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Abstract. We study the Cauchy problem in the hyperbolic space Hn (n ≥ 2) for the semilinear
heat equation with forcing term, which is either of KPP type or of Allen–Cahn type. Propagation
and extinction of solutions, asymptotical speed of propagation and asymptotical symmetry of so-
lutions are addressed. With respect to the corresponding problem in the Euclidean space Rn new
phenomena arise, which depend on the properties of the diffusion process in Hn. We also investi-
gate a family of travelling wave solutions, named horospheric waves, which have properties similar
to those of plane waves in Rn.
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1. Introduction

In this paper we study the Cauchy problem for the semilinear parabolic equation
∂u

∂t
= 1Hu+ f (u) in Hn × R+,

u = u0 in Hn × {0},
(1.1)

in the hyperbolic space Hn (n ≥ 2). Here 1H denotes the Laplace–Beltrami operator
in Hn and R+ ≡ (0,∞).

Concerning the Cauchy data function u0, the following assumption is always made:

u0 continuous in Hn, 0 ≤ u0(x) ≤ 1 for any x ∈ Hn. (A)

As for the function f , we always assume

f ∈ C1([0, 1]), f (0) = f (1) = 0. (H0)
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Moreover, either
f ′(0) > 0, f (u) > 0 for any u ∈ (0, 1), (H1)

or 
(i) there exist a ∈ (0, 1) such that
f (u) < 0 for any u ∈ (0, a), f (u) > 0 for any u ∈ (a, 1);

(ii) f ′(0) < 0,
∫ 1

0
f (u) du > 0.

(H2)

Following a common terminology, the function f is said to be of KPP type if it satisfies
assumption (H1), and of Allen–Cahn type if (H2) holds.

Solutions of problem (1.1) are always meant in the classical sense. By assumptions
(A), (H0) and comparison results [17], every solution u of problem (1.1) satisfies the
inequality

0 ≤ u(x, t) ≤ 1 for any (x, t) ∈ Hn × R+. (1.2)

Under assumptions (A) and (H0) a unique solution of problem (1.1) is easily seen to
exist. In fact, existence follows by the a priori estimate (1.2) and standard compactness
arguments, and uniqueness by [17, Theorem 3.1].

The counterpart of problem (1.1) in Rn, namely
∂u

∂t
= 1u+ f (u) in Rn × R+,

u = u0 in Rn × {0},
(1.3)

has been widely investigated (in particular, see [2, 3, 6, 9, 13]). Let us recall some well-
known results (see [3] for details).

(a) If the forcing term f is of KPP type, then propagation always occurs, that is,

lim
t→∞

u(x, t) = 1 uniformly on compact subsets of Rn (1.4)

for every solution u 6≡ 0 of problem (1.3). This follows from the so-called “hair-trigger
effect”: if f satisfies (H0) and{

(i) there exists a ∈ (0, 1] such that f (u) > 0 for any u ∈ (0, a);
(ii) lim inf

u→0+
u−(1+2/n)f (u) > 0, (HT )

then for every solution u 6≡ 0 of problem (1.3),

lim inf
t→∞

u(x, t) ≥ a uniformly on compact subsets of Rn. (1.5)

Clearly, assumption (H1) implies (HT ) with a = 1, thus (1.4) follows. Observe that
the exponent p = 1+ 2/n in (HT )(ii) is the Fujita exponent of problem (1.3) with
f (u) = up (see [10]).

More generally, assumption (HT ) is satisfied if (HT )(i) holds and

lim inf
u→0+

u−pf (u) > 0 for some p ∈ (1, 1+ 2/n),
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thus (1.5) follows also in this case. On the other hand, if

lim sup
u→0+

u−pf (u) <∞ for some p > 1+ 2/n (1.6)

and u0 is small enough, then extinction occurs, that is,

lim
t→∞

u(x, t) = 0 uniformly in Rn. (1.7)

(b) If f is of Allen–Cahn type, there is a “threshold effect”. In fact, there is extinction
(that is, equality (1.7) holds) if the initial data function u0 is suitably small; instead, there
is propagation (that is, equality (1.4) holds true) if u0 is sufficiently large.

(c) Both for KPP and for Allen–Cahn there exists an asymptotic speed of propagation
c0 > 0, which is uniquely determined by the following properties:

(i) No solution of problem (1.3) with u0 having compact support can propagate with
speed greater than c0. In fact, for any c > c0 and y ∈ Rn,

lim
t→∞

sup
|x−y|>ct

u(x, t) = 0.

(ii) If a solution of problem (1.3) propagates, then its speed is no smaller than c0. In fact,
if

lim inf
t→∞

u(x, t) ≥ a uniformly on compact subsets of Rn

for some a ∈ (0, 1], then for any c < c0 and y ∈ Rn,

lim inf
t→∞

inf
|x−y|<ct

u(x, t) ≥ a.

Observe that the asymptotic speed of propagation c0 only depends on the forcing term f .
In fact, its definition relies on a detailed investigation of the ordinary differential equation

q ′′ + κq ′ + f (q) = 0 in R (κ ∈ R) (1.8)

(in this connection, see Proposition 3.1 below). Equation (1.8) arises when seeking plane
wave solutions of the equation

∂u

∂t
= 1u+ f (u) in Rn × R+, (1.9)

that is, solutions of equation (1.9) of the form

u(x, t) = q(〈x, ν〉 − κt) (x ∈ Rn, t > 0), (1.10)

where q is a real function, ν ∈ Rn is a fixed unit direction, κ ∈ R and 〈x, ν〉 :=
∑n
i=1 xiνi .

Under the additional assumption

sup
u∈(0,1]

f (u)

u
= f ′(0) (H ′1)

we have c0 = 2
√
f ′(0) (see [3, Proposition 4.2 and following remarks]).



1202 Hiroshi Matano et al.

In this paper we prove results for problem (1.1) which are analogous to those above
for problem (1.3), yet exhibit remarkably novel features compared to the Euclidean case.
In fact, the following holds.

(a′) If the function f is of KPP type, under the additional assumption (H ′1) we prove the
existence of a new threshold effect. In fact, extinction prevails if

c0 = 2
√
f ′(0) < n− 1

and u0 has compact support, whereas there is propagation if c0 > n − 1 (see Theorem
3.2). Therefore, in contrast to the Euclidean case, in the hyperbolic space we can have
extinction even in the KPP case, depending on the sign of the difference c0 − (n− 1).

This implies that no hair-trigger effect holds in Hn, for otherwise no extinction could
arise for the KPP case, which is a contradiction when c0 < n − 1. In this connection,
observe that the proof of the hair-trigger effect in Rn given in [3] relies on the Fujita
phenomenon, whereas it is known that the Fujita exponent of problem (1.1) is p = 1 (see
[4])—namely, global solutions of problem (1.1) with f (u) = up exist for any p > 1 if
u0 is sufficiently small. This remark also explains Theorem 3.3, which shows that every
solution of problem (1.1) is extinct if

lim sup
u→0+

u−pf (u) <∞ for some p > 1 (1.11)

and u0 is sufficiently small (condition (1.11) should be compared with (1.6) of the Eu-
clidean case).

(b′) If f is of Allen–Cahn type, we prove extinction if the initial data function u0 is
sufficiently small, respectively propagation if u0 is sufficiently large and c0 > n− 1 (see
Theorems 3.4 and 3.5). Hence the sign of the difference c0 − (n− 1) plays a role also in
this case.

(c′) The role of the difference c0− (n− 1) becomes clear by addressing the asymptotical
speed of propagation of problem (1.1). In fact, in the hyperbolic space this speed (both
for the KPP and the Allen–Cahn case) turns out to be c0 − (n− 1) (see Theorem 3.7).

A first heuristic explanation of the above differences can be given by comparing the
expression in polar coordinates (r, θ) in Rn of equation (1.9) with that in polar geodesic
coordinates (ρ, θ) in Hn of the equation

∂u

∂t
= 1Hu+ f (u) in Hn × R+. (1.12)

We have
∂u

∂t
=
∂2u

∂r2 +
n− 1
r

∂u

∂r
+

1
r21θu+ f (u), (1.13)

respectively

∂u

∂t
=
∂2u

∂ρ2 + (n− 1) coth ρ
∂u

∂ρ
+

1
(sinh ρ)2

1θu+ f (u) (1.14)
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(see Section 2; here1θ denotes the Laplace–Beltrami operator on the (n−1)-dimensional
sphere of Rn). While the coefficient of the first order term on the right-hand side of (1.13)
tends to zero as r → ∞, the corresponding term in (1.14) tends to n − 1 as ρ → ∞.
Therefore, in Hn there is a “drift from infinity” which must be overcome to have propaga-
tion. If propagation prevails, the resulting speed is c0− (n−1), and not c0 as in Rn where
the “drift from infinity” is absent. This explains why extinction can arise in Hn even in
the KPP case, and why the condition c0 > n − 1 is needed to have propagation in the
Allen–Cahn case.

