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Abstract. In this paper we consider the periodic Benjamin–Ono equation. We establish the in-
variance of the Gibbs measure associated to this equation, thus answering a question raised in
Tzvetkov [28]. As an intermediate step, we also obtain a local well-posedness result in Besov-type
spaces rougher than L2, extending the L2 well-posedness result of Molinet [20].
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1. Introduction

In this paper we study the periodic Benjamin–Ono equation

ut +Huxx = uux, (t, x) ∈ I × T, (1.1)

where I is a time interval and T = R/2πZ. Also the Hilbert transform H is defined by
Ĥu(n) = −i · sgn(n)̂u(n), where we understand that sgn(0) = 0. Since equation (1.1), as
well as the truncated versions to be introduced below, preserves both reality and the mean
value of u, we shall assume throughout this paper that u is real-valued and has mean zero.
Under this restriction, (1.1) is a Hamiltonian PDE with conserved energy

E[u] =

∫
T

( 1
2 |∂

1/2
x u|2 − 1

6u
3). (1.2)

Being completely integrable, it also has an infinite number of conserved quantities at the
level of H σ/2 for 0 ≤ σ ∈ Z, including the L2 mass.

We briefly summarize the relevant previous study of (1.1). First, the classical energy
method yields local well-posedness in H σ (T) for σ > 3/2 (see [17]). By conservation
laws, this implies global well-posedness in (say) H 2. In [24], Tao introduced a gauge
transform to prove the well-posedness result inH 1 for the Euclidean counterpart of (1.1).
This approach was then adapted by Molinet–Ribaud [21] to prove theH 1 well-posedness
in the periodic case. Then Molinet [19], [20] further improved this result to H 1/2 and
then L2. For the Euclidean version we now also have well-posedness in L2 (see Burq–
Planchon [8] and Ionescu–Kenig [16]).
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Starting from the pioneering work of Lebowitz–Rose–Speer [18] and Bourgain [2],
there has been considerable interest in constructing Gibbs measures for Hamiltonian
PDEs and proving their invariance. From the dynamical system point of view, this pro-
vides the natural invariant measure for the system (which is the first step in studying this
system’s long time behavior); from the PDE aspect this is also important since it tells
us exactly how rough a space can be so that we still have strong solutions for generic
initial data. In this regard, such results can be viewed as variations on the theme of clas-
sical low-regularity well-posedness; see [12] for a general discussion about the notion
of well-posedness in probabilistic sense. We list here several important results in this
field: Bourgain [2, 3, 4, 6, 7], Burq–Thomann–Tzvetkov [9], Burq–Tzvetkov [10, 11],
Colliander–Oh [13], Nahmod–Oh–Rey-Bellet–Staffilani [22], Tzvetkov [26, 27].

The study of (1.1) along these lines was initiated in Tzvetkov [28] where the Gibbs
measure was rigorously constructed (see [28] for details; this construction is also reviewed
in Section 4 below). In order to to prove its invariance, one has to construct global flow
on its support; since this measure is supported in spaces rougher than L2 (namely L2(T)
has measure zero), the well-posedness result of Molinet [20] will not apply. Nevertheless,
in [28, Section 5], the author made several important observations regarding the behavior
of the gauge transform and second Picard iteration for random data, which suggest that
global well-posedness and measure invariance may still hold despite the low regularity.

In the current paper we will solve this problem by establishing the invariance of the
Gibbs measure. To be precise, we will construct an almost-surely defined (and unique)
global flow for (1.1) in some Besov-type space Z1 rougher than L2, and prove that the
Gibbs measure is kept invariant by this flow.

Remark 1.1. Very recently, Tzvetkov–Visciglia [29, 30, 31] have constructed (and
proved the invariance of) weighted Gaussian measures associated to the conserved quan-
tities of (1.1) at the level of H σ/2 for σ ≥ 4, and Deng–Tzvetkov–Visciglia [15] proved
the σ ∈ {2, 3} case. The case σ = 0 still seems out of reach with current techniques.

1.1. Notation and preliminaries

Throughout this paper, the standard notations, such as ., & and O(∗), will always be
used in terms of absolute values. The Japanese bracket 〈x〉 will be (1 + |x|2)1/2 and
N will denote the set of nonnegative integers; the characteristic function of a set E is
denoted by 1E and if E is finite, its cardinality is denoted by #E. We will use P∗ to
denote (spatial) frequency projections; for example P+ (or P≤0) will be the projection
onto strictly positive (or nonpositive) frequencies, and P&λ will be the projection onto
frequencies with absolute value & λ. We may use the same (Roman or Greek) letter in
different places, but its meaning will be clear from the context.

Define V to be the space of distributions on T that are real-valued and have mean
zero; in other words, f ∈ V if and only if f̂ (−n) = f̂ (n) and f̂ (0) = 0. Let VN be the
subspace of V containing functions of frequency not exceedingN (so that VN is identified
with R2N ), and V⊥N be its orthogonal complement. Let 5N and 5⊥N be the projections to
the corresponding spaces; we actually have 5N = P≤N and 5⊥N = P>N .
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We use a parameter s > 0 that will be chosen sufficiently small. The large con-
stants C and small constants c may depend on s; any situation in which they are in-
dependent of s will be easily recognized. We choose a few other parameters, namely
(p, r, b, τ, q, κ, γ, ε), as follows:

p =
2

1− 2s
+ s2, r = 1/2− 1/p, b = 1/2− s15/8, τ = 8− s13/8,

q = 1+ s3/2, κ = 1− s5/4, γ = 2− s2.5, ε = s7/4.

When s is small enough, we have the following hierarchy of smallness factors:

s3
� 2− γ � r − s = 1/2− 1/p − s � 1/2− b
� ε � 8− τ � q − 1� 1− κ � s � s1/2. (1.3)

In (1.3) each� symbol connects two numbers that actually differ in scale by a power of s.
We will also use 0+ to denote some small positive number (whether it depends on s will
be clear from the context); the meanings of 0−, and a+, a− are then obvious. Finally,
using these parameters, we can define the space Z1 by

‖f ‖Z1 = sup
d≥0

(∑
n∼2d

2rpd |f̂ (n)|p
)1/p

. (1.4)

Note that we are including n = 0 when d = 0.
In addition to (1.1), we will introduce finite-dimensional truncations of it. Fix a

smooth, even cutoff function ψ on R which equals 1 on [−1/2, 1/2] and vanishes outside
[−3/4, 3/4]. Let 1− ψ = ψ0. For a positive integer N , we define the multiplier SN by

ŜNf (n) = ψ(n/N)f̂ (n). (1.5)

We also allow N = ∞, in which case S∞ = 1. The truncated equations are then

ut +Huxx = SN (SNu · SNux). (1.6)

Notice that (1.6) conserves the L2 mass of u; also, if u is a solution of (1.6) whose spatial
Fourier transform û(n) is supported in |n| ≤ N for one time t , then this automatically
holds for all time.

1.2. The main results, and major difficulties

With these preparations, we can now state our main results. The most precise and detailed
versions are somewhat technical, and will be postponed to Section 13.
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Theorem 1.2 (Local well-posedness). For any A > 0, let T = T (A) = C−1e−CA;
then for the metric space BOT in Definition 12.1 containing B0([−T , T ] → Z1), which
denotes the space of bounded functions on [−T , T ] valued in Z1, we have the following.
For any f with ‖f ‖Z1 ≤ A, there exists a unique function u ∈ BOT such that u(0) = f ,
and u satisfies (1.1) on [−T , T ] in the sense of distributions (we may define uux as a
distribution for all u ∈ BOT ; for details see Remark 12.2). Moreover, if we write u = 8f ,
then the map 8, from the ball {f : ‖f ‖Z1 ≤ A} to the metric space BOT , will be
a Lipschitz extension of the classical solution map for regular data, and its image is
bounded away from the zero element in BOT by CeCA.

Theorem 1.3 (Measure invariance). Recall the Gibbs measure ν on V defined in [28],
which is absolutely continuous with respect to a Wiener measure ρ (see Section 4.1 for
details). There exists a subset 6 of V with full ρ measure such that for each f ∈ 6,
equation (1.1) has a unique solution u ∈

⋂
T>0 BOT (in the sense described in Remark

12.2) with initial data f . If we denote u = 8f = (8tf )t , then for each t ∈ R we get a
map f 7→ 8tf from 6 to itself. These maps form a one-parameter group, and each of
them keeps invariant the Gibbs measure ν.

Since we are solving (1.1) inZ1, we would like to know that the solution u is continuous in
t with values in Z1; this is not true. The discontinuity, which already exhibits the subtlety
of (1.1) below L2, is due to a modulation factor needed to eliminate one logarithmically
growing term (see Section 7.2), and can be characterized explicitly.

Theorem 1.4. (1) Let u ∈ BOT be the local solution described in Theorem 1.2. Let
uk(t) denote the k-th Fourier coefficient at time t and define

1n(t) =

∫ t

0

1
2

n∑
k=0

|uk(t
′)|2 dt ′ (1.7)

for n > 0 and extend it to be odd for n ≤ 0. Then1n(t) grows at most logarithmically
with n, and the function u∗, defined by

(u∗)n(t) = e
−i1n(t)un(t)

for all time, is continuous in t with values in Z1.
(2) Let f ∈ 6 and let u be the global solution described in Theorem 1.3. Let the func-

tion u#, real-valued and having mean zero, be defined by

(u#)n(t) = e
−

it log n
8π un(t)

for all n > 0 and t . Then u# is continuous in t with values in Z1.

The first step in solving (1.1) (see [24] or [20]) is to use the gauge transform to obtain
a more favorable nonlinearity; this already becomes problematic with infinite L2 mass.
In fact, when we use the gauge w = P+(ue−

i
2 ∂
−1
x u) as in [20], the evolution equation

satisfied by w would be

(∂t − i∂xx)w =
i
2
∂xP+

(
∂−1
x w · ∂xP−(w∂−1

x w)
)
+

i
4
P0(u

2)w + GT, (1.8)
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where GT represents good terms. Here one can recognize the term P0(u
2)w that can be

infinite for u ∈ Z1. However, when we further analyze the cubic term above, we find an-
other contribution, namely the “resonant” one, which is basically some constant multiple
of P0(|w|

2)w. It then turns out that the coefficients match exactly to give a multiple of
‖w‖2

L2 − ‖P+u‖2L2 . Since (at least heuristically)

w = P+(ue−
i
2 ∂
−1
x u) = P+u · e−

i
2 ∂
−1
x u
+ GT, (1.9)

this expression will be finite even if u is only in Z1.
The next obstacle to local theory is the failure of standard multilinear Xs,b estimates,

which play a crucial role in [20]. Recall from (1.8) that a typical nonlinearity of the
transformed equation looks like

∂xP+
(
∂−1
x w · ∂xP−(w∂−1

x w)
)
. (1.10)

If the frequency of ∂−1
x w appearing in w∂−1

x w is low, we may pretend this frequency
is zero, obtaining a quadratic nonlinearity which is similar to the KdV equation. In fact,
there is a similar failure of bilinear estimates in solving the KdV equation below H−1/2,
which is necessary in proving the invariance of white noise. This problem was solved in
[23] by considering the second iteration, a strategy already used in [5]. We will use the
same method, though the fact that our nonlinearity is only quadratic “to the first order”
makes the argument a little more involved.

There is also a special cubic term, omitted in (1.8), which involves the function z =
P−(ue−

i
2 ∂
−1
x u). Recall that it isw, not z, that satisfies a good evolution equation; therefore

z is not supposed to be bounded in any Xs,b space where s is close to 0 and b close
to 1/2 (note z is basically w multiplied by a smoother function, but Xs,b spaces are
not closed under such multiplications). In [20], Molinet introduced the space X−1,7/8 to
accommodate z (he actually considered u, but the estimates for z will be the same). In our
case, not only do we need (a slightly different version of) this space, but we also have to
introduce an atomic space characterizing, roughly speaking, how z is “shifted” from w;
see Section 2.2 for details.

Passing from local theory to global well-posedness and measure invariance is another
challenge. The only known method is to produce finite-dimensional truncations such as
(1.5), exploit the invariance of the (finite-dimensional) truncated Gibbs measures, and use
a limiting procedure to pass to the original equation. This requires, among other things,
uniform estimates for solutions to (1.6). The major difficulty here is that the gauge trans-
form of [20] is now inadequate for eliminating all bad interactions. To see this, recall that
when w = P+(Mu) with some function M , then

(∂t − i∂xx)w = P+[−2iM · ∂xxP−u+ u · (∂t − i∂xx)M]
+P+[M · S(Su · Sux)− 2iMxux],

where we assume u satisfies (1.6) with S = SN . The terms in the first bracket enjoy a
smoothing effect and are (more or less) easier to bound, and those in the second bracket
will be most troublesome. If S = 1, this second bracket can be made zero by choosing
M = e−

i
2 ∂
−1
x u; but this is impossible when S = SN withN finite but large. However, note
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that we only need to eliminate the “high-low” interactions where the factor Su contributes
very low frequency and Sux contributes high frequency, and this is indeed possible if we
replace multiplication by M with some carefully chosen operator defined from a com-
bination of S (which is a Fourier multiplier) and suitable multiplication operators. See
Section 5.1 for details.

Finally, in order for the limiting procedure to work, we must compare a solution to
(1.6) with a solution to (1.1). Since ψ(n/N) equals 1 only for |n| ≤ N/2, the difference
will contain some term involving factors like P&Nu, which does not decay for large N
due to the l∞ nature of our Z1 norm. Nevertheless, these bad terms eventually add up
to zero, at least to first order, which is enough for our analysis. Note that the bad terms
involve ψ factors which are unique to (1.6) and are not found in (1.1); this cancellation is
really something of a miracle. See Section 6 for details.

1.3. Plan of this paper

In Sections 2 and 3 we will define the spacetime norms needed in the proof, and prove
some linear estimates as well as auxiliary results. In Section 4 we provide the basic prob-
abilistic arguments. We next introduce the gauge transform for (1.6) and derive the new
equations; these will occupy Sections 5–7. From Section 8 to Section 12, we will prove
our main a priori estimates. Combining these estimates with the standard probabilistic
arguments, we will prove in Section 13 our main results, which are (local and almost sure
global) well-posedness for (1.1), invariance of Gibbs measure, and modified continuity.

2. Spacetime norms

2.1. The easier norms

For a function u defined on R× T, we define its spacetime Fourier transform ûn,̃ξ by

u(t, x) =
∑
n

∫
R
ûn,̃ξ e

i(nx+ξ̃ t) dξ̃ ,

and denote ũn,ξ = ûn,̃ξ := ûn,ξ−|n|n. Thus we have three ways to represent u: u(t, x) as
a function of t and x, ûn,̃ξ as a function of n and ξ̃ , and ũn,ξ as a function of n and ξ ,
where the ξ and ξ̃ are always related by ξ̃ = ξ −|n|n. Since we will be dealing with more
than one function, n and ξ may be replaced with other letters possibly with subscripts,
say m1 or β2. To simplify the notation, when there is no confusion, we will omit the
“hat” and “tilde” symbols above u; for example, if we talk about an expression involving
um,̃α , it will actually mean ûm,̃α . The appearance of functions f defined on T will not be
too frequent, but when they do appear, we will adopt the same convention and write for
example fn instead of f̂ (n).

We will need a number of norms in our proof. As a general convention, when we write
a norm as l2L1, this will mean the l2nL

1
ξ norm for some ũ (which equals the l2nL

1
ξ̃

norm

for û); the meaning of L1l2 will thus be clear. The spacetime Lebesgue norms will be
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denoted by L6L6 etc. For example, in this notation system the expression ‖u‖l∞
d≥0l

p

∼2d
L1

actually means

sup
d≥0

(∑
n∼2d
‖ũn,ξ‖

p

L1
ξ

)1/p
.

Next, observe that up to a constant,

‖u‖6
L6L6 =

∑
n∈Z

∫
R

∣∣∣∣ ∑
n1+n2+n3=n

∫
ξ̃1+ξ̃2+ξ̃3=ξ̃

3∏
i=1

uni ,ξ̃i

∣∣∣∣2 dξ̃ . (2.1)

It follows that if |un,ξ | ≤ vn,ξ , then ‖u‖L6L6 ≤ ‖v‖L6L6 . For any function u we define
Nu by (Nu)n,ξ = |un,ξ |; then ‖Nu‖L6L6 is a norm of u. Now we list the norms we will
use:

‖u‖X1 = ‖〈n〉
s
〈ξ〉bu‖lpL2 , (2.2)

‖u‖X2 = ‖〈n〉
ru‖l∞

d≥0l
p

∼2d
L1 , (2.3)

‖u‖X3 = ‖〈n〉
−εNu‖L6L6 , (2.4)

‖u‖X4 = ‖〈n〉
−1
〈ξ〉κu‖lγL2 , (2.5)

‖u‖X5 = ‖u‖l∞
d≥0L

q l2
∼2d
, (2.6)

‖u‖X6 = ‖〈n〉
r
〈ξ〉1/2+s

2
u‖l2L2 , (2.7)

‖u‖X7 = ‖〈n〉
r
〈ξ〉1/8u‖l∞

d≥0l
p

∼2d
L2 . (2.8)

We also recall the norm Z1 defined in Section 1.1, and rewrite it as

‖f ‖Z1 = ‖〈n〉
rf ‖l∞

d≥0l
p

∼2d
. (2.9)

2.2. Another norm

We will need another spacetime norm, denoted by X8, which is a little tricky to define.
Consider the space of functions u of (n, ξ) ∈ Z× R, normed by

‖u‖8 = ‖u‖Lq l2 . (2.10)

The additive group Z acts on this space by

(πn0u)(n, ξ) = u(n+ n0, ξ + |n+ n0|(n+ n0)− |n|n). (2.11)

If we write

S : Z× R→ Z× R, (n, ξ̃ ) 7→ (n, ξ) = (n, ξ̃ + |n|n), (2.12)

then we would have
πn0u = u ◦ S ◦ Tn0 ◦ S

−1, (2.13)
where Tn0 : Z× R→ Z× R is the translation (n, ξ̃ ) 7→ (n+ n0, ξ̃ ). We then define the
atomic Y norm by

‖u‖Y = inf
{∑

i

〈ni〉
s1/2
|αi | : u =

∑
i

αiui, ‖πniui‖8 ≤ 1
}
. (2.14)



1114 Yu Deng

The X8 norm is then defined by

‖u‖X8 = sup
d≥0
‖P∼2du‖Y := sup

d≥0
‖P∼2d ũ‖Y , (2.15)

where the last equality is due to our convention.

Remark 2.1. In (2.14), the convergence takes place in a suitable weighted L1
n,ξ space.

Therefore, if v is rapidly decaying in n and ξ (for example, |v| . (|n| + |ξ | + 1)−100

will suffice), the sum
∑
i αi(ui, v) will converge absolutely to (u, v) provided that∑

i〈ni〉
s1/2
|αi | is finite, where (u, v) denotes (up to a constant) the standard pairing

(u, v) =

∫
R×T

u(t, x)v(t, x) dt dx =
∑
n

∫
R
un,ξvn,ξ dξ. (2.16)

2.3. The space in which we work

Define

‖u‖Y1 = ‖u‖X1 + ‖u‖X2 + ‖u‖X4 + ‖u‖X5 + ‖u‖X7 , (2.17)
‖u‖Y2 = ‖u‖X2 + ‖u‖X3 + ‖u‖X4 + ‖u‖X8 . (2.18)

Here, for each space Z (which can be Y1, Y2 or any other space) we define

‖u‖ZT = inf{‖v‖Z : v|[−T ,T ] = u|[−T ,T ]}. (2.19)

This [−T , T ] may also be replaced by any interval I .
The main spacetime norms we shall use in the whole bootstrap argument are Y T1

and Y T2 , while other norms may be introduced whenever necessary.

3. Linear estimates, and more

Here we shall prove our main linear estimates, as well as some auxiliary results.

Proposition 3.1 (Strichartz estimates). For any function u, we have

‖u‖LkLk . ‖〈n〉
σ
〈ξ〉βu‖l2L2 (3.1)

provided that

(k, σ, β) ∈ {(2, 0, 0), (4, 0, 3/8), (6, s5, 1/2+ s5), (∞, 1/2+ s5, 1/2+ s5)}. (3.2)

Proof. When (k, σ, β) = (2, 0, 0), the inequality (3.1) is simply Plancherel; when in-
stead (k, σ, β) = (∞, 1/2 + s5, 1/2 + s5), this can also be easily proved by combining
Hausdorff–Young and Hölder. When (k, σ, β) = (4, 0, 3/8), the inequality reduces, after
separating positive and negative frequencies and using time inversion, to the L4 Strichartz
estimate for the linear Schrödinger equation on T, which is well-known: see for example
[1, Proposition 2.6] or [25, Proposition 2.13].
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When (k, σ, β) = (6, s5, 1/2 + s5), (3.1) basically reduces to the L6 Strichartz esti-
mate proved in [1, Proposition 2.36]; for the reader’s convenience we also include a proof
here. By separating positive and negative frequencies and using time inversion, we only
need to consider the case for the Schrödinger semigroup, thus in this proof our convention
will change to ξ = ξ̃ + n2. Now for any function u with the right hand side of (3.1) not
exceeding 1, we may write vn,ξ = 〈n〉s

5
〈ξ〉1/2+s

5
un,ξ using our (different) convention,

and compute up to a constant that

(u3)n,̃ξ =
∑

n1+n2+n3=n

3∏
i=1

〈ni〉
−s5
(fn1 ∗ fn2 ∗ fn3 )̃ξ+n2

1+n
2
2+n

2
3
, (3.3)

where
(fn)ξ = 〈ξ〉

−1/2−s5
vn,ξ . (3.4)

By our assumption we have ‖〈ξ〉1/2+s
5
fni‖L2 . Ani , where {An} is some sequence satis-

fying ‖A‖l2 . 1. By (the Fourier version of) the product estimate for H σ (R) spaces, we
deduce that

(fn1 ∗ fn2 ∗ fn3)η = 〈η〉
−1/2−s5

(gn1n2n3)η, ‖gn1n2n3‖L2 . An1An2An3 . (3.5)

Therefore we can estimate

|(u3)n,̃ξ |
2 .

( ∑
n1+n2+n3=n

3∏
i=1

〈ni〉
−2s5
· 〈̃ξ + n2

1 + n
2
2 + n

2
3〉
−1−2s5

)
×

( ∑
n1+n2+n3=n

|(gn1n2n3 )̃ξ+n2
1+n

2
2+n

2
3
|
2
)
.

Now to finish the proof it will suffice to show

∑
n1+n2+n3=n

3∏
i=1

〈ni〉
−2s5
〈̃ξ + n2

1 + n
2
2 + n

2
3〉
−1−2s5

≤ C (3.6)

when n and ξ̃ are fixed. Now suppose the maximum (in absolute value) of ni and4 = ξ̃+
n2

1+n
2
2+n

2
3 is comparable to 2d , and4 ∼ 2d

′

; then the summand is at most 2−d
′
−s6(d+d ′),

so it will suffice to show that there are at most 2d
′
+s7d choices for (n1, n2, n3). Since their

can be at most 2d
′

possibilities for n2
1 + n

2
2 + n

2
3, we only need to show that there are at

most 2s
7d choices for (n1, n2, n3) if we require |ni | . 2d , and fix n1 + n2 + n3 = n and

n2
1+n

2
2+n

2
3. But thenmi = 3ni−nwill be integers for i ∈ {1, 2}, andm2

1+m1m2+m
2
2 will

be a fixed integer not exceeding C25d . The result then follows from the divisor estimate
for the ring Z[e2π i/3

]. ut

By Proposition 3.1 and interpolation, we get a series of LkLk Strichartz estimates for all
2 ≤ k ≤ ∞. It is these that we will actually use in the proof; we will not care too much
about the exact numerology because there will be enough room whenever we use these
estimates.



1116 Yu Deng

Proposition 3.2 (Relations between norms). We have

‖u‖X3 . ‖u‖X1 + ‖u‖X4 , ‖u‖X8 . ‖u‖X5 , (3.7)
‖u‖X1 + ‖u‖X2 + ‖u‖X5 + ‖u‖X7 . ‖u‖X6 . (3.8)

This in particular implies ‖u‖Xj . ‖u‖Y1 if 1 ≤ j ≤ 8 and j 6= 6.

Proof. By Proposition 3.1 and hierarchy (1.3) we know that

‖u‖X3 . ‖〈n〉−ε/2〈ξ〉1/2+s
5
u‖l2L2 . (3.9)

Comparing this with the definition of X1 and X4, noticing that γ < 2 and by (1.3) and
Hölder,

‖u‖X1 & ‖〈n〉−ε/4〈ξ〉b‖l2L2 ,

we will be able to prove the first inequality in (3.7) provided we can show

〈n〉−ε/2〈ξ〉1/2+s
5
. 〈n〉−1

〈ξ〉κ + 〈n〉−ε/4〈ξ〉b. (3.10)

But this is clear since by (1.3), the left hand side is controlled by the first term on the
right hand side if 〈ξ〉 ≥ 〈n〉100, and by the second term if 〈ξ〉 < 〈n〉100. The second
inequality in (3.7) is also easy, since we only need to prove ‖u‖Y . ‖u‖Lq l2 , which is a
direct consequence of the definition (2.14), if we choose to have only one term (with the
corresponding ni = 0) in the proposed atomic decomposition.

Now let us prove (3.8). The X1 norm is controlled by the X6 norm because s < r ,
b < 1/2 + s2, and 2 < p. For basically the same reason we can use Hölder to show
‖u‖X2 + ‖u‖X7 . ‖u‖X6 . Finally, to prove ‖u‖X5 . ‖u‖X6 , we only need to show that
‖gξ‖Lq . ‖〈ξ〉1/2+s

2
gξ‖L2 , but this again follows from Hölder since q > 1. ut

Next, we introduce the (cutoff) Duhamel operator E defined by

Eu(t, x) = χ(t)
∫ t

0
χ(t ′)

(
e−(t−t

′)H∂xxu(t ′)
)
(x) dt ′, (3.11)

where χ(t) is a cutoff function (compactly supported and equal to 1 in a neighborhood
of 0). Here and below we shall use many such functions, but unless really necessary, we
will not distinguish them and will denote them all by χ (for example, we write χ2

= χ ).
We shall summarize the required linear estimates for E in Proposition 3.4 below, but
before doing so, we need to introduce two more norms:

‖u‖X9 = ‖〈n〉
ru‖

l∞
d≥0L

q′ l
p

∼2d
, (3.12)

‖u‖X10 = ‖〈n〉
r
〈ξ〉−1/8u‖l∞

d≥0L
τ l
p

∼2d
. (3.13)
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Lemma 3.3. Suppose v(t, x) = Eu(t, x). Then with constants cj ,

vn,ξ = c1(χ̂ ∗ (η
−1(χ̂ ∗ un,∗)η))ξ + c2

(∫
R

(χ̂ ∗ un,∗)η

η
dη

)
· χ̂ξ . (3.14)

Here the 1/η is to be understood as the principal value distribution. This operator obeys
the following basic estimates, valid for all σ, β ∈ R and 1 ≤ h, k ≤ ∞:

‖〈n〉σ 〈ξ〉βEu‖Lhlk . ‖〈n〉σ 〈ξ〉β−1u‖Lhlk + ‖〈n〉
σ
〈ξ〉−1u‖lkL1 , (3.15)

‖〈n〉σ 〈ξ〉βEu‖lkLh . ‖〈n〉σ 〈ξ〉β−1u‖lkLh + ‖〈n〉
σ
〈ξ〉−1u‖lkL1 . (3.16)

Note the reversed order of norms in the second term on the right hand side of (3.15). If
moreover β > 1 − 1/h, we can remove the lkL1 norms. Finally, by commuting with P
projections, we get similar estimates for norms like X2 and X5.

Proof. The computation (3.14) is basically done in [5]. In our case, noticing that multi-
plication by χ(t) corresponds to convolution with χ̂ on the “tilde” side, we only need to
express the Fourier transform of

∫ t
0 u(t

′) dt ′ (which is exactly the Duhamel operator on
the “tilde” side) in terms of u(t). We compute∫ t

0
u(t ′) dt ′ =

1
2
u ∗ sgn(t)+

1
2

∫
R
u(t ′) sgn(t ′) dt ′. (3.17)

On the Fourier side, these two terms give exactly the two terms in (3.14) after another
convolution with χ̂ .

We will only prove (3.15), since the proof of (3.16) is basically the same; also notice
that if β > 1− 1/h, then

‖w‖lkL1 = min{‖w‖lkL1 , ‖w‖L1lk } . min{‖〈ξ〉βw‖lkLh , ‖〈ξ〉
βw‖Lhlk }

for wn,ξ = 〈n〉σ 〈ξ〉−1un,ξ , by Hölder. Now to prove (3.15), we first consider the second
term of (3.14). Due to its structure, we only need to prove for any function z = zξ that∣∣∣∣∫

R

(z ∗ χ̂)η

η
dη

∣∣∣∣ . ‖〈ξ〉−1z‖L1 . (3.18)

By considering |η| & 1 and |η| . 1 separately and using the cancelation coming
from the 1/η factor, we can control the left hand side by ‖〈η〉−1(z ∗ χ̂)η‖L1 (which
is easily bounded by the right hand side of (3.18)), plus another term bounded by
‖〈η〉−1∂η(z ∗ χ̂)‖L∞ . If we shift the derivative to χ̂ to get rid of it, we can again bound
this expression by the right hand side of (3.18).

Next, we consider the first term of (3.14). Again we consider the terms with |η| & 1
and |η| . 1 separately (by introducing a smooth, even cutoff, φη say). The part where
|η| & 1 is easy, since convolution with χ̂ξ is bounded on any weighted mixed norm
Lebesgue space we have here, and 1/η is comparable to 〈η〉−1 when restricted to the
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region |η| & 1. Now for the region |η| . 1, we can actually prove for y = yξ and
arbitrary K > 0 that∣∣∣∣(χ̂ ∗ (φηη (χ̂ ∗ y)η

))
τ

∣∣∣∣ . 〈τ 〉−K‖〈ξ〉−Ky‖L1 , (3.19)

which easily implies our inequality. To prove this, let χ̂ ∗ y = z, and compute(
χ̂ ∗

(
φ(η)

η
zη

))
τ

=

∫
|η|.1

χ̂τ
φηzη − z0

η
dη +

∫
|η|.1

χ̂τ−η − χ̂τ

η
φηzη dη.

From this we can readily recognize a decay of 〈τ 〉−K , and it will suffice to prove that
sup|η|.1 |zη| . ‖〈ξ〉

−Ky‖L1 , but this will be clear from the definition of z. ut

Proposition 3.4. We have

‖Eu‖X6 . ‖〈ξ〉−1u‖X6 , ‖Eu‖X4 . ‖〈ξ〉−1u‖X4 (3.20)

‖Eu‖X1 + ‖Eu‖X2 . ‖〈ξ〉−1u‖X1 + ‖〈ξ〉
−1u‖X2 . ‖u‖X10 , (3.21)

‖Eu‖X7 . ‖u‖X10 . ‖u‖X9 , ‖Eu‖X5 . ‖u‖X10 . (3.22)

Moreover, suppose u is such that un,ξ is supported in {(n, ξ) : n ∼ 2d , ξ & 2d} for
some d. Then

‖Eu‖X5 + ‖Eu‖X7 . ‖〈ξ〉−1u‖X1 + ‖〈ξ〉
−1u‖X2 . (3.23)

Finally, notice that all these estimates naturally imply the dual versions for the bounded-
ness of E ′.

Proof. By checking the numerology, we see that (3.20) is a direct consequence of Lem-
ma 3.3. To prove the first inequality in (3.21), we use Lemma 3.3 to conclude

‖Eu‖X1 + ‖Eu‖X2 . ‖〈ξ〉−1u‖X1 + ‖〈ξ〉
−1u‖X2 + ‖〈n〉

s
〈ξ〉−1u‖lpL1 , (3.24)

and note that the last term can be controlled by ‖〈ξ〉−1u‖X2 also. To prove that
‖〈ξ〉−1u‖X2 . ‖u‖X10 , one first commutes with P∼2d , then controls the lpL1 norm by
the L1lp norm, then uses Hölder (note the hierarchy (1.3)). To prove that ‖〈ξ〉−1u‖X1 .
‖u‖X10 , one first replaces the ‖〈n〉s ∗ ‖lp norm by the larger ‖〈n〉r ∗ ‖ld≥0l

p

n∼2d
norm, then

commutes with P∼2d , and controls the lpL2 norm by the L2lp norm and uses Hölder
again. Along the same lines,

‖Eu‖X7 . ‖〈ξ〉−1u‖X2 + ‖〈ξ〉
−1u‖X7 , (3.25)

‖Eu‖X5 . ‖〈ξ〉−1u‖l∞
d≥0l

2
∼2d

L1 + ‖〈ξ〉
−1u‖X5 , (3.26)

where the first term on the right hand side of (3.26) is bounded by ‖〈ξ〉−1u‖X2 , and the
second terms on both right hand sides are bounded by the X10 norm, by controlling the
lpL2 norm by the L2lp norm and using Hölder. Also ‖u‖X10 . ‖u‖X9 by Hölder. This
proves (3.22).
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Let us now prove (3.23). For theX7 norm we use (3.25), and the support condition will
easily allow us to control the second term on the right hand side of (3.25) by ‖〈ξ〉−1u‖X1 .
For the X5 norm, we only need to bound the second term on the right hand side of (3.26)
by ‖〈ξ〉−1u‖X1 . Since we can restrict to |n| ∼ 2d and |ξ | & 2d , we can bound this term
by

‖〈ξ〉−1u‖Lq l2 . ‖〈ξ〉σu‖L2l2 = ‖〈ξ〉
σu‖l2L2

. 2(σ−b+1)d
‖〈ξ〉b−1u‖l2L2 . 2(σ+σ

′
−b+1)d

‖〈ξ〉−1u‖X1 ,

where σ ′ = 1/2 − 1/p − s > 0, σ = −1/2 − 1/(2q ′) so that σ + σ ′ − b + 1 < 0
by (1.3). ut

Next we will prove two auxiliary results about our norms Yj and Y Tj , which are defined
in Section 2.3. They will be used to validate our main bootstrap argument.

