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Abstract. This paper is devoted to the study of cloaking via anomalous localized resonance
(CALR) in the two- and three-dimensional quasistatic regimes. CALR associated with negative
index materials was discovered by Milton and Nicorovici [21] for constant plasmonic structures
in the two-dimensional quasistatic regime. Two key features of this phenomenon are the localized
resonance, i.e., the fields blow up in some regions and remain bounded in some others, and the
connection between the localized resonance and the blow up of the power of the fields as the loss
of the material goes to 0. An important class of negative index materials for which the localized
resonance might appear is the class of reflecting complementary media introduced in [24]. It was
shown in [29] that the complementarity property is not enough to ensure a connection between the
blow up of the power and the localized resonance. In this paper, we study CALR for a subclass of
complementary media called doubly complementary media. This class is rich enough to allow us to
cloak an arbitrary source concentrating on an arbitrary smooth bounded manifold of codimension 1
placed in an arbitrary medium via anomalous localized resonance; the cloak is independent of the
source. The following three properties are established for doubly complementary media: P1. CALR
appears if and only if the power blows up; P2. The power blows up if the source is located “near” the
plasmonic structure; P3. The power remains bounded if the source is far away from the plasmonic
structure. Property P2, the blow up of the power, is in fact established for reflecting complementary
media. The proofs are based on several new observations and ideas. One of the difficulties is to
handle the localized resonance. To this end, we extend the reflecting and removing localized sin-
gularity techniques introduced in [24–26], and implement the separation of variables for Cauchy
problems for a general shell. The results in this paper are inspired by and imply recent ones of
Ammari et al. [3] and Kohn et al. [16] in two dimensions and extend theirs to general non-radial
core-shell structures in both two and three dimensions.
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1. Introduction

Negative index materials (NIMs) were first investigated theoretically by Veselago [36]
and their theory was further developed by Nicorovici et al. [32] and Pendry [33]. The
existence of such materials was confirmed by Shelby et al. [35]. The study of NIMs has
attracted a lot of attention thanks to their many applications. One of the appealing ones
is cloaking. There are at least three ways to do cloaking using NIMs. The first one is
based on plasmonic structures introduced by Alu and Engheta [2]. The second one uses
the concept of complementary media. This was suggested by Lai et al. [17] and confirmed
theoretically in [25] for a slightly different scheme. The last one is based on the concept of
anomalous localized resonance discovered by Milton and Nicorovici [21]. In this paper,
we concentrate on the last method.

Cloaking via anomalous localized resonance (CALR) was discovered by Milton and
Nicorovici [21]. Their work has roots in [32] (see also [23]) where the localized resonance
was observed and established for constant symmetric plasmonic structures in the two-
dimensional quasistatic regime. More precisely, in [21], the authors studied core-shell
plasmonic structures in which a circular shell has permittivity −1 + iδ while the core
and the matrix, the complement of the core and the shell, have permittivity 1. Here δ
denotes the loss of the material in the shell. Let re and ri be the outer and the inner radii
of the shell. Milton and Nicorovici showed that there is a critical radius r∗ := (r3

e r
−1
i )1/2

such that a dipole is not seen by an observer away from the core-shell structure, hence
it is cloaked, if and only if the dipole is within distance r∗ of the shell; moreover, the
power Eδ(uδ) of the field uδ , which is roughly speaking δ‖uδ‖2H 1 , blows up. They called
this phenomenon cloaking via anomalous localized resonance. Two key features of this
phenomenon are:

1. The localized resonance, i.e., the fields blow up in some regions and remain bounded
in some others as the loss goes to 0.

2. The connection between the localized resonance and the blow up of the power as the
loss goes to 0.

That work has led to a new method of cloaking and has been a source of inspiration for
many investigations [3–8, 15, 16, 20, 22, 29, 31].



Cloaking via anomalous localized resonance 1329

Let us discuss recent progress on CALR. In [6], Bouchitté and Schweizer proved that
a small circular inclusion of radius γ (δ) (with γ (δ) → 0 fast enough) is cloaked by
the core-shell plasmonic structure mentioned above in the two-dimensional quasistatic
regime if the inclusion is located within distance r∗ of the shell. Otherwise it is visible.
Concerning the second feature of CALR, the blow up of the power was studied for a more
general setting by Ammari et al. [3] and Kohn et al. [16]. More precisely, they considered
non-radial core-shell structures in which the shell has permittivity −1 + iδ and the core
and the matrix have permittivity 1. Ammari et al. [3] dealt with arbitrary shells in the two-
dimensional quasistatic regime. They provided a characterization of sources for which
the power blows up. Their characterization is based on the spectrum of a self-adjoint
compact operator (Neumann–Poincaré type operator). Kohn et al. [16] considered core-
shell structures in the two-dimensional quasistatic regime in which the matrix is radial
symmetric but the core is not. Using a variational approach, they established the blow up
of the power for a class of sources concentrated on circles within distance r∗ = (r3

e r
−1
i )1/2

of the core-shell region Bre if the core is inside Bri . They also showed that the power
remains bounded for a class of sources concentrated on circles outside Br∗ if the core is
round, inside, and close to Bri . The localized resonance associated with CALR has been
discussed so far only for simple geometries [3, 5, 8].

An important class of NIMs in which the localized resonance might appear is the
class of reflecting complementary media [25, 26, 30]. The concept of reflecting comple-
mentary media for a general core-shell structure was introduced and studied in [24]. This
class is inspired by the pivotal work of Nicorovici et al. [32] and by the important notion
of complementary media suggested by Ramakrishna and Pendry [34]. Nevertheless, the
complementarity property is not enough to ensure that CALR takes place, as discussed
in [29]. Therefore, the study of the two features 1 and 2 together in CALR is of impor-
tance.

In this paper, we investigate CALR for a subclass of complementary media called the
class of doubly complementary media for a core-shell structure, defined in Definition 1.2.
This class is rich enough to allow us to cloak an arbitrary source concentrating on an
arbitrary smooth bounded manifold of codimension 1 placed in an arbitrary medium
via anomalous localized resonance (see Section 5); the cloak is independent of the source.
Roughly speaking, the shell is not only reflecting complementary to a part of the matrix
but also to a part of the core. We establish the following three properties of CALR for
doubly complementary media, which are what one would expect from a structure for
which CALR takes place:

P1. CALR appears if and only if the power blows up (Theorem 1.1).
P2. The power blows up if the source is located “near” the shell (Theorem 1.2).
P3. The power remains bounded if the source is far away from the shell (Theorem 1.3).

Property P2, the blow up of the power, is in fact established for reflecting complemen-
tary media. We also address qualitative estimates on the distance from the source to
the shell for which CALR does or does not appear in various situations (Theorems 1.2
and 1.3).
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We now describe the problem more precisely. Let d = 2, 3, and � be a smooth open
bounded subset of Rd , and let 0 < r1 < r2 be such that Br2 ⊂⊂ �. Set, for δ > 0,

sδ :=

{
−1+ iδ in Br2 \ Br1 ,
1 otherwise. (1.1)

Let A be a symmetric uniformly elliptic matrix-valued function defined in �, i.e., A is
symmetric and

1
3
|ξ |2 ≤ 〈A(x)ξ, ξ〉 ≤ 3|ξ |2 ∀ξ ∈ Rd , (1.2)

for a.e. x ∈ � and for some 1 ≤ 3 <∞. Let f ∈ L2(�) with supp f ∩ Br2 = ∅ and let
uδ ∈ H

1
0 (�) be the unique solution to

div(sδA∇uδ) = f in �. (1.3)

The power Eδ(uδ) is defined by (see, e.g., [21])

Eδ(uδ) = δ

∫
Br2\Br1

|∇uδ|
2.

Using the fact that uδ = 0 on ∂�, one has1∫
�

(|∇uδ|
2
+ |uδ|

2) ≤ C

(∫
Br2\Br1

|∇uδ|
2
+ ‖f ‖2

L2

)
(1.4)

for some positive constant C independent of f and δ ∈ (0, 1). Let vδ ∈ H 1
0 (�) be the

unique solution to
div(sδA∇vδ) = fδ in �. (1.5)

Here fδ = cδf , where cδ is the normalization constant such that

δ1/2
∫
Br2\Br1

|∇vδ|
2
= 1. (1.6)

In this paper, we are interested in a class of matrices A, called doubly complementary
media, for which CALR takes place. Before giving their definition for a general core-
shell structure, let us recall the definition of reflecting complementary media introduced
in [24, Definition 1].

Definition 1.1 (Reflecting complementary media). Let r1 < r2 < r3. The media A in
Br3 \ Br2 and −A in Br2 \ Br1 are said to be reflecting complementary if there exists a
diffeomorphism F : Br2 \ Br1 → Br3 \ Br2 such that

F∗A = A for x ∈ Br3 \ Br2 , (1.7)
F(x) = x on ∂Br2 , (1.8)

and the following two conditions hold:

1 One way to obtain this inequality is to multiply (1.3) by ūδ (the conjugate of uδ), integrate
on �, and consider the real part.
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1. There exists a diffeomorphic extension of F , still denoted by F , from Br2 \ {x1} to
Rd \ Br2 for some x1 ∈ Br1 .

2. There exists a diffeomorphismG : Rd \Br3 → Br3 \ {x2} for some x2 ∈ Br3 such that

G(x) = x on ∂Br3 , (1.9)
G ◦ F : Br1 → Br3 is a diffeomorphism if one sets G ◦ F(x1) = x2. (1.10)

Here and in what follows, if T is a diffeomorphism and a is a matrix-valued function, we
denote

T∗a(y) =
DT (x)a(x)DT (x)T

|detDT (x)|
where x = T −1(y). (1.11)

Remark 1.1. In (1.8) and (1.9), F and G denote some diffeomorphic extensions of F
and G in a neighborhood of ∂Br2 and of ∂Br3 . As noted in [24], conditions (1.7) and
(1.8) are the main assumptions in Definition 1.1. The term “reflecting” in Definition 1.1
comes from (1.8) and the fact that Br1 ⊂ Br2 ⊂ Br3 . Conditions 1 and 2 are mild as-
sumptions. Introducing G makes the analysis more accessible—see [24–26, 30] and the
analysis presented in this paper.

Remark 1.2. The class of reflecting complementary media has played an important role
in other applications of NIMs such as cloaking and superlensing using complementarity
[25, 26, 30].

Remark 1.3. Taking d = 2, A = I and r3 = r2
2/r1, and letting F be the Kelvin trans-

form with respect to ∂Br2 , i.e., F(x) = r2
2x/|x|

2, one can verify that the core-shell struc-
tures considered by Milton et al. [21] and Kohn et al. [16] have the reflecting complemen-
tarity property.

We are ready to introduce the concept of doubly complementary media.

Definition 1.2. The medium s0A is said to be doubly complementary if for some r3 > 0
with Br3 ⊂⊂ �, the media A in Br3 \Br2 and −A in Br2 \Br1 are reflecting complemen-
tary, and

F∗A = G∗F∗A = A in Br3 \ Br2 (1.12)

for some F and G coming from Definition 1.1 (see Figure 1).

