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Abstract. We show that random Cayley graphs of finite simple (or semisimple) groups of Lie type
of fixed rank are expanders. The proofs are based on the Bourgain–Gamburd method and on the
main result of our companion paper [BGGT].
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1. Introduction and statement of results

The aim of this paper is to show that random pairs of elements in finite simple (or
semisimple) groups of Lie type are expanding generators if the rank of the group is fixed.
The precise definition of a finite simple group of Lie type is deferred to Definition 5.2,
but let us remark that these are the infinite families of simple groups appearing in the
classification of finite simple groups (CFSG), other than the alternating groups. They
include the so-called classical or Chevalley groups as well as the families of “twisted”
groups, such as the Steinberg groups and the Suzuki–Ree groups. A typical example of a
classical group is the projective special linear group Ar(q) := PSLr+1(Fq) over a finite
field Fq , which is the quotient of SLr+1(Fq) by its centre Z(SLr+1(Fq)), whilst an easily
described example of a twisted group is the family1 of projective special unitary groups
2Ar(q̃

2) := PSUr+1(Fq̃2), which are the quotients of the special unitary groups

SUr+1(Fq̃2) := {g ∈ SLr+1(Fq̃2) :
Tgσg = 1} (1.1)
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by their centres Z(SUr+1(Fq̃2)). Here, q̃ is a prime or a power of a prime, Tg is the
transposed matrix, 1 is the identity matrix, and gσ is the image of g under the Frobenius
map σ : Fq̃2 → Fq̃2 defined by x 7→ x q̃ . As stated earlier, we will be interested in the
regime where the rank r of these groups remains fixed, while the field size q = q̃2 is
allowed to go to infinity.

Let us recall what the notion of expansion means in the context of generators for finite
groups. It will be convenient to use a spectral notion of expansion.

Definition 1.1 (Spectral expansion). Suppose that ε > 0, that G is a finite group and
that x1, . . . , xk ∈ G. Let µ be the probability measure

µ :=
1

2k

k∑
i=1

(δxi + δx−1
i
)

on G, where (by abuse of notation) we view δx as a function on G that equals2
|G| at x

and zero elsewhere. Consider the convolution operator T : f 7→ f ∗ µ on the Hilbert
space L2(G) of functions f : G→ C with norm

‖f ‖L2(G) := (Ex∈G |f (x)|
2)1/2 =

(
1
|G|

∑
x∈G

|f (x)|2
)1/2

where the convolution f ∗ µ is defined by the formula

f ∗ µ(x) := Ey∈G f (y)µ(y−1x).

We say that {x1, . . . , xk} is ε-expanding if

‖Tf ‖L2(G) ≤ (1− ε)‖f ‖L2(G)

for all functions f : G→ C of mean zero. Equivalently, all eigenvalues of the self-adjoint
operator T , other than the trivial eigenvalue of 1 coming from the constant function, lie
in the interval [−1+ ε, 1− ε].

It is well known (see e.g. [HLW, Section 2], or [Lu2, Prop. 4.2.5]) that an ε-expanding
set {x1, . . . , xk} is also combinatorially expanding in the sense that

|(Ax1 ∪ Ax
−1
1 ∪ · · · ∪ Axk ∪ Ax

−1
k ) \ A| ≥ ε′|A|

for every set A ⊆ G with |A| ≤ |G|/2, and some ε′ > 0 depending only on ε, k > 0;
in particular this implies that the x1, . . . , xk generate G (otherwise one could take A to
be the group generated by x1, . . . , xk to obtain a counterexample to combinatorial expan-
sion). Actually, this implication can be reversed as long as the Cayley graph generated
by x1, . . . , xk is not bipartite, or equivalently there does not exist an index 2 subgroup H
of G which is disjoint from the x1, . . . , xk; we record this argument in Appendix E. An
ε-expanding set is also rapidly mixing in the sense that

‖µ(n) − 1‖L∞(G) ≤ |G|−10 (1.2)

(say) for all n ≥ C1 log |G|, where C1 depends only on ε, k. Conversely, if one has

2 As noted in the notation section to follow, we will use |A| to denote the cardinality of a finite
set A.
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rapid mixing (1.2) for some n ≤ C log |G|, then one has ε-expansion for some ε > 0
depending only on C, k, as can be easily deduced from a computation of the trace of
T 2n (or equivalently, the Frobenius norm of T n) and the spectral theorem. If one has
a family of finite groups G and ε-expanding sets {x1, . . . , xk} ⊂ G, with ε, k uniform
in the family, then the associated Cayley graphs Cay(G, {x1, . . . , xk}) form an expander
family. We will however not focus on the applications to expander graph constructions
here, again referring the reader to [HLW] and [Lu2] for more discussion.

Our main theorem is as follows.

Theorem 1.2 (Random pairs of elements are expanding). Suppose thatG is a finite sim-
ple group of Lie type and that a, b ∈ G are selected uniformly at random. Then with
probability at least 1 − C|G|−δ , {a, b} is ε-expanding for some C, ε, δ > 0 depending
only on the rank of G.

In Section 8, we also extend the above result to almost direct products of quasisimple
groups of Lie type; see Theorem 8.3 there.

There has been a considerable amount of prior work on expansion in finite simple
groups. We offer a brief and incomplete summary now:

(i) Using Kazhdan’s property (T ), Margulis [M] gave the first explicit construction of
expander graphs. In particular, he constructed explicit expanding sets of generators
for PSLd(Fp) for any fixed d ≥ 3, by projection from a fixed set of generators of
SLd(Z). Sharp analogous results for d = 2 were later obtained by Margulis [M2]
and by Lubotzky, Phillips, and Sarnak [LPS] using known cases of the Ramanujan–
Petersson conjectures.

(ii) In a breakthrough paper, Bourgain and Gamburd [BG1] proved Theorem 1.2 in the
caseG = PSL2(Fp). A key ingredient of their proof was Helfgott’s product theorem
in this group [Hel1]. By combining subsequent work of theirs with generalisations of
Helfgott’s work by Pyber–Szabó [PS] and Breuillard–Green–Tao [BGT3] one may
show the existence of some expanding pairs of generators in SLr(Fp) and indeed in
G(Fp) for any almost simple algebraic group G. Here p is prime. See the paper by
Varjú and Salehi-Golsefidy [VS] for more on this aspect.

(iii) Kassabov, Lubotzky and Nikolov [KLN] showed that every finite simple group, with
the possible exception of the Suzuki groups Suz(q), admits an ε-expanding set of
generators x1, . . . , xk , with k and ε independent of the group (and in particular, uni-
form even in the rank of the group G).

(iv) The first, second and fourth authors showed in [BGT2] that the previous claim also
holds for the Suzuki groups with k = 2, and in fact that Theorem 1.2 holds in this
case and for G = PSL2(Fq).

(v) Gamburd and the first named author showed in [BrG] that there is ε > 0 such that
every generating pair of PSL2(Fp) is an ε-expanding pair, whenever p stays outside
a set of primes P0 of density 0.

(vi) In the converse direction, it was proved by Lubotzky and Weiss [LW, Cor. 4.4] that
for any fixed prime p there is a 3-element generating set of SLn(Fp) such that the
family of resulting Cayley graphs is not an expanding family when n tends to ∞.
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Another proof of this fact, due to Y. Luz, was also given in [LW], and recently
Somlai [So] generalized that argument to show that every sequence of finite simple
groups of Lie type with rank going to infinity admits a sequence of Cayley graphs
arising from at most ten generators which is not ε-expanding for any uniform ε > 0.

The proofs of the works of Kassabov, Lubotzky and Nikolov [KLN, Lu1] used very differ-
ent arguments coming from a rather impressive range of mathematical areas. An impor-
tant aspect of their proof was to make use of the existence of various copies of SL2(Fq) in
higher rank finite simple groups. This feature required the use of more than two generators
to produce an expanding set and does not seem to be suited to the treatment of random
sets of generators. Note however that they were able to treat all finite simple groups (ex-
cept for Suz(q)) uniformly, while our result falls short of saying anything when the rank
goes to infinity.

The method used in the present paper follows the Bourgain–Gamburd strategy first
introduced in [BG1], as did the paper [BGT2] on Suzuki groups by three of the authors,
and will be outlined in the next section. To verify the various steps of the Bourgain–
Gamburd argument, we will need a number of existing results in the literature, such as
the quasirandomness properties and product theorems for finite simple groups of Lie type,
as well as the existence of strongly dense free subgroups that was (mostly) established in
a previous paper [BGGT] of the authors.

In most of our argument, the finite simple groups of Lie type can be treated in a unified
manner, albeit with some additional technical complications when dealing with twisted
groups rather than classical groups. However, there are two exceptional cases which need
special attention at various stages of the argument, which we briefly mention here.

The first exceptional case is when G = Sp4(Fq) = C4(q) is the symplectic group
of order 4 over a field Fq of characteristic 3. This case was omitted from the results
in [BGGT] for a technical reason having to do with an absence of a suitable algebraic
subgroup of G to which a certain induction hypothesis from [BGGT] could be applied.
In Appendix D we present an alternate argument that can substitute for the arguments in
[BGGT] in that case.

The other exceptional case occurs when G = 3D4(q) is a triality group. This is a
twisted group that contains subgroups associated to fields of index 2, and for technical
reasons it turns out that such fields are too “large” (and the Schwartz–Zippel type bounds
for twisted groups too weak) for our main argument to work in this case. In Section 7 we
give the modifications to the main argument necessary to address this case.

Remark. We note that none of our work has anything to say at the present time about
the alternating groups Altn (or the closely related symmetric groups Symn). Although it
was shown by Kassabov [Ka] that there are uniform ε > 0 and k > 2 such that every Altn
has an ε-expanding k-tuple, the existence of a pair of ε-expanding generators for Altn
(with ε not depending on n) remains an open problem, as does the question of whether a
random pair or even a random k-tuple of elements in Altn has this property. Note that it
has been known for some time (see [Dix]) that a random pair of elements generates Altn
with probability going to 1 as n→∞. Recent progress on understanding the diameter of
Cayley graphs on such groups may be found in [BGHHSS, HS].
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Remark. Our arguments actually show the following generalisation of Theorems 1.2
and 8.3: if G is an almost direct product of finite simple groups of Lie type, a, b ∈ G are
selected uniformly at random, and w1, w2 ∈ F2 are non-commuting words of length at
most |S|δ , then with probability at least 1−C|S|−δ , {w1(a, b), w2(a, b)} is ε-expanding,
for some C, ε, δ > 0 depending only on the rank of G, where S is the smallest sim-
ple factor of G. See Remark 4.7 for details. Note that this is a non-trivial extension of
the original theorem because the map (a, b) 7→ (w1(a, b), w2(a, b)) does not need to
resemble a bijection; for instance, if G is a matrix group and w1, w2 are conjugate non-
commuting words, then w1(a, b) and w2(a, b) necessarily have the same trace. It is in
fact conjectured that all pairs of generators of G should expand at a uniform rate, but this
is not known in general, although in [BrG], Gamburd and the first author established this
conjecture for SL2(Fp) for all p in a density one set of primes. From the above result and
the union bound, we can at least show (after adjusting δ slightly) that with probability at
least 1−C|G|−δ , it is the case that for all pairs of non-commuting words w1, w2 ∈ F2 of
length at most δ log |G|, the pair {w1(a, b), w2(a, b)} is ε-expanding.

Notation. We use the asymptotic notationO(X) to denote any quantity whose magnitude
is bounded by CX for some absolute constant C. If we need C to depend on parameters,
we indicate this by subscripts, e.g. Ok(X) is a quantity bounded in magnitude by Ck(X)
for some constant C depending only on k. We write Y � X for Y = O(X), Y �k X for
Y = Ok(X), etc.

We use |E| to denote the cardinality of a finite set E. If E is finite and non-empty and
f : E→ R is a function, we write

Ex∈E f (x) :=
1
|E|

∑
x∈E

f (x)

and if P(x) is a property of elements x of E, we write

Px∈E P(x) :=
1
|E|
|{x ∈ E : P(x) holds}|.

Suppose that V is an affine variety defined over an algebraically closed field k, thus V
is a subset of kn for some n that is cut out by some polynomials defined over k. If F is a
subfield of k, we use V (F) to denote the F-points of V , thus V (F) = V ∩Fn. In particular,
V = V (k). We will generally use boldface symbols such as G to denote algebraic groups
defined over k, while using plain symbols such as G to denote finite groups.

2. An outline of the argument

In this section we give an overview of the proof of Theorem 1.2.
We first perform a convenient reduction. As we will recall in Definition 5.2, all the

finite simple groups G of Lie type can be expressed in the form

G = G̃/Z(G̃)

for some slightly larger group G̃ which lies inside a linear algebraic “mother” group G,
with the centre Z(G̃) being of bounded cardinality: |Z(G̃)| = O(1). For instance, if
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G = PSLr+1(Fq), one can take G̃ = SLr+1(Fq), in which case G is the algebraic group
SLr+1 and the centre has order gcd(q, r + 1). For each finite simple group G, there are
a finite number of possibilities (up to isomorphism) for the bounded cover G̃ and the
mother group G; in most cases, the exact choice of G̃ and G will not be too important,
but in the warmup case of the projective special linear group PSLr+1(Fq) in Section 4
and in the special case of the triality group 3D4(q) in Section 7 it will be convenient for
computational purposes to work with a particular such choice. It is easy to see that to
prove Theorem 1.2 for the group G, it suffices to do so for the bounded cover G̃. Indeed,
if {a, b} is an ε-expanding pair in G̃, then its projection {a, b} to G is also ε-expanding,
because every eigenvalue of the averaging operator T

{a,b} of Definition 1.1 is also an
eigenvalue of T{a,b}. Henceforth we will work with G̃, as this allows us to easily use the
algebraic geometry structure of the mother group G.