A related viewpoint is that the different geometrical properties of Hn affect diffusion
through the spectral properties of the Laplace–Beltrami operator and the growth estimates
of its heat kernel. In this connection, observe that by (H ′1),

c0 = 2
√
f ′(0) > n− 1 ⇔ f ′(0) >

(n− 1)2

4
=: λ1, (1.15)

where λ1 denotes the infimum of the L2-spectrum of the operator−1H in Hn. Therefore,
the important role of the difference c0− (n−1) is related to the fact that the spectrum has
positive infimum. In general terms, the positivity of λ1 makes diffusion “stronger in Hn
than in Rn”. This explains why the Fujita exponent is p = 1 instead of p = 1+ 2/n, and
why extinction more easily prevails over propagation than in the Euclidean case.

Let us point out some technical facts to illustrate the above remarks:
• the condition f ′(0) > λ1 plays a role when constructing a suitable family of subsolu-

tions to problem (1.1), which is needed to prove propagation for the KPP case (see the
proof of Theorem 3.2);
• estimates from above of the heat kernel in Hn are used to exhibit a family of superso-

lutions to problem (1.1), which is used to prove extinction in the Allen–Cahn case (see
the proof of Theorem 3.5);
• the existence of a ground state, that is, of a positive solution of the equation

1Hφ + λ1φ = 0 in Hn, (1.16)

which is radial and infinitesimal as ρ →∞, plays an important role to prove extinction
when (1.11) holds (see the proof of Theorem 3.3).

Besides the results outlined in (a′)–(c′) above, we shall address the asymptotical sym-
metry of solutions to problem (1.1) (see Theorem 3.7), extending to the present situation
some results in [13]. In doing so, we make use of the Alexandrov reflection method,
already used in the hyperbolic space in [14, 15].

Finally, we introduce and investigate a family of travelling wave solutions of equa-
tion (1.12), named horospheric waves, which in some respects are analogous to plane
waves in Rn. In this connection, observe that in the Poincaré half-space model Un of the
hyperbolic space the horospheres take the form xn = const (x1, . . . , xn) ∈ Un).

Horospheric waves are defined as solutions of problem (1.1) whose level set is for any
t ∈ R+ a horosphere of the form

{x ∈ Un | xn = Ke−κt } (K > 0, κ ∈ R) (1.17)

(see Definition 3.1). In Theorem 3.9 we prove that:
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(i) a solution of this kind exists (both for KPP and for Allen–Cahn) if c0 > n− 1;
(ii) in Un it has the following representation, formally analogous to (1.10) with ν ≡

(0, . . . , 0, 1):
u(x1, . . . , xn, t) = q

∗(− log xn − c∗t), (1.18)

where c∗ := c0 − (n− 1) and q∗ is the solution of the equation

q ′′ + c0q
′
+ f (q) = 0 (1.19)

such that
lim

ξ→−∞
q∗(ξ) = 1, lim

ξ→∞
q∗(ξ) = 0.

Interestingly, it can be proven that horospheric waves give an estimate of any solution to
problem (1.1), as plane waves do in the Euclidean case (see Theorem 3.10 and subsequent
remarks).

2. Geometrical background

By definition, the hyperbolic space Hn is the unique simply connected, complete n-
dimensional Riemannian manifold with sectional curvature equal to −1. The hyperbolic
distance between any two points x, y ∈ Hn will be denoted by d(x, y). At any fixed point
x0 ∈ Hn, the inner Riemannian product 〈·, ·〉H is given by

〈ξ, η〉H :=

n∑
i,j=1

gij ξiηj , (2.1)

where (gij ) denotes the Riemannian metric of Hn and the vectors ξ ≡ (ξ1, . . . , ξn),
η ≡ (η1, . . . , ηn) belong to the tangent space Tx0 .

As is well known, in Hn every geodesic is defined on the whole real line; moreover,
there exists exactly one geodesic passing through any two different points of Hn. A subset
A ⊆ Hn is a hyperbolic subspace if it contains the entire geodesic passing through any
two of its points (a hyperbolic subspace of codimension 1 is called a hyperbolic hyper-
plane). Moreover, a subsetK ⊆ Hn is convex if for any x, y ∈ K the geodesic arc joining
x to y lies inK . By definition, the convex hull of A ⊆ Hn is the smallest convex set of Hn
containing A.

Let us recall the definition of reflection in a hyperplane π ⊆ Hn (see e.g. [14]).
First observe that for any given x ∈ Hn there exists a unique point x∗ ∈ π such that
d(x, x∗) = miny∈π d(x, y). Let γ : R → Hn be the unique entire geodesic joining x
to x∗ such that γ (0) = x∗, γ (t0) = x for some t0 > 0. Then the reflection Rπ in the
hyperplane π is defined as follows:

Rπ : Hn→ Hn, Rπ (x) := γ (−t0) (x ∈ Hn). (2.2)

Denote by ∂Hn the boundary of the hyperbolic space (see [5]); the points of ∂Hn
can be regarded as the points at infinity of Hn. By definition, a horosphere centered at
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x0 ∈ ∂Hn is a closed hypersurface of Hn orthogonal to all geodesic lines with endpoint x0.
Observe that, for any fixed x0 ∈ ∂Hn, Hn is the disjoint union of all horospheres with
center x0.

Let us recall for the convenience of the reader some properties of different models of
Hn, which will be used in the following (see e.g. [5, 8, 12]).

(a) Set Br := {x ∈ Rn | |x| < r} (r > 0), | · | denoting the Euclidean norm of Rn. The
Poincaré disk model Dn is the unit ball B1 endowed with the Riemannian metric

gij :=
4

(1− |x|2)2
δij (x ∈ Dn; i, j = 1, . . . , n). (2.3)

Let us mention for further reference that:

(i) geodesics in Dn are either diameters of Dn or circles orthogonal to ∂Dn;
(ii) a subset π ⊆ Dn is a hyperbolic hyperplane if and only if it is the intersection of Dn

either with a hyperplane of Rn through the origin, or with an (n − 1)-dimensional
sphere orthogonal to ∂Dn (see [5]);

(iii) in Dn, a horosphere with center x0 ∈ ∂Hn is an (n − 1)-dimensional sphere of Rn
contained in Dn and tangent at x0 to ∂Dn.

For any fixed point O ∈ Hn and x ∈ Hn we can consider the geodesic coordinates (ρ, θ)
of x, namely ρ ≡ ρ(x) := d(x,O). In Dn, taking O at the origin we have

ρ(x) =

∫
|x|

0

2
1− s2 ds = log

(
1+ |x|
1− |x|

)
, (2.4)

thus

|x| = tanh
ρ(x)

2
,

2
1− |x|2

= 2
[

cosh
ρ(x)

2

]2

(x ∈ Dn). (2.5)

Therefore, defining
Br := {x ∈ Hn | ρ(x) < r} (r > 0),

in Dn we have, for any r ∈ (0, 1),

Br = Blog( 1+r
1−r )

.

Let us recall that in Dn there is an isometry of the form (see [1])

τy : Dn→ Dn, τy(x) :=
(1− |y|2)(x − y)− |x − y|2y
(1+ |x|2|y|2 − 2

∑n
i=1 xiyi)

2 (x, y ∈ Dn). (2.6)

It is easily seen that τ−y = τ−1
y (y ∈ Dn). Moreover,

|τy(x)| =
|x − y|

1+ |x|2|y|2 − 2
∑n
i=1 xiyi

(x, y ∈ Dn).
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For any x, y ∈ Dn we have

d(x, y) = d(τx(x), τx(y)) = d(0, τx(y)) = log
(

1+ |τx(y)|
1− |τx(y)|

)
.

