level. In
this section we will be able to treat every term except A/3-.

Proposition 9.1. For each j € {2, 3, 3.5, 4, 4.5}, define

M = 5(1[_T’T]./\/'j), 9.1
where we may write N> or N*(y, y) depending on the context. Then
IM?lx, < O, (1He@ATO, 9.2)
> T E M nellp < Oc (DeATO, 9.3)
je{3,3.5,4,4.5}

Remark 9.2. Since
In) = &Y ully 2 < Coll(n) ™ /2%(E ) ull2, 2 (9.4)

by Holder, the inequalities (9.2) and (9.3) will imply [yl x, < Coe4, due to the restric-
tion T < C;le_CZA.
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Proof of Proposition 9.1. In this proof, as well as the following ones, we will use the <
and 2 symbols, with the convention that all the implicit constants are < Oc, (1)eCoC14,
Note that in the estimate for any possible multilinear term, the total number of appear-
ances of all functions other than u”” is bounded by 10, thus as long as we only use the
norm || (E)x)_szu’” | x,nx3nx, (Which is bounded by C; A) for the function u’”, the implicit
constants will be bounded by

"
(O¢, (et ™ %(coclA)“ < Oc, (1)e©14 9.5)
!
and are thus under control. We also need to be careful with the sharp cutoff 1_r 1.
Denote by ¢z = (e'Té — o~iT§) /(i&) the Fourier transform of 1j_7 7]; note that |¢g| <
min(7, 1/((§))), and ¢l 1+ =k < TOT(K)O.

First let us prove ||/\/12||X4 < T0F. As above, we may fix © > 0and w € {—1, 1}?
(though we will not add any sub- or superscript for simplicity). Choose a function g such
that [|glly; < 1 and define f = £'g. Also define f' by (f'), = €' f, and ' similarly;
these notations will be standard throughout the proof. Since f has compact time support,
we may insert x (¢) in the definition of f’, so that we can use the arguments in the proof
of Proposition 8.9. The same comment applies for later discussions.

From the bound ”g”XQ < 1 we see by Proposition 3.4 that || (ng){(co)' = Snowoollp 12
< 1, which then implies, thanks to (Holder and) an argument similar to the proof of
Proposition 8.9, that

_ 25 _
1470) ' =2 (ao) ™ (fngap 22 S 1. (9.6)

Using Plancherel, we now only need to bound the expression

S= Z fno,ao . (1[7T,T]-/\/J2)n0,a0 dOlO
ng YR

= Z /Rqﬂ.m

no=ni+ny+mi+---+my

(A LA A 2 W) A
- m;
% (1[—T,T]€1( ny+8my = Ang) H(ywz)nl 1_[ — ) (a0 — |nolno) dag

=1 i=1 !

= Z /];q>2 ' (f/)no,ozo

no=ni+ny+mi+---+my

2 ® (u///)m_ A
x <1[—T,T] H((y/)w’)n, 1_[ - ') (a0 — Inolno) dag
I=1

i=1 !

S 2 13 (u///)m_ 5
= Z / o . (f/)no,ozo H((y/)wl)nl,oq : ¢a3 l_[ #

no=ni+my+--tmy J (T) I=1 =1 M
Here (T) indicates integration over the set

{(ao, ..., a3, B1,..., B) a0 = a13 + Pip + E},
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which is a hyperplane in RAt4 (recall the notation 13 = o1 + a2 + «3), with respect to

the standard measure
3 1z
1_[ day - l—[ dp;,
=1

i=1

with the non-resonance (NR) factor

2 Iz
E = Inolno — Y _ Imlny = Y _ |milm;. 9.7)
=1 i=1

Note that we are using the convention that u, o stands for u, 4; also we may always
restrict to ng > 0.

Noticing that the m variables are all <« ming<;<2(n;) (again here we may have harm-
less polynomial factors in ), we can check from (9.7) that

|E| ~ min (n;) - max {n;). 9.8)
0<i<2 0<i<2

We will first take the summation-integration over the set where 212=o<'l1) ~ 24 and then
sum over d. In this case, at least one of the & and 8 variables must be 2> 24 Now, with
a loss of 20(52'5)‘1, we can replace the 1 — O(s%) exponent in (9.6) by 1. Also noticing
that |®2| < (np), we may further (upon taking absolute values) remove this & factor and
the (n) factor in (9.6) simultaneously.

With these reductions, we then proceed to the estimate of S. First assume (ag) = 2¢;
thus we gain from the bound (9.6) a power 21 =)¢  while after exploiting this, we still
have (for the function f™* obtained from extracting from f” the {(a) factor) || f™*|,2 2
< 1. In the same way, we can use the X and X4 bounds for y to deduce some bound for y’
(see Proposition 8.9), and strengthen the bound to || (nl)s2 (otl)l/zﬂ2 ONnyaog e S 1at
a price of at most 201/2=b)d

We then fix all the m and B variables to get a sub-summation-integration that is
bounded by (with C being irrelevant constants)

2
sws > ool 190,651 - [T1OD ]
no=ni+ny+C @o=¢1+d+a3+C =1
ST 1N 5 122 ] 5 1] oo o
S U N2 1RGN N por Lo+ INO 2 L33 1+ L1+ 9.9)

where &; = a; — |ny|n;, and ¢ is viewed as a function of (¢, x) that is supported atn = 0
(so that @3 = a3); also recall the D1 notation defined in Section 2.1. The right hand side
will be bounded by 7% by our (reduced) assumptions and Strichartz estimates, provided
we choose 64 to be 6 + ¢s* with some small ¢, and choose 1+ accordingly.

Now we sum over m; and integrate B;, exploiting the bound || (m;)~'u”"||;1,;1 < C1A,
to bound the whole summation-integration for a single d; taking into account the gains
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and losses from the reductions made before and exploiting (1.3), we conclude that the
part of S considered above is bounded by 7020 which allows us to sum over d.

Next, assume that (o) > 29 (the case for o will follow by symmetry). In this case
we do not gain from the bound (9.6), so that we still have ||(£) 1= )1 212 S 1, which, via
Strichartz, allows us to control | f”||; 2+ 2+, where 2+ is some 2 + ¢(1 — k). Instead,
we gain from the bound

2 2
m)* e 2 ( nyen 22 S 1

as above (with a loss of 20(1/2=0)4) and change the exponent (o) 1/2+5% 4 (ap)V/2—ed=K)
to gain the power 2!=)¢ and the reduced bound will allow us to control 9y’ (in the
form of 91(y")®!) in L6~ L%~ with 6— here being 6 — c(1 — k). Choosing the constants ¢
appropriately, we can then proceed as in (9.9), with the f’ factor estimated in L2+ L2,
two y’ factors estimated in L6~ L%~ and L3L3 respectively and the ¢ factor in /!T LT,
to get the desired bound. In the same spirit, if (a3) > 2¢, we will use the L>* L>* bound
for M f (with 24 being 2 + ¢(1 — «)), L6+ L and L3 L3 bound for Ny’ (with 6+ being
6+ cs2) and /!* L* bound for ¢ (with 1+ being 1 4 c(1 — «); note that we gain a power
2¢(1=d here due to the largeness of a3) to conclude. Again we gain at least 2¢(!=)¢ and
lose at most 20(1/2-0)4 5o we have enough room for summation in d.

Next, assume that (8;) > 2¢ for some i. If for this i we also have (m;) > 2¢/30, then
we would bound [m;|~! < 27490 (m;)~2/3 to gain a power of 2°¢ and proceed as above,
since we still have

_ _J3
mi) 23 W g gl S )™ u” |l x, < CoCiA, (9.10)

which allows us to sum over m; and integrate over ;. If instead (m;) < 24/30 e could
use the X4 bound of (8x)_53u/” and Proposition 8.9 to bound

mi) =B s g 22 S 1,

2d/20

and exploit the largeness of 8; to gain a power and reduce the above bound to

1ma )Y (BY>> O Vi i lpr2 S 1,

which would imply ||y'|l;1;1 < 1 so that we can still apply the argument above, sum
over m; and integrate over §;. This concludes the proof of (9.2).
Now let us prove (9.3). Let g, f and f’ be as before, but with the new bound

1n0) /3 o) = fll2p2 S 1.

Note that the estimate for f’ is again easily deduced from the estimate for g and the same
type of argument as in the proof of Propositions 3.3 and 8.9. To bound M3 and M3, we
need to bound

S = > f @/ - (g
no=ni+ny+n3+---+my (1)
3 ©

X ((w/)wl)nl,otl H(Zl)n],oq : ¢Dt4 l_[

(M///)m,-,ﬁl-
=2 i=1 mi

., (9.11)
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with (7) indicating integration over the set

{(ag, ..., 04, B1, ..., Bu) g = a14 + Piy + E}, 9.12)
with respect to the standard measure, with the NR factor

3

2
E = |nolno — Y _ lmlny — Y Imj|m;. (9.13)

=1 i=1

Here 7/ or 7/ equals «/, v or w’ for each [. Again we assume Z?zo(nl) ~ 24 By losing
at most 294 we may assume that w’ satisfies the same bound as y’ before, and Nz’ is
bounded in X4 and LOLS. Also note that |®/| < 1 in any situation.

If (ng) + (a0) = 24/90 e may gain a power 2¢(1=)d (note our loss is at most 29 (€)4)
from the bound of f’, and reduce this bound to || f’||,2;2 < 1. Then we can first fix the
m; and f; variables and obtain the Sy, estimate in the same was as in (9.9), then sum
over m; and integrate over ;. The only difference with (9.9) is that now Sy, contains
five functions instead of four; however, here we may estimate the f” factor in L2172, the
Muw’ factor in LT LS with 6+ being 6 + cs?, the Mz factors in LOLY and the ¢ factor
in /1T L% so that we can still close the argument.

If (1) 2 24190 we may perform the same reduction as in the estimate of | M2 X4
before, gain a power of 2¢0=)4 and use Strichartz and the reduced bound to control
Mw’ || 6~ 6-» Where 6— is 6 — c(1 — k). We may now control 0t f” in LT L+ with the
24 being 2 4 ¢(1 — ), then control 9z/ in LOL® and ¢ in some /'+ L!*. The exponents
will match if we choose the constants ¢ appropriately.

If (ap) = 24/4 (the a3 case being identical), we have two possibilities. If j = 3 then
22 is also taken from {w’, w’} so that we are in the same situation as above. If j = 3.5
then either (n2) > 29/3% and we gain a power 2¢¢ from the ® factor thanks to (7.8) and
the assumption that (ngp) < 24/90 op (n2) < 24/89 and we can exploit the X4 bound of Z,
gain a power 2¢d_and use the reduced estimate to bound |[|91z2|| 1616 (again, as we already
did in the X4 estimate before). In any case we gain a power 2174 ose at most 299,
and can control the reduced Sg, expression.

If (aq) > 29/%0, we can again control 91’ in L>+ L>* with the 24 being 2+ c(1 — k),
then control the Mw’ in LT L (with 6+ being 6 + cs?), Mz! factors in LOLS and ¢
in /'*L'* with 1+ being 1 + ¢(1 — «), with ¢ chosen appropriately. Note that since
ay is large, we will gain a power 2°€=4 from the /'* L'+ bound of ¢. Moreover, if
(m;) = 24/ for some i, we can repeat the argument made before to gain a (small)
2¢d power from this factor alone while keeping the ability to sum over m; and integrate
over B;, and reduce to the above cases. Similarly, if (8;) > 2¢/10, we can also gain this
2¢d power by using the bound for || (8x>_“3u”’||x4.

Finally, if none of the above holds, we must have (np) < 24/90 and | 2| « 29/4. We
may also assume (m;) <K 24/90 or we are reduced to one of the cases above. Thus from
(9.13) we deduce

|[In1lny + nalna + In3lns| < 2074, 9.14)
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Note that we may assume j = 3, since when j = 3.5, one of (n;) and (n3) must be > 24
and we gain a power 2¢¢ from the weight ® so that we can proceed as above. Now if the
minimum of (n;) for 1 <[ < 3 is at least > 24/9 then we will be in the same situation
as in (9.7) and the expression in (9.14) has to be > 24 Therefore we may further assume
(n3) < 24/9 and it will be clear that the NR factor can be small only if ny +ny = 0.
However, in this case we gain from the factor ® a positive power 2, due to parts (b) and
(c) in the requirements for A/? in Proposition 7.3. This allows us to complete the estimate
in the same way as above.

Notice that in estimating M?> above, we have ignored the term where three of
(—no, n1, n2, n3) are related by m and we are allowed to have v instead of w (in the
discussion here, they will be v’ and w’ respectively). To handle this term, simply fix the
m and B variables and bound the ® factor by 1 (we may assume (m;) < 2¢/%° or we gain
a power 2¢d and can proceed as above). We can bound the resulting Sqyp (note that we are
restricting to n; = ¢; £ ng ~ 2d)

3
sws ¥ [ ol - [T 1 ernocal - 19
nog Y0

=a)+--+ag+c4(no) I=1
0 TN T 0 : ! 0 d
/ .
ST N ol [T esnollr S TN Mgz [T0E" s o0 S TH27,
no =1 ~ =1 -

where ¢; are constants (or functions of n¢). Thus this term is also acceptable.
Now let us bound M* and M*>. The quantity we need to control is now

. 4 " " _—
S = Z / CI)] ‘ (f/)n(),ot() H(Zl)m,o{] : ¢C{5 l_[ u, (915)
1) i m;

no=ni+-Fngt--tmy i=1 i

with (7") indicating integration over the set

{(c0, ..., 05, B1,..., Bu) 10 = 15+ Bi + B}, (9.16)
with respect to the standard measure, with the NR factor
4 u
E = Inolno — Y _ Imlny = Y Imilm;. (9.17)
=1 i=1

Here z' or z! equals u’, v/ or w’ for each /. We assume the maximum of the n variables
is ~ 29, and with a loss of at most 299 we may assume that 9w’ satisfies the same
estimate as before, and 9tv’ is bounded in X4 and LOL® (again, it is the modified versions
of w’ and v’ that satisfy the estimates).