Proposition 3.5. Suppose j ∈ {1, 2}, and u = u(t, x) ∈ Yj is a function that vanishes at
t = 0. Then with a time cutoff χ (recall our convention about such functions) we have,
uniformly in T . 1,

‖χ(T −1t)u‖Yj . ‖u‖Yj . (3.27)
If u is smooth, then also

lim
T→0
‖χ(T −1t)u‖Yj = 0. (3.28)

Proof. We first assume u ∈ Yj and u(0) = 0. We may also assume that u is supported
in |t | . 1. Since on the “hat” or “tilde” side multiplication by χ(T −1t) is just con-
volution with T χ̂T ξ , we need to prove the uniform boundedness of these operators on
spaces involved in the definition of Yj , as well as the corresponding limit result when u
is smooth. The bound in X3 is obtained by decomposing this convolution into transla-
tions (which preserve the X3 norm) and integrating them using the boundedness of the
L1 norm of T χ̂T ξ . The bound in X8 follows from the bound in Y , which is valid be-
cause this convolution does not increase the 8 (or Lq l2) norm, and commutes with the
action described in Section 2.2; the bounds in X2 and X5 are shown in the same way.
The remaining bounds will follow if we can bound this convolution in weighted norms
‖〈ξ〉σy‖L2 , where 0 ≤ σ < 1, for complex-valued functions yξ such that

∫
R yξ dξ = 0.

Namely, we need to prove

‖〈η〉σ (y ∗ T χ̂T ξ )η‖L2 . ‖〈ξ〉σyξ‖L2 . (3.29)

Also, by Proposition 3.2 we can control the Y1 and Y2 norms byX4 andX6. Thus in order
to prove (3.28), we only need to prove that the left hand side of (3.29) actually tends to
zero when T → 0, for any fixed Schwartz y with integral zero. By taking inverse Fourier
transform, the problem can be reduced to proving

‖χ(T −1t)u‖H σ . ‖u‖H σ (3.30)

for T . 1, and the limit
lim
T→0
‖χ(T −1t)u(t)‖H σ = 0, (3.31)

for u ∈ C∞c such that u(0) = 0. But these are proved, in a slightly different but equivalent
setting, in [14, Lemma 2.8]. ut
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Proposition 3.6. Suppose u = u(t, x) is a smooth function defined on R × T. Then for
j ∈ {1, 2}, the function T > 0 7→M(T ) = ‖u‖Y Tj

satisfies M(T + 0) ≤ CM(T − 0)

for all 0 < T . 1, and also M(0+) ≤ C‖u(0)‖Z1 .

Proof. First we prove the estimate for M(0+). Let u(0) = f and v(t, x) =

u(t, x) − e−tH∂xxf (x). Since v is smooth and v(0) = 0, Proposition 3.5 shows that
‖v‖Y Tj

→ 0 when T → 0. It then suffices to prove that for some cutoff χ(t), we have

‖χ(t)e−tH∂xxf ‖Yj . ‖f ‖Z1 . Note that on the “tilde” side, the function χ(t)e−tH∂xxf
simply becomes χ̂ξfn; thus this inequality is basically trivial if we take into account that
the Z1 norm is stronger than the norm ‖〈n〉−1f ‖Lγ , and the norm ‖f ‖l∞

d≥0l
2
∼2d

.

Next, we shall prove that M(T + 0) . M(T ) for 0 < T . 1. Namely, suppose u
is a smooth function, and 0 < T . 1 is such that ‖u‖Y Tj ≤ 1; we want to prove that

‖u‖
Y T
′

j
. 1 for some T ′ > T . Actually we only need to prove ‖u‖

Y
[−T ,T ′]
j

. 1, since

we can use the same argument to move the left point also. Now, due to the presence of
X2 norm in the definitions of both Yj , our assumption implies ‖u(T )‖Z1 . 1, therefore
by what we have just proved, u1 = e

−(t−T )H∂xxu(T ) satisfies the estimate ‖u1‖Y T ′j
. 1

for all T < T ′ . 1. Thus we only need to bound ‖u2‖
Y
[−T ,T ′]
j

for some T ′ > T and

u2 = u− u1. Since u2(T ) = 0, by choosing δ small enough we can produce a function v
coinciding with u2 on [T − 10δ, T + 10δ] such that ‖v‖Yj . 1 by Proposition 3.5. Also
since ‖u2‖Y Tj

. 1, we may choosew coinciding with u2 on [−T , T ] such that ‖w‖Yj . 1.

Note v(T ) = w(T ) = 0. Next, choose ψ1 ∈ C
∞ supported on [−9, 10] that equals 1 on

[−1, 9]. Define

u3(t) = (1− ψ1(δ
−1(t − T )))w(t)+ ψ1(δ

−1(t − T ))v(t). (3.32)

Then we can verify that u3 = u2 on [−T , T ′] with T ′ = T + 9δ, and by Proposition 3.5
we have ‖u3‖Yj . 1, as desired.

Finally, let us prove that M(T ) . M(T − 0) for all 0 < T . 1. Suppose Tk ↑ T ; we
can find uk coinciding with u on [−Tk, Tk] such that ‖uk‖Yj ≤ 1. Since T . 1, we may
assume uk are supported in |t | . 1. By the uniform boundedness in X4 norm, and the
fact that on the “tilde” side each uk equals itself convolved with some χ̂ξ , we conclude
that (uk)n,ξ has second order ξ -derivatives bounded by (say) 〈n〉10. We therefore extract
a subsequence so that {uk}, viewed as a sequence of maps from Rξ to some weighted l2n
space, converges uniformly in any |ξ | ≤ R. In particular this implies the convergence as
spacetime distributions; thus the limit, denoted by u∗, must coincide with u on [−T , T ].
It therefore suffices to prove ‖u∗‖Yj . 1. The bounds for the X1, X2, X4 and X7 norms
immediately follow from distributional convergence; for X3, note that the |(uk)n,ξ | also
converge uniformly to |un,ξ | in any |ξ | ≤ R for any fixed n, thus Nuk (recall Section
2.1 for definition) will converge to Nu∗ as spacetime distributions, therefore the X3 norm
of u∗ will also be bounded by O(1).

It remains to bound the X8 norm of u∗. By commuting with P∼2d , we may assume
that ‖uk‖Y ≤ 1. For any bounded function v = vn,ξ with compact (n, ξ)-support, we
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have (uk, v)→ (u∗, v) with the standard pairing (u, v) as in (2.16). By the definition of
the Y norm we can easily see that

|(uk, v)| ≤ ‖uk‖Y · sup
n0∈Z
〈n0〉

−s2
‖πn0v‖Lq′ l2 ≤ sup

n0∈Z
〈n0〉

−s2
‖πn0v‖Lq′ l2 . (3.33)

Denote the right hand side by ‖v‖Z . Then |(u∗, v)| ≤ ‖v‖Z for v with compact (n, ξ)-
support. Now consider any v with ‖v‖Z ≤ 1 (so in particular v ∈ Lq

′

l2). We produce
a sequence vR = v · 1{|v|+|n|+|ξ |≤R} so that ‖vR‖Z ≤ 1, and vR → v in Lq

′

l2, thus
(u∗, vR)→ (u∗, v) (notice that u∗ ∈ X4 and is supported in some |n| ∼ 2d , thus we have
u∗ ∈ Lq l2). This implies |(u∗, v)| ≤ 1 for all v such that ‖v‖Z ≤ 1. Since a priori we
have u∗ ∈ Lq l2 ⊂ Y , and it is easily checked that Y is a Banach space, we may invoke
the Hahn–Banach theorem to conclude ‖u∗‖Y ≤ 1, provided that we can identify the dual
space of Y with Z . Now clearly each element in Z gives a linear functional on Y whose
norm equals the Z norm; on the other hand, if we have a (bounded) linear functional on
Y , it must be bounded on Lq l2, thus it is given by pairing with an element of Lq

′

l2, and
then by considering the action of Z on this function, we conclude that it is actually in Z .

ut

4. Relevant probabilistic results

4.1. Review of the construction of Gibbs measure

In this section we briefly review the construction of the Gibbs measure ν as given in [28].
This measure is defined by adding a weight to some Wiener measure ρ, so we first de-
scribe the Wiener measure.

Consider a sequence {gn}n>0 of independent complex Gaussian random variables liv-
ing on some ambient probability space (�,B,P), which are normalized so that E(|gn|2)
= 1. We may also assume that |gn| = O(〈n〉10) everywhere on �; this assumption is just
in order to define the map f and is irrelevant otherwise. Letting g−n = gn, we define the
random series

f : � 3 ω 7→
∑
n 6=0

gn(ω)

2
√
π |n|

einx
∈ V (4.1)

as a map from � to V (recall that V is the subset of D′(T) containing real-valued distri-
butions with vanishing mean). This then defines the Wiener measure ρ on V by ρ(E) =
P(f−1(E)). For each positive integer N , if we identify V with VN ×V⊥N , then the measure
dρ is identified with dρN × dρ⊥N , with the latter two measures defined by

ρN (E) = P((5N f)−1(E)), ρ⊥N (E) = P((5⊥N f)−1(E)).

Fix a compactly supported smooth cutoff ζ , 0 ≤ ζ ≤ 1, which equals 1 on some
neighborhood of 0. Consider for each N the functions

θN (f ) = ζ(‖5Nf ‖
2
L2 − αN )e

1
3
∫
T(SNf )

3
, (4.2)

θ
]
N (f ) = ζ(‖5Nf ‖

2
L2 − αN )e

1
3
∫
T(5Nf )

3
, (4.3)
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where we recall 5N = P≤N as in Section 2, SN is as in (1.5), and

αN =

N∑
n=1

1
n
= E(‖5N f‖2

L2).

Clearly θN and θ]N only depend on 5Nf , thus they can also be understood as functions
on VN . Define measures

dνN = θN dρ, dν◦N = θN dρN , dν
]
N = θ

]
N dρ, dν

ø
N = θ

]
N dρN .

Then we could identify dνN and dν
]
N with dν◦N × dρ⊥N and dν

ø
N × dρ⊥N , respectively.

Moreover, if we identify VN with R2N and thus denote the measure on VN corresponding
to the Lebesgue measure on R2N by LN , then with some constant CN ,

dν◦N = CNζ(‖f ‖
2
L2 − αN )e

−2EN [f ] dLN , (4.4)

dν
ø
N = CNζ(‖f ‖

2
L2 − αN )e

−2E[f ] dLN , (4.5)

with f here denoting some element of VN , the Hamiltonian E as in (1.2), and the trun-
cated version EN being

EN [f ] =

∫
T

( 1
2 |∂

1/2
x f |2 − 1

6 (SNf )
3). (4.6)

The main result of [28] now reads as follows.

Proposition 4.1 ([28, Theorem 1]). The sequence θ]N converges inLr( dρ) to some func-
tion θ for all 1 ≤ r < ∞, and if we define ν by dν = θ dρ, then ν]N converges strongly
to ν in the sense that the total variation of their difference tends to zero. This ν is defined
to be the Gibbs measure for (1.1).

Remark 4.2. Only weak convergence is claimed in [28], but an easy elaboration of the
arguments there actually gives a much stronger convergence as stated in Proposition 4.1
above.

Remark 4.3. We note that the measure ν depends on the choice of ζ . In this regard we
have the following easy observation: there exists a countable collection {ζR}R∈N with
corresponding θR such that the union of AR

= {f : θR(f ) > 0} has full ρ measure. Note
that AR is the largest set on which ρ and νR are mutually absolutely continuous.

The finite-dimensional approximations we will actually use are νN instead of ν]N , thus we
still need to prove the convergence of νN . However, the proof is essentially the same as
the proof of Proposition 4.1, so we shall omit it here and only state the result.

Proposition 4.4. The sequence θN converges in Lr( dρ) to the θ defined in Proposition
4.1 for all 1 ≤ r < ∞, and νN converges strongly to the ν defined in Proposition 4.1 in
the sense that the total variation of their difference tends to zero.
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4.2. Compatibility with the Besov space

By elementary probabilistic arguments we can see that

ρ(f ∈ V : ‖f ‖L2 <∞) = 0, (4.7)
ρ(f ∈ V : ‖f ‖H−δ <∞) = 1, (4.8)

for all δ > 0. Namely, the Wiener measure dρ (and hence the Gibbs measure dν) is
compatible with H−δ but not L2, which is the essential difficulty in establishing the in-
variance result. In this section we show that this difficulty may be resolved by using the
Besov space Z1 defined in Section 1.1. First we prove a lemma.

Lemma 4.5. Suppose that gj (1 ≤ j ≤ N) are independent normalized complex Gaus-
sian random variables. Then

P
( N∑
j=1

|gj |
4
≥ αN

)
≤ 4e−

1
120

√
αN , (4.9)

for all α > 1600 and positive integer N .

Proof. Let X =
∑N
j=1 |gj |

4. Since E(|gj |4m) = (2m)!, we can estimate, for each integer
k ≥ 1, the k-th moment of X by

E(Xk) =
∑

m1+···+mN=k

k!

m1! · · ·mN !
× E(|g1|

4m1 · · · |gN |
4mN )

≤ k!
∑

m1+···+mN=k

N∏
j=1

(2mj )!
mj !

≤ k!4k
∑

m1+···+mN=k

N∏
j=1

mj !,

since
(2m
m

)
≤ 4m. From this, we see that (for ε > 0)

E(e
√
εX) ≤ 2E(cosh

√
εX) ≤ 2+ 2

∑
k≥1

εk

(2k)!
E(Xk) ≤ 2+

∑
k≥1

(8ε)k

k!
SN,k,

where

SN,k =
∑

m1+···+mN=k

N∏
j=1

mj !, (4.10)

which we shall now estimate. By identifying the nonzero terms in (m1, . . . , mN ), we can
rewrite SN,k as

SN,k =
∑

1≤r≤min{N,k}

(
N

r

)
S′k,r , (4.11)

where

S′k,r =
∑

m1+···+mr=k,mj≥1

r∏
j=1

mj !.



1124 Yu Deng

Clearly the number of choices of (m1, . . . , mr) is at most
(
k−1
r−1

)
≤ 2k , and for each such

choice we have
r∏

j=1

mj ! ≤ m1 · · ·mr ×

r∏
j=1

(mj − 1)! ≤ (k/r)r
( r∑
j=1

(mj − 1)
)
!

≤ er
k
r (k − r)! ≤ 3k(k − r)!.

Therefore S′k,r ≤ 6k(k − r)!. Next, notice that there are at most k ≤ 2k choices of r , and(
N
r

)
≤ N r/r!, so we have

SN,k ≤ 12k max
1≤r≤k

N r(k − r)!

r!
. (4.12)

If the maximum in (4.12) is attained at r = k, it will be bounded by Nk/k!; otherwise
it is attained at some r < k, which yields N ≤ (r + 1)(k− r) ≤ 2r(k− r). Therefore the
maximum in this case is bounded by

N r(k − r)!

r!
≤

2krr(k − r)r(k − r)k−r

r!
≤ (6k)k ≤ 18kk!.

Altogether we have SN,k ≤ 216kk! + (12N)k/k!, and hence

E(e
√
εX) ≤ 2+

∑
k≥1

(1728ε)k +
∑
k≥1

(384εN)k

(2k)!
, (4.13)

which is clearly bounded by 4e20
√
εN if we choose ε = 1

3456 . Now if α > 1600, we have

P(X ≥ αN) ≤ e−
√
εαNE(e

√
εX) ≤ 4e−

1
120

√
αN . ut

Now we can prove that the Wiener measure dρ is compatible with our Besov space Z1:

Proposition 4.6. With the measure ρ defined in Section 4.1, we have ρ(Z1) = 1; more
precisely,

ρ({f ∈ V : ‖f ‖Z1 ≤ K}) ≥ 1− Ce−C
−1K2

(4.14)

for all K > 0.

Proof. We only need to prove (4.14). Setting C large, this inequality will be trivial when
K ≤ 100. When K > 100, we deduce from the definition that

ρ({f ∈ V : ‖f ‖Z1 > 100K}) ≤
∑
j≥0

P
( ∑

0<n∼2j
|gn|

p
≥ Kp2j

)
. (4.15)

By Hölder,
∑

0<n∼2j |gn|
p
≥ Kp2j implies

∑
0<n∼2j |gn|

4
≥ K42j . By Lemma 4.5,

the latter has probability not exceeding Ce−C
−1K22j/2 provided K > 100. Summing up

over j , we see that

ρ({f ∈ V : ‖f ‖Z1 > K}) ≤
∑
j≥0

Ce−C
−1K22j/2

≤ Ce−C
−1K2

. ut
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5. The gauge transform I: Beating the derivative loss

From this section to Section 7, we will introduce the gauge transform for (1.6), and use
it to derive the new equations. We fix a large positive integer N throughout, and drop
the subscript N in SN (we are allowing N = ∞, in which case the arguments should
be modified slightly but no essential difference occurs). We also fix a smooth solution u
to (1.6); note that smooth solutions are automatically global. When N is finite, we also
assume that û is supported in |n| ≤ N for all time.

The gauge transform we use is defined as a power series, thus in many occasions we
will have to deal with summations over sequences of the form (m1, . . . , mµ). To simplify
the notation we will define, for such a sequence, the partial sums

mij = mi + · · · +mj .

This notation will also be used for other sequences, say µi , which will always be nonneg-
ative integers.

5.1. The definition of w

Let F be the unique mean-zero antiderivative of u, namely Fn = 1
inun for n 6= 0 and

F0 = 0. Define the operators Q0 : φ 7→ (Su) · φ and P0 : φ 7→ (SF ) · φ, as well as
Q = SQ0S and P = SP0S. Further, define the operator

M = e−
iP
2 =

∑
µ≥0

1
µ!

(
−

i
2

)µ
Pµ. (5.1)

The function w will be defined by

w = P+(Mu). (5.2)

We also define v = Mu, so that wn = vn when n > 0, and wn = 0 otherwise. The
evolution equation satisfied by w can be computed as follows:

(∂t − i∂xx)w = P+M(∂t − i∂xx)u+ P+[∂t ,M]u− iP+[∂xx,M]u
= −2iP+(MP−uxx)+ P+([∂t ,M]u− i[∂x, [∂x,M]]u)
+P+(MS(Su · Sux)− 2i[∂x,M]ux)
= −2iP+∂x(MP−ux) (5.3)

− 2iP+
(
[∂x,M] +

i
2
MQ

)
ux (5.4)

+ 2iP+[∂x,M]P−ux + P+([∂t ,M] − i[∂x, [∂x,M]])u. (5.5)

5.2. The term in (5.3)

By expanding M using (5.1), we can write

(5.3) =
∑
µ1

(−1)µ1

2µ1µ1!
K1
µ1
, (5.6)
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where in Fourier space

(K1
µ1
)n0 = 2i

∑
v∈S1

n0,µ1

3
1µ1
v (um1 · · · umµ1

)un1 . (5.7)

Here, the spatial frequency set is defined to be

S1
n0,µ1
= {v= (m1, . . . , mµ1 , n1) ∈ Zµ1+1

:mi 6= 0, n0 > 0, n1 < 0, m1,µ1 + n1 = n0},

and the weight is

3
1µ1
v =

µ1∏
i=1

1
mi
ψ

(
mi

N

)
×

µ1∏
i=2

ψ2
(
mi,µ1 + n1

N

)
n0n1ψ

(
n0

N

)
ψ

(
n1

N

)
.

As the next step, we rewrite part of the weight as

1
m1 · · ·mµ1

=
1

n0 − n1

µ1∑
i=1

1
m1 · · ·mi−1mi+1 · · ·mµ1

. (5.8)

By renaming the variables, we obtain

(5.3) =
∑
µ1≥1

µ1∑
i=1

(−1)µ1

2µ1−1µ1!
K1
µ1i
, (5.9)

where in Fourier space

(K1
µ1i
)n0 = i

∑
v∈S1.1

n0,µ1

3
1µ1i
v (um1 · · · umµ1−1)un1un2 . (5.10)

The frequency set here is

S1.1
n0,µ1

= {v = (m1, . . . , mµ1−1, n1, n2) : v ∈ Zµ1+1, mj 6= 0, n0 > 0,

n1 < 0, m1,µ1−1 + n1 + n2 = n0}, (5.11)

and the weight is

3
1µ1i
v =

µ1−1∏
j=1

1
mj
ψ

(
mj

N

) µ1∏
j=i+1

ψ2
(
mj−1,µ1−1 + n1

N

)

×

i∏
j=2

ψ2
(
mj,µ1−1 + n1 + n2

N

)
n0n1

|n0| + |n1|

2∏
j=0

ψ

(
nj

N

)
. (5.12)

5.3. The term in (5.4)

Since
[∂x, P ] = Q, (5.13)
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we may compute

[∂x,M] =
∑
µ1

1
µ1!

(
−

i
2

)µ1

[∂x, P
µ1 ] =

∑
µ1,µ2

1
(µ12 + 1)!

(
−

i
2

)µ12+1

Pµ1QPµ2

= −
i
2
MQ−

i
2

∑
µ1,µ2

1
(µ12 + 1)!

(
−

i
2

)µ12

Pµ1 [Q,Pµ2 ]. (5.14)

By expanding the commutator in (5.14), we can write

(5.4) = −
∑
µ1,µ2

µ1 + 1
(µ12 + 2)!

(
−

i
2

)µ12+1

P+Pµ1 [Q,P ]Pµ2ux . (5.15)

Notice that
[Q,P ] = S(Q0S

2P0 − P0S
2Q0)S, (5.16)

we can thus write

(5.4) =
∑
µ1,µ2

(−1)µ12(µ1 + 1)
2µ12+1(µ12 + 2)!

K2
µ1µ2

, (5.17)

where in Fourier space

(K2
µ1µ2

)n0 = i
∑

v∈S2
n0,µ1µ2

λ
2µ1µ2
v (um1 · · · umµ12

)un1un2un3 . (5.18)

Here the frequency set is

S2
n0,µ1µ2

= {v = (m1, . . . , mµ12 , n1, n2, n3) : v ∈ (Z∗)µ12+3, mi 6= 0, n1n2n3 6= 0,

n0 > 0, m1,µ12 + n1 + n2 + n3 = n0}, (5.19)

and the weight is

λ
2µ1µ2
v =

n3

n2

3∏
i=0

ψ

(
ni

N

) µ12∏
i=1

1
mi
ψ

(
mi

N

) µ2∏
i=1

ψ2
(
n3 +mµ1+i,µ12

N

)

×

µ1+1∏
i=2

ψ2
(
n1 + n2 + n3 +mi,µ12

N

)
×

[
ψ2
(
n2 + n3 +mµ1+1,µ12

N

)
− ψ2

(
n1 + n3 +mµ1+1,µ12

N

)]
.

Note that S2
n0,µ1µ2

is symmetric with respect to n1 and n3, so we can swap these two
variables and rearrange terms to obtain

(K2
µ1µ2

)n0 = i
∑

v∈S2
n0,µ1µ2

3
2µ1µ2
v (um1 · · · umµ12

)un1un2un3 , (5.20)
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where the frequency set S2
n0,µ1µ2

is as in (5.19), and the weight is

3
2µ1µ2
v =

1
2n2

3∏
i=0

ψ

(
ni

N

) µ12∏
i=1

1
mi
ψ

(
mi

N

) µ1+1∏
i=2

ψ2
(
n1 + n2 + n3 +mi,µ12

N

)

×

[
n3ψ

2
(
n2 + n3 +mµ1+1,µ12

N

) µ2∏
i=1

ψ2
(
n3 +mµ1+i,µ12

N

)

− n3ψ
2
(
n1 + n3 +mµ1+1,µ12

N

) µ2∏
i=1

ψ2
(
n3 +mµ1+i,µ12

N

)

+ n1ψ
2
(
n1 + n2 +mµ1+1,µ12

N

) µ2∏
i=1

ψ2
(
n1 +mµ1+i,µ12

N

)

− n1ψ
2
(
n1 + n3 +mµ1+1,µ12

N

) µ2∏
i=1

ψ2
(
n1 +mµ1+i,µ12

N

)]
. (5.21)

5.4. The term in (5.5)

Clearly we have

[∂t ,M] =
∑
µ1,µ2

1
(µ12 + 1)!

(
−

i
2

)µ12+1

Pµ1 [∂t , P ]P
µ2 , (5.22)

where
[∂t , P ] : ψ 7→ S(SFt · Sψ); (5.23)

also we may compute

[∂x, [∂x,M]] =
∑
µ1,µ2

1
(µ12 + 1)!

(
−

i
2

)µ12+1

[∂x, P
µ1QPµ2 ]

=

∑
µ1,µ2

1
(µ12 + 1)!

(
−

i
2

)µ1+µ2+1

Pµ1 [∂x,Q]P
µ2

+ 2
∑

µ1,µ2,µ3

1
(µ13 + 2)!

(
−

i
2

)µ13+2

Pµ1QPµ2QPµ3 .

Using the fact that
[∂t , P ] − i[∂x,Q] : ψ 7→ S(SG · Sψ), (5.24)

where
G = Ft − iFxx = −2iP−ux + 1

2

(
S((Su)2)− P0((Su)

2)
)
, (5.25)

we may write

(5.5) =
∑
µ1,µ2

(−1)µ12

2µ12(µ12 + 1)!
(K3

µ1µ2
+K4

µ1µ2
)+

∑
µ1,µ2,µ3

(−1)µ13+1

2µ13+2(µ13 + 2)!
K5
µ1µ2µ3

.

(5.26)
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Here, K3
µ1µ2

is defined in Fourier space as

(K3
µ1µ2

)n0 = i
∑

v∈S3
n0,µ1µ2

3
3µ1µ2
v (um1 · · · umµ12

)un1un2 , (5.27)

with frequency set

S3
n0,µ1µ2

= {v = (m1, . . . , mµ12 , n1, n2) : v ∈ Zµ12+2, mi 6= 0, n1 6= 0, n0 > 0,

n2 < 0, m1,µ12 + n1 + n2 = n0} (5.28)

and weight

3
3µ1µ2
v = n2

µ12∏
i=1

1
mi
ψ

(
mi

N

) 2∏
i=0

ψ

(
ni

N

) µ1+1∏
i=2

ψ2
(
n1 + n2 +mi,µ12

N

)

×

[ µ2∏
i=1

ψ2
(
n2 +mµ1+i,µ12

N

)
−

µ2∏
i=1

ψ2
(
n1 +mµ1+i,µ12

N

)]
.

The term K4
µ1µ2

is defined as

(K4
µ1µ2

)n0 =
i
4
P0((Su)

2)
∑

v∈S4
n0,µ1µ2

3
4µ1µ2
v (um1 · · · umµ12

)un1 , (5.29)

with frequency set

S4
n0,µ1µ2

= {v = (m1, . . . , mµ12 , n1) : v ∈ Zµ12+1, mi 6= 0, n1 6= 0, n0 > 0,

m1,µ12 + n1 = n0} (5.30)

and weight

3
4µ1µ2
v = ψ

(
n0

N

)
ψ

(
n1

N

) µ12∏
i=1

1
mi
ψ

(
mi

N

)

×ψ2
(
n1 +mµ1+1,µ12

N

) µ12∏
i=2

ψ2
(
n1 +mi,µ12

N

)
. (5.31)

The term K5
µ1µ2µ3

is defined as

(K5
µ1µ2µ3

)n0 = i
∑

v∈S5
n0,µ1µ2µ3

3
5µ1µ2µ3
v (um1 · · · umµ13

)un1un2un3 , (5.32)

with frequency set

S5
n0,µ1µ2µ3

= {v = (m1, . . . , mµ13 , n1, n2, n3) : v ∈ Zµ13+3, mi 6= 0, n1n2n3 6= 0,

n0 > 0, m1,µ13 + n1 + n2 + n3 = n0} (5.33)

and weight
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3
5µ1µ2µ3
v =

µ1+1∏
i=2

ψ2
(
n1 + n2 + n3 +mi,µ13

N

)

×

µ13∏
i=1

1
mi
ψ

(
mi

N

) 3∏
i=0

ψ

(
ni

N

) µ3∏
i=1

ψ2
(
n3 +mµ12+i,µ13

N

)

×

[
ψ2
(
n1 + n2

N

) µ2+1∏
i=2

ψ2
(
n1 + n2 + n3 +mµ1+i,µ13

N

)

+ ψ2
(
n1 + n2

N

) µ2∏
i=1

ψ2
(
n3 +mµ1+i,µ13

N

)

− 2
µ2+1∏
i=1

ψ2
(
n2 + n3 +mµ1+i,µ13

N

)]
. (5.34)

Next, we shall rewrite a part of the weight 33µ1µ2
v as

1
m1 · · ·mµ12

=
1

m1 · · ·m12
ψ0

(
n1

|n0| + |n2|

)
+

1
|n0| + |n2| − n1

ψ

(
n1

|n0| + |n2|

) µ12∑
i=1

1
m1 · · ·mi−1mi+1 · · ·mµ12

,

then rename the variables (separating the cases i ≤ µ1 and i > µ1) to obtain

(5.5) =
∑
µ1,µ2

(−1)µ12

2µ12(µ12 + 1)!
(K3

µ1µ20 +K4
µ1µ2

)+
∑

µ1+µ2≥1

µ12∑
i=1

(−1)µ12

2µ12(µ12 + 1)!
K3
µ1µ2i

+

∑
µ1,µ2,µ3

(−1)µ13+1

2µ13+2(µ13 + 2)!
K5
µ1µ2µ3

, (5.35)

where in Fourier space

(K3
µ1µ20)n0 = i

∑
v∈S3

n0,µ1µ2

3
3µ1µ20
v (um1 · · · umµ12

)un1un2 , (5.36)

with frequency set S3
n0,µ1µ2

as in (5.28), and new weight

3
3µ1µ20
v =

µ1+1∏
i=2

ψ2
(
n1+n2+mi,µ12

N

)
n2ψ0

(
n1

|n0|+ |n2|

) µ12∏
i=1

1
mi
ψ

(
mi

N

) 2∏
i=0

ψ

(
ni

N

)

×

[ µ2∏
i=1

ψ2
(
n2+mµ1+i,µ12

N

)
−

µ2∏
i=1

ψ2
(
n1+mµ1+i,µ12

N

)]
, (5.37)

the other term will be

(K3
µ1µ2i

)n0 = i
∑

v∈S3.1
n0,µ1µ2

3
3µ1µ2i
v (um1 · · · umµ12−1)un1un2un3 , (5.38)
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where the new frequency set is

S3.1
n0,µ1µ2

= {v = (m1, . . . , mµ12−1, n1, n2, n3) : v ∈ Zµ12+2, mi 6= 0, n1n2 6= 0,

n0 > 0, n3 < 0, m1,µ12−1 + n1 + n2 + n3 = n0} (5.39)
and the new weight is

3
3µ1µ2i
v =

n3

|n0| + |n3| − n1
ψ

(
n1

|n0| + |n3|

) µ12−1∏
j=1

1
mj
ψ

(
mj

N

)

×

3∏
j=0

ψ

(
nj

N

) i∏
j=2

ψ2
(
n1 + n2 + n3 +mj,µ12−1

N

) µ1+1∏
j=i+1

ψ2
(
n1 + n3 +mj−1,µ12−1

N

)

×

[ µ2∏
j=1

ψ2
(
n3 +mµ1+j−1,µ12−1

N

)
−

µ2∏
j=1

ψ2
(
n1 +mµ1+j−1,µ12−1

N

)]
(5.40)

for 1 ≤ i ≤ µ1, and

3
3µ1µ2i
v =

n3

|n0| + |n3| − n1
ψ

(
n1

|n0| + |n3|

) µ12−1∏
j=1

1
mj
ψ

(
mj

N

)

×

3∏
j=0

ψ

(
nj

N

) µ1+1∏
j=2

ψ2
(
n1 + n2 + n3 +mj,µ12−1

N

)

×

[i−µ1∏
j=1

ψ2
(
n2 + n3 +mµ1+j,µ12−1

N

) µ2∏
j=i−µ1+1

ψ2
(
n3 +mµ1+j−1,µ12−1

N

)

−

i−µ1∏
j=1

ψ2
(
n1 + n2 +mµ1+j,µ12−1

N

) µ2∏
j=i−µ1+1

ψ2
(
n1 +mµ1+j−1,µ12−1

N

)]
(5.41)

for µ1 + 1 ≤ i ≤ µ12.