Remark 1.4. The reason why media satisfying (1.12) are called doubly complementary
media is that −A in Br2 \ Br1 is not only complementary to A in Br3 \ Br2 but also to A
in (G ◦ F)−1(Br3 \ Br2) (a subset of Br1 ) (see [27]).

Remark 1.5. Taking d = 2, A = I and r3 = r2
2/r1, and letting F and G be the Kelvin

transform with respect to ∂Br2 and ∂Br3 , one can verify that the core-shell structures
considered by Milton et al. [21] have the double complementarity property. The setting
considered in [4] also has this property.
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Fig. 1. s0A is doubly complementary:−A in Br2 \Br1 (red region) is complementary to A = F∗A
in Br3 \ Br2 (grey region) and A = K∗A with K = F−1

◦ G−1
◦ F in K(Br2 \ Br1) (blue grey

region).

In what follows, we assume that

A ∈ [C3(Br3 \ Br2)]
d×d . (1.13)

This assumption, which can sometimes be weakened, is necessary for the use of a three
spheres inequality, the unique continuation principle, and the separation of variables tech-
nique introduced later in this paper.

The following theorem is one of the main results of the paper. It gives the equivalence
between the blow up of the power and CALR for doubly complementary media, which
implies Property P1.

Theorem 1.1. Let d = 2, 3, f ∈ L2(�) with supp f ⊂ � \ Br2 , δn → 0, and let
uδn ∈ H

1
0 (�) be the unique solution to

div(sδnA∇uδn) = f in �.

Assume that s0A is doubly complementary.

(i) If limn→∞ δn‖∇uδn‖
2
L2(Br2\Br1 )

= ∞, then

vδn → 0 weakly in H 1(� \ Br3), (1.14)

where vδ ∈ H 1
0 (�) is defined in (1.5).

(ii) If (δn‖∇uδn‖
2
L2(Br2\Br1 )

)n∈N is bounded then

uδn → u weakly in H 1(� \ Br3),

where u ∈ H 1
0 (�) is the unique solution to

div(Â∇u) = f in �. (1.15)
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Here and in what follows, we denote

Â =

{
A in � \ Br3 ,
G∗F∗A in Br3 .

(1.16)

The proof of Theorem 1.1 is given in Section 4 where a stronger result (Proposition 4.1)
is established.

The equivalence between the blow up of the power and CALR can be obtained from
Theorem 1.1 as follows. Suppose that the power blows up, i.e.,

lim
n→∞

δn‖∇uδn‖
2
L2(Br2\Br1 )

= ∞.

Then, by Theorem 1.1, vδn → 0 in�\Br3 , so the source αδnf is not seen by observers far
away from the shell: the source is cloaked. We note that the localized resonance happens
in this case since both (1.6) and (1.14) take place. If the power of uδn remains bounded,
then uδn → u weakly in H 1(� \ Br3). Since u ∈ H 1

0 (�) is the unique solution to (1.15),
the source is not cloaked.

Theorem 1.1 is, to our knowledge, the first result providing the connection between
the blow up of the power and the invisibility of a source in a general setting. The standard
separation of variables is not available here.

We next show that CALR takes place if the source is located “near” the shell. This
implies Property P2. In fact, we establish this property for reflecting complementary
media. More precisely, we have the following result whose proof is given in Section 2.

Theorem 1.2. Let d = 2, 3, f ∈ L2(�) with supp f ⊂ � \ Br2 , and let uδ ∈ H 1
0 (�) be

the unique solution to
div(sδA∇uδ) = f in �.

Assume that A in Br̂3 \ Br2 and −A in Br2 \ Br̂1 are reflecting complementary for some
r1 ≤ r̂1 < r2 < r̂3, with Br̂3 ⊂⊂ �. There exists a constant r∗ ∈ (r2, r̂3), independent of
δ and f , such that if there is no w ∈ H 1(Br∗ \ Br2) with

div(A∇w) = f in Br∗ \ Br2 , w = 0 and A∇w · η = 0 on ∂Br2 , (1.17)

then
lim sup
δ→0

δ1/2
‖∇uδ‖L2(Br2\Br1 )

= ∞. (1.18)

Assume in addition that A = I in Br̂3 \ Br2 . Then

r∗ can be taken to be any number less than
√
r̂3r2. (1.19)

Here and in what follows, for D a smooth bounded open subset of Rd , η denotes the
outward unit normal vector on ∂D.

Concerning the boundedness of the power, we prove
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Theorem 1.3. Let d = 2, 3, f ∈ L2(�), and let uδ ∈ H 1
0 (�) be the unique solution to

(1.3). Assume that s0A is doubly complementary and supp f ∩ Br3 = ∅. Then

lim sup
δ→0

‖uδ‖H 1(�) <∞. (1.20)

Assume in addition that A = I in Br3 \ Br2 . If there exists w ∈ H 1(Br0 \ Br2) for some
r0 >
√
r2r3 with

div(A∇w) = f in Br0 \ Br2 , w = 0 and A∇w · η = 0 on ∂Br2 ,

then
lim sup
δ→0

δ1/2
‖uδ‖H 1(�) <∞. (1.21)

It is clear that Theorem 1.3 implies Property P3. The proof of Theorem 1.3 is given in
Section 3.

The analysis in this paper is based on several new observations and ideas. The proof of
Theorem 1.1 (in Section 4) makes use of the reflecting and removing localized singularity
techniques introduced in [24–26] to deal with the localized resonance. To develop these
techniques for a general core-shell structure, we introduce and implement the separation
of variables technique to solve Cauchy problems in a general shell (Proposition 4.2 in
Section 4.2). The way to implement this technique is one of the cores of the analysis in
this paper. The use of separation of variables to solve boundary value problems for the
Laplace equation in an arbitrary domain was considered in the literature and was based
on the integral method (see e.g. [14]). The analysis presented here is based on the idea
of transformation optics and the reflecting technique. As a consequence, we obtain the
existence of surface plasmons for general complementary media (Proposition 4.2). The
proof of Theorem 1.2 (in Section 2) is based on a new observation for complementary
media (Lemma 2.4) whose proof is based on a three spheres inequality. The idea of the
proof of Theorem 1.3 (in Section 3) is as follows. The first part (1.20) is from [24]. The
proof of the second part (1.21) is based on a kind of removing singularity technique and
uses ideas of [24]. A key point is the construction of an auxiliary function Wδ in (3.9).
Using Theorems 1.1 and 1.2, we can construct a cloaking device to cloak a general source
concentrated on a manifold of codimension 1 in an arbitrary medium (see Section 5). The
proof also makes use of the unique continuation principle.

By considering A = I in Theorems 1.1, 1.2, and 1.3, one can recover the results of
Milton and Nicorovici [21] and Kohn et al. [16], and the results of Ammari et al. [3] in
the radial setting, in two dimensions. The results presented here extend theirs to general
non-radial core-shell structures in both two and three dimensions.

The results of this paper were announced in [27]. The study of CALR in the finite
frequency regime will be undertaken in [28].

2. A condition on the blow up of the power. Proof of Theorem 1.2

This section comprising two subsections is devoted to the proof of Theorem 1.2. In the
first subsection, we present some useful lemmas. The proof of Theorem 1.2 is given in
the second subsection.
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2.1. Preliminaries

We first recall the following result, a change of variables formula, which follows imme-
diately from [24, Lemma 2], and is used repeatedly in this paper.

Lemma 2.1. Let d = 2, 3, R > 0, D1 and D2 be two smooth open subsets of Rd such
thatD1 ⊂⊂ BR ⊂⊂ D2. Assume that T is a diffeomorphism from BR \D1 ontoD2 \BR
and let a ∈ [L∞(BR \ D1)]

d×d be uniformly elliptic. Fix u ∈ H 1(BR \ D1) and set
v = u ◦ T −1. Then

div(a∇u) = 0 in BR \D1 if and only if div(T∗a∇v) = 0 in D2 \ BR.

Assume in addition that T (x) = x on ∂BR . Then

T∗a∇v · η = −a∇u · η on ∂BR. (2.1)

We next recall the following three spheres inequality (see, e.g., [1, Theorem 2.3 and
(2.10)]).

Lemma 2.2 (Three spheres inequality). Let d = 2, 3, 0 < R1 < R2 < R3, and letM be
a Lipschitz matrix-valued function defined in BR3 such thatM is symmetric and uniformly
elliptic in BR3 , and M(0) = I . Assume v ∈ H 1(BR3) is a solution to

div(M∇v) = 0 in BR3 .

There exist positive constants C and c, depending only on R3 and the ellipticity and the
Lipschitz constants of M , such that

‖v‖L2(∂BR2 )
≤ C‖v‖α

L2(B∂R1 )
‖v‖1−α

L2(∂BR3 )
,

where

α =
ln(R3/R2)

ln(R3/R2)+ c ln(R2/R1)
, (2.2)

In the case M = I in BR3 , one can take c = 1, i.e., α = ln(R3/R2)/ ln(R3/R1).

Using Lemma 2.2, we can prove

Lemma 2.3. Let d = 2, 3, 0 < R1 < R2 < R3, and let M be a Lipschitz matrix-
valued function defined in BR3 such that M is symmetric and uniformly elliptic in BR3

and M(0) = I . Assume v ∈ H 1(BR3) is a solution to

div(M∇v) = 0 in BR3 \ BR1 .

There exist positive constants C and c such that C depends only on R1, R3, the elliptic-
ity and the Lipschitz constants of M , and c depends only on R3, the ellipticity and the
Lipschitz constants of M , and

‖v‖L2(∂BR2 )
≤ C

(
(‖v‖H 1/2(∂BR1 )

+ ‖M∇v · η‖H−1/2(∂BR1 )
)α‖v‖1−α

L2(∂BR3 )

+ (‖v‖H 1/2(∂BR1 )
+ ‖M∇v · η‖H−1/2(∂BR1 )

)
)
, (2.3)
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where

α =
ln(R3/R2)

ln(R3/R2)+ c ln(R2/R1)
. (2.4)

In the case M = I in BR3 , one can take c = 1.

Proof. Let w ∈ H 1(BR3 \ ∂BR1) be such that

div(M∇w) = 0 in BR3 \ ∂BR1 , w = 0 on ∂BR3 ,

[w] = v and [M∇w · η] = M∇v · η on ∂BR1 .

Henceforth [·] denotes the jump across the boundary. It follows that

‖w‖H 1(BR3\∂BR1 )
≤ C(‖v‖H 1/2(∂BR1 )

+ ‖M∇v · η‖H−1/2(∂BR1 )
). (2.5)

Here and in what follows in this proof, C denotes a positive constant depending only on
R1, R3, and the ellipticity and the Lipschitz constants of M . Define

V =

{
v − w in BR3 \ BR1 ,

−w in BR1 .

Then V ∈ H 1(BR3) and div(M∇V ) = 0 in BR3 . Applying Lemma 2.2, we obtain

‖V ‖L2(∂BR2 )
≤ C‖V ‖α

L2(∂BR1 )
‖V ‖1−α

L2(∂BR3 )
.