If j = 4 we may assume (up to a permutation) that |®| < 2_d/90(n3)_2/3. Due to
the presence of the (n3)_2/ 3 factor, we may also fix n3 and o3 when we fix the m; and g;
variables. Once these variables are fixed, we only need to control the resulting Sgyp. But
since we gain a power 24/90 from the @ factor, the estimate for Sgyp, will be easy; we
simply bound DM f” in L2t L**, bound Nz’ in LOLS for I € {1, 2,4}, and bound ¢ in
'+ L1+ This proves (9.3) for j = 4.
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If j = 4.5, then all the m; variables, as well as n3 and n4, are K 24/10 This in
particular implies that either (ng) > 29/10 so that we gain from the (ng)'/3° factor in the
bound for f’, or the NR factor has |E| = 2¢ (note that ny + ny # 0) so we can gain
from one of the « or B variables. Note that |®| < ((n3) + (n4))~!, thus when we fix the
m; and B; variables, we always have the choice of also fixing (n3, @3) or (n4, a4). This
means that though the Sy, expression seems to involve six factors, in practice we will
always use only five of them. The rest will be basically the same as before. If we gain at
least 2¢1=%) from ng, e, a3 (or similarly «4) or some f;, then we will fix (and then sum
and integrate over) (mj, ;) and (n3, @3) to produce Sy, then control 91" in L2,
Nz (1 € {1,2,4}) in LOLO, ¢ in I'T L' with 2+ being 2 + ¢(1 — «) and 1+ defined
accordingly. If we gain from «; for I € {1, 2} (say [ = 1), we will again fix (m;, B;) and
(n3, a3). To estimate Syp, we control D f” in L>F L?T with 2+ being 2 + ¢(1 — «), Nz>
and Mz* in LOLS, ¢ in ' L'F, and Mz! in Lo~ Lo~ with 6— being 6 — ¢(1 — k). Here,
if (ny) > 24/10 71 will be either w’ or w’ so that we can get the L6~ L%~ bound from
the same arguments as before; otherwise (n1) < 24/10 " and we can use the X4 bound
for Mz! to deduce the L6~ L%~ bound with a gain of 2¢¢. This concludes the proof of
Proposition 9.1. O

Proposition 9.3. We have
YooY Mk, ST 9.18)

j€(3,4,4.5) j’€{1,2,5,7}
Proof. Note that M; involves a sum over the n; and m; variables. We shall first prove
the bound for the terms where j = 4, or j = 3 and ng & {ny, no,n3}, or j = 4.5 and
ng ¢ {n1, na}. By (3.8), we only need to bound this part of M/ in Xg.
Let the functions g and f, f’ be as usual, with ||g|| x; = 1. This would imply

3 2
1470) =2 ap) 2O (g apllpr2 S 1

(we have done this kind of reduction many times before). What we need to control is
the same quantity S with j € {3,4,4.5} as in (9.11) and (9.15), and we assume the
maximal n; variable is ~ 24 a5 usual. With a loss of 204 we may assume that w’ and
v’ satisfy the good bounds appearing in the proof of Proposition 9.1. Using Strichartz, we
can deduce from the bound for f’ as above the L?L? N L*L* bound for 9t f’ with a loss
of 206,

Now we will be able to bound the S expression in (9.15) easily. In fact, if we gain
from anything except «g, we can repeat the argument in the proof of (9.3), but with the
c(1 — k) involved in various 24 or 6— replaced by ¢ (since we now have the L2He 24
control for 9 f”), and check that in these cases we always gain a power 2°¢, which will be
enough to cover the loss 224 _If we gain from o, this gain will be 2°¢, with a loss of at
most 224 and we can bound the reduced 91 f/ factor in L2He[2+¢ g0 this contribution
will be acceptable. On the other hand, if we do not gain anything from any of the variables
or weights, it must be the case that j = 4.5 and |E| < 24/4. Since all the m variables as
well as n3 and n4 are assumed to be < 24/10 e then deduce that

|Inolno — Inilny — nalna| < 2974,
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By repeating the argument in the proof of Proposition 9.1, we see that this can happen
only if ny +ny = 0, or ng = ny, or ng = ny; but all these possibilities contradict our
assumptions.

Next, assume j = 3. Recall that Zfzo(nl) ~ 24 and that the S we need to estimate
is bounded by

3 14
1SS ) /( o) ) (CCERRRTA] |
=1 i=1

no=n|+ny+n3+m+--+my

(u///)m,' ,ﬁi ‘

1

First assume that some of the o or 8 variables is at least 2¢/%°, Then, by the same argument
we made before (notice that the n; variables for 1 </ < 3 correspond to the function w’
or w’, which, up to a loss of 204 _satisfies the estimate || (n;)s2 (o) 1/ZJ”Zw’IIIsz <0,
we can gain a power 2°¢ from the corresponding factor, then fix the m; and f; variables
(and sum and integrate over them afterwards), produce the Sgyp term, and estimate it by
controlling Mt f” in L>* L>, N (w')® in L%~ L%~ with 24 and 6— being 2 + ¢ and 6 — ¢
respectively, and finally control ¢ in /! T L.

Now let us assume that all ¢ and B variables are < 24790, e may assume that
all m; variables are < 29/%0 also. Thus, the variables (—ng, n1, na, n3) will satisfy the
conditions in the following lemma.

Lemma 9.4. Suppose four numbers ny, ..., n3 satisfy
no+ny+ny+n3 =Ky, |nglno+ |n1lny + |n2lnz + |n3ln3 = Ko,
where K; are constants such that

|K1| + |Ka| < 24%0 max (n;) ~ 2%
0<i<3

Then one of the following must hold:

(1) Up to some permutation, ng +n1 = no +n3 = 0. In particular, this can happen only
ifKi =K, =0.
(i) Up to some permutation, ny + n1 = 0, (ng) ~ 24, and (n>) + (n3) <« 24/40. Note
that it is possible that (say) n1 + ny = 0 and ng, n3 are small.
(iii) No two of n; add to zero. Under this restriction we must have (n;) 2, 20.9d foreachl;
moreover, if we fix K|, Ky and any single n;, there will be at most < 2% choices
for the quadruple (ng, n1, na, n3).

Proof of Lemma 9.4. Suppose some (n;) is < 2094 (say for [ = 0); then one of (n;) for
1 <[ < 3 must also be « 20'9d, since otherwise we would have

|In1]n1 + [n2lns + [n3ns| 2 max () - min (n;) > 29
1<i<3 1<I<3

while |ng|? < 2184 which is impossible. Now assume that (n1) < 2%¢; then in partic-

ular (ny +n3) < 29, thus non3 < 0 as well as |ny — nz| ~ 2¢. Suppose ng +n1 = k and
ny +n3 = I; then |k + 1] < ¢29/40 and

2911 < 209 (k) + 24740,
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Now if [ # 0, this inequality cannot hold, since it would require |k| > |I|, which implies
(k) < 24/40 50 that the right hand side will be at most 2(0-9+1/404 and the left hand side
is at least 2¢ (note that here we may assume that 2¢ is larger than some constant which
is polynomial in s, since the summation for small values of 2¢ will be trivial). Therefore
we must have ny + n3 = 0. If also ng + n; = 0, we will be in case (i); otherwise
k # 0, so that we always have ‘|n0|no + |n1|n1‘ 2 |ng| + |n1|, which then implies that
(no) + (n1) < 2/49 and we will be in case (ii).

Now assume that (n;) 2> 2094 for each [. By the discussion above, we cannot have
any nj + n; = 0 (unless we are in case (i)), so we will be in case (iii). Finally, suppose
we fix K1, K7 and ng. The requirement nj, + n; # 0 implies that each (n;) is 2> 20'9d, SO
without loss of generality we may assume ng > 0 > n;. Now n, and n3 cannot have the
same sign since |K| < 29/40, thus we may assume ny > 0 and n3 < 0. Therefore we
will have

no+ny +ny+n3 =Ky, n%—n%+n§ —n§ = K>,
which implies
(n2 +n1)(n2 +n3) = %(Klz —2Kng + K2).
By our assumptions, the right hand side is a nonzero constant whose absolute value does
not exceed 229, The result now follows from the standard divisor estimate, since knowing
ny + np and ny + n3 will allow us to recover the whole quadruple. ]

Proceeding to the estimate of the M3 term, we can see that the only possibility is case
(iii) in Lemma 9.4 (since we have required ny ¢ {n1, np, n3}; also if ny + n, = 0 and
no, n3 are small, we will gain a power 2°¢ from the weight ® so we can argue as above to
close the estimate). In this case we will use a completely different argument.

Recall that up to a loss of 2067d we may assume that with small c,
o)™ {er0) 27 fllp 2 S 1 9.19)
also by invoking the X| norm of w we obtain the estimate

Il () ) 2w g2 S 1 (9.20)

with a loss of at most 2°¢)4_ Since now 209 < n; < 29, we may remove the (ng)~*
and (n;)*® factors in (9.19) and (9.20), and gain at least 21.7sd Therefore, by fixing m; and
B; first, we will be able to get the desired result if we can prove that

Ssub =

3
[ T1CA | - min{T, 1/(ea)}

no=ni+ny+n3+Ki ‘/;T) 1=0

3
<2064 TT len) 2 Al e 2, ©.21)
=0
provided c is a small absolute constant, where the (7') integral is taken over the set

3

{(@o. .. a9 a0 =ara +Inolng = Y- il + K2}, 9.22)
=1
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and we restrict to the region where no two of (—ng, n1.n2, n3) add to zero, Z, (ng) ~ 24
the NR factor satisfies |[rolno — 37— Insln| < 2%/40 and |K 1| + | K| < 24/40.

We will use an interpolation argument to prove (9.21); in fact, it will suffice to prove
the estimate when we replace the parameter set (1/2 — ¢, 2 + ¢) with (2/5, 2) or (3, 4).
When we have (2/5, 2) we will be able to control MA! in L* L** for each I, so that we
can control the a4 factor in /'*L'*, and invoke the argument used many times before to
conclude. When we have (3, 4), assuming the norm of each Al is one, we will get

1467 + Inalng) (AN @) 1 S 1@ + luln) ((AD ) @)l 2 =t AL,

with
1AL s S I+ Inglng) A[||14L2 SL (9.23)
Therefore when we fix (ng, ..., n3) and integrate over («o, . . ., &t4), we get
3 1453 3
Sup ST /4<0€~0 > a- > [ [¢i + tmln)™!
=1 1=0

3
x T4 + Inilna) 1 ((ADw)" @)1 - H da;
=0 =1
3 3 3

1+s
,S T0+<|n0|n0 — Z |ng|n; + K2> 1—[ Aiz,'

=1 =0

We then sum this over (n;); by Holder, we only need to bound the sum

: —ist 0 s
> (imolno = Y lmilmi + Ka) T (AS )
=1

(ng,..-,n3)

If we fix |nolng — Y5, Insln; = K3 with |K3| < 29740, the corresponding sum will be
<206 d , since each ng appears at most this many times due to Lemma 9.4; also the sum
over K3 will contribute at most Z‘ Ks| 524/40(1( 3 — K2>’1“3 = 20("3)‘1. This completes
the proof for M?3.

What remains is when j € {3, 4.5} and (say) ng = n;. Note that the case when three
of n; are related by m will be treated at the end of the proof. In both cases we will use the
expressions (9.11) and (9.15), but with f’ replaced by f, and (w’)®! replaced by (w”)®!
(f j = 3), z! replaced by y! (if j = 4.5). This is easily justified by definition and the
fact that ng = ny. We will assume ) ;- (n) ~ 2%, then fix d and d’. Here we will use a
new bound for f. Recall from Proposition 3.4 that I g||X/ < 1 for some j € {1,2,5,7}
implies || fllx; < < 1, or equivalently

”f”quf;d 52’”de’ (924)

where T, is such that

YT (9.25)

d>0
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In the easier case j = 4.5, we will be able to fix m; and §;, then estimate Sgp by
(note we have all the restrictions made above, say (ng) ~ Zd)
4
Sab S Y. (na)+ (na)”! / | fapao! 1O ng.en | [ T1G e - b |
(T) _

ng, np+n3+ng=ci =2

—_— 4 —_—
ST T (ma) + )T N g e 1l [T 1Dl
=2

no,ny+n3+ng=cj

4
ST 27 s [T ) ™ 22 sy S TO 27991y, (9.26)
=3

using (9.24) for f, the X, bound for y', and slightly weaker bounds for z! that follow
from Proposition 8.9. Here c; are constants, and the (T') integral is taken over the set

4

{(Ot(),...,ot5):(¥0=(¥15—Z|n1|n1+C2]. 9.27)
=2

The reason we can gain 2¢sd" s that in (9.26) we can restrict some n;, where 2 < [ < 4,

to be ~ 24" before using the corresponding control for z' (for example, when ny ~ 24

we will have |22 B < 2-¢sd’y If we then sum over m;, integrate over §;, and sum
ny~2

overd, d’, we will éet the desired estimate.

In the harder case j = 3, we will assume (m;)+ (8;) K 24"/90 T fact, if this does not
hold, we will gain a power 2¢d’ from this term and estimate the Ssub as above, except that
we estimate (w’)®? and (w’)®3 in /2L! with a loss of 20)d" 16 conclude (note in particular
we estimate f and (w”)®! exactly as above, so we do not gain or lose any power of 2¢).
In the same way, we may assume {(og) < 24'/90 in (9.11). Now if np 4+ n3 = 0, we must
have |®| < 2-1d=d'l Also we may replace z2 and z2 in (9.11) with y? and y? (in the
same way we replace f’ and (w’)®' with f and (w”)®!; note that we have not made any
restrictions on «» and «3). Then we may fix m; and B; (here the m variables satisfy some
linear relation which we ignore) and bound

—|d—d’ 2 :
Ssub 5 2 ! ! / |fno,ao|
ng,ny Y A0=0a1+Fo4+co

1@ g |10 ngal 1) s |+ [y
ST 2N e ) D) M 1y 1 1) -y [

no,n2

04+~ —|d—d’ " 2 3 0+~ —|d—d’
STl "l 120 il S T2,
~ ~2 ~2

/
l»’izdl‘q
where the ¢; are constants, and we are restricting to ng ~ 2d ny ~ 24" Then we may
sum and integrate over (m;, B;), and sum over d, d’ to bound this part by 7°F.