5.5. Summary

Now we have obtained a first version of the equation satisfied by w, namely

(∂t − i∂xx)w =
∑
µ1≥1

µ1∑
i=1

(−1)µ1

2µ1−1µ1!
K1
µ1i
+

∑
µ1,µ2

(−1)µ12(µ1 + 1)
2µ12+1(µ12 + 2)!

K2
µ1µ2

+

∑
µ1,µ2

(−1)µ12

2µ12(µ12 + 1)!
(K3

µ1µ20 +K4
µ1µ2

)+
∑

µ1+µ2≥1

µ12∑
i=1

(−1)µ12

2µ12(µ12 + 1)!
K3
µ1µ2i

+

∑
µ1,µ2,µ3

(−1)µ13+1

2µ13+2(µ13 + 2)!
K5
µ1µ2µ3

, (5.42)

where:
• K1

µ1i
is defined in (5.10)–(5.12);

• K2
µ1µ2

is defined in (5.19)–(5.21);
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• K3
µ1µ20 is defined in (5.28), (5.36)–(5.37);

• K3
µ1µ2i

is defined in (5.38)–(5.41);
• K4

µ1µ2
is defined in (5.29)–(5.31);

• K5
µ1µ2µ3

is defined in (5.32)–(5.34).
In the next section we will further examine the structure of these terms.

6. The gauge transform II: A miraculous cancellation

In this section we identify the bad resonant terms coming from each Kj term in (5.42).
Our computation will show that these bad terms will eventually add up to zero, leaving
only the better-behaved ones. Throughout this section we will use a variable k, and define
θ = ψ(k/N), η = ψ ′(k/N).

6.1. The resonant terms in K1

In the expression (5.10), let n1 + n2 = 0. Noticing that n1 < 0, we get a sum

−in0
∑
k>0

|uk|
2

∑
m1+···+mµ1−1=n0

1 ·
um1 · · · umµ1−1

m1 · · ·mµ1−1
, (6.1)

where we always assume mi 6= 0, and the factor

1 =

µ1−1∏
j=1

ψ

(
mj

N

) µ1∏
j=i+1

ψ2
(
k −mj−1,µ1−1

N

)

×

i∏
j=2

ψ2
(
mj,µ1−1

N

)
k

|n0| + |k|
ψ

(
n0

N

)
ψ2
(
k

N

)
.

We then replace each variable in this expression, except k, by zero (strictly speaking, we
should replace n bym1,µ1−1 and cancel eachmj in the numerator before this process, but
the results will be the same and no estimate is affected), and get a term which reads

−in0
∑
k>0

|uk|
2

∑
m1+···+mµ1−1=n0

θ2(µ1−i+1)
µ1−1∏
i=1

umi

mi
. (6.2)

Noting that the summation over the mi’s gives exactly ((iF)µ1−1)n0 , we can sum over µ1
and i to get

(R1)n0 = −i
∑
k>0

|uk|
2
∑
µ1≥1

(−1)µ1

2µ1−1µ1!
n0((iF)µ1−1)n0

µ1∑
i=1

θ2(µ1−i+1)

= −

∑
k>0

|uk|
2
∑
µ1≥1

(−1)µ1

2µ1−1µ1!
(∂x(iF)µ1−1)n0

µ1∑
i=1

θ2(µ1−i+1)

=

∑
k>0

∑
µ≥0

i|uk|2

(µ+ 2)!

(
u

(
−

iF
2

)µ)
n0

· C1, (6.3)
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where
C1
= −

1
2 (µ+ 1)(θ2

+ θ4
+ · · · + θ2µ+4), (6.4)

and we have dropped the dependence of C1 on k and µ for simplicity.

6.2. The resonant terms in K2

In the expression (5.20), let n2 + n3 = 0 to obtain a term

i
2

∑
k 6=0

|uk|
2

∑
n1+m1+···+mµ12=n0

1 ·
um1 · · · umµ12

m1 · · ·mµ12

un1 , (6.5)

where

1 = ψ2
(
k

N

) 1∏
i=0

ψ

(
ni

N

) µ12∏
i=1

ψ

(
mi

N

) µ1+1∏
i=2

ψ2
(
n1 +mi,µ12

N

)

×

[
−ψ2

(
mµ1+1,µ12

N

) µ2∏
i=1

ψ2
(
k +mµ1+i,µ12

N

)

+ ψ2
(
k + n1 +mµ1+1,µ12

N

) µ2∏
i=1

ψ2
(
k +mµ1+i,µ12

N

)

−
n1

k
ψ2
(
n1 +mµ1+1,µ12 − k

N

) µ2∏
i=1

ψ2
(
n1 +mµ1+i,µ12

N

)

+
n1

k
ψ2
(
n1 +mµ1+1,µ12 + k

N

) µ2∏
i=1

ψ2
(
n1 +mµ1+i,µ12

N

)]
. (6.6)

We then discard the last two summands in the bracket, and in what remains replace each
variable except k by zero to get

i
2

∑
k 6=0

|uk|
2

∑
n1+m1+···+mµ12=n0

(θ2µ2+4
− θ2µ2+2) ·

um1 · · · umµ12

m1 · · ·mµ12

un1 . (6.7)

Since the summation over mi and n1 gives exactly (u · (iF )µ12)n0 , we can then sum over
µ1 and µ2 to obtain an expression which involves a sum over all k 6= 0. We may include
a factor of 2 and restrict to k > 0 (since θ is even in k), and then take into account the
symmetry with respect to n1 and n3 (namely, we are considering also the term where
n1 + n2 = 0) to include another factor of 2, and the final expression will be

(R2.1)n0 = 2i
∑
k>0

|uk|
2
∑
µ≥0

(−1)µ

2µ+1(µ+2)!
(u(iF)µ)n0

µ∑
µ2=0

(µ−µ2+1)(θ2µ2+4
−θ2µ2+2)

=

∑
k>0

∑
µ≥0

i|uk|2

(µ+2)!

(
u

(
−

iF
2

)µ)
n0

·C2, (6.8)

where
C2
= −(µ+ 1)θ2

+ (θ4
+ · · · + θ2µ+4). (6.9)
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The other possibility is when n1 + n3 = 0. In this case we rename n2 as n1 and get

i
2

∑
k 6=0

|uk|
2

∑
n1+m1+···+mµ12=n0

1 ·
um1 · · · umµ12

un1

m1 · · ·mµ1−1n1
, (6.10)

where

1 = ψ2
(
k

N

) 1∏
i=0

ψ

(
ni

N

) µ12∏
i=1

ψ

(
mi

N

) µ1+1∏
i=2

ψ2
(
n1 +mi,µ12

N

)

× k

[
ψ2
(
k + n1 +mµ1+1,µ12

N

) µ2∏
i=1

ψ2
(
k +mµ1+i,µ12

N

)

− ψ2
(
k − n1 −mµ1+1,µ12

N

) µ2∏
i=1

ψ2
(
k −mµ1+i,µ12

N

)

− ψ2
(
mµ1+1,µ12

N

) µ2∏
i=1

ψ2
(
k +mµ1+i,µ12

N

)

+ ψ2
(
mµ1+1,µ12

N

) µ2∏
i=1

ψ2
(
k −mµ1+i,µ12

N

)]
. (6.11)

Next, we examine the terms in the bracket, which basically can be written, for some σj
which are linear combinations of n1 andmi , as

∏
j ψ

2((k+σj )/N)−
∏
j ψ

2((k−σj )/N).
We then replace this expression by 4θ2µ−1η

∑
j σj/N , where µ is the number of factors.

If we plug into (6.11) this and the expression for each σj , cancel each n1 ormi factor with
the corresponding denominator in (6.10), and finally replace each variable other than k
by zero, we will get a term which, up to a rearrangement of variables, reads

2i
∑
k 6=0

k

N
|uk|

2
∑

n1+m1+···+mµ12=n0

um1 · · · umµ12

m1 · · ·mµ12

un1

×

(
(µ2 + 1)(µ2 + 2)

2
θ2µ2+3η −

µ2(µ2 + 1)
2

θ2µ2+1η

)
. (6.12)

We may restrict to k > 0 since η is odd, and then sum over µ1 and µ2 to obtain

(R2.2)n0 = 4i
∑
k>0

kη

N
|uk|

2
∑
µ≥0

µ∑
µ2=0

(−1)µ

2µ+1(µ+ 2)!
(u(iF)µ)n0(µ− µ2 + 1)

×

(
(µ2 + 1)(µ2 + 2)

2
θ2µ2+3

−
µ2(µ2 + 1)

2
θ2µ2+1

)
=

∑
k>0

∑
µ≥0

ikη|uk|2

N(µ+ 2)!

(
u

(
−

iF
2

)µ)
n0

·D2, (6.13)

where
D2
= 2θ3

+ · · · + µ(µ+ 1)θ2µ+1
+ (µ+ 1)(µ+ 2)θ2µ+3. (6.14)
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6.3. The resonant terms in K3

In the expression (5.36), let n1 + n2 = 0. Noting that n2 < 0, we obtain a term

i
∑
k>0

|uk|
2

∑
m1+···+mµ12=n0

1 ·
um1 · · · umµ12

m1 · · ·mµ12

, (6.15)

where

1 = − kψ0

(
k

|n0| + |k|

)
ψ2
(
k

N

) µ1+1∏
i=2

ψ2
(
mi,µ12

N

) µ12∏
i=1

ψ

(
mi

N

)

× ψ

(
n0

N

)[ µ2∏
i=1

ψ2
(
k −mµ1+i,µ12

N

)
−

µ2∏
i=1

ψ2
(
k +mµ1+i,µ12

N

)]
. (6.16)

Then we replace the term in the bracket by −4θ2µ2−1η
∑
i(mµ1+i,µ12/N), cancel the

corresponding mj factor in the denominator, and replace all the variables except k by
zero to obtain, after a rearrangement of variables, the sum

4i
∑
k>0

k

N
|uk|

2µ2(µ2 + 1)
2

θ2µ2+1η
∑

n1+m1+···+mµ12−1=n0

um1 · · · umµ12−1

m1 · · ·mµ12−1
un1 . (6.17)

Then we sum over µ1 and µ2 to obtain

(R3.1)n0 = 4i
∑
k>0

kη

N
|uk|

2
∑
µ≥0

(−1)µ+1

2µ+1(µ+ 2)!
(u(iF)µ)n0

( µ∑
µ2=0

µ2(µ2 + 1)
2

θ2µ2+1
)

=

∑
k>0

∑
µ≥0

ikη|uk|2

N(µ+ 2)!

(
u

(
−

iF
2

)µ)
n0

·D3, (6.18)

where
D3
= −

(
2θ3
+ · · · + µ(µ+ 1)θ2µ+1

+ (µ+ 1)(µ+ 2)θ2µ+3). (6.19)
Next, in the expression (5.38), let n2 + n3 = 0; noting that n3 < 0, we get a term

i
∑
k>0

|uk|
2

∑
n1+m1+···+mµ12−1=n0

1 ·
um1 · · · umµ12−1

m1 · · ·mµ12−1
un1 , (6.20)

where

1 =
−k

|k| + |n0| − n1
ψ

(
n1

|k| + |n0|

)
ψ2
(
k

N

) µ12−1∏
j=1

ψ

(
mj

N

) 1∏
j=0

ψ

(
nj

N

)

×

i∏
j=2

ψ2
(
n1 +mj,µ12−1

N

) µ1+1∏
j=i+1

ψ2
(
k − n1 −mj−1,µ12−1

N

)

×

[ µ2∏
j=1

ψ2
(
k −mµ1+j−1,µ12−1

N

)
−

µ2∏
j=1

ψ2
(
n1 +mµ1+j−1,µ12−1

N

)]
for 1 ≤ i ≤ µ1, and
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1 =
−k

|k| + |n0| − n1
ψ

(
n1

|k| + |n0|

)
ψ2
(
k

N

) µ12−1∏
j=1

ψ

(
mj

N

) µ1+1∏
j=2

ψ2
(
n1 +mi,µ12−1

N

)

×

1∏
j=0

ψ

(
nj

N

)[i−µ1∏
j=1

ψ2
(
mµ1+j,µ12−1

N

) µ2∏
j=i−µ1+1

ψ2
(
k −mµ1+j−1,µ12−1

N

)

−

i−µ1∏
j=1

ψ2
(
k + n1 +mµ1+j,µ12−1

N

) µ2∏
j=i−µ1+1

ψ2
(
n1 +mµ1+j−1,µ12−1

N

)]
for µ1+ 1 ≤ i ≤ µ1+µ2. Then we replace every variable other than k by zero, and sum
over i to obtain

− i
∑
k>0

|uk|
2

∑
n1+m1+···+mµ12−1=n0

um1 · · · umµ12−1

m1 · · ·mµ12−1
un1

×

( µ1∑
i=1

(θ2µ12−2i+4
− θ2µ1−2i+4)+

µ12∑
i=µ1+1

(θ2µ12−2i+2
− θ2i−2µ1+2)

)
.

We then sum over µ1 and µ2 to get

(R3.2)n0 = −i
∑
k>0

|uk|
2
∑
µ≥0

(−1)µ+1

2µ+1(µ+ 2)!
(u(iF)µ)n0

×

( µ+1∑
µ2=0

µ+1−µ2∑
i=1

(θ2µ−2i+6
− θ2µ−2i−2µ2+6)+

µ+1∑
µ2=0

µ+1∑
i=µ+2−µ2

(θ2µ−2i+4
− θ2i+2µ2−2µ)

)

=

∑
k>0

∑
µ≥0

i|uk|2

(µ+ 2)!

(
u

(
−

iF
2

)µ)
n0

· C3, (6.21)

where

C3
=

1
2

(
(µ+ 1)θ2

+ (−µ− 1)θ4
+ (−µ+ 1)θ6

+ · · · + (µ− 1)θ2µ+4). (6.22)

6.4. The resonant terms in K4

The whole term K4 should be viewed as resonant. Here we simply expand P0((Su)
2) =

2
∑
k>0 θ

2
|uk|

2, and replace every variable in (5.31) by zero (after extracting the
∏
i m
−1
i

factor, as before) to obtain

(R4)n0 =
i
2

∑
k>0

θ2
|uk|

2
∑
µ≥0

(−1)µ

2µ(µ+ 1)!
(u(iF)µ)n0 ×

µ∑
µ2=0

1

=

∑
k>0

∑
µ≥0

i|uk|2

(µ+ 2)!

(
u

(
−

iF
2

)µ)
n0

· C4, (6.23)

where
C4
=

1
2 (µ+ 1)(µ+ 2)θ2. (6.24)
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6.5. The resonant terms in K5

In the expression (5.32), consider the contribution where n1 + n2 = 0, n2 + n3 = 0, or
where n1 + n3 = 0. For each of these cases, we perform the same operation as in the
above sections, and collect all the resulting terms (and rearrange the variables) to obtain

i
∑
k 6=0

|uk|
2

∑
m1+···+mµ13+n1=n0

1 ·
um1 · · · umµ13

m1 · · ·mµ13

un1 , (6.25)

where

1 = ψ2
(
k

N

) µ1+1∏
i=2

ψ2
(
n1 +mi,µ13

N

) µ13∏
i=1

ψ

(
mi

N

) 1∏
i=0

ψ

(
ni

N

)

×

[
2ψ2

(
k − n1

N

) µ3∏
i=1

ψ2
(
k +mµ12+i,µ13

N

) µ2+1∏
i=2

ψ2
(
n1 +mµ1+i,µ13

N

)

+ 2ψ2
(
k − n1

N

) µ3∏
i=1

ψ2
(
k +mµ12+i,µ13

N

) µ2∏
i=1

ψ2
(
k +mµ1+i,µ13

N

)

− 2
µ3∏
i=1

ψ2
(
k +mµ12+i,µ13

N

) µ2+1∏
i=1

ψ2
(
mµ1+i,µ13

N

)

+

µ3∏
i=1

ψ2
(
n1 +mµ12+i,µ13

N

) µ2+1∏
i=2

ψ2
(
n1 +mµ1+i,µ13

N

)

+

µ3∏
i=1

ψ2
(
n1 +mµ12+i,µ13

N

) µ2∏
i=1

ψ2
(
n1 +mµ1+i,µ13

N

)

− 2
µ3∏
i=1

ψ2
(
n1 +mµ12+i,µ13

N

) µ2+1∏
i=1

ψ2
(
k + n1 +mµ1+i,µ13

N

)

− 2
µ3∏
i=1

ψ2
(
k +mµ12+i,µ13

N

) µ2+1∏
i=1

ψ2
(
k + n1 +mµ1+i,µ13

N

)]
.

Then we replace each variable other than k by zero, obtaining

i
∑
k 6=0

|uk|
2

∑
m1+···+mµ13+n1=n0

um1 · · · umµ13

m1 · · ·mµ13

un12θ2(θ2µ3+2
−θ2µ2+2

+1−θ2µ3). (6.26)

Again we restrict to k > 0 and sum over µ1, µ2, µ3 to get

(R5)n0 = 4i
∑
k>0

|uk|
2
∑
µ≥0

(−1)µ+1

2µ+2(µ+ 2)!
(u(iF )µ)n0

×

∑
µ1+µ2+µ3=µ

(θ2µ3+4
− θ2µ2+4

+ θ2
− θ2µ3+2)

=

∑
k>0

∑
µ≥0

i|uk|2

(µ+ 2)!

(
u

(
−

iF
2

)µ)
n0

· C5,
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where

C5
= −

1
2µ(µ+ 1)θ2

+ µθ4
+ (µ− 1)θ6

+ · · · + 2θ2µ
+ θ2µ+2. (6.27)

6.6. When put together...

Now we can directly verify from the above computations that

C1
+ C2

+ C3
+ C4

+ C5
= 0, (6.28)

D2
+D3

= 0, (6.29)

which then implies

R1
+R2.1

+R2.2
+R3.1

+R3.2
+R4

+R5
= 0. (6.30)

6.7. What remains?

Here we analyze what remains after we subtract from each Kj term the resonant con-
tribution, and deduce a second version of the equation satisfied by w. To simplify the
argument, we need to introduce a few more notions.

Definition 6.1. We say a function f : Z→ R is slowly varying of type 1, or f ∈ SV1, if
|f (n)| ≤ C and

|f (n+ 1)− f (n)| ≤ C〈n〉−1 (6.31)

for some constant C. We say f is slowly varying of type 2, or f ∈ SV2, if we have

|f (n+ 1)− f (n)| ≤ C〈n〉−1(|f (n)| + |f (n+ 1)|) (6.32)

for some constant C. For a function f : Zµ → R, we say it is slowly varying of type 1
or 2 if it satisfies the above inequalities for each single variable when the other variables
are fixed, with uniformly bounded constants.

Proposition 6.2. The following functions are in SV1:

(1) φ(f1, . . . , fk), where fj ∈ SV1 and φ : Rk → R is Lipschitz;
(2) φ(f1, . . . , fk), where fj ∈ SV2, φ is smooth and is constant outside some compact

set.

The following functions are in SV2:

(3) any monomial (say n2
1 or n2n3), or characteristic function of any set generated by

{nj > 0} and {nj < 0};
(4) products and reciprocals of functions in SV2 (with 1/f defined to be 1 at points where

f = 0); max(f, g), min(f, g) and f + g for nonnegative f, g ∈ SV2;
(5) |f |, 〈f 〉 and (max(f, 0))λ, where f ∈ SV2 and λ > 0.

Proof. Omitted. ut
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Proposition 6.3. We have

(∂t − i∂xx)w = H =
∑
µ

CµHµ, (6.33)

where |Cµ| ≤ Cµ/µ! with some absolute constant C, and Hµ = H2
µ +H3

µ +H4
µ. The

Hj terms can be written as

(H2
µ)n0 = i

∑
n1+n2+m1+···+mµ=n0

min{〈n0〉, 〈n1〉, 〈n2〉} ·2
2
µ

2∏
l=1

unl

µ∏
i=1

umi

mi
, (6.34)

(Hj
µ)n0 = i

∑
n1+···+nj+m1+···+mµ=n0

2jµ

j∏
l=1

unl

µ∏
i=1

umi

mi
, j ∈ {3, 4}, (6.35)

for positive n0. For each (µ, j), the function

2jµ = 2
j
µ(n0, n1, . . . , nj , m1, . . . , mµ), j ∈ {2, 3, 4},

is a linear combination of products 1E · 2, where E is some set generated by the sets
{nh + nl = 0}, 1 ≤ h < l ≤ j , and 2 is slowly varying of type 1 (later we may slightly
abuse the notation and use the term “2 factor” or “2j factor” to refer to both the 2jµ
and the 2 here); note in particular they are real-valued. Moreover:

(i) When j = 2, 2 is nonzero only when

max
i
〈mi〉 � (µ+ 1)−2 min{〈n0〉, 〈n1〉, 〈n2〉}. (6.36)

(ii) When j = 3, if E is contained in {n1 + n2 = 0} but not {|n1| = |n2| = |n3|}, we
must have

|2| . min
{

1,
〈n0〉 + 〈n3〉

〈n1〉

}
. (6.37)

The same holds for other permutations of (1, 2, 3).
(iii) When j = 4, we have

|2| .
(

max
0≤l≤4
〈nl〉

)−1
. (6.38)

Proof. The estimate on the coefficients Cµ, whose choice will be clear from the expres-
sions we have, is elementary based on the factorial decay we have, and the simple obser-
vation that

(µ1 + · · · + µk)!

µ1! · · ·µk!
≤ kµ1+···+µk , (6.39)

where in practice we always have (say) k ≤ 30. Next we shall examine the terms left
after the subtraction of resonant ones, and define the 2 factors. We will first prove the
boundedness of 2 and properties (i)–(iii), and then show that 2 ∈ SV1.

Before proceeding, let us make one useful observation. If we have a term (temporarily
called a term of type R for convenience) of type (6.34) in which the 2 factor is bounded
and is accompanied by some 1E with E ⊂ {n1 + n2 6= 0}, then we can use a smooth
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cutoff (similar to ψ1 or ψ2) to separate the part where (6.36) holds, and the part where
〈mi〉 & (µ + 1)−2 min{〈n0〉, 〈n1〉, 〈n2〉} for some 1 ≤ i ≤ µ; in the former case we
have H2

µ, and in the latter case we promote mi and rename it n3 to obtain H3
µ−1 (since

here the23 factor is bounded, n1+ n2 6= 0, and if nl + n3 = 0 for l ∈ {1, 2}, then the23

factor will have an n3 in the denominator, and at most 〈n0〉 in the numerator). Also we
may assume that all the nl and mi variables are nonzero and . N .

The first contribution we need to consider is when none of the equalities we proposed
in obtaining the Rj terms hold; these include the contribution from each Kj which we
discuss separately.

For the part in K1
µ1i

we have n1 + n2 6= 0. If 〈n2〉 & 〈n0〉 + 〈n1〉, then we have a
term of type R and obtain either H2

µ1−1 or H3
µ1−2. Now if 〈n2〉 � 〈n0〉 + 〈n1〉, then

〈mj 〉 & 〈n0〉 + 〈n1〉 for at least one j , so we can promote that mj and rename it n3 to
obtain H3

µ1−2, due to a similar argument as above and the restriction n1 + n2 6= 0.
For the part of K2

µ1µ2
, no nh + nl = 0 happens. In the expression (5.21), first assume

〈n3〉 (or, by symmetry, 〈n1〉) is . min{〈n0〉, 〈n1〉, 〈n3〉}. Then the first two terms in the
bracket on the right hand side of (5.21) contribute at most O(〈n3〉), so for these terms we
may relegate n2 (rename it by some mi) to obtain a contribution of type R. For the last
two terms in the bracket, the contribution is at mostN−1

〈n1〉(〈n2〉+〈n3〉), which is a sum
of two terms. One of them is at most 〈n3〉 and can be treated as above; the other can be
canceled by the n−1

2 factor and we get H3
µ12

(since we have pre-assumed that no nh + nl
can be zero).

Next suppose (say) 〈n0〉 � 〈n3〉 � 〈n1〉. In this case the first two terms in the bracket
on the right hand side of (5.21) contribute at most 〈n3〉, and at least one of 〈mj 〉 or 〈n2〉

must be & 〈n1〉 here, so we get H3
µ12−1 after making appropriate promotion or relegations;

the last two terms contribute at most N−1
〈n1〉(〈n2〉 + 〈n3〉), which is bounded either by

〈n3〉 (which can be treated the same way as above), or N−1
〈n1〉〈n2〉 (which is canceled

by the n−1
2 to obtain H3

µ12−1).
The only remaining possibility is 〈n0〉 � 〈n1〉 ∼ 〈n3〉. We may write

τ1(n) =

µ2∏
i=1

ψ2
(
n+mµ1+i,µ12

N

)
, (6.40)

τ2(n) = ψ
2
(
n+ n2 +mµ1+1,µ12

N

)
τ1(n), (6.41)

so the net contribution in the bracket will be(
n3τ2(n3)+ n1τ2(n1)

)
− ψ2(n3τ1(n3)+ n1τ1(n1)

)
with some factor ψ . Since we can write

n3τj (n3)+ n1τj (n1) = (n1 + n3)τj (n3)+ n1(τj (n1)− τj (n3)), (6.42)

and n1 + n3 is a linear combination of n0, n2 and mi , the first term on the right hand side
of (6.42) will be bounded either by 〈n0〉 (in which case we have a term of type R), or



Invariant Gibbs measure 1141

by 〈n2〉 (in which case we obtain H3
µ12−1), or by some 〈mj 〉 (in which case we relegate n2

and promote mj to obtain H3
µ12−1 under the restriction 〈n1〉 ∼ 〈n3〉). The contribution of

the second term will be bounded by N−1
〈n1〉 times either 〈n0〉 (in which case we have a

term of type R), 〈n2〉 (in which case we have a part of H3
µ12−1), or some 〈mj 〉 (in which

case we relegate n2 and promote mj to get H3
µ12−1).

For the part of K3
µ1µ20 we have n1 + n2 6= 0. By the assumptions about this term, if

〈n0〉 & 〈n2〉, we will have a term of type R. Now assuming 〈n0〉 � 〈n2〉, we can extract
from the bracket in (5.37) a factor of n0/N or mi/N . If we have an n0/N factor then the
net2 factor will be . 〈n0〉 and we again have a term of typeR; if we have anmi/N factor
then we may cancel it with the 1/mi factor, promote this mi and rename it n3, to obtain
H3
µ12−2. Notice that in this case the 2 factor is bounded by 〈n2〉/N . 1, n1 + n2 6= 0,

and if n2 + n3 = 0, we must have 〈n1〉 & 〈n2〉.
For the part of K3

µ1µ2i
we have n2+n3 6= 0. We claim that this part is H3

µ12−1. In fact,
this will be the case if both n1+n3 and n1+n2 are nonzero since the2 factor is bounded;
if n1 + n3 = 0, then from the assumptions about the K3

µ1µ2i
term we have 〈n0〉 & 〈n3〉,

so we also have H3
µ12−1; if n1 + n2 = 0, then either 〈n0〉 or 〈n3〉 must be & 〈n1〉, so we

still have H3
µ12−1.

For the part of K5
µ1µ2µ3

, no nh + nl = 0 happens. In this case the 2 factor is clearly
bounded, thus we obtain H3

µ13
.

Next, we have the “error term” which is some resonant contribution in Kj (for ex-
ample, the contribution in K1

µ1i
where n1 + n2 = 0) minus the corresponding Rj . In

this term we may specify some k (for example, in the term corresponding to K1
µ1i

we
will have n1 = −k and n2 = k). From the computations made before, we can see that
the corresponding terms may be written in an appropriate form so that the 2 factor is
bounded even without subtracting Rj . Note that here we may need to promote some mi
so that we can include m−1

i in 2 to cancel certain factors (for example when dealing
with K1

µ1i
). Therefore, before subtracting the Rj terms, the resonant contributions can

be written in the form of (6.35), with j = 3, the 2 factor bounded, and (say) n1 = −k,
n2 = k. In particular, if 〈n0〉 + 〈n3〉 & 〈k〉, we will obtain H3 and subtraction of Rj will
not affect this. Now we assume 〈n0〉 + 〈n3〉 � 〈k〉.

After the subtraction of the Rj factors, the 2 will remain bounded; moreover, it can
be checked case-by-case that in the remaining term, we gain an additional factor of

min
{

1,
1
〈k〉

(
〈n0〉 + 〈n3〉 +

µ∑
i=1

〈mi〉

)}
, (6.43)

if n1 = −k and n2 = k. For example, say we are replacing
∏
j ψ

2((k + σj )/N) −∏
j ψ

2((k − σj )/N) by 4θ2µ−1η
∑
j σj/N ; then the error term we introduce is at most

O(N−2
〈σj 〉

2), which is then at most O(N−2
〈nl〉

2) or O(N−2
〈mi〉

2) for some i and
l ∈ {0, 3}. Since this contribution can be canceled by other factors to produce a bounded
2 even if we replace the power of 2 by 1 (which will be the case if we do not subtract
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the Rj ), we will have in the error term an additional factor as in (6.43). The other factors
are treated in the same way, provided that in some cases we replace the N in the denomi-
nator by something larger than 〈k〉. This guarantees that either we obtain H3, or we may
promote some mi to obtain H4.

Next, notice that in obtaining R2.1, we have discarded the last two terms in the bracket
on the right hand side of (6.6). However, they add up to produce a factor of at most
N−1
〈n1〉, thus they can be included in H3. Finally, there are terms where at least two of

the proposed equalities hold (these terms appear due to the inclusion-exclusion principle),
for example we have the term where n1 + n2 = n2 + n3 = 0 in K5

µ1µ2µ3
; but by the

discussion above, the corresponding 2 factor will be bounded, thus they can also be
included in H3.

Now we only need to show 2 ∈ SV1. This will follow from Proposition 6.2, since it
can be checked that all the 2 factors are formed using rules (1) through (5) in that propo-
sition, with rule (2) used at least once (in particular, all the cutoff factors we introduce
will be in SV1). ut

7. The gauge transform III: The final substitution

Starting from equations (6.33)–(6.35), we need to make further substitutions before we
can state and prove the main estimates. Here we introduce one more notation, namely
when we write gω for a function g, where ω ∈ {−1, 1}, this will mean g if ω = 1, and g
if ω = −1. Also in the following, we will use the letter υ to represent a function that can
be either u or v.

7.1. From u to w

Recalling that v = Mu and w = P+v, we have

u =
∑
µ

iµ

2µµ!
Pµv,

which then implies, for n > 0,

un =
∑
µ

1
2µµ!

∑
n1+m1+···+mµ=n

9µ · vn1

µ∏
i=1

umi

mi
, (7.1)

where
9µ = 9µ(n, n1, m1, . . . , mµ)

is a product of ψ factors. When n < 0, since un = u−n, we have instead

un =
∑
µ

(−1)µ

2µµ!

∑
n1+m1+···+mµ=n

9µ · (v)n1

µ∏
i=1

umi

mi
, (7.2)

where we note (v)n = v−n. By replacing each unl in (6.34) and (6.35) with one of the
above expressions, we can prove
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Proposition 7.1. We have

(∂t − i∂xx)w = J =
∑
µ

CµJµ, (7.3)

where |Cµ| . Cµ/µ! and the nonlinearity is written as

Jµ =
∑

j∈{2,3,3.5,4,4.5}

∑
ω∈{−1,1}bjc

J ωj
µ (7.4)

with

(J ωj
µ )n0 = i

∑
n1+···+nj+m1+···+mµ=n0

φjµ

j∏
l=1

(wωl )nl

µ∏
i=1

umi

mi
(7.5)

for j ∈ {2, 3}, and

(J ωj
µ )n0 = i

∑
n1+···+nbjc+m1+···+mµ=n0

φjµ

bjc∏
l=1

(υωl )nl

µ∏
i=1

umi

mi
(7.6)

for j ∈ {3.5, 4, 4.5}. Here the real-valued weights

φjµ = φ
j
µ(n0, n1, . . . , nbjc, m1, . . . , mµ), (7.7)

where j ∈ {2, 3, 3.5, 4, 4.5}, satisfy the following.
(i) When j = 2, we have

|φ2
µ| . min{〈n0〉, 〈n1〉, 〈n2〉};

also φ2
µ is nonzero only when

min{〈n0〉, 〈n1〉, 〈n2〉} � (µ+ 1)2 max
i
〈mi〉.

(ii) When j = 3, we have |φ3
µ| . 1; also when n1 + n2 = 0, and neither n1 nor n2 is

related to n3 bym (here and after, we say two n variables are “related bym” if their
sum or difference belongs to some fixed, finite set of linear combinations of the m
variables), we have

|φ3
µ| . min

{
1,
〈n0〉 + 〈n3〉

〈n1〉

}
,

and the estimate also holds for other permutations of (1, 2, 3). Also, when all three
of (n1, n2, n3) are related by m, we are allowed to have (υωl )nl instead of (wυl )nl
in (7.5) for j = 3.