The conclusion follows from (2.5) and the definition of V . ut

The following result provides the key ingredient for the proof of Theorem 1.2.

Lemma 2.4. Let d = 2, 3, 0 < R1 < R2 < ∞, let M be a symmetric uniformly elliptic
matrix-valued function defined in BR2 \ BR1 , and let g, h ∈ L2(BR2 \ BR1). Assume that
M is Lipschitz and Uδ, Vδ ∈ H 1(BR2 \ BR1) satisfy

div(M∇Uδ) = g and div(M∇Vδ) = h in BR2 \ BR1 ,

Uδ = Vδ and M∇Uδ · η = (1− iδ)M∇Vδ · η on ∂BR1 .

There exists a constant R∗ ∈ (R1, R2), depending only on R1, R2, and the ellipticity
and the Lipschitz constants of M , but independent of δ, g, and h, such that if there is no
W ∈ H 1(BR∗ \ BR1) with

div(M∇W) = g − h in BR∗ \ BR1 , W = 0 and M∇W · η = 0 on ∂BR1 , (2.6)

then
lim sup
δ→0

δ1/2(‖Uδ‖H 1(BR2\BR1 )
+ ‖Vδ‖H 1(BR2\BR1 )

) = ∞. (2.7)

Assume in addition that M = I in BR2 \ BR1 . Then

R∗ can be taken to be any number less than
√
R1R2. (2.8)
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Proof. For notational ease, we denote U2−n and V2−n by Un and Vn. We have

div(M∇Un) = g and div(M∇Vn) = h in BR2 \ BR1 ,

Un = Vn and M∇Un · η = (1− i2−n)M∇Vn · η on ∂BR1 .

Let M̂ be an extension on M in BR2 such that M̂ is Lipschitz and uniformly elliptic in
BR2 , and M̂(0) = I .2 Let c be the constant in Lemma 2.3 corresponding to M̂ and the
shell BR2 \ BR1 . Define

α(r) =
ln(R2/r)

ln(R2/r)+ c ln(r/R1)
∀r ∈ (R1, R2).

Fix R∗ such that α(R∗) > 1/2 (this holds if R∗ is chosen close to R1). There exists
γ ∈ (0, 1) (close to 1) such that

α(r) > (α(R∗)+ 1/2)/2 for r ∈ (γR∗, (2− γ )R∗). (2.9)

We prove that

lim sup
n→∞

2−n/2(‖Un‖H 1(BR2\BR1 )
+ ‖Vn‖H 1(BR2\BR1 )

) = ∞. (2.10)

Assume for contradiction that

m := sup
n

2−n/2(‖Un‖H 1(BR2\BR1 )
+ ‖Vn‖H 1(BR2\BR1 )

) <∞. (2.11)

Define

Wn = Un − Vn in BR2 \ BR1 , 8n = −i2−nM∇Vn · η on ∂BR1 .

Then

div(M∇Wn) = g − h in BR2 \ BR1 , Wn = 0 and M∇Wn · η = 8n on ∂BR1 .

We claim that (Wn) is a Cauchy sequence in H 1(BR∗ \ BR1).
Indeed, set

wn = Wn+1 −Wn in BR2 \ BR1 , φn = 8n+1 −8n on ∂BR1 .

We have

div(M∇wn) = 0 in BR2 \ BR1 , wn = 0 and ∇wn · η = φn on ∂BR1 .

2 One can choose M̂ as follows: M̂(x) = (2r/R1−1)M(R1σ)+(2−2r/R1)I if x ∈ BR1 \BR1/2
and M̂(x) = I if x ∈ BR1/2, where r = |x| and σ = x/|x|. In the case M = I in BR2 \ BR1 , we
choose M̂ = I in BR1 .
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From (2.11), we derive that

‖wn‖H 1(BR2\BR1 )
≤ Cm2n/2, ‖φn‖H 1/2(∂BR1 )

≤ Cm2−n/2.

In this proof, C denotes a constant independent of n. Applying Lemma 2.3, we obtain

‖wn‖L2(∂Br )
≤ C(‖φn‖

α(r)

H−1/2(∂BR1 )
‖wn‖

1−α(r)
L2(∂BR2 )

+ ‖φn‖H−1/2(∂BR1 )
) ≤ Cm2−nβ(r),

where
β(r) = (2α(r)− 1)/2.

From (2.9),

β(r) > (α(R∗)− 1/2)/2 > 0 for r ∈ (γR∗, (2− γ )R∗).

Since div(M∇wn) = 0 in BR2 \ BR1 , by the regularity theory of elliptic equations,

‖wn‖H 1/2(∂BR∗ )
≤ Cm2−n(α(R∗)−1/2)/2.

Since div(M∇wn) = 0 in BR∗ \ BR1 and wn = 0 on ∂BR1 , it follows that

‖wn‖H 1(BR∗\BR1 )
≤ Cm2−n(α(R∗)−1/2)/2.

Hence (Wn) is a Cauchy sequence in H 1(BR∗ \ BR1). Let W ∈ H 1(BR∗ \ BR1) be its
limit. Then

div(M∇W) = g − h in BR∗ \ BR1 , W = 0 and M∇W · η = 0 on ∂BR1 .

This contradicts the non-existence of such a W . Hence (2.10) holds. ut

2.2. Proof of Theorem 1.2

Set
u1,δ = uδ ◦ F

−1 in Br̂3 \ Br2 .

Since F∗A = A in Br̂3 \ Br2 and F(x) = x on ∂Br2 , it follows from Lemma 2.1 that

div(A∇u1,δ) = 0 in Br̂3 \ Br2 ,
uδ = u1,δ and A∇uδ · η = (1− iδ)A∇u1,δ · η on ∂Br2 .

Recall that div(A∇uδ) = f in Br̂3 \ Br2 . Applying Lemma 2.4 with Uδ = uδ , Vδ = u1,δ ,
R1 = r2, and R2 = r̂3, we find that there exists a constant r∗ ∈ (r2, r3), independent of δ
and f , such that if there is no solution w ∈ H 1(Br∗ \ Br2) to (1.17), then

lim sup
δ→0

δ1/2(‖uδ‖H 1(Br̂3\Br2 )
+ ‖u1,δ‖H 1(Br̂3\Br2 )

) = ∞.

This implies, by (1.4),

lim sup
δ→0

δ1/2
‖∇uδ‖L2(Br2\Br1 )

= ∞.

In the case A = I in Br̂3 \Br2 , by Lemma 2.4, r∗ can be taken to be any number less than√
r̂3r2. ut
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3. A condition on the boundedness of the power. Proof of Theorem 1.3

This section comprises two subsections. In the first subsection, we present two lemmas
used in the proof of Theorem 1.3. The proof of Theorem 1.3 is given in the second sub-
section.

3.1. Two useful lemmas

The first lemma was established in [24, Lemma 1].

Lemma 3.1. Let d = 2, 3, δ ∈ (0, 1), and f ∈ H−1(�) and let uδ ∈ H 1
0 (�) be the

unique solution to
div(sδA∇uδ) = f in �.

Then

‖uδ‖H 1(�) ≤
C

δ
‖f ‖H−1(�)

for some positive constant C independent of f and δ.

Here is the second lemma whose proof has roots in [24].

Lemma 3.2. Let d = 2, 3, δ ∈ (0, 1), and let f ∈ L2(�), g ∈ H 1/2(∂Br3), and h ∈
H−1/2(∂Br3). Assume that s0A is doubly complementary and supp f ⊂ � \ Br3 , and let
Vδ ∈ H

1(� \ ∂Br3) be the unique solution to
div(sδA∇Vδ) = f in � \ ∂Br3 ,
[Vδ] = g and [A∇Vδ · η] = h on ∂Br3 ,
Vδ = 0 on ∂�.

Then
‖Vδ‖H 1(�\∂Br3 )

≤ C(‖f ‖L2(�) + ‖g‖H 1/2(∂Br3 )
+ ‖h‖H−1/2(∂Br3 )

)

for some positive constant C independent of δ, f , g, and h.

Remark 3.1. The case g = h = 0 was considered in [24, Theorem 1 and Corollary 1].

Proof of Lemma 3.2. Let U ∈ H 1(� \ ∂Br3) be the unique solution to
div(Â∇U) = f in � \ ∂Br3 ,

[U ] = g and [Â∇U · η] = h on ∂Br3 ,
U = 0 on ∂�,

where Â is defined in (1.16). Then

‖U‖H 1(�\∂Br3 )
≤ C(‖f ‖L2(�) + ‖g‖H 1/2(∂Br3 )

+ ‖h‖H−1/2(∂Br3 )
). (3.1)
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Define V0 ∈ H
1(� \ ∂Br3) as follows:

V0 =

U in � \ Br2 ,
U ◦ F in Br2 \ Br1 ,
U ◦G ◦ F in Br1 .

(3.2)

Using (1.12) and applying Lemma 2.1, as in [24, Step 2 in Section 3.2.2] one can verify
that V0 ∈ H

1(� \ ∂Br3) is a solution to
div(s0A∇V0) = f in � \ ∂Br3 ,
[V0] = g and [A∇V0 · η] = h on ∂Br3 ,
V0 = 0 on ∂�.

Set
Wδ = Vδ − V0 in �. (3.3)

Then Wδ ∈ H
1
0 (�) is the unique solution to

div(sδA∇Wδ) = − div(iδA∇V01Br2\Br1 ) in �.

Here and in what follows, for a subset D of Rd , 1D denotes the characteristic function
of D. Applying Lemma 3.1, we have

‖Wδ‖H 1(�) ≤ C‖V0‖H 1(Br2\Br1 )
. (3.4)

The conclusion follows from (3.1)–(3.4). ut

3.2. Proof of Theorem 1.3

Proof of (1.20). This is a consequence of Lemma 3.2 with g = h = 0.

Proof of (1.21). Without loss of generality, one might assume that r2 = 1. As in [24],
define

u1,δ = uδ ◦ F
−1 in Rd \ Br3 , u2,δ = u1,δ ◦G

−1 in Br3 .

Let φ ∈ H 1
0 (Br3 \ Br2) be the unique solution to

1φ = f in Br3 \ Br2 , (3.5)

and set
W = w − φ in Br0 \ Br2 .