Now assume j = 3, np + n3 # 0, and all the restrictions made before hold. In

=/

particular we have ny ~ n3 ~ 24" and 2| = 24" where B/ = |na2|ny + |n3|n3 (again
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we may assume 24" is large, otherwise we proceed as before). Fixing m; and §;, we then
need to bound

Sub=Y_ /( o ool (W) Vngon | - 1@ngan | 1Z)er—ny.as] - 1y
no,n2

where ¢1 — ny = n3, the (T) integral is over the set
{(€0, ..., 04) tg =14 — ' + 2}, (9.28)

and the ¢; K 24'/10 are constants. Also each z/ here is either w’ or w’. Now, by Proposi-
tion 3.4, we can show that ||g||x» < 1 for some j € {1, 2,5, 7} implies
J

C = |[{no) " (ap) /8 L <. 9.29
111, = 1600) @) AWy o S (9.29)

”0”2(1

For the w” we will use the X7 bound, and for z we will simply use the X bound. Now,
since at least one oy must be 2 24" we will gain some 2¢d’ from the (o) weight in one
of the above bounds. If | = 0, we can then estimate f in [? L7 by 2"¢T;, w” in I[P L'
by 2-rd (recall we are restricting to ng ~ 24 and ny ~ 2d/), and z23 in [2L! with a loss
of 204’ 5o that we can use Holder to conclude. If I = 1, we simply replace the /7 L'
bound by the /7 L? bound and argue as in the case [ = 0. If / € {2, 3}, we may replace the
I>L" bound for z! by the /2L? bound and argue as in the case | = 0. If [ = 4 we simply
gain from the ¢ factor. This completes the proof for the ng = n; case.

Finally, assume that j = 3, and three of n; are related by m. We may assume that
(m;) < 2d/90, so that n; ~ 24 for each . Then we fix m; and B;, so that n; are uniquely
determined by ng. The corresponding Sy Will be bounded by

0 ’ 1 2 3 0+~—sd
T +||f ”14 Lq”Z ”14 LIHZ ”[4 LIHZ ”14 Ll f, T2~ s
ad ~od ~od ~od

due to a similar computation as in the proof of Proposition 9.1. O

Now we start to consider the M? term. Fixing the functions g, f, f’ and the scale d as
before, we need to bound the expression

2
S= Z / P fno-,oto l_[(yw[)nl,oq . ¢a3
@ =1

no=ni+ny+mi+---+my
« (Xei(An1+A,,2—A,,O))/\(a4)1£[ (u///)mi»ﬂi' (9.30)
i=1 M
Here the (7') integration is over the set
{(@0, ..., 4, B1, ..., Bu) t 0 = a1a + B1y + B}
with the NR factor

2 I
E = Inolno — Y _ Imlny = Y Imilm;. (9.31)
=1 i=1
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Note that we may insert y since f has compact time support. Suppose the minimum of
(n7) is ~ 2" and also fix h. Then (m;) < 2", so that |E| > 291", also h < d 4+ O(1)
and |®2| < 2". Note that one of « or 8 variables must be > 291" We first treat the easy
cases, which we collect in the following proposition.

Proposition 9.5. Let S be defined in (9.30), where all the restrictions made above are
assumed. If h < 0.9d, or

"
(o0) + (e3) + (o) + Y _(mi) + (Bi)) 2 247, (9.32)
i=1

then the corresponding contribution will be bounded by T+207)4,

Proof. First assume h > 0.9d. If B; 2 24+ for some i, we may use the X4 bound for

3 . . . .
(3,)~5" " to gain a power 20-9°@+N) and then estimate this (") m;,p; Tactor in L2172,
Next we may bound

(el A+ A= An) )| S 27 ag) ! 9.33)

by Lemma 8.6 and Proposition 8.7, and estimate the right hand side (again, viewed as
a function of space-time supported at n = 0) as well as the ¢, factor in [ L1+ We
then fix (m;, B;) for j # i to produce an Sy, involving (u”’),; g;, Which we estimate by
controlling M f in Lo~ L=, My® in LOF L (using the X bound for y and the norm
for f deduced from the X¢ bound for g; here the 6— and 6+ are 64 O (s)). In this process
we lose at most 29®)4_but the gain 20-°°@+" (even after canceling the 2" loss coming
from the ®2 weight) will allow us to cancel the ®? factor and still gain 2¢¢.

Next, suppose (a3) > 247" By using (9.33) and losing a harmless 294 factor, the
argument for a4 can be done in the same way. Let ¢; be constants (or functions of n;);
recalling we are restricting to ), (n;) ~ 24 we may fix m; and B;, and bound

Ssub 5 T0+ Z /
no=n|+na+c; Y 2o=a1++ag+ca(ng,....,n2)

2
| fuguaol - | 1O | -
=1

2/1
1{0{322‘“”'}

(03)99 (at4)

0 —0.62d | 7 N o
STO Y 2R Bl D i 122yl
no=ni+nz+c|

Otn—cd 1 \—0.2 ~02 ~02 0+n—cd
ST 27 o)™ Fllprpa n) =2 yllpn i (n2) ™2yl S TOT27¢

Thus this term is also acceptable.

Next, assume that {ct;) 2 24+ (the oy case is proved in the same way), and that one
of o, a3, g, m; or B; is 2 24/90 We then use (9.33) to bound the exponential factor and
fix (m;, B;). To estimate the resulting Syp, we use the (o] )b factor in the X1 bound for y
to cancel the ®? factor which is at most 2" and bound the resulting y“! factor in L2172,
then bound 91f and My®2 in L** L4+, and bound the factors involving a3 and ay in
't L1, where 4+ is some 4 + c. In this process we may lose 294 but since another
a; or (m;, B;) is = 29/°0, we will be able to gain 2¢¢ from this factor (since the L4+ L4+
Strichartz estimate allows for some room), and we will find this term acceptable.
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The only remaining case is when (ag) > 291", By basically the same argument as
above, we may assume that the other oy and (m;, B;) are all K 24/90 Also recall that two
of n; (0 <1 < 2) are ~ 24 and the third is ~ 2. Now we may use the bound (9.33), then
fix (a3, og) and all (m;, B;) to produce

S| < 200-9h—(1=b)d Z

/ Ang.ooBnyayCnyazs (9.34)
no=ni+nz—+ci ap=ui+or+ 8 +cp

where the ¢; < 24/10 are constants, the factor 2’ is

=’
(=]

= |nolno — |n1lny — |na|n2, (9.35)
and the relevant functions are defined by

Ang.ap = (10) " (00)" ™P| fug.ao -
Bn],a] = <”1>S|(ywl)n1,a1 |a an,(xz = (nz)s|(yw2)n2,oz2|-

Also note that when we sum over m;, and integrate over §; and (3, 4), we will gain 70+
and lose at most 2064,

Now we estimate Sgyp. If ||g||X;n < 1 for some m € {1, 2}, by using Proposition 3.4,
we may assume || (ao)f||x; < 1 for some j € {1, 2} (this relies on the fact that £ can be

written as the sum of two linear operators that are bounded from each W; to X separately,
where [lullw;, = ||($)’1u||xj). If lgllx;, < 1 for some m € {5, 7}, since we may insert a

15 factor to fiyg oo With E = {ng ~ 2%, ag = 24} with d’ € {d, h}, we can use (3.23) and

again assume (o) fllyr < 1 for some j € {1, 2}. Next, notice that |ag — E'| < 29/10,
J

S0 «q is also restricted to some set of measure 0(21'1”’) for each fixed ng. Since «g is

restricted to be > 219 and ng < 24, we will have

IHeo) fllx; S 29 1@0)® fllege S 20003 14a0)* fllp oo

< 20670809 () e S 27 o) fll ey

thus we may furthermore assume j = 1.
Now, using this bound for f and the X bound for y, we deduce that

2
Al 2 + [He)? Bllp 2 + (e2) P Cllpp 2 < 20679,
Let us define A
B, = &1 + [n11n1)? By, (@)1l 12

and C,, similarly, so that ||Bl;» + [|Cll;» S 206Md Then we will have the estimate

~

b —
lloto = &' — €2)*" (B, * Cuny) (@0 = Inolno — e2)ll 2 < By Crs-

which, after taking Fourier transform, follows from the standard one-dimensional inequal-
ity || fell gzo-12 S I fll goll gl o - Now we will be able to control Sgyp, by

14 )1/17
9
Lgo

Saw S22 X B x G = hnolno — c2)|

ny ni+ny=np—ci
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where A = (b — s)h + (b — 1 + O(s?))d, and the square of the inner L? norm is

o 2
T = /R‘ Z (Bn, * Cny) (g — nglno — 62)‘ dag

ni+ny=nop—ci
- 1—-4b
5/( Y (-8 -a) )dao
R

(Y lw0—& =) IBy + C)leo — Inolo — e2)?)

ni+ny=np—cj

Ssp( Y tw-E - )

¥ “ny4ny=ng—cy

— 4b—11, 1 = L~ 2
x oy /(ao— & — )™ 1 |(Ba, * Cuy) (@0 — Inolno — ¢2)* detg
ny+ny=np—ci R

Sswp( ) (w—E - 02)1*417) - ). BLCL.

%0 “ny4ny=ng—cy ny+ny=ng—cj
Next we claim that for fixed ny and g we have
Y lw-E -5 (9.36)
ni+ny=np—ci

In fact, if n1ny < 0, then g — E' — ¢ is a linear expression in n| with leading coefficient
k=+xMmno—c1)/2 2 20.94 (we assume d is large enough), so any two summands in (9.36)
differ by at least k, while there are < 2¢ summands. The sum is thus bounded by

2d
L4 (k) S 1 k320 <1 9.37)
h=1

If nyny > 0, then o — &' — ¢7 equals :I:%(nl — n2)2 plus a constant, so similarly we only
need to prove
D =k <

keZ

for each «, but this is again easily proved by separating the cases (k)> < () and other-
wise, and applying elementary inequalities.
Now we are able to bound

S < 21(2( Z Bilciz)pﬂ)l/p

ny nij4ny=ng—cy
Sormd(S S mpen) S B,
ng ny+ny=no—cy
where we notice that
A+(1/2=1/p)d = (b —sh+(b—1/2—1/p+ 0(?))d
S@b—-1Dd+(1/2—5s—1/p+ 0(s?)d,
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and this is < —c(1/2 — b)d by (1.3). We may then sum and integrate over the previously
fixed variables to get a desirable estimate for S.

Finally, suppose & < 0.9d. Since at least one a; or f; will be > 29+" we may repeat
the arguments above; using the inequality 22(@+") > 2¢d+h that holds for h < 0.9d, we
will be able to gain an additional power of 2°? after canceling the ®2 weight, which will
allow us to close the estimate as above. This completes the proof. O

What remains to be bounded, denoted by S E is actually the same summation-integration
as S, but restricted to the region 2 > 0.9d and with the additional factor 1z, where

E = {{a0) V (@3) V () v (m) v (Bi) < 2970, Vi),
with a vV b meaning max{a, b}. Now let E; = {{o) < 24/90) for [ € {1, 2}. We have

1g = 1gng, + 1EnE, +1E_(E,UEy)- (9.38)

By symmetry, we need to bound SEME1 and SE~(F1VE2) (whose meaning is obvious). In
the latter case, we may assume that oy > 291" and also iy > 29/%0, 50 we can estimate

this part in the same was as in the proof of Proposition 9.5.
It remains to bound SE"E1 Let ENE| = F. Using (3.14) and (8.12) we may compute

Opar = (X O H0w 2 (0), 0, + (EA 7,77 - N2 (3, ¥))?)

+ Y EALr N )y
je(3.35.4,45)

= Z ((Mj)wz)nz,az + (Acl)nz,az + (Acz)nz,az- (9.39)
j€{0,3,3.5,4,4.5)

na,o

Here we denote M° = x (1)el%w(0), and

X2 — )X (2 — v1)
(L0 = €1 /2 X2 —y)x(2 —n
Y2

Loy, dyr1dys,

N X2 =y
(['z)nz,otz = cx(02) - / —Inz,w dyrdys,
R2 V2
where Z = (1j_7, 71N 2(y, y))“2. Interpreting the singular integral as a principal value,

we may compute that

/ ?(J/z—m)dy2 < L
R 12) (y1)
/ X2 — )X (2 — y1) iyl < 1 _
R 72 ({o2) + (Y1) (a2 — y1) /8
v / X2 — )X (2 —y1) s 1
o v ~ () + (1) 2o — y1) 157

where the third inequality can be proved by integrating by parts in y». Now, to treat the
first three terms in (9.39), we may use Proposition 9.1, the easy observation that

1n2) ™2 a2) (M) g s 22 S 1) Y2 w(O)all2 S 1,

together with the following
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Proposition 9.6. If we consider the sum (9.30) with the factor 1g, and y®? replaced by
some function ¢ satisfying

1n2) ™ 2@2) Ly s l2p2 S 1, (9.40)

then this contribution can be bounded by Tt .