As mentioned in the introduction, we will establish expansion for G̃ via the “Bour-
gain–Gamburd machine”, which we formalise in Section 3. Roughly speaking, this ma-
chine gives sufficient conditions for rapid mixing of the iterated convolutions µ(n) in a fi-
nite group G̃ associated to a bounded set of generators (which, in our case, are {a±1, b±1

}

for some randomly chosen a, b ∈ G̃). By standard arguments, this rapid mixing then im-
plies expansion of the set of generators.

To obtain this mixing, one needs to establish three ingredients, which we state infor-
mally as follows:

(i) (Non-concentration) Most words of moderate length generated by a random pair of
generators will not be concentrated in a proper subgroup.

(ii) (Product theorem) If a medium-sized set A is not contained in a proper subgroup,
then the product set A · A · A is significantly larger than A.

(iii) (Quasirandomness) G has no non-trivial low-dimensional representations, or equiv-
alently, convolutions of broadly supported probability measures on G are rapidly
mixing.

For a more precise version of these three hypotheses, see Proposition 3.1. Roughly speak-
ing, the non-concentration hypothesis (i) is needed to ensure that µ(n) expands for small n
(less than C0 log |G| for some constant C0), the product theorem (ii) is needed to show
that µ(n) continues to expand for medium n (between C0 log |G| and C1 log |G| for some
larger constant C1), and the quasirandomness hypothesis (iii) is needed to show that µ(n)

rapidly approaches the uniform distribution for large n (betweenC1 log |G| andC2 log |G|
for some even larger constant C2). See Section 3 for further discussion.

The quasirandomness property (iii) is an immediate consequence of the existing liter-
ature [LS, SZ] on representations of finite simple groups of Lie type; see Section 5. The
product theorem for general finite simple groups (ii) of Lie type was recently established
by Pyber and Szabó [PS] (building upon the earlier work of Helfgott [Hel1, Hel2] that
treated the cases SL2(Fp),SL3(Fp)); in Section 5 we give an alternate derivation of this
theorem using the closely related result obtained by three of the authors in [BGT3]. The
main remaining difficulty is then to establish the non-concentration estimate, which pre-
vents too many of the words generated by a random pair of elements from being trapped
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inside a proper subgroup of G. More precisely, we will need to establish the following
key proposition:

Proposition 2.1 (Non-concentration). Suppose that G is a finite simple group of Lie
type. We allow implied constants to depend on the rank r = rk(G) of G. Let G̃ be
the bounded cover of G from Definition 5.2. Then there exists a positive even integer
n = O(log |G̃|) and an exponent γ > 0 depending only on the rank r such that

P
a,b∈G̃

(
Pw∈Wn,2(w(a, b) ∈ H) ≤ |G̃|

−γ for all H < G̃
)
= 1−O(|G̃|−γ ), (2.1)

where a, b are drawn uniformly at random from G̃, w is drawn uniformly at random from
the space Wn,2 of all formal words (not necessarily reduced) on two generators of length
exactly n, and H ranges over all proper subgroups of G̃.

Remark 2.2. If n ≤ n′ and H is a subgroup of G, we have the inequality

Pw∈Wn′,2(w(a, b) ∈ H) ≤ sup
g∈G

Pw∈Wn,2(w(a, b) ∈ gH)

(as can be seen by factorising a word inWn′,2 as a word inWn,2 and another word, whose
value one then conditions over), and similarly

sup
g∈G

Pw∈Wn,2(w(a, b) ∈ gH)
2
≤ Pw∈W2n,2(w(a, b) ∈ H)

since if w(a, b),w′(a, b) ∈ gH then w′w−1(a, b) ∈ H . From this we see that the exis-
tence of some n = O(log |G̃|) satisfying the conclusion of the proposition implies that
essentially the same bound holds for all larger n.

In Section 5 we will show why Proposition 2.1 implies Theorem 1.2.
It remains to establish the proposition. Informally, we need to show that given a ran-

dom pair of generators a and b, the words w(a, b) arising from those generators usually
do not concentrate in a proper subgroup H of G̃. Of course, we may restrict attention to
the maximal proper subgroups of G̃.

The first step in doing so is a classification [As, LS, LP, LS, St] of the maximal proper
subgroupsH of the bounded cover G̃ of a finite simple groupG of Lie type, which among
other things asserts that such subgroups either live in a proper Zariski-closed subgroup of
the mother group G (with bounds on the algebraic complexity of this closed subgroup),
or else live in a conjugate of a subgroup of the form G(F′), where F′ is a proper subfield
of F; see Lemma 5.5 for a precise statement. We refer to these two cases as the structural
case and the subfield case respectively.

We first discuss the structural case. In some cases, such as the Suzuki groups Suz(q) =
2B2(q) or the rank one special linear groups PSL2(Fq) = A1(q), this case is relatively
easy to handle, because all proper algebraic subgroups are solvable in those cases; this
fact was exploited in the papers [BG1], [BGT2] establishing Theorem 1.2 for such groups.
In the setting of the present paper, where we consider the general higher rank case, we
have to address a new difficulty due to the presence of large semisimple proper algebraic
subgroups of G, which could in principle trap most words of moderate length generated
by a generic pair of generators.
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To eliminate this possibility, we will use the following result, which (with one ex-
ception) we established in a separate paper [BGGT]. Call a subgroup 0 of an algebraic
group G strongly dense if every pair x, y of non-commuting elements of 0 generate a
Zariski-dense subgroup of G. Informally, this means that very few pairs of elements in 0
can be simultaneously trapped inside the same proper algebraic subgroup of G. We then
have:

Theorem 2.3 (Existence of strongly dense subgroups). Suppose that G(k) is a semisim-
ple algebraic group3 over an uncountable algebraically closed field k. Then there exists
a free non-abelian subgroup 0 of G(k) on two generators which is strongly dense.
Proof. If G is the algebraic group Sp4 and k has characteristic 3, we establish this result
in Appendix D. All other cases of this theorem were established as the main result of
[BGGT]. ut

Remark. Note that while Theorem 2.3 is stated for free groups on two generators, it
implies the same for free groups with m generators for any m ≥ 2, since a free group on
two generators contains a free group on m generators (and in fact contains a countably
generated free subgroup). The same applies to Theorem 1.2, that is, for every fixed k ≥ 2
a random k-tuple will be ε-expanding with high probability.

By combining the above proposition with a variant of the Schwartz–Zippel lemma (see
Proposition 5.4) and an algebraic quantification of the property of generating a sufficiently
Zariski-dense subgroup (see Proposition 4.6), we will be able to show that for any pair
of words w,w′ of length n, and for most a, b, w(a, b) and w′(a, b) will not be trapped
inside the same proper algebraic subgroup of G, which will be sufficient to establish
non-concentration in the structural case; see Section 5.

Now we discuss the subfield case. The simplest case to consider is the Chevalley
group case when G̃ = G(Fq) is a matrix group over some finite field Fq . The starting
point is then the observation that if a matrix g lies in a conjugate of a subfield group
G(Fq ′), where Fq ′ is a subfield of Fq , then the coefficients γ1(g), . . . , γd(g) of the char-
acteristic polynomial of g all lie in Fq ′ . The idea is then to show that γi(w(a, b)) does not
concentrate in Fq ′ for each i. For most values xi of Fq ′ , one can use the Schwartz–Zippel
lemma for G to show (roughly speaking) that γi(w(a, b)) only takes the value xi with
probability O(q−1); summing over all values of xi , one ends up with a total concentra-
tion probability of O(q ′/q). But as Fq ′ is a proper subfield of Fq , one has q ′ = O(q1/2),
and as such the contribution of this case is acceptable. (There is a “degenerate” case when
xi = γi(1), which has to be treated separately, by a variant of the above argument; see
Section 5 for details.)

In the non-Chevalley cases, G̃ is (the derived group of) the fixed points G(Fq)σ

of G(Fq) under some automorphism σ of order d ∈ {2, 3}. It turns out that G̃ is “suf-
ficiently Zariski-dense” in G in the sense of obeying a variant of the Schwartz–Zippel
lemma; see Proposition 5.4 for a precise statement. In principle, one can then run the
same argument that was used in the classical case. However, the presence of the automor-
phism σ defining G turns out to cut down the probability bound in the Schwartz–Zippel

3 In this paper, semisimple algebraic groups are always understood to be connected.
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lemma from O(q−1) to O(q−1/d), leading to a final bound of O(q ′/q−1/d) rather than
O(q ′/q). This is not a difficulty when d = 2, as it turns out that the only relevant sub-
fields Fq ′ in those cases have size at most q1/3 (after excluding those cases that can also
be viewed as part of the structural case); but it causes a significant problem when G is a
triality group 3D4(q), which is the unique case for which d = 3. To deal with this case
we will apply an ad hoc argument in Section 7, based on passing from 3D4(q) to a more
tractable subgroup SL2(Fq) ◦ SL2(Fq̃) in which non-concentration is easier to establish.

The rest of the paper is organised as follows. In Section 3 we present the abstract
“Bourgain–Gamburd machine”, which reduces the task of verifying expansion to that
of verifying quasirandomness, a product theorem, and non-concentration. Then, in Sec-
tion 4, we prove these facts in the model case of the projective special linear group
G = Ar(q) = PSLr+1(Fq), which is technically simpler than the general case and allows
for some more explicit computations. In Section 5, we define formally the concept of a
finite simple group of Lie type, and extend the arguments in Section 4 to this class of
groups to give a full proof of Theorem 1.2, contingent on a certain Schwartz–Zippel type
lemma which we then prove in Section 6, together with a separate treatment of the triality
group caseG = 3D4(q) which requires a modification to one part of the argument. In the
last section, Section 8, we extend our arguments to cover the case when the groupG is no
longer simple, but an almost direct product of simple groups. This requires adapting the
product theorem to this setting and proving an analogous non-concentration estimate.

3. The Bourgain–Gamburd expansion machine

Bourgain and Gamburd, in their groundbreaking paper [BG1], supplied a new paradigm
for proving that sets of generators expand, applying it to show that any set of matrices
in SL2(Z) generating a Zariski-dense subgroup descends to give an expanding set of
generators in SL2(Fp), and also the special case G = SL2(Fp) of Theorem 1.2.

This “Bourgain–Gamburd machine” was also critical in [BGT2], the paper on expan-
sion in Suzuki groups by the first, second and fourth authors.

In this section we give a version of this machine, suitable for use for finite simple
groups, which will be adequate for our purposes, with the proofs deferred to Appendix B.
In that appendix we will also remark on slightly more general contexts in which one
might hope to apply the machine at the end of the section, but readers looking for the
most general setting in which the method is valid should consult the work of Varjú [V].

Suppose that G = (G, ·) is a finite group, and let S = {x1, . . . , xk} be a symmetric
set of generators for G. In this paper we will usually be taking S = {a, a−1, b, b−1

} for a
random pair a, b ∈ G, and G will be a finite simple group of Lie type, but the discussion
in this section will apply to more general types of generators S and more general finite
groups G.

Write
µ = µS :=

1
k
(δx1 + · · · + δxk )

for the uniform probability measure on the set S, where δx is the Dirac mass at x. We abuse
notation very slightly and identify the space of probability measures on the discrete space
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G with the space of functions µ : G→ R+ with mean Ex∈G µ(x) = 1. In particular, we
identify the uniform measure with the constant function 1, and the Dirac mass δx with the
function that equals |G| at x and vanishes elsewhere.

We write
µ(n) := µ ∗ · · · ∗ µ

for the n-fold convolution power of µ with itself, where the convolution µ1 ∗ µ2 of two
functions µ1, µ2 : G→ R+ is given by the formula

µ1 ∗ µ2(g) := Ex∈G µ1(gx
−1)µ2(x). (3.1)

One may think of µ(n)(x) as describing the normalised probability that a random walk
of length n starting at the identity in G and with generators from S hits the point x. In
particular, if S = {a, b, a−1, b−1

}, and H ⊂ G, then

µ(n)(H) = Pw∈Wn,2(w(a, b) ∈ H), (3.2)

where Wn,2 is the space of all formal words (not necessarily reduced) on two generators
of length exactly n.

Here is an instance of the Bourgain–Gamburd machine that will suffice for our paper
(and for [BGT2]). Define aK-approximate subgroup of a groupG to be a finite symmetric
subset A of G containing the identity such that the product set A ·A := {a · b : a, b ∈ A}
can be covered by at most K left translates of A.

Proposition 3.1 (Bourgain–Gamburd machine). Suppose that G is a finite group, that
S ⊆ G is a symmetric set of k generators, and that there are constants 0 < κ < 1 < 3

with the following properties.

(i) (Quasirandomness) The smallest dimension of a non-trivial representation ρ : G→
GLd(C) of G is at least |G|κ .

(ii) (Product theorem) For all δ > 0 there is some δ′ = δ′(δ) > 0 such that the following
is true. If A ⊆ G is a |G|δ

′

-approximate subgroup with |G|δ ≤ |A| ≤ |G|1−δ then A
generates a proper subgroup of G.

(iii) (Non-concentration estimate) There is some even number n ≤ 3 log |G| such that

sup
H<G

µ(n)(H) < |G|−κ ,

where the supremum is over all proper subgroups H < G.

Then S is ε-expanding for some ε > 0 depending only on k, κ,3, and the function δ′(·)
(and this constant ε is in principle computable in terms of these constants).

We prove this proposition in Appendix B, by a variant of the techniques in [BG1], using
a version of the Balog–Szemerédi–Gowers lemma which we give in Appendix A. As
mentioned in the previous section, the hypothesis (iii), the non-concentration estimate,
represents the bulk of the new work in this paper, in the context when S is generated by
two random elements. This condition was also difficult to verify in earlier works such as
[BG2, BG3], where deep results from algebraic geometry and random matrix products
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were required. The interesting feature of (iii) is that it is actually necessary in order to
verify expansion, as it is a consequence of the rapid mixing property (1.2). This is in
contrast to (i) and (ii) which, although they certainly “pull in the direction of” expansion,
are by no means strictly speaking necessary in order to establish it. We also remark that
(iii) is the only condition of the three that actually involves the set S.