(iii) When j = 3.5, we have

|φ3.5
µ | .

min{〈n0〉, 〈n1〉, 〈n2 + n3〉}

max{〈n2〉, 〈n3〉}
. (7.8)

Moreover, we can replace the υ in (υω1)n1 in (7.6) for j = 3.5 by w; also, if(
max

0≤l≤3
〈nl〉

)1/2
� min

0≤l≤3
〈nl〉,

then n2 and n3 must have opposite sign.
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(iv) When j = 4, we have

|φ4
µ| .

(
max

0≤l≤4
〈nl〉

1/20
+ min

1≤l≤4
〈nl〉

)−1
.

(v) When j = 4.5, we have n1 + n2 6= 0, and

|φ4.5
µ | . (〈n3〉 + 〈n4〉)

−1,

and this factor is nonzero only if

max{〈n3〉, 〈n4〉} +max
i
〈mi〉 � (max{〈n0〉, 〈n1〉, 〈n2〉})

1/10
;

also, whenever
〈nl〉 & (max{〈n0〉, 〈n1〉, 〈n2〉})

1/10

for some l ∈ {1, 2}, we can replace the υ in (υωl )nl in (7.6) for j = 4.5 by w.
(vi) When j = 3, suppose n0 = n1 = n,−n2 = n3 = k, 〈k〉 � (µ + 3)−11

〈n〉, and
(if necessary) restrict to the set {k > 0} or {k < 0}, then the φ3

µ factor will be a
function of n, k and other variables. This function can then be divided into two parts,
with the first part satisfying

|φ3
µ(n, k,m1, . . . , mµ)| .

min{〈n〉, 〈k〉}
max{〈n〉, 〈k〉}

, (7.9)

and the second part satisfying

|φ3
µ(w)− φ

3
µ(w
′)| . 〈k〉−1, (7.10)

where w = (n, k,m1, . . . , mµ), and w′ differs from w by 1 in exactly one component;
if this component is n or k, then the right hand side of (7.10) should be replaced
by 〈n〉−1.

Proof. We will first prove (i) through (v) as well as (7.9); the proof of (7.10) will be left to
the end. Since each H4 term is also a J 4 term, we only need to consider the expressions
(6.34) and (6.35) with j ∈ {2, 3}. We replace each unl , where 1 ≤ l ≤ j , by either (7.1)
or (7.2), depending on whether nl is positive or negative, to obtain

Hj
µ0
=

∑
ω;µ1,...,µj

Cµ0

ω
µ1
1 · · ·ω

µj
j

2µ1jµ1! · · ·µj !
Hωj
µ0···µj

(7.11)

for all µ0 and j ∈ {2, 3}, where ω = (ω1, . . . , ωj ) ∈ {−1, 1}j , and

(Hωj
µ0···µj

)n0 =

∑
w∈V ωjn0,µ0···µj

2
µ0···µj j
w

j∏
l=1

(vωl )n′l

j∏
l=0

µl∏
i=1

u(ml)i

(ml)i
. (7.12)

Here the frequency set is

V
ωj
n0,µ0···µj = {w = ((nl, n

′

l)1≤l≤j , ((m
l)i)1≤i≤µl;0≤l≤j ) : nl = n

′

l + (m
l)1µl , ωlnl > 0,

n1 + · · · + nj + (m
0)1µ0 = n0}. (7.13)

Note that the free variables are n′l and (ml)i , and they satisfy a constraint
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j∑
l=1

n′l +

j∑
l=0

µl∑
i=1

(ml)i = n0

as well as several inequalities. Also the weight is

2
µ0µ1µ22
w = 22

µ0
(n0, n1, n2, (m

0)1, . . . , (m
0)µ0)

× min
0≤l≤2
〈nl〉 ·

j∏
l=1

9µl (nl, n
′

l, (m
l)1, . . . , (m

l)µl ), (7.14)

2
µ0···µ33
w = 23

µ0
(n0, . . . , n3, (m

0)1, . . . , (m
0)µ0)

×

j∏
l=1

9µl (nl, n
′

l, (m
l)1, . . . , (m

l)µl ). (7.15)

Our argument will be an enumerative examination of all the possible terms, and this can
be greatly simplified with the following lemma, which we will assume for now, and prove
after the proof of this main proposition.

Lemma 7.2. We say a term has type A if it has the form (7.12), with some factor 2′ in
place of 2

µ0···µj j
w , which is bounded by

|2′| . min
0≤j≤2

〈nj 〉 ·min
{

1,
〈(ml)i〉

〈nl〉 + 〈n
′

l〉

}
, j = 2, (7.16)

|2′| . min
{

1,
〈(ml)i〉

〈nl〉 + 〈n
′

l〉

}
, j = 3, (7.17)

for some l ≥ 1 and 1 ≤ i ≤ µl . Moreover assume that (1) either there is some h 6= l

such that n′l + n
′

h = 0, or no n′j + n
′

k = 0 regardless of whether j or k is equal to l;
(2) either (ml)in′l < 0, or the v in (vωl )n′l is replaced by w. Then this term will be J b for
some b ∈ {3, 3.5, 4, 4.5}.

We now start to analyze the sum (7.12). Note that the22
µ0

in (7.14) and the23
µ0

in (7.15)
are fixed linear combinations of products 1E ·2 (recall Proposition 6.3), so we only need
to consider one product of this type.

First, we collect the terms in (7.12) where n′h + n
′

l = 0 for some 1 ≤ h 6= l ≤ j .
We fix such a pair (h, l) and fix a k > 0 (the case k = 0 being trivial) so that n′h = k

and n′l = −k, then we fix ω and all the µ’s except for µh and µl , and fix all the variables
except for (mh)i and (ml)i . There are then two possibilities.

(1) If (ωh, ωl) 6= (1,−1), say ωl = 1, then from (7.13) we have (ml)1µl − k > 0,
which implies 〈k〉 . 〈(mi)i〉 for some i, and we may assume that (ml)i has opposite sign
to k. Therefore we get a term of type A and reduce to Lemma 7.2.

(2) If (ωh, ωl) = (1,−1), then in particular we may replace the v in (vωh)n′h and
(vωl )n′l

by w in (7.12). Now we make the restriction that 〈(mh)i〉 � (µ+ 1)−2
〈k〉 for all

1 ≤ i ≤ µh and the same for l, where µ is the sum of all µj , including µh and µl . It is
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important to notice that this restriction depends only on µh+µl ; also, the remaining part
is of type A and can be treated using Lemma 7.2.

Next, assume µh + µl > 0; we will replace the 9µh factor in (7.14) and (7.15) by
ψ2µh(n′h/N) and the same for l; thus the modified version of 9µh9µl will depend only
on µh + µl . Also we may replace the nh and nl appearing in 2 factors of 2jµ0 functions,
as well as min0≤j≤2〈nj 〉, by n′h (= k) and n′l (= −k); note that we are not doing this
for the 1E factor. Now, since the 2 factors and the 9 factors are in SV1, min0≤j≤2〈nj 〉 is
in SV2, and we already have 〈nh〉 ∼ 〈n′h〉 and the same for l, we can easily show that the
error introduced in this way will be of type A.

Now, apart from the 1E factors, we have replaced2
µ0···µj j
w with some2′ independent

of the (mh)i and the (ml)i variables. Regarding the 1E factor, let us consider the case
E = {nl′+nh′ = 0}. If {l′, h′} = {l, h}, this factor will again be independent of the chosen
m variables (since it only depends on (mh)1µh + (m

l)1µl which is fixed). Therefore, up
to an error term which only involves the summation where j = 3, the weight 2µ0···µ33

w
factor is bounded, and all three of (n′1, n

′

2, n
′

3) are related by m (thus it will be J 3), we
may assume that 2′ is completely independent of the (mh)i and (ml)i variables.

Next, we will fix µh and µl , so that we are summing over (mh)i and (ml)i , the re-
striction being

(mh)1µh + (m
l)1µl = cst, max{〈(mh)i〉, 〈(ml)i′〉} � (µ+ 1)−2

〈k〉, (7.18)

where the constant depends on the other fixed variables, and the summand will be

µh∏
i=1

u(mh)i

(mh)i

µl∏
i=1

u(ml)i

(ml)i
. (7.19)

Note that when each (mh)i and (ml)i′ is small, the restriction

(mh)1µh > −k, (ml)1µl < k, (7.20)

which comes from (7.13), will be void. Now we can see that this sum actually depends
only on µh + µl , thus when we sum over µh fixing µh + µl , we will get zero, since∑

µ1+µ2=µ>0

(−1)µ2

µ1!µ2!
= 0. (7.21)

Therefore all the terms in this case can be treated using Lemma 7.2.
We still need to consider when µh = µl = 0. In this case we have nh = k and

nl = −k. Note in particular we must have j = 3 due to the restriction (i) in Proposition
6.3; we may assume h = 1 and l = 2, so the 2µ0···µ33

w factor is bounded by

min
{

1,
〈n0〉 + 〈n3〉

〈k〉

}
(7.22)

provided n3 6= ±k, which we may assume since otherwise all three of (n′1, n
′

2, n
′

3) will
be related by m and we will get J 3. Now if 〈(m3)i〉 � (µ3 + 1)−2

〈n3〉 for all i, then
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〈n3〉 ∼ 〈n
′

3〉 and the v in (vω3)n′3
may be replaced by w, thus we will have J 3; otherwise

we may promote some (m3)i and rename it n4, and it can be easily checked that this part
will be J 4.

Now we collect the terms where no two n′l add to zero. Among these, we will first
take out the part where 〈(ml)i〉 & (µ0l + 1)−2

〈ni〉 for at least one 1 ≤ l ≤ j and at
least one 1 ≤ i ≤ µl , since this again will be of type A. In what remains, we will have
〈n′l〉 ∼ 〈nl〉, and that ωln′l > 0, and we may replace the v in (vωl )n′l by w. Now when
j = 3, we already obtain a part of J 3. Finally, when j = 2 we separate the cases where

max
l,i
〈(ml)i〉 � (µ0j + 1)−2 min{〈n0〉, 〈n1〉, 〈n2〉} (7.23)

or otherwise, again by inserting smooth cutoffs. If (7.23) holds we get a part of J 2;
if (7.23) fails, we can promote some (ml)i and call it n3 so that the new 2 factor is
bounded, and then replace un3 by (7.1) or (7.2), introducing the n′3 and (m3)i variables.
Now, if 〈(m3)i〉 � 〈n3〉 for all i, so that 〈n′3〉 ∼ 〈n3〉 and the v in (vω3)n′3

may be
replaced by w, we get J 3 due to the same argument as in the proof of Proposition 6.3;
otherwise we could promote some (m3)i to be n4. We then obtain J 4 if one of n3, n′3, n4

or the remaining m variables is & (max{〈n0〉, 〈n1〉, 〈n2〉})
1/10, and obtain a part of J 4.5

otherwise.
Finally, to prove part (vi), first notice that in (7.10) we may assume each 〈mi〉 � 〈k〉

also, since otherwise we will have J 4 or J 4.5. It can then be checked that in this par-
ticular case, every term in J 3 will involve no characteristic functions other than 1{mi 6=0}
(which can always be ignored) or 1{k>0} or 1{k<0} (which is taken care of when we restrict
to positive or negative k); in particular any 1E factor introduced before will be constant
here. What remains in the φ3 factor are simple linear fractions and cutoff functions, and
for them (7.10), which is a stronger property than being in SV1, can be directly verified.

ut

Proof of Lemma 7.2. Fix the l and the i in (7.17), and first suppose j = 2. We may
assume l = 2 and promote the (m2)i by calling it n3. Then the new 2 factor will be
bounded by

min{〈n0〉, 〈n1〉, 〈n2〉}

max{〈n2〉, 〈n3〉, 〈n
′

2〉}
.

Notice that

〈n1〉 . 〈n
′

1〉 +
∑
i

〈(m1)i〉, 〈n2〉 . 〈n
′

2 + n3〉 +
∑
i

〈(m2)i〉,

thus the 2 factor will be bounded either by

min{〈n0〉, 〈n
′

1〉, 〈n
′

2 + n3〉}

max{〈n′2〉, 〈n3〉}
(7.24)

or by some

min
{

1,
〈(ml)i〉

max{〈n2〉, 〈n3〉, 〈n
′

2〉}

}
, l ∈ {1, 2}, 1 ≤ i ≤ µl .
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In the former case the bound (7.8) is already verified, and we will have a part of J 3.5 if
ω1n
′

1 > 0 and n′2 has different sign with n3. If ω1n
′

1 ≤ 0, we find for some 1 ≤ i ≤ µ1

that 〈n1〉 + 〈n
′

1〉 . 〈(m
1)i〉 and we are reduced to the latter case above. Now in the latter

case, we promote (ml)i and call it n4, so that we get an expression of the form∑
n1+···+n4+m1+···+mµ=n0

8 ·

4∏
l=1

(υωl )nl

µ∏
i=1

umi

mi
, (7.25)

where we may assume ωl(nl+λl) > 0, where λl is some linear combination of them vari-
ables, and the υ in (υωl )nl can be replaced by v for l ∈ {1, 2}; also the8 factor is bounded
by (〈n2〉 + 〈n3〉 + 〈n4〉)

−1. Now if one of nl (2 ≤ l ≤ 4) or mi is & max{〈n0〉, 〈n1〉}
1/20

we will obtain a part of J 4; otherwise we must have ω1n1 > 0 and thus we are in J 4.5.
Now, if we have some term similar to J 3.5 (i.e. with 2 factor bounded by (7.24)),

with ω1n1 > 0 but n2 and n3 have the same sign (note the nj here was n′j before we
renamed it), then from the definition of type A terms, we can replace the υ in (υωj )n′j
by w for j ∈ {1, 2}. Next, we replace un3 by (7.1) or (7.2) according to the sign of n3,
introducing the n′3 and (m3)i variables. Under the assumption 〈n3〉 � max0≤l≤3〈nl〉

1/2,
we may assume 〈(m3)i〉 � 〈n3〉

1/4, otherwise we will have J 4. In particular we have
(wω3)n′3

and the weight will be bounded by min{〈n0〉, 〈n1〉}/max{〈n2〉, 〈n
′

3〉}. Since n2

will have the same sign as n′3, we cannot have n0 = n1 or n2+n
′

3 = 0; then we can check
that this term will be J 3, and that it satisfies (7.9).

Now assume j = 3. We may assume l = 3, and by a similar argument we will obtain
an expression of form (7.25), but with 8 factor bounded only by (〈n3〉 + 〈n4〉)

−1. If we
can assume that some other nj (say n2) is related to n3 + n4 by m, then we can reduce to
the case just studied. Otherwise we must have n1+n2 6= 0. Now we may assume that n3,
n4 and all the m variables are� (max{〈n0〉, 〈n1〉, 〈n2〉})

1/20 or we are in J 4; also, if for
some l ∈ {1, 2} we have 〈nl〉 & (max{〈n0〉, 〈n1〉, 〈n2〉})

1/10 (we make this restriction by
inserting a smooth cutoff), then ωlnl > 0 and we can replace υ in (υωl )nl byw. Therefore
we will have J 4.5. ut

7.2. From w to w∗

We still need to remove from the right hand side of (7.3) the part that cannot be controlled
directly, by means of a substitution which will be described in the following proposition.

Proposition 7.3. We can define w∗, for each fixed time, by

(w∗)n = e
−i1nwn, (7.26)

where the 1 factors are

1n(t) =

∫ t

0
δn(t
′) dt ′, (7.27)

and the δ factors are

δn =

[
1
2
ψ4
(
n

N

)
+

2n
N
ψ3
(
n

N

)
ψ ′
(
n

N

)] n∑
k=0

|wk|
2 (7.28)
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for n > 0; notice we may replace the wk by (w∗)k in this expression. We then extend δn
and 1n to n ≤ 0 so that they are odd in n, and define u∗ and v∗ by

(υ∗)n = e
−i1nυn, υ ∈ {u, v}.

With these definitions, we have

(∂t − i∂xx)w∗ = N 2(w∗, w∗)+
∑

j∈{3,2.5,4,4.5}

N j , (7.29)

where N j
=
∑
µ

∑
ω∈{−1,1}bjc C

ωj
µ Nωj

µ for each j with |Cωjµ | ≤ Cµ/µ!. The nonlinear-
ities are

(Nω2
µ (f, g))n0 =

∑
n1+n2+m1+···+mµ=n0

82
µ · e

i(1n1+1n2−1n0 )(f ω1)n1(g
ω2)n2

µ∏
i=1

umi

mi
,

(Nω3
µ (f, g))n0 =

∑
n1+n2+n3+m1+···+mµ=n0

83
µ · e

−i1n0

3∏
l=1

(wωl )nl

µ∏
i=1

umi

mi
,

(Nωj
µ )n0 =

∑
n1+···+nbjc+m1+···+mµ=n0

8jµ · e
−i1n0

bjc∏
l=1

(υωl )nl

µ∏
i=1

umi

mi

for n0 > 0 and j ∈ {3.5, 4, 4.5}. Here 8jµ = 8
j
µ(n1, . . . , nbjc, m1, . . . , mµ), and these

factors (and the corresponding terms they come from) satisfy the requirements in parts
(i), (iii), (iv), (v) of Proposition 7.1 for j = 2, 3.5, 4, 4.5, respectively.

Finally, when j = 3 and we only consider the case where 83
µ 6= 0, we have one

of the following: (a) either three of the four variables (−n0, n1, n2, n3) are related by
m (in which case we are allowed to have υ instead of w), or no two of them add up
to zero, and |83

µ| . 1; (b) up to some permutation, n1 + n2 = 0 6= n0 − n3 and
|83

µ| . min{1, (〈n0〉 + 〈n3〉)/〈n1〉}; (c) up to some permutation, n0 = n1, and either
n2 + n3 6= 0 and |83

µ| . 1, or n2 = −n3 and |83
µ| . min{〈n0〉, 〈n2〉}/max{〈n0〉, 〈n2〉}.

Proof. In the nonlinearity in Proposition 7.1, we will call any contribution a “manageable
error” if it can be included in J j with j ∈ {2, 3.5, 4, 4.5}, or it belongs to J 3 with
n0 = n1 = n and −n2 = n3 = k as in part (vi) of Proposition 7.1, with the φ factor
satisfying (7.9). Now we collect the terms in J 3 where n0 = n1, n2 + n3 = 0, 〈n2〉 �

(µ + 3)−12
〈n1〉, as well as the terms corresponding to other permutations. The sum of

these terms can be written as

i · wn0

∑
0<k�n0

|wk|
2
∑
µ≥0

Cµ
∑

m1+···+mµ=0

0 ·

µ∏
i=1

umi

mi
, (7.30)

where 0 is a certain function of n0, k and mi satisfying (7.10). Now, up to manageable
errors, we can assume that 0 depends only on n0 (effectively we replace k andmi by zero
in the expression of 0); then the right hand side of (7.30) will be exactly iδn0wn0 , where

δn0 = (Ln0(F ))0 ·
∑

0<k�n0

|wk|
2, (7.31)
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where (·)0 means the projection onto zero frequency, and Ln0 is some holomorphic func-
tion depending on n0, and F is the mean-zero antiderivative of u as before. Now we can
define the δn and1n factors accordingly and make the substitution, thus getting rid of the
term in (7.30). The terms J j with j 6= 3 are transformed into N j without any change;
for the remaining terms in J 3, we can see by an easy enumeration that the coefficient83

µ

will meet our requirements.
Now, to compute the function Ln0 in (7.31), we need to track every part of the J 3 term

as enumerated in Sections 5 and 6, and in the proof of Proposition 7.1 (also we disregard
those satisfying (7.9) since they will be manageable errors). For each of them we perform
the reduction above and obtain a corresponding contribution to Ln0 . It turns out that the
computations here are very similar to those in Section 6 (although we will have slightly
different terms), and each single contribution to Ln0 will be of the form

exp
(

iθ2F

2

)
·

∑
µ

1
(µ+ 2)!

(
−

iF
2

)µ
·

(
E +

n0η

N
F
)

similar to those appearing in Section 6, where θ = ψ(n0/N), η = ψ ′(n0/N), E and F are
simple expressions involving a power of θ , similar to the C and D expressions appearing
in Section 6.

Note that the above computations are completely algebraic; in the end we add up all
contributions to find that Ln0(F ) is actually a constant (depending on n0), namely

Ln0(F ) =
1
2
θ4
+

2n0

N
θ3η.

Finally in (7.31), the sum corresponding to k ∼ n is a manageable error, thus we get
(7.28). ut

Remark 7.4. In fact, all we need for the estimates below is that δn grows (in some ap-
propriate sense) at most logarithmically in n, and that it is real-valued. The first property
does not require any computation and follows immediately from the boundedness of the
coefficients involved in J 3, while the second property is also heuristically clear due to
conservation of mass (and Gibbs measure).

8. The a priori estimate I: The general setting

In this section we state our main estimate that works for a single solution. Its proof will
occupy Sections 9–11. There will be another version concerning the difference of two
solutions, which will be stated and proved in Section 12.

8.1. The bootstrap

Let us fix a smooth solution u, defined on R×T, to the equation (1.6), with the parameter
1� N ≤ ∞. In what follows we will assumeN <∞, since the caseN = ∞will follow
from a similar (and simpler) argument. The main estimate can then be stated as follows.
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Proposition 8.1. There exists an absolute constant C such that the following holds. Sup-
pose ‖u(0)‖Z1 ≤ A for some large A. Then within a short time T = C−1e−CA, for
the functions v and w defined in Section 5, and the functions u∗, v∗ and w∗ defined in
Section 7, we have

‖w∗‖Y T1
+ ‖v∗‖Y T2

+ ‖u∗‖Y T2
≤ CeCA, (8.1)

‖〈∂x〉
−s3
u‖(X2∩X3∩X4)T

≤ CA. (8.2)

Here the space X2 ∩X3 ∩X4 is normed by ‖ · ‖X2 +‖ · ‖X3‖+ ‖ · ‖X4 , for which we can
easily show that Proposition 3.6 still holds.

Remark 8.2. The constant C will depend on the constants in the inequalities in earlier
sections, such as Propositions 3.6 and 7.3. To make this clear, we will now use C0 to
denote any (large) constant that can be bounded by the constants appearing in those in-
equalities.

In the proof of Proposition 8.1 we will use a bootstrap argument. The starting point is

Proposition 8.3. The estimates (8.1) and (8.2) are true, with C replaced by C0, when
T > 0 is sufficiently small.

Proof. Noting that u∗(0) = u(0) and the same holds for v∗ and w∗, and also w(0) =
P+v(0), by invoking Proposition 3.6, we only need to prove that ‖u(0)‖Z1 ≤ C0A and
‖v(0)‖Z1 ≤ C0e

C0A. The first inequality follows from our assumption, so we only need
to prove that ‖Mu‖Z1 . C0e

C0‖u‖Z1 . By the definition of M , we only need to prove that

‖Pµu‖Z1 ≤ C
µ
0 ‖u‖

µ+1
Z1

(8.3)

for all µ. Now we clearly have

|(Pµu)n0 | .
∑
n1

|un1 | · |zn0−n1 |, (8.4)

where

zm =
∑

m1+···+mµ=m

µ∏
i=1

|umi |

〈mi〉
. (8.5)

Since when m = m1µ we have 〈m〉 ≤ Cµ0 〈m1〉 · · · 〈mµ〉, we conclude that

∑
m

〈m〉1/4|zm| . C
µ
0

µ∏
i=1

∑
mi

|umi |

〈mi〉3/4
. (C0‖u‖Z1)

µ, (8.6)

where the last inequality follows from∑
m

|um|

〈m〉3/4
.
∑
d

2−3d/4
∑
m∼2d
|um| .

∑
d

2(−3/4+1−1/p−r)d
‖〈m〉rum‖lp

m∼2d

.
∑
d

2−d/4‖u‖Z1 . ‖u‖Z1 .
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Now using (8.6), we will be able to prove (8.3) once we can prove

‖(un+m)n∈Z‖Z1 . 〈m〉1/4‖u‖Z1 . (8.7)

To prove this, by definition we need to control ‖〈n〉run+m‖lp
n∼2d

for each d . If m � 2d

this is easy, since we then have n + m ∼ 2d and also 〈n〉r . 〈m〉1/4〈n + m〉r . Now if
m ∼ 2d

′

& 2d , we can use 〈n〉r . 〈m〉1/8〈n+m〉r and

‖〈n+m〉run+m‖lp
n∼2d

. ‖〈n〉run‖lp
n.2d′

. (d ′ + 1)‖u‖Z1 . 〈m〉1/8‖u‖Z1 (8.8)

to complete the proof. ut

Starting from Proposition 8.3 and with the help of Proposition 3.6, it is easily seen that
we only need to prove

Proposition 8.4. Suppose Cj is large enough depending on Cj−1 for 1 ≤ j ≤ 2, and
0 < T ≤ C−1

2 e−C2A. If the inequalities

‖w∗‖Y T1
+ ‖v∗‖Y T2

+ ‖u∗‖Y T2
≤ C1e

C1A, (8.9)

‖〈∂x〉
−s3
u‖(X2∩X3∩X4)T

≤ C1A (8.10)

hold, then they must hold with C1 replaced by C0.

The rest of this section, as well as Sections 9 and 10, is devoted to the proof of the estimate
for w∗ in Proposition 8.4; in Section 11 we consider the other three functions. During the
whole proof, the inequalities (8.9) and (8.10) will be assumed.

8.2. The extensions

By the definition of Y Tj norms, we have globally defined functions u′′, v′′, w′′ and u′′′

which agree with u∗, v∗, w∗ and u respectively on [−T , T ], and satisfy the inequalities
(8.9) and (8.10) with the superscript T in the norms removed. By inserting a time cutoff
χ(t), we may assume that they are all supported in |t | ≤ 1. We then define the factors
δn and 1n for all time as in (7.27) and (7.28), with w∗ and u replaced by w′′ and u′′′

respectively. We may also define functions u′ by (u′)n = ei1n(u′′)n; the functions v′ and
w′ are defined similarly.

Now we could interpret the bilinear form N 2 and terms N j on the right hand side of
(7.29), by replacing each u with u′′′, each w with w′, each υ with υ ′ (note υ is either u
or v), each δn and 1n with what we defined above. If we then choose some 0 < T ≤ T
and define the function z by z(t) = w′′(t) for t ∈ [−T , T ] and (∂t − i∂xx)z(t) = 0
on both (−∞,−T ] and [T ,+∞), then we can check that this function z satisfies the
equation

(∂t − i∂xx)z = 1[−T ,T ](t)N 2(z, z)+ 1[−T ,T ](t)
∑

j∈{3,3.5,4,4.5}

N j , (8.11)
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with initial data z(0) = w(0). Using the time cutoff χ(t), we can define y(t) = χ(t)z(t).
From (8.11) we conclude that

y = χ(t)eit∂xxw(0)+ E(1[−T ,T ] ·N 2(y, y))+
∑

j∈{3,3.5,4,4.5}

E(1[−T ,T ] ·N j ). (8.12)

Since w′′ is smooth on [−T , T ], we conclude that T 7→ y is a continuous map from
(0, T ] to Y1; also it is clear that when T is sufficiently small we have ‖y‖Y1 ≤ C0e

C0A.
Thus in order to prove the estimate for w∗, we only need to prove

Proposition 8.5. Suppose y ∈ Y1 is a function satisfying (8.12) with 0<T ≤C−1
2 e−C2A,

and ‖y‖Y1 ≤ C1e
C1A. Then ‖y‖Y1 ≤ C0e

C0A.

In what follows, we will use T instead of T for simplicity; note that T ≤ C−1
2 e−C2A.

Before proceeding, let us prove a few results concerning the exponential factors e±i1n(t).
The first lemma is a general feature.

Lemma 8.6. Suppose hj = hj (t), j ∈ {0, 1}, are two functions of t , and define Jj (t) =
χ(t)eiHj (t), where Hj (t) =

∫ t
0 hj (t

′) dt ′. Then

‖〈ξ〉(J1 − J0)
∧(ξ)‖Lk . ‖(h1 − h0)

∧
‖L1(1+ ‖ĥ1‖L1 + ‖ĥ0‖L1)

2 (8.13)

for all 1 ≤ k ≤ ∞.

Proof. Recall from Section 3 that χ = χ(t) is some time cutoff that may vary from place
to place. Thanks to this factor, we only need to prove (8.13) for k = 1. Next, noticing that

J1 − J0 = iχ · (H1 −H0)

∫ 1

0
ei(θH1+(1−θ)H0) dθ, (8.14)

we only need to prove (8.13) for a fixed θ . Let h = h1 − h2 and hθ = θh1 + (1− θ)h0,
let H,Hθ be defined accordingly, and define χ ·HeiHθ = 8. Then

∂x8 = (χ
′
·H + χ · h+ iχ ·Hhθ )eiHθ , (8.15)

which implies

‖〈ξ〉8̂(ξ)‖L1 . ‖8̂‖L1 + ‖∂̂x8‖L1

. ‖(χ · eiHθ )∧‖L1 · (‖χ̂h‖L1 + ‖χ̂H‖L1 + ‖χ̂H‖L1‖χ̂hθ‖L1)

. ‖χ · eiHθ ‖H 1 · (‖ĥ‖L1 + ‖χH‖H 1 + ‖χH‖H 1(‖ĥ1‖L1 + ‖ĥ0‖L1))

. ‖ĥ‖L1(1+ ‖ĥ0‖L1 + ‖ĥ1‖L1)
2,

where H 1 is the standard Sobolev norm. ut

Proposition 8.7. We have

‖δ̂n‖L1 ≤ C0C1e
C0C1A log(2+ |n|), (8.16)

‖(δn+1 − δn)
∧
‖L1 ≤ C0C1e

C0C1A〈n〉−1/2. (8.17)
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Proof. Recall from Proposition 7.3 that

δn = C(n) ·

n∑
k=0

|(w′′)k|
2, (8.18)

where clearly |C(n)| . 1 and |C(n + 1) − C(n)| . 〈n〉−1. Now, using the fact that
‖f̂g‖L1 ≤ ‖f̂ ‖L1‖ĝ‖L1 , we obtain

‖δ̂n‖L1 .
∑
k.〈n〉

‖(̂w′′)k‖L1‖
̂
(w′′)−k‖L1

. ‖w′′‖l2
k.〈n〉L

1‖w′′‖l2
k.〈n〉L

1 . C0C1e
C0C1A log(2+ |n|). (8.19)

Here we have used the fact that

‖w′′‖l2
k.〈n〉L

1 . log(2+ |n|) · ‖w′′‖l∞
d≥0l

2
k∼2d

L1 . log(2+ |n|)‖w′′‖X2 , (8.20)

and the same estimate for w′′.
The estimate for the difference is proved in the same way, by using the inequality

|C(n + 1) − C(n)| . 〈n〉−1. In fact, we get a power 〈n〉−1 log(2 + |n|), which is better
than 〈n〉−1/2. ut

Remark 8.8. Note that all our norms are invariant under complex conjugation. Occa-
sionally we will make restrictions such as nl > 0 which breaks this symmetry, but such
information is only used in controlling the weights and the nonresonance factors, thus in
terms of norm estimates for a single function, we will basically vieww and w as the same
function.

Proposition 8.9. For any function h, let h′ be defined by (h′)n = χ(t)e±i1nhn for each
fixed time. Then

‖〈∂x〉
−s3
h′‖Xj ≤ OC1(1)e

C0C1A‖h‖Xj (8.21)

for 1 ≤ j ≤ 7.

Proof. Apart from X3, all the other norms we are considering are (some Besov versions
of) ‖〈n〉σ 〈ξ〉βu‖lkLh or ‖〈n〉σ 〈ξ〉βu‖Lhlk with β < 1, and in the latter case we have
σ = β = 0. Since the map h 7→ h′ commutes with P projections, we only need to
consider these kinds of norms. Notice that on the ũ side, this map is just a convolution
with the Fourier transform of χ(t)e±i1n(t) for each ũn. Thus to prove the result for the
lkLh norm, we only need to prove that convolution with this function is bounded with
respect to the weighted norm ‖〈ξ〉β ·‖Lh byOC1(1)e

C0C1A〈n〉s
3
. An elementary argument

show that this bound does not exceed the norm

‖〈ξ〉(χ(t)e±i1n(t))∧(ξ)‖L1 ,

which is bounded by C0C
3
1e
C0C1A(log(2 + |n|))3, thanks to Lemma 8.6 and Proposi-

tion 8.7.
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Now let us consider the Lhlk norm and the X3 norm. Let In(ξ) be the Fourier trans-
form of χ(t)e±i1n(t). Then we conclude that

‖〈n〉−s
3
(h′)n,ξ‖Lhlk .