Then W ∈ H 1(Br0 \ Br2) satisfies

1W = 0 in Br0 \ Br2 , W = 0 and ∂rW = −∂rφ on ∂Br2 . (3.6)

We now consider the cases d = 2 and d = 3 separately.
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Case 1: d = 2. Since r2 = 1 and W = 0 on ∂Br2 , it follows that

W = g0 ln r +
∞∑
`=1

∑
±

g`,±(r
`
− r−`)e±i`θ in Br0 \ Br2 , (3.7)

for some g0, g`,± ∈ C (` ≥ 1). It is clear that, since r2 = 1 < r0,

‖W‖2
H 1(Br0\Br2 )

∼ |g0|
2
+

∞∑
`=1

∑
±

`|g2
`,±|r

2`
0 <∞. (3.8)

One of the key points in the proof is the construction of Wδ ∈ H
1(Br3 \ Br2) which is

defined as follows:

Wδ = g0 ln r +
∞∑
`=1

∑
±

g`,±

1+ ξ`
(r` − r−`)e±i`θ in Br3 \ Br2 , (3.9)

where
ξ` = δ

1/2(r3/r0)
` for ` ≥ 1. (3.10)

Roughly speaking,Wδ is the main part of the singularity of uδ . From the definition ofWδ ,

1Wδ = 0 in Br3 \ Br2 , Wδ = 0 on ∂Br2 , (3.11)

and

‖Wδ‖
2
H 1(Br3\Br2 )

∼ |g0|
2
+

∞∑
`=1

∑
±

`|g`,±|
2

1+ ξ2
`

r2`
3 . (3.12)

By (3.10), if ξ` ≤ 1 then

`|g`,±|
2

1+ ξ2
`

r2`
3 ≤ `|g`,±|

2r2`
3 ≤ δ

−1`|g`,±|
2r2`

0 , (3.13)

and if ξ` ≥ 1 then

`|g`,±|
2

1+ ξ2
`

r2`
3 ≤ `|g`,±|

2r2`
3 ξ
−2
` = δ

−1`|g`,±|
2r2`

0 . (3.14)

A combination of (3.8), (3.12), (3.13), and (3.14) yields

‖Wδ‖H 1(Br3\Br2 )
≤ Cδ−1/2. (3.15)

Let W1,δ ∈ H
1(�) be the unique solution to

div(sδA∇W1,δ) = 0 in � \ ∂Br2 ,
[sδA∇W1,δ · η] = (−1+ iδ)hδ on ∂Br2 ,
W1,δ = 0 on ∂�,
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where
hδ = −∂r(φ +Wδ) on ∂Br2 ,

and let W2,δ ∈ H
1(� \ ∂Br3) be the unique solution to

div(sδA∇W2,δ) = f 1�\Br3 in � \ ∂Br3 ,
[W2,δ] = φ +Wδ and [A∇W2,δ · η] = ∂rφ + ∂rWδ on ∂Br3 ,
W2,δ = 0 on ∂�.

Recall that, for a subsetD of Rd , 1D denotes the characteristic function ofD. From (3.5),
(3.11), and the fact A = I in Br3 \ Br2 , we have

uδ − (φ +Wδ)1Br3\Br2 = W1,δ +W2,δ in �. (3.16)

Using (3.6), (3.7), and (3.9), we obtain

hδ = −∂r(φ +Wδ) = ∂r(W −Wδ) = ∂r

( ∞∑
`=1

∑
±

ξ`g`,±

1+ ξ`
(r` − r−`)e±i`θ

)
on ∂Br2 .

Since r2 = 1, it follows that

‖hδ‖
2
H−1/2(∂Br2 )

∼

∞∑
`=1

∑
±

`|ξ`|
2
|g`,±|

2

1+ |ξ`|2
. (3.17)

By (3.10), if ξ` ≤ 1 then

`|ξ`|
2

1+ |ξ`|2
|g`,±|

2
≤ δ`|g`,±|

2(r3/r0)
2`
= δ`|g`,±|

2r2`
0 (r3/r

2
0 )

2`
≤ δ`|g`,±|

2r2`
0 , (3.18)

since r0 >
√
r2r3 =

√
r3, and if ξ` ≥ 1 then

`|ξ`|
2

1+ |ξ`|2
|g`,±|

2
≤ `|g`,±|

2
= `|g`,±|

2r2`
0 r
−2`
0 ≤ δ`|g`,±|

2r2`
0 , (3.19)

since δ1/2r`0 > δ1/2(r3/r0)
`
≥ 1. A combination of (3.17)–(3.19) yields

‖hδ‖H−1/2(∂Br2 )
≤ Cδ1/2

‖W‖H 1/2(∂Br0 )
≤ Cδ1/2.

Applying Lemma 3.1, we have

‖W1,δ‖H 1(�) ≤ (C/δ)δ
1/2
= Cδ−1/2. (3.20)

On the other hand, from (3.15) and Lemma 3.2, we obtain

‖W2,δ‖H 1(�\∂Br3 )
≤ Cδ−1/2. (3.21)

The conclusion in the case d = 2 now follows from (3.15), (3.16), (3.20), and (3.21).
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Case 2: d = 3. Since r2 = 1 and W = 0 on ∂Br2 , it follows that

W = g0 +
ĝ0

r
+

∞∑
`=1

∑̀
k=−`

g`,k(r
`
− r−`−1)Y k` (x/|x|) in Br0 \ Br2 ,

for some g0, ĝ0, g`,k ∈ C. Here Y k` is the spherical harmonic function of degree ` and of
order k. Define Wδ ∈ H

1(Br3 \ Br2) as follows:

Wδ = g0 +
ĝ0

r
+

∞∑
`=1

∑̀
k=−`

g`,k

1+ ξ`
(r` − r−`−1)Y k` (x/|x|) in Br3 \ Br2 ,

where ξ` = δ1/2(r3/r0)
` for ` ≥ 1. The proof now follows as in the two-dimensional

case. The details are left to the reader. ut

4. A connection between the blow up of the power and CALR.
Proof of Theorem 1.1

We establish a stronger result than Theorem 1.1:

Proposition 4.1. Let d = 2, 3, let δn → 0, (gn) ⊂ L2(�) with supp gn ⊂ � \ Br2 , and
let vn ∈ H 1

0 (�) be the unique solution to

div(sδnA∇vn) = gn in �.

Assume that s0A is doubly complementary. Suppose that gn → g weakly in L2(�) for
some g ∈ L2(�), and

lim
n→∞

δn‖∇vn‖L2(Br2\Br1 )
= 0. (4.1)

Then vn→ v weakly in H 1(� \ Br3), where v ∈ H 1
0 (�) is the unique solution to

div(Â∇v) = g in �.

Granting Proposition 4.1, we first give

Proof of Theorem 1.1. (i) Since δn‖∇vδn‖
2
L2(Br2\Br1 )

= 1, it follows from (1.4) that

lim
n→∞

δn‖∇vδn‖L2(Br2\Br1 )
= 0.

On the other hand, since limn→∞ δn‖∇uδn‖
2
L2(Br2\Br1 )

= ∞, we have

lim
n→∞
‖fδn‖L2(�) = 0.

The conclusion now follows from Proposition 4.1.
(ii) Since (δn‖∇uδn‖

2
L2(Br2\Br1 )

) is bounded, it follows from (1.4) that

lim
n→∞

δn‖∇uδn‖L2(Br2\Br1 )
= 0.

The conclusion follows again from Proposition 4.1. ut
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The rest of this section comprising three subsections is devoted to the proof of Proposi-
tion 4.1. In the first subsection, we present the proof in the case A = I in Br3 \ Br2 . This
situation is already non-trivial sinceA can be arbitrarily uniformly elliptic outsideBr3 ; the
standard separation of variables cannot be applied. Taking this simple but representative
setting, we present the ideas of the proof of Proposition 4.1. The proof essentially uses
the reflecting and removing localized singularity techniques introduced in [24–26]. The
way to remove localized singularities in this context will lead us to develop a separation
of variables technique for solving Cauchy problems in a general shell in Section 4.2. In
Section 4.3, we give the proof of Proposition 4.1 in the form stated. To this end, we follow
the strategy presented in Section 4.1 and make essential use of the results of Section 4.2.
Due to the lack of the orthogonality of plasmon modes, the analysis is more delicate.

4.1. Proof of Proposition 4.1 in the case A = I in Br3 \ Br2

Without loss of generality, we may assume that r3 = 1. Using (1.4), we derive from (4.1)
that

lim
n→∞

δn‖vn‖H 1(�) = 0. (4.2)

We now consider the cases d = 2 and d = 3 separately.

Case 1: d = 2. Define

v1,n = vn ◦ F
−1 in Rd \ Br2 , v2,n = v1,n ◦G

−1 in Br3 .

It follows from (1.12) and Lemma 2.1 that

div(A∇v1,n) = div(A∇v2,n) = 0 in Br3 \ Br2 .

Since A = I in Br3 \ Br2 , one can represent v1,n and v2,n in Br3 \ Br2 as follows:

v1,n = c0 + d0 ln r +
∞∑
`=1

∑
±

(c`,±r
`
+ d`,±r

−`)e±i`θ , (4.3)

v2,n = e0 + f0 ln r +
∞∑
`=1

∑
±

(e`,±r
`
+ f`,±r

−`)e±i`θ , (4.4)

for some c0, d0, e0, f0, c`,±, d`,±, e`,±, f`,± ∈ C (` ≥ 1). By Lemma 2.1, we have

v1,n = v2,n and ∂rv1,n =
1

1− iδn
∂rv2,n on ∂Br3 .

Since r3 = 1, it follows that

c`,± + d`,± = e`,± + f`,±, c`,± − d`,± =
1

1− iδn
(e`,± − f`,±) for ` ≥ 1,

c0 = e0, d0 =
1

1− iδn
f0.
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This implies, for ` ≥ 1,

c`,± =
2− iδn

2(1− iδn)
e`,± −

iδn

2(1− iδn)
f`,±, d`,± =

2− iδn
2(1− iδn)

f`,± −
iδn

2(1− iδn)
e`,±.

We derive from (4.3) and (4.4) that

v1,n − v2,n =
iδn

1− iδn
f0 ln r

+
iδn

2(1− iδn)

∞∑
`=1

∑
±

(e`,± − f`,±)(r
`
− r−`)e±i`θ in Br3 \ Br2 . (4.5)

It follows from (4.2) that

lim
n→∞

δ2
n(‖v2,n‖

2
H 1/2(∂Br3 )

+ ‖∂rv2,n‖
2
H−1/2(∂Br3 )

) = 0,

lim
n→∞

δ2
n(‖v2,n‖

2
H 1/2(∂Br2 )

+ ‖∂rv2,n‖
2
H−1/2(∂Br2 )

) = 0.

Using (4.4), we obtain

lim
n→∞

δ2
n

(
|e0|

2
+

∞∑
`=1

∑
±

`|e`,±|
2r2`

3 + |f0|
2
+

∞∑
`=1

∑
±

`|f`,±|
2r−2`

3

)
= 0, (4.6)

lim
n→∞

δ2
n

(
|e0|

2
+

∞∑
`=1

∑
±

`|e`,±|
2r2`

2 + |f0|
2
+

∞∑
`=1

∑
±

`|f`,±|
2r−2`

2

)
= 0. (4.7)

We now use the removing localized singularity technique. Set

v̂n = −
iδn

1− iδn
f0 ln r−

iδn

2(1− iδn)

∞∑
`=1

∑
±

(e`,±−f`,±)r
−`e±i`θ in Br3\Br2 , (4.8)

and define Vn in � as follows:

Vn =

 vn in � \ Br3 ,
vn − v̂n in Br3 \ Br2 ,
v2,n in Br2 .