In view of Proposition 3.1 (and (3.2)), as well as the observation that Theorem 1.2 for
a finite simple group G will follow from the same theorem for the bounded cover G̃ of
G from Definition 5.2, we see that Theorem 1.2 will follow from Proposition 2.1 and the
following additional propositions.

Proposition 3.2 (Quasirandomness). Let G be a finite simple group of Lie type, and
let G̃ be the bounded cover of G coming from Definition 5.2. Then every non-trivial
irreducible representation ρ : G̃ → GLd(C) of G̃ has dimension d at least |G|β , where
β > 0 depends only on the rank of G.

Proposition 3.3 (Product theorem). Let G be a finite simple group of Lie type, and let
G̃ be the bounded cover of G coming from Definition 5.2. For all δ > 0 there is some
δ′ = δ′(δ) > 0 depending only on δ and the rank of G such that the following is true. If
A ⊆ G̃ is a |G̃|δ

′

-approximate subgroup with |G̃|δ ≤ |A| ≤ |G̃|1−δ then A generates a
proper subgroup of G̃.

These two propositions will follow easily from known results in the literature on finite
simple groups of Lie type, as we will discuss shortly.

4. A model case

In this section, we establish Theorem 1.2 in the model case of the projective special linear
group

G = Ar(q) = PSLr+1(Fq)
over some finite field Fq and some rank r ≥ 1. This case is significantly simpler than
the general case, but will serve to illustrate the main ideas of the argument. In particular,
many of the arguments here will eventually be superseded by more general variants in
later sections.

Henceforth we allow all implied constants to depend on the rank r of G, thus r =
O(1). We may assume that the finite field Fq is sufficiently large depending on r , as the
claim is trivial otherwise.

It will be convenient to lift up from the finite simple group G to the linear algebraic
group

G̃ := G(Fq) ⊂ G(k) ⊂ GLm(k) ⊂ Matm(k)
over Fq , where m := r + 1, G := SLm, k is an uncountable algebraically closed field
containing Fq , and Matm is the ring of m × m matrices. Note that G is the quotient
G = G̃/Z(G̃) of G̃ by its centre Z(G̃), which has order O(1) and as such will play a
negligible role in the analysis that follows. The group G = SLm is an example of an
absolutely almost simple algebraic group, in the sense that G has no non-trivial proper
connected normal subgroups.
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As remarked earlier, to prove Theorem 1.2 for G = PSLr+1(Fq) it will suffice to do
so for G̃ = SLm(Fq), so we shall henceforth work with the special linear group G̃ instead
of G.

Now we review the structure of the special linear group G = SLr+1, with an eye
towards future generalisation to other finite simple groups of Lie type. We recall the
Bruhat decomposition

G = BWB
where the Borel subgroup B of G is the space of upper-triangular m × m matrices of
determinant one, and the Weyl groupW is the group of permutation matrices. We factorise

B = UT = TU

where the unipotent group U is the subgroup of B consisting of upper-triangular matrices
with ones on the diagonal, and the maximal torus is the group of diagonal matrices of
determinant one. Since W normalises T, we thus have

G = UTWU.

In fact, we have the more precise decomposition

G =
⊔

w∈W
UTwU−w

that decomposes G as the disjoint union of UTwU−w , where if w is the permutation matrix
associated to a permutation π : {1, . . . , m} → {1, . . . , m} (thus w has an entry 1 at
(i, π(i)) for i = 1, . . . , m, and zero elsewhere), then U−w is the subgroup of U consisting
of the matrices in U whose (i, j) entries vanish whenever π(i) < π(j). Furthermore,
the products in the above decomposition are all distinct, thus each g ∈ G has a unique
representation of the form g = u1hwu with u1 ∈ U, h ∈ T, w ∈ W , and u ∈ U−w ;
see [C, Corollary 8.4.4] for a proof of this result (which is in fact valid in any Chevalley
group). This decomposition (which is essentially a form of Gaussian elimination) can be
specialised to the field Fq , thus

G̃ =
⊔

w∈W
U(Fq)T(Fq)wU−w(Fq)

and so
|G̃| =

∑
w∈W
|U(Fq)| |T(Fq)| |U−w(Fq)|.

The group U(Fq) is the group of upper-triangular matrices with ones on the diagonal and
coefficients in Fq , and thus has cardinality qm(m−1)/2. When w is the long word w0 that
equals one on the anti-diagonal (and thus corresponds to the permutation i 7→ m+ i−1),
U−w(Fq) is equal to U(Fq) and thus also has cardinality qm(m−1)/2; in all other cases it has
cardinality qdw for some dw < m(m− 1)/2. From this we see that

|G̃| = (1+O(1/q))|U(Fq)| |T(Fq)| |U(Fq)|,

so that the “large Bruhat cell” B(Fq)w0B(Fq) = U(Fq)T(Fq)w0U(Fq) occupies almost
all of G̃:

|G̃| = (1+O(1/q))|B(Fq)w0B(Fq)|. (4.1)
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Note that a similar argument shows that the large Bruhat cell Bw0B has larger dimension
than all other Bruhat cells BwB, and so Bw0B is Zariski-dense in G.

Among other things, this gives the very crude bound

|G̃| � qO(1), (4.2)

so that any gain of the form O(q−c) for some c > 0 is also of the form O(|G̃|−c
′

) for
some c′ > 0 depending on c and r . Indeed, one has the more precise exact formula

|G̃| =
1

q − 1

m−1∏
j=0

(qm − qj ),

although we will not need such precision in our arguments.
As discussed in the last section, by Proposition 3.1, it suffices to verify the quasi-

randomness property (Proposition 3.2), the product theorem (Proposition 3.3), and the
non-concentration property (Proposition 2.1) for the projective special linear group G.

We begin with the quasirandomness. It is a result of Landazuri and Seitz [LS] that
all non-trivial irreducible projective representations of G̃/Z(G̃) = PSLm(Fq) have di-
mension4

� qc for some absolute constant c > 0 (in fact the more precise lower bound
of qm−1

− 1 is obtained for m > 2, and 1
(2,q−1) (q − 1) for m = 2). This implies that

all non-trivial irreducible linear representations of G̃ also have dimension� qc, which
gives Proposition 3.2 for the special linear group.

Now we turn to the product theorem for SLm. When m = 2 and Fq has prime order,
this result is due to Helfgott [Hel1], who then later established the case when m = 3
and Fq has prime order in [Hel2]. The case when m = 2 and Fq is a prime power was
obtained by Dinai [Din] (see also Varjú [V, Sec. 4.1] for another proof), and the case of
general r when Fq has prime order and A was somewhat small was obtained in [GH].
The general case is due independently to Pyber and Szabó [PS] and to the first, second
and fourth authors [BGT3]. We state here the main result from [BGT3]:

Theorem 4.1. Let M,K ≥ 1, and let G(k) ⊂ GLm(k) be an absolutely almost simple
linear algebraic group of complexity5 at mostM over an algebraically closed field k, and
letA be aK-approximate subgroup of G(k). Then at least one of the following statements
holds:

(i) (A is not sufficiently Zariski-dense) A is contained in an algebraic subgroup H(k)
of G(k) of complexity OM(1) and dimension strictly less than G.

(ii) (A is small) |A| �M KOM (1).
(iii) (A is controlled by 〈A〉) The group 〈A〉 generated by A is finite, and has cardinality
|〈A〉| �M KOM (1)|A|.

4 Actually, as the precise value of c is not important for applications, it suffices to establish the
m = 2 case (as SLm(Fq ) clearly contains a copy of SL2(Fq ) for any m ≥ 2, and is almost simple),
and this follows already from [LS, Lemma 4.1].

5 An algebraic set in kn is said to be of complexity at most M if it is the boolean combination of
the zero sets of at most M polynomials on kn, each of degree at most M , and with n ≤ M .
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We can now prove Proposition 3.3 in the case G̃ = SLm(Fq). Let δ > 0, and let δ′ >
0 be sufficiently small depending on δ and r . We may assume that |Fq | is sufficiently
large depending on δ, r , as the claim is trivial otherwise (since a K-approximate group is
automatically a group whenever K < 2).

Let A be a |G̃|δ
′

-approximate subgroup of G̃ with

|G̃|δ ≤ |A| ≤ |G̃|1−δ. (4.3)

We apply Theorem 4.1 in G(k) with K := |G̃|δ
′

and M = O(1), where k is some
algebraically closed field containing Fq . We conclude that one of options (i)–(iii) is true.
Option (ii) is ruled out from the lower bound of |A| in (4.3), if δ′ is sufficiently small (and
q sufficienly large). If option (iii) holds, then from the upper bound in (4.3) we see (again
for δ′ sufficiently small and q sufficiently large) that |〈A〉| < |G̃|, and the claim follows
in this case.

Finally, suppose that option (i) holds. Then 〈A〉 is contained in the algebraic group H.
We need to recall the Schwartz–Zippel lemma [Sc]:

Lemma 4.2 (Schwartz–Zippel lemma). Let P : kd → k be a polynomial of degree at
most D which is not identically zero. Then

|{x ∈ Fdq : P(x) = 0}| ≤ dDqd−1.

Indeed, the d = 1 case of this lemma follows from the fundamental theorem of algebra,
and the higher d cases can then be established by induction (cf. Lemma 6.2(i) below).
We remark that sharper bounds can be obtained (for low values of D, at least) using the
Lang–Weil estimates [LaW], but we will not need such bounds here (particularly since
we will be interested in the case when D is moderately large, in which case it becomes
difficult to control the error terms in the Lang–Weil estimates).

We can adapt this lemma to G := SLm:

Lemma 4.3 (Schwartz–Zippel lemma in SLm).

(i) If P : Matm(k)→ k is a polynomial of degreeD ≥ 1 that does not vanish identically
on G(k), then

|{a ∈ G̃ : P(a) = 0}| � Dq−1
|G̃|.

(ii) Similarly, if P : Matm(k) ×Matm(k) → k is a polynomial of degree D ≥ 1 which
does not vanish identically on G(k)×G(k), then

|{(a, b) ∈ G̃× G̃ : P(a, b) = 0}| � Dq−1
|G̃|2.

Proof. We first prove (i). By (4.1) we may replace G̃ by the large Bruhat cell
B(Fq)w0B(Fq) = U(Fq)T(Fq)w0U(Fq), thus it suffices to show that

|{(u1, h, u) ∈ U(Fq)× T(Fq)× U(Fq) : P(u1, h, u) = 0}|

� Dq−1
|U(Fq)| |T(Fq)| |U(Fq)|.
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We can parameterise an element u of U(Fq) by qm(m−1)/2 independent coordinates in Fq
by using the strictly upper-triangular entries uij , 1 ≤ i < j < m, of that element. An ele-
ment in T(Fq) can also be parameterised by m− 1 independent coordinates t1, . . . , tm−1
in F×q := Fq \ {0} by identifying such a tuple of coordinates with the element

diag
(
t1, . . . , tm−1,

1
t1 · . . . · tm−1

)
in T (Fq). In particular, |U(Fq)| = qm(m−1)/2 and |T (Fq)| = (1+O(1/q))qm−1. We can
then view P(u1, h, u) as a polynomial

Q
(
(u1,ij )1≤i<j≤m, (ti)

m−1
i=1 , (uij )1≤i<j≤m

)
of degree O(D) in m(m− 1)/2 + (m − 1) + m(m− 1)/2 coordinates (u1,ij )1≤i<j≤m,
(ti)

m−1
i=1 , (uij )1≤i<j≤m divided by a monomial in the t1, . . . , tm−1 coordinates, where the

u1,ij , uij range in Fq and the ti range in F×q . Clearing denominators, it thus suffices to
establish the bound

|{(u1,ij )1≤i<j≤m × (ti)
m−1
i=1 × (uij )1≤i<j≤m ∈ Fm(m−1)/2

q × (F×q )
m
× Fm(m−1)/2

q :

Q((u1,ij )1≤i<j≤m, (ti)
m−1
i=1 , (uij )1≤i<j≤m) = 0}|

� Dq−1qm(m−1)/2qm−1qm(m−1)/2.

IfQ is non-vanishing, then this is immediate from Lemma 4.2; and whenQ is vanishing,
then P vanishes on the Zariski-dense subset Bw0B = UTw0U of G and thus vanishes on
all of G(k), a contradiction. This gives (i).

Now we use (i) to prove (ii). By hypothesis, one can find (a0, b0) ∈ G(k) × G(k)
such that P(a0, b0) 6= 0. From (i), we have

|{a ∈ G̃ : P(a, b0) = 0}| � DO(1)q−1
|G̃|.

On the other hand, for each a ∈ G̃ with P(a, b0) 6= 0, another application of (i) gives

|{b ∈ G̃ : P(a, b) = 0}| � DO(1)q−1
|G̃|.

Summing over all a, we obtain (ii) as required. ut

From part (i) of this lemma we see that

|〈A〉| � q−1
|G̃|.

If Fq is sufficiently large, we conclude that A generates a proper subgroup of G̃, as re-
quired. This concludes the proof of Proposition 3.3 for special linear groups (and hence
for projective special linear groups). (Part (ii) of the above lemma will be used at a later
stage of the argument.)

Finally, we need to establish the non-concentration estimate, Proposition 2.1, for the
projective special linear group G. Again, as G̃ is a bounded cover of G, it suffices to
establish the analogous claim for the special linear group G̃ = SLm(Fq).