Recall that the group of isometries of Dn coincides with the group of conformal map-
pings of Dn (see [5]). In particular, to prove Theorem 3.7 we shall use a particular class
of isometries, namely the reflections in hyperplanes of Hn.

The gradient ∇Hu ≡ ((∇Hu)1, . . . , (∇Hu)n) of a function u ∈ C1(Hn) is given by

(∇Hu)i :=

n∑
j=1

gij
∂u

∂xj
(i = 1, . . . , n). (2.7)

The Laplace–Beltrami operator in Hn of a function u ∈ C2(Hn) is

1Hu ≡
1
√
g

n∑
i=1

∂

∂xi

(
√
g

n∑
j=1

gij
∂u

∂xj

)
, (2.8)

where g := det(gij ), gij := (gij )
−1. As already mentioned, the infimum of the L2-

spectrum of the operator −1H in Hn is

λ1 := (n− 1)2/4.

Moreover,
λ1(Br)↘ λ1 as r →∞ (2.9)

(see [11]), where λ1(Br) is the first eigenvalue for−1H in Br with Dirichlet zero bound-
ary conditions: {

1Hϕ1 + λ1(Br)ϕ1 = 0 in Br ,

ϕ1 = 0 on ∂Br (r > 0), (2.10)

and ϕ1 = ϕ1(ρ) > 0 denotes the corresponding eigenfunction.
Let us recall that 1H commutes with isometries τ of Hn (see e.g. [14]). Hence, if u

is a solution of the equation

∂u

∂t
= 1Hu+ f (u) in Hn

then v := u ◦ τ satisfies
∂v

∂t
= 1H v + f (v) in Hn.

By (2.3) and (2.8), the Laplace–Beltrami operator in Dn has the expression

1Hu =
1
4
(1− |x|2)2

n∑
i=1

∂2u

∂x2
i

+
n− 2

2
(1− |x|2)

n∑
i=1

xi
∂u

∂xi
, (2.11)
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thus it can be regarded as a linear elliptic operator on B1 ⊆ Rn with bounded coefficients
degenerating at the boundary ∂B1. Using polar geodesic coordinates (ρ, θ) in Dn, so that

ds2
:=

n∑
i,j=1

gij dxidxj = dρ
2
+ (sinh ρ)2dθ,

we obtain

1Hu =
∂2u

∂ρ2 + (n− 1) coth ρ
∂u

∂ρ
+

1
(sinh ρ)2

1θu, (2.12)

1θ being the Laplace–Beltrami operator on the (n− 1)-dimensional sphere of Rn.
In Hn the heat kernel G : Hn × Hn × R+ → R+ is well defined (see [7] and refer-

ences therein for its explicit construction and main properties). Then the unique bounded
solution of the Cauchy problem

∂u

∂t
= 1Hu in Hn × R+,

u = u0 in Hn × {0},

with Cauchy data u0 bounded in Hn is

u(x, t) :=

∫
Hn
G(x, y, t)u0(y) dµy ((x, t) ∈ Hn × R+), (2.13)

where dµy denotes the volume element of Hn.
It is known [7] that there exists cn > 0 such that for any x, y ∈ Hn and t ∈ R+,

1
cn
hn(d(x, y), t) ≤ G(x, y, t) ≤ cnhn(d(x, y), t), (2.14)

where

hn(d, t) := (4πt)−n/2(1+ d)(1+ d + t)(n−3)/2e−λ1t−
n−1

2 d− d
2

4t (d ≥ 0, t > 0).

Hence there exists Cn > 0 such that for any t ∈ R+

sup
x,y∈Hn

G(x, y, t) ≤ Cn
(1+ t)(n−3)/2

tn/2
e−λ1t . (2.15)

(b) The hyperboloid model of Hn, denoted by In, is given by the hyperboloid

{(x1, . . . , xn, xn+1) ∈ Rn+1
| x2

1 + · · · + x
2
n − x

2
n+1 = −1, xn+1 > 0}

with the metric induced on its tangent bundle by the Euclidean metric of Rn+1.
For any x ∈ In and y in the tangent space of In at x, the geodesic starting from x with

tangent vector y is given by

γ (t) := x cosh t + y sinh t (t ∈ R).
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Observe that the map

φ : Dn→ In, φ(x) :=
(2x, 1+ |x|2)

1− |x|2
,

is bijective and isometric. Then the Klein model of Hn, denoted by Kn, is defined using
the bijective map

ψ : Rn ⊇ B1 → In, ψ(x) :=
(x, 1)√
1− |x|2

(from a geometrical viewpoint, the point ψ(x) ∈ Rn+1 for x ∈ B1 is the intersection
of In with the line passing through the point (x, 1) ∈ Rn+1 and the origin in Rn+1). By
definition, the Klein model Kn is B1 equipped with the metric obtained by transporting
the hyperbolic metric of In along ψ.

Remark 2.1. Observe for further purposes that in Kn:

(i) geodesics are the traces of ordinary affine lines in Kn (see [12]);
(ii) for any convex subset A of Kn and any point x ∈ Kn \ A there exists a hyperplane

π such that x ∈ π and π ∩ A = ∅;
(iii) for any convex subset A of Kn and any entire geodesic γ ⊆ Kn which does not

intersect A, there exists a hyperplane π ⊆ Kn such that γ ⊆ π and π ∩ A = ∅.

Furthermore, since the map φ−1
◦ ψ : Kn → Dn is bijective and transforms geodesics

of Kn onto those of Dn, properties (ii)–(iii) hold true in Dn, too.

(c) Finally, consider the Poincaré half-space model of the hyperbolic space, denoted
by Un. This is the upper half-space {x ∈ Rn | xn > 0} endowed with the metric

ds2
:=

1
x2
n

n∑
i=1

dx2
i .

Observe that inversion in a sphere with radius
√

2 and center at the south pole of Dn maps
Un onto Dn (see [12]). Therefore Un is isometric to Dn, thus to In.

For any x̄ ∈ ∂Un = {x ∈ Rn | xn = 0} ∪ {∞}, horospheres with center at x̄ are either
hyperplanes of equation xn = ξ for some ξ > 0, if x̄ = {∞}, or spheres of Rn contained
in Un tangent in x̄ to {x ∈ Rn | xn = 0}, if x̄n = 0 (see e.g. [5]). Clearly, for any x̄ ∈ ∂Un
with x̄n = 0, a horosphere with center at x̄ can be isometrically mapped into a horosphere
with center at∞.

For any x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Un we have

d(x, y) = cosh−1
[

1+
(x1 − y1)

2
+ · · · + (xn − yn)

2

2xnyn

]
. (2.16)

The Laplace–Beltrami operator on Un can be expressed as follows:

1Hu = x
2
n1u+ (2− n)xn

∂u

∂xn
, (2.17)

where 1 denotes the Laplacian in Rn.
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3. Main results

Let us first recall the following result concerning equation (1.8) (see [3, Theorem 4.1 and
Lemma 4.3]).

Proposition 3.1. Let assumptions (H0) and either (H1) or (H2) be satisfied. Then there
exists c0 > 0 with the following properties:

(i) for κ = c0 equation (1.8) admits a decreasing solution q∗ in R satisfying

lim
ξ→−∞

q∗(ξ) = 1, lim
ξ→∞

q∗(ξ) = 0; (3.1)

(ii) for any κ ∈ (0, c0) there exists γκ ∈ (0, 1) such that: for any η ∈ (γκ , 1) there exist
b = b(κ, η) > 0 and a solution q to equation (1.8) satisfying

q(0) = η, q ′(0) = 0, q(b) = 0, q ′ < 0 in (0, b]; (3.2)

(iii) for any κ ∈ (c0,∞) there exists a solution q to equation (1.8) in R+ such that

q(0) = 1, q ′ < 0 in R+, q(ξ)→ 0 as ξ →∞. (3.3)

3.1. Extinction versus propagation

If the function f is of KPP type, the following holds.

Theorem 3.2. Let assumptions (H0), (H1) and (H ′1) be satisfied. Let u0 6≡ 0, and let u
be the corresponding solution of problem (1.1).

(i) Suppose that u0 has compact support and c0 < n− 1. Then

lim
t→∞

u(x, t) = 0 uniformly in Hn. (3.4)

(ii) Suppose that c0 > n− 1. Then

lim
t→∞

u(x, t) = 1 uniformly on compact subsets of Hn. (3.5)

Observe that a function f of KPP type cannot satisfy condition (1.11). If (1.11) holds, we
have the following result.