Proof. Since in F we will have (an) > 297" we can gain a power 2099°@+h) from the
(at2)* factor in the bound for ¢. After exploiting this, we may estimate ¢ in L>L? with a
loss 2(1/20+0G)d  Then we fix (m;, B;i) as usual, and use the inequality (9.33) to bound
the factor involving 4. To bound the resulting Sqyp term, we estimate ¢ in L2 " f and
Ny in L4 L4 (where 4+ equals 4 + ¢) with a loss of 29  the a3 and a4 factors in
'+ L'* Note that here we will gain a power T, and the total power of 2¢ we may lose
is at most 2(1-1+70)d \which is smaller than the gain 20.999(d+h) Then we sum over m;
and integrate over f; to conclude. O

> 24), the gain from
% (a2) will overwhelm any possible loss in terms of 2¢. Therefore we may even fix all
the n, m and B variables and estimate the integral in o variables and y; only; but we can
easily estimate this integral by controlling all the factors except (y1)~!Z,.,, | in L'T
(since the expression now has a convolution structure in the « variables), and estimate
the (y1)~! |Zy,,y, | factor in L'. This last estimate is due to (the proof of) Proposition 9.1,
which implies

Next consider the contribution of £2. Since we are in F (thus oy >

”(y1>711"2a1/1 ”L1 S ||(y1)K711-n2,y1 ||L2 S 20(1)d,

It then remains to bound the £' contribution. After integrating over y», we may re-
name the variable oy — 1 as y», and reduce to estimating (up to a constant)

SF = Z /(.T) lF : CDZ : fno,oto : (yw])nl,al : ¢O(3

no=ni+ny+mi+--+my

i(Any+Any —Ang)\A = (u///)minBi
X (ye mmT om0t (a4)'HT-n(V1,Vz)~In2,y1,

i=1 g
where 7 is some function bounded by

Ny, vl S 18y, n(y1, Y2 S

(y1){ya)l/s’ (y1)2(ya)1/s’

and the (T') integral is taken over the set

{(@o, 01, 03, 04, B1, ..., Bus v1, ¥2) 1 g = oy + 34 + Bry + yi2 + E}

with the NR factor as in (9.31). Clearly we may also assume (y») < 24/°0 and add this
restriction into F (or we simply gain a large power of 2¢ and proceed as above); after
doing this we will have F C {(y;) > 2¢%"}.

Next, note that N2(y, y) = m(i, y), where m is another bilinear form that dif-
fers from N/ only in the > weights; moreover, the ® weight for N2 will satisfy all the

bounds we have for the ® weight for A2, Thus we only need to bound the above ex-
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pression with Z,,, ,, replaced by (1[,T,T]N2(y“’2, Y2,y - Clearly we may also fix the
parameters 1 and ' in /\/'l‘f,/2 and reduce to estimating

S/ = Z '[ ) @2(@2)/ : fno,()lo
T

no=n|+ns+ne+mi+---+m, ) (u,,,) P
m;,Bi
< JT Oma - Gyt - [ [ —E

1€{1,5,6) i=1 M

x f Lrn(y1, v2) - (xe'BmTan =Ry A () (el Ans Thns = Ay A (),
a4tag=ag

where v = p + 1/ and the (T) integral is taken over the set
{(@0, a1, a3, a5, 06, @7, @9, B, - . ., Bu, ¥2) s g = @1 + a3 +as7 + a9+ By +y2 + E')
with the new NR factor

v
&' = [nolno — |n1lny — Inslns — Inglne — ) _ lmim;.

i=1
The ®2 and (®2) are functions of the n and m variables that are bounded by
min;eo,1,2)(n;) and minye(2 5,6y (n;) respectively. The other implicit variables are ny =
ns +ne +my41,, and

Yi=op—ar—o3s—Pip—r2— E=ass+ PButiy + (8 — B),

where E is the same as in (9.31). Also recall from the definition of /% that ng # n; and
ns +ne # 0.

Next, let max{(n2), (ns), (ng)} ~ 29 so thatd’ > h > 0.9d, and fix d’ also. In the
expression for S, we may assume

(mi) + (Bi) + (o) < 24770 (9.41)

forallu+1 <i <vandj € {56,7,9} (note we already have thisfor 1 <i < pu
and j € {0, 1, 3} due to the factor 1F). In fact, if any one of these does not hold, we may
bound || < 27@+M (1,)=10 and | B2 (B2)’| < 294" (s0 that the weight is canceled by the
part of the 7 factor), then use (9.33) to bound the a4 and ag factors by (as) ™! and (ag) ™!
respectively with a loss 20694 Then we fix (m;, B;) to produce S/, , and estimate it by
bounding the y» and o; factors for [ € {3,4,7, 8} in {'TL'*, and bounding the 91 and
Ny factors in L4+ L4 (with 44 being 4 + ¢). Note that in the whole process we lose at
most 20“)‘1/; but by our assumptions at least one (m;, 8;) or oy must be 2> 2d//70, SO we
will be able to gain some 2cd’ power from the corresponding factor (again using the room
available for L** L+ Strichartz estimate) to complete the estimate.

Now we may assume all the variables mentioned above are small. This in particular
implies that |E'| < 2¢/70. By Lemma 9.4 (combined with the restrictions made above,
such as & > 0.9d), we can conclude that either (i) ng = ns5 and n; + ng = 0 (or with
5 and 6 switched); or (ii) no two of (—ng, n1, ns, ng) add to zero, and (n;) 2 209d" for
1 €{0, 1,5, 6}. In case (ii), we have in particular

(n1)* (n5)* (ng)* = 21 (ng)", (9.42)
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thus we may gain a power 254" from the (n;) weights (after canceling ®2(®?) by the 7
factor) if we use the X bound for y and the bound for f deduced from the X¢ bound for g.

Then we simply bound the a4 and ag factors using (9.33) with 206%d loss, take absolute
value of everything, then fix m; and §; to produce a term Sgp that has basically the same
form as the left hand side of (9.21), with possibly some additional loss of 206Hd , and
with the min{T, (o)~} factor in (9.21) replaced by T+ (cs)~!*+**, which is due to the
estimate

. _ _ _ _ 4
/ min(T, (@)1} ()10 Tt S 7O (o)1,
a3tagta7toag+yr=aqg 1e{4,7,8}

We can then repeat the proof of (9.21) to conclude (notice that every variable is now
s 20(1)d/).

Now we consider case (i), so that d’ = d. We will first replace the n(y1, y2) factor
appearing in the expression of &’ by n(y;, y2), where y{ = y1 — ag. Note that | depends
on o4 only through o9 = w4 + og. When we estimate the difference caused by this
substitution, since we still have the restriction 1z, we will have y; ~ 24+h g0 we will
gain a power 22(d+m=d"/70 \yhich is more than enough to cancel ®2(d2)’, thus this part
will be acceptable. We also note that the assumption (9.41) allows us to insert another
characteristic function which depends on o4 only through «g; the presence of this function
(as well as the part of 1y independent of a4) will allow us to deduce (y;) ~ 24+h,
Therefore, if we remove the part in 1 depending on a4, the error we create will be
a summation-integration of the type &', but restricted to some set on which we have
In| < 27@+M(1,)=10 (note that here we already have n(y{, y2) instead of n(y1, y2)), as
well as (o) 2 24'/90 Then we will be able to take absolute values, cancel O%(d?) by
the n factor, and gain a power 2¢d" from the assumption about o4, and proceed exactly as
above.

After we have made the above substitutions, the integral with respect to a4 (or og)
will be exactly

f (xe!EmFAn=800) " (@) (xS A =E2) @y — ag) dag = 5 (@)
R

Then we will get rid of this integration, then take absolute values, fix (m;, 8;) (again we
ignore the restriction that the m; must add to zero) to obtain an expression

S S Y /(T)22h|fno,ao|~ T 16l

no,ny IE{1,5,6}
x [T min{, 1/} - 27" (o) 1000
1e{3,7}
—|d—h| 0 —~ o0
ST N Fglie [T 16wz
ney,ni 1€{1,5,6}
where the ¢; are constants, ns = ng, ng = —n1, the summation is restricted to the set

{(no, n1) : max{(no), (n1) ~ 24, min{(no), (n1), (no —n1)} ~ 2"},
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and the (7') integration is taken over the set

{(@0, a1, @3, a5, a6, 7, a9, ¥2) 10 = a1 + a3 +as7 + a9 + y2 + 2}
note that the restriction we make here is enough to guarantee that 5| < 2@+ (3,)=10,
Now, if we restrict to ng ~ 24" and n 1~ 2"””, then up to an additive constant they are
between /& and d, and the restricted Sgyp is bounded by 2~ ld=hl T, due to (9.24). We may
sum over d and & for fixed d” and d"” to obtain a bound 214" ~4"1T,, then sum over d”
and d"” to conclude.

10. The a priori estimate III: A special term
In this section we prove the following proposition, with which we will be able to close
the proof of Proposition 8.5.

Proposition 10.1. We have

> My, ST (10.1)
je{1,2,5,7}

Proof. Define the functions g, f and f’, and fix the scale 2¢ as usual. Note in particular
that ”g”Xé < 1, so that
0}~ (00) 270D f g2 S 1. (10.2)

Now, according to a computation similar to those made before (for example, in the proof
of Propositions 9.1 and 9.3), we can write the expression S we need to bound in two
ways:

S = > / > (Vg0
no=nj+ny+n3+mi+---+my (T) 3
INTT 1 = (”///)"Hﬁi
< (@) D [ [ @ e [[ =257 (103)
=2

i=1 !

S= Z /(. > fno,ao((w”)w] Ini,a
T)

no=ni+nz+nz+mi+--+my
3 ) 1% (u///)m_ 5
< [ O e - oy (e At omt b=t Nas) [ T—"2E. (10.4)
1=2 =1 M
Here the (7') integration in (10.3) is over the set
{(ao, ..., 4, B, ..., Bu) o9 = 14 + Biy + B}, (10.5)

while the (7') integration in (10.4) is over the set

{(@o, ..., a5, B1,..., Bu) g = a15 + Biy + B}, (10.6)
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both with the NR factor

3 u
E = Inolno — Y _ Inlny = Y _ |mi|m;. (10.7)
=1 i=1

Also each 7/ or z/ equals u’, v' or w’, and y’ or y! equals u”, v” or w”.
First we treat the case when

min (n;) > 22473 (10.8)
0<i<3
In this situation, n, and n3 must have opposite sign (note that here we are again assuming
24 is large enough). By symmetry, we may assume no > 0 and n3 < 0; also note that
no > 0.

Next, we may assume that (m;) + (8;) + (as) < 24/°0 for all i, since otherwise we
will be able to gain a power 2¢¢ from the corresponding factor alone, and estimate the
expression (10.3) by controlling N’ in L>L>*, 0w’ in L6+ L, Mz! in LOLS and ¢
in /' L™ with a loss of at most 26104 Notice that the loss from the (ng)~* factor
in (10.2) is at most 2°¢, while the loss from other places is at most 20 n the same
way, we will also be done if (m;) > 212%¢ for some i, or when |E| > 2(+1.019d Tp fact,
in the former case we invoke the X3 norm for (3,) " u” to gain a power of 217954 to
cancel the 2°¢ loss, then fix m ; and B; for j # i to produce Sgyp, Which is estimated by
controlling M £ in L*L*, Mw’, Mz’ and Nu'” in LOLS, ¢ in some 1!+ L' with a loss of
at most 204 _Tn the latter case at least one ; must be > 20+1.019) 1f 1 ¢ {0, 1}, we
could gain 2°¢ from the corresponding factor and proceed as above (since the 2°¢ gain
will overwhelm any loss). If [ € {2, 3} (say [ = 2), we invoke the X4 norm for 2% noticing
that 1 —x = s7/4, we will gain at least 2!9015¢ from z? and estimate the reduced function
in /2L2. This will cancel the 2°¢ loss from f’ and we can fix all m; and f;, then bound
Ssub by controlling 9t in L6~ L, Mw’ in LT LOF (where 6— and 6+ differ from 6
by cs? with appropriately chosen ¢), Mz% in L2L?, 9z in LOLS, ¢ in I'* L'* with a loss
of at most 2064,

Now, we have (m;) <« 2129 and || « 20+10194 Gince ng,ny > 0 > n3 and
(n1) = 2%4/3 we can easily see that n; > 0, which implies

In3 — n3 —n3 4 n3| « 20F1019)d, (10.9)

Note that |no + n3| 3> 24/% (otherwise we gain 2¢¢ from the weight and everything will
again be easy; also this will imply ng # n1), we write np +n3 = kand ng —n; =1/ so
that | — k = 0(2""*?). We deduce from (10.9) and elementary algebra that

k| - Ino + ny — ny 4 n3| < 20F1294, (10.10)

which implies that max{(n,), (n3)} ~ 2¢. Since we will be done if we gain 21459 from
the weight, we may then assume |ny + nz| > 2010194

Next, we claim that we may assume |ng — na| + |n1 + n3| < 2194, In fact, the
difference between no —ny and n1 +n3 is already O (21'25d), so if one of them is > 21.9sd
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the factor ng + n; — na + n3 in (10.10) will be at least 2159 also. This would force k to
be « 270794 Noting that max{(n»), (n3)} ~ 2%, we will gain 20-75¢ from the weight
@35, Therefore, we will still be able to close the estimate if we can gain more than 20.3sd
elsewhere, for example, when || > 2103194 or when (m;) > 294¢ for some i. If we
assume further that |E| « 20403194 and (m;) « 294 then (10.10) will hold with the
right hand side replaced by 240494 This would then force k| < 2171394 which is
impossible since we have already had |k| > 2(1-1.019)d

Note that all the restrictions made above concern only the n;, m;, f; and o4 variables,
so we still have the freedom of choosing (10.3) or (10.4). After making these restrictions,
we will now choose (10.4) and analyze the exponential factor first. Noting that

Gy 8y + 8y — 8ng) 1 S 27 (10.11)
by Proposition 8.7, we deduce from Lemma 8.6 that
IHers) Jon (@)l S 274/° (10.12)
forall 1 < u < oo with
Ty (@s) = (x (@) - (@ @ntAnFan=0i) _ 1)) (as). (10.13)

By a similar argument to the proof of Proposition 8.9, we deduce that (where, of course,
the supremum is taken over (n) such that ), (n;) ~ 24)

/ sup | J (as)| das < 27907, (10.14)
R no,...,n3
Therefore, if we replace in (10.4) the exponential factor by Ji,,), we will be able to first fix
a5 and then integrate over it, and gain a power 2°¢ from this process. Once s is fixed and
the J,) factor is removed with a pcd gain, we will be in the same situation as considered
before. We can then fix m; and B; to produce Sy, and estimate it by controlling 91 f in
L2 L7 Mw” and Ny’ in LOLE, ¢ in I't L'+ with a loss 204,

Now we may replace the exponential factor in (10.4) by ¥ («5). We can actually get
rid of this factor since f and f’ is supposed to have compact ¢ support. Therefore, we are
reduced to estimating

§ 3.5
S= f |CI> |'|fno,a0|
no=ny+ny+nz+mi+--+my 7 (T)

14
W mipy )”""”5" . (10.15)

3 Iz
<"y | [ TIODmen | - 16l T
=2

i=1 !

where the integral (T) is taken over the set (10.5). Starting from this point we will no
longer use the equivalence of (10.3) and (10.4), so we will assume here that each («;)
is « 2U+1.0194 gince otherwise we may proceed as above (note that the bounds for f,
w” and y' are better than those for f/, w’ and z'). For the same reason, we may assume
(o) + (o) < 24/9000 (otherwise we may gain 2°¢, then control 91/ in L2t L2*, 9tw”
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in LO~L%, My’ in L°L® and ¢ in /'t L't with 24 and 6— being 2 + ¢ and 6 — ¢
respectively).