We will need the following (rough) description of the subgroups of G̃.
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Proposition 4.4 (Subgroups of SLm(Fq)). For any proper subgroup H of G̃, one of the
following statements holds:

(i) (Structural case) H lies in a proper algebraic subgroup of G of complexity O(1).
(ii) (Subfield case) Some conjugate of H lies in G(Fq ′), where Fq ′ is a proper subfield

of Fq .

Proof. This is a special case of a more general statement about maximal subgroups of
finite simple groups of Lie type; see Lemma 5.5. ut

Let us call H a structural subgroup if the first conclusion of Proposition 4.4 holds, and a
subfield subgroup if the second conclusion holds. Note that it is certainly possible for H
to be simultaneously structural and subfield; we will take advantage of this overlap in a
subsequent part of the paper when dealing with the twisted group case.

Set n := 2bc0 log |G̃|c for some sufficiently small c0 > 0. By Proposition 4.4, to
prove Proposition 2.1 for the projective special linear group, it suffices to establish the
claims

P
a,b∈G̃

(
Pw∈Wn,2(w(a, b) ∈ H) ≤ |G̃|

−γ for all structural H < G̃
)

= 1−O(|G̃|−γ ), (4.4)

and

P
a,b∈G̃

(
Pw∈Wn,2(w(a, b) ∈ H) ≤ |G̃|

−γ for all subfields H < G̃
)

= 1−O(|G̃|−γ ) (4.5)

for some sufficiently small γ > 0.

The structural case. We now establish (4.4), following the arguments of Bourgain and
Gamburd [BG1]. We rewrite this estimate as

P
a,b∈G̃

(
Pw∈Wn,2(w(a, b) ∈ H) > |G̃|

−γ for some structural H < G̃
)
� |G̃|−γ .

Note that if a, b is such that

Pw∈Wn,2(w(a, b) ∈ H) > |G̃|
−γ

for some structural H < G̃, then we have

Pw,w′∈Wn,2(w(a, b),w
′(a, b) ∈ H) > |G̃|−2γ .

Thus, by Markov’s inequality, it suffices to show that

P
a,b∈G̃;w,w′∈Wn,2

(w(a, b),w′(a, b) ∈ H for some structural H < G̃)� |G̃|−3γ . (4.6)

Let e1, e2 be generators of a free group F2. Let us first dispose of the contribution
when w(e1, e2), w

′(e1, e2) commute.

Lemma 4.5 (Generic non-commutativity). One has

Pw,w′∈Wn,2
(
w(e1, e2)w

′(e1, e2) = w
′(e1, e2)w(e1, e2)

)
� exp(−cn)

for some absolute constant c > 0.
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Proof. By the Nielsen–Schreier theorem, this case only occurs when w(e1, e2) and
w′(e1, e2) lie in a cyclic group, which means that w(e1, e2) = x

a and w′(e1, e2) = x
b for

some integers a, b and some element x ∈ F2.
It is a classical fact [Ke] that a random walk on the free group F2 will return to

the identity in time n with probability O(exp(−cn)) for some absolute constant c > 0.
(Indeed, as exactly half of the path has to consist of backtracking, one has a crude bound of(
n
n/2

)
3n/2 = O(exp(−cn)4n) for the number of paths that return to the identity at time n.)

In particular, we may assume that w(e1, e2) and w′(e1, e2) are not equal to the identity.
This forces x to be a non-identity word, and a, b to have magnitude at most n. There are
thus O(n2) choices for a, b, and once a, b is fixed, w(e1, e2) uniquely determines x and
hence w′(e1, e2). On the other hand, by another appeal to the above classical fact, any
given value of w′(e1, e2) is attained by at most O(exp(−cn)) choices of w′. The claim
follows. ut

In view of the above lemma, and of the choice of n, the contribution of the commuting
case to (4.6) is acceptable. Thus, by Fubini’s theorem, it will suffice to show that

P
a,b∈G̃

(w(a, b),w′(a, b) ∈ H for some structural H < G̃)� |G̃|−3γ (4.7)

whenever w,w′ ∈ Wn,2 are such that w(e1, e2) and w′(e1, e2) do not commute.
Fix w,w′. If w(a, b),w′(a, b) lie in the same structural subgroup H , then they are

contained in a proper algebraic subgroup of G of complexity O(1). We now convert this
claim into an algebraic constraint on w(a, b),w′(a, b), with an eye towards eventually
applying the Schwartz–Zippel lemma (Lemma 4.3). It would be very convenient if the set
of all pairs (x, y) ∈ G(k) × G(k) for which x, y were contained in a proper algebraic
subgroup of G(k)was a proper algebraic subset of G(k)×G(k). Unfortunately, in positive
characteristic this is not the case; for instance, if we replaced k with a locally finite field
such as Fq , then every pair x, y ∈ G(k) × G(k) would be contained in G(kxy) for some
finite field kxy , yet G(kxy) is a finite group and thus obviously a proper algebraic subset
of G(k)×G(k).

However, we can obtain a usable substitute for the above (false) claim by enforcing
a bound on the complexity of the proper algebraic subsets involved. More precisely, we
have the following.

Proposition 4.6. Let N ≥ 1 be an integer, and let k be an algebraically closed field. Let
G(k) ⊂ GLd(k) be a connected linear algebraic group of complexity O(1). Then there
exists a closed algebraic subset XN (k) of G(k) × G(k) of complexity ON (1) with the
following properties:

(i) If x, y ∈ G(k) are such that x and y are contained in a proper algebraic subgroup
of G(k) of complexity at most N , then (x, y) ∈ XN (k).

(ii) Conversely, if (x, y) ∈ XN (k), then x and y are both contained in a proper algebraic
subgroup of G(k) of complexity ON (1).

Proof. Let D be a large integer (depending on N, d) to be chosen later. We view G(k) as
a subset of the ring Matm(k) of m × m matrices, which is also a vector space over k of
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dimension m2
= O(1). Let V be the space of polynomials P : Matm(k)→ k of degree

at most D on Matm(k); then V is a vector space over k of dimension OD(1), and G(k)
acts on V by left translation, thus

ρ(g)P (x) := P(g−1x)

for all g ∈ G(k) and P ∈ V . Thus we have a homomorphism ρ : G(k)→ End(V ) from
G(k) to the space End(V ) of endomorphisms of V , which is another vector space over k
of dimension OD(1).

We now define XN (k) to be the set of all pairs (x, y) ∈ G(k)×G(k) such that

span(ρ(〈x, y〉)) 6= span(ρ(G(k))), (4.8)

where span denotes the linear span in End(V ).
The fact that XN (k) is a closed algebraic subset will be deferred to the end of the

proof. For now, let us verify property (i). Suppose x, y lie in a proper algebraic sub-
group H of G(k) of complexity at most N . We view H as a subvariety of Matm(k) of
complexity at most N . Let IH be the radical ideal of polynomials of Matm(k) that vanish
on H . By a result6 of Kleiman [Kl, Corollary 6.11], we know that IH has a generating
set, say f1, . . . , fk , of polynomials of degree ON (1). In particular, if D is large enough,
then f1, . . . , fk all lie in V .

Now, if g lies in 〈x, y〉, then g lies in H , and so ρ(g) preserves IH ∩ V . Thus,
span(ρ(〈x, y〉)) preserves IH ∩ V also. Now suppose for contradiction that (x, y) does
not lie in XN (k), then by (4.8), ρ(g) preserves IH ∩ V for all g ∈ G. In particular,
ρ(g)fi ∈ IH for all i = 1, . . . , k and g ∈ G. But this implies that the fi all vanish on G;
since the fi generate IH , this forces all polynomials that vanish on H to vanish on G as
well. But H is a proper subvariety of G, giving the desired contradiction.

Next, we verify property (ii). Suppose that (x, y) lies in XN (k). By (4.8) and duality,
there is thus a linear functional φ : End(V )→ k which vanishes on ρ(〈x, y〉) but which
does not vanish identically on ρ(G(k)). Thus, the group 〈x, y〉 is contained in the set
{g ∈ G(k) : φ(ρ(g)) = 0}, which is a proper algebraic subvariety of G(k) of complexity
OD(1). Applying the “escape from subvarieties” lemma (see [BGT3, Lemma 3.11]), this
implies that 〈x, y〉 is contained in a proper algebraic subgroup of G(k) of complexity
OD(1). If we select D sufficiently large depending on N , m, we obtain claim (ii).

Finally, we show thatXN (k) is a closed subvariety of complexityOD(1). Consider the
non-decreasing sequence of subspaces span(ρ(Bn(x, y)) of End(V ) for n = 0, 1, 2, . . . ,
where Bn(x, y) denotes all words of x, y, x−1, y−1 of length at most n. From the pigeon-
hole principle, we conclude that

span(ρ(Bn+1(x, y))) = span(ρ(Bn(x, y)))

for some n ≤ dim End(V ) = OD(1). But then ρ(x±1), ρ(y±1) leave span(ρ(Bn(x, y)))
invariant, which implies in particular that

span(ρ(Bn(x, y)) = span(ρ(Bdim End(V )(x, y))) = span(ρ(〈x, y〉)).

6 One can also obtain the degree bound on the polynomials here via an ultraproduct argument
combined with the Hilbert basis theorem, as in [BGT3, Appendix A].
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Thus, we may rewrite (4.8) as the condition that

span(ρ(Bdim End(V )(x, y))) = span(ρ(G(k)))

or equivalently that the elements ρ(w(x, y)) of End(V ) for w a word of length at most
End(V ) does not have full rank in span(ρ(Bdim End(V )(x, y))). This is clearly an algebraic
constraint on x, y and establishes that XN (k) is a closed subvariety of complexityOD(1)
as required. ut

We apply the above proposition with G := SLm andN = O(1) sufficiently large depend-
ing on the rank r . By the preceding discussion, we know that if w(a, b),w′(a, b) lie in a
common structural subgroup, then the pair (w(a, b),w′(a, b)) lies in XN , and thus (a, b)
lies in the set

6w,w′(k) := {(a, b) ∈ G(k)×G(k) : (w(a, b),w′(a, b)) ∈ XN }

As w,w′ are words of length at most n, this is a closed subvariety of G(k) × G(k) of
complexity O(n).

We now make the crucial observation (using Theorem 2.3) that 6w,w′(k) is a proper
subvariety of G(k)×G(k) when w(e1, e2), w

′(e1, e2) do not commute. Indeed, by The-
orem 2.3, the hypothesis that k is uncountable, and the non-commutativity of w(e1, e2)

and w′(e1, e2), we can find (a, b) ∈ G(k) × G(k) such that w(a, b),w′(a, b) gener-
ate a Zariski-dense subgroup of G(k). By Proposition 4.6(ii), this implies that (a, b) lies
outside of 6w,w′(k), and so 6w,w′(k) is a proper subvariety of G(k)×G(k) as required.

Applying the Schwartz–Zippel lemma (Lemma 4.3), we have

|6w,w′(k) ∩ G̃2
| � nO(1)q−1

|G̃|2.

By the choice of n (recall n := 2bc0 log |G̃|c), we thus have (for c0, γ small enough) that

|6w,w′(k) ∩ G̃2
| � |G̃|2−3γ ,

and (4.7) follows. This concludes the proof of (4.4).

The subfield case. It remains to establish (4.5). The starting point is the observation that
if g ∈ G̃ is conjugate to an element of G(Fq ′) for some subfield Fq ′ of Fq , then the
coefficients γ1(g), . . . , γm(g) of the characteristic polynomial of the matrix g

det(X Idm−g) = Xm + γi(g)Xm−1
+ · · · + γ1(g)X + γm(g)

will lie in Fq ′ . Note that the number of proper subfields of Fq is at most O(log q) =
O(log |G̃|). Thus, by the union bound, it suffices to show that

P
a,b∈G̃

(
Pw∈Wn,2(γi(w(a, b)) ∈ Fq ′ for all 1 ≤ i ≤ m) > |G̃|−γ

)
� |G̃|−2γ

(say) for each proper subfield Fq ′ of Fq . By Markov’s inequality, it suffices to show that

P
a,b∈G̃;w∈Wn,2

(
γi(w(a, b)) ∈ Fq ′ for all 1 ≤ i ≤ m

)
� |G̃|−3γ .
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Fix Fq ′ , and let e1, e2 be the generators of a free group F2. As observed previously in
the proof of Lemma 4.5, w(e1, e2) will be the identity with probability O(exp(−cn)) for
some c > 0. By the choice of n, it thus suffices to show that

P
a,b∈G̃

(
γi(w(a, b)) ∈ Fq ′ for all 1 ≤ i ≤ m

)
� |G̃|−3γ (4.9)

whenever w ∈ Wn,2 is such that w(e1, e2) 6= 1.
Let us first consider the probability

P
a,b∈G̃

(
γi(w(a, b)) = xi

)
for some fixed 1 ≤ i ≤ m and xi ∈ Fq ′ with xi 6= γi(1). Observe that

6w,i,xi := {(a, b) ∈ G×G : γi(w(a, b)) = xi}

is an algebraic variety of complexity O(n). Since γi(w(1, 1)) = γi(1) 6= xi , this variety
is a proper subvariety of G×G. Applying the Schwartz–Zippel lemma (Lemma 4.3), we
conclude that

|6w,i,xi (Fq)| � nO(1)q−1
|G̃|2,

and thus
P
a,b∈G̃

(
γi(w(a, b)) = xi

)
� nO(1)q−1.

Summing over all xi ∈ Fq ′ \ {γi(1)}, we can bound the left-hand side of (4.9) by

P
a,b∈G̃

(
γi(w(a, b)) = γi(1) for all 1 ≤ i ≤ m

)
+O(nO(1)q ′q−1).

As Fq ′ is a proper subfield of Fq , we have q ′ ≤ q1/2. As such, the error term
O(nO(1)q ′q−1) is O(|G̃|−3γ ) if γ, c0 are small enough. It thus suffices to show that

P
a,b∈G̃

(
γi(w(a, b)) = γi(1) for all 1 ≤ i ≤ m

)
� |G̃|−3γ .