Theorem 3.3. Let assumptions (H0) and (1.11) be satisfied, and let u0 be sufficiently
small. Then equality (3.4) holds for the corresponding solution of problem (1.1).

Remark 3.1. By “u0 sufficiently small” in the above statement we mean u0(x) ≤

w(ρ(x)) for any x ∈ Hn, the function w = w(ρ) being defined in (4.19).

Results analogous to those of Theorem 3.2 hold if f is of Allen–Cahn type and suitable
assumptions on the size of u0 are made. In fact, the following holds.



1210 Hiroshi Matano et al.

Theorem 3.4. Let assumptions (H0) and (H2) be satisfied. Let u be the solution of prob-
lem (1.1).

(i) If supHn u0 < a, then equality (3.4) holds.
(ii) Suppose that u0 is suitably large and c0 > n− 1. Then equality (3.5) holds.

Remark 3.2. By “u0 suitably large” in the above statement we mean u0 ≥ v0 in Hn, the
function v0 being defined in (4.20).

The conclusion of Theorem 3.4(i) holds true if (H2) is replaced by the weaker assumption:{
there exists a ∈ (0, 1) such that f (u) ≤ 0 for any u ∈ [0, a],
f (ū) > 0 for some ū ∈ (a, 1). (H4)

In fact, set

σ ≡ σ(η) := sup
u∈(η,1)

f (u)

u− η
(3.6)

for any fixed η ∈ [0, a). Then we have the following result, which is the counterpart of
[3, Theorem 6.1].

Theorem 3.5. Let assumptions (H0) and (H4) be satisfied. Let u be the solution to prob-
lem (1.1). Let η ∈ [0, a) be fixed and either of the following assumptions be satisfied:

(i) σ(η) ≤ λ1;
(ii) λ1 < σ(η) <∞ and there exists t0 > 0 such that∫

Hn
[u0(y)− η]+ dµy ≤

t
n/2
0

Cn(1+ t0)(n−3)/2 e
[λ1−σ(η)]t0(a − η), (3.7)

where Cn > 0 is the constant in inequality (2.15).

Then
lim sup
t→∞

u(x, t) ≤ η uniformly in Hn. (3.8)

Moreover, if f (u) < 0 for any u ∈ (0, η], then equality (3.4) holds.

3.2. Speed of propagation and asymptotical symmetry

Let us now address the case of propagation. Concerning the spreading speed, we have the
following result.

Theorem 3.6. Let assumptions (H0), and either (H1)–(H ′1) or (H2) be satisfied. Let
u0 6≡ 0 have compact support, and let u0 be suitably large if (H2) holds. Moreover,
assume c0 > n− 1.

(i) Let c > c0 − (n− 1). Then for every y ∈ Hn,

lim
t→∞

sup
d(x,y)>ct

u(x, t) = 0. (3.9)

(ii) Let 0 < c < c0 − (n− 1). Then for every y ∈ Hn,

lim
t→∞

inf
d(x,y)<ct

u(x, t) = 1. (3.10)
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Let us also prove some geometrical properties of the level sets of the solution of prob-
lem (1.1), which are the counterpart of [13, Theorem] in Rn. This is the content of the
following

Theorem 3.7. Let the assumptions of Theorem 3.6 be satisfied. Then for any a ∈ (0, 1)
and t ∈ R+ sufficiently large the following holds:

(i) the level set
0a(u; t) := {x ∈ Hn | u(x, t) = a} (t ∈ R+) (3.11)

is a smooth (n− 1)-dimensional submanifold of Hn;
(ii) every geodesic orthogonal to 0a(u; t) intersects the convex hull of the support of u0.

Since the size of 0a(u; t) tends to infinity as t → ∞, while that of supp u0 remains
unchanged, the above theorem implies, roughly, that the shape of the expanding front
0a(u; t) converges to that of a sphere, at least in the C1 sense. Furthermore, one can
derive from the above theorem the following corollary.

Corollary 3.8. Let the assumptions of Theorem 3.6 be satisfied. Fix a point P ∈ supp u0,
and let ρmin(t) (respectively ρmax(t)) denote the minimal (respectively maximal) geodesic
distance from P to 0a(u; t). Then there exists a constant M > 0 such that

ρmax(t)− ρmin(t) ≤ M for all t ≥ 0.

3.3. Horospheric waves

Let us first state the following definition.

Definition 3.1. By a horospheric wave solution of problem (1.1) we mean any solution
whose level sets 0a(u; t) (a ∈ (0, 1), t ∈ R+) are horospheres of the form (1.17):

0a(u; t) = {x ∈ Un | xn = Kae−κt } (Ka > 0, κ ∈ R)

in the Poincaré half-space model Un.

Concerning existence of horospheric waves, the following result will be proven.

Theorem 3.9. Let assumptions (H0) and either (H1) or (H2) be satisfied. Suppose c0 >

n − 1. Then there exists a horospheric wave which in the Poincaré half-space model Un
takes the form (1.18):

u(x1, . . . , xn, t) := q
∗(− log xn − c∗t) ((x1, . . . , xn, t) ∈ Un × R+).

Observe that the existence of the profile function q∗ is ensured by Proposition 3.1(i). The
quantity c∗ := c0 − (n− 1) is called the speed of the horospheric wave.

Consider problem (1.1) in the half-space model Un, namely
∂u

∂t
= 1Hu+ f (u) in Un × R+,

u = u0 in Un × {0}.
(3.12)
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Remarkably, horospheric waves provide upper and lower bounds for large times of any
solution of problem (3.12), as plane waves in Rn do for solutions of problem (1.3). To ad-
dress this point, let us think of the function f as defined on R and satisfying the following
assumption (which implies both (H0) and (H2)):

(i) f ∈ C1(R), f (0) = f (1) = 0, f ′(0) < 0, f ′(1) < 0,
∫ 1

0
f (u) du > 0;

(ii) there exists a ∈ (0, 1) such that f (u) > 0 if u ∈ (−∞, 0) ∪ (a, 1), and
f (u) < 0 if u ∈ (0, a) ∪ (1,∞).

(H5)

Then the following result can be proven.

Theorem 3.10. Let assumption (H5) be satisfied, and let u be any solution of problem
(3.12). Suppose that

lim sup
xn→0+

sup
x′∈Rn−1

u0(x
′, xn) < a, lim inf

xn→∞
inf

x′∈Rn−1
u0(x

′, xn) > a. (3.13)

Then there exist k∗, k∗ ∈ R+ such that

q∗(− log(k∗xn)− c∗t) ≤ u(x′, xn, t) ≤ q∗(− log(k∗xn)− c∗t) (3.14)

for every (x′, xn) ∈ Un and t ∈ R+.

Let us add some remarks suggested by Theorem 3.10. For each given direction θ ∈ Sn−1

in the Poincaré disk model we can choose the direction of the xn-axis along this θ direc-
tion, and express the solution in the half-space model Un with respect to this choice of the
xn-axis. By this choice, it is possible to define properly “ the ω-limit set in the direction θ”
of any solution u of problem (3.12).

By assumptions (A) and (H5)(i), using standard comparison and compactness results
it is easily seen that, for any θ ∈ Sn−1, the ω-limit set of u in the direction θ is nonempty
(see e.g. [16] for details). If ũ = ũ(x′, xn, t) is any point of this set, it follows from
inequality (3.14) that

q∗(− log(k∗xn)−c∗t) ≤ ũ(x′, xn, t) ≤ q∗(− log(k∗xn)−c∗t) ((x′, xn) ∈ Un, t ∈ R+).

However, it is an open problem whether every ω-limit point ũ itself is a horospheric wave
(see [6, Theorem 3.1] for the analogous result concerning plane waves in Rn).

4. Extinction versus propagation: proofs

Let us first prove Theorem 3.2.

Proof of Theorem 3.2. (i) By assumption, there exists R > 0 such that supp u0 ⊆ BR .
Hence there exists a smooth function ũ0 : R̄+ → [0, 1], ũ0 = ũ0(ρ), ũ′0 ≤ 0 in R̄+,
ũ0(ρ) = 0 for any ρ ≥ R, such that

u0(x) ≤ ũ0(ρ(x)) for any x ∈ Hn. (4.1)
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Let ũ be the solution of the problem

∂u

∂t
=
∂2u

∂ρ2 + (n− 1) coth ρ
∂u

∂ρ
+ f (u) in R+ × R+,

∂u

∂ρ
= 0 in {0} × R+,

u = ũ0 in R+ × {0}.