To estimate (10.15), we recall the bound (9.24) in the proof of Proposition 9.3. Sup-
pose that ng ~ ny ~ 24" and ny~nz~ 2d" (note that |ng — ny| and |n| + n3| are small).
Then we have max{d’, d"} = d + O(1), as well as

|@35) < 2 ld'=d", (10.16)

Here, instead of fixing d, we will fix all of d, d’, d”, then sum over d’ and d”. By (10.16),
we may assume

min{d’,d"} > (1 — 1.01s)d,
so in particular d’ ~ d” ~ d. Once we fix (n3) ~ 29" we can invoke the Xg norm of y>
to write y> (now restricted to frequency ~ 29" as a sum

Y=Y ymgy? Yty iy S 1 (10.17)
J J

such that ||y | rape S 1foreach j. See Section 2.2. We only need to consider a single j;
namely we need to bound S provided y3 = (k)’sl/znk y”, where y” is some function
satisfying [|y" |l o2 < 1. Next, if (k) > 29/%0, we will gain a power 205'2d from the
coefficient in y3; we then fix m; and B;. To estimate the resulting Sgp, We can control
Nf in LOTLOT 9Mw” and My? in LOLC and ¢ in I't L' with a loss of at most 206)4
(where 6+ is 6 + cs and 1+ is defined accordingly; also note that we have assumed
(o) < 224 " as well as the bound for f deduced from the X ’6 bound for g). We can then
close the estimate if we can control y” (and hence 73 y"”) in >L2. This can be achieved by
inserting a x (¢) factor to every term in (10.17), which, while doing nothing to the equality
and the L9{% norms, allows us to control the L2/% norm by the L9 12 norm. Thus here we
also get the desired estimate.

We now assume (k) < 24/90. We will fix k and each (m;, B;) to obtain some constants
K1 <« 2124 and K5 « 29/°0 and produce

—1d —d" —\d'—d" —_—
s =2 )
no=ni+ny+n3+Ki (
2
X |((w”)wl)n1,0{1| : |(y )nz,az' ' |(kayH)n3,Ol3| : |¢D(4|’

where the (T') integral is taken over the set

3
{(Olo, .o 04) o = o4 + |nglno — Z |nglng + Kz}, (10.18)
=

with all the restrictions made above taking effect. Now if ng — ny € {0, K1 — k}, we can
bound

Sab ST Y 3 W lea @) M 1O ngteo) UL 1 Dy e) Ml o
n0~2’i' n1~2d”

0 2 " " 0
ST Tl Y e N e "l e ST T,
2 ny~

ny~2 ny~ 2
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using the bound (9.24) for f, the X, bound for w” and y?, and the L4/> bound for y”,
where the c; are constants, small compared to 24" and 2d”, such that n; ~ ng + ¢; for
j € {0, 1}. If we then sum and integrate over m; and B;, then multiply by 2~ '=d"| and
sum over d’ and d”, we will get a quantity bounded by 70+,

Assume ng — ny ¢ {0, K1 — k}. Let A = ng — np. We can rewrite the expression
for Sgup as

0+~—0.999sd+0(s)|d'—d" 2 :
Ssub 5 T +2 sd+ (Y)‘ | / Ano,O(anl,alcnof)\,,Olz
R4

no,np,A

2
- —1—s2
X Dy tey o (@p—o1—ap —ay — B +c2)7 ° 1_[ doy - doj,
=0
where the ¢; <« 24/90 are constants, and the summation-integration is restricted to the sub-
set where all the restrictions made above are satisfied by (no, ..., n3, g, .. ., ®4) which
is defined in terms of our new variables (as well as the intermediate variable n’3) by

ny =ng— A, n3=n/3—k, oc3=ocg—|n/3|n/3+|n3|n3,
3
ny=x—n —Ki+k, os=0a9—a3—|nolng+ Z |ngln; — Ko.
=1
We can check from the assumptions made above that no two of (—ng, ny, no, ng) add to
zero. Moreover, &’ is defined by

&' = E'(no, n1, &) = |nglno — |niln1 — |nalny — |nfnj,

and the relevant functions are defined by
Ano,ol() = (n())_r |fn0,(x0 | ’ Bn1 ,0 = <l’l 1 >r | ((w//)wl )}11 Nl | )
Crror = (12) 1 mne s Doty = 167y -

When restricted to appropriate subsets (for example, we must have ng ~ ny ~ 24" and
" . . .
ny ~ nz ~ 249", these functions will satisfy

A 1, + UBl e + 1C it + 1Dl S 20000254 (10.19)

In fact, due to the restrictions we made, we can bound all the variables by 20(1)”1; so when
we replace the L9 norm by the L' norm we lose (by Hélder) at most 2¢@~D4_Thus the
bound for A follows from (9.24), and the bound for D follows from our assumption
about y”. The bound for C follows from the X, bound for y2, while for B we simply
estimate (note that (a1) < 24/9000)

1Bl e S 220799 ) ()P (W)l 12y (10.20)
< 20(1—q)d2$d/8000|| (nl)s<al>b(w//)w1 ||L/’ll7 < 20.0002sd’

using the X bound for w”. Note that by inserting x (r) to w”, we may control the [? L?
norm by the /7 L? norm.

Now we need to estimate Sgyp, under the assumption of (10.19). First replace the
bounds in (10.19) by 1, so that we only need to bound the summation-integration part
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of Sgup by 20998sd Fix oy and «; which are <« 29924 (then integrate over them), we
may assume A and B are functions of ng and n; only, and are bounded in /? and [?
respectively. We then bound (with the ¢; « 24/90 being constants)

/ / / —/ —1—s2
sub = /]RZ doaydas - Z Ang Bny Cng—i.ery D)L—n1+c1,ot§ (@ o3+ 8 Fc)

no,ny,A

—1—s2
S 2(10) ’ /RZ day dag Zm/ A"anlCno—%azD?ﬁnHrCl’“é
PEL (ng,n1,1): L& |=p

1/2
< sup/ don do - ( Z A Ch )
R? ’

no—A,o

P (ng,n1,3): [E"|=p
1/4 1/4
4 4
x( 3 Bm) ( 3 Dx—n1+q,ag) . (1021
(no.n1.3: LB |=p (n.n1.3: LB |=p

where we write a2 + o 4+ &' +¢3 = E” for simplicity. Now for any positive function E,,
of ny, when p and a3, ag are fixed, we may bound

4
> E,S) E, Y 152060ME|,
(ng,n1,A): LE" |=p ni (ng,A): B'=c"

(where ¢ and ¢” are constants depending on a2, & and p), thanks to part (iii) of Lemma
9.4 (or actually, an argument similar to the proof of that part). The same inequality holds
if we replace n1 by A — n1 + c1 (which equals n} plus a constant). Therefore we can

bound the second factor in (10.21) by 20694 B| S 20694 and the third factor by
2064 D. 4 ll+- Tgnoring the 20694 factors, we thus bound (10.21) by

172
S;ub < sup/2 doy d(xé . ||D-,o¢g||l4 . ( Z Aiociofl,lh)
p /R (no.n1,2): L& ]=p

172

2 2

< su[,)/< Z AnoCno—)»,rn) doy
P05 IR 2oy 1) LB J=p

< sup/ day - Z AngCrno—r,an -
p.oy /R (no,n1,1): [E" |=p

Now we fix p and «}. Noticing ng — A = n, and that

N1/p
Any < Fp, 1= ( 3 A,’;,) (10.22)
|Wl*l’lz|g2|'9’rd

because |ng — na| < 21999, we proceed to estimate

4
"< / dur- Y FaCapa S2°6% S F, / Coyry dets
R (n1.m2,3): L& |=p n R

0shd
S22 F Ly IC w1
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Here we have again used the divisor estimate as above. Finally, notice that

ro_ P 1.95d P’
Wi, =% Y AL S2YAnr,

ny |m—n2|§21-9“d

so we deduce that S, < 2191sd/p" < 90998sd 45 desired.

It remains to consider the case where (n;) <« 224/3 for some . Note that if (m;) +
(Bi) + (ag) = 2970 for some i, or the weight |®3| is < 274 or the NR factor (as
defined in (10.7)) satisfies |E| 2, 20494 e will be done using the same arguments as
before. This in particular includes the cases when (i) three of the n; are 2> 234/4 and the
remaining one is << 22d/3: (i) at least two of the n; are < 234/4 and (n2)+(n3) 2 24d/5,
(iii) both 5 and n3 are < 2%*4/5_ and ngn; < 0.

Now we assume that ngn; > 0 and (np) + (n3) <K 24d/5 et no —ny = k and
ny +nz = 1, so that [k — | < 24/90.1f | < 24/80 we must have (n2) + (n3) < 24/70
(or we gain from the @ factor). These two variables being small means that we will be
able to repeat the argument made before and gain 2¢¢ even if || is bounded below by
2099 jnstead of 20494 But when |E| « 2099 it is clear that we must have k = 0. If
L[> 2d/80, we will have k ~ [, so that

|Inolno — Inilni| 2 291k >> 2%9/511) > |nalna + In3lns

’

which implies |E| > 2814/80  contradicting our assumptions. Thus in any case we deduce
that ng = n; ~ 2¢. Now we may use the expression (10.3) for S, but with £’ and w’
replaced with f and w” respectively (see the proof of Proposition 9.3; note that we have
made no restrictions for «g or oq).

Next, suppose (n2) + (n3) ~ 29"; we may assume d’ < d/10, otherwise we will gain
a power 2°¢ from the weight ®3 (note that ny + n3 equals a linear combination of the
m variables since ng = n1). We will fix d and @’ (then sum over them). If (m;) <« 2¢/2
for all i, then we gain a power 24" from the weight ®3-; otherwise we have (m;) >
24'/2 for some i, so we may extract a power 2¢4 from the 1 /m; factor (without affecting
summability in m;). In any case, we will be able to fix m; and ; and sum over them later,
and the Sgyp term can be bounded by

—ed . 1
Ssub ,S 2 cd Z / |fno,ao| : |((w//)wl)no,a1 |- |(Z2)n2,a2| : |(Z3)c1—n2,a3 | -mm{ T, _}
(T)

o T (og)

3 —
27T N Fa e ") ) M [T Ho20) = @l

ng,nz =2
’ ’
S 2—Cd T0+ . 2rd Td . 2—rd 5 2—Cd TO+ Td-

using the bound (9.24) for f and the X, bound for w”, where the ¢j are constants, n3 =
¢1 — ny, and the (T') integral is over the set

{(@o, ..., 04) 1 g = a1q4 — nz|n2 — [c1 — nal(c1 —n2) + c2}.

Now we can (sum over m; and integrate over B; and then) sum over d and d’ to conclude
that S is bounded by 7°*. This proves Proposition 10.1. O
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11. The a priori estimate I'V: The remaining estimates

In this section we will construct appropriate extensions of u*, v* and u so that the im-
proved versions of (8.9) and (8.10) hold. Note that we have already constructed a function,
denoted by w™, that coincides with w* on [T, T], and satisfies [|[w® ||y, < Cpe®0A.
We will fix this function in later discussions. In particular, we may (starting from this
point) redefine the §, and A, factors as in (7.27) and (7.28) by replacing w* with w®

(instead of w”) and u with u””.

11.1. The extension of u

Fix a scale K so that K = C; 5¢¢154 where C| s is large enough depending on C1, and the
C defined before is large enough depending on C1 5. In order to construct a function u®
that coincides with u on [—7', T'] and satisfies

_¢3 _3 )
140:) ™ u lx, + 108) ™ u® Nlxy + 1103) ™ u®lx, < CoA, (11.1)

we only need to construct P~ gu® and P<gu® separately.

To construct P~ g u®, simply note that u” coincides with u* on [T, T], and we have
u”|ly, < C1e€14; thus if we define (u®), = e!®n(u"),, where A, is redefined as above,
then P- g u® will equal P. xu on [—T, T], and we have

_ 4
10:) ™ ulx; S Oc, (1) (11.2)

for j € {2, 3, 4}, thanks to Proposition 8.9. Here note that the s exponent in that propo-
sition can actually be replaced by s* (which is clear from the proof), and the current
(8n, Ap) also satisfies Proposition 8.7 (in the same way as the (§,, A,) defined in Sec-
tion 8 does). Since we are restricting to high frequencies, the inequality (11.2) will easily
imply

1)~ Pogu@x, < A

for j € {2, 3, 4}, which is what we need for P~ gu®.