By the Cayley–Hamilton theorem, if γi(w(a, b)) = γi(1) for all 1 ≤ i ≤ m, then

(w(a, b)− 1)m = 0.

Observe that
6′w := {(a, b) ∈ G×G : (w(a, b)− 1)m = 0}

is an algebraic variety of complexity O(n). By repeating the previous arguments, it thus
suffices to establish that 6′w is a proper subvariety of G×G. Suppose that this is not the
case; then for all a, b ∈ G × G, one has (w(a, b) − 1)m = 0; thus w(a, b) is unipotent.
However, the space of all unipotent matrices forms a proper subvariety of G = SLm.
Furthermore, by a theorem of Borel [B] and the assumption that w is non-trivial, the
word map w : G × G → G is dominant. Thus 6′w is a proper subvariety of G × G as
required. This concludes the proof of Theorem 1.2 in the case when G is a projective
special linear group G = Ar(q).
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Remark 4.7. An inspection of the above arguments shows not only that {a, b} are
ε-expanding with probability 1 − O(|G|−δ), but furthermore that {w1(a, b), w2(a, b)}

are ε-expanding with probability 1 − O(|G|−δ) for any non-commuting pair of words
w1, w2 ∈ F2 of length at most |G|δ . The proof is essentially the same, with the only
changes required being in the non-concentration portion of the argument, when one re-
places a, b byw1(a, b),w2(a, b) in all of the events whose probability is being computed.
For instance, the probability

P
a,b∈G̃

(
Pw∈Wn,2(w(a, b) ∈ H) ≤ |G̃|

−γ for all structural H < G̃
)

must be replaced with

P
a,b∈G̃

(
Pw∈Wn,2(w(w1(a, b), w2(a, b)) ∈ H) ≤ |G̃|

−γ for all structural H < G̃
)
.

But one can easily verify that the above arguments proceed with essentially no
change with this substitution. Note that by the Nelson–Schreier theorem, w1 and w2
again generate a free group; in particular, if w,w′ are non-commuting words, then
w(w1(a, b), w2(a, b)) and w′(w1(a, b), w2(a, b)) are also non-commuting words (and
in particular non-trivial), allowing the crucial use of Theorem 2.3 (and also Borel’s dom-
ination theorem) to continue to apply in this case to ensure that the variety

6w,w′;w1,w2(k)
:= {(a, b) ∈ G(k)×G(k) : (w(w1(a, b), w2(a, b)), w

′(w1(a, b), w2(a, b))) ∈ XN }

remains proper. Also, and when viewed as polynomials in a, b, the degrees of
w(w1(a, b), w2(a, b)), w

′(w1(a, b), w2(a, b)) are larger by a factor of O(|G|δ) than the
degrees of w(a, b),w′(a, b), allowing the Schwartz–Zippel estimates to stay essentially
the same. We leave the details to the reader. One can similarly adapt the argument in later
sections for more general finite simple groups of Lie type (including the triality groups
3D4(q), which require a separate argument based on the same general techniques); again,
we leave the details to the interested reader.

5. The general case

Having concluded the proof of Theorem 1.2 in the model case G = Ar(q), we now turn
to the general case of finite simple groups of Lie type with some rank r . As before, we
allow all implied constants in the O(·) notation to depend on r .

We begin by defining more precisely what we mean by a finite simple group of Lie
type. The reader may consult [C, GLS, Wi] for a more thorough treatment of this material.
Our notation has some slight differences with that in [C] or [GLS]; see Remark 5.3 below.

Definition 5.1 (Dynkin diagram). A Dynkin diagram is a graph of the formAr for r ≥ 1,
Br for r ≥ 2, Cr for r ≥ 3, Dr for r ≥ 4, E6, E7, E8, F4, or G2 (see Figure 1).

We observe that there are only a small number of possible non-trivial graph automor-
phisms ρ : D→ D of a Dynkin diagram D. Specifically, for the Dynkin diagramsAr ,Dr ,
E6, B2,G2, F4, there is a graph automorphism of order two, and for D4 there is an addi-
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Fig. 1. Dynkin diagrams. The subscript r denotes the number of vertices.

tional graph automorphism of order three, and these are the only non-trivial graph auto-
morphisms (up to conjugation, in the D4 case).

Definition 5.2 (Finite simple group of Lie type). Let D be a Dynkin diagram, and let
ρ : D→ D be a graph automorphism of order d (thus d ∈ {1, 2, 3}). Let Fq be a finite field
of order q and characteristic p, and let k be an algebraically closed field7 containing Fq .
Let G(k) be a connected, absolutely almost simple algebraic group associated with the
Dynkin diagram D, so that ρ : G(k)→ G(k) also acts8 as an automorphism of G(k) that
fixes G(Fq). Let τ : Fq → Fq be a field automorphism of Fq . This field automorphism
then induces a group automorphism τ : G(Fq)→ G(Fq) of G(Fq) that commutes with ρ.
Set σ := τρ, and suppose that σ also is of order9 d . Let G(Fq)σ := {g ∈ G(Fq) :
σ(g) = g} be the fixed points of G(Fq) with respect to this automorphism. Let G̃ :=
[G(Fq)σ ,G(Fq)σ ] be the derived group, and let Z(G̃) be the centre of G̃. Let G be the
quotient group G := G̃/Z(G̃). If this group is simple,10 we call it a finite simple group
of Lie type. If we quotient G̃ by some subgroup of Z(G̃), we obtain a perfect central

7 The exact choice of k is not terribly important, but it will be technically convenient to use an
uncountable field k here, rather than the algebraic closure of Fq , in order to easily use Theorem 2.3.

8 In the case when ρ is the non-trivial automorphism of B2 or F4, the automorphism of G(k) only
exists in characteristic two; similarly, if ρ is the non-trivial automorphism ofG2, the automorphism
of G(k) only exists in characteristic three; see [C, Chapter 12].

9 If ρ is trivial, this forces τ to be trivial also. If ρ is a non-trivial automorphism on Ar , Dr ,
or E6, this forces q = q̃d for some integer q̃, and τ to be (up to conjugation) the Frobenius map
x 7→ xq̃ . If ρ is the non-trivial automorphism on F4 or G2, this forces q = pq̃d for some integer
q̃, and τ to be (up to conjugation) the Frobenius map x 7→ xq̃ ; see [C, 14.1].
10 It turns out that G will be simple except for a finite number of exceptions, and specifically
A1(2), A1(3), 2A2(4), and 2B2(2); see [GLS, Theorem 2.2.7]. But our results are only non-trivial
in the asymptotic regime when q is large, so these exceptional cases are of no interest to us.
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extension of G, which we call a finite quasisimple group of Lie type. For instance G and
G̃ are finite quasisimple groups of Lie type.

We define the rank r of G to be the rank of G, that is, the dimension of the maximal
torus of G. We refer to the order d of ρ (or σ ) as the twist order d. The group G itself
will be denoted dDr(q), or simply Dr(q) if the twist order d is 1.

The group G(k) will be referred to as the mother group of G, and G̃ will be the
bounded cover of G.

It turns out that finite simple groups of Lie type can be organised into three families:
(i) Untwisted groups Ar(q), Br(q), Cr(q),Dr(q), E6(q), E7(q), E8(q), F4(q),G2(q),

in which ρ is trivial, and σ = τ is the Frobenius field automorphism x 7→ xq

associated with a finite field Fq of characteristic p, and k will be its algebraic closure.
For instance, the projective special linear group G = Ar(q) = PSLr+1(Fq) studied
in the preceding section is of this form (with G = SLr+1).

(ii) Steinberg groups 2Ar(q̃
2), 2Dr(q̃

2), 2E6(q̃
2), 3D4(q̃

3), in which ρ is a non-trivial
graph automorphism of D = Ar ,Dr , E6 of order d = 2, 3, q = q̃d is a d th power,
and τ is the Frobenius automorphism x 7→ x q̃ . For instance, the projective special
unitary group 2Ar(q̃

2) = PSUr+1(Fq̃2) from (1.1) is of this form, with d = 2 and
G = SLr+1. We also highlight for special mention the triality groups 3D4(q̃

3),
which are the only groups with a graph automorphism of order 3, and which will
need to be treated separately in our analysis.

(iii) Suzuki–Ree groups 2B2(22k+1), 2F4(22k+1), 2G2(32k+1), in which ρ is the non-triv-
ial automorphism of D = B2, F4,G2 (assuming characteristic p = 2 in the B2, F4
cases and characteristic p = 3 in the G2 case), q = pθ2 for some θ = pk , and τ
is the Frobenius map x 7→ xθ . The groups 2B2(22k+1) are also referred to as Suzuki
groups, while 2F4(22k+1) and 2G2(32k+1) are referred to as Ree groups.

We refer to the Steinberg, Suzuki, and Ree groups collectively as twisted finite simple
groups of Lie type. The distinction between the Steinberg groups and the Suzuki–Ree
groups ultimately stems from the fact that the former groups have Dynkin diagrams D
from the ADE family, so that their roots all have the same length, whereas the latter
groups have diagrams in which the roots have two different possible lengths.

Remark 5.3. We remark that our notation here is slightly different from that in [C] or
[GLS]. In [GLS], the group that we would call dD(q) is instead denoted dD(q1/d) (in
particular, with the convention in [GLS], the “q” parameter becomes irrational in the
Suzuki–Ree cases). Also, in [GLS] the group G̃ is not taken to be the derived group of
G(Fq)σ , but is instead taken to be the group Op′(G(Fq)σ ) generated by the elements of
G(Fq)σ of order a power of p, where p is the characteristic of Fq . However, the quotient
group G(Fq)σ /Op′(G(Fq)σ ) acts faithfully on Op′(G(Fq)σ ) with an action generated
by diagonal automorphisms, and is thus abelian (see [GLS, Lemmas 2.5.7, 2.5.8]), while
the group Op′(G(Fq)σ ) is almost always perfect, with the only exceptions being A1(2),
A1(3), 2A2(4), 2B2(2), 2G2(3), and 2F4(2) (see [GLS, Theorem 2.2.7]). Thus, outside11

11 For instance, the Tits group would be considered a finite simple group 2F4(2) of Lie type under
our conventions, whereas in [GLS] it would be considered an index two subgroup of 2F4(21/2).
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of finitely many exceptions, we have Op′(G(Fq)σ ) = G̃ and so our notation coincides
with that of [GLS] except for replacing q1/d with q. In [C], the notation dD(q) is used
instead of dD(q1/d) (thus matching our notation and not that of [GLS]), but G̃ is instead
replaced by the subgroup G1 of G(Fq)σ generated by the intersection of that group with
the unipotent subgroups U,V ofG generated by the positive and negative roots; however
the groupG1 can be shown to be identical withOp′(G(Fq)σ ) (see [GLS, Theorem 2.3.4]).
As we are only interested in the asymptotic regime when q is large, the finite number of
exceptions between the conventions here and that in [C], [GLS] will not be relevant,
except for the fact that we index the finite simple groups by q instead of q1/d .

Note that even after fixing the Dynkin diagram and the field k, there is some flexibility
in selecting the group G; for instance, with the Dynkin diagram An, one can take G =
PGLr+1 or G = SLr+1, leading to two slightly different bounded covers G̃ = PGLr+1(q)

or G̃ = SLr+1(q) for the same simple group G = PSLr+1(q). But up to isomorphism,
there are onlyO(1) possible choices for G and hence for the bounded cover G̃; see [GLS,
2.2]. The group G can always be taken to be a linear algebraic group, i.e. an algebraic
subgroup of GLm(k) ⊆ Matm(k) ∼= km

2
for some m. Furthermore, using the adjoint

representation, we see that the complexity of G (viewed as a subvariety of GLm(k)) is also
O(1) (i.e. the complexity remains uniformly bounded in the field size q). In particular, we
can takem = O(1). In most cases we will be able to work with the adjoint representation,
but in Section 4 we used instead the tautological representation of SLr+1(k) on kr+1, and
when dealing with some subcases of the analysis of the triality groups 3D4(q) in Section 7
it turns out to be convenient to similarly use a relatively low-dimensional representation
(eight-dimensional, in this particular case). The main feature one needs for the linear
representation is that it be faithful, and that the algebraic group G has complexity O(1),
i.e. it is bounded uniformly with respect to the characteristic.

It is known that in all cases we have the inequality

|G(Fq)σ /G̃| × |Z(G̃)| ≤ r + 1

(and for Dynkin diagrams other than Ar , the left-hand side is in fact at most 4) regardless
of the choice of representation; see [GLS, 2.2]. In particular, we see that12

|Z(G̃)| = O(1)

and so G̃ is indeed a bounded cover ofG (and is also a bounded index subgroup of G(k)σ ).
In particular, |G| and |G̃| are comparable. Because of this, we will in practice be able to
lift our analysis up from G to G̃ without difficulty.

Throughout the paper we encourage the reader to have in mind the following diagram
(with all arrows here denoting inclusions except for the far left arrow, which is a quotient).

G̃ −−−−→ G(Fq)σ −−−−→ G(Fq) −−−−→ GLm(Fq) −−−−→ Matm(Fq)y y y y
G G(k) −−−−→ GLm(k) −−−−→ Matm(k)

12 Actually, if one insists on using the adjoint representation, then the centre Z(G̃) is always
trivial; see [GLS, Theorem 2.2.6(c)].
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Furthermore, the three groupsG, G̃,G(Fq)σ on the left of this diagram should be viewed
as “morally equivalent”, while the group G̃ should be viewed as a “sufficiently Zariski-
dense” subgroup of the linear, bounded complexity algebraic mother group G(k). (This
type of algebro-geometric viewpoint is of the same type as that used in, for example, [L].)