∫
R
‖〈n〉−s

3
hn,ξ−ηIn(η)‖Lhlk dη

.
∫
R

sup
n
〈n〉−s

3
|In(η)| · ‖h‖Lhlk dη; (8.22)

note the same argument also works for X3. Therefore we need to bound the expression∫
R

sup
n
〈n〉−s

3
|In(ξ)| dξ

by OC1(1)e
C0C1A. By performing a dyadic summation in n, we only need to bound∫

R
max
n∼2d
|In(ξ)| dξ (8.23)

by OC1(1)e
C0C1A(d + 2)O(1). Now suppose |ξ | . 210d . Then we simply use Proposition

8.7 as well as the L∞ estimate of Lemma 8.6 to bound this contribution byOC1(1)e
C0C1A

times (d + 2)O(1)
∫
|ξ |.220d 〈ξ〉

−1 dξ = (d + 2)O(1). If |ξ | � 210d , we may replace the

“maximum” in this expression by summation (during which we lose a power 2d ), then
use the L1 estimate of Lemma 8.6 and the largeness of ξ to gain a power 210d . Thus in
any case we obtain the desired estimate. ut

9. The a priori estimate II: Quadratic and cubic terms

We now begin the proof of Proposition 8.5, the starting point being (8.12). The linear
term is clearly bounded in Y1 by C0e

C0A, so we only need to bound the N j terms. There
will be a large number of cases, and they are ordered according to the difficulty level. In
this section we will be able to treat every term except N 3.5.

Proposition 9.1. For each j ∈ {2, 3, 3.5, 4, 4.5}, define

Mj
= E(1[−T ,T ]N j ), (9.1)

where we may write N 2 or N 2(y, y) depending on the context. Then

‖M2
‖X4 ≤ OC1(1)e

C0C1AT 0+, (9.2)∑
j∈{3,3.5,4,4.5}

‖〈n〉−1/20
〈ξ〉κ(Mj )n,ξ‖l2L2 ≤ OC1(1)e

C0C1AT 0+. (9.3)

Remark 9.2. Since

‖〈n〉−1
〈ξ〉κu‖lγL2 ≤ C0‖〈n〉

−1/20
〈ξ〉κu‖l2L2 (9.4)

by Hölder, the inequalities (9.2) and (9.3) will imply ‖y‖X4 ≤ C0e
C0A, due to the restric-

tion T ≤ C−1
2 e−C2A.
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Proof of Proposition 9.1. In this proof, as well as the following ones, we will use the .
and & symbols, with the convention that all the implicit constants are ≤ OC1(1)e

C0C1A.
Note that in the estimate for any possible multilinear term, the total number of appear-
ances of all functions other than u′′′ is bounded by 10, thus as long as we only use the
norm ‖〈∂x〉−s

3
u′′′‖X2∩X3∩X4 (which is bounded by C1A) for the function u′′′, the implicit

constants will be bounded by

(OC1(1)e
C0C1A)C0

∑
µ

C
µ
0
µ!
(C0C1A)

µ
≤ OC1(1)e

C0C1A (9.5)

and are thus under control. We also need to be careful with the sharp cutoff 1[−T ,T ].
Denote by φξ = (eiT ξ

− e−iT ξ )/(iξ) the Fourier transform of 1[−T ,T ]; note that |φξ | .
min(T , 1/(〈ξ〉)), and ‖φ‖L1+({|ξ |≥K}) . T 0+

〈K〉0−.
First let us prove ‖M2

‖X4 . T 0+. As above, we may fix µ ≥ 0 and ω ∈ {−1, 1}2

(though we will not add any sub- or superscript for simplicity). Choose a function g such
that ‖g‖X′4 ≤ 1 and define f = E ′g. Also define f ′ by (f ′)n = ei1nfn and y′ similarly;
these notations will be standard throughout the proof. Since f has compact time support,
we may insert χ(t) in the definition of f ′, so that we can use the arguments in the proof
of Proposition 8.9. The same comment applies for later discussions.

From the bound ‖g‖X′4 ≤ 1 we see by Proposition 3.4 that ‖〈n0〉〈α0〉
1−κfn0,α0‖lγ

′
L2

. 1, which then implies, thanks to (Hölder and) an argument similar to the proof of
Proposition 8.9, that

‖〈n0〉
1−O(s2.5)

〈α0〉
1−κ(f ′)n0,α0‖l2L2 . 1. (9.6)

Using Plancherel, we now only need to bound the expression

S =
∑
n0

∫
R
fn0,α0 · (1[−T ,T ]N

2)n0,α0 dα0

=

∑
n0=n1+n2+m1+···+mµ

∫
R
82
· fn0,α0

×

(
1[−T ,T ]ei(1n1+1n2−1n0 )

2∏
l=1

(yωl )nl

µ∏
i=1

(u′′′)mi

mi

)∧
(α0 − |n0|n0) dα0

=

∑
n0=n1+n2+m1+···+mµ

∫
R
82
· (f ′)n0,α0

×

(
1[−T ,T ]

2∏
l=1

((y′)ωl )nl

µ∏
i=1

(u′′′)mi

mi

)∧
(α0 − |n0|n0) dα0

=

∑
n0=n1+n2+···+mµ

∫
(T )

82
· (f ′)n0,α0

2∏
l=1

((y′)ωl )nl ,αl · φα3

µ∏
i=1

(u′′′)mi ,βi

mi
.

Here (T ) indicates integration over the set

{(α0, . . . , α3, β1, . . . , βµ) : α0 = α13 + β1µ +4},
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which is a hyperplane in Rµ+4 (recall the notation α13 = α1 + α2 + α3), with respect to
the standard measure

3∏
l=1

dαl ·

µ∏
i=1

dβi,

with the non-resonance (NR) factor

4 = |n0|n0 −

2∑
l=1

|nl |nl −

µ∑
i=1

|mi |mi . (9.7)

Note that we are using the convention that un,α stands for ũn,α; also we may always
restrict to n0 > 0.

Noticing that the m variables are all� min0≤l≤2〈nl〉 (again here we may have harm-
less polynomial factors in µ), we can check from (9.7) that

|4| ∼ min
0≤l≤2
〈nl〉 · max

0≤l≤2
〈nl〉. (9.8)

We will first take the summation-integration over the set where
∑2
l=0〈nl〉 ∼ 2d , and then

sum over d . In this case, at least one of the α and β variables must be & 2d . Now, with
a loss of 2O(s

2.5)d , we can replace the 1 − O(s2.5) exponent in (9.6) by 1. Also noticing
that |82

| . 〈n0〉, we may further (upon taking absolute values) remove this 8 factor and
the 〈n〉 factor in (9.6) simultaneously.

With these reductions, we then proceed to the estimate of S. First assume 〈α0〉 & 2d ;
thus we gain from the bound (9.6) a power 2(1−κ)d , while after exploiting this, we still
have (for the function f ′∗ obtained from extracting from f ′ the 〈α0〉 factor) ‖f ′∗‖l2L2

. 1. In the same way, we can use theX1 andX4 bounds for y to deduce some bound for y′

(see Proposition 8.9), and strengthen the bound to ‖〈nl〉s
2
〈αl〉

1/2+s2
(y′)nl ,αl‖l2L2 . 1 at

a price of at most 2O(1/2−b)d .
We then fix all the m and β variables to get a sub-summation-integration that is

bounded by (with C being irrelevant constants)

Ssub .
∑

n0=n1+n2+C

∫
α̃0=α̃1+α̃2+α̃3+C

|(f ′)n0,α̃0 | |φ0,α̃3 | ·

2∏
l=1

|((y′)ωl )nl ,α̃l |

.
∥∥|f̂ ′| ∗ |(̂y′)ω1 | ∗ |(̂y′)ω2 | ∗ |φ̂|

∥∥
l∞L∞

. ‖f ′‖l2L2‖N(y′)ω1‖L6+L6+‖N(y′)ω2‖L3L3‖φ̂‖l1+L1+ , (9.9)

where α̃l = αl − |nl |nl , and φ is viewed as a function of (t, x) that is supported at n = 0
(so that α̃3 = α3); also recall the N notation defined in Section 2.1. The right hand side
will be bounded by T 0+ by our (reduced) assumptions and Strichartz estimates, provided
we choose 6+ to be 6+ cs2 with some small c, and choose 1+ accordingly.

Now we sum overmi and integrate βi , exploiting the bound ‖〈mi〉−1u′′′‖l1L1 ≤ C1A,
to bound the whole summation-integration for a single d; taking into account the gains
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and losses from the reductions made before and exploiting (1.3), we conclude that the
part of S considered above is bounded by T 0+2(0−)d , which allows us to sum over d.

Next, assume that 〈α1〉 & 2d (the case for α2 will follow by symmetry). In this case
we do not gain from the bound (9.6), so that we still have ‖〈ξ〉1−κf ′‖l2L2 . 1, which, via
Strichartz, allows us to control ‖Nf ′‖L2+L2+ , where 2+ is some 2 + c(1 − κ). Instead,
we gain from the bound

‖〈n1〉
s2
〈α1〉

1/2+s2
(y′)n1,α1‖l2L2 . 1

as above (with a loss of 2O(1/2−b)d ) and change the exponent 〈α1〉
1/2+s2

to 〈α1〉
1/2−c(1−κ)

to gain the power 2c(1−κ)d , and the reduced bound will allow us to control Ny′ (in the
form of N(y′)ω1 ) in L6−L6− with 6− here being 6− c(1− κ). Choosing the constants c
appropriately, we can then proceed as in (9.9), with the f ′ factor estimated in L2+L2+,
two y′ factors estimated in L6−L6− and L3L3 respectively and the φ factor in l1+L1+,
to get the desired bound. In the same spirit, if 〈α3〉 & 2d , we will use the L2+L2+ bound
for Nf ′ (with 2+ being 2+ c(1− κ)), L6+L6+ and L3L3 bound for Ny′ (with 6+ being
6+ cs2) and l1+L1+ bound for φ (with 1+ being 1+ c(1− κ); note that we gain a power
2c(1−κ)d here due to the largeness of α3) to conclude. Again we gain at least 2c(1−κ)d and
lose at most 2O(1/2−b)d so we have enough room for summation in d .

Next, assume that 〈βi〉 & 2d for some i. If for this i we also have 〈mi〉 & 2d/30, then
we would bound |mi |−1 . 2−d/90

〈mi〉
−2/3 to gain a power of 2cd and proceed as above,

since we still have

‖〈mi〉
−2/3(u′′′)mi ,βi‖l1L1 . ‖〈∂x〉

−s3
u′′′‖X2 ≤ C0C1A, (9.10)

which allows us to sum over mi and integrate over βi . If instead 〈mi〉 . 2d/30, we could
use the X4 bound of 〈∂x〉−s

3
u′′′ and Proposition 8.9 to bound

‖〈mi〉
−3/2
〈βi〉

9/10(y′)mi ,βi‖l2L2 . 1,

and exploit the largeness of βi to gain a power 2d/20 and reduce the above bound to

‖〈mi〉
2
〈βi〉

3/5(y′)mi ,βi‖l2L2 . 1,

which would imply ‖y′‖l1L1 . 1 so that we can still apply the argument above, sum
over mi and integrate over βi . This concludes the proof of (9.2).

Now let us prove (9.3). Let g, f and f ′ be as before, but with the new bound

‖〈n0〉
1/30
〈α0〉

1−κf ′‖l2L2 . 1.

Note that the estimate for f ′ is again easily deduced from the estimate for g and the same
type of argument as in the proof of Propositions 3.3 and 8.9. To bound M3 and M3.5, we
need to bound

S =
∑

n0=n1+n2+n3+···+mµ

∫
(T )

8j · (f ′)n0,α0

× ((w′)ω1)n1,α1

3∏
l=2

(zl)nl ,αl · φα4

µ∏
i=1

(u′′′)mi ,βi

mi
, (9.11)
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with (T ) indicating integration over the set

{(α0, . . . , α4, β1, . . . , βµ) : α0 = α14 + β1µ +4}, (9.12)

with respect to the standard measure, with the NR factor

4 = |n0|n0 −

3∑
l=1

|nl |nl −

µ∑
i=1

|mi |mi . (9.13)

Here zl or zl equals u′, v′ or w′ for each l. Again we assume
∑3
l=0〈nl〉 ∼ 2d . By losing

at most 2O(ε)d , we may assume that w′ satisfies the same bound as y′ before, and Nzl is
bounded in X4 and L6L6. Also note that |8j | . 1 in any situation.

If 〈n0〉+〈α0〉 & 2d/90, we may gain a power 2c(1−κ)d (note our loss is at most 2O(ε)d )
from the bound of f ′, and reduce this bound to ‖f ′‖l2L2 . 1. Then we can first fix the
mi and βi variables and obtain the Ssub, estimate in the same was as in (9.9), then sum
over mi and integrate over βi . The only difference with (9.9) is that now Ssub contains
five functions instead of four; however, here we may estimate the f ′ factor in L2L2, the
Nw′ factor in L6+L6+ with 6+ being 6 + cs2, the Nzl factors in L6L6 and the φ factor
in l1+L1+ so that we can still close the argument.

If 〈α1〉 & 2d/90, we may perform the same reduction as in the estimate of ‖M2
‖X4

before, gain a power of 2c(1−κ)d and use Strichartz and the reduced bound to control
‖Nw′‖L6−L6− , where 6− is 6− c(1− κ). We may now control Nf ′ in L2+L2+ with the
2+ being 2+ c(1− κ), then control Nzl in L6L6 and φ in some l1+L1+. The exponents
will match if we choose the constants c appropriately.

If 〈α2〉 & 2d/4 (the α3 case being identical), we have two possibilities. If j = 3 then
z2 is also taken from {w′, w′} so that we are in the same situation as above. If j = 3.5
then either 〈n2〉 & 2d/89 and we gain a power 2cd from the 8 factor thanks to (7.8) and
the assumption that 〈n0〉 � 2d/90, or 〈n2〉 . 2d/89 and we can exploit theX4 bound of zl ,
gain a power 2cd , and use the reduced estimate to bound ‖Nz2

‖L6L6 (again, as we already
did in the X4 estimate before). In any case we gain a power 2c(1−κ)d , lose at most 2O(ε)d ,
and can control the reduced Ssub expression.

If 〈α4〉 & 2d/90, we can again control Nf ′ in L2+L2+ with the 2+ being 2+c(1−κ),
then control the Nw′ in L6+L6+ (with 6+ being 6 + cs2), Nzl factors in L6L6 and φ
in l1+L1+ with 1+ being 1 + c(1 − κ), with c chosen appropriately. Note that since
α4 is large, we will gain a power 2c(1−κ)d from the l1+L1+ bound of φ. Moreover, if
〈mi〉 & 2d/90 for some i, we can repeat the argument made before to gain a (small)
2cd power from this factor alone while keeping the ability to sum over mi and integrate
over βi , and reduce to the above cases. Similarly, if 〈βi〉 & 2d/10, we can also gain this
2cd power by using the bound for ‖〈∂x〉−s

3
u′′′‖X4 .

Finally, if none of the above holds, we must have 〈n0〉 � 2d/90 and |4| � 2d/4. We
may also assume 〈mi〉 � 2d/90 or we are reduced to one of the cases above. Thus from
(9.13) we deduce ∣∣|n1|n1 + |n2|n2 + |n3|n3

∣∣� 2d/4. (9.14)
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Note that we may assume j = 3, since when j = 3.5, one of 〈n2〉 and 〈n3〉 must be & 2d

and we gain a power 2cd from the weight 8 so that we can proceed as above. Now if the
minimum of 〈nl〉 for 1 ≤ l ≤ 3 is at least & 2d/9, then we will be in the same situation
as in (9.7) and the expression in (9.14) has to be & 2d . Therefore we may further assume
〈n3〉 � 2d/9, and it will be clear that the NR factor can be small only if n1 + n2 = 0.
However, in this case we gain from the factor8 a positive power 2cd , due to parts (b) and
(c) in the requirements for N 3 in Proposition 7.3. This allows us to complete the estimate
in the same way as above.

Notice that in estimating M3 above, we have ignored the term where three of
(−n0, n1, n2, n3) are related by m and we are allowed to have υ instead of w (in the
discussion here, they will be υ ′ and w′ respectively). To handle this term, simply fix the
m and β variables and bound the8 factor by 1 (we may assume 〈mi〉 � 2d/90 or we gain
a power 2cd and can proceed as above). We can bound the resulting Ssub (note that we are
restricting to nl = cl ± n0 ∼ 2d )

Ssub .
∑
n0

∫
α0=α1+···+α4+c4(n0)

|(f ′)n0,α0 | ·

3∏
l=1

|(zl)cl±n0,αl | · |φα4 |

. T 0+
∑
n0

‖(̂f ′)n0‖L2

3∏
l=1

‖ ̂(zl)cl±n0‖L1 . T 0+
‖f ′‖l4

∼2d
L2

3∏
l=1

‖zl‖l4
∼2d

L1 . T 0+2−cd ,

where cj are constants (or functions of n0). Thus this term is also acceptable.
Now let us bound M4 and M4.5. The quantity we need to control is now

S =
∑

n0=n1+···+n4+···+mµ

∫
(T )

8j · (f ′)n0,α0

4∏
l=1

(zl)nl ,αl · φα5

µ∏
i=1

(u′′′)mi ,βi

mi
, (9.15)

with (T ) indicating integration over the set

{(α0, . . . , α5, β1, . . . , βµ) : α0 = α15 + β1µ +4}, (9.16)

with respect to the standard measure, with the NR factor

4 = |n0|n0 −

4∑
l=1

|nl |nl −

µ∑
i=1

|mi |mi . (9.17)

Here zl or zl equals u′, v′ or w′ for each l. We assume the maximum of the n variables
is ∼ 2d , and with a loss of at most 2O(ε)d , we may assume that Nw′ satisfies the same
estimate as before, and Nυ ′ is bounded inX4 and L6L6 (again, it is the modified versions
of w′ and υ ′ that satisfy the estimates).

If j = 4 we may assume (up to a permutation) that |8| . 2−d/90
〈n3〉

−2/3. Due to
the presence of the 〈n3〉

−2/3 factor, we may also fix n3 and α3 when we fix the mi and βi
variables. Once these variables are fixed, we only need to control the resulting Ssub. But
since we gain a power 2d/90 from the 8 factor, the estimate for Ssub will be easy; we
simply bound Nf ′ in L2+L2+, bound Nzl in L6L6 for l ∈ {1, 2, 4}, and bound φ in
l1+L1+. This proves (9.3) for j = 4.
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If j = 4.5, then all the mi variables, as well as n3 and n4, are � 2d/10. This in
particular implies that either 〈n0〉 & 2d/10 so that we gain from the 〈n0〉

1/30 factor in the
bound for f ′, or the NR factor has |4| & 2d (note that n1 + n2 6= 0) so we can gain
from one of the α or β variables. Note that |8| . (〈n3〉 + 〈n4〉)

−1, thus when we fix the
mi and βi variables, we always have the choice of also fixing (n3, α3) or (n4, α4). This
means that though the Ssub expression seems to involve six factors, in practice we will
always use only five of them. The rest will be basically the same as before. If we gain at
least 2c(1−κ)d from n0, α0, α3 (or similarly α4) or some βi , then we will fix (and then sum
and integrate over) (mj , βj ) and (n3, α3) to produce Ssub, then control Nf ′ in L2+L2+,
Nzl (l ∈ {1, 2, 4}) in L6L6, φ in l1+L1+ with 2+ being 2 + c(1 − κ) and 1+ defined
accordingly. If we gain from αl for l ∈ {1, 2} (say l = 1), we will again fix (mj , βj ) and
(n3, α3). To estimate Ssub, we control Nf ′ in L2+L2+ with 2+ being 2+ c(1− κ), Nz2

and Nz4 in L6L6, φ in l1+L1+, and Nz1 in L6−L6− with 6− being 6− c(1− κ). Here,
if 〈n1〉 & 2d/10, z1 will be either w′ or w′ so that we can get the L6−L6− bound from
the same arguments as before; otherwise 〈n1〉 . 2d/10, and we can use the X4 bound
for Nz1 to deduce the L6−L6− bound with a gain of 2cd . This concludes the proof of
Proposition 9.1. ut

Proposition 9.3. We have ∑
j∈{3,4,4.5}

∑
j ′∈{1,2,5,7}

‖Mj
‖Xj ′

. T 0+. (9.18)

Proof. Note that Mj involves a sum over the nl and mi variables. We shall first prove
the bound for the terms where j = 4, or j = 3 and n0 6∈ {n1, n2, n3}, or j = 4.5 and
n0 6∈ {n1, n2}. By (3.8), we only need to bound this part of Mj in X6.

Let the functions g and f , f ′ be as usual, with ‖g‖X′6 ≤ 1. This would imply

‖〈n0〉
−s−O(s3)

〈α0〉
1/2−O(s2)(f ′)n0,α0‖l2L2 . 1

(we have done this kind of reduction many times before). What we need to control is
the same quantity S with j ∈ {3, 4, 4.5} as in (9.11) and (9.15), and we assume the
maximal nl variable is ∼ 2d as usual. With a loss of 2O(ε)d , we may assume that w′ and
υ ′ satisfy the good bounds appearing in the proof of Proposition 9.1. Using Strichartz, we
can deduce from the bound for f ′ as above the L2L2

∩ L4L4 bound for Nf ′ with a loss
of 2O(s)d .

Now we will be able to bound the S expression in (9.15) easily. In fact, if we gain
from anything except α0, we can repeat the argument in the proof of (9.3), but with the
c(1 − κ) involved in various 2+ or 6− replaced by c (since we now have the L2+cL2+c

control for Nf ′), and check that in these cases we always gain a power 2cd , which will be
enough to cover the loss 2O(s)d . If we gain from α0, this gain will be 2cd , with a loss of at
most 2O(s)d , and we can bound the reduced Nf ′ factor in L2+cL2+c, so this contribution
will be acceptable. On the other hand, if we do not gain anything from any of the variables
or weights, it must be the case that j = 4.5 and |4| � 2d/4. Since all the m variables as
well as n3 and n4 are assumed to be� 2d/10, we then deduce that∣∣|n0|n0 − |n1|n1 − |n2|n2

∣∣� 2d/4.
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By repeating the argument in the proof of Proposition 9.1, we see that this can happen
only if n1 + n2 = 0, or n0 = n1, or n0 = n2; but all these possibilities contradict our
assumptions.

Next, assume j = 3. Recall that
∑3
l=0〈nl〉 ∼ 2d , and that the S we need to estimate

is bounded by

|S| .
∑

n0=n1+n2+n3+m1+···+mµ

∫
(T )

|(f ′)n0,α0 |

3∏
l=1

|((w′)ωl )nl ,αl | · |φα4 |

µ∏
i=1

∣∣∣∣ (u′′′)mi ,βimi

∣∣∣∣.
First assume that some of the α or β variables is at least 2d/90. Then, by the same argument
we made before (notice that the nl variables for 1 ≤ l ≤ 3 correspond to the function w′

or w′, which, up to a loss of 2O(s)d , satisfies the estimate ‖〈nl〉s
2
〈αl〉

1/2+s2
w′‖l2L2 . 1),

we can gain a power 2cd from the corresponding factor, then fix the mi and βi variables
(and sum and integrate over them afterwards), produce the Ssub term, and estimate it by
controlling Nf ′ in L2+L2+, N (w′)ωl in L6−L6− with 2+ and 6− being 2+ c and 6− c
respectively, and finally control φ in l1+L1+.

Now let us assume that all α and β variables are � 2d/90; we may assume that
all mi variables are � 2d/90 also. Thus, the variables (−n0, n1, n2, n3) will satisfy the
conditions in the following lemma.

Lemma 9.4. Suppose four numbers n0, . . . , n3 satisfy

n0 + n1 + n2 + n3 = K1, |n0|n0 + |n1|n1 + |n2|n2 + |n3|n3 = K2,

where Kj are constants such that

|K1| + |K2| � 2d/40, max
0≤l≤3
〈nl〉 ∼ 2d .

Then one of the following must hold:

(i) Up to some permutation, n0+n1 = n2+n3 = 0. In particular, this can happen only
if K1 = K2 = 0.

(ii) Up to some permutation, n0 + n1 = 0, 〈n0〉 ∼ 2d , and 〈n2〉 + 〈n3〉 � 2d/40. Note
that it is possible that (say) n1 + n2 = 0 and n0, n3 are small.

(iii) No two of nl add to zero. Under this restriction we must have 〈nl〉 & 20.9d for each l;
moreover, if we fix K1, K2 and any single nl , there will be at most . 2s

3d choices
for the quadruple (n0, n1, n2, n3).

Proof of Lemma 9.4. Suppose some 〈nl〉 is� 20.9d (say for l = 0); then one of 〈nl〉 for
1 ≤ l ≤ 3 must also be� 20.9d , since otherwise we would have∣∣|n1|n1 + |n2|n2 + |n3|n3

∣∣ & max
1≤l≤3
〈nl〉 · min

1≤l≤3
〈nl〉 & 21.9d

while |n0|
2 . 21.8d , which is impossible. Now assume that 〈n1〉 � 20.9d ; then in partic-

ular 〈n2 + n3〉 � 2d , thus n2n3 < 0 as well as |n2 − n3| ∼ 2d . Suppose n0 + n1 = k and
n2 + n3 = l; then |k + l| ≤ c2d/40 and

2d |l| ≤ 20.9d
〈k〉 + 2d/40.
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Now if l 6= 0, this inequality cannot hold, since it would require |k| � |l|, which implies
〈k〉 . 2d/40, so that the right hand side will be at most 2(0.9+1/40)d and the left hand side
is at least 2d (note that here we may assume that 2d is larger than some constant which
is polynomial in µ, since the summation for small values of 2d will be trivial). Therefore
we must have n2 + n3 = 0. If also n0 + n1 = 0, we will be in case (i); otherwise
k 6= 0, so that we always have

∣∣|n0|n0 + |n1|n1
∣∣ & |n0| + |n1|, which then implies that

〈n0〉 + 〈n1〉 � 2d/40 and we will be in case (ii).
Now assume that 〈nl〉 & 20.9d for each l. By the discussion above, we cannot have

any nh + nl = 0 (unless we are in case (i)), so we will be in case (iii). Finally, suppose
we fix K1, K2 and n0. The requirement nh + nl 6= 0 implies that each 〈nl〉 is & 20.9d , so
without loss of generality we may assume n0 > 0 > n1. Now n2 and n3 cannot have the
same sign since |K1| . 2d/40, thus we may assume n2 > 0 and n3 < 0. Therefore we
will have

n0 + n1 + n2 + n3 = K1, n2
0 − n

2
1 + n

2
2 − n

2
3 = K2,

which implies
(n2 + n1)(n2 + n3) =

1
2 (K

2
1 − 2K1n0 +K2).

By our assumptions, the right hand side is a nonzero constant whose absolute value does
not exceed 22d . The result now follows from the standard divisor estimate, since knowing
n2 + n1 and n2 + n3 will allow us to recover the whole quadruple. ut

Proceeding to the estimate of the M3 term, we can see that the only possibility is case
(iii) in Lemma 9.4 (since we have required n0 6∈ {n1, n2, n3}; also if n1 + n2 = 0 and
n0, n3 are small, we will gain a power 2cd from the weight8 so we can argue as above to
close the estimate). In this case we will use a completely different argument.

Recall that up to a loss of 2O(s
3)d we may assume that with small c,

‖〈n0〉
−s
〈α0〉

1/2−cf ′‖l2L2 . 1; (9.19)

also by invoking the X1 norm of w we obtain the estimate

‖〈nl〉
s
〈αl〉

1/2−cw′‖lpL2 . 1 (9.20)

with a loss of at most 2O(s
3)d . Since now 20.9d . nl . 2d , we may remove the 〈n0〉

−s

and 〈nl〉s factors in (9.19) and (9.20), and gain at least 21.7sd . Therefore, by fixingmi and
βi first, we will be able to get the desired result if we can prove that

Ssub =
∑

n0=n1+n2+n3+K1

∫
(T )

3∏
l=0

|(Al)nl ,αl | ·min{T , 1/〈α4〉}

. 2O(s
3)dT 0+

3∏
l=0

‖〈αl〉
1/2−cAl‖l2+cL2 , (9.21)

provided c is a small absolute constant, where the (T ) integral is taken over the set{
(α0, . . . , α4) : α0 = α14 + |n0|n0 −

3∑
l=1

|nl |nl +K2

}
, (9.22)
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and we restrict to the region where no two of (−n0, n1.n2, n3) add to zero,
∑
l〈nl〉 ∼ 2d ,

the NR factor satisfies
∣∣|n0|n0 −

∑3
l=1 |nl |nl

∣∣� 2d/40 and |K1| + |K2| � 2d/40.
We will use an interpolation argument to prove (9.21); in fact, it will suffice to prove

the estimate when we replace the parameter set (1/2 − c, 2 + c) with (2/5, 2) or (3, 4).
When we have (2/5, 2) we will be able to control NAl in L4+L4+ for each l, so that we
can control the α4 factor in l1+L1+, and invoke the argument used many times before to
conclude. When we have (3, 4), assuming the norm of each Al is one, we will get

‖〈α̃l + |nl |nl〉((A
l)nl )

∧(α̃l)‖L1 . ‖〈α̃l + |nl |nl〉
3((Al)nl )

∧(α̃l)‖L2 =: A
l
nl
,

with
‖Alnl‖l4 . ‖〈α̃l + |nl |nl〉

3Al‖l4L̃2 . 1. (9.23)

Therefore when we fix (n0, . . . , n3) and integrate over (α0, . . . , α4), we get

S ′sub . T 0+
∫
R4

〈
α̃0 −

3∑
l=1

α̃l −K2

〉−1+s3 3∏
l=0

〈α̃l + |nl |nl〉
−1

×

3∏
l=0

〈α̃l + |nl |nl〉|((A
l)nl )

∧(α̃l)| ·

4∏
l=1

dα̃l

. T 0+
〈
|n0|n0 −

3∑
l=1

|nl |nl +K2

〉−1+s3 3∏
l=0

Alnl .

We then sum this over (nl); by Hölder, we only need to bound the sum∑
(n0,...,n3)

〈
|n0|n0 −

3∑
l=1

|nl |nl +K2

〉−1+s4

(A0
n0
)4.

If we fix |n0|n0 −
∑3
l=1 |nl |nl = K3 with |K3| � 2d/40, the corresponding sum will be

. 2O(s
3)d , since each n0 appears at most this many times due to Lemma 9.4; also the sum

over K3 will contribute at most
∑
|K3|.2d/40〈K3 − K2〉

−1+s3
= 2O(s

3)d . This completes
the proof for M3.

What remains is when j ∈ {3, 4.5} and (say) n0 = n1. Note that the case when three
of nl are related by m will be treated at the end of the proof. In both cases we will use the
expressions (9.11) and (9.15), but with f ′ replaced by f , and (w′)ω1 replaced by (w′′)ω1

(if j = 3), z1 replaced by y1 (if j = 4.5). This is easily justified by definition and the
fact that n0 = n1. We will assume

∑
l≥2〈nl〉 ∼ 2d

′

, then fix d and d ′. Here we will use a
new bound for f . Recall from Proposition 3.4 that ‖g‖X′j . 1 for some j ∈ {1, 2, 5, 7}
implies ‖f ‖X′9 . 1, or equivalently

‖f ‖
Lq l

p′

∼2d
. 2rdTd , (9.24)

where Td is such that ∑
d≥0

Td . 1. (9.25)
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In the easier case j = 4.5, we will be able to fix mi and βi , then estimate Ssub by
(note we have all the restrictions made above, say 〈n0〉 ∼ 2d )

Ssub .
∑

n0, n2+n3+n4=c1

(〈n3〉 + 〈n4〉)
−1
∫
(T )

|fn0,α0 | |(y
1)n0,α1 |

4∏
l=2

|(zl)nl ,αl | · |φα5 |

. T 0+
∑

n0,n2+n3+n4=c1

(〈n3〉 + 〈n4〉)
−1
‖f̂n0‖Lq‖(̂y

1)n0‖L1

4∏
l=2

‖(̂zl)nl‖L1

. T 0+2rdTd · 2−rd · ‖z2
‖l3L1

4∏
l=3

‖〈nl〉
−1/2zl‖l6/5L1 . T 0+2−csd

′

Td , (9.26)

using (9.24) for f , the X2 bound for y1, and slightly weaker bounds for zl that follow
from Proposition 8.9. Here cj are constants, and the (T ) integral is taken over the set{

(α0, . . . , α5) : α0 = α15 −

4∑
l=2

|nl |nl + c2

}
. (9.27)

The reason we can gain 2csd
′

is that in (9.26) we can restrict some nl , where 2 ≤ l ≤ 4,
to be ∼ 2d

′

before using the corresponding control for zl (for example, when n2 ∼ 2d

we will have ‖z2
‖l3
n2∼2d′

L1 . 2−csd
′

). If we then sum over mi , integrate over βi , and sum

over d, d ′, we will get the desired estimate.
In the harder case j = 3, we will assume 〈mi〉+〈βi〉 � 2d

′/90. In fact, if this does not
hold, we will gain a power 2cd

′

from this term and estimate the Ssub as above, except that
we estimate (w′)ω2 and (w′)ω3 in l2L1 with a loss of 2O(s)d

′

to conclude (note in particular
we estimate f and (w′′)ω1 exactly as above, so we do not gain or lose any power of 2d ).
In the same way, we may assume 〈α4〉 � 2d

′/90 in (9.11). Now if n2 + n3 = 0, we must
have |8| . 2−|d−d

′
|. Also we may replace z2 and z3 in (9.11) with y2 and y3 (in the

same way we replace f ′ and (w′)ω1 with f and (w′′)ω1 ; note that we have not made any
restrictions on α2 and α3). Then we may fix mi and βi (here the m variables satisfy some
linear relation which we ignore) and bound

Ssub . 2−|d−d
′
|
∑
n0,n2

∫
α0=α1+···+α4+c2

|fn0,α0 |

× |((w′′)ω1)n0,α1 | · |(y
2)n2,α2 | · |(y

3)−n2,α3 | · |φα4 |

. T 0+2−|d−d
′
|
∑
n0,n2

‖f̂n0‖Lq‖(((w
′′)ω1)n0)

∧
‖L1‖(̂y2)n2‖L1‖

̂(y3)−n2‖L1

. T 0+2−|d−d
′
|
‖f ‖

l
p′

∼2d
Lq
‖w′′‖lp

∼2d
L1‖y

2
‖l2
∼2d′

L1‖y
3
‖l2
∼2d′

L1 . T 0+2−|d−d
′
|Td ,

where the cj are constants, and we are restricting to n0 ∼ 2d , n2 ∼ 2d
′

. Then we may
sum and integrate over (mi, βi), and sum over d, d ′ to bound this part by T 0+.