(4.2)

Then ũ(ρ(x), t) solves problem (1.1) with Cauchy data ũ0(ρ(x)) (see (2.12)). By (4.1)
and comparison results (see [17]) we obtain

0 ≤ u(x, t) ≤ ũ(ρ(x), t) for any (x, t) ∈ Hn × R+. (4.3)

On the other hand, consider the problem
∂w

∂t
=
∂2w

∂ρ2 + (n− 1)
∂w

∂ρ
+ f (w) in R+ × R+,

∂w

∂ρ
= 0 in {0} × R+,

w = ũ0 in R+ × {0}.

(4.4)

We shall prove the following

Claim 1. Let c0 < n− 1. Then the solution w of problem (4.4) satisfies

sup
ρ∈R+

w(ρ, t)→ 0 as t →∞, (4.5)

∂w

∂ρ
≤ 0 in R+ × R+. (4.6)

From the above claim the conclusion easily follows. In fact, since coth ρ ≥ 1 and ∂w/∂ρ
≤ 0, w is a supersolution of problem (4.2). Therefore, by comparison results

0 ≤ ũ(ρ, t) ≤ w(ρ, t) in R+ × R+,

whence by (4.3) and (4.5),

0 ≤ sup
x∈Hn

u(x, t) ≤ sup
ρ∈R+

ũ(ρ, t)→ 0 as t →∞.

It remains to prove Claim 1. To this end observe that, since by assumption c0 < n−1,
by Proposition 3.1(iii) the ordinary differential equation

q ′′ + (n− 1)q ′ + f (q) = 0

has a solution q = q(ξ) in R+ such that

q(0) = 1, q ′ < 0 in R+, q(ξ)→ 0 as ξ →∞.
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Set

ϕ(ξ) :=

{
1 if ξ < R,

q(ξ − R) if ξ ≥ R. (4.7)

Let v be the solution of the problem
∂v

∂t
=
∂2v

∂ξ2 + (n− 1)
∂v

∂ξ
+ f (v) in R× R+,

v = ϕ in R× {0}.
(4.8)

The proof of [3, Theorem 5.1] shows that

∂v

∂ξ
≤ 0 in R× R+ and lim

t→∞
v(ξ, t) = 0 (4.9)

for any ξ ∈ R. Since ũ0 ≤ ϕ in R+, by the inequality in (4.9) the function v is a superso-
lution of problem (4.4). Hence w ≤ v in R+ × R+. This fact and (4.9) yield (4.5).

To prove (4.6), consider the problem
∂z

∂t
=
∂2z

∂ρ2 + (n− 1)
∂z

∂ρ
+ f ′(w)z in R+ × R+,

z = 0 in {0} × R+,
z = 0 in R+ × {0},

where w is the solution of problem (4.4). Since by assumption ũ′0 ≤ 0, the function
∂w/∂ρ is a subsolution of the above problem, whereas z ≡ 0 is a solution. Hence by
comparison (4.6) follows. This completes the proof of Claim 1, thus of (i).

(ii) Under the present assumptions inequality (1.15) holds, λ1 denoting the infimum
of the L2-spectrum of the operator −1H in Hn. Consider the eigenvalue problem{

1Hϕ + [f
′(0)+ µ]ϕ = 0 in BR,

ϕ = 0 on ∂BR (R > 0). (4.10)

Denote by µ1 = µ1(BR) the first eigenvalue of (4.10) and by ϕ1 = ϕ1(ρ) > 0 the
corresponding eigenfunction. Clearly,

µ1(BR) = λ1(BR)− f
′(0)

(see (2.10)), where λ1(Br) denotes the first eigenvalue of −1H in Br with Dirich-
let zero boundary conditions. Hence by (1.15) and (2.9) there exists R0 > 0 such that
µ1(BR) < 0 for any R > R0.

Set

wε(ρ) :=

{
εϕ1(ρ) in BR,

0 otherwise, (4.11)

with R > R0 fixed. Since µ1(BR) < 0, it is easily seen that there exists ε0 > 0 such that
for any ε ∈ (0, ε0) the function wε is a subsolution of the equation

1H v + f (v) = 0 in Hn. (4.12)
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On the other hand, every solution u = u(x, t) of problem (1.1) with Cauchy data u0 6≡ 0
satisfies u(·, t̄) > 0 in Hn for any t̄ ∈ R+ (this is a standard consequence of the strong
maximum principle; see the form (2.11) of the operator 1H in Dn). Choose ε ∈ (0, ε0)

so small that
wε(ρ(x)) ≤ u(x, t̄) for any x ∈ Hn.

Then by comparison arguments

uε(·, t) ≤ u(·, t + t̄ ) ≤ 1 in Hn (4.13)

for any t ∈ R+, where uε denotes the solution of the problem
∂u

∂t
= 1Hu+ f (u) in Hn × R+,

u = wε in Hn × {0}.
(4.14)

By standard arguments,

(a) the function t 7→ uε(x, t) is nondecreasing in R+ for any x ∈ Hn;
(b) its pointwise limit

u∞(x) := lim
t→∞

uε(x, t) (x ∈ Hn)

is a solution of equation (4.12);
(c) the convergence uε(·, t)→ u∞ as t →∞ is uniform on compact subsets of Hn.

Therefore the conclusion will follow from inequality (4.13) if we prove that

u∞ ≡ 1 in Hn. (4.15)

To this end, choose ε ∈ (0, ε0) so small that

0 ≤ wε(x) < u∞(x) for any x ∈ Hn. (4.16)

We shall prove the following

Claim 2. We have

B := {y ∈ Hn | wε(τy(x)) < u∞(x) for any x ∈ Hn} = Hn,

where τy : Hn→ Hn is the continuous family of isometries defined in (2.6).

From the above claim equality (4.15) follows easily. In fact, since B = Hn, we obtain in
particular

wε(τx(x)) = wε(0) < u∞(x) for any x ∈ Hn.
This implies

ξ(t) ≤ u∞(x) for any x ∈ Hn, t ∈ R+, (4.17)

where ξ is the solution of the problem

ξ ′ = f (ξ), ξ(0) = wε(0).

Since ξ(t)→ 1 as t →∞, inequality (4.17) implies (4.15).
To prove Claim 2, observe first that 0 ∈ B. In fact, by (4.16),

wε(τ0(x)) = wε(x) < u∞(x) for any x ∈ Hn.
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By the continuity of the map y 7→ τy(x) for any fixed x ∈ Hn (see (2.6)), the set B
is open. Moreover, B is also closed. In fact, let {yn} ⊆ B and y ∈ Hn be such that
d(yn, y)→ 0. Then by the continuity of wε

wε(τy(x)) ≤ u∞(x) for any x ∈ Hn. (4.18)

However, if we had

wε(τy(x̄)) = u∞(x̄) for some x̄ ∈ Hn,

we would have a contradiction with the strong maximum principle, since u∞ a solution
of equation (4.12) and wε ◦ τy a subsolution of the same equation (for wε is a subsolution
and 1H commutes with isometries of Hn). Hence the inequality in (4.18) is strict, which
proves that y ∈ B, thus B is closed.

Since the set B is open, closed and nonempty, Claim 2 follows. This completes the
proof of claim (ii), thus the conclusion follows. ut

Remark 4.1. The arguments used in the proof of Theorem 3.2(ii) show that v ≡ 1 is the
unique nontrivial solution of equation (4.12) such that 0 ≤ v ≤ 1, if (1.15) holds.

Let us recall the following result (see [4, Lemma A.1]).

Lemma 4.1. For any k > 0 there exists a unique radial ground state φ = φ(ρ) of
equation (1.16) such that φ(0) = k. Moreover, limρ→∞ φ(ρ) = 0.

Proof of Theorem 3.3. By assumption (1.11) there exist L > 0 and σ ∈ (0, 1) such that
f (u) ≤ Lup for any u ∈ (0, σ ). Set

w := cφ in Hn, (4.19)

where φ is the ground state mentioned in Lemma 4.1 and

0 < c <
1
‖φ‖∞

min
{
σ,

(
λ1

L

)1/(p−1)}
.