Since G̃ ⊂ G(Fq) ⊂ Matm(Fq) and m = O(1), we have the crude upper bound

|G| ≤ |G̃| � qO(1). (5.1)

As such, any gain of the form q−κ in our arguments can be replaced with |G|−κ (after
adjusting κ > 0 slightly).

In the arguments of the previous section, a key role was played by the Schwartz–
Zippel lemma (Lemma 4.3). We will need a more general form of this lemma:

Proposition 5.4 (Schwartz–Zippel lemma, general case). Let G = dD(q) be a finite
simple group of Lie type and of rank r , associated to the finite field Fq and with twist
order d. Let G̃ ⊂ G(k)σ ⊂ G(k) ⊂ Matm(k) be as in the above discussion, with G being
a linear group of complexity O(1).

(i) If P : Matm(k)→ k is a polynomial (over k) of degree D ≥ 1 that does not vanish
identically on G(k), then

|{a ∈ G̃ : P(a) = 0}| � Dq−1/d
|G̃|. (5.2)

(ii) Similarly, if P : Matm(k)×Matm(k)→ k is a polynomial (over k) of degreeD ≥ 1,
which does not vanish identically on G(k)×G(k), then

|{(a, b) ∈ G̃× G̃ : P(a, b) = 0}| � Dq−1/d
|G̃|2. (5.3)

We prove this proposition in Section 6. Note that (5.2) implies in particular that G̃ is
“sufficiently Zariski-dense” in G, in the sense that any polynomial over k that vanishes
on G̃ but not on G(k) must have degree� q1/d .

With these preliminaries, we may now give the proof of Theorem 1.2, except in the
triality caseG = 3D4(q) which, as we shall see, requires separate treatment at some parts
of the argument due to the high twist order d = 3 in this case.

Henceforth we fix G, and let G̃ ⊂ G(Fq)σ ⊂ G(Fq) ⊂ G(k) ⊂ GLm(k) be as in the
above discussion, with G being a linear algebraic group of complexity O(1).

By Proposition 3.1, we need to establish Propositions 3.2, 3.3, and 2.1 for general
finite simple groups G of Lie type. We begin with the quasirandomness claim.

Proof of Proposition 3.2. In [LS, SZ], it is shown that all non-trivial irreducible projective
representations of G̃/Z(G̃) have dimension at least |G̃|β for some β > 0 depending
only on the rank, which implies the analogous claim for irreducible linear representations
of G̃. As noted in Section 4, we do not need the full strength of these results; it can be
shown (see e.g. [Lu1, Theorem 4.1]) that with the exception of the Suzuki group case
G = 2B2(22k+1), the groups G̃ all contain a copy of either SL2(Fq̃) or PSL2(Fq̃) for
some q̃ � qc, and furthermore that this copy and its conjugates generate all of G̃. Thus
one can reduce to the case of either Suzuki groups or PSL2(Fq), both of which can be
treated by [LS, Lemma 4.1]. ut
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Now we turn to the product estimate, Proposition 3.3. In this generality the result is due to
Pyber and Szabó [PS]. However, it may also be deduced from the main result of [BGT3],
which was stated in the preceding section as Theorem 4.1. Indeed, the proof is almost
identical to the proof in the Ar(q) case:

Proof of Proposition 3.3. Let δ > 0, and let δ′ > 0 be sufficiently small depending on
δ and r . As in the preceding section, we may assume that |G̃| (and thus q) is sufficiently
large depending on δ, r .

Let A be a |G̃|δ
′

-approximate subgroup of G̃ with

|G̃|δ ≤ |A| ≤ |G̃|1−δ. (5.4)

We apply Theorem 4.1 in G(k) with K := |G̃|δ
′

and M = O(1). We conclude that one
of the options (i)–(iii) is true. Exactly as in the preceding section, option (ii) is ruled out
from the lower bound of |A| in (4.3), and we are done if option (iii) holds, so we may
assume that option (i) holds. Applying (5.2), we conclude that

|〈A〉| � q−1/d
|G̃|,

and thus (if q is large enough) A does not generate G̃. The claim follows. ut

In view of Proposition 3.1, to prove Theorem 1.2 it thus suffices to establish Proposition
2.1. To do this, we mimic the arguments from the previous section. As before, we can pass
fromG to the bounded cover G̃, and take k to be an uncountable algebraically closed field
containing Fq , and set n := 2bc0 log |G̃|c for some small constant c0 > 0. We begin by
generalising Proposition 4.4.

Lemma 5.5 (Maximal subgroups of simple algebraic groups). Suppose that H < G̃ is
a proper subgroup. Then one of the following statements holds:

(i) (Structural case) H lies in a proper algebraic subgroup of G of complexity O(1).
(ii) (Subfield case) Some conjugate of H is contained in G(Fq ′) for some proper sub-

field Fq ′ of Fq (thus q ′ = q1/j for some j > 1).

Proof. Much more detailed results than this can be established using CFSG. In particular,
by the main results of [As] for classical groups and Liebeck–Seitz [LS] for exceptional
groups, all maximal subgroups are known aside from almost simple subgroups. If the
almost simple groups are finite groups of Lie type, then by the representation theory of
such groups in the classical case [St] or by [LS], they will fall into one of the two cases
above. If the almost simple groups are not of Lie type in the same characteristic as G̃, then
there is a bound on their order (e.g. by [LS]). The result also follows13 by [LP, Theorem
0.5], which is independent of CFSG. ut

As in the preceding section, we classify the proper subgroups H of G̃ into structural and
subfield subgroups using the above lemma. Then our task is to establish the analogues of

13 In the case when q = pa for some bounded a, one could also use the results of Nori [N].
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(4.4) and (4.5), namely

P
a,b∈G̃

(
Pw∈Wn,2(w(a, b) ∈ H) ≤ |G̃|

−γ for all structural H < G̃
)

= 1−O(|G̃|−γ ), (5.5)

and

P
a,b∈G̃

(
Pw∈Wn,2(w(a, b) ∈ H) ≤ |G̃|

−γ for all subfield H < G̃
)

= 1−O(|G̃|−γ ). (5.6)

We begin with the proof of (5.5). Arguing exactly as in the preceding section, it will
suffice to obtain the analogue of (4.7), namely

P
a,b∈G̃

(
w(a, b),w′(a, b) ∈ H for some structural H < G̃

)
� |G̃|−3γ . (5.7)

As before, the next step is to invoke Proposition 4.6 for some sufficiently large N =
O(1). This gives a subvariety XN (k) of G(k) × G(k) of complexity O(1) such that
(x, y) ∈ XN whenever x, y both lie in the same structural subgroup of G̃, and conversely
x, y lie in a proper algebraic subgroup of G(k) of complexity O(1) whenever (x, y) ∈
XN (k). Thus it will suffice to show that

|6w,w′ ∩ (G̃× G̃)| � |G̃|
2−3γ ,

where
6w,w′ := {(a, b) ∈ G×G : (w(a, b),w′(a, b)) ∈ XN }.

By using Theorem 2.3 as in the preceding section, we know that 6w,w′(k) is a proper
subvariety of G(k) × G(k). As w,w′ have length O(n), we see that the complexity of
this variety is also O(n). Applying (5.3), we conclude that

|6w,w′(k) ∩ (G̃× G̃)| � nO(1)q−1/d
|G̃|2

and the claim follows from (5.1) and the logarithmic size n = O(log |G̃|) of n.
It remains to establish the subfield case (5.6). As in the previous section, it suffices to

show that
P
a,b∈G̃

(
γi(w(a, b)) ∈ Fq ′ for all 1 ≤ i ≤ m

)
� |G̃|−3γ (5.8)

for all proper subfields Fq ′ of Fq and words w ∈ Wn,2 with w(e1, e2) 6= 1. Using the
Schwartz–Zippel type estimate (5.3) as in the previous section, we see that

P
a,b∈G̃

(
γi(w(a, b)) = xi

)
� nO(1)q−1/d ,

whenever 1 ≤ i ≤ m and xi ∈ F(q ′)d \ γi(1). Also, since G cannot consist entirely of
unipotent elements, the argument from the preceding section also gives

P
a,b∈G̃

(
(w(a, b)− 1)m = 0

)
� nO(1)q−1/d ,

and so we can bound the left-hand side of (5.8) by O(nO(1)q ′q−1/d).
We now split into several cases, depending on the value of the twist order d . We first

consider the easiest case, namely the untwisted case when d is equal to 1. Since q ′ ≤ q1/2,
the claim then follows from (5.1) by choosing c0 and γ small enough.
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Now suppose that G is twisted, but is not a triality group 3D4(q), so that d is equal
to 2. Then the above arguments give the claim (5.6) in this case so long as we restrict
attention to subfield subgroups H associated to subfields Fq ′ of index three or greater in
Fq , so that q ′ ≤ q1/3. This leaves the subfield subgroups associated to a subfield Fq1/2 of
index 2. Fortunately, in those cases, the subfield subgroups turn out to also be structural
subgroups, and thus can be treated by (5.5):

Lemma 5.6. If G = 2D(q) is a twisted group that is not a triality group, and Fq ′ is a
subfield of Fq of index 2, then G̃ ∩ G(Fq ′) is contained in a proper subvariety of G of
complexity O(1). In particular, every subfield subgroup of G̃ associated to F′ is also a
structural subgroup.
Proof. As q = (q̃)2 is a perfect square, G cannot be a Suzuki–Ree group, thus the only
remaining possibilities are Steinberg groups with d = 2 and D = Ar , Dr , or E6. In these
cases, the field automorphism τ : Fq → Fq is the Frobenius map x 7→ x q̃ that fixes Fq̃ .
In particular, G(Fq̃) is fixed by τ ; since G̃ is fixed by ρτ , we conclude that G̃ ∩G(Fq̃) is
fixed by the graph automorphism ρ, thus we have G̃ ∩ G(Fq̃) ⊂ G(k)ρ , where G(k)ρ is
the subvariety of G(k) fixed by ρ. Since we are in the simply laced case D = Ar ,Dr , E6,
the roots all have the same length, and the action on ρ can be defined on G(k) for any
field k as an algebraic map of complexity O(1); see [C, 12.2]. As ρ is non-trivial, we
conclude that G(k)ρ is a proper subvariety of G(k) of complexity O(1), and the claim
follows. ut

This concludes the proof of (5.6) in the case when G is twisted but not a triality group.
The triality group case G = 3D4(q) does not seem to be fully treatable by the above
arguments, and we will present this case separately using an ad hoc argument in Section 7.

6. Schwartz–Zippel estimates

In this section we establish the Schwartz–Zippel bounds in Proposition 5.4. We already
proved instances of this proposition in the Ar(q) case (see Lemma 4.3) and the Suzuki
case (see [BGT2, Lemma 4.2]). We prove here the general case. Once again a suitable
parameterisation of the big Bruhat cell G will be key to the proof.

Let d ∈ {1, 2, 3} and k an algebraically closed field of characteristic p. As above q
denotes a power of p.

Definition 6.1 (Schwartz–Zippel property). Let V be an affine variety over k of com-
plexity O(1), and let A be a finite subset of V . We say that (A, V ) has the Schwartz–
Zippel property (with respect to q and with constant c > 0) if

|{a ∈ A : P(a) = 0}| ≤ cDq−1/d
|A|

whenever P is a polynomial on V of degree D that does not vanish identically on V .

The constant c > 0 will be allowed to depend on the complexity of V , but not on q. Our
task is thus to show that (G̃,G) and (G̃× G̃,G×G) have the Schwartz–Zippel property
with respect to all q and for some fixed constant c > 0 independent of q. To this end,
we will rely frequently on the following simple facts that will allow us to reduce the task
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of verifying the Schwartz–Zippel property for a complicated pair (A, V ) to simpler pairs
(A′, V ′). In the lemma below we fix q, keeping in mind that the constants c > 0 from the
above definition are not allowed to depend on q.

Lemma 6.2 (Basic facts about the Schwartz–Zippel property).

(i) If (A1, V1) and (A2, V2) have the Schwartz–Zippel property, then so does (A1×A2,

V1 × V2) (with slightly worse constants c).
(ii) Let Q = Q1/Q2 : V → W be a rational map between affine varieties with dense

image, whereQ1,Q2 are polynomials of degreeO(1)withQ2 never vanishing on V ,
and letA be a finite subset of V . Suppose that all the preimages {a ∈ A : Q(a) = b}
for b ∈ Q(A) have the same cardinality. Then if (A, V ) has the Schwartz–Zippel
property, (Q(A),W) does also.

(iii) Suppose that V is a Zariski-dense subvariety of W , B is a finite subset of W , and A
is a subset of B∩V with |B \A| � q−1/d

|B|. Then (A, V ) has the Schwartz–Zippel
property if and only if (B,W) has the Schwartz–Zippel property.

Proof. Claim (i) follows by repeating the derivation of (5.3) from (5.2) in the proof of
Lemma 4.3. Indeed, if P is a polynomial of degree at most D that does not vanish on
V1 × V2, then we have v1 ∈ V1, v2 ∈ V2 for which P(v1, v2) 6= 0. As (A1, V1) has the
Schwartz–Zippel property, we see that

|{a1 ∈ A1 : P(a1, v2) = 0}| � Dq−1/d
|V1|,

while for any a1 ∈ A1 with P(a1, v2) 6= 0, we see from the Schwartz–Zippel property of
(A2, V2) that

|{a2 ∈ A2 : P(a1, a2) = 0}| � Dq−1/d
|V2|.

Summing over a1 ∈ A1, we obtain the claim.
To prove (ii), let P be a polynomial on W of degree at most D that does not vanish

identically onW , and hence on the dense subsetQ(V ). Then P ◦Q takes the form R/Ql
2

for some polynomial R on V of degree O(D) that does not vanish identically on V , and
some natural number l. If (A, V ) has the Schwartz–Zippel property, we deduce that

|{a ∈ A : P(Q(a)) = 0}| = |{a ∈ A : R(a) = 0}| � Dq−1/d
|A|.