Now let us construct P<gxu>. Recalling that the function u satisfies the equation
(1.6), and the Y, norm of y (¢t)e™" Hoxxy(0) is clearly bounded by CypA, we only need to
prove

< 707, (11.3)
(X—l/s,K)T
with the implicit constants bounded by Oc, s (1)e€0€154 where X# is the standard space
normed by ||(n)° (£)# - ||,2;2. Define the function u” by (7.1) and (7.2), with the u ap-
pearing on the right hand side replaced by u”’, and v replaced by P<ov”” + w”” with v"”’
defined by (v"),, = €' (v""),, and w”” similarly, so that u? coincides with u on [T, T
(note that the A,, here is different from the A, defined in Section 8; later we will further
modify the definition of A,,, and this will be clearly stated at that time). We claim that

€@ =771 P2o((Svu)D) [ 4= 10 S TOF. (11.4)

This implies (11.3), since the two functions on the left hand side of (11.3) and (11.4)
coincide on [—T, T].

t
H /0 e_(t_[ )Ha”P;é()((SNu(t/))2) dt/




1182 Yu Deng

Let V' = Po((Syu'")?), we will have

M2

Ny = Z Z wl ')

H12 !
(n.omet -1 i 2R R!

H12 (u///)m
o Z . H(sz)m 1_[ =, (11.5)
ny+nytmy et my, =no I=1 =1

where z = P<ov” + w”, W is the product of some ¥ factors and two characteristic
functions 1, 1g,, where

={wi(ni +miy) >0}, Ex={wr(n2+my+1,,,) > 0}.

Now, by the same argument as in the proof of Proposition 7.1 (note that ng # 0), we can
rewrite the right hand side of (11.5) as a sum of the same form, but either with W bounded
by 1 and n1 + ny # 0, or with ¥ bounded by % for some i.

To prove (11.4), we will use the function g and f as in the previous sections, and fix

the scale d as before; we are then reduced to estimating (with u = wp2)

mo B
S = / ﬁlo o ¢Ol3 H(Zwl)”l o’ 1—[ ( n),l,l,ﬁl ’

no—n1+n2+m1+ +my i=1 !

where ¢ is the Fourier transform of 1;_7, 77 and the (T') integration is taken over the set

{(ao, ..., a3, B1, ..., Bu) g = a13 + By + E},
with the NR factor

N
= |nolno — |n1lny — |nalny — Z lmi|m;.

We may assume that (ng) and (m;) are all < 29/%0; otherwise, since we can gain some
small power of (m;) and any large power of (ng) (because of the —1/s index), we will be
able to gain some power 2¢d Then we simply fix (m;, B;) to produce Sgyp, then bound f
in LZL%, 9z in LOL% and Pay in L1 with 296 Joss to conclude. Now, since ng and
all m; are small, we have either n; 4 n, # 0 (which implies |E| > 2¢) or |W| < 27
(so we can proceed as above). In this case at least one of the o or S variables must be
> 24: since we will also have w;n; > 0 and hence z = w”” which is bounded in Y; by
C1¢€14, we will always gain a power of at least 2°! =4 from the corresponding factor,
then proceed as before to estimate Sgyp and then S, with a loss of at most 20(e)d Finally,
noting that we always gain a power 7% which overwhelms any loss Oc, 5 (1)e%c1s A,
we have already proved (11.4).
Next, noting that (u*), = e‘iA"un on the interval [T, T], we have

(B + Hop) @)y = e (3 + Hoyx)uy — ie 2 (8up).

The first term on the right hand side can be bounded in X ~2/*~! using Proposition

8.9 and what we proved above, while the second term is easily bounded in the stronger
space X100 py Oc, 5 (1)e%c15(D4 Therefore by the same argument, we can construct
an extension of P<xu™ that satisfies (8.9).
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11.2. The extensions of u* and v*
Now, in order to construct appropriate extensions of P, g u* and v*, we need the following

Proposition 11.1. Let 8, and A, be redefined using (7.27) and (7.28). This time with w*
replaced by w™® and u replaced by u®. Then the new factors will satisfy Proposition 8.7
with the constants being Coe“* instead of Oc, (1)eCoC1A,

Now suppose h, k and I', k" are four functions, supported in |t| < 1, that are related
by (W), = €™ h, and (k'), = e*k,. Assume that

L ),
(hYng =Y _Cy > WK ] p— (11.6)
0

no=nj+mi+--+nmy i=1 !

with U bounded. Then |hlly, < CoeC0A||k||y2. Moreover, if VU is nonzero only when
(m;) 2 K for some i (again, the constant here may involve polynomial factors of 11),
then |h|ly, < K~ llklly,.

Proof. The estimates of §,, and A, are proved in the same way as in Proposition 8.7;
notice that all the relevant norms bounded by Oc;, (1)e€0€14 there are now bounded by
Coe€04 in this updated version, thanks to the construction of w® in previous sections
and the construction of u® above.

Now we need to bound ||| x; for j € {2, 3, 4, 8}. By fixing and then summing over u,
we may assume that

. M
AR DR O |

|hn0,a0| < CO /
no=ni+mi+--+m, 7 (T) i=1

w@mﬁw

1

where the integration is taken over the set

{(a1,00,B1, ..., Bp) tag = a1 + a2 + P1 + E},
and the NR factor is

)7
E = |nolno — |nilny — Y |milm;.
i=1

Throughout the proof we will only use the X ;» norm for (8)()_“314(5) for j/ € {2, 3, 4}, and
it is important to notice that these norms are bounded by CpA instead of C1 A.

First assume j = 4. We introduce the function g with ||g|| X, < 1, so that we only
need to estimate S := (g, h). This is a summation-integration we have seen many times
before; to analyze it, we notice that either (E), or one of (¢;) (where [ € {1, 2}) or (8;),
must be 2 (ao).

Suppose (ap) < (E). Let the maximum of (ng), (n1) and all (m;) be ~ 2¢ (and we
fix d); then (o) < 22¢. If among the variables ng and m;, at least two are > 2(1’32)‘1, then
we will gain a net power 2¢! )¢ from the weights in the X/, bound for g, or from the
Im;| ! weights appearing in S. Then we will be able to bound the (x el _A”O))A(az)
factor using some inequality similar to (9.33), fix the irrelevant (m;, 8;) variables to pro-
duce Sqyp, then estimate it by bounding Otg in L2+ L2+, 9tk and the two 9tu® factors in
LOLO and the (xe'®17%))" (ay) factor in It L'*, where 2+ is some 2 + ¢s2, with a
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further loss of at most 294 We then sum over the (m i, Bj) variables and sum over d to

conclude the estimate for S. If instead only one of them can be > 2! —s%)d (again, assume
d is large enough), then this variable and n; must both be ~ 2¢. Let the maximum of all
the remaining variables be ~ 24" where d’ < (1 — s?)d is also fixed; then we will have
lag| < 24+d"_Since we will be able to gain a power 2¢(17« )d+d) from the weights, we
can proceed in the same way as above.

Next, suppose (xp) < («2). By invoking (8.17) we may get an estimate better than

~

(9.33) for the «; factor, namely

_ 2
o2 (e A =8N @)l o < CoeoA Y (my)* %)
i=1
forall 1 < o < oo; the < here allows for a polynomial factor in . Therefore, by losing
a tiny power of some m;, we may cancel the oo weight in the X, bound for g and still
bound the «, factor in L2, then fix (m;, B;) and produce Sgyp, and estimate it by

-1 —K
S S Y (10) ™ 1410} (00) ™ 8.t 12 1Kng-ter . Iy,

no
—1 _
S 1no) ™ (o) (@0) ™ gno.ao 3202~ Ikny oy lppr S 1,
where the ¢; are constants. If instead (atg) S (er1), we can invoke the oy weight in the X4
norm for k to cancel the g weight, then notice that (n;) < (ng) + (m;) for some i, then

bound the «y factor in L! and fix all the other (mj, B;) to produce Sgup. If (n1) < (m;)
we will estimate

(n1) _
S S D [ {n0){@0) ™ gnoollL2

no=n|+m;+ci (no)(m;) 1 0 .
x||{n1)~ <0“>Kkn1,ot1 ”L‘%l ||(u( ))mi’ﬂ[||L/13.

- -1
< eo) ™ gllp 2 1nn) ™ o<kl g2 - w0 S 1L

where the c; are constants; note that 1u®] ;"1 can be controlled by the X, norm of

(ax>—4~*3u<5> due to (1.3). If (n1) < (ng) we will instead estimate the g factor above
in 17 L2, the k factor in [¥ L2, and the u® factor with weight (ml-)_1 in 'L, Finally,
if {(ag) < (B;) for some i, we will cancel the (ag) weight by the (8;) weight, then fix

(mj, B;) and again get Ssup, Which we estimate by
Sub S Y. (e ro) " ()T (n0) (@) gng.anll 2
no=n1+m;+cy 0

Xm0 T ki iy ) ™ B @il

_ _ _ 43
< 1m0 (o) ™ gl 2 1) F kel o - 1080 ™ @y, S 1L

where the ¢; are constants, and again note that we can gain any small power of c1, since
=cy is the sum of all m; where j #i.

Next, let us assume j € {2,3,8}. In this case we only use the I'L! norm of
m; l(u(s))m,-, ;> so we will be free to lose any power (m;)¢ for small c. Therefore we
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may fix each (m;, B;), invoke (11.7) to fix oy also (by an argument similar to the proof of
Proposition 8.9), then reduce to bounding [|z| x; in terms of | k|| x;, provided

|Zn0,a0| = |kno+c1,oto+|no+c1|(no+c1)—|n0\no+c2|‘

But since the bound we get is allowed to grow like (clfl/3 (note that —c is the sum of
all m;, and we are allowed to lose (m;)¢ for small c), this will be easy if we examine X»,
X3 and Y separately (in particular, we will use the definition of the ) norm). The only
thing we need to address is the (n) weights in the definition of X, and X3, and the step of
taking supremum when obtaining the Xg norm from the )’ norm; however, by a standard
argument we can show that through these we will lose at most (c1)?®) power, which is
acceptable.

Finally, we may check that throughout the above proof, we only need to use the X !
norms of (3,) ™ *u® instead of (05) ™% u(s) thus we will gain a power KT if we make
the restriction m; = K for some i. ]

To see how Proposition 11.1 allows us to construct extensions of P gu™ and v*, we
first note that u* is real-valued, so we only need to construct an extension of P. ; gu*
(which is an abbreviation of P, P- xu*). Now, in Proposition 11.1 we may choose k to
be an arbitrary extension of v* and & to be some extension of u* (and choose 4’ and k'
accordingly) so that (11.6) holds with appropriate coefficients (cf. (7.1) and (7.2)).

Exploiting the freedom in the choice of k, we will set Py k = w® and P<ok = Pgv”.
The part coming from Pk is bounded in Y, (before or after the P x projection) by
Coe4 due to Proposition 11.1, since we already have |[w® ||y, < [w® |y, < CoeC04.
As for the part coming from P<ok, we must have ng > K and n; < 0in (11.6), so the
W factor will be nonzero only when (m;) > (u 4 2)"2K for some i, thus we may again
use Proposition 11.1 to bound this part in Y> by Oc, (1)e€0C14 K0~ < 1, since we have
v [ly, < C 1€14. This completes the construction for the extension of u*.

Now, to construct the extension of v*, simply set the k in Proposition 11.1 to be u®
(which is the extension of u* we just constructed) and & to be some extension of v* so
that (11.6) holds with appropriate coefficients. Then this extension will do the job, since
we already have [lu® Iy, < Coe©4. This finally completes the proof of Proposition 8.1.

12. The a priori estimate V: Controlling the difference

The main purpose of this section is to provide necessary estimates for differences of two
solutions to (1.6). First we need to introduce some notation, including the definition of
the metric space BOT, which will be used also in Section 13.

12.1. Preparations

Definition 12.1. Suppose Q = (u”, v”, w”, u”") and Q' = (u'", v, w'", u¥") are two
quadruples of functions defined on R x T. We define their distance by

D,(0,9) = 1(3:) (W — wMly, + 1{8:) 7" = v Dy,
T 3o, m T
118 7@ = u Yy, + 108:) ™ 0 @ = uTTY I x,nxs0 x4
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for o € {0, s5}. In particular, if o = Q' = 0, we define the triple norm

_¢3
QI :=D0(Q, 0) = lw”lly, + I1v"lly, + llu”llv, + 1168x) ™ u” | xo0x30%,-

Next, suppose u and u~ are functions defined on / x T for some interval 1. We will
define the functions (u*, v*, w*) corresponding to u# and some M, and (u™,vt, w™)
corresponding to u~ and some N (note the definition depends on the choice of the origin
in A, (1) = ["8,(t')dt’, but this will not affect the triple norm || - ||; this does affect
estimates for differences, but we need them only when I = [T, T'] or its translation, in
which case the choice of origin is canonical), as in Sections 5 and 7, and then define

DM ™) = inf D0(Q. Q) (12.1)

where the infimum is taken over all quadruples Q and Q' that extends (u*, v*, w*, u)
and (u™, v, w, u7) from I x T to R x T, respectively. We will also define [Ju[|¥ =

:D(I)’M M (u, 0) = infg || Q|l; these notations can be written in a more familiar way as
DM (™) = 11(0:) 7 @ = whH)lyr + 1377 @ = vy

— _s3_ _
+ 11(8x) ™7 (™ — u+)||y21 +1140:) ™" 77 0 = u ) | (xpnxsnxa s

M 3
leelly™ = Nw™llys + 10 lyr 4+ g + 1000 ™ ll o, nxsnxg -

Also, if M = N = oo we will omit it. Now we can define the metric space
BO' = {u : flull; = ullf® < oo}, (12.2)

with the distance function given by @{) (we will also use ”D; 5, which is also well-defined

on BO'). Finally, when I = [—T, T, we may use T in place of / in sub- or superscripts,
so this contains the definition of BOT .