Now assume j = 3, n2 + n3 6= 0, and all the restrictions made before hold. In
particular we have n2 ∼ n3 ∼ 2d

′

and |4′| & 2d
′

where 4′ = |n2|n2 + |n3|n3 (again
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we may assume 2d
′

is large, otherwise we proceed as before). Fixing mi and βi , we then
need to bound

Ssub =
∑
n0,n2

∫
(T )

|fn0,α0 | · |((w
′′)ω1)n0,α1 | · |(z

2)n2,α2 | · |(z
3)c1−n2,α3 | · |φα4 |,

where c1 − n2 = n3, the (T ) integral is over the set

{(α0, . . . , α4) : α0 = α14 −4
′
+ c2}, (9.28)

and the cj � 2d
′/10 are constants. Also each zl here is either w′ or w′. Now, by Proposi-

tion 3.4, we can show that ‖g‖X′j ≤ 1 for some j ∈ {1, 2, 5, 7} implies

‖f ‖X′10
= ‖〈n0〉

−r
〈α0〉

1/8f ‖
l1
d≥0L

τ ′ l
p′

n0∼2d
. 1. (9.29)

For the w′′ we will use the X7 bound, and for zl we will simply use the X1 bound. Now,
since at least one αl must be & 2d

′

, we will gain some 2cd
′

from the 〈αl〉 weight in one
of the above bounds. If l = 0, we can then estimate f in lp

′

Lτ
′

by 2rdTd , w′′ in lpL1

by 2−rd (recall we are restricting to n0 ∼ 2d and n2 ∼ 2d
′

), and z2,3 in l2L1 with a loss
of 2O(s)d

′

, so that we can use Hölder to conclude. If l = 1, we simply replace the lpL1

bound by the lpL2 bound and argue as in the case l = 0. If l ∈ {2, 3}, we may replace the
l2L1 bound for zl by the l2L2 bound and argue as in the case l = 0. If l = 4 we simply
gain from the φ factor. This completes the proof for the n0 = n1 case.

Finally, assume that j = 3, and three of nl are related by m. We may assume that
〈mi〉 � 2d/90, so that nl ∼ 2d for each l. Then we fix mi and βi , so that nl are uniquely
determined by n0. The corresponding Ssub will be bounded by

T 0+
‖f ′‖l4

∼2d
Lq‖z

1
‖l4
∼2d

L1‖z
2
‖l4
∼2d

L1‖z
3
‖l4
∼2d

L1 . T 0+2−sd ,

due to a similar computation as in the proof of Proposition 9.1. ut

Now we start to consider the M2 term. Fixing the functions g, f, f ′ and the scale d as
before, we need to bound the expression

S =
∑

n0=n1+n2+m1+···+mµ

∫
(T )

82
· fn0,α0

2∏
l=1

(yωl )nl ,αl · φα3

× (χei(1n1+1n2−1n0 ))∧(α4)

µ∏
i=1

(u′′′)mi ,βi

mi
. (9.30)

Here the (T ) integration is over the set

{(α0, . . . , α4, β1, . . . , βµ) : α0 = α14 + β1µ +4}

with the NR factor

4 = |n0|n0 −

2∑
l=1

|nl |nl −

µ∑
i=1

|mi |mi . (9.31)
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Note that we may insert χ since f has compact time support. Suppose the minimum of
〈nl〉 is ∼ 2h and also fix h. Then 〈mi〉 � 2h, so that |4| & 2d+h; also h ≤ d + O(1)
and |82

| . 2h. Note that one of α or β variables must be & 2d+h. We first treat the easy
cases, which we collect in the following proposition.

Proposition 9.5. Let S be defined in (9.30), where all the restrictions made above are
assumed. If h < 0.9d , or

〈α0〉 + 〈α3〉 + 〈α4〉 +

µ∑
i=1

(〈mi〉 + 〈βi〉) & 2d/90, (9.32)

then the corresponding contribution will be bounded by T 0+2(0−)d .

Proof. First assume h ≥ 0.9d . If βi & 2d+h for some i, we may use the X4 bound for
〈∂x〉
−s3
u′′′ to gain a power 20.99(d+h) and then estimate this (u′′′)mi ,βi factor in L2L2.

Next we may bound

|(χei(1n1+1n2−1n0 ))∧(α4)| . 2s
3d
〈α4〉

−1 (9.33)

by Lemma 8.6 and Proposition 8.7, and estimate the right hand side (again, viewed as
a function of space-time supported at n = 0) as well as the φα3 factor in l1+L1+. We
then fix (mj , βj ) for j 6= i to produce an Ssub involving (u′′′)mi ,βi , which we estimate by
controlling Nf in L6−L6−, Nyωl in L6+L6+ (using the X1 bound for y and the norm
for f deduced from theX6′ bound for g; here the 6− and 6+ are 6+O(s)). In this process
we lose at most 2O(s)d , but the gain 20.99(d+h) (even after canceling the 2h loss coming
from the 82 weight) will allow us to cancel the 82 factor and still gain 2cd .

Next, suppose 〈α3〉 & 2d+h. By using (9.33) and losing a harmless 2O(s)d factor, the
argument for α4 can be done in the same way. Let cj be constants (or functions of nl);
recalling we are restricting to

∑
l〈nl〉 ∼ 2d , we may fix mi and βi , and bound

Ssub . T 0+
∑

n0=n1+n2+c1

∫
α0=α1+···+α4+c2(n0,...,n2)

2h

×|fn0,α0 | ·

2∏
l=1

|(yωl )nl ,α1 | ·
1{α3&2d+h}

〈α3〉0.9〈α4〉

. T 0+
∑

n0=n1+n2+c1

2−0.62d
‖f̂n0‖Lq‖

̂(yω1)n1‖L1‖̂(yω2)n2‖L1

. T 0+2−cd‖〈n0〉
−0.2f ‖l3/2Lq‖〈n1〉

−0.2y‖l3/2L1‖〈n2〉
−0.2y‖l3/2L1 . T 0+2−cd .

Thus this term is also acceptable.
Next, assume that 〈α1〉 & 2d+h (the α2 case is proved in the same way), and that one

of α0, α3, α4, mi or βi is & 2d/90. We then use (9.33) to bound the exponential factor and
fix (mi, βi). To estimate the resulting Ssub, we use the 〈α1〉

b factor in the X1 bound for y
to cancel the 82 factor which is at most 2h and bound the resulting yω1 factor in L2L2,
then bound Nf and Nyω2 in L4+L4+, and bound the factors involving α3 and α4 in
l1+L1+, where 4+ is some 4 + c. In this process we may lose 2O(s)d , but since another
αl or (mi, βi) is & 2d/90, we will be able to gain 2cd from this factor (since the L4+L4+

Strichartz estimate allows for some room), and we will find this term acceptable.
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The only remaining case is when 〈α0〉 & 2d+h. By basically the same argument as
above, we may assume that the other αl and (mi, βi) are all� 2d/90. Also recall that two
of nl (0 ≤ l ≤ 2) are ∼ 2d and the third is ∼ 2h. Now we may use the bound (9.33), then
fix (α3, α4) and all (mi, βi) to produce

|Ssub| . 2(b−s)h−(1−b)d
∑

n0=n1+n2+c1

∫
α0=α1+α2+4′+c2

An0,α0Bn1,α1Cn2,α2 , (9.34)

where the cj � 2d/10 are constants, the factor 4′ is

4′ = |n0|n0 − |n1|n1 − |n2|n2, (9.35)

and the relevant functions are defined by

An0,α0 = 〈n0〉
−s
〈α0〉

1−b
|fn0,α0 |,

Bn1,α1 = 〈n1〉
s
|(yω1)n1,α1 |, Cn2,α2 = 〈n2〉

s
|(yω2)n2,α2 |.

Also note that when we sum overmi , and integrate over βi and (α3, α4), we will gain T 0+

and lose at most 2O(s
3)d .

Now we estimate Ssub. If ‖g‖X′m ≤ 1 for some m ∈ {1, 2}, by using Proposition 3.4,
we may assume ‖〈α0〉f ‖X′j

. 1 for some j ∈ {1, 2} (this relies on the fact that E can be
written as the sum of two linear operators that are bounded from eachWj toX1 separately,
where ‖u‖Wj = ‖〈ξ〉

−1u‖Xj ). If ‖g‖X′m . 1 for some m ∈ {5, 7}, since we may insert a
1E factor to fn0,α0 withE = {n0 ∼ 2d

′

, α0 & 2d
′

}with d ′ ∈ {d, h}, we can use (3.23) and
again assume ‖〈α0〉f ‖X′j

. 1 for some j ∈ {1, 2}. Next, notice that |α0 − 4
′
| . 2d/10,

so α0 is also restricted to some set of measure O(21.1d) for each fixed n0. Since α0 is
restricted to be & 21.9d and n0 . 2d , we will have

‖〈α0〉f ‖X′1
. 2O(s)d‖〈α0〉

0.6f ‖l2L2 . 2(O(s)+0.55)d
‖〈α0〉

0.6f ‖l2L∞

. 2(0.6−0.4×1.9)d
‖〈α0〉f ‖l2L∞ . 2−cd‖〈α0〉f ‖X′2

,

thus we may furthermore assume j = 1.
Now, using this bound for f and the X1 bound for y, we deduce that

‖A‖
lp
′
L2 + ‖〈α1〉

bB‖lpL2 + ‖〈α2〉
bC‖lpL2 . 2O(s

2)d .

Let us define
Bn1 = ‖〈α̃1 + |n1|n1〉

bB̂n1(α̃1)‖L2

and Cn3 similarly, so that ‖B‖lp + ‖C‖lp . 2O(s
2)d . Then we will have the estimate

‖〈α0 −4
′
− c2〉

2b−1/2(B̂n1 ∗ Ĉn2)(α0 − |n0|n0 − c2)‖L2
α0

. Bn1Cn2 ,

which, after taking Fourier transform, follows from the standard one-dimensional inequal-
ity ‖fg‖H 2b−1/2 . ‖f ‖H b‖g‖H b . Now we will be able to control Ssub by

Ssub . 2λ
(∑
n0

∥∥∥ ∑
n1+n2=n0−c1

(B̂n1 ∗ Ĉn2)(α0 − |n0|n0 − c2)

∥∥∥p
L2
α0

)1/p
,
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where λ = (b − s)h+ (b − 1+O(s2))d, and the square of the inner L2 norm is

J 2
=

∫
R

∣∣∣ ∑
n1+n2=n0−c1

(B̂n1 ∗ Ĉn2)(α0 − |n0|n0 − c2)

∣∣∣2 dα0

.
∫
R

( ∑
n1+n2=n0−c1

〈α0 −4
′
− c2〉

1−4b
)
dα0

×

( ∑
n1+n2=n0−c1

〈α0 −4
′
− c2〉

4b−1
|(B̂n1 ∗ Ĉn2)(α0 − |n0|n0 − c2)|

2
)

. sup
α0

( ∑
n1+n2=n0−c1

〈α0 −4
′
− c2〉

1−4b
)

×

∑
n1+n2=n0−c1

∫
R
〈α0 −4

′
− c2〉

4b−1
|(B̂n1 ∗ Ĉn2)(α0 − |n0|n0 − c2)|

2 dα0

. sup
α0

( ∑
n1+n2=n0−c1

〈α0 −4
′
− c2〉

1−4b
)
·

∑
n1+n2=n0−c1

B2
n1

C2
n2
.

Next we claim that for fixed n0 and α0 we have∑
n1+n2=n0−c1

〈α0 −4
′
− c2〉

−3/4 . 1. (9.36)

In fact, if n1n2 < 0, then α0−4
′
− c2 is a linear expression in n1 with leading coefficient

k = ±(n0−c1)/2 & 20.9d (we assume d is large enough), so any two summands in (9.36)
differ by at least k, while there are . 2d summands. The sum is thus bounded by

1+
2d∑
h=1

(kh)−3/4 . 1+ k−3/42d/4 . 1. (9.37)

If n1n2 > 0, then α0−4
′
− c2 equals± 1

2 (n1−n2)
2 plus a constant, so similarly we only

need to prove ∑
k∈Z
〈α − k2

〉
−3/4 . 1

for each α, but this is again easily proved by separating the cases 〈k〉2 . 〈α〉 and other-
wise, and applying elementary inequalities.

Now we are able to bound

Ssub . 2λ
(∑
n0

( ∑
n1+n2=n0−c1

B2
n1

C2
n2

)p/2)1/p

. 2λ+(1/2−1/p)d
(∑
n0

∑
n1+n2=n0−c1

Bpn1Cpn2

)1/p
. 2λ+(1/2−1/p)d

‖B‖lp‖C‖lp ,

where we notice that

λ+ (1/2− 1/p)d = (b − s)h+
(
b − 1/2− 1/p +O(s2)

)
d

. (2b − 1)d +
(
1/2− s − 1/p +O(s2)

)
d,
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and this is ≤ −c(1/2− b)d by (1.3). We may then sum and integrate over the previously
fixed variables to get a desirable estimate for S.

Finally, suppose h < 0.9d . Since at least one αl or βi will be & 2d+h, we may repeat
the arguments above; using the inequality 2b(d+h) & 2cd+h that holds for h < 0.9d, we
will be able to gain an additional power of 2cd after canceling the 82 weight, which will
allow us to close the estimate as above. This completes the proof. ut

What remains to be bounded, denoted by SE , is actually the same summation-integration
as S , but restricted to the region h ≥ 0.9d and with the additional factor 1E , where

E = {〈α0〉 ∨ 〈α3〉 ∨ 〈α4〉 ∨ 〈mi〉 ∨ 〈βi〉 � 2d/90, ∀i},

with a ∨ b meaning max{a, b}. Now let El = {〈αl〉 � 2d/90
} for l ∈ {1, 2}. We have

1E = 1E∩E1 + 1E∩E2 + 1E−(E1∪E2). (9.38)

By symmetry, we need to bound SE∩E1 and SE−(E1∪E2) (whose meaning is obvious). In
the latter case, we may assume that α1 & 2d+h, and also α2 & 2d/90, so we can estimate
this part in the same was as in the proof of Proposition 9.5.

It remains to bound SE∩E1 . LetE∩E1 = F . Using (3.14) and (8.12) we may compute

(yω2)n2,α2 = (χ(t)e
−H∂xxwω2(0))n2,α2 +

(
E(1[−T ,T ] ·N 2(y, y))ω2

)
n2,α2

+

∑
j∈{3,3.5,4,4.5}

(E(1[−T ,T ]N j )ω2)n2,α2

=

∑
j∈{0,3,3.5,4,4.5}

((Mj )ω2)n2,α2 + (L
1)n2,α2 + (L

2)n2,α2 . (9.39)

Here we denote M0
= χ(t)ei∂xxw(0), and

(L1)n2,α2 = c1

∫
R2

χ̂(α2 − γ2)χ̂(γ2 − γ1)

γ2
In2,γ1 dγ1 dγ2,

(L2)n2,α2 = c2χ̂(α2) ·

∫
R2

χ̂(γ2 − γ1)

γ2
In2,γ1 dγ1 dγ2,

where I = (1[−T ,T ]N 2(y, y))ω2 . Interpreting the singular integral as a principal value,
we may compute that∣∣∣∣∫

R

χ̂(γ2 − γ1)

γ2
dγ2

∣∣∣∣ . 1
〈γ1〉

,∣∣∣∣∫
R

χ̂(α2 − γ2)χ̂(γ2 − γ1)

γ2
dγ2

∣∣∣∣ . 1
(〈α2〉 + 〈γ1〉)〈α2 − γ1〉1/s

,∣∣∣∣∇α2,γ1

∫
R

χ̂(α2 − γ2)χ̂(γ2 − γ1)

γ2
dγ2

∣∣∣∣ . 1
(〈α2〉 + 〈γ1〉)2〈α2 − γ1〉1/s

,

where the third inequality can be proved by integrating by parts in γ2. Now, to treat the
first three terms in (9.39), we may use Proposition 9.1, the easy observation that

‖〈n2〉
−1/20
〈α2〉

κ(M0)n2,α2‖l2L2 . ‖〈n〉−1/20(w(0))n‖l2 . 1,

together with the following
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Proposition 9.6. If we consider the sum (9.30) with the factor 1F , and yω2 replaced by
some function ζ satisfying

‖〈n2〉
−1/20
〈α2〉

κζn2,α2‖l2L2 . 1, (9.40)

then this contribution can be bounded by T 0+.

Proof. Since in F we will have 〈α2〉 & 2d+h, we can gain a power 20.999(d+h) from the
〈α2〉

κ factor in the bound for ζ . After exploiting this, we may estimate ζ in L2L2 with a
loss 2(1/20+O(s))d . Then we fix (mi, βi) as usual, and use the inequality (9.33) to bound
the factor involving α4. To bound the resulting Ssub term, we estimate ζ in L2L2, Nf and
Ny in L4+L4+ (where 4+ equals 4 + c) with a loss of 2O(s)d , the α3 and α4 factors in
l1+L1+. Note that here we will gain a power T 0+, and the total power of 2d we may lose
is at most 2(1.1+O(s))d , which is smaller than the gain 20.999(d+h). Then we sum over mi
and integrate over βi to conclude. ut

Next consider the contribution of L2. Since we are in F (thus α2 & 2d ), the gain from
χ̂(α2) will overwhelm any possible loss in terms of 2d . Therefore we may even fix all
the n, m and β variables and estimate the integral in α variables and γ1 only; but we can
easily estimate this integral by controlling all the factors except 〈γ1〉

−1
|In2,γ1 | in L1+

(since the expression now has a convolution structure in the α variables), and estimate
the 〈γ1〉

−1
|In2,γ1 | factor in L1. This last estimate is due to (the proof of) Proposition 9.1,

which implies

‖〈γ1〉
−1In2,γ1‖L1 . ‖〈γ1〉

κ−1In2,γ1‖L2 . 2O(1)d .

It then remains to bound the L1 contribution. After integrating over γ2, we may re-
name the variable α2 − γ1 as γ2, and reduce to estimating (up to a constant)

SF =
∑

n0=n1+n2+m1+···+mµ

∫
(T )

1F ·82
· fn0,α0 · (y

ω1)n1,α1 · φα3

× (χei(1n1+1n2−1n0 ))∧(α4) ·

µ∏
i=1

(u′′′)mi ,βi

mi
· η(γ1, γ2) · In2,γ1 ,

where η is some function bounded by

|η(γ1, γ2)| .
1

〈γ1〉〈γ2〉1/s
, |∂γ1η(γ1, γ2)| .

1
〈γ1〉2〈γ2〉1/s

,

and the (T ) integral is taken over the set

{(α0, α1, α3, α4, β1, . . . , βµ, γ1, γ2) : α0 = α1 + α34 + β1µ + γ12 +4}

with the NR factor as in (9.31). Clearly we may also assume 〈γ2〉 � 2d/90 and add this
restriction into F (or we simply gain a large power of 2d and proceed as above); after
doing this we will have F ⊂ {〈γ1〉 & 2d+h}.

Next, note that N 2(y, y) = N 2(y, y), where N 2 is another bilinear form that dif-
fers from N 2 only in the 82 weights; moreover, the 8 weight for N 2 will satisfy all the
bounds we have for the 8 weight for N 2. Thus we only need to bound the above ex-
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pression with In2,γ1 replaced by (1[−T ,T ]N 2(yω2 , yω2))n2,γ1 . Clearly we may also fix the
parameters µ′ and ω′ in Nω′2

µ′
and reduce to estimating

S ′ =
∑

n0=n1+n5+n6+m1+···+mν

∫
(T )

82(82)′ · fn0,α0

×

∏
l∈{1,5,6}

(yωl )nl ,αl · φα3φα7 ·

ν∏
i=1

(u′′′)mi ,βi

mi

×

∫
α4+α8=α9

1F η(γ1, γ2) · (χe
i(1n1+1n2−1n0 ))∧(α4)(χe

i(1n5+1n6−1n2 ))∧(α8),

where ν = µ+ µ′ and the (T ) integral is taken over the set

{(α0, α1, α3, α5, α6, α7, α9, β1, . . . , βν, γ2) : α0 = α1+ α3+ α57+ α9+ β1ν + γ2+4
′
}

with the new NR factor

4′ = |n0|n0 − |n1|n1 − |n5|n5 − |n6|n6 −

ν∑
i=1

|mi |mi .

The 82 and (82)′ are functions of the n and m variables that are bounded by
minl∈{0,1,2}〈nl〉 and minl∈{2,5,6}〈nl〉 respectively. The other implicit variables are n2 =

n5 + n6 +mµ+1,ν and

γ1 = α0 − α1 − α34 − β1µ − γ2 −4 = α58 + βµ+1,ν + (4
′
−4),

where 4 is the same as in (9.31). Also recall from the definition of N 2 that n0 6= n1 and
n5 + n6 6= 0.

Next, let max{〈n2〉, 〈n5〉, 〈n6〉} ∼ 2d
′

so that d ′ ≥ h ≥ 0.9d , and fix d ′ also. In the
expression for S ′, we may assume

〈mi〉 + 〈βi〉 + 〈αj 〉 � 2d
′/70 (9.41)

for all µ + 1 ≤ i ≤ ν and j ∈ {5, 6, 7, 9} (note we already have this for 1 ≤ i ≤ µ

and j ∈ {0, 1, 3} due to the factor 1F ). In fact, if any one of these does not hold, we may
bound |η| . 2−(d+h)〈γ2〉

−10 and |82(82)′| . 2d+h (so that the weight is canceled by the
part of the η factor), then use (9.33) to bound the α4 and α8 factors by 〈α4〉

−1 and 〈α8〉
−1

respectively with a loss 2O(s
3)d ′ . Then we fix (mi, βi) to produce S ′sub, and estimate it by

bounding the γ2 and αl factors for l ∈ {3, 4, 7, 8} in l1+L1+, and bounding the Nf and
Ny factors in L4+L4+ (with 4+ being 4 + c). Note that in the whole process we lose at
most 2O(s)d

′

; but by our assumptions at least one (mi, βi) or αl must be & 2d
′/70, so we

will be able to gain some 2cd
′

power from the corresponding factor (again using the room
available for L4+L4+ Strichartz estimate) to complete the estimate.

Now we may assume all the variables mentioned above are small. This in particular
implies that |4′| � 2d

′/70. By Lemma 9.4 (combined with the restrictions made above,
such as h ≥ 0.9d), we can conclude that either (i) n0 = n5 and n1 + n6 = 0 (or with
5 and 6 switched); or (ii) no two of (−n0, n1, n5, n6) add to zero, and 〈nl〉 & 20.9d ′ for
l ∈ {0, 1, 5, 6}. In case (ii), we have in particular

〈n1〉
s
〈n5〉

s
〈n6〉

s & 21.5sd ′
〈n0〉

r , (9.42)
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thus we may gain a power 2csd
′

from the 〈nl〉 weights (after canceling 82(82)′ by the η
factor) if we use theX2 bound for y and the bound for f deduced from theX′6 bound for g.
Then we simply bound the α4 and α8 factors using (9.33) with 2O(s

2)d loss, take absolute
value of everything, then fix mi and βi to produce a term Ssub that has basically the same
form as the left hand side of (9.21), with possibly some additional loss of 2O(s

2)d , and
with the min{T , 〈α4〉

−1
} factor in (9.21) replaced by T 0+

〈α4〉
−1+s4

, which is due to the
estimate∫

α3+α4+α7+α8+γ2=α10

min{T , 〈α3〉
−1
} · 〈γ2〉

−10
∏

l∈{4,7,8}

〈αl〉
−1 . T 0+

〈α10〉
−1+s4

.

We can then repeat the proof of (9.21) to conclude (notice that every variable is now
. 2O(1)d

′

).
Now we consider case (i), so that d ′ = d. We will first replace the η(γ1, γ2) factor

appearing in the expression of S ′ by η(γ ′1, γ2), where γ ′1 = γ1−α8. Note that γ ′1 depends
on α4 only through α9 = α4 + α8. When we estimate the difference caused by this
substitution, since we still have the restriction 1F , we will have γ1 ∼ 2d+h, so we will
gain a power 22(d+h)−d ′/70, which is more than enough to cancel 82(82)′, thus this part
will be acceptable. We also note that the assumption (9.41) allows us to insert another
characteristic function which depends on α4 only through α9; the presence of this function
(as well as the part of 1F independent of α4) will allow us to deduce 〈γ ′1〉 ∼ 2d+h.
Therefore, if we remove the part in 1F depending on α4, the error we create will be
a summation-integration of the type S ′, but restricted to some set on which we have
|η| . 2−(d+h)〈γ2〉

−10 (note that here we already have η(γ ′1, γ2) instead of η(γ1, γ2)), as
well as 〈α4〉 & 2d

′/90. Then we will be able to take absolute values, cancel 82(82)′ by
the η factor, and gain a power 2cd

′

from the assumption about α4, and proceed exactly as
above.

After we have made the above substitutions, the integral with respect to α4 (or α8)
will be exactly∫

R
(χei(1n1+1n2−1n0 ))∧(α4)(χe

i(1n0−1n1−1n2 ))∧(α9 − α4) dα4 = χ̂2(α9).

Then we will get rid of this integration, then take absolute values, fix (mi, βi) (again we
ignore the restriction that the mi must add to zero) to obtain an expression

Ssub .
∑
n0,n1

∫
(T )

22h
|fn0,α0 | ·

∏
l∈{1,5,6}

|(yωl )nl ,αl |

×

∏
l∈{3,7}

min{T , 1/〈αl〉} · 2−d−h〈α9〉
−10
〈γ2〉
−10

. 2−|d−h|T 0+
∑
n0,n1

‖f̂n0‖Lq
∏

l∈{1,5,6}

‖(̂yωl )nl‖L1 .

where the cj are constants, n5 = n0, n6 = −n1, the summation is restricted to the set

{(n0, n1) : max{〈n0〉, 〈n1〉 ∼ 2d , min{〈n0〉, 〈n1〉, 〈n0 − n1〉} ∼ 2h},
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and the (T ) integration is taken over the set

{(α0, α1, α3, α5, α6, α7, α9, γ2) : α0 = α1 + α3 + α57 + α9 + γ2 + c2};

note that the restriction we make here is enough to guarantee that |η| . 2−(d+h)〈γ2〉
−10.

Now, if we restrict to n0 ∼ 2d
′′

and n1 ∼ 2d
′′′

, then up to an additive constant they are
between h and d, and the restricted Ssub is bounded by 2−|d−h|Td ′′ due to (9.24). We may
sum over d and h for fixed d ′′ and d ′′′ to obtain a bound 2−|d

′′
−d ′′′|Td ′′ , then sum over d ′′

and d ′′′ to conclude.

10. The a priori estimate III: A special term

In this section we prove the following proposition, with which we will be able to close
the proof of Proposition 8.5.

Proposition 10.1. We have ∑
j∈{1,2,5,7}

‖M3.5
‖Xj . T 0+. (10.1)

Proof. Define the functions g, f and f ′, and fix the scale 2d as usual. Note in particular
that ‖g‖X′6 ≤ 1, so that

‖〈n0〉
−s
〈α0〉

1/2−O(s2)f ′‖l2L2 . 1. (10.2)

Now, according to a computation similar to those made before (for example, in the proof
of Propositions 9.1 and 9.3), we can write the expression S we need to bound in two
ways:

S =
∑

n0=n1+n2+n3+m1+···+mµ

∫
(T )

83.5
· (f ′)n0,α0

× ((w′)ω1)n1,α1

3∏
l=2

(zl)nl ,αl · φα4

µ∏
i=1

(u′′′)mi ,βi

mi
, (10.3)

S =
∑

n0=n1+n2+n3+m1+···+mµ

∫
(T )

83.5
· fn0,α0((w

′′)ω1)n1,α1

×

3∏
l=2

(yl)nl ,αl · φα4(χe
i(1n1+1n2+1n3−1n0 ))∧(α5)

µ∏
i=1

(u′′′)mi ,βi

mi
. (10.4)

Here the (T ) integration in (10.3) is over the set

{(α0, . . . , α4, β1, . . . , βµ) : α0 = α14 + β1µ +4}, (10.5)

while the (T ) integration in (10.4) is over the set

{(α0, . . . , α5, β1, . . . , βµ) : α0 = α15 + β1µ +4}, (10.6)
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both with the NR factor

4 = |n0|n0 −

3∑
l=1

|nl |nl −

µ∑
i=1

|mi |mi . (10.7)

Also each zl or zl equals u′, v′ or w′, and yl or yl equals u′′, v′′ or w′′.
First we treat the case when

min
0≤l≤3
〈nl〉 & 22d/3. (10.8)

In this situation, n2 and n3 must have opposite sign (note that here we are again assuming
2d is large enough). By symmetry, we may assume n2 > 0 and n3 < 0; also note that
n0 > 0.

Next, we may assume that 〈mi〉 + 〈βi〉 + 〈α4〉 � 2d/90 for all i, since otherwise we
will be able to gain a power 2cd from the corresponding factor alone, and estimate the
expression (10.3) by controlling Nf ′ in L2+L2+, Nw′ in L6+L6+, Nzl in L6L6 and φ
in l1+L1+ with a loss of at most 2(s+O(ε))d . Notice that the loss from the 〈n0〉

−s factor
in (10.2) is at most 2sd , while the loss from other places is at most 2O(ε)d . In the same
way, we will also be done if 〈mi〉 & 21.2sd for some i, or when |4| & 2(1+1.01s)d . In fact,
in the former case we invoke the X3 norm for 〈∂x〉−s

3
u′′′ to gain a power of 2(1+c)sd to

cancel the 2sd loss, then fix mj and βj for j 6= i to produce Ssub, which is estimated by
controlling Nf ′ in L4L4, Nw′, Nzl and Nu′′′ in L6L6, φ in some l1+L1+ with a loss of
at most 2O(ε)d . In the latter case at least one αl must be & 2(1+1.01s)d . If l ∈ {0, 1}, we
could gain 2cd from the corresponding factor and proceed as above (since the 2cd gain
will overwhelm any loss). If l ∈ {2, 3} (say l = 2), we invoke theX4 norm for z2; noticing
that 1− κ = s5/4, we will gain at least 21.001sd from z2 and estimate the reduced function
in l2L2. This will cancel the 2sd loss from f ′ and we can fix all mi and βi , then bound
Ssub by controlling Nf ′ in L6−L6−, Nw′ in L6+L6+ (where 6− and 6+ differ from 6
by cs2 with appropriately chosen c), Nz2 in L2L2, Nz3 in L6L6, φ in l1+L1+ with a loss
of at most 2O(ε)d .

Now, we have 〈mi〉 � 21.2sd and |4| � 2(1+1.01s)d . Since n0, n2 > 0 > n3 and
〈n1〉 & 22d/3, we can easily see that n1 > 0, which implies

|n2
0 − n

2
1 − n

2
2 + n

2
3| � 2(1+1.01s)d . (10.9)

Note that |n2 + n3| � 2d/2 (otherwise we gain 2cd from the weight and everything will
again be easy; also this will imply n0 6= n1), we write n2 + n3 = k and n0 − n1 = l so
that l − k = O(21.2sd). We deduce from (10.9) and elementary algebra that

|k| · |n0 + n1 − n2 + n3| . 2(1+1.2s)d , (10.10)

which implies that max{〈n2〉, 〈n3〉} ∼ 2d . Since we will be done if we gain 2(1+c)sd from
the weight, we may then assume |n2 + n3| & 2(1−1.01s)d .

Next, we claim that we may assume |n0 − n2| + |n1 + n3| � 21.9sd . In fact, the
difference between n0−n2 and n1+n3 is alreadyO(21.2sd), so if one of them is & 21.9sd ,
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the factor n0 + n1 − n2 + n3 in (10.10) will be at least 21.9sd also. This would force k to
be� 2(1−0.7s)d . Noting that max{〈n2〉, 〈n3〉} ∼ 2d , we will gain 20.7sd from the weight
83.5. Therefore, we will still be able to close the estimate if we can gain more than 20.3sd

elsewhere, for example, when |4| & 2(1+0.31s)d or when 〈mi〉 & 20.4sd for some i. If we
assume further that |4| � 2(1+0.31s)d and 〈mi〉 � 20.4sd , then (10.10) will hold with the
right hand side replaced by 2(1+0.4s)d . This would then force |k| . 2(1−1.5s)d , which is
impossible since we have already had |k| & 2(1−1.01s)d .