Since all the preimages of Q(A) in A have the same cardinality, we conclude that

|{b ∈ Q(A) : P(b) = 0}| � Dq−1/d
|Q(A)|

as required.
To prove (iii), suppose first that (A, V ) has the Schwartz–Zippel property, and P is

a polynomial of degree D on W that does not vanish identically on W . Then P does not
vanish identically on V either, as V is Zariski-dense. We deduce that

|{a ∈ A : P(a) = 0}| � Dq−1/d
|A|.

Since |B \ A| � q−1/d
|B|, we conclude that

|{b ∈ B : P(b) = 0}| � Dq−1/d
|B|

as required. The converse implication is established similarly. ut
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By Lemma 6.2(i) we see that to prove Proposition 5.4, we only need to show that (G̃,G)
has the Schwartz–Zippel property.

The claim is trivial when the field order q is bounded, so we may assume that q is
sufficiently large (which will allow us to avoid some degenerate cases when q is small).

As in the case of the special linear groups G̃ = SLm(Fq) considered in Section 4,
the main strategy here is to exploit the Bruhat decomposition to parameterise (the large
Bruhat cell of) G̃ as rational combinations of a bounded number of coordinates in “flat”
domains such as Fq or F×q , for which the (ordinary) Schwartz–Zippel lemma may be
easily applied. As it turns out, the argument from Section 4 may be adapted without
difficulty for the untwisted groupsG = D(q), and also works with only a small amount of
modification for the Steinberg groups 2Ar(q̃

2), 2Dr(q̃
2), 2E6(q̃

2), 3D4(q̃
3) and Suzuki–

Ree groups 2B2(22k+1), 2F4(22k+1), 2G2(32k+1), the main difference in the latter cases
being that the coordinates either essentially take values in Fq̃ rather than Fq , or involve
polynomials that are “twisted” by the Frobenius map x 7→ x q̃ (in the Steinberg cases) or
x 7→ xθ (in the Suzuki–Ree cases). Fortunately, these twisted polynomials can still be
handled14 by the basic Schwartz–Zippel estimate in Lemma 4.2, at the cost of reducing
the gain ofO(1/q) toO(1/q̃) = O(q−1/d) orO(θ/q) = O(q−1/d). This type of strategy
was already used for the Suzuki groups 2B2(22k+1) in [BGT2], and it turns out that the
other Suzuki–Ree groups 2F4(22k+1), 2G2(32k+1) can be handled in a similar fashion.
In all of these cases we will rely heavily on the parameterisations of G̃ given in the text
of Carter [C], together with many uses of Lemma 6.2 to reduce to working with “one-
parameter” subgroups of G̃ or G.

It is possible to treat all three cases (untwisted, Steinberg, and Suzuki–Ree) of Propo-
sition 5.4 in a unified manner, but for pedagogical purposes we shall treat these cases in
increasing order of difficulty.

The untwisted case. We begin with the untwisted case d = 1, where we may basi-
cally adapt the arguments for the special linear group from Section 4. Here we have
G̃ = G(Fq), with G a Chevalley group. As such (see e.g. [C, Chapters 4-8]), we can
find algebraic subgroups B,N,T,U of G, in which the maximal torus T is abelian, N
contains T as a finite index normal subgroup, U is a group of unipotent matrices that are
normalised by T, and B = TU = UT is the Borel subgroup. The finite group W := N/T
is known as the Weyl group of G, and is of order O(1). We then have the decomposition

G =
⊔

w∈W
UTnwU−w

where for each w ∈ W , nw is an (arbitrarily chosen) representative of w in N, and U−w is
a certain algebraic subgroup of U (normalised by T) which we will discuss in more detail
later, with every g ∈ G having a unique decomposition

g = u1hnwu

14 In principle, we could invoke the results of Hrushovski [Hr] here as was done in [GHSSV]; the
model-theoretic arguments in that paper do not seem to readily give bounds that are linear (or at
least polynomial) in the degree D, which is essential for our application. In any event, the twisted
polynomials we are reduced to studying are simple enough that they can be easily controlled by
hand.
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with u1 ∈ U, h ∈ T, w ∈ W , u ∈ U−w ; see [C, Corollary 8.4.4]. (Note that in [C], the
maximal torus is denoted H instead of T.) This decomposition descends to the field Fq ,
so that

G(Fq) =
⊔

w∈W
U(Fq)T(Fq)nwU−w(Fq).

The unipotent group U can be decomposed further. There is a finite totally ordered
set 8+ of cardinality O(1) (the set of positive roots) associated to G, and for each ele-
ment α in 8+, there is an injective algebraic homomorphism xα : k→ G(k) (where k is
viewed as an additive group) of complexityO(1)which is also defined over Fq . The exact
construction of8+ and the xα will not be important to us, but see [C, 5.1] for details. The
image of xα is thus a one-dimensional algebraic subgroup of G which we will denote Xα .
The group U can then be parameterised as

U =
∏
α∈8+

Xα (6.1)

where the product is taken in increasing order, and furthermore each element u of U has
a unique representation in the form

u =
∏
α∈8+

Xα(uα)

with uα ∈ k; see [C, Theorem 5.3.3]. This factorisation descends to Fq , and so if
u ∈ U(Fq) then the coordinates uα lie in Fq , and conversely. In particular, we see that
|U(Fq)| = q |8

+
|.

For each word w ∈ W , the group U−w mentioned earlier can be factorised as

U−w :=
∏
α∈9w

Xα

for some subset 9w of 8+; see [C, 8.4]. In particular, |U−w(Fq)| = q |9w|. There is a
unique element w0 of W , which we call the long word with the property that 9w = 8

+;
see [C, Proposition 2.2.6]. In particular, we have |U−w(Fq)| = O(q−1

|U(Fq)|) for all
w 6= w0, and so the large Bruhat cell B(Fq)nw0B(Fq) = U(Fq)T(Fq)nw0U(Fq) occupies
most of G̃:

|G̃| = (1+O(1/q))|B(Fq)nw0B(Fq)|. (6.2)

This of course generalises (4.1). A similar argument shows that Bnw0B is Zariski-dense
in G. Thus, by Lemma 6.2(iii), to show that (G̃,G) has the Schwartz–Zippel property, it
suffices to establish the Schwartz–Zippel property for the pair

(B(Fq)nw0B(Fq),Bnw0B) = (U(Fq)T(Fq)nw0U(Fq),UTnw0U).

Composing with the map (u1, h, u) 7→ u1hnw0u, which is a polynomial map of degree
O(1), it suffices by Lemma 6.2(ii) to show that the pair

(U(Fq)× T(Fq)× U(Fq),U× T× U)
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has the Schwartz–Zippel property. By Lemma 6.2(i), it suffices to show that (U(Fq),U)
and (T(Fq),T) have the Schwartz–Zippel property.

By using the factorisation (6.1) to parameterise U and U(Fq) (using polynomial
maps of degree O(1)) and Lemma 6.2(ii), we see that the Schwartz–Zippel property for
(U(Fq),U) will follow from the Schwartz–Zippel property for (F8+q ,k8+); but this lat-
ter property follows from Lemma 4.2. Now we turn to the Schwartz–Zippel property for
(T(Fq),T). The abelian algebraic group T is generated by a family (Hα)α∈5 of commut-
ing one-parameter subgroups

Hα(k) := {hα(λ) : λ ∈ k×}

where hα : k×→ G(k) is a homomorphism (viewing k× as a multiplicative group), with
hα(t) being a polynomial of degree O(1) divided by a monomial in t , also of degree
O(1), and α ranges over a set 5 of cardinality O(1) (the set of fundamental roots). The
exact construction of hα and 5 will not be important to us, but see [C, 7.1] for details.
The factorisation can be localised to Fq , thus

T(Fq) =
∏
α∈5

Hα(Fq) with Hα(Fq) := {hα(λ) : λ ∈ F×q }. (6.3)

The product decomposition in (6.3) is not unique, but as all groups here are abelian,
every element in T(Fq) has the same number of representations as a product of elements
in Hα(Fq). Thus by Lemma 6.2(i), (ii), to establish the Schwartz–Zippel property for
(T(Fq),T), it suffices to do so for each (Hα(Fq),Hα) with α ∈ 5. By another appli-
cation15 of Lemma 6.2(ii), it suffices to show that (F×q ,k×) has the Schwartz–Zippel
property; by Lemma 6.2(iii), it suffices to establish this property for (Fq ,k). But this
again follows from Lemma 4.2.

The Steinberg case. Now we adapt the previous argument to establish (5.2) in the case
of Steinberg groups. The arguments here will work to some extent for the Suzuki–Ree
groups as well; we will indicate the point where the two cases diverge.

As in the untwisted case, the algebraic group G contains a Borel subgroup B, a maxi-
mal torus T, a unipotent group U, and a group N containing T as a finite index subgroup.
In the twisted case we also have the automorphism σ : G(Fq) → G(Fq). We then form
the groups

U1
:= {u ∈ U(Fq) : σ(u) = u}, T 1

:= T(Fq) ∩ G̃,

N1
:= N(Fq) ∩ G̃, W 1

:= N1/T 1.

Then W 1 can be shown to be a finite group of size O(1) (see [C, 13.3]). As in the un-
twisted case, we have a decomposition

G̃ =
⊔

w∈W 1

U1T 1nw(U
−
w )

1

15 Strictly speaking, Lemma 6.2(ii) does not quite apply here because hα(λ) is rational instead of
polynomial, with a denominator that is a monomial in λ of degree O(1), but the proof of Lemma
6.2(ii) still applies after clearing denominators, since λ is non-vanishing on F×q .
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where (U−w )
1 is a certain subgroup of U1, where nw is an (arbitrarily chosen) representa-

tive of w in N , and with every g ∈ G having a unique representation of the form

g = u1hnwu

with u1 ∈ U
1, h ∈ T 1, w ∈ W 1, and u ∈ (U−w )

1; see16 [C, Proposition 13.5.3].
As before, the unipotent group U1 can be decomposed further. The set 8+ can be

partitioned in a certain way into a collection 6 of disjoint subsets S of 8+ in such a way
that

U1
=

∏
S∈6

X1
S (6.4)

for certain commuting abelian subgroups X1
S of

∏
α∈S Xα(Fq), with each element of U1

having a unique representation as such a product; furthermore, we have

(U−w )
1
=

∏
S∈6w

X1
S

for some subset of 6w, with the long word w0 (which can be viewed as an element ofW1
as well as W ) being the unique element of W1 for which 6w0 = 6; see [C, Proposition
13.6.1]. The groups X1

S are in fact the fixed points of σ in
∏
α∈S Xα(Fq) (see [C, Lemma

13.5.1]), and are described explicitly in [C, Proposition 13.6.3]. One consequence of this
description is that

|X1
S | � q1/d

for each S ∈ 6. Hence we see that

|(U−w )
1
| � q−1/d

|U1
|

for all w 6= w0, so as before the large Bruhat cell U1T 1nw0U
1 occupies most of G̃:

|G̃| = (1+O(q−1/d))|U1T 1nw0U
1
|. (6.5)

To show the Schwartz–Zippel property for (G̃,G), it thus suffices by Lemma 6.2(iii) (and
the Zariski-density of UTnw0U in G, as noted in the previous section) to establish this
property for the pair

(U1T 1nw0U
1,UTnw0U).

Using Lemma 6.2(i), (ii) as in the untwisted case, it suffices to establish this property for
(U1,U) and (T 1,T).

We begin with (U1,U). Splitting U1 using (6.4), and using the corresponding decom-
position

U =
∏
S∈6

∏
α∈S

Xα

16 Recall from Remark 5.3 that the groups defined in [C] agree with the ones defined here for all
but finitely many exceptions, which we may ignore as our results are asymptotic in nature.
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of U, we see from Lemma 6.2(i), (ii) that it suffices to establish the Schwartz–Zippel
property for the pairs (

X1
S,
∏
α∈S

Xα(k)
)

for each S ∈ 6.
Thus far our arguments have made no distinction between the Steinberg and Suzuki–

Ree cases. Now we specialise to the Steinberg case (so q = q̃d for some d = 2, 3 and
τ(x) := x q̃ ) in order to describe the sets X1

S more explicitly. By [C, Proposition 13.6.3]
(or [GLS, Theorem 2.4.1]), one of the following four cases holds:

(i) S = {α}, and X1
S = {xα(t) : t ∈ Fq̃}.

(ii) S = {α, α}, d = 2 and X1
S = {xα(t)xα(t

q̃) : t ∈ Fq}.
(iii) S = {α, α, α}, d = 3, and X1

S = {xα(t)xα(t
q̃)xα(t

q̃2
)}.

(iv) S = {α, ρ(α), α + ρ(α)}, d = 2, and

X1
S = {xα(t)xρ(α)(t

q̃)xα+ρ(α)(u) : t, u ∈ Fq , u+ uq̃ = −Nα,ρ(α)t t q̃},

where Nα,ρ(α) is an integer.

In case (i), we see from Lemma 6.2(ii) that it suffices to establish the Schwartz–Zippel
property for (Fq̃ ,k); but this follows from Lemma 4.2.

In cases (ii) and (iii), we again apply Lemma 6.2(ii) and reduce the task to establishing
the Schwartz–Zippel property for

({(t, t q̃) : t ∈ Fq},k2) (6.6)

in the d = 2 case and
({(t, t q̃ , t q̃

2
) : t ∈ Fq},k3) (6.7)

in the d = 3 case. We will just establish (6.7), as (6.6) is similar. Let P be a non-vanishing
polynomial of degree D on k3. Our task is to show that

|{t ∈ Fq : P(t, t q̃ , t q̃
2
) = 0}| � Dq̃−1q. (6.8)

IfD ≥ q̃ then the bound is trivial, so suppose thatD < q̃. Then as P is non-vanishing and
of degree D, we see that P(t, t q̃ , t q̃

2
), viewed as a polynomial in t , is also non-vanishing

and of degree at most Dq̃2
= Dq̃−1q. The claim then follows from Lemma 4.2.