Define also

ū(x, t) := e−λ1tζ(t)w(ρ(x)) for any (x, t) ∈ Hn × R̄+,

where

ζ(t) :=

{
1−

L

λ1
‖w‖

p−1
∞ [1− e−(p−1)λ1t ]

}−1/(p−1)

(t ∈ R̄+).

Assuming that u0(x) ≤ w(ρ(x)) for any x ∈ Hn, it is easily seen that ū is a supersolution
to problem (1.1). In fact,

(a) for any (x, t) ∈ Hn × R̄+,

ū(x, t) ≤ w(ρ(x)) ≤ c‖φ‖∞ < σ,

hence f (ū) ≤ Lūp in Hn × R̄+;
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(b) by (a) and the definition of ū,

∂ū

∂t
−1H ū−f (ū) ≥

∂ū

∂t
−1H ū−Lū

p
≥ e−λ1tw[ζ ′−L‖w‖

p−1
∞ e−(p−1)λ1tζp] = 0;

(c) by assumption, u0(x) ≤ w(ρ(x)) = ū(x, 0).

Then by comparison results we have 0 ≤ u ≤ ū in Hn × R̄+. Since

sup
Hn
ū ≤ ‖w‖∞e

−λ1t → 0 as t →∞,

the conclusion follows. ut

Let us now prove Theorem 3.4. To prove claim (ii) of that theorem a preliminary result is
needed.

Let c0 > n − 1. By Proposition 3.1(ii), for any c ∈ (0, c0 − (n − 1)) there exists
γc ∈ (0, 1) such that: for any η ∈ (γc, 1) there exist b = b(c, η) > 0 and a solution q of
the equation

q ′′ + (c + n− 1)q ′ + f (q) = 0

such that
q(0) = η, q ′(0) = 0, q(b) = 0, q ′ < 0 in (0, b].

For any fixed R > 0 define

v0(ρ) :=


η if ρ ≤ R,
q(ρ − R) if R < ρ ≤ R + b,

0 if R + b < ρ.

(4.20)

Concerning the solution of the parabolic problem
∂v

∂t
= 1H v + f (v) in Hn × R+,

v = v0(ρ) in Hn × {0},
(4.21)

the following holds (see [3, Lemma 5.1]).

Lemma 4.2. Let assumptions (H0) and either (H1) or (H2) be satisfied. Let c0 > n− 1,
c ∈ (0, c0− (n−1)), γc ∈ (0, 1) and η ∈ (γc, 1) as above. Then for any R > 0 such that

cothR < 1+
c

n− 1
(4.22)

the solution v of problem (4.21) satisfies the inequality

v(x, t) ≥ η for any (x, t) ∈ Hn × R+ such that ρ(x) ≤ R + kt, (4.23)

where
k ≡ k(c) := c + (n− 1)(1− cothR) > 0. (4.24)

Therefore,
lim
t→∞

v(x, t) = 1 uniformly in compact subsets of Hn. (4.25)
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Proof. Following [3], define

W(x, t) := v0(ρ(x)− kt) ((x, t) ∈ Hn × R+)

with k given by (4.24). It is easily seen that

∂W

∂t
−1HW − f (W) =


−f (η) if ρ(x) ≤ R + kt ;
q ′(ρ(x)− kt − R)[c − k + (n− 1)(1− coth ρ(x))]

if R + kt < ρ(x) ≤ R + b + kt ;
0 if ρ(x) > R + b + kt .

Observe that

q ′(ρ(x)− kt − R) < 0,
c − k + (n− 1)(1− coth ρ(x)) ≥ c − k + (n− 1)(1− cothR) = 0

if R+ kt < ρ(x) ≤ R+ b+ kt . Moreover, under the present assumptions, f (η) > 0 if η
is sufficiently close to 1.

Arguing as in [3], we find that v ≥ W in Hn × R+. Since by definition W(x, t) = η
if ρ(x) ≤ R + kt , inequality (4.23) follows. Moreover, since η is arbitrarily close to 1,
equality (4.25) follows from (4.23). ut

Proof of Theorem 3.4. (i) Let ζ = ζ(t) be the solution of the problem

ζ ′ = f (ζ ) in R+, ζ(0) = sup
Hn
u0.

Clearly, ζ is a supersolution of problem (1.1), thus by comparison results 0 ≤ u(x, t)

≤ ζ(t) for any (x, t) ∈ Hn × R+. Since by assumption ζ(0) < a and (H2)(i) holds, we
have ζ(t)→ 0 as t →∞. Hence claim (i) follows.

(ii) Let u0(ρ) ≥ v0(ρ) in Hn, where v0 is the function defined in (4.20). By compari-
son results we have u ≥ v in Hn × R+, v being the solution of problem (4.21). Then by
Lemma 4.2 the conclusion follows. ut

Proof of Theorem 3.5. Let w be the solution of the problem
∂w

∂t
= 1Hw + σ(η)w in Hn × R+,

w = (u0 − η)+ in Hn × {0}.
(4.26)

Define
v(x, t) := w(x, t)+ η ((x, t) ∈ Hn × R+). (4.27)

Since w ≥ 0, it follows that v ≥ η, whence by the definition of σ(η),

f (v) ≤ σ(η)(v − η) = σ(η)w in Hn × R+.

Then
∂v

∂t
−1H v − f (v) ≥

∂w

∂t
−1Hw − σ(η)w = 0 in Hn × R+.
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Moreover,
u0(x) ≤ v(x, 0) for any x ∈ Hn.

Then by comparison results

u(x, t) ≤ v(x, t) for any (x, t) ∈ Hn × R+. (4.28)

On the other hand, from (4.26), (4.27) and the estimate (2.15) we obtain

v(x, t) = η + eσ(η)t
∫
Hn
G(x, y, t)[u0(y)− η]+ dµy

≤ η + Cn
(1+ t)(n−3)/2

tn/2
e[σ(η)−λ1]t

∫
Hn
[u0(y)− η]+ dµy (4.29)

for any (x, t) ∈ Hn×R+. Inequality (4.29) and either assumption (i), (ii) imply that there
exists t0 > 0 such that v(x, t0) ≤ a, thus by inequality (4.28) we obtain u(x, t0) ≤ a

for any x ∈ Hn. Since by assumption f (a) ≤ 0, by comparison we obtain u ≤ a in
Hn × [t0,∞), thus f (u) ≤ 0 in Hn × [t0,∞) by assumption (H4).

Now let z solve the problem
∂z

∂t
= 1H z in Hn × (t0,∞),

z = v in Hn × {t0}.

Since f (u) ≤ 0 in Hn × [t0,∞) and inequality (4.28) holds, by comparison results we
have

u(x, t) ≤ z(x, t) in Hn × [t0,∞). (4.30)

On the other hand,

z(x, t) =

∫
Hn
G(x, y, t − t0)v(y, t0) dµy = η +

∫
Hn
G(x, y, t − t0)w(y, t0) dµy

= η + eσ(η)t0
∫
Hn
G(x, y, t)[u0(y)− η]+ dµy

≤ η + Cne
σ(η)t0

(1+ t)(n−3)/2

tn/2
e−λ1t

∫
Hn
[u0(y)− η]+ dµy (4.31)

for any t ≥ t0 (here use of (2.15) and (3.7) has been made). From inequalities (4.30)–
(4.31) and either assumption (i), (ii) we plainly obtain (3.8).

To conclude the proof, let f (u) < 0 in (0, η]. Then by the continuity of f there
exists ε ∈ (0, a − η) such that f (u) < 0 for any u ∈ (0, η + ε]. On the other hand, by
(4.30)–(4.31) there exists tε > 0 such that

u(x, t) ≤ z(x, t) < η + ε/2 for any (x, t) ∈ Hn × [tε,∞). (4.32)

Let ζ solve the problem

ζ ′ = f (ζ ) in (tε,∞), ζ(tε) = η + ε/2.
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Then by (4.32), ζ is a supersolution, whereas u is a subsolution of the problem
∂y

∂t
= 1Hy + f (y) in Hn × (tε,∞),

y = z in Hn × {tε}.

Hence by comparison results

0 ≤ u(x, t) ≤ ζ(t) for any (x, t) ∈ Hn × [tε,∞).