Note that all the restrictions made above concern only the nl , mi , βi and α4 variables,
so we still have the freedom of choosing (10.3) or (10.4). After making these restrictions,
we will now choose (10.4) and analyze the exponential factor first. Noting that

‖(δn1 + δn2 + δn3 − δn0)
∧
‖L1 . 2−d/4 (10.11)

by Proposition 8.7, we deduce from Lemma 8.6 that

‖〈α5〉J(n)(α5)‖Lµ . 2−d/8 (10.12)

for all 1 ≤ µ ≤ ∞ with

J(n)(α5) =
(
χ(t) · (ei(1n1+1n2+1n3−1n0 ) − 1)

)∧
(α5). (10.13)

By a similar argument to the proof of Proposition 8.9, we deduce that (where, of course,
the supremum is taken over (n) such that

∑
l〈nl〉 ∼ 2d )∫

R
sup

n0,...,n3

|J(n)(α5)| dα5 . 2−d/9. (10.14)

Therefore, if we replace in (10.4) the exponential factor by J(n), we will be able to first fix
α5 and then integrate over it, and gain a power 2cd from this process. Once α5 is fixed and
the J(n) factor is removed with a 2cd gain, we will be in the same situation as considered
before. We can then fix mi and βi to produce Ssub, and estimate it by controlling Nf in
L2+L2+, Nw′′ and Nyl in L6L6, φ in l1+L1+ with a loss 2O(s)d .

Now we may replace the exponential factor in (10.4) by χ̂(α5). We can actually get
rid of this factor since f and f ′ is supposed to have compact t support. Therefore, we are
reduced to estimating

S =
∑

n0=n1+n2+n3+m1+···+mµ

∫
(T )

|83.5
| · |fn0,α0 |

× |((w′′)ω1)n1,α1 |

3∏
l=2

|(yl)nl ,αl | · |φα4 |

µ∏
i=1

∣∣∣∣ (u′′′)mi ,βimi

∣∣∣∣, (10.15)

where the integral (T ) is taken over the set (10.5). Starting from this point we will no
longer use the equivalence of (10.3) and (10.4), so we will assume here that each 〈αl〉
is� 2(1+1.01s)d , since otherwise we may proceed as above (note that the bounds for f ,
w′′ and yl are better than those for f ′, w′ and zl). For the same reason, we may assume
〈α0〉 + 〈α1〉 � 2d/9000 (otherwise we may gain 2cd , then control Nf ′ in L2+L2+, Nw′′
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in L6−L6−, Nyl in L6L6 and φ in l1+L1+ with 2+ and 6− being 2 + c and 6 − c
respectively).

To estimate (10.15), we recall the bound (9.24) in the proof of Proposition 9.3. Sup-
pose that n0 ∼ n2 ∼ 2d

′

and n1 ∼ n3 ∼ 2d
′′

(note that |n0− n2| and |n1+ n3| are small).
Then we have max{d ′, d ′′} = d +O(1), as well as

|83.5
| . 2−|d

′
−d ′′|. (10.16)

Here, instead of fixing d, we will fix all of d, d ′, d ′′, then sum over d ′ and d ′′. By (10.16),
we may assume

min{d ′, d ′′} ≥ (1− 1.01s)d,
so in particular d ′ ∼ d ′′ ∼ d. Once we fix 〈n3〉 ∼ 2d

′′

, we can invoke the X8 norm of y3

to write y3 (now restricted to frequency ∼ 2d
′′

) as a sum

y3
=

∑
j

γjπkj y
(j),

∑
j

〈kj 〉
s1/2
|γj | . 1, (10.17)

such that ‖y(j)‖Lq l2 . 1 for each j . See Section 2.2. We only need to consider a single j ;
namely we need to bound S provided y3

= 〈k〉−s
1/2
πky
′′, where y′′ is some function

satisfying ‖y′′‖Lq l2 . 1. Next, if 〈k〉 & 2d/90, we will gain a power 2cs
1/2d from the

coefficient in y3; we then fix mi and βi . To estimate the resulting Ssub, we can control
Nf in L6+L6+, Nw′′ and Ny2 in L6L6 and φ in l1+L1+ with a loss of at most 2O(s)d

(where 6+ is 6 + cs and 1+ is defined accordingly; also note that we have assumed
〈α0〉 . 22d , as well as the bound for f deduced from the X′6 bound for g). We can then
close the estimate if we can control y′′ (and hence πky′′) in l2L2. This can be achieved by
inserting a χ(t) factor to every term in (10.17), which, while doing nothing to the equality
and the Lq l2 norms, allows us to control the L2l2 norm by the Lq l2 norm. Thus here we
also get the desired estimate.

We now assume 〈k〉 � 2d/90. We will fix k and each (mi, βi) to obtain some constants
K1 � 21.2sd and K2 � 2d/90, and produce

2−|d
′
−d ′′|Ssub = 2−|d

′
−d ′′|

∑
n0=n1+n2+n3+K1

∫
(T )

|fn0,α0 |

× |((w′′)ω1)n1,α1 | · |(y
2)n2,α2 | · |(πky

′′)n3,α3 | · |φα4 |,

where the (T ) integral is taken over the set{
(α0, . . . , α4) : α0 = α14 + |n0|n0 −

3∑
l=1

|nl |nl +K2

}
, (10.18)

with all the restrictions made above taking effect. Now if n0 − n2 ∈ {0,K1 − k}, we can
bound

Ssub . T 0+
∑
n0∼2d′

∑
n1∼2d′′

‖f̂n0‖Lq‖(((w
′′)ω1)n1)

∧
‖L1‖((y

2)n0+c0)
∧
‖L1‖((y

′′)n1+c1)
∧
‖Lq

. T 0+Td ′‖〈n2〉
ry2
‖l
p

n2∼2d′
L1 · ‖(w

′′)ω1‖l2
n1∼2d′′

L1‖y
′′
‖l2
n1∼2d′′

Lq . T 0+Td ′ ,
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using the bound (9.24) for f , the X2 bound for w′′ and y2, and the Lq l2 bound for y′′,
where the cj are constants, small compared to 2d

′

and 2d
′′

, such that nj ∼ n0 + cj for
j ∈ {0, 1}. If we then sum and integrate over mi and βi , then multiply by 2−|d

′
−d ′′| and

sum over d ′ and d ′′, we will get a quantity bounded by T 0+.
Assume n0 − n2 6∈ {0,K1 − k}. Let λ = n0 − n2. We can rewrite the expression

for Ssub as

Ssub . T 0+2−0.999sd+O(s)|d ′−d ′′|
∑
n0,n1,λ

∫
R4
An0,α0Bn1,α1Cn0−λ,α2

×Dλ−n1+c1,α
′

3
〈α0 − α1 − α2 − α

′

3 −4
′
+ c2〉

−1−s2
2∏
l=0

dαl · dα
′

3,

where the cj � 2d/90 are constants, and the summation-integration is restricted to the sub-
set where all the restrictions made above are satisfied by (n0, . . . , n3, α0, . . . , α4) which
is defined in terms of our new variables (as well as the intermediate variable n′3) by

n2 = n0 − λ, n3 = n
′

3 − k, α3 = α
′

3 − |n
′

3|n
′

3 + |n3|n3,

n′3 = λ− n1 −K1 + k, α4 = α0 − α13 − |n0|n0 +

3∑
l=1

|nl |nl −K2.

We can check from the assumptions made above that no two of (−n0, n1, n2, n
′

3) add to
zero. Moreover, 4′ is defined by

4′ = 4′(n0, n1, λ) = |n0|n0 − |n1|n1 − |n2|n2 − |n
′

3|n
′

3,

and the relevant functions are defined by

An0,α0 = 〈n0〉
−r
|fn0,α0 |, Bn1,α1 = 〈n1〉

r
|((w′′)ω1)n1,α1 |,

Cn2,α2 = 〈n2〉
r
|(y2)n2,α2 |, Dn′3,α

′

3
= |(y′′)n′3,α

′

3
|.

When restricted to appropriate subsets (for example, we must have n0 ∼ n2 ∼ 2d
′

and
n1 ∼ n3 ∼ 2d

′′

), these functions will satisfy

‖A‖
L1lp

′ + ‖B‖L1lp + ‖C‖lpL1 + ‖D‖L1l2 . 20.0002sd . (10.19)

In fact, due to the restrictions we made, we can bound all the variables by 2O(1)d ; so when
we replace the Lq norm by the L1 norm we lose (by Hölder) at most 2O(q−1)d . Thus the
bound for A follows from (9.24), and the bound for D follows from our assumption
about y′′. The bound for C follows from the X2 bound for y2, while for B we simply
estimate (note that 〈α1〉 � 2d/9000)

‖B‖L1lp . 2O(1−q)d‖〈n1〉
r
〈α1〉

b(w′′)ω1‖L2lp (10.20)

. 2O(1−q)d2sd/8000
‖〈n1〉

s
〈α1〉

b(w′′)ω1‖Lp lp . 20.0002sd ,

using the X1 bound for w′′. Note that by inserting χ(t) to w′′, we may control the lpLp

norm by the lpL2 norm.
Now we need to estimate Ssub under the assumption of (10.19). First replace the

bounds in (10.19) by 1, so that we only need to bound the summation-integration part
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of Ssub by 20.998sd . Fix α0 and α1 which are � 20.02d (then integrate over them), we
may assume A and B are functions of n0 and n1 only, and are bounded in lp

′

and lp

respectively. We then bound (with the cj � 2d/90 being constants)

S ′sub =

∫
R2
dα2 dα

′

3 ·
∑
n0,n1,λ

An0Bn1Cn0−λ,α2Dλ−n1+c1,α
′

3
〈α2 + α

′

3 +4
′
+ c3〉

−1−s2

.
∑
ρ∈Z
〈ρ〉−1−s2

∫
R2
dα2 dα

′

3

∑
(n0,n1,λ): b4′′c=ρ

An0Bn1Cn0−λ,α2Dλ−n1+c1,α
′

3

. sup
ρ

∫
R2
dα2 dα

′

3 ·
( ∑
(n0,n1,λ): b4′′c=ρ

A2
n0
C2
n0−λ,α2

)1/2

×

( ∑
(n0,n1,λ): b4′′c=ρ

B4
n1

)1/4( ∑
(n0,n1,λ): b4′′c=ρ

D4
λ−n1+c1,α

′

3

)1/4
, (10.21)

where we write α2+α
′

3+4
′
+c3 = 4

′′ for simplicity. Now for any positive function En1

of n1, when ρ and α2, α
′

3 are fixed, we may bound∑
(n0,n1,λ): b4′′c=ρ

En1 .
∑
n1

En1

∑
(n0,λ):4′=c′′

1 . 2O(s
4)d
‖E‖l1

(where c′ and c′′ are constants depending on α2, α
′

3 and ρ), thanks to part (iii) of Lemma
9.4 (or actually, an argument similar to the proof of that part). The same inequality holds
if we replace n1 by λ − n1 + c1 (which equals n′3 plus a constant). Therefore we can
bound the second factor in (10.21) by 2O(s

4)d
‖B‖l4 . 2O(s

4)d , and the third factor by
2O(s

4)d
‖D·,α′3

‖l4 . Ignoring the 2O(s
4)d factors, we thus bound (10.21) by

S ′sub . sup
ρ

∫
R2
dα2 dα

′

3 · ‖D·,α′3
‖l4 ·

( ∑
(n0,n1,λ): b4′′c=ρ

A2
n0
C2
n0−λ,α2

)1/2

. sup
ρ,α′3

∫
R

( ∑
(n0,n1,λ): b4′′c=ρ

A2
n0
C2
n0−λ,α2

)1/2
dα2

. sup
ρ,α′3

∫
R
dα2 ·

∑
(n0,n1,λ): b4′′c=ρ

An0Cn0−λ,α2 .

Now we fix ρ and α′3. Noticing n0 − λ = n2, and that

An0 ≤ Fn2 :=

( ∑
|m−n2|.21.9sd

A
p′

m

)1/p′
(10.22)

because |n0 − n2| . 21.9sd , we proceed to estimate

S ′′sub .
∫
R
dα2 ·

∑
(n1,n2,λ): b4′′c=ρ

Fn2Cn2,α2 . 2O(s
4)d
∑
n2

Fn2

∫
R
Cn2,α2 dα2

. 2O(s
4)d
‖F‖

lp
′ ‖C‖lpL1 .
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Here we have again used the divisor estimate as above. Finally, notice that

‖F‖
p′

lp
′ =

∑
n2

∑
|m−n2|.21.9sd

A
p′

m . 21.9sd
‖A‖

p′

lp
′ ,

so we deduce that S ′′sub . 21.91sd/p′ . 20.998sd , as desired.
It remains to consider the case where 〈nl〉 � 22d/3 for some l. Note that if 〈mi〉 +

〈βi〉 + 〈α4〉 & 2d/90 for some i, or the weight |83.5
| is . 2−cd or the NR factor (as

defined in (10.7)) satisfies |4| & 2(1+c)d , we will be done using the same arguments as
before. This in particular includes the cases when (i) three of the nl are & 23d/4 and the
remaining one is� 22d/3; (ii) at least two of the nl are� 23d/4, and 〈n2〉+〈n3〉 & 24d/5;
(iii) both n2 and n3 are� 24d/5, and n0n1 < 0.

Now we assume that n0n1 > 0 and 〈n2〉 + 〈n3〉 � 24d/5. Let n0 − n1 = k and
n2 + n3 = l, so that |k − l| � 2d/90. If l . 2d/80, we must have 〈n2〉 + 〈n3〉 � 2d/70

(or we gain from the 8 factor). These two variables being small means that we will be
able to repeat the argument made before and gain 2cd even if |4| is bounded below by
20.99d instead of 2(1+c)d . But when |4| � 20.99d , it is clear that we must have k = 0. If
l � 2d/80, we will have k ∼ l, so that∣∣|n0|n0 − |n1|n1

∣∣ & 2d |k| � 24d/5
|l| �

∣∣|n2|n2 + |n3|n3
∣∣,

which implies |4| & 281d/80, contradicting our assumptions. Thus in any case we deduce
that n0 = n1 ∼ 2d . Now we may use the expression (10.3) for S, but with f ′ and w′

replaced with f and w′′ respectively (see the proof of Proposition 9.3; note that we have
made no restrictions for α0 or α1).

Next, suppose 〈n2〉 + 〈n3〉 ∼ 2d
′

; we may assume d ′ < d/10, otherwise we will gain
a power 2cd from the weight 83.5 (note that n2 + n3 equals a linear combination of the
m variables since n0 = n1). We will fix d and d ′ (then sum over them). If 〈mi〉 � 2d

′/2

for all i, then we gain a power 2cd
′

from the weight 83.5; otherwise we have 〈mi〉 &
2d
′/2 for some i, so we may extract a power 2cd

′

from the 1/mi factor (without affecting
summability inmi). In any case, we will be able to fixmi and βi and sum over them later,
and the Ssub term can be bounded by

Ssub . 2−cd
′
∑
n0,n2

∫
(T )

|fn0,α0 | · |((w
′′)ω1)n0,α1 | · |(z

2)n2,α2 | · |(z
3)c1−n2,α3 | ·min

{
T ,

1
〈α4〉

}

. 2−cd
′

T 0+
∑
n0,n2

‖f̂n0‖Lq‖(((w
′′)ω1)n0)

∧
‖L1

3∏
l=2

‖〈nl〉
−c (̂zl)nl‖L1

. 2−cd
′

T 0+
·2rdTd ·2−rd . 2−cd

′

T 0+Td .

using the bound (9.24) for f and the X2 bound for w′′, where the cj are constants, n3 =

c1 − n2, and the (T ) integral is over the set

{(α0, . . . , α4) : α0 = α14 − |n2|n2 − |c1 − n2|(c1 − n2)+ c2}.

Now we can (sum over mi and integrate over βi and then) sum over d and d ′ to conclude
that S is bounded by T 0+. This proves Proposition 10.1. ut
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11. The a priori estimate IV: The remaining estimates

In this section we will construct appropriate extensions of u∗, v∗ and u so that the im-
proved versions of (8.9) and (8.10) hold. Note that we have already constructed a function,
denoted by w(4), that coincides with w∗ on [−T , T ], and satisfies ‖w(4)‖Y1 ≤ C0e

C0A.
We will fix this function in later discussions. In particular, we may (starting from this
point) redefine the δn and 1n factors as in (7.27) and (7.28) by replacing w∗ with w(4)

(instead of w′′) and u with u′′′.

11.1. The extension of u

Fix a scaleK so thatK = C1.5e
C1.5A whereC1.5 is large enough depending onC1, and the

C2 defined before is large enough depending on C1.5. In order to construct a function u(5)

that coincides with u on [−T , T ] and satisfies

‖〈∂x〉
−s3
u(5)‖X2 + ‖〈∂x〉

−s3
u(5)‖X3 + ‖〈∂x〉

−s3
u(5)‖X4 ≤ C0A, (11.1)

we only need to construct P>Ku(5) and P≤Ku(5) separately.
To construct P>Ku(5), simply note that u′′ coincides with u∗ on [−T , T ], and we have

‖u′′‖Y2 ≤ C1e
C1A; thus if we define (u(5))n = ei1n(u′′)n, where1n is redefined as above,

then P>Ku(5) will equal P>Ku on [−T , T ], and we have

‖〈∂x〉
−s4
u(5)‖Xj . OC1(1)e

C0C1A (11.2)

for j ∈ {2, 3, 4}, thanks to Proposition 8.9. Here note that the s3 exponent in that propo-
sition can actually be replaced by s4 (which is clear from the proof), and the current
(δn,1n) also satisfies Proposition 8.7 (in the same way as the (δn,1n) defined in Sec-
tion 8 does). Since we are restricting to high frequencies, the inequality (11.2) will easily
imply

‖〈∂x〉
−s3

P>Ku(5)‖Xj ≤ A
for j ∈ {2, 3, 4}, which is what we need for P>Ku(5).

Now let us construct P≤Ku(5). Recalling that the function u satisfies the equation
(1.6), and the Y2 norm of χ(t)e−tH∂xxu(0) is clearly bounded by C0A, we only need to
prove ∥∥∥∥ ∫ t

0
e−(t−t

′)H∂xxP6=0((SNu(t
′))2) dt ′

∥∥∥∥
(X−1/s,κ )T

. T 0+, (11.3)

with the implicit constants bounded byOC1.5(1)e
C0C1.5A, whereXσ,β is the standard space

normed by ‖〈n〉σ 〈ξ〉β · ‖l2L2 . Define the function u(7) by (7.1) and (7.2), with the u ap-
pearing on the right hand side replaced by u′′′, and v replaced by P≤0v

′′′
+ w′′′ with v′′′

defined by (v′′′)n = ei1n(v′′)n and w′′′ similarly, so that u(7) coincides with u on [−T , T ]
(note that the 1n here is different from the 1n defined in Section 8; later we will further
modify the definition of 1n, and this will be clearly stated at that time). We claim that∥∥E(1[−T ,T ]P 6=0((SNu

(7))2)
)∥∥
X−1/s,κ . T 0+. (11.4)

This implies (11.3), since the two functions on the left hand side of (11.3) and (11.4)
coincide on [−T , T ].
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Let N = P 6=0((SNu
(7))2), we will have

Nn0 =

∑
(ω1,ω2)∈{−1,1}2

∑
µ1,µ2

ω
µ1
1 ω

µ2
2

2µ12µ1!µ2!

×

∑
n1+n2+m1+···+mµ12=n0

9 ·

2∏
l=1

(zωl )nl

µ12∏
i=1

(u′′′)mi

mi
, (11.5)

where z = P≤0v
′′′
+ w′′′, 9 is the product of some ψ factors and two characteristic

functions 1E11E2 , where

E1 = {ω1(n1 +m1µ1) > 0}, E2 = {ω2(n2 +mµ1+1,µ12) > 0}.

Now, by the same argument as in the proof of Proposition 7.1 (note that n0 6= 0), we can
rewrite the right hand side of (11.5) as a sum of the same form, but either with9 bounded
by 1 and n1 + n2 6= 0, or with 9 bounded by 〈mi 〉+〈n0〉

〈n1〉+〈mi 〉+〈n0〉
for some i.

To prove (11.4), we will use the function g and f as in the previous sections, and fix
the scale d as before; we are then reduced to estimating (with µ = µ12)

S =
∑

n0=n1+n2+m1+···+mµ

∫
(T )

fn0,α0 φα3

2∏
l=1

(zωl )nl ,αl ·

µ∏
i=1

(u′′′)mi ,βi

mi
,

where φ is the Fourier transform of 1[−T ,T ] and the (T ) integration is taken over the set

{(α0, . . . , α3, β1, . . . , βµ) : α0 = α13 + β1µ +4},

with the NR factor

4 = |n0|n0 − |n1|n1 − |n2|n2 −

µ∑
i=1

|mi |mi .

We may assume that 〈n0〉 and 〈mi〉 are all � 2d/90; otherwise, since we can gain some
small power of 〈mi〉 and any large power of 〈n0〉 (because of the −1/s index), we will be
able to gain some power 2cd . Then we simply fix (mi, βi) to produce Ssub, then bound f
in L2L2, Nz in L6L6 and φα3 in l1+L1+ with 2O(s)d loss to conclude. Now, since n0 and
all mi are small, we have either n1 + n2 6= 0 (which implies |4| & 2d ) or |9| . 2−cd

(so we can proceed as above). In this case at least one of the α or β variables must be
& 2d ; since we will also have ωlnl > 0 and hence z = w′′′ which is bounded in Y1 by
C1e

C1A, we will always gain a power of at least 2c(1−κ)d from the corresponding factor,
then proceed as before to estimate Ssub and then S, with a loss of at most 2O(ε)d . Finally,
noting that we always gain a power T 0+ which overwhelms any loss OC1.5(1)e

OC1.5 (1)A,
we have already proved (11.4).

Next, noting that (u∗)n = e−i1nun on the interval [−T , T ], we have

(∂t +H∂xx)(u
∗)n = e

−i1n(∂t +H∂xx)un − ie−i1n(δnun).

The first term on the right hand side can be bounded in X−2/s,κ−1 using Proposition
8.9 and what we proved above, while the second term is easily bounded in the stronger
space X−10,0, by OC1.5(1)e

OC1.5 (1)A. Therefore by the same argument, we can construct
an extension of P≤Ku∗ that satisfies (8.9).
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11.2. The extensions of u∗ and v∗

Now, in order to construct appropriate extensions of P>Ku∗ and v∗, we need the following

Proposition 11.1. Let δn and1n be redefined using (7.27) and (7.28). This time with w∗

replaced by w(4) and u replaced by u(5). Then the new factors will satisfy Proposition 8.7
with the constants being C0e

C0A instead of OC1(1)e
C0C1A.

Now suppose h, k and h′, k′ are four functions, supported in |t | . 1, that are related
by (h′)n = ei1nhn and (k′)n = ei1nkn. Assume that

(h′)n0 =

∑
µ

Cµ
∑

n0=n1+m1+···+mµ

9 · (k′)n1

µ∏
i=1

(u(5))mi
mi

(11.6)

with 9 bounded. Then ‖h‖Y2 . C0e
C0A‖k‖Y2 . Moreover, if 9 is nonzero only when

〈mi〉 & K for some i (again, the constant here may involve polynomial factors of µ),
then ‖h‖Y2 . K0−

‖k‖Y2 .

Proof. The estimates of δn and 1n are proved in the same way as in Proposition 8.7;
notice that all the relevant norms bounded by OC1(1)e

C0C1A there are now bounded by
C0e

C0A in this updated version, thanks to the construction of w(4) in previous sections
and the construction of u(5) above.

Now we need to bound ‖h‖Xj for j ∈ {2, 3, 4, 8}. By fixing and then summing overµ,
we may assume that

|hn0,α0 | ≤ C0
∑

n0=n1+m1+···+mµ

∫
(T )

|kn1,α1 | · |(χe
i(1n1−1n0 ))∧(α2)|

µ∏
i=1

∣∣∣∣ (u(5))mi ,βimi

∣∣∣∣,
where the integration is taken over the set

{(α1, α2, β1, . . . , βµ) : α0 = α1 + α2 + β1µ +4},

and the NR factor is

4 = |n0|n0 − |n1|n1 −

µ∑
i=1

|mi |mi .

Throughout the proof we will only use theXj ′ norm for 〈∂x〉−s
3
u(5) for j ′ ∈ {2, 3, 4}, and

it is important to notice that these norms are bounded by C0A instead of C1A.
First assume j = 4. We introduce the function g with ‖g‖X′4 . 1, so that we only

need to estimate S := (g, h). This is a summation-integration we have seen many times
before; to analyze it, we notice that either 〈4〉, or one of 〈αl〉 (where l ∈ {1, 2}) or 〈βi〉,
must be & 〈α0〉.

Suppose 〈α0〉 . 〈4〉. Let the maximum of 〈n0〉, 〈n1〉 and all 〈mi〉 be ∼ 2d (and we
fix d); then 〈α0〉 . 22d . If among the variables n0 andmi , at least two are & 2(1−s

2)d , then
we will gain a net power 2c(1−κ)d from the weights in the X′4 bound for g, or from the
|mi |

−1 weights appearing in S. Then we will be able to bound the (χei(1n1−1n0 ))∧(α2)

factor using some inequality similar to (9.33), fix the irrelevant (mj , βj ) variables to pro-
duce Ssub, then estimate it by bounding Ng in L2+L2+, Nk and the two Nu(5) factors in
L6L6 and the (χei(1n1−1n0 ))∧(α2) factor in l1+L1+, where 2+ is some 2 + cs2, with a
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further loss of at most 2O(ε)d . We then sum over the (mj , βj ) variables and sum over d to
conclude the estimate for S. If instead only one of them can be & 2(1−s

2)d (again, assume
d is large enough), then this variable and n1 must both be ∼ 2d . Let the maximum of all
the remaining variables be ∼ 2d

′

where d ′ ≤ (1 − s2)d is also fixed; then we will have
|α0| . 2d+d

′

. Since we will be able to gain a power 2c(1−κ)(d+d
′) from the weights, we

can proceed in the same way as above.
Next, suppose 〈α0〉 . 〈α2〉. By invoking (8.17) we may get an estimate better than

(9.33) for the α2 factor, namely

‖〈α2〉(χe
i(1n1−1n0 ))∧(α2)‖Lσ . C0e

C0A
µ∑
i=1

〈mi〉
s5

(11.7)

for all 1 ≤ σ ≤ ∞; the . here allows for a polynomial factor in µ. Therefore, by losing
a tiny power of some mi , we may cancel the α0 weight in the X′4 bound for g and still
bound the α2 factor in L2, then fix (mi, βi) and produce Ssub, and estimate it by

Ssub .
∑
n0

〈n0〉
−1
‖〈n0〉〈α0〉

−κgn0,α0‖L2
α0
‖kn0+c1,α1‖L1

α1

. ‖〈n0〉
−1
〈n0〉〈α0〉

−κgn0,α0‖l3/2L2 · ‖kn1,α1‖l3L1 . 1,

where the cj are constants. If instead 〈α0〉 . 〈α1〉, we can invoke the α1 weight in the X4
norm for k to cancel the α0 weight, then notice that 〈n1〉 . 〈n0〉 + 〈mi〉 for some i, then
bound the α2 factor in L1 and fix all the other (mj , βj ) to produce Ssub. If 〈n1〉 . 〈mi〉
we will estimate

Ssub .
∑

n0=n1+mi+c1

〈n1〉

〈n0〉〈mi〉
‖〈n0〉〈α0〉

−κgn0,α0‖L2
α0

×‖〈n1〉
−1
〈α1〉

κkn1,α1‖L2
α1
‖(u(5))mi ,βi‖L1

βi

. ‖〈α0〉
−κg‖l1L2‖〈n1〉

−1
〈α1〉

κk‖lγL2 · ‖u
(5)
‖
lγ
′
L1 . 1,

where the cj are constants; note that ‖u(5)‖
lγ
′
L1 can be controlled by the X2 norm of

〈∂x〉
−4s3

u(5) due to (1.3). If 〈n1〉 . 〈n0〉 we will instead estimate the g factor above
in lγ

′

L2, the k factor in lγL2, and the u(5) factor with weight 〈mi〉−1 in l1L1. Finally,
if 〈α0〉 . 〈βi〉 for some i, we will cancel the 〈α0〉 weight by the 〈βi〉 weight, then fix
(mj , βj ) and again get Ssub, which we estimate by

Ssub .
∑

n0=n1+mi+c1

〈c1〉
−s
〈n0〉

−s
〈n1〉

−c(2−γ )
‖〈n0〉

s
〈α0〉

−κgn0,α0‖L2
α0

×‖〈n1〉
c(2−γ )kn1,α1‖L1

α1
‖〈mi〉

−1
〈βi〉

κ(u(5))mi ,βi‖L2
βi

. ‖〈n0〉
s
〈α0〉

−κg‖l1L2‖〈n1〉
c(2−γ )k‖

lγ
′
L1 · ‖〈∂x〉

−4s3
u(5)‖X4 . 1,

where the cj are constants, and again note that we can gain any small power of c1, since
±c1 is the sum of all mj where j 6= i.

Next, let us assume j ∈ {2, 3, 8}. In this case we only use the l1L1 norm of
m−1
i (u(5))mi ,βi , so we will be free to lose any power 〈mi〉c for small c. Therefore we
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may fix each (mi, βi), invoke (11.7) to fix α2 also (by an argument similar to the proof of
Proposition 8.9), then reduce to bounding ‖z‖Xj in terms of ‖k‖Xj , provided

|zn0,α0 | ≤ |kn0+c1,α0+|n0+c1|(n0+c1)−|n0|n0+c2 |.

But since the bound we get is allowed to grow like 〈c1〉
s1/3

(note that −c1 is the sum of
all mi , and we are allowed to lose 〈mi〉c for small c), this will be easy if we examine X2,
X3 and Y separately (in particular, we will use the definition of the Y norm). The only
thing we need to address is the 〈n〉 weights in the definition of X2 and X3, and the step of
taking supremum when obtaining the X8 norm from the Y norm; however, by a standard
argument we can show that through these we will lose at most 〈c1〉

O(s) power, which is
acceptable.

Finally, we may check that throughout the above proof, we only need to use the X′j
norms of 〈∂x〉−2s3

u(5) instead of 〈∂x〉−s
3
u(5); thus we will gain a power K0+ if we make

the restriction mi & K for some i. ut

To see how Proposition 11.1 allows us to construct extensions of P>Ku∗ and v∗, we
first note that u∗ is real-valued, so we only need to construct an extension of P>+Ku∗
(which is an abbreviation of P+P>Ku∗). Now, in Proposition 11.1 we may choose k to
be an arbitrary extension of v∗ and h to be some extension of u∗ (and choose h′ and k′

accordingly) so that (11.6) holds with appropriate coefficients (cf. (7.1) and (7.2)).
Exploiting the freedom in the choice of k, we will set P+k = w(4) and P≤0k = P≤0v

′′.
The part coming from P+k is bounded in Y2 (before or after the P>+K projection) by
C0e

C0A due to Proposition 11.1, since we already have ‖w(4)‖Y2 . ‖w(4)‖Y1 ≤ C0e
C0A.

As for the part coming from P≤0k, we must have n0 > K and n1 ≤ 0 in (11.6), so the
9 factor will be nonzero only when 〈mi〉 & (µ + 2)−2K for some i, thus we may again
use Proposition 11.1 to bound this part in Y2 by OC1(1)e

C0C1AK0−
≤ 1, since we have

‖v′′‖Y2 ≤ C1e
C1A. This completes the construction for the extension of u∗.

Now, to construct the extension of v∗, simply set the k in Proposition 11.1 to be u(4)

(which is the extension of u∗ we just constructed) and h to be some extension of v∗ so
that (11.6) holds with appropriate coefficients. Then this extension will do the job, since
we already have ‖u(4)‖Y2 ≤ C0e

C0A. This finally completes the proof of Proposition 8.1.

12. The a priori estimate V: Controlling the difference

The main purpose of this section is to provide necessary estimates for differences of two
solutions to (1.6). First we need to introduce some notation, including the definition of
the metric space BOT , which will be used also in Section 13.

12.1. Preparations

Definition 12.1. Suppose Q = (u′′, v′′, w′′, u′′′) and Q′ = (u††, v††, w††, u†††) are two
quadruples of functions defined on R× T. We define their distance by

Dσ (Q,Q′) = ‖〈∂x〉−σ (w′′ − w††)‖Y1 + ‖〈∂x〉
−σ (v′′ − v††)‖Y2

+‖〈∂x〉
−σ (u′′ − u††)‖Y2 + ‖〈∂x〉

−s3
−σ (u′′′ − u†††)‖X2∩X3∩X4 ,
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for σ ∈ {0, s5
}. In particular, if σ = Q′ = 0, we define the triple norm

|||Q||| := D0(Q, 0) = ‖w′′‖Y1 + ‖v
′′
‖Y2 + ‖u

′′
‖Y2 + ‖〈∂x〉

−s3
u′′′‖X2∩X3∩X4 .