(4.9)

Since A = F∗A = G∗F∗A = I in Br3 \ Br2 , we have, by Lemma 2.1,

div(Â∇Vn) = gn in � \ (∂Br2 ∪ ∂Br3), (4.10)

where Â is defined in (1.16).
We claim that

‖[Vn]‖H 1/2(∂Br3 )
+ ‖[Â∇Vn · η]‖H−1/2(∂Br3 )

= o(1), (4.11)

‖[Vn]‖H 1/2(∂Br2 )
+ ‖[Â∇Vn · η]‖H−1/2(∂Br2 )

= o(1). (4.12)

Here and in what follows, o(1) denotes a quantity converging to 0 as n→∞.
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Granting the claim, we continue the proof. Combining (4.10)–(4.12) and using the
fact that Vn = 0 on ∂� and gn→ g weakly in L2(�), we obtain

Vn→ v weakly in H 1(� \ (∂Br3 ∪ ∂Br2)),

by the definition of v. The conclusion follows since vn = Vn in � \ Br3 .
It remains to prove the claim.

Proof of (4.11). Since r3 = 1, we have, on ∂Br3 ,

[Vn] = v̂n = −

∞∑
`=1

∑
±

iδn

2(1− iδn)
(e`,± − f`,±)r

−`
3 e±i`θ .

Since r3 = 1, it follows from (4.6) and (4.7) that

‖[Vn]‖H 1/2(∂Br3 )
= o(1). (4.13)

Similarly,
‖[Â∇Vn · η]‖H−1/2(∂Br3 )

= o(1). (4.14)

Claim (4.11) is now a consequence of (4.13) and (4.14).

Proof of (4.12). We have

[Vn] = vn − v̂n − v2,n on ∂Br2 .

This implies, since vn = v1,n on ∂Br2 ,

[Vn] = v1,n − v2,n − v̂n on ∂Br2 .

It follows from (4.5) and (4.8) that

‖[Vn]‖H 1/2(∂Br2 )
≤

∥∥∥ iδn

2(1− iδn)

∞∑
`=1

∑
±

(e`,± − f`,±)r
`e±i`θ

∥∥∥
H 1/2(∂Br2 )

.

Since r3 = 1, we derive from (4.6) and (4.7) that

‖[Vn]‖H 1/2(∂Br2 )
= o(1). (4.15)

Similarly, from the fact that ∂rvn = (1− iδn)∂rv1,n and limn→∞ δn‖vn‖H 1(�) = 0,

‖[Â∇Vn · η]‖H−1/2(∂Br2 )
= o(1). (4.16)

A combination of (4.15) and (4.16) yields (4.12).

Case 2: d = 3. The proof is similar to the one in the two-dimensional case. We just note
that, in three dimensions, v1,n and v2,n can be represented in Br3 \ Br2 as follows:

v1,n = c0,0 +
d0,0

r
+

∞∑
`=1

∑̀
k=−`

(c`,kr
`
+ d`,kr

−`−1)Y k` (x/|x|),

v2,n = e0,0 +
f0,0

r
+

∞∑
`=1

∑̀
k=−`

(e`,kr
`
+ f`,kr

−`−1)Y k` (x/|x|),

for some c`,k, d`,k, e`,k, f`,k ∈ C. ut
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4.2. Separation of variables for Cauchy problems in a general shell

In this section, we state variants of (4.3) and (4.4) for a general core-shell structure, i.e.,
A is not required to be I in Br3 \ Br2 . Using these variants, we will extend the method
used in Section 4.1 to a general core-shell structure in Section 4.3. We have

Proposition 4.2. Let d = 2, 3, 0 < R1 < R2, and let a ∈ [C3(BR2 \ BR1)]
d×d be

symmetric and uniformly elliptic. Set R3 = R
2
2/R1 and let K : BR2 \ BR1 → BR3 \ BR2

be the Kelvin transform with respect to ∂BR2 , i.e., K(x) = xR2
2/|x|

2. Define

a1 =

K∗a in BR3 \ BR2 ,

a in BR2 \ BR1 ,

I in BR1 .

(4.17)

Let v` ∈ H 1(BR3) (` ≥ 1) be a solution to

div(a1∇v`) = 0 in BR3 ,

and set v0 = 1 in BR3 . Let w` ∈ H 1(BR2 \ BR1) (` ≥ 1) be the reflection of v` through
∂BR2 by K−1, i.e.,

w` = v` ◦K in BR2 \ BR1 ,

and denote by w0 ∈ H
1(BR3 \ BR2) the unique solution to

div(a∇w0) = 0 in BR2 \ BR1 , w0 = 1 on ∂BR2 , w0 = 0 on ∂BR1 .

Then, for ` ≥ 1,

div(a∇w`) = div(a∇v`) = 0 in BR2 \ BR1 , (4.18)

w` = v` and a∇w` ·
x

|x|
= −a∇v` ·

x

|x|
on ∂BR2 . (4.19)

Assume that {v`}∞`=0 is dense in H 1/2(∂BR3). Then, in the H 1(BR2 \ BR1)-norm:

(1) {v` − w`; ` ≥ 0} is dense in {v ∈ H 1(BR2 \ BR1); div(a∇v) = 0 and v = 0 on
∂BR2}.

(2) {1}∪{v`+w`; ` ≥ 1} is dense in {v ∈ H 1(BR2\BR1); div(a∇v) = 0 and a∇v·η = 0
on ∂BR2}.

(3) {v`, w`; ` ≥ 0} is dense in {v ∈ H 1(BR2 \ BR1); div(a∇v) = 0}.

The proof of Proposition 4.2 is given in the appendix.
The existence of v` and w`, their density properties, and (4.18) and (4.19) can be

considered as the existence of surface plasmons for complementary media, a fact which
can be used elsewhere; see e.g. [11, 12, 19] for discussions on surface plasmons and their
applications. The choice of a1 is to ensure such properties.
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4.3. Proof of Proposition 4.1

Using (1.4), we derive from (4.1) that

lim
n→∞

δn‖vn‖H 1(�) = 0. (4.20)

Define
v1,n = vn ◦ F

−1 in Br4 \ Br3 , v2,n = v1,n ◦G
−1 in Br3 .

Using (1.12) and applying Lemma 2.1, we obtain

div(A∇v1,n) = div(A∇v2,n) = 0 in Br3 \ Br2 ,

v1,n = v2,n and A∇v1,n · η =
1

1− iδn
A∇v2,n · η on ∂Br3 .

Set r̂ = r2
3/r2 and let K : Br3 \ Br2 → Br̂ \ Br3 be the Kelvin transform with respect to

∂Br3 . Define

A1 =

K∗A in Br̂ \ Br3 ,
A in Br3 \ Br2 ,
I in Br2 .

(4.21)

Let v` ∈ H 1(Br̂) (` ≥ 1) be a solution to div(A1∇v`) = 0 in Br̂ , and set v0 = 1 in Br̂ .
Define w` ∈ H 1(Br3 \ Br2) (` ≥ 1) the reflection of v` through ∂Br3 by K−1, i.e.,

w` = v` ◦K in Br3 \ Br2 , (4.22)

and denote w0 ∈ H
1(Br3 \ Br2) the unique solution to

div(A∇w0) = 0 in Br3 \ Br2 , w0 = 1 on ∂Br3 , w0 = 0 on ∂Br2 .

We assume in addition that {v`}∞`=0 is an orthogonal basis of H 1/2(∂Br̂). In particular,∫
∂Br̂

v` = 0 for ` ≥ 1.3 (4.23)

Form ≥ 0, let Pm be the projection fromH 1(Br3 \Br2) to span{v`, w`; 0 ≤ ` ≤ m} with
respect to the H 1(Br3 \ Br2)-norm. By Proposition 4.2, there exists m such that

‖v1,n − Pmv1,n‖H 1(Br3\Br2 )
+ ‖v2,n − Pmv2,n‖H 1(Br3\Br2 )

≤ δ2
n. (4.24)

We have, in Br3 \ Br2 ,

Pmv1,n =

m∑
`=0

(c`v` + d`w`), (4.25)

Pmv2,n =

m∑
`=0

(e`v` + f`w`), (4.26)

3 In the case d = 2 and r3 = 1, v` andw` can be seen as a replacement of r`e±i`θ and r−`e±i`θ
respectively.
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for some c`, d`, e`, f` ∈ C (0 ≤ ` ≤ m). Define (D`)m0 , (N`)
m
0 ⊂ C as follows:

c` + d` = e` + f` +D`, c` − d` =
1

1− iδn
(e` − f`)+N` for 1 ≤ ` ≤ m,

(4.27)

c0 + d0 = e0 + f0 +D0, d0 =
1

1− iδn
f0 +N0. (4.28)

It follows from (4.19) that on ∂Br3 ,

Pmv1,n − Pmv2,n =

m∑
`=0

D`v`, (4.29)

a∇Pmv1,n · η −
1

1− iδn
a∇Pmv2,n · η = N0 a∇w0 · η +

m∑
`=1

N` a∇v` · η. (4.30)

From (4.27) and (4.28), we have, for 1 ≤ ` ≤ m,

c` =
2− iδn

2(1− iδn)
e` −

iδn

2(1− iδn)
f` +

D` +N`

2
,

d` =
2− iδn

2(1− iδn)
f` −

iδn

2(1− iδn)
e` +

D` −N`

2
,

and

c0 = e0 −
iδn

1− iδn
f0 +D0 −N0, d0 =

1
1− iδn

f0 +N0.

We derive from (4.25) and (4.26) that

Pmv1,n−Pmv2,n =
iδn

2(1− iδn)

m∑
`=1

(e`−f`)(v`−w`)+

m∑
`=1

(
D`+N`

2
v`+

D`−N`

2
w`

)
+

(
−

iδn

1− iδn
f0+D0−N0

)
+

(
iδn

1− iδn
f0+N0

)
w0. (4.31)

From (4.20) and (4.24), we have

‖Pmv2,n‖H 1/2(∂Br3 )
= δ−1

n o(1), ‖Pmv2,n‖H 1/2(∂Br2 )
= δ−1

n o(1). (4.32)

Since v` = w` on ∂Br3 for ` ≥ 1, it follows from (4.26) and (4.32) that∥∥∥ m∑
`=0

(e` + f`)v`

∥∥∥
H 1/2(∂Br3 )

= δ−1
n o(1), (4.33)

∥∥∥ m∑
`=0

(e`v` + f`w`)

∥∥∥
H 1/2(∂Br2 )

=

∥∥∥ m∑
`=0

(e` + f`)v` +

m∑
`=0

f`(w` − v`)

∥∥∥
H 1/2(∂Br2 )

= δ−1
n o(1). (4.34)
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Since, for ` ≥ 0, we have div(A1∇v`) = 0 in Br3 , it follows that∥∥∥ m∑
`=0

(e` + f`)v`

∥∥∥
H 1/2(∂Br2 )

≤ C

∥∥∥ m∑
`=0

(e` + f`)v`

∥∥∥
H 1/2(∂Br3 )

. (4.35)

Here and in what follows in this proof, C denotes a positive constant independent of δn,
un, gn, and `. A combination of (4.33)–(4.35) yields∥∥∥ m∑

`=0

f`(w` − v`)

∥∥∥
H 1/2(∂Br2 )