Since ζ(t)→ 0 as t →∞, letting t →∞ in the above inequality we obtain (3.4). ut

5. Speed of propagation and asymptotical symmetry: proofs

Proof of Theorem 3.6. (i) Choose ũ0 as in the proof of Theorem 3.2, and let ũ be the
corresponding solution of (4.2). Then inequality (4.3) holds.

Since by assumption c+ n− 1 > c0, there exists a solution q = q(ξ) of the ordinary
differential equation

q ′′ + (c + n− 1)q ′ + f (q) = 0

in R+ such that

q(0) = 1, q ′ < 0 in R+, q(ξ)→ 0 as ξ →∞

(see Proposition 3.1(iii)). Let ϕ = ϕ(ξ) be the function defined in (4.7), so that ũ0 ≤ ϕ

in R+, and let v be the solution of the problem
∂v

∂t
=
∂2v

∂ξ2 + (c + n− 1)
∂v

∂ξ
+ f (v) in R× R+,

v = ϕ in R× {0}.

As in the proof of Theorem 3.2, the function v has the properties (4.9), namely

∂v

∂ξ
≤ 0 in R× R+, lim

t→∞
v(ξ, t) = 0.

Then the function
w(ρ, t) := v(ρ − ct, t) (ρ ≥ 0, t ≥ 0).

satisfies the problem
∂w

∂t
=
∂2w

∂ρ2 + (n− 1)
∂w

∂ρ
+ f (w) in R+ × R+,

w = ϕ in R+ × {0},
(5.1)

and
∂w

∂ρ
≤ 0 in R+ × R+. (5.2)

Since coth ρ ≥ 1, by (5.1)–(5.2) w is a supersolution of problem (4.2).



Front propagation on the hyperbolic space 1221

Then by comparison results and inequality (4.3) we have

u(x, t) ≤ ũ(ρ(x), t) ≤ w(ρ(x), t) = v(ρ(x)− ct, t) in Hn × R+.

Let y ∈ Hn. Since ξ 7→ v(ξ, t) is nonincreasing for any t > 0, and d(x, y) > ct

implies ρ(x)− ct > −ρ(y), by (4.9) we obtain

sup
{x∈Hn|d(x,y)>ct}

u(x, t) ≤ sup
{x∈Hn|d(x,y)>ct}

v(ρ(x)− ct, t)

≤ v(−ρ(y), t)→ 0 as t →∞.

Hence the claim follows.
(ii) Under the present assumptions equality (3.5) holds,

lim
t→∞

u(x, t) = 1 uniformly on compact subsets of Hn.

Therefore, for any compact K ⊆ Hn and for any η ∈ (0, 1) there exists h = h(K, η) > 0
such that

u(x, t) ≥ η for any x ∈ K, t ≥ h. (5.3)

Let c ∈ (0, c0 − (n− 1)). Fix c̄ ∈ (c, c0 − (n− 1)) and R̄ > 0 such that

coth R̄ < 1+
c̄ − c

n− 1
, (5.4)

thus in particular

coth R̄ < 1+
c̄

n− 1
.

Let γc̄ ∈ (0, 1), η̄ ∈ (γc̄, 1), b̄ = b(c̄, η̄) > 0, q̄, v̄, v̄0 denote the quantities used in the
proof of Lemma 4.2, with c replaced by c̄ and R by R̄. Then by Lemma 4.2 we have

v̄(x, t) ≥ η̄ if ρ(x) ≤ R̄ + k̄t, (5.5)

where v̄ denotes the solution of problem (4.21) with Cauchy data v̄0 and

k̄ ≡ k(c̄) := c̄ + (n− 1)(1− coth R̄) > 0

(see (4.23)–(4.24)).
On the other hand, observe that the definition of v̄0 (see (4.20)) and the inequality

q̄ ′ < 0 in (0, b̄] imply

v̄0(ρ(x)) ≤ η̄ if ρ(x) ≤ R̄ + b̄, v̄0(ρ(x)) = 0 otherwise.

Therefore, using inequality (5.3) in the compact set K = {x ∈ Hn | ρ(x) ≤ R̄ + b̄} we
obtain

u(x, h) ≥ v̄0(ρ(x)) for any x ∈ Hn,

whence by comparison results

u(x, t + h) ≥ v̄(x, t) for any (x, t) ∈ Hn × R+. (5.6)
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From (5.5)–(5.6) we obtain

u(x, t + h) ≥ η̄ for any (x, t) ∈ Hn × R+ such that ρ(x) ≤ R̄ + k̄t (t ∈ R+),

that is,

u(x, t) ≥ η̄ for any (x, t) ∈ Hn × R+ such that ρ(x) ≤ R̄ + k̄(t − h) (t > h).

Let y ∈ Hn. Since inequality (5.4) implies c < k̄, we have

{x ∈ Hn | d(x, y) < ct} ⊆ {x ∈ Hn | ρ(x) < R̄ + k̄(t − h)}

for any t ∈ R+ sufficiently large. Therefore, by the above remarks

inf
d(x,y)<ct

u(x, t) ≥ inf
ρ(x)≤R̄+k̄(t−h)

u(x, t) ≥ η̄.

To summarize, we have proved that for any η̄ ∈ (γc̄, 1) there exists τ ∈ R+ such that

inf
d(x,y)<ct

u(x, t) ≥ η̄ for any t > τ.

Since u ≤ 1 in Hn × R+, equality (3.5) follows. ut

Proof of Theorem 3.7. Denote by ω the convex hull of the support of u0. Take any hy-
perplane π ⊆ Hn such that π ∩ ω = ∅. Let Hnω ⊆ Hn be the half-space containing ω.
Define

ũ(x) := u(Rπ (x)) (x ∈ Hn),
where Rπ denotes the reflection in π . Observe that both u and ũ satisfy the equation

∂u

∂t
= 1Hu+ f (u) in Hnω × R+,

whereas
u = u0 ≥ 0 = ũ in Hnω × {0}, u = ũ in π × R+.

Then by the strong maximum principle we get

u > ũ in Hnω × R+,

and by the Hopf Boundary Lemma we obtain

∂u

∂ν
>
∂ũ

∂ν
= −

∂u

∂ν
in π × R+,

where ν is the vector field orthogonal to π pointing towards Hnω. Hence

〈∇Hu, ν〉H > 0 in π × R+. (5.7)

(i) Let us now prove the first claim. Since suppu0 is compact and (3.5) holds, we have
0a(u; t) ∩ ω = ∅ for any a ∈ (0, 1) and t ∈ R+ sufficiently large. Let x0 ∈ 0a(u; t).
Then we can find a hyperplane P ⊆ Hn such that x0 ∈ P and P ∩ ω = ∅ (see Remark
2.1(ii)). Using the above remarks with π = P , by (5.7) we obtain ∇Hu(x0, t) 6= 0. Since
x0 is arbitrary, the smoothness of 0a(u; t) follows.



Front propagation on the hyperbolic space 1223

(ii) To prove the second claim we assume for contradiction that there exist x0 ∈

0a(u; t) and an infinite geodesic γ orthogonal to 0a(u; t) at x0, which does not in-
tersect ω. Then we can choose a hyperplane Q ⊆ Hn such that γ ⊆ Q and Q ∩ ω
= ∅ (see Remark 2.1(iii)). Using the above remarks with π = Q, by (5.7) we obtain
〈∇Hu(x0, t), τ 〉H 6= 0, where τ is a tangent vector to 0a(u; t) in x0. However, this con-
tradicts the very definition of 0a(u; t). Hence the conclusion follows. ut

6. Horospheric waves: proofs

Proof of Theorem 3.9. Since the function u defined in (1.18) only depends on (xn, t),
plainly we have

∂u

∂t
−1Hu− f (u) = −c

∗(q∗)′ − [(q∗)′′ + (q∗)′] + (2− n)(q∗)′ − f (q∗)

= −(q∗)′′ + (1− n− c∗)(q∗)′ − f (q∗) = 0

(here the expression (2.17) of 1H in Un has been used). Therefore u satisfies equation
(1.12). Moreover, its level set is

0a(u; t) := {x ∈ Un | xn = e−z−c
∗t
} (a ∈ (0, 1), t ∈ R+),

where z := (q∗)−1(a) (recall that q∗ is decreasing in R by Proposition 3.1(i)). Then for
any a ∈ (0, 1) and t ∈ R+, 0a(u; t) is a horosphere with center at infinity. This completes
the proof. ut