Next, suppose u and u− are functions defined on I × T for some interval I . We will
define the functions (u∗, v∗, w∗) corresponding to u and some M , and (u+, v+, w+)
corresponding to u− and some N (note the definition depends on the choice of the origin
in 1n(t) =

∫ t
δn(t
′) dt ′, but this will not affect the triple norm ||| · |||; this does affect

estimates for differences, but we need them only when I = [−T , T ] or its translation, in
which case the choice of origin is canonical), as in Sections 5 and 7, and then define

DI,MN
σ (u, u−) = inf

Q,Q′
Dσ (Q,Q′), (12.1)

where the infimum is taken over all quadruples Q and Q′ that extends (u∗, v∗, w∗, u)
and (u+, v+, w+, u−) from I × T to R × T, respectively. We will also define |||u|||MI =
DI,MM

0 (u, 0) = infQ |||Q|||; these notations can be written in a more familiar way as

DI,MN
σ (u, u−) = ‖〈∂x〉

−σ (w∗ − w+)‖Y I1
+ ‖〈∂x〉

−σ (v∗ − v+)‖Y I2

+‖〈∂x〉
−σ (u∗ − u+)‖Y I2

+ ‖〈∂x〉
−s3
−σ (u− u−)‖(X2∩X3∩X4)I

,

|||u|||MI = ‖w
∗
‖Y I1
+ ‖v∗‖Y I2

+ ‖u∗‖Y I2
+ ‖〈∂x〉

−s3
u‖(X2∩X3∩X4)I

.

Also, if M = N = ∞ we will omit it. Now we can define the metric space

BOI
= {u : |||u|||I = |||u|||

∞

I <∞}, (12.2)

with the distance function given by DI
0 (we will also use DI

s5 , which is also well-defined
on BOI ). Finally, when I = [−T , T ], we may use T in place of I in sub- or superscripts,
so this contains the definition of BOT .

Remark 12.2. If u ∈ BOT , we may define uux = 1
2∂x(P6=0u

2) as a distribution on
[−T , T ] through an argument similar to the one in Section 11. More precisely, we may
uniquely define the function

h(t) =

∫ t

0
e−(t−t

′)H∂xx
(
u(t ′)∂xu(t

′)
)
dt ′ (12.3)

as an element of (X−1/s,κ)T .
In particular, we may define u ∈ BOT to be a solution to (1.1) on [−T , T ], if u

satisfies the integral version of (1.1) with the evolution term defined as in (12.3). Clearly
this definition is independent of the choice of origin, and [−T , T ]may be replaced by any
interval I .

Moreover, since the arguments in Section 11 allow for some room, the map sending u
to h in (12.3) is continuous with respect to the weak distance function DT

s5 (or Ds5 if we
consider the map sending the quadruple Q to h). This fact will be important in the proof
of Theorem 13.1.
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Proposition 12.3. LetB0
t be the space of bounded functions of t into some Banach space.

Suppose u and u− are two functions defined on I × T, and choose corresponding exten-
sions Q = (u′′, v′′, w′′, u′′′) and Q′ = (u††, v††, w††, u†††) corresponding to M and N ,
where M ≥ N .

‖u‖B0
t (I→Z1)

. |||Q|||, ‖u‖B0
t (I→Z1)

. |||u|||MI . (12.4)

Concerning differences, we only have the weaker estimates

‖〈∂x〉
−s5
(u− u−)‖C0

t (I→Z1)
. O|||Q|||,|||Q′|||(1) ·

(
Ds5(Q,Q′)+N0−), (12.5)

‖〈∂x〉
−θ (u− u−)‖C0

t (I→Z1)
. Oθ,|||Q|||,|||Q′|||(1) ·

(
D0(Q,Q′)+N0−), (12.6)

for all θ > 0, where the constant may also depend on the upper bound of the length of I .

Proof. We may assume I = [−T , T ] with T . 1. The inequalities in (12.4) follow
directly from the definition (and the fact that u(t) and u′′(t) have the same Z1 norm for
t ∈ [−T , T ]); the proofs of (12.5) and (12.6) are similar, so we only prove (12.5). Assume
|||Q|||+|||Q′||| . 1 and Ds5(Q,Q′) ≤ ε, we will define1n and1−n corresponding to Q and
Q′ as in (7.27) and (7.28) using functions (w′′, u′′′) and (w††, u†††) respectively, then set
u′ and u† to be extensions of u and u−, defined by (u′)n = χ(t)ei1n(u′′)n and similarly
for u†. Since

‖〈∂x〉
−s5
(u′′ − u††)(t)‖Z1 . Ds5(Q,Q′) . ε, (12.7)

we only need to estimate the function z defined by zn = (u′′)n(ei1n − ei1−n ). Due to the
bound |||Q||| . 1 which implies the bound for the Z1 norm of each u′′(t), we only need to
prove

|χ(t)(ei1n − ei1−n )(t)| . (ε +N0−)〈n〉s
5

(12.8)

for each n and t . Using the arguments in Lemma 8.6, it suffices to prove the bound for
δn − δ

−
n , but if we use (7.28), this will be clear from the strong bounds on w′′ and w††,

and the weak bound on their difference. ut

12.2. Statement and proof

Now suppose u is a smooth function solving 1.6) on [−T , T ]. The arguments in Sections
8–10 actually give us a way to update a given quadruple Q = (u′′, v′′, w′′, u′′′) extending
(u∗, v∗, w∗, u) to a new quadruple Q′ = (u(4), v(4), w(4), u(5)), which remains to be an
extension, and satisfies better bounds. We define I to be the map from the set of extensions
to itself, that sends Q to Q′. Using the arguments from Sections 8–10, we can prove

Proposition 12.4. Let C1 be large enough, C2 large enough depending on C1, and 0 <
T ≤ C−1

2 eC2A. Suppose u is a smooth function solving (1.6) on [−T , T ], and Q is an
extension satisfying

|||Q||| ≤ C1e
C1A, ‖〈∂x〉

−s3
u′′′‖X2∩X3∩X4 ≤ C1A. (12.9)

Then the same estimate will hold if we replace Q by IQ.
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Now we can state the main proposition in this section, namely

Proposition 12.5. Let C1, C2 and T be as in Proposition 12.4. Suppose u and u− are
two smooth functions solving (1.6) with truncations SN and SM respectively, where 1 �
N ≤ M ≤ ∞, Q and Q′ are two quadruples corresponding to u and u− respectively,
such that (12.9) holds, and that

Ds5(Q,Q′) ≤ B (12.10)

for some B > 0. Then

Ds5(IQ, IQ′) ≤ B/2+OC1(1)e
C0C1A

(
‖〈∂x〉

−s5
(u(0)− u−(0))‖Z1 +N

0−), (12.11)

where C0 is any constant appearing in previous sections. In particular,

DT ,NM

s5 (u, u−) ≤ OC2,A(1)
(
‖〈∂x〉

−s5
(u(0)− u−(0))‖Z1 +N

0−), (12.12)

provided ‖u(0)‖Z1 + ‖u
−(0)‖Z1 ≤ A for some large A. Moreover, if M = N , we may

replace the Ds5 distance by the D0 distance and remove the N0− term on the right hand
side of (12.12).
Proof. When we take differences in the case M = N , the right hand side will involve
only factors like u− u− and not the ones like P≥Nu, thus we will not have an N0− term
on the right hand side. Also, it is easy to see from the proof below that removing the
〈n〉−s

5
weight will only make arguments easier. Thus we will focus on (12.12) now. By

an iteration using Proposition 12.4, we only need to prove (12.11) assuming (12.9) and
(12.10).

Recall the functions δn, δ−n , 1n, 1−n and y, y− that come from the two quadruples
Q and Q′ in the same way as in Section 8.2. The two functions y and y− will satisfy
two equations with the form of (8.12) separately. Clearly we may also assume all relevant
functions are supported in |t | . 1. To bound the first part of Ds5(IQ, IQ′) requires
proving

‖〈∂x〉
−s5
(y − y−)‖Y1 ≤ B/10+OC1(1)e

C0C1A(θ +N0−), (12.13)

where we denote ‖〈∂x〉−s
5
(u(0)− u−(0))‖Z1 = θ for simplicity.

By another bootstrap argument, we may assume (12.13) holds with right hand side
multiplied by OC1(1). Recall the equations

y = χ(t)eit∂xxw(0)+ E(1[−T ,T ]N 2(y, y))+
∑

j∈{3,3.5,4,4.5}

E(1[−T ,T ]N j ), (12.14)

y− = χ(t)eit∂xxw−(0)+ E(1[−T ,T ]N 2−(y−, y−))+
∑

j∈{3,3.5,4,4.5}

E(1[−T ,T ]N j−),

(12.15)

where N j and N j− are suitable nonlinearities; to bound y − y−, we will first bound∑
j∈{0,3,3.5,4,4.5}

‖〈∂x〉
−s5
(Mj

−Mj−)‖Y1 ,

where the definitions of Mj and Mj− are clear (the term j = 0 corresponds to the linear
term which can be bounded by θ +N0−, so we will omit this below).
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Here it is important to note that all the bounds in the previous sections are proved
directly using multilinear estimates, thus they will automatically imply the corresponding
estimates for differences. In fact, when we try to estimate Mj

−Mj− by introducing
some (g, f ) and forming an S expression, there are a few possibilities:

(1) Suppose we take the difference y − y−, or (for example) some v′′ − v†† directly.
Then one of the y or v′′ factors appearing in the previous sections will be replaced by this
difference. Note that if we estimate this difference in the weakened norm ‖〈∂x〉−s

5
· ‖Yj

(we use the X2 ∩ X3 ∩ X4 norm for u′′′ − u†††, but the proof will be the same), we will
get a bound OC1(1)e

C0C1A(B + θ + N0−) which is what we need; the loss coming from
using this weaker norm can be recovered from the fact that we only need to estimate the
weaker norm of Mj

−Mj−. To be precise, for each multilinear estimate we proved
in the previous sections, suppose the term we bound in the weaker norm (i.e. the norm
involving 〈∂x〉−s

5
) corresponds to the variable nl ; then one of the following must hold: (i)

we can gain a power 2(0+)d in the estimate, where 0+ is at least cs2.5, and we also have
〈nl〉 . 2d ; in this case it will suffice to use this weaker norm in all the discussions before,
so this part will be acceptable; (ii) we have 〈n0〉 & 〈nl〉 (for example, when n0 = nl
and the other variables are small compared to them). In this case, since we only need to
estimate the output y − y− in the weaker norm, we will gain a power 〈n0〉

s5
compared to

the proof in the previous sections, which is enough to cancel the loss 〈nl〉s
5
, thus this part

is also acceptable; (iii) we have 〈n0〉 ∼ 2d and 〈nl〉 ∼ 2d
′

, and the expression S involves
the factor 2−|d−d

′
| (this appears, for example, in various “resonant” cases in Section 9 and

Proposition 10.1, and is characterized by the need to use (9.24)). In this case we lose at
most 2s

5
|d−d ′| from the additional weights compared to the proof in the previous sections,

which can be canceled by the 2−|d−d
′
| factor, so it will still be acceptable. To conclude,

we can estimate this part of y − y− in the weaker norm as

T 0+OC1(1)e
C0C1A(B + θ +N0−),

by repeating the arguments in the previous sections, with minor modifications illustrated
above.

(2) Suppose we take the difference of the 8 weights. The difference will satisfy the
same bounds as the weights themselves; moreover it is nonzero only when some m or
n variable is & N . Therefore we may replace one of the y or v′′ factors appearing in
the previous sections by P≥Ny or P≥Nv′′. We then proceed as in case (1), estimating
this particular factor in the weakened norm to gain a power N0−, and bound the whole
expression in the same way as in case (1).

(3) Suppose we take (for example) the difference v′ − v†, where (v′)n = ei1n(v′′)n

and (v†)n = e
i1−n (v††)n; alternatively, suppose we take the difference

ei(±1n0±1n1±··· ) − e
i(±1−n0

±1−n1
±··· )

.

It turns out that whenever we need to estimate these factors, we will always gain (from
these factors themselves, or from elsewhere) some power 2(0+)d where 0+ is at least
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cs2.5, and 2d controls every relevant variable (for typical examples, see the estimate of
J(n)(α5) as defined in (10.13) in the proof of Proposition 10.1, as well as the last part of
Section 9). Here we may use Proposition 8.6 to reduce the estimation of the difference of
these exponential factors to the estimation of the differences δn−δ−n themselves. Since we
can bound functions like w′′−w†† in the weaker norm byOC1(1)e

C0C1A(B + θ +N0−),
we will be able to obtain estimates similar to the ones in Proposition 8.7, but with the
coefficient C0C1e

C0C1A on the right hand side replaced byOC1(1)e
C0C1A(B+ θ +N0−),

with a loss of at most 〈n〉O(s
5) which is dwarfed by the power we gain. Finally, we may

use the T 0+ gain coming from the evolution to cancel the OC1(1)e
C0C1A factor, thus this

part is also acceptable.

Next we need to control the difference of the M2 terms. We will follow the proof in
Section 9, and the part of the proof where no second iteration is needed can be completed
in the same way as above. As for the remaining part, what we do in Section 9 is basically
rewriting

N 6(y, y) =
∑

j∈{0,3,3.5,4,4.5}

N 6(y,Mj )+N 6(y, E(1[−T ,T ]N 2(y, y)))

where N 6 is the part of N 2 under consideration; we may also rewrite N 6−(y−, y−) in
the same way. When we take the difference, we may control the first term on the right
hand side using the bound for Mj

−Mj− as in Proposition 9.1 (actually we have a
slightly weaker version, but this will suffice); as for the second term, since it is bounded
in Section 9 via multilinear estimates, we can again treat the difference in the same way
as above. This completes the proof for the bound of w∗ − w+.

Next, recall that the other parts of IQ and IQ′ such as u(5) and u[5], u(4), u[4], v(4)

and v[4] are constructed in the same way as in Section 11, where the scale K is taken to
be K = C1.5e

C1.5A with C1.5 large enough depending on C1, but small compared to C2.
Note that we may redefine1n and1−n when necessary. Now to prove (12.10), we need to
bound the differences such as u(4) − u[4] in the weaker norm by OC1(1)e

C0C1A(K0−B +

θ + N0−). But this can again be achieved by combining the argument above with the
proof in Section 11, if we notice two things:

(1) In the proof of Proposition 11.1, we can always gain some power 〈mi〉cs
2.5

for
each mi , so we will be able to cover the loss coming from using only the weaker norm
if we take the difference of the exponential factors (cf. (11.7)), or if we take u(5) − u[5].
For the same reason, if we lose a power 〈n1〉

s5
we will be able to recover it from the

gain 〈n0〉
s5

.

(2) From the above we already know that the weaker norm of w(4) − w[4] can be
bounded byOC1(1)e

C0C1A(T 0+B+ θ +N0−). We may then prove the same bound (pos-
sibly with someOC1(1) factors) for P>K(u(5)−u[5]), P≤K(u(5)−u[5]), P≤K(u(4)−u[4]),
P>K(u(4)−u[4]) and v(4)−v[4] in that order, in the same way as in Section 11 (note T −1

is assumed to be larger than any power of K).
Therefore we will be able to bound all the differences and thus complete the proof of

Proposition 12.5. ut
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13. Proof of the main results

With Propositions 8.1 and 12.5, it is now easy to prove our main results. Since the argu-
ment in this section will be more or less standard, we may present only the most important
steps.

13.1. Local well-posedness and stability

Theorem 13.1 (Precise version of Theorem 1.2). There exists a constant C such that,
when we choose any A > 0 and 0 < T ≤ C−1e−CA, the following hold:

(1) Existence: For any f ∈ V with ‖f ‖Z1 ≤ A, there exists some u ∈ BOT such that
|||u|||T ≤ Ce

CA and u satisfies equation (1.1), in the sense described in Remark 12.2,
with initial data u(0) = f .

(2) Continuity: Let the solution described in part (1) be u = 8f = (8tf )t . Suppose
‖f ‖Z1 ≤ A and ‖g‖Z1 ≤ A. Then for each ε > 0, we have

sup
|t |≤T

‖〈∂x〉
−s5
(8tf −8tg)‖Z1 +DT

s5(8f,8g) ≤ OC,A(1)‖〈∂x〉−s
5
(f − g)‖Z1 ,

sup
|t |≤T

‖〈∂x〉
−ε(8tf −8tg)‖Z1 +DT

0 (8f,8g) ≤ Oε,C,A(1)‖f − g‖Z1 .

(3) Short-time stability: Let u = 8f as in part (2), and let 8N be the solution flow of
(1.6) and uN = 8N5Nf . Then

lim
N→∞

(
DT ,N∞

s5 (uN , u)+ sup
|t |≤T

‖〈∂x〉
−s5
(uN (t)− u(t))‖Z1

)
= 0.

(4) Uniqueness: For any other time T ′, suppose u and u− are two elements of BOT ′ with
the same initial data, and they both solve (1.1). Then u = u− (on [−T ′, T ′]).

(5) Long-time existence: Consider any f ∈ Z1, and define uN as in (3). Suppose that
for some other time T ′ and some subsequence {Nk},

sup
k

|||uNk |||
Nk
T ′
<∞. (13.1)

Then there exists a solution u ∈ BOT ′ to (1.1) with initial data f .

Proof. Suppose f ∈ Z1 and ‖f ‖Z1 ≤ A, and let 0 < T ≤ C−1
2 e−C2A with constants as

in Propositions 12.4 and 12.5. Consider uN as defined in (3); using Proposition 8.1, we
may choose for eachN some quadruple QN corresponding to uN that satisfies (12.9). We
define

QN
= INQN . (13.2)

It is clear from Propositions 12.4 and 12.5 that

|||QN
||| ≤ C1e

C1A, (13.3)

lim
N,M→∞

Ds5(QM ,QN ) = 0. (13.4)
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By a simple completeness argument we can then find some Q so that Ds5(QN ,Q)→ 0
(in particular Q will have initial data f ), and by an argument similar to the proof of
Proposition 3.6 we deduce that |||Q||| ≤ C1e

C1A. By using Remark 12.2, we can now pass
to the limit and show that the quadruple Q gives a solution u ∈ BOT of (1.1) on the
interval [−T , T ]. This proves existence.

Parts (2) and (3) will follow from basically the same argument. In fact, for each (f, g),
we may construct QN and QN− corresponding to8N5Nf and8N5Ng as above, so that
they have uniformly bounded triple norm, and moreover

Ds5(QN ,QN−) . ‖〈∂x〉
−s5
(f − g)‖Z1 +N

0−.

Using Proposition 12.3 and passing to the limit, we obtain the result in (2). The result in
(3) follows from comparing QN with Q and using Proposition 12.3 also.

As for part (5), we will deduce it merely from the condition that |||uNk |||Nk
T ′
≤ A and

‖〈∂x〉
−s5
(uNk − u)(0)‖Z1 → 0, (13.5)

which is clearly satisfied in our setting. Choose some τ small enough depending on A;
then ‖u(0)‖Z1 ≤ C0A implies we can solve (1.1) on [−τ, τ ], and from (Proposition 12.5
and) what we just proved, we also have

‖〈∂x〉
−s5
(uNk − u)(±τ)‖Z1 → 0, (13.6)

and therefore
‖u(±τ)‖Z1 ≤ lim sup

N→∞

‖uNk (±τ)‖Z1 ≤ C0A. (13.7)

This information will allow us to restart from time ±τ , and thus obtain a solution to (1.1)
on [−2τ, 2τ ]. Repeating this, we will finally get a solution on [−T ′, T ′], which we can
prove to be in BOT ′ using partitions of unity. This proves (conditional) global existence.

Finally, we need to prove uniqueness. Let u and u− be two solutions to (1.1) that
both belong to BOT ′ and have the same initial data. Let their strong norms be bounded
by A, and choose τ small enough depending on A. To prove that u = u− on [−τ, τ ], we
need to prove the following claim: if for quadruples Q and Q′ corresponding to u and u−

respectively, we have

|||Q||| + |||Q′||| ≤ A, Ds5(Q,Q′) ≤ K, (13.8)

then with Q replaced by IQ and Q′ by IQ′, the inequalities will hold with A unchanged
and K replaced by K/2. Thus we need to repeat the whole argument from Section 8
to Section 12 without the smoothness assumption. Fortunately, since we have chosen
τ ≤ τ(A), we do not need the bootstrap argument (which requires a priori smoothness) in
bounding the evolution term; however, we do need this in Section 8 when we try to obtain
a first bound for ‖y‖Y1 .

This difficulty can be overcome as follows: first, we may check for every part of
Sections 8, 9 and 10 that in order to bound y in Y1 using the evolution equation (8.12), it
will suffice to bound y in some weaker space Yw1 defined by (cf. Section 2.3)

‖u‖Yw1 = ‖u‖X
w
1
+ ‖u‖Xw2 + ‖u‖X

w
4
+ ‖u‖Xw5 + ‖u‖X

w
7
. (13.9)
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Here to obtain the Xwj norm, we weaken the Xj by decreasing the powers b in (2.2), κ
in (2.5) and 1/8 in (2.8) by s5, and increasing the indices 1 in (2.3) and q in (2.6) by s5.
Notice that any power of n and any lp norm remain unchanged. Therefore, we only need
to show that the linear map L defining y from w′′ (see Section 8.2) is bounded from Y1 to
Yw1 , since this combined with the proof from Sections 8 to 10 will give us a stronger bound
of y in Y1 and close the estimate (note that after the end of Section 10, no arguments will
depend on smoothness, and we will be able to finish just as Sections 11 and 12).

Now, suppose ‖u‖Y1 ≤ 1; we can easily show that ‖Lu‖Xw2 + ‖Lu‖Xw5 . 1 using the
decomposition

Lu = u · 1[−T ,T ](t)+ χ(t)1[T ,∞)(t)e−(t−T )H∂xxu(T )
+χ(t)1(−∞,−T ](t)e−(t+T )H∂xxu(−T ). (13.10)

In fact, the last two terms in (13.10) are bounded in Xw2 and Xw5 because u(±T ) is
bounded in Z1, and the Fourier transform of χ(t)1[T ,∞)(t) is in Lk for k > 1; the first
term is bounded because convolution with the Fourier transform of 1[−T ,T ] (which decays
like 〈ξ〉−1 uniformly for T . 1) is bounded from Lkξ to Lk

′

ξ for all k′ > k. Now to bound
Lu in Xwj for j ∈ {1, 4, 7}, we only need to bound the operator

L̃ : f (t) 7→ 1[−T ,T ](t)f (t)+ χ(t)1[T ,∞)f (T )+ χ(t)1(−∞,−T ]f (−T ) (13.11)

from H h
t to H h−θ

t for any θ > 0. By direct computations we can bound L̃ from H 1 to
itself, thus (by interpolation) it suffices to bound L̃ fromH 1/2+θ toH 1/2−θ . But this result
is well-known for the first part of L̃, and trivial (given the decay of the Fourier transform
of χ(t)1[T ,∞)(t)) for the last two parts. ut

13.2. The Hamiltonian structure and global well-posedness

In this section we will denote any constant byC, since they no longer make any difference.
We fix some large time T , and recall the energy functional

EN [f ] =

∫
T

( 1
2 |∂

1/2
x f |2 − 1

6 (SNf )
3) (13.12)

defined in Section 4.1. If we introduce the symplectic form

ω(u, v) =

∫
T
u · (∂−1

x v)

in the (finite-dimensional) space VN , then a simple computation shows that the Hamilto-
nian equation with respect to the symplectic form ω and the functional EN is (up to a sign
depending on the convention) the truncated equation (1.6). By Liouville’s Theorem, the
solution flow {8Nt }t∈R will preserve the measure LN which corresponds to the Lebesgue
measure on R2N (see Section 4.1). Since this flow also preserves the L2 norm as well as
the Hamiltonian EN , we see that

ν◦N (E) = ν
◦

N (8
N
t (E)) (13.13)

for all time t and all Borel sets E ⊂ VN .
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Next, for any f ∈ V , consider the functions uN (t) = 8Nt 5Nf , which are the solu-
tions to (1.6) with initial data uN (0) = 5Nf . Thus f 7→ uN is a map from V to BOT

depending on N , therefore we may denote |||uN |||NT = JN (f ).
Choose a large positive integer M , a parameter A depending on M , and define

�N,A = {g ∈ VN : ‖g‖Z1 > A}.

Then

ν◦N (�N,A) = νN (5
−1
N (�N,A)) ≤ νN ({f ∈ V : ‖f ‖Z1 > A}) ≤ Ce−C

−1A2
, (13.14)

where the last inequality follows from Proposition 4.6, Cauchy–Schwarz, and the fact that
‖θN‖L2( dρ) = O(1) (which is part of Proposition 4.4). Therefore if we introduce

�N,M,A =

M⋃
j=−M

(8NjT/M)
−1(�N,A),

we will have
ν◦N (�N,M,A) ≤ CMe

−C−1A2
. (13.15)

If we chooseA = A(M) = C′
√

logM with some sufficiently largeC′, then the inequality
(13.15) will imply ν◦N (�N,M,A) ≤ CM

−3. Now if g 6∈ �N,M,A, we must have

8NjT/M(g) 6∈ �N,A(M)

for all |j | ≤ M . By Proposition 8.1, this implies

max
|j |≤M

|||(8Nt g)t |||
N
[(j−1)T /M,(j+1)T /M] ≤ Ce

CC′
√

logM , (13.16)

provided T/M ≤ C−1e−CA(M), which is clearly true when M is large enough depending
on T . Using partitions of unity, we easily see that (13.16) implies

|||(8Nt g)t |||
N
T ≤ CM

C,

again when M is large enough depending on T . Thus we have proved

νN ({f ∈ V : JN (f ) > CMC
}) ≤ CM−3 (13.17)

for all M > M(T ), and hence (recall Section 4.1 for the definition of θN )

sup
N

∫
V

log(JN (f )+ 2)θN (f ) dρ(f ) <∞. (13.18)

Since θN (f ) converges to θ(f ) almost surely after passing to a subsequence, we may use
Fatou’s Lemma to conclude that except for a set with zero ρ measure, for each f with
θ(f ) > 0, there exists a sequence Nk ↑ ∞ so that JNk (f ) ≤ C for some C. By part
(5) of Theorem 13.1, this would imply the existence of a solution u ∈ BOT to (1.1) on
[−T , T ] with initial data f . Finally, by Remark 4.3 we may choose a sequence of Gibbs
measures {θR} so that for almost every f ∈ V we have at least one θR(f ) > 0; then we
take another countable intersection with respect to T , to arrive at
Proposition 13.2. For almost every f ∈ V with respect to the Wiener measure ρ, there
exists a unique global solution u to (1.1) with initial data f such that u ∈ BOT for each
T > 0.
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13.3. The global flow and invariance of Gibbs measure

In this section we will restate and prove Theorem 1.3.

Theorem 13.3 (Restatement of Theorem 1.3). Let the Wiener measure ρ be defined as
in Section 4.1. There exists a subset 6 ⊂ V such that ρ(V − 6) = 0 and the following
holds: For any f ∈ 6 there exists a unique global solution u to (1.1) with initial data f
such that u ∈ BOT for all T > 0. Moreover, if u = 8f = (8tf )t , then these 8t form a
measurable transformation group from 6 to itself. Finally, suppose the Gibbs measure ν
is defined as in Section 4.1 (using some cutoff function ζ ). Then each8t keeps ν invariant.

Proof. We define 6 to be the set of all f ∈ V such that there exists a solution u to (1.1)
with initial data f that belongs to BOT for all T > 0. We first show that6 is measurable;
in fact, we have 6 =

⋂
T

⋃
A6AT , where 6AT is the set of f such that a solution u

exists in BOT with ‖u(t)‖Z1 ≤ A for all |t | ≤ T . Now, divide [−T , T ] into M equal
intervals where M is large enough depending on A. Then by local theory, the solution
map 8t is well-defined (and measurable) on each subinterval. Now we can (iteratively)
see that 6AT is a finite intersection of sets, each being the pre-image of the previous one
under a measurable map, so 6AT is measurable.

Proposition 13.2 guarantees that ρ(V−6) = 0; also the map8 is well-defined on6,
and each 8t maps 6 to itself. Note that from part (4) of Theorem 13.1, any two solutions
to (1.1) that belong to BOT and agree at one time must coincide, thus u will be unique
for each fixed f ∈ 6. Now fix a Gibbs measure ν; to prove the invariance of ν, we only
need to show that

ν(8t (E)) ≥ ν(E) (13.19)
for each Borel subset E and each |t | ≤ 1, since the rest can be done by iteration.

Define
6A =

{
f ∈ 6 : sup

|t |≤2
‖8tf ‖Z1 ≤ A

}
for each A. Then 6 =

⋃
A6A, so we only need to prove (13.19) assuming E ⊂ 6A

for some A. By iteration, it suffices to prove (13.19) when E ⊂ {f : ‖f ‖Z1 ≤ A} and
|t | ≤ t (A). Next, we introduce on the set {f : ‖f ‖Z1 ≤ A} the metric

d(f, g) = ‖〈n〉−s
6
+r(f − g)‖lp ,

making it a complete separable metric space. By a well-known theorem in measure theory,
the restriction of ν to this set is a finite Borel measure on this metric space, and thus is
regular (meaning every Borel set can be approximated from the inside by compact sets).
Therefore we may further assume E is compact with respect to the metric d. Recall the
solution flow {8Nt } for (1.6); for each N we have

νN ({g : 5Ng = 8
N
t (5Nh), h ∈ E}) ≥ νN (E) (13.20)

by the invariance of ν◦N under the flow 8Nt . To prove (13.19) it thus suffices to show

lim sup
N→∞

{g : 5Ng = 8
N
t (5Nh), h ∈ E} ⊂ 8t (E), (13.21)

since we already know that the total variation of νN − ν tends to zero.
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Now suppose for some g ∈ V we have a subsequence Nk ↑ ∞ and hNk ∈ E such
that 5Nkg = 8

Nk
t (5Nkh

Nk ) for each k. By compactness we may assume hNk → h with
respect to the metric d for some h ∈ E. Since every function involved here is bounded in
Z1 norm by OA(1), and we are assuming |t | ≤ t (A), we may use Propositions 12.5 and
13.1, as well as the limit

‖〈∂x〉
−s5
(hNk − h)‖Z1 . d(hNk , h)→ 0 (13.22)

to conclude that

‖〈∂x〉
−s5
(8th−5Nkg)‖Z1 ≤ ‖〈∂x〉

−s5
(8th−8

Nk
t 5Nkh)‖Z1

+‖〈∂x〉
−s5
(8

Nk
t 5Nkh−8

Nk
t 5Nkh

Nk )‖Z1 → 0.

This implies g = 8th ∈ 8t (E), so the proof is complete. ut

13.4. Modified continuity

In this section we prove Theorem 1.4; note that this modified continuity statement is not
needed in the proof of Theorems 1.2 and 1.3.

To prove part (1), noting that u ∈ BOT , we find that

u∗ ∈ Y T2 ⊂ C
0
t ([−T , T ] → Z1)

using the notation in Proposition 7.3. Recall from (7.28) that 1n(t) =
∫ t

0 δn(t
′) dt ′ and

δn(t) =
1
2

n∑
k=1

|wk|
2
=

1
2

n∑
k=1

|uk|
2
+ R

for n > 0, where R does not grow with n (this is easy using w = P+(Mu) and the
assumptions about u). Now, if it were not for the logarithmic factor on the right hand side
of (8.16) which these factors satisfy, 1n(t) would be continuous in t uniformly in n, and
u would be in C0

t ([−T , T ] → Z1); this shows that we may disregard R and pretend that
1n is defined as in (1.7), and this proves part (1).

For part (2) we need another probabilistic argument. Recall that u = 8f = (8tf )t is
defined for f ∈ 6 which is equipped with the Gaussian measure ρ. In order to use part
(1) we just proved, we will define

δ̃n(t) =

n∑
k=1

(
|uk(t)|

2
−

1
4πk

)
=

∑
d≤blog2 nc

δ̃(d)(t)+ R,

where

δ̃(d)(t) =
∑

0<k∼2d

(
|uk(t)|

2
−

1
4πk

)
, (13.23)

and 1̃n similarly, where R is already bounded in n and can be neglected. We only need
to prove continuity in any interval [−T , T ]; for simplicity assume T = 1. If we define

Y(d) =

∫ 1

−1
|δ̃(d)(t)|

2 dt
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as a random variable on 6 for each d , then part (2) will follow if we can show that

lim sup
d→∞

2d/2Y(d) ≤ 1 (13.24)

for ρ-almost all f ∈ 6. Fix one Gibbs measure ν; we have

Eν(2dY(d)) .
∫ 1

−1

[
Eν
(
exp

(
2d/2δ̃(d)(t)

))
+ Eν

(
exp(−2d/2δ̃(d)(t))

)]
dt. (13.25)

Now using the invariance of ν, we only need to consider t = 0; also we will study only
the first term. Since (EνH)2 . EρH 2 by Cauchy–Schwarz, this is bounded by

Eω
(

exp
(

2d/2
∑

0<k∼2d

|gk(ω)|
2
− 1

2πk

))
,

which can be easily computed and is O(1) due to our choice of parameters. Then (13.24)
follows by standard measure-theoretic arguments (for any ν, and thus for ρ).
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