= δ−1
n o(1). (4.36)

Using (4.23) and applying Lemma 4.1 below with v = −
∑m
`≥1 f`v`, c = f0, R1 = r2,

and R2 = r3, we deduce from (4.36) that

|f0| +

∥∥∥ m∑
`=1

f`v`

∥∥∥
H 1/2(∂Br3 )

+

∥∥∥ m∑
`=0

f`w`

∥∥∥
H 1/2(∂Br2 )

= δ−1
n o(1). (4.37)

We also use here the fact that w0 = 0 on ∂Br2 . This implies, by (4.33),∥∥∥ m∑
`=0

e`v`

∥∥∥
H 1/2(∂Br3 )

= δ−1
n o(1). (4.38)

From (4.37) and (4.38), we obtain∥∥∥ m∑
`=0

e`v`

∥∥∥
H 1/2(∂Br3 )

+ |f0| +

∥∥∥ m∑
`=0

f`w`

∥∥∥
H 1/2(∂Br2 )

= δ−1
n o(1). (4.39)

Since div(A1∇v`) = 0 in Br̂ for ` ≥ 1, v0 = 1, and A1 = A in Br3 \ Br2 ,∥∥∥ m∑
`=1

e`A∇v` · η

∥∥∥
H−1/2(∂Br3 )

≤ C

∥∥∥ m∑
`=0

e`v`

∥∥∥
H 1/2(∂Br3 )

. (4.40)

From (4.21) and (4.22), we have

∥∥∥ m∑
`=1

f`A∇w` · η

∥∥∥
H−1/2(∂Br2 )

≤ C

∥∥∥ m∑
`=1

f`A1∇v` · η

∥∥∥
H−1/2(∂Br̂ )

≤ C

∥∥∥ m∑
`=1

f`v`

∥∥∥
H 1/2(∂Br̂ )

≤ C

∥∥∥ m∑
`=1

f`w`

∥∥∥
H 1/2(∂Br2 )

. (4.41)

Recall that w0 = 0 on ∂Br2 . A combination of (4.39)–(4.41) yields∥∥∥ m∑
`=1

e`A∇v` · η

∥∥∥
H−1/2(∂Br3 )

+

∥∥∥ m∑
`=1

f`A∇w` · η

∥∥∥
H−1/2(∂Br2 )

= δ−1
n o(1). (4.42)
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We are ready to remove localized singularities. Set, in Br3 \ Br2 ,

v̂n = −

m∑
`=1

iδn

2(1− iδn)
(e` − f`)w` +

m∑
`=1

(
D` +N`

2
v` +

D` −N`

2
w`

)
+

(
−

iδn

1− iδn
f0 +D0 −N0

)
+

(
iδn

1− iδn
f0 +N0

)
w0 −

iδn

2(1− iδn)
(e0 − f0)v0.

It follows from (4.31) that

Pmv1,n − Pmv2,n =
iδn

2(1− iδn)

m∑
`=0

(e` − f`)v` + v̂n in Br3 \ Br2 . (4.43)

Define

Vn =

 vn in � \ Br3 ,
vn − v̂n in Br3 \ Br2 ,
v2,n in Br2 .

(4.44)

We have
div(Â∇Vn) = gn in � \ (∂Br2 ∪ ∂Br3). (4.45)

We claim that

‖[Vn]‖H 1/2(∂Br3 )
+ ‖[Â∇Vn · η]‖H 1/2(∂Br3 )

= o(1), (4.46)

‖[Vn]‖H 1/2(∂Br2 )
+ ‖[Â∇Vn · η]‖H 1/2(∂Br2 )

= o(1). (4.47)

Granting (4.46) and (4.47), we derive that Vn → v weakly in H 1(� \ (∂Br2 ∪ ∂Br3)) as
in Section 4.1. The conclusion now follows from (4.44).

It remains to prove (4.46) and (4.47).

Proof of (4.46). We have, on ∂Br3 ,

[Vn] = v̂n = −

m∑
`=0

iδn

2(1− δn)
(e` − f`)v` +

m∑
`=0

D`v`.

Here we use the fact that w` = v` (` ≥ 0) on ∂Br3 . We derive from (4.24), (4.29), (4.37),
and (4.38) that

‖[Vn]‖H 1/2(∂Br3 )
= o(1). (4.48)

Similarly, using the fact thatA∇v` ·η = −A∇w` ·η on ∂Br3 for ` ≥ 1, and f0 = δ
−1
n o(1),

we derive from (4.24), (4.30), and (4.42) that

‖[A∇Vn · η]‖H 1/2(∂Br3 )
= o(1). (4.49)

A combination of (4.48) and (4.49) yields (4.46).

Proof of (4.47). On ∂Br2 , we have [Vn] = vn − v̂n − v2,n. It follows that, on ∂Br2 ,

[Vn] = vn − v1,n + v1,n − Pmv1,n + Pmv1,n − Pmv2,n + Pmv2,n − v2,n − v̂n.
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Since vn = v1,n on ∂Br2 , we derive from (4.24) and (4.43) that

‖[Vn]‖H 1/2(∂Br2 )
≤ δ2

n +

∥∥∥ iδn

2(1− iδn)

m∑
`=0

(e` − f`)v`

∥∥∥
H 1/2(∂Br2 )

.

From (4.37) and (4.39), we obtain

‖[Vn]‖H 1/2(∂Br2 )
= o(1). (4.50)

Similarly,
‖[Â∇Vn · η]‖H−1/2(∂Br2 )

= o(1). (4.51)

A combination of (4.50) and (4.51) yields (4.47). ut

In the proof of Proposition 4.1, we used the following lemma.

Lemma 4.1. Let d = 2, 3, 0 < R1 < R2, and let a be a uniformly elliptic matrix-valued
function defined in BR2 \ BR1 . Set R3 = R

2
2/R1 and let K : BR2 \ BR1 → BR3 \ BR2 be

the Kelvin transform with respect to ∂BR2 . Define

a1 =

K∗a in BR3 \ BR2 ,

a in BR2 \ BR1 ,

I in BR1 .

Let v ∈ H 1(BR3) be such that
∫
∂BR3

v = 0 and div(a1∇v) = 0 in BR3 , and let w ∈

H 1(BR2 \BR1) be the reflection of w byK−1 through ∂BR2 , i.e., w = v ◦K in BR2 \BR1 .
Then, for all c ∈ C,

‖v‖H 1/2(∂BR2 )
+ |c| ≤ C‖v − w + c‖H 1/2(∂BR1 )

,

where C is a positive constant independent of v and c.

Proof. Assume that the conclusion is not true. Then there are sequences (vn) ⊂H 1(BR3)

and (cn) ⊂ C such that

div(a1∇vn) = 0 in BR3 , (4.52)∫
∂BR3

vn = 0, ‖vn‖H 1/2(∂BR2 )
+ |cn| = 1, lim

n→∞
‖vn − wn + cn‖H 1/2(∂BR1 )

= 0.

(4.53)

Here wn is the reflection of vn with respect to ∂BR2 by K−1. From (4.53), we have

‖vn + cn‖H 1/2(∂BR1 )
≤ C.

In this proof, C denotes a positive constant independent of n. It follows from (4.53) that
‖wn‖H 1/2(∂BR1 )

≤ C, which implies, by the definition of wn, that ‖vn‖H 1/2(∂BR3 )
≤ C.
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Without loss of generality, one might assume that vn → v weakly in H 1(BR3), vn → v

in H 1
loc
(BR3), and cn→ c ∈ C. Moreover, from (4.52) and (4.53), we have

div(a1∇v) = 0 in BR3 , (4.54)∫
∂BR3

v = 0, ‖v‖H 1/2(∂BR2 )
= 1. (4.55)

Let w be the reflection of v with respect to ∂BR2 by K−1. Since vn → v in H 1(BR2), it
follows from (4.53) that

lim
n→∞
‖wn − w‖H 1/2(∂BR1 )

= 0,

which implies
lim
n→∞
‖vn − v‖H 1/2(∂BR3 )

= 0.

From (4.53), we have v−w+c = 0 on ∂BR1 . It follows from Lemma A1 in the appendix
that v = 0 and c = 0. Here we use the fact that

∫
∂BR3

v = 0. This contradicts (4.55). ut

5. Cloaking a source via anomalous localized resonance

In this section, we describe how to use the CALR theory discussed previously to cloak
a source f concentrating on an arbitrary bounded smooth manifold of codimension 1
in an arbitrary medium. Without loss of generality, one may assume that the medium is
contained in Br3 \Br2 and characterized by a matrix a which is assumed to be smooth and
uniformly elliptic in Br3 \ Br2 for some 0 < r2 < r3. Assume that f concentrates on ∂D
for some bounded smooth open subset D ⊂⊂ Br3 \ Br2 . One might assume as well that
D ⊂⊂ Br∗ where r∗ is the constant coming from Theorem 1.2, since one can choose r3
large enough (see [25, Lemma 1]). Define r1 = r2

2/r3. Let F : Br2 \ {0} → Rd \ Br2
and G : Rd \ Br3 → Br3 \ {0} be the Kelvin transforms with respect to ∂Br2 and ∂Br3
respectively. Note that G ◦ F(x) = (r2

2/r
2
1 )x. Define

A =


a in Br3 \ Br2 ,
F−1
∗ a in Br2 \ Br1 ,
F−1
∗ G−1

∗ a in Br1 \ Br2
1 /r2

,

I otherwise.

(5.1)

It is clear that s0A is doubly complementary. Applying Theorems 1.1 and 1.2, we have

Proposition 5.1. Let d = 2, 3, δ > 0, and D ⊂⊂ Br∗ \ Br2 , and let f ∈ L2(∂D).
Assume that uδ and vδ are defined by (1.3) and (1.5) where A is given in (5.1). There
exists a sequence δn→ 0 such that

lim
n→∞

Eδn(uδn) = ∞.

Moreover, vδn → 0 weakly in H 1(� \ Br3).
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Proof. By Theorems 1.1 and 1.2, it suffices to prove that there is no W ∈ H 1(Br∗ \ Br2)

such that

div(A∇W) = f in Br∗ \ Br2 , W = A∇W · η = 0 on ∂Br2 .

In fact, Theorems 1.1 and 1.2 only deal with the case f ∈ L2(�), but the same results
hold for f as here, and the proofs are unchanged. Suppose that such a W exists. Since
div(A∇W) = 0 in (Br∗ \ Br2) \ D̄ and W = A∇W · η = 0 on ∂Br2 , it follows from the
unique continuation principle that W = 0 in (Br∗ \ Br2) \ D̄. Hence W = 0 in D since
W ∈ H 1(Br∗ \ Br2), W = 0 on ∂D, and div(A∇W) = 0 in D. We deduce that W = 0 in
Br∗ \ Br2 . Hence W = 0 in Br∗ \ Br2 . This contradicts the fact that div(A∇W) = f 6= 0
in BR∗ \ Br2 . ut

Appendix: Proof of Proposition 4.2

This appendix comprising two subsections is devoted to the proof of Proposition 4.2.
Some useful lemmas are established in the first section and the proof of Propositions 4.2
is given in the second subsection.