Remark 12.2. If u € BOT, we may define uu, = %8x (Pygouz) as a distribution on
[T, T] through an argument similar to the one in Section 11. More precisely, we may
uniquely define the function

t
h(t) = / e o (4 (1Yo u(t)) di’ (12.3)
0
as an element of (X ~1/5)T

In particular, we may define u € BOT to be a solution to (1.1) on [T, T1, if u
satisfies the integral version of (1.1) with the evolution term defined as in (12.3). Clearly
this definition is independent of the choice of origin, and [—7, T] may be replaced by any
interval 1.

Moreover, since the arguments in Section 11 allow for some room, the map sending u
to & in (12.3) is continuous with respect to the weak distance function @STS (or D5 if we
consider the map sending the quadruple Q to 4). This fact will be important in the proof
of Theorem 13.1.
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Proposition 12.3. Let Bt0 be the space of bounded functions of t into some Banach space.
Suppose u and u™ are two functions defined on 1 x T, and choose corresponding exten-
sions @ = ", v", w’, u") and Q' = W', v, w', u™T) corresponding to M and N,
where M > N.

”u”B,O(I—>Zl) S el ||M”B,0(I—>Zl) S |"u|||/1w (12.4)

Concerning differences, we only have the weaker estimates

140:) ™ (u — U)oz, S Onanien - (95(Q, @) + N7, (12.5)
11(8) ™0 (u — u Moz < OpgopponD - (Do(Q, Q) + NO_), (12.6)

for all 6 > 0, where the constant may also depend on the upper bound of the length of I.

Proof. We may assume I = [—T,T] with T < 1. The inequalities in (12.4) follow
directly from the definition (and the fact that u () and u”(r) have the same Z; norm for
t € [-T, T]); the proofs of (12.5) and (12.6) are similar, so we only prove (12.5). Assume
I+l < 1and ©5(Q, Q') < &, we will define A, and A, corresponding to Q and
Q' as in (7.27) and (7.28) using functions (w”, u”") and (w'", u"T) respectively, then set
u’ and u' to be extensions of u and u~, defined by (u'), = x (t)eiA" ("), and similarly
for u™. Since

10) ™ @ — ™Dz, < D5(Q. Q) S e, (12.7)

we only need to estimate the function z defined by z,, = (u”),(¢®" — ¢!®+). Due to the
bound || Q|| < 1 which implies the bound for the Z| norm of each u” (¢), we only need to
prove

X (@2 — 2 (1) < (e + N )in)® (12.8)

for each n and ¢. Using the arguments in Lemma 8.6, it suffices to prove the bound for
8, — 6, , but if we use (7.28), this will be clear from the strong bounds on w” and wi,
and the weak bound on their difference. m]

12.2. Statement and proof

Now suppose u is a smooth function solving 1.6) on [—T, T']. The arguments in Sections
8-10 actually give us a way to update a given quadruple Q@ = (u”, v”, w”, u”’) extending
(u*, v*, w*, u) to a new quadruple Q" = ™, v®, wW® 4®)), which remains to be an
extension, and satisfies better bounds. We define J to be the map from the set of extensions
to itself, that sends Q to Q’. Using the arguments from Sections 8-10, we can prove

Proposition 12.4. Let C| be large enough, C, large enough depending on Cy, and 0 <
T < C2—16C2A. Suppose u is a smooth function solving (1.6) on [—T,T], and Q is an
extension satisfying

_3
QN < €114, 1(8:) ™ u” lx,nx30x, < C1A. (12.9)

Then the same estimate will hold if we replace Q by JQ.
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Now we can state the main proposition in this section, namely

Proposition 12.5. Let Cy, Cy and T be as in Proposition 12.4. Suppose u and u™ are
two smooth functions solving (1.6) with truncations Sy and Sy respectively, where 1 <
N < M < oo, Qand Q are two quadruples corresponding to u and u~ respectively,
such that (12.9) holds, and that

D:5(Q,Q)<B (12.10)
for some B > 0. Then
D,5(3Q,3Q)) < B/2+ Oc, (1NeCA([[(3:) ™ (0) — u~ O)llz, + N°7), (12.11)
where Cy is any constant appearing in previous sections. In particular,
LM 1, u™) < 0y A (I1(0:) ™ @(©) — u™ Oz, + N°7), (12.12)

provided |u(0)||z, + lu™(0)|lz, < A for some large A. Moreover, if M = N, we may
replace the D ;s distance by the D distance and remove the N 0= term on the right hand
side of (12.12).
Proof. When we take differences in the case M = N, the right hand side will involve
only factors like # — u~ and not the ones like P> yu, thus we will not have an N 0= term
on the right hand side. Also, it is easy to see from the proof below that removing the
(n)’x5 weight will only make arguments easier. Thus we will focus on (12.12) now. By
an iteration using Proposition 12.4, we only need to prove (12.11) assuming (12.9) and
(12.10).
Recall the functions 8,, 8, , A,, A, and y, y~ that come from the two quadruples
Q and Q' in the same way as in Section 8.2. The two functions y and y~ will satisfy
two equations with the form of (8.12) separately. Clearly we may also assume all relevant
functions are supported in |¢| < 1. To bound the first part of © (39, JQ') requires
proving
1067 (v = yDlly, < B/10+ Oc, (1e@C1A (9 + NO7) (12.13)
X 1 1 s

where we denote || (8x>_s5 @(0) —u=(0))|lz, = 0 for simplicity.
By another bootstrap argument, we may assume (12.13) holds with right hand side
multiplied by Oc, (1). Recall the equations

y=x0Ow©) + EAr N oD+ Y EQrpNT),  (12.14)
j€{3.3.5,4,4.5)

Y =0 wTO) + EAr NGy N+ Y EQr N,
j€{3,3.5,4,4.5}
(12.15)

where N/ and N7~ are suitable nonlinearities; to bound y — y~, we will first bound

_S ; i
[(0x) ™" (M7 = M) Iy,
j€{0,3,3.5,4,4.5)

where the definitions of M/ and M/~ are clear (the term j = 0 corresponds to the linear
term which can be bounded by 6 + N 0—_ 50 we will omit this below).
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Here it is important to note that all the bounds in the previous sections are proved
directly using multilinear estimates, thus they will automatically imply the corresponding
estimates for differences. In fact, when we try to estimate M/ — M/~ by introducing
some (g, f) and forming an S expression, there are a few possibilities:

(1) Suppose we take the difference y — y~, or (for example) some v” — v'T directly.
Then one of the y or v” factors appearing in the previous sections will be replaced by this

difference. Note that if we estimate this difference in the weakened norm || <ax>*S5 Ay,
get a bound Oc, (1)e€0C14(B 4+ 6 4+ N97) which is what we need; the loss coming from
using this weaker norm can be recovered from the fact that we only need to estimate the
weaker norm of M/ — M/~. To be precise, for each multilinear estimate we proved
in the previous sections, suppose the term we bound in the weaker norm (i.e. the norm
involving <ax>—ss) corresponds to the variable 7n;; then one of the following must hold: (i)
we can gain a power 20V in the estimate, where 0+ is at least cs2, and we also have
(ng) < 24 in this case it will suffice to use this weaker norm in all the discussions before,
so this part will be acceptable; (ii) we have (ng) 2 (n;) (for example, when ng = ny

and the other variables are small compared to them). In this case, since we only need to

5
$” compared to

estimate the output y — y~ in the weaker norm, we will gain a power (ng)
the proof in the previous sections, which is enough to cancel the loss (nl)ss, thus this part
is also acceptable; (iii) we have (ng) ~ 2¢ and (n;) ~ 24 and the expression S involves
the factor 2714=4'l (this appears, for example, in various “resonant” cases in Section 9 and
Proposition 10.1, and is characterized by the need to use (9.24)). In this case we lose at
most 2°°19=4'l from the additional weights compared to the proof in the previous sections,
which can be canceled by the 2-ld=d’| factor, so it will still be acceptable. To conclude,
we can estimate this part of y — y~ in the weaker norm as

T 0c¢, (1)e 1" (B + 6 + N°7),

by repeating the arguments in the previous sections, with minor modifications illustrated
above.

(2) Suppose we take the difference of the ® weights. The difference will satisfy the
same bounds as the weights themselves; moreover it is nonzero only when some m or
n variable is 2> N. Therefore we may replace one of the y or v” factors appearing in
the previous sections by P yy or Psyv”. We then proceed as in case (1), estimating
this particular factor in the weakened norm to gain a power N°~, and bound the whole
expression in the same way as in case (1).

(3) Suppose we take (for example) the difference v — v', where (v/), = €2 (v"),
and (vT) a = et (v“) n; alternatively, suppose we take the difference
AEA

no A ) ICEAL AL )

It turns out that whenever we need to estimate these factors, we will always gain (from
these factors themselves, or from elsewhere) some power 209 where 0+ is at least
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cs23, and 29 controls every relevant variable (for typical examples, see the estimate of
Jn)(as) as defined in (10.13) in the proof of Proposition 10.1, as well as the last part of
Section 9). Here we may use Proposition 8.6 to reduce the estimation of the difference of
these exponential factors to the estimation of the differences 6, —§,; themselves. Since we
can bound functions like w” — w' in the weaker norm by Oc, (1)e€0C14(B 46 + NO),
we will be able to obtain estimates similar to the ones in Proposition 8.7, but with the
coefficient CoCe€0€14 on the right hand side replaced by Oc;, (1)e€0C14(B 46+ NO),
with a loss of at most <n>0(s5) which is dwarfed by the power we gain. Finally, we may
use the 70F gain coming from the evolution to cancel the Oc, (1)e€0C€14 factor, thus this
part is also acceptable.

Next we need to control the difference of the M? terms. We will follow the proof in
Section 9, and the part of the proof where no second iteration is needed can be completed
in the same way as above. As for the remaining part, what we do in Section 9 is basically
rewriting

Ny = DY NG M)+ NG, EArr. N2 (v, 1))

j€{0,3,3.5,4,4.5}

where A0 is the part of N2 under consideration; we may also rewrite A*~(y~, y7) in
the same way. When we take the difference, we may control the first term on the right
hand side using the bound for M/ — M/~ as in Proposition 9.1 (actually we have a
slightly weaker version, but this will suffice); as for the second term, since it is bounded
in Section 9 via multilinear estimates, we can again treat the difference in the same way
as above. This completes the proof for the bound of w* — w™.

Next, recall that the other parts of JQ and JQ’ such as u® and ul!, 4@, y141 &
and v!# are constructed in the same way as in Section 11, where the scale K is taken to
be K = C| 5154 with C; 5 large enough depending on C1, but small compared to C,.
Note that we may redefine A,, and A, when necessary. Now to prove (12.10), we need to
bound the differences such as u™® — u# in the weaker norm by O¢, (1)e“0C14(K9~B +
6 + N°7). But this can again be achieved by combining the argument above with the
proof in Section 11, if we notice two things:

(1) In the proof of Proposition 11.1, we can always gain some power (m,-)”z'5 for

each m;, so we will be able to cover the loss coming from using only the weaker norm
if we take the difference of the exponential factors (cf. (11.7)), or if we take u® — 1,

For the same reason, if we lose a power (nl)ss we will be able to recover it from the
gain <n0>55

(2) From the above we already know that the weaker norm of w® — w!*l can be
bounded by Oc;, (1)eC0C'A(TO+B +6+ NO_). We may then prove the same bound (pos-
sibly with some Oc, (1) factors) for P.. u® —uldy, Pk u® —ubdly, Pk (u™® —ul4hy,
Pk (u® — ¥y and v — 014 in that order, in the same way as in Section 11 (note 7!
is assumed to be larger than any power of K).

Therefore we will be able to bound all the differences and thus complete the proof of
Proposition 12.5. O
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13. Proof of the main results

With Propositions 8.1 and 12.5, it is now easy to prove our main results. Since the argu-
ment in this section will be more or less standard, we may present only the most important
steps.

13.1. Local well-posedness and stability

Theorem 13.1 (Precise version of Theorem 1.2). There exists a constant C such that,
when we choose any A > 0and 0 < T < C~'e=C4, the following hold:

(1) Existence: For any f € V with || f|lz, < A, there exists some u € BOT such that
lullr < Ce€A and u satisfies equation (1.1), in the sense described in Remark 12.2,
with initial data u(0) = f.

(2) Continuity: Let the solution described in part (1) be u = ®f = (®; f);. Suppose
| fllz, < Aand|gllz, < A. Then for each € > 0, we have

sup [[(3) ™" (@ f — @19)llz, + D(®F. D) < 0c.a(DIE) ™ (f — 9)llz,.

s
[tI=T

|S\uI;" 160:) =5 (P f — Drg)llzy + D (DS, Dg) < Oc.c.a(DISf — gliz,.-
H=

(3) Short-time stability: Let u = ®f as in part (2), and let ®V be the solution flow of
(1.6) and u™ = ®NTly f. Then

lim (@QN"O(MN, w) + sup 37" @ (1) — u(t))||zl> =0.

N—o0 |t|<T

(4) Uniqueness: For any other time T', suppose u and u™ are two elements of BO™ with
the same initial data, and they both solve (1.1). Thenu = u~ (on [-T', T']).

(5) Long-time existence: Consider any f € Zy, and define u" as in (3). Suppose that
for some other time T and some subsequence { Ny},

N,
sup Jlu"¥ |7 < oo. (13.1)
k
Then there exists a solution u € BOT to (1.1) with initial data f.