To prove Theorem 3.10 we need some preliminary results. As already remarked, the ex-
pression (1.18) of a horospheric wave in Un is formally analogous to that of a planar wave
in Rn. This analogy suggests expressing solutions of problem (3.12) in a moving frame,
so that horospheric waves appear as stationary states—namely, to introduce the new coor-
dinate ec

∗txn (t ∈ R+). However, in contrast to the case of translations in Rn, the change
of coordinates

χt : Un→ Un, χt (x
′, xn) := (x

′, ec
∗txn) (x′ ∈ Rn−1, xn > 0, t ∈ R+)

is not an isometry of Un (hereafter, any point x ∈ Un is denoted by x ≡ (x′, xn) with
x′ ≡ (x1, . . . , xn−1) ∈ Rn−1, xn ∈ R+). Instead, the map

τt : Un→ Un, τt (x
′, xn) := e

c∗t (x′, xn) ≡ (X
′, Xn) (t ∈ R+)

is an isometry (see (2.16)). Therefore we define

w := u ◦ τ−1
t : U

n
× R+→ R, w(X′, Xn, t) := u(e

−c∗tX′, e−c
∗tXn, t) (t ∈ R+),

where u = u(x′, xn, t) is any solution of problem (3.12). An elementary calculation
shows that w solves the problem

∂w

∂t
= X2

n1w − (c0 − 1)
∂w

∂Xn
Xn − c

∗

n−1∑
i=1

∂w

∂Xi
Xi + f (w) in Un × R+,

w(X′, Xn, 0) = w0(X
′, Xn) := u0(X

′, Xn)

(6.1)

((X′, Xn) ∈ Un; here the expression (2.17) of 1H in Un has been used).
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Define z := − logXn and

v : Rn × R+→ R, v(X′, z, t) := w(X′, e−z, t).

Then problem (6.1) reads
∂v

∂t
=
∂2v

∂z2 + c0
∂v

∂z
+ e−2z

n−1∑
i=1

∂2v

∂X2
i

− c∗
n−1∑
i=1

∂v

∂Xi
Xi + f (v) in Rn × R+,

v(X′, z, 0) = v0(X
′, z) := w0(X

′, e−z)

(6.2)

((X′, z) ∈ Rn; recall that by definition c0 = c
∗
+ n− 1).

If v does not depend on X′ ∈ Rn−1, by (6.2) it satisfies the equation

∂v

∂t
=
∂2v

∂z2 + c0
∂v

∂z
+ f (v) in R× R+. (6.3)

Concerning (6.3), let us recall the following lemma ([9]; see also [16, Lemma 4.2]).

Lemma 6.1. Let assumption (H5) be satisfied. Then for any δ1 ∈ (0, a) and any δ2 ∈

(0, 1 − a) there exist β > 0 and C ≥ 1 (only depending on δ1, δ2 and f ) such that the
functions v± : R× R+→ R,

v+(z, t) := q∗(z− Cδ1(1− e−βt ))+ δ1e
−βt ,

v−(z, t) := q∗(z+ Cδ2(1− e−βt ))− δ2e
−βt

(6.4)

are respectively a supersolution and a subsolution of equation (6.3).

By a suitable modification of the proof of [16, Lemma 4.1], we can prove the following
result.

Proposition 6.2. Let assumption (H5) be satisfied. Let v = v(X′, z, t) be any solution of
problem (6.2).

(i) Suppose that
lim sup
z→∞

sup
X′∈Rn−1

v0(X
′, z) < a. (6.5)

Then there exists z∗ ∈ R such that

lim sup
t→∞

sup
X′∈Rn−1

v(X′, z, t) ≤ q∗(z− z∗) uniformly for z ∈ R. (6.6)

(ii) Similarly, if
lim inf
z→−∞

inf
X′∈Rn−1

v0(X
′, z) > a, (6.7)

there exists z∗ ∈ R such that

lim inf
t→∞

inf
X′∈Rn−1

v(X′, z, t) ≥ q∗(z− z∗) uniformly for z ∈ R. (6.8)
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Proof. We only prove claim (i), the proof of (ii) being similar. To this end, we shall prove
the following

Claim. There exist τ ∈ R+, z0 ∈ R and δ1 ∈ (0, a) such that

sup
X′∈Rn−1

v(X′, z, τ ) ≤ v+(z− z0, 0) = q∗(z− z0 − Cδ1)+ δ1 for any z ∈ R. (6.9)

By the Claim the conclusion follows. In fact, inequality (6.9) and Lemma 6.1 yield by
comparison results

sup
X′∈Rn−1

v(X′, z, t) ≤ v+(z− z0, t − τ) for any z ∈ R, t ≥ τ.

Letting t →∞ in the above inequality gives

lim sup
t→∞

sup
X′∈Rn−1

v(X′, z, t) ≤ q∗(z− z0 − Cδ1)

(see (6.4)), which is inequality (6.6) with z∗ := z0 + Cδ1.
It remains to prove the Claim. This will be done in three steps.

(i) By inequality (6.5) we can choose δ1 ∈ (0, a) and β ∈ (0, δ1) such that

lim sup
z→∞

sup
X′∈Rn−1

v0(X
′, z) < β < δ1. (6.10)

Let us show that for every fixed τ ∈ R+,

lim sup
z→∞

sup
X′∈Rn−1

v(X′, z, τ ) < δ1. (6.11)

To this end, choose first M ≥ 1 such that

sup
X′∈Rn−1

v0(X
′, z) ≤ β +Me−c0z for any z ∈ R. (6.12)

This is possible, since by inequality (6.10) there exists z̄ > 0 such that

sup
X′∈Rn−1

v0(X
′, z) ≤ β for any z > z̄;

moreover,
sup

X′∈Rn−1
v0(X

′, z) ≤ 1 ≤ e−c0(z−z̄) for any z ≤ z̄.

Setting M := ec0z̄ we obtain (6.12).
Further, let us observe that the function

v̄(z, t) := β +Me−c0(z−αt) (z ∈ R, t ∈ R+)

is a supersolution of the first equation in (6.2) for any α > 0 sufficiently large. In fact, it
is easily checked that

∂v̄

∂t
−
∂2v̄

∂z2 − c0
∂v̄

∂z
− f (v̄) = αMe−c0(z−αt) − f (β +Me−c0(z−αt)) ≥ 0 (6.13)
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if α ≥ 1
a−β

sups∈[a,1] f (s), since

f (v̄) ≥ 0 ⇔ 0 ≤ z− αt ≤
1
c0

∣∣∣∣log
a − β

M

∣∣∣∣
(see assumption (H5)).

By (6.12)–(6.13) the function v̄ (with α, β,M as above) is a supersolution of problem
(6.2). Therefore by comparison we obtain

sup
X′∈Rn−1

v(X′, z, τ ) ≤ β +Me−c0(z−ατ)

for any z ∈ R and any fixed τ ∈ R+. Hence inequality (6.11) follows.

(ii) Since by assumption (H5) we have f (s) < 0 if s > 1, the function ṽ := 1+ δ1/2 is a
supersolution of problem (6.2). Hence by comparison

sup
X′∈Rn−1

v(X′, z, τ ) ≤ 1+ δ1/2 for any z ∈ R, τ ∈ R+. (6.14)

(iii) Fix any τ ∈ R+. Set z1 := Cδ1 + (q
∗)−1(1− δ1/2). Then by (6.14) we have

sup
X′∈Rn−1

v(X′, z, τ ) ≤ 1+ δ1/2 ≤ q∗(z− Cδ1)+ δ1 for any z ≥ z1.

On the other hand, by (6.11) there exists z2 > 0 such that

sup
X′∈Rn−1

v(X′, z, τ ) ≤ δ1 for any z > z2.

Defining z0 := max{z2 − z1, 0} we obtain inequality (6.9), thus the Claim follows. ut

Proof of Theorem 3.10. Under the change of variables (x′, xn) → (X′, z), assumption
(3.13) corresponds to assumptions (6.5) and (6.7) of Proposition 6.2. Then by inequalities
(6.6) and (6.8) we obtain

q∗(z− z∗) ≤ v(X
′, z, t) ≤ q∗(z− z∗) for every (X′, z) ∈ Rn, t ∈ R+.

Since by definition z = − log xn − c∗t and v(X′, z, t) = u(x′, xn, t), setting k∗ := ez
∗

and k∗ := ez∗ yields inequality (3.14). ut
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