A.1. Preliminaries

In this section, we assume that

• a ∈ [C3(BR2 \ BR1)]
d×d is uniformly elliptic symmetric,

• K : BR2 \ BR1 → BR3 \ BR2 is defined by K(x) = xR2
2/|x|

2,

• a1 is given by (4.17):

a1 =

K∗a in BR3 \ BR2 ,

a in BR2 \ BR1 ,

I in BR1 .

Lemma A1. Let d = 2, 3, v ∈ H 1(BR3) be a solution to div(a1∇v) = 0 in BR3 , and
w be the reflection of v through ∂BR2 byK−1, i.e., w = v ◦K in BR2 \BR1 . Assume that

v − w + c = 0 on ∂BR1 , (A1)

for some c ∈ C. Then
v is constant and c = 0. (A2)

Proof. By considering the real part and the imaginary part separately, one may assume
that v,w, and c are real. We first prove that c = 0. Assume that c 6= 0. From the definition
of w and (A1), we have

v(R1σ) = v(R3σ)− c ∀σ ∈ ∂B1. (A3)

By the standard theory of elliptic equations, supσ∈∂B1
|v(R1σ)| < ∞, which implies,

by (A3),
sup
σ∈∂B1

|v(R3σ)| <∞. (A4)
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Set, for t ∈ R,
b(t) = sup

σ∈∂B1

|v(R3σ)+ t |.

Applying the maximum principle, we derive from (A3) that

sup
σ∈∂B1

|v(R3σ)+ t | = sup
σ∈∂B1

|v(R1σ)+ (t + c)| ≤ sup
σ∈∂B1

|v(R3σ)+ (t + c)|;

this reads b(t) ≤ b(t + c), so b(−mc) ≤ b(0) for all m ≥ 1; this a contradiction by (A4).
Hence c = 0. From (A3) and the maximum principle, we derive that v is constant. ut

Lemma A2. Let d = 2, 3, v ∈ H 1(BR3) be a solution to div(a1∇v) = 0 in BR3 , and w
be the reflection of v through ∂BR2 by K−1, i.e., w = v ◦K in BR2 \ BR1 . Set

V = v + w.

Assume that
a∇V · η = c on ∂BR1 ,

for some c ∈ C. Then
v is constant and c = 0. (A5)

Proof. From the definition of a1, by Lemma 2.1, we have

div(a∇V ) = 0 in BR2 \ BR1 , (A6)
V = 2v and a∇V · η = 0 on ∂BR2 . (A7)

Integrating (A6) in BR2 \ BR1 and using (A7), we obtain∫
∂BR1

a∇V · η = 0,

which implies c = 0. Hence, a∇V · η = 0 on ∂BR1 ∪ ∂BR2 . It follows from (A6) that
V is constant in BR2 \ BR1 . We derive from (A7) that v is constant on ∂BR2 ; hence v is
constant in BR3 by the unique continuation principle. ut

The following lemma is one of the main ingredients in the proof of statement (1) of
Proposition 4.2 in two dimensions.

Lemma A3. Let d = 2, let v`,± ⊂ H 1(BR3) (` ≥ 1) be the unique solution to

div(a1∇v`,±) = 0 in BR3 , v`,± = e
±i`θ on ∂BR3 , (A8)

and set v0 = 1 in BR3 . Define w`,± ∈ H 1(BR2 \ BR1) (` ≥ 1) to be the reflection of v`,±
through ∂BR2 by K−1, i.e.,

w`,± = v`,± ◦K in BR2 \ BR1 , (A9)

and denote by w0 ∈ H
1(BR2 \ BR1) the unique solution to

div(a1∇w0) = 0 in BR2 \ BR1 , w0 = 1 on ∂BR2 , w0 = 0 on ∂BR1 . (A10)

Then

{v0 − w0} ∪ {v`,± − w`,±; ` ≥ 1} is a dense subset of H 1/2(∂BR1). (A11)
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Proof. Let G(x, y) be the fundamental solution to div(a1∇u) = 0 in BR3 with the zero
Dirichlet boundary condition, i.e.,

divy(a1(y)∇yG(x, y)) = δx in BR3 , G(x, y) = 0 on ∂BR3 .

We have, by the Green formula,

v`,±(x) =

∫
∂BR3

a1(y)∇yG(x, y) · ηy v`,±(y) dy, (A12)

and (see e.g. [9])4

|G(x, y)| ≤ C for x ∈ BR2 , y ∈ BR3 \ B(R2+R3)/2. (A13)

Here and in what follows in this proof, C denotes a positive constant independent of x, y,
and `. It follows from (A13) that, for |α| ≤ 2 (see, e.g., [10, Theorems 6.2 and 6.6]),

|DαG(x, y)| ≤ C for x ∈ BR2 , y ∈ BR3 \ B(R2+R3)/2, (A14)

since a1 ∈ [C
3(BR3 \ B(R2+R3)/2)]

2×2. A combination of (A12) and (A14) yields

|∇v`,±(x)| ≤ C/` for x ∈ BR3 , ` ≥ 1. (A15)

We claim that, for `0 ∈ N large enough,

{e±i`θ ; 0 ≤ ` ≤ `0 − 1} ∪ {v`,± − w`,±; ` ≥ `0} is dense in H 1/2(∂BR1). (A16)

Consider the linear transformations J ,P : H 1/2(∂BR1)→ H 1/2(∂BR1) defined by

J (e±i`θ ) =
{
−e±i`θ if 0 ≤ ` < `0,

v`,± − w`,± if ` ≥ `0,
P(e±i`θ ) =

{
0 if 0 ≤ ` < `0,

v`,± if ` ≥ `0.

Since w`,± = e±i`θ on ∂BR1 , it follows that J = −I + P , where I denotes the identity
transformation.

Any f ∈ H 1/2(∂BR1) can be represented as

f = α0 +

∞∑
`=1

∑
±

α`,±e
±i`θ on ∂BR1 ,

for some α0, α`,± ∈ C (` ≥ 1). We have

|α0|
2
+

∑
`≥1

∑
±

`|α`,±|
2
≤ C‖f ‖2

H 1/2(∂BR1 )
.

From the definition of P ,

P(f ) =
∑
`≥`0

∑
±

α`,±v`,± on ∂BR1 .

4 The corresponding result in three dimensions can be found in [13].
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We derive from (A15) that

‖P(f )‖H 1/2(∂BR1 )
≤ C

∑
`≥`0

∑
±

|α`,±|/` ≤ C
(∑
`≥`0

∑
±

`|α`,±|
2
)1/2(∑

`≥`0

∑
±

1/`3
)1/2

≤ C`−1
0 ‖f ‖H 1/2 .

Thus, for `0 large enough, ‖P‖ ≤ 1/2. Hence J is invertible and (A16) follows.
Fix `0 such that (A16) holds. Using (A16), we derive that the dimension of the or-

thogonal complement of {v`,± − w`,±; ` ≥ `0} in H 1/2(∂BR1) is less than or equal to
2`0 − 1. Hence, to obtain the conclusion, it suffices to prove that

{U0} ∪ {U`,±}1≤`<`0 is linearly independent in H 1/2(∂BR1), (A17)

whereU0 andU`,± (1 ≤ ` < `0) are respectively the projection of v0−w0 and v`,±−w`,±
into (span{v`,±−w`,±; ` ≥ `0})

⊥ with respect to theH 1/2(∂BR1) scalar product. Indeed,
let α0, α`,± ∈ C (1 ≤ ` < `0) be such that

α0U0 +

`0−1∑
`=1

∑
±

α`,±U`,± = 0 on ∂BR1 . (A18)

We have to prove that α0 = α`,± = 0 for 1 ≤ ` ≤ `0 − 1. From (A18), we have

α0(v0 − w0)+

`0−1∑
`=1

∑
±

α`,±(v`,± − w`,±) = v − w on ∂BR1 ,

for some v ∈ closure{span{v`,±; ` ≥ `0}} with respect to the H 1(BR3)-norm. Here w is
the reflection of v through ∂BR2 by K−1. Set

V =

`0−1∑
`=1

∑
±

α`,±v`,± − v in BR3 , (A19)

and denote by W the reflection of V through ∂BR2 by K−1. It follows that

α0(v0 − w0)+ V −W = 0 on ∂BR1 .

Applying Lemma A1, we find that α0 = 0 and V is constant. We derive from the definition
of V in (A19) that α`,± = 0 for 1 ≤ ` ≤ `0 − 1. The proof of (A17) is complete. ut

For D an open subset of Rd , we denote

H 1
] (D) =

{
v ∈ H 1(D);

∫
D

v = 0
}
.

The following result, which is a variant of Lemma A3 when the Neumann data on ∂BR1

is considered, plays an important role in the proof of statement (2) of Proposition 4.2.
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Lemma A4. Let d = 2 and let v`,± ⊂ H 1
] (BR3) (` ≥ 1) be the unique solution to

div(a1∇v`,±) = 0 in BR3 , a1∇v`,± · η = e
±i`θ on ∂BR3 , (A20)

Define w`,± ∈ H 1
] (BR2 \ BR1) to be the reflection of v`,± through ∂BR2 by K−1, i.e.,

w`,± = v`,± ◦K in BR2 \ BR1 . (A21)

Then

{1} ∪ {a∇(v`,± + w`,±) · η; ` ≥ 1} is a dense subset of H−1/2(∂BR1). (A22)

Remark A.1. Since
∫
∂BR3

e±i`θ = 0 for ` ≥ 1, it follows that v`,± is well-defined.

Proof of Lemma A4. The proof is in the same spirit as that of Lemma A3. As in the
previous proof, we also show that

{1}∪{e±i`θ ; 1 ≤ ` < `0}∪{a∇(v`+w`)·η; ` ≥ `0} is dense in H−1/2(∂BR1), (A23)

for some `0 > 1 (large). It follows that the dimension of the orthogonal complement of
closure{span{a∇(v` +w`) · η; ` ≥ `0}} in H−1/2(∂BR1) is less than or equal to 2`0 − 1.
Hence, to obtain the conclusion, it suffices to prove that

{U0} ∪ {U`,±}1≤`<`0 is independent in H−1/2(∂BR1), (A24)

where U0 = 1 and U`,± (1 ≤ ` < `0) is the projection of a∇(v`,± + w`,±) · η into
(closure{span{a∇(v`,± + w`,±) · η; ` ≥ `0}})

⊥ with respect to the H−1/2(∂BR1) scalar
product.