Proof. Suppose f € Zjand ||f|lz, < A,andlet0 < T < C;le’CZA with constants as
in Propositions 12.4 and 12.5. Consider u” as defined in (3); using Proposition 8.1, we
may choose for each N some quadruple Qy corresponding to u” that satisfies (12.9). We
define

oN =3V oy. (13.2)

It is clear from Propositions 12.4 and 12.5 that
1M1 < €1, (13.3)
N}‘}TEOOQSS(QM, oYy =o. (13.4)
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By a simple completeness argument we can then find some Q so that ® s (Q"V, Q) — 0
(in particular Q will have initial data f), and by an argument similar to the proof of
Proposition 3.6 we deduce that || Q|| < C1e€14. By using Remark 12.2, we can now pass
to the limit and show that the quadruple Q gives a solution u € BOT of (1.1) on the
interval [—T, T]. This proves existence.

Parts (2) and (3) will follow from basically the same argument. In fact, for each (f, g),
we may construct @V and OV~ corresponding to ®V Iy f and ®V Iy g as above, so that
they have uniformly bounded triple norm, and moreover

D,5(QY, Q¥ S 1130 (f — @)llz, + N*~.

Using Proposition 12.3 and passing to the limit, we obtain the result in (2). The result in
(3) follows from comparing QN with Q and using Proposition 12.3 also.
As for part (5), we will deduce it merely from the condition that [|u | j}l,k < A and

1(8) ™ @™ — u)(0)[1z, — O, (13.5)

which is clearly satisfied in our setting. Choose some 7 small enough depending on A;
then [u(0)]|z, < CoA implies we can solve (1.1) on [—7, 7], and from (Proposition 12.5
and) what we just proved, we also have

5
1(8:) ™ @™ — uy(£1)llz, — O, (13.6)
and therefore
lu(£t)llz, < limsup [u™ (£7)]lz, < CoA. (13.7)
N—oo

This information will allow us to restart from time 47, and thus obtain a solution to (1.1)
on [—27, 27]. Repeating this, we will finally get a solution on [—7", T’], which we can
prove to be in Bo™ using partitions of unity. This proves (conditional) global existence.

Finally, we need to prove uniqueness. Let # and u~ be two solutions to (1.1) that
both belong to BOT" and have the same initial data. Let their strong norms be bounded
by A, and choose T small enough depending on A. To prove that u = u~ on [—7, T], we
need to prove the following claim: if for quadruples Q and Q' corresponding to u and u™
respectively, we have

en+1Ql <A, 95(Q Q) <K, (13.3)

then with Q replaced by JQ and Q' by JQ/, the inequalities will hold with A unchanged
and K replaced by K /2. Thus we need to repeat the whole argument from Section 8
to Section 12 without the smoothness assumption. Fortunately, since we have chosen
T < 7(A), we do not need the bootstrap argument (which requires a priori smoothness) in
bounding the evolution term; however, we do need this in Section 8§ when we try to obtain
a first bound for || y|ly,.

This difficulty can be overcome as follows: first, we may check for every part of
Sections 8, 9 and 10 that in order to bound y in Y] using the evolution equation (8.12), it
will suffice to bound y in some weaker space Y;* defined by (cf. Section 2.3)

lullyp = lullxw + lullxy + lullxe + lullxe + lullxe. 13.9)
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Here to obtain the X]w norm, we weaken the X; by decreasing the powers b in (2.2), «
in (2.5) and 1/8 in (2.8) by s°, and increasing the indices 1 in (2.3) and ¢ in (2.6) by s,
Notice that any power of n and any /” norm remain unchanged. Therefore, we only need
to show that the linear map L defining y from w” (see Section 8.2) is bounded from Y; to
Y}", since this combined with the proof from Sections 8 to 10 will give us a stronger bound
of y in Y7 and close the estimate (note that after the end of Section 10, no arguments will
depend on smoothness, and we will be able to finish just as Sections 11 and 12).

Now, suppose ||u]ly, < 1; we can easily show that ||Lu||X12v + ||Lu||X§u < 1 using the
decomposition

Lu = u - 1_7.71(t) + x (O1[7,00) (1)e™ D00y (T
+ X (O ooy (t)e CFD HIxxy (), (13.10)
In fact, the last two terms in (13.10) are bounded in X}’ and X;" because u(£T) is

bounded in Z1, and the Fourier transform of x (#)1(7,00)(¢) is in LK for k > 1; the first
term is bounded because convolution with the Fourier transform of 1j_r 7] (which decays

like (£)~! uniformly for 7 < 1) is bounded from L’g to L’g/ for all k¥’ > k. Now to bound
Lu in le.” for j € {1, 4, 7}, we only need to bound the operator

L:f) > 110 F O + XOL7.00) (1) + X (O o011 f(—=T)  (13.11)

from th to chfe for any 6 > 0. By direct computations we can bound L from H! to
itself, thus (by interpolation) it suffices to bound L from H 1/249 to H'/2=9 But this result
is well-known for the first part of L, and trivial (given the decay of the Fourier transform
of x (t)1[r,00)(t)) for the last two parts. ]

13.2. The Hamiltonian structure and global well-posedness

In this section we will denote any constant by C, since they no longer make any difference.
We fix some large time 7', and recall the energy functional

1/2

Enlf]= fT(aax P = LS fy) (13.12)

defined in Section 4.1. If we introduce the symplectic form

w(u,v) = f u- (07 'v)
T

in the (finite-dimensional) space Vy, then a simple computation shows that the Hamilto-
nian equation with respect to the symplectic form w and the functional E is (up to a sign
depending on the convention) the truncated equation (1.6). By Liouville’s Theorem, the
solution flow {<I>fv }ter Will preserve the measure £y which corresponds to the Lebesgue
measure on R2V (see Section 4.1). Since this flow also preserves the L? norm as well as
the Hamiltonian Ey, we see that

V3 (E) = v (@ (E)) (13.13)

for all time ¢ and all Borel sets £ C Vy.



1194 Yu Deng

Next, for any f € V, consider the functions ulN () = @fv ITy f, which are the solu-
tions to (1.6) with initial data u™ (0) = Iy f. Thus f — u" is a map from V to BOT
depending on N, therefore we may denote [ju’v |||1Tv = Jn(f).

Choose a large positive integer M, a parameter A depending on M, and define

Qna={g€Vn:lglz > A}
Then
_ _ =142
VR (Q2n.4) = oIy (Qn.a) S vw{f €Villfllz, > A <Ce™© 4 (13.14)

where the last inequality follows from Proposition 4.6, Cauchy—Schwarz, and the fact that
ION Nl L2 dp) = O (1) (which is part of Proposition 4.4). Therefore if we introduce

M
Qvma= | @Y7 @n.a),
j=—M
we will have
o —c1A?
vy (2N m,4) < CMe . (13.15)

If we choose A = A(M) = C',/log M with some sufficiently large C’, then the inequality
(13.15) will imply vy, (R2n,41,4) < CM~3. Now if g & QN M. 4, we must have

N 1 (8) & Qw.acn)
for all |j| < M. By Proposition 8.1, this implies

N N CC'\JlogM
\?Ilg@ (P, g)f|”[(j—1)T/M,(j+1)T/M] <Ce e, (13.16)

provided T/M < C~le=CAM) which is clearly true when M is large enough depending

on T. Using partitions of unity, we easily see that (13.16) implies
(@ g)llf < CMC,

again when M is large enough depending on 7'. Thus we have proved

wlfeV:In(f)>CM) <cm™3 (13.17)

for all M > M (T), and hence (recall Section 4.1 for the definition of 6y )
sup/];log(JN(f) +2)0n(f)dp(f) < oo. (13.18)
N

Since 6y (f) converges to 6( f) almost surely after passing to a subsequence, we may use
Fatou’s Lemma to conclude that except for a set with zero p measure, for each f with
0(f) > 0, there exists a sequence Ny 1 oo so that Jy,(f) < C for some C. By part
(5) of Theorem 13.1, this would imply the existence of a solution u € BOT to (1.1) on
[T, T] with initial data f. Finally, by Remark 4.3 we may choose a sequence of Gibbs
measures {6} so that for almost every f € V we have at least one 6% (f) > 0; then we
take another countable intersection with respect to 7', to arrive at

Proposition 13.2. For almost every f € V with respect to the Wiener measure p, there
exists a unique global solution u to (1.1) with initial data f such that u € BOT for each
T > 0.
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13.3. The global flow and invariance of Gibbs measure
In this section we will restate and prove Theorem 1.3.

Theorem 13.3 (Restatement of Theorem 1.3). Let the Wiener measure p be defined as
in Section 4.1. There exists a subset ¥ C V such that p(V — ¥) = 0 and the following
holds: For any f € X there exists a unique global solution u to (1.1) with initial data f
such that u € BOT forall T > 0. Moreover, ifu = ®f = (&, f);, then these ®, form a
measurable transformation group from X to itself. Finally, suppose the Gibbs measure v
is defined as in Section 4.1 (using some cutoff function ¢). Then each ®; keeps v invariant.

Proof. We define X to be the set of all f € V such that there exists a solution u to (1.1)
with initial data f that belongs to BOT forall T > 0. We first show that ¥ is measurable;
in fact, we have & = [y U, Zar, where 47 is the set of f such that a solution u
exists in BOT with lu@)llz, < A forall [t{| < T. Now, divide [T, T] into M equal
intervals where M is large enough depending on A. Then by local theory, the solution
map P, is well-defined (and measurable) on each subinterval. Now we can (iteratively)
see that X 47 is a finite intersection of sets, each being the pre-image of the previous one
under a measurable map, so X 47 is measurable.

Proposition 13.2 guarantees that p () — X) = 0; also the map @ is well-defined on X,
and each ®; maps X to itself. Note that from part (4) of Theorem 13.1, any two solutions
to (1.1) that belong to BOT and agree at one time must coincide, thus u will be unique
for each fixed f € X. Now fix a Gibbs measure v; to prove the invariance of v, we only
need to show that

V(P (E)) = v(E) (13.19)
for each Borel subset E and each |f| < 1, since the rest can be done by iteration.

Define

Ta={fez: w0 flz <Al

lt]<2
for each A. Then ¥ = (J, X4, so we only need to prove (13.19) assuming £ C X4
for some A. By iteration, it suffices to prove (13.19) when E C {f : || fllz, < A} and
|t] < t(A). Next, we introduce on the set { f : || f|lz, < A} the metric

d(f. ) = 1in) " (f — &)l

making it a complete separable metric space. By a well-known theorem in measure theory,
the restriction of v to this set is a finite Borel measure on this metric space, and thus is
regular (meaning every Borel set can be approximated from the inside by compact sets).
Therefore we may further assume E is compact with respect to the metric d. Recall the
solution flow {bev } for (1.6); for each N we have

vw({g : Ting = N (Tyh), h € E)) = vy(E) (13.20)
by the invariance of v, under the flow ®N. To prove (13.19) it thus suffices to show
limsup{g : Iyg = ®N (Iyh), h € E} C ®,(E), (13.21)
N—o0

since we already know that the total variation of vy — v tends to zero.



1196 Yu Deng

Now suppose for some g € V we have a subsequence Ny 1 oo and Ak € E such
that [Ty, g = CIDfV" (l'INkhN") for each k. By compactness we may assume h™¢ — h with
respect to the metric d for some i € E. Since every function involved here is bounded in
Z1 norm by Oy4 (1), and we are assuming |t| < 7(A), we may use Propositions 12.5 and
13.1, as well as the limit

10:) ™" (™ = )iz, S BV k) = 0 (13.22)
to conclude that
10)™ (®h — M)z, < 1000)™ (Drh — DN Ty, )l 7,
+ 130 (@M Ty b — S Ty M) 12, — 0.
This implies g = &;h € O;(E), so the proof is complete. m]

13.4. Modified continuity

In this section we prove Theorem 1.4; note that this modified continuity statement is not
needed in the proof of Theorems 1.2 and 1.3.
To prove part (1), noting that u € BOT, we find that

u*eY] C CYU-T,T1— Zy)

using the notation in Proposition 7.3. Recall from (7.28) that A, (¢) = fot 8, (t") dt' and

1 <& 1 <&
8, (1) = = 2__ 24 R
(1) 2;'“’"' 2,;'”"' +

for n > 0, where R does not grow with n (this is easy using w = Py (Mu) and the
assumptions about u). Now, if it were not for the logarithmic factor on the right hand side
of (8.16) which these factors satisfy, A, (¢) would be continuous in ¢ uniformly in n, and
u would be in CZO([—T, T] — Zy); this shows that we may disregard R and pretend that
A, is defined as in (1.7), and this proves part (1).

For part (2) we need another probabilistic argument. Recall that u = ®f = (O, f); is
defined for f € ¥ which is equipped with the Gaussian measure p. In order to use part
(1) we just proved, we will define

~ U 1 —~
Su(t) = Z<|uk(r>|2 - m) = Y Sw®+R,

k=1 d<llog, n]

where |
S (1) = neE——1J|, 13.23
@) 0<;2d(|uk()| 4nk> (13.23)

and &;L similarly, where R is already bounded in n and can be neglected. We only need
to prove continuity in any interval [T, T']; for simplicity assume T = 1. If we define

1
Y :f 18a) (1) |* dt
-1
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as a random variable on X for each d, then part (2) will follow if we can show that

limsup 292y 4 < 1 (13.24)

d— 00

for p-almost all f € ¥. Fix one Gibbs measure v; we have

1
E,2%Ya) < / [E, (exp(2%/28a) (1)) + Ey (exp(—2¥/284y (1)) ] dt.  (13.25)
-1

Now using the invariance of v, we only need to consider t = 0; also we will study only
the first term. Since (E, H)?> < E,H 2 by Cauchy—Schwarz, this is bounded by

Ew(exp(zd/z 3 ng(;))lli—1>>7
T

0<k~2d

which can be easily computed and is O (1) due to our choice of parameters. Then (13.24)
follows by standard measure-theoretic arguments (for any v, and thus for p).
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