Let α0, α`,± ∈ C (1 ≤ ` ≤ `0 − 1) be such that

α0 +

`0−1∑
`=1

∑
±

α`,±U`,± = 0 on ∂BR1 . (A25)

We will prove that α0 = α`,± = 0 for 1 ≤ ` ≤ `0 − 1. From (A25), we have

α0 +

`0−1∑
`=1

∑
±

α`,±a∇(v`,± + w`,±) · η = a∇(v + w) · η on ∂BR1 , (A26)

for some v ∈ closure{span{v`,±; ` ≥ `0}} in H 1
] (BR3). Here w is the reflection of v

through ∂BR2 by K−1. Set

V =

`0−1∑
`=1

∑
±

α`,±v`,± − v in BR3 , (A27)

and denote by W the reflection of V through ∂BR2 by K−1. It follows from (A26) that

α0 + a∇(V +W) · η = 0 on ∂BR1 .
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Applying Lemma A2, we have α0 = 0 and V is constant. Hence V = 0 since V ∈
H 1
] (BR3). We derive from the definition of V in (A27) and of v`,± that α`,± = 0 for

1 ≤ ` ≤ `0 − 1. The proof of (A24) is complete. ut

Here are variants of Lemmas A3 and A4 in three dimensions. The first one is the variant
of Lemma A3.

Lemma A5. Let d = 3 and let vk` ⊂ H 1(BR3) (` ≥ 1, −` ≤ k ≤ `) be the unique
solution to

div(a1∇v
k
` ) = 0 in BR3 , vk` = Y

k
` on ∂BR3 , (A28)

and set v0
0 = 1. Here Y k` is the spherical harmonic function of degree ` and of order k.

Define wk` ∈ H
1(BR2 \ BR1) to be the reflection of vk` through ∂BR2 by K−1, i.e.,

wk` = v
k
` ◦K in BR2 \ BR1 , (A29)

and denote by w0
0 ∈ H

1(BR2 \ BR1) the unique solution to

div(a1∇w
0
0) = 0 in BR2 \ BR1 , w0

0 = 1 on ∂BR2 , w0
0 = 0 on ∂BR1 . (A30)

Then

{vk` − w
k
` ; ` ≥ 0, −` ≤ k ≤ `} is a dense subset of H 1/2(∂BR1). (A31)

Proof. The proof is similar to the one of Lemma A3. The details are left to the reader. ut

The second lemma is the variant of Lemma A4.

Lemma A6. Let d = 3 and let vk,` ⊂ H 1
] (BR3) (` ≥ 1, −` ≤ k ≤ `) be the unique

solution to

div(a1∇v
k
` ) = 0 in BR3 , a1∇v

k
` · η = Y

k
` on ∂BR3 . (A32)

Define wk` ∈ H
1
] (BR2 \BR1) (` ≥ 1) to be the reflection of vk` through ∂BR2 by K−1, i.e.,

wk` = v
k
` ◦K in BR2 \ BR1 . (A33)

Then

{1}∪{a1∇(v
k
`+w

k
`)·η; ` ≥ 1, −` ≤ k ≤ `} is a dense subset of H−1/2(∂BR1). (A34)

Proof. Since
∫
∂BR3

Ym` = 0 for ` ≥ 1 and −` ≤ k ≤ `, it follows that vk` is well-defined.
The proof is similar to the one of Lemma A4. The details are left to the reader. ut

A.2. Proof of Proposition 4.2

Statements (4.18) and (4.19) are consequences of Lemma 2.1. It remains to prove state-
ments (1)–(3). The proof is divided into two steps.



1360 Hoai-Minh Nguyen

Step 1: We prove that if one of (1)–(3) holds for a (particular) dense set {v`}`≥0, then it
also holds for all dense sets {v`}`≥0.

We will only show this for statement (1), the other cases being similar. Assume that (1)
holds for a specific sequence {v`}`≥0 which satisfies the assumptions of Proposition 4.2.
We will prove that (1) holds for any sequence {v̂`}`≥0 satisfying those assumptions. Let
v ∈ H 1(BR2 \ BR1) be such that div(a∇v) = 0 in BR2 \ BR1 and v = 0 on ∂BR2 . For
ε > 0, there exist `ε > 0 and (α`)

`ε
`=0 ⊂ C such that

∥∥∥v − `ε∑
`=0

α`(v` − w`)

∥∥∥
H 1(BR2\BR1 )

≤ ε, (A35)

since (1) holds for (v`). On the other hand, there exist ˆ̀ε and (α̂`)
ˆ̀
ε

`=0 ⊂ C such that

∥∥∥ `ε∑
`=0

α`v` −

ˆ̀
ε∑

`=0

α̂`v̂`

∥∥∥
H 1/2(∂BR3 )

≤ ε,

by the density of {v̂`}∞`=0. This implies

∥∥∥ `ε∑
`=0

α`v` −

ˆ̀
ε∑
`0

α̂`v̂`

∥∥∥
H 1(BR3 )

≤ ε. (A36)

Let ŵ` be the reflection of v̂` through ∂BR2 by K−1 for ` ≥ 1. Note that if w is the
reflection of v through ∂BR2 by K−1, then

‖w‖H 1(BR2\BR1 )
≤ C‖v‖H 1(BR3 )

. (A37)

Here and in what follows, C denotes a positive constant depending only on a, R1, and R2.
A combination of (A36) and (A37) yields

∥∥∥ `ε∑
`=1

α`w` −

ˆ̀
ε∑

`=1

α̂`ŵ` + (α0 − α̂0)

∥∥∥
H 1(BR2\BR1 )

≤ Cε. (A38)

We derive from (A36) and (A38) that

∥∥∥ `ε∑
`=1

α`(v` − w`)−

ˆ̀
ε∑

`=1

α̂`(v̂` − ŵ`)

∥∥∥
H 1(BR2\BR1 )

≤ Cε. (A39)

From (A35) and (A39), we obtain

∥∥∥v − ˆ̀
ε∑

`=1

α̂`(v̂` − ŵ`)− α0(v0 − w0)

∥∥∥
H 1(BR2\BR1 )

≤ Cε.

Hence statement (1) holds for (v̂`).
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Step 2: Proof of statements (1)–(3). We only establish these statements in two dimen-
sions. The three-dimensional case follows similarly, with Lemmas A5 and A6 applied
instead of Lemmas A3 and A4.

Assume d = 2. Let v`,± ⊂ H 1(BR3) (` ≥ 1) be the unique solution to

div(a1∇v`,±) = 0 in BR3 , v`,± = e
±i`θ on ∂BR3 , (A40)

and set
v0 = 1 in BR3 . (A41)

Let w`,± ∈ H 1(BR2 \ BR1) (` ≥ 1) be the reflection of v`,± through ∂BR2 by K−1, i.e.,

w`,± = v`,± ◦K in BR2 \ BR1 , (A42)

and denote by w0 ∈ H
1(BR3 \ BR2) the unique solution to

div(a∇w0) = 0 in BR2 \ BR1 , w0 = 1 on ∂BR2 , w0 = 0 on ∂BR1 .

By Step 1, it suffices to prove (1)–(3) for {v0, w0} ∪ {v`,±, w`,±}`≥1.

Proof of statement (1). This statement is a consequence of the fact that v = 0 if v ∈
H 1(BR2 \ BR1) satisfies

div(a∇v) = 0 in BR2 \ BR1 , v = 0 on ∂BR2 , (A43)∫
BR2\BR1

a∇v∇(v̄`,± − w̄`,±) = 0 ∀` ≥ 1, (A44)∫
BR2\BR1

a∇v∇(v̄0 − w̄0) = 0. (A45)

Indeed, using (A43), we derive from (A44) and (A45) that∫
∂BR1

a∇v · η (v̄`,± − w̄`,±) = 0 ∀` ≥ 1, (A46)∫
∂BR1

a∇v · η (v̄0 − w̄0) = 0. (A47)

Since, by Lemma A3, {v0−w0}∪{v`,±−w`,±; ` ≥ 1} is dense inH 1/2(∂BR1) it follows
from (A46) and (A47) that a∇v · η = 0 on ∂BR1 . We then derive from (A43) that v = 0
in BR2 \ BR1 , and statement (1) is proved.

Proof of statement (2). This statement is a consequence of the fact that v is constant if
v ∈ H 1(BR2 \ BR1) satisfies

div(a∇v) = 0 in BR2 \ BR1 , a∇v · η = 0 on ∂BR2 , (A48)∫
BR2\BR1

a∇v∇(v̄`,± + w̄`,±) = 0 ∀` ≥ 1. (A49)
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Indeed, since a∇v`,± · η = −a∇w`,± · η on ∂BR2 for ` ≥ 1 by (4.19), it follows from
(A49) that ∫

∂BR1

a∇(v̄`,± + w̄`,±) · ηv = 0 ∀` ≥ 1. (A50)

By Lemma A4 and Step 1,

{1} ∪ {a∇(v`,± + w`,±) · η; ` ≥ 1} is a dense subset of H−1/2(∂BR1). (A51)

We derive from (A50) that v is constant on ∂BR1 . This implies, by (A48), that v is constant
in BR2 \ BR1 , and statement (2) is proved.

Proof of statement (3). This statement is a consequence of the fact that v is constant if
v ∈ H 1(BR2 \ BR1) satisfies

div(a∇v) = 0 in BR2 \ BR1 , (A52)∫
BR2\BR1

a∇v∇v̄`,± =

∫
BR2\BR1

a∇v∇w̄`,± = 0 ∀` ≥ 1, (A53)∫
BR2\BR1

a∇v∇v̄0 =

∫
BR2\BR1

a∇v∇w̄0 = 0. (A54)

In fact, a combination of (A52)–(A54) yields∫
∂BR2∪∂BR1

a∇v · η v̄`,± =

∫
∂BR2∪∂BR1

a∇v · η w̄`,± = 0 ∀` ≥ 1, (A55)∫
∂BR2∪∂BR1

a∇v · η v̄0 =

∫
∂BR2∪∂BR1

a∇v · η w̄0 = 0. (A56)

Since v0 = w0 = 1 and v`,± = w`,± on ∂BR2 for ` ≥ 1, it follows from (A55) that∫
∂BR1

a∇v · η (v̄`,± − w̄`,±) = 0 ∀` ≥ 1, (A57)

and, since w0 = 0 on ∂BR1 , ∫
∂BR1

a∇v · η = 0. (A58)

From (4.18), (A53), and the symmetry of a, we also have∫
∂BR2∪∂BR1

a∇v̄`,± · η v̄ =

∫
∂BR2∪∂BR1

a∇w̄`,± · η v = 0 ∀` ≥ 1,

which yields, since a∇v`,± · η = −a∇w`,± · η for ` ≥ 1,∫
∂BR1

a∇(v̄`,± + w̄`,±) · η v = 0 ∀` ≥ 1. (A59)
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Using Lemma A3 and (A51), we derive from (A57)–(A59) that

a∇v · η = 0, v −

∫
∂Br1

v = 0 on ∂BR1 . (A60)

A combination of (A52) and (A60) shows that v is constant in BR2 \ BR1 by the unique
continuation principle. Statement (3) is proved. ut

Remark A.2. In Proposition 4.2, if one assumes in addition that {v`}∞`=0 is a basis of
H 1/2(∂BR3), then

• {v`, w`; ` ≥ 0} is linearly independent in H 1(BR2 \ BR1),
• {v`; ` ≥ 0} is linearly independent in H 1/2(∂BR2),
• {1} ∪ {a∇w` · η; ` ≥ 1} is linearly independent in H−1/2(∂BR2).

These facts can be derived from Lemma A1.
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