Finally, in case (iv), we have d = 2, so that q = q̃2. We abbreviate t q̃ as t , and
Nα,ρ(α) as N . We again apply Lemma 6.2(ii) and reduce to establishing the Schwartz–
Zippel property for

({(t, t, u) : t, u ∈ Fq , u+ u = −Ntt},k3).

If the characteristic p is not 2, we can reparameterise the triple (t, t, u) as

(t, t, u) = (a + ib, a − ib,−N(a2
− ib2)/2+ ic)
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for a, b, c ∈ Fq̃ , where i is any non-zero element of Fq with i = −i. By Lemma 6.2(ii),
we reduce to establishing the Schwartz–Zippel property for (F3

q̃
,k3); but this follows from

Lemma 4.2. If instead the characteristic p is 2, we have the alternate parameterisation

(t, t, u) = (a + ωb, a + ωb + b,N(a2
+ ab + ωωb2)+ c)

for a, b, c ∈ Fq̃ , where ω is an element of Fq with ω+ω = 1, and the claim follows from
Lemmas 6.2(ii) and 4.2 as before. This concludes the demonstration of the Schwartz–
Zippel property for (U1,U) in the Steinberg case.

Finally, we establish the Schwartz–Zippel property for (T 1,T). We recall that the
abelian group T is generated by the commuting subgroups

Hα(k) := {hα(λ) : λ ∈ k×}

for α ∈ 5, for some rational maps hα : k× → G(k) with hα(t) a polynomial of de-
greeO(1) divided by a monomial in t of degreeO(1), where5 is a finite set of cardinal-
ity O(1).

It turns out that the Dynkin graph automorphism ρ acts on 5 as a permutation of
order d; see [C, 13.7]. Let 0 be the orbits of ρ on 5, thus each element J of 0 is either a
singleton {α}, a pair {α, α)} (if d = 2), or a triplet {α, α, α} if d = 3. One can then show
that T 1 is generated by the groups H 1

J for J ∈ 0, where

H 1
{α} := {hα(t) : t ∈ F×

q̃
},

H 1
{α,α} := {hα(t)hα(t

q̃) : t ∈ F×q },

H 1
{α,α,α} := {hα(t)hα(t

q̃)hα(t
q̃2
) : t ∈ F×q };

see (the proof of) [C, Theorem 13.7.2] or [GLS, Theorem 2.4.7]. Note that each H 1
J is a

subgroup of the group HJ generated by the Hα for α ∈ J . By Lemma 6.2(i), (ii), we thus
see that to establish the Schwartz–Zippel property for (T 1,T), it suffices to do so for the
pairs (H J

1 ,HJ ) for each J ∈ 0. By Lemma 6.2(ii) (and clearing denominators, as in the
previous section), it suffices to establish the Schwartz–Zippel property for the pairs

(F×
q̃
,k×),

({(t, t q̃) : t ∈ F×q }, (k
×)2) for d = 2,

({(t, t q̃ , t q̃
2
) : t ∈ F×q }, (k

×)3) for d = 3.

But these follow from Lemma 4.2, (6.6), (6.7), and Lemma 6.2(iii).

The Suzuki–Ree case. Now we establish (5.2) for Suzuki–Ree groups, thus G =
2D(pθ2) for some p = 2, 3 and some θ = pk (so in particular θ is comparable to
q−1/d ), with the field automorphism τ given by the Frobenius map x 7→ xθ . By the ar-
guments given for Steinberg groups, it suffices to establish the Schwartz–Zippel property
for (U1,U) and (T 1,T).
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We begin again with (U1,U). By the arguments given for Steinberg groups, it suf-
fices to establish the Schwartz–Zippel property for the pairs (X1

S,
∏
α∈S Xα(k)) for each

S ∈ 6. By [C, Proposition 13.6.3] or [GLS, Theorem 2.4.5], one of the following three
cases holds:

(i) S = {α, α} has cardinality 2, and X1
S = {xα(t

θ )xα(t) : t ∈ Fq}.
(ii) S = {a, b, a + b, 2a + b} has cardinality 4, and

X1
S = {xa(t

θ )xb(t)xa+b(t
θ+1
+ u)x2a+b(u

2θ ) : t, u ∈ Fq}.

(iii) S = {a, b, a + b, 2a + b, 3a + b, 3a + 2b} has cardinality 6, and

X1
S = {xa(t

θ )xb(t)xa+b(t
θ+1
+ uθ )

× x2a+b(t
2θ+1
+ vθ )x3a+b(u)x3a+2b(v) : t, u, v ∈ Fq}.

By Lemma 6.2(ii), it suffices to establish the Schwartz–Zippel property for the pairs

({(tθ , t) : t ∈ Fq},k), (6.9)

({(tθ , t, tθ+1
+ u, u2θ ) : t, u ∈ Fq},k4), (6.10)

({(tθ , t, tθ+1
+ uθ , t2θ+1

+ vθ , u, v) : t, u ∈ Fq},k6). (6.11)

The Schwartz–Zippel property for (6.9) is proven analogously to (6.6) (or (6.7)) and is
omitted. To handle (6.10), we first parameterise k4 as (x, y, xy + z,w) and reduce (by
Lemma 6.2(ii)) to showing the Schwartz–Zippel property for

({(tθ , t, u, u2θ ) : t, u ∈ Fq},k4).

Let P be a polynomial of degree at mostD that does not vanish on k4; our task is to show
that

|{(t, u) ∈ F2
q : P(t

θ , t, u, u2θ ) = 0}| � Dq−1/2q2.

This claim is trivial if D ≥ θ/10, so suppose that D < θ/10. Then P(tθ , t, u, u2θ )

is a polynomial function of t, u of degree O(Dθ) = O(Dq1/2) that does not vanish
identically, and the claim follows from Lemma 4.2.

In a similar fashion, after parameterising k6 as (x, y, xy + z, x2y + w, u, v) and
applying Lemma 6.2(ii), we see that to establish the Schwartz–Zippel property for (6.11)
it suffices to do so for

({(tθ , t, uθ , vθ , u, v) : t, u ∈ Fq},k6),

which can be done by the same sort of argument used for (6.10).
Finally, we need to establish the Schwartz–Zippel property for (T 1,T). Recall that T

is generated by Hα for α ∈ 5. In the Suzuki–Ree cases, it turns out that 5 splits into
pairs {α, α} (consisting of one long root and one short root), and T 1 is generated by the
finite abelian groups

{hα(t)hα(t
λ(α)θ ) : t ∈ F×q }
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as {α, α} range over these pairs, where λ(α) is either 1 or p (depending on whether the
root α is short or long); see [C, Theorem 13.7.4] or [GLS, Theorem 2.4.7]. By Lemma
6.2(ii) (and clearing denominators), it thus suffices to establish the Schwartz–Zippel prop-
erty for the pairs

({(t, tθ ) : t ∈ F×q }, (k
×)2) and ({(t, tpθ ) : t ∈ F×q }, (k

×)2).

But this can be proven by the same methods used for (6.9) (or (6.6), (6.7)).

7. The triality case

In this section we complete the proof of Theorem 1.2 in the case when G is a Tits–
Steinberg triality group G = 3D4(q), where q = q̃3.

We will use the mother group G = SO8, which of course has Dynkin diagram D4.
Rather than use the adjoint representation, we will use the tautological representation

G ⊂ GL8 ⊂ Mat8

(see e.g. [C, §11.3] for the details of this tautological representation). In particular, G̃ is
now viewed as a subgroup of GL8(Fq). For sake of concreteness, one could take the
quadratic form defining SO8 to be x1x5+ x2x6+ x3x7+ x4x8, so that the Lie algebra so8
consists of those 8× 8 matrices of the form(

A S1
S2 −AT

)
where A, S1, S2 are 4× 4 matrices with S1, S2 skew-symmetric.

An inspection of the arguments of Section 5 (using the d = 3 case of the Schwartz–
Zippel bounds in Proposition 5.4) reveals that one only needs to establish the subfield
non-concentration bound (5.6), and furthermore that this bound is already established by
those arguments in the event thatH comes from a subfield Fq ′ of index greater than three.
Thus it only remains to control the subfields of index two and three.

By repeating the proof of Lemma 5.6, we have

Lemma 7.1. LetG = 3D4(q) be a triality group. If Fq ′ is a subfield of Fq of index 3 (i.e.
q ′3 = q), then G̃ ∩G(Fq ′) is contained in a proper subvariety of G of complexity O(1).

Thus we can dispose of the contribution of subfields Fq ′ of index three by using the
structural bound (5.5) that has already been established. This leaves only the subfields
Fq ′ of index two, thus we have

q = q̃3
= (q ′)2

and so we can find a power q0 of the characteristic p such that

q = q6
0 , q̃ = q2

0 , q ′ = q3
0 . (7.1)

For any x ∈ Mat8(k), let γ1(x), . . . , γ8(x) ∈ k be the coefficients of the characteristic
polynomial of x. Let X ⊂ GL8(k) denote the set of matrices x ∈ GL8(k) such that
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γ1(x), . . . , γ8(x) ∈ Fq ′ , where γ1(x) = tr(x), γ2(x), . . . , γ7(x), γ8(x) = det(x) are the
coefficients of the characteristic polynomial of x. Then X contains every subfield group
of G̃ associated to Fq ′ , and so it will suffice to show that

P
a,b∈G̃;w∈Wn,2

(w(a, b) ∈ X)� |G̃|−3γ

where n = 2bc0 log |G̃|c for some sufficiently small c0 > 0.
The first step is to pass from G̃ to the large Bruhat cell U1T 1nw0U

1 that was intro-
duced in Section 6. In view of (6.5), it will suffice to show that

Pa,b∈U1T 1nw0U
1;w∈Wn,2

(w(a, b) ∈ X)� |G̃|−3γ .

We will view U1T 1nw0U
1 as a “sufficiently Zariski-dense” finite subset of UTnw0U.

Now we divide the words w ∈ Wn,2 into two categories. Let us say that w is degenerate
if w(a, b) ∈ X for all a, b ∈ U1T 1nw0U

1, and non-degenerate otherwise.
We first dispose of the degenerate case. We will need two key lemmas. The first shows

that G̃ contains a simpler subgroupH which can be used as a proxy for G̃ for the purposes
of excluding degeneracy:

Lemma 7.2 (Good embedded subgroup). There exists a subgroup H of G̃ with the fol-
lowing properties:

(i) H is isomorphic to the central product SL2(Fq) ◦ SL2(Fq̃), i.e. the quotient of the
direct product SL2(Fq) × SL2(Fq̃) by the diagonally embedded common centre of
SL2(Fq) and SL2(Fq̃) (which is trivial in even characteristic and is the two-element
group {(1, 1), (−1,−1)} in odd characteristic).

(ii) H has large intersection with the Bruhat cell U1T 1nw0U
1 in the sense that

|H \ U1T 1nw0U
1
| ≤ |H |/2. (7.2)

(iii) H mostly avoids X in the sense that

|H ∩X| � |H |1−c (7.3)

for some absolute constant c > 0.

Proof. We use an explicit description of the root system for D4. Namely, we can take the
set 8 of roots to be the set

8 := {±ei ± ej : 1 ≤ i < j ≤ 4}

in R4, with e1, . . . , e4 being the standard basis for R4, with fundamental roots

5 := {e1 − e2, e2 − e3, e3 − e4, e3 + e4};

see e.g. [C, 3.6]. We can take the triality map ρ to be a map that cyclically permutes the
three fundamental roots e1− e2, e3− e4, e3+ e4 in that order (e.g. ρ(e1− e2) = e3− e4)
while leaving e2 − e3 unchanged. The orbits of this map on 8 include the singleton orbit
{α} with α := e2 − e3 and the tripleton orbit {β, β, β} with β := e2 + e3, β := ρ(β) =
e1 + e4, β := ρ2(β) = e1 − e4.
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To each root a ∈ 8we have a one-parameter root group Xa(k) = {xa(t) : t ∈ k}, with
two root groups Xa, Xb commuting if a + b is neither zero nor a root (see [C, Theorem
4.2.1]). Using the particular representation of SO8 described above, we have the explicit
formulae

xei−ej (t) = 1+ t
(
eij 0
0 −eji

)
,

xej−ei (t) = 1+ t
(
eji 0
0 −eij

)
,

xei+ej (t) = 1+ t
(

0 eij − eji
0 0

)
,

x−ei−ej (t) = 1+ t
(

0 0
eji − eij 0

)
,

for 1 ≤ i < j ≤ 4, where eij is the elementary 4 × 4 matrix with an entry of 1 at the
(i, j) position and zero elsewhere; see [C, 11.2].

If we let Sa be the group generated by Xa and X−a , then Sa is isomorphic to SL2
(see [C, Chapter 6]). Observe that ±a± b is neither zero nor a root when a, b are distinct
elements of {α, β, β, β}. Thus Sα , Sβ , Sβ , and S

β
all commute with each other.

The group G̃ contains the subgroups

X1
±α := {x±α(t) : t ∈ Fq̃}, X1

±{β,β,β}
:= {x±β(t)x±β(t

q̃)x
±β
(t q̃

2
) : t ∈ Fq}

for either fixed choice of sign ±; see [C, Proposition 13.6.3]. Let S1
α be the subgroup

of G̃ generated by X1
±α , and similarly let S1

{β,β,β}
be the subgroup of G̃ generated by

X1
±{β,β,β}

. Then from the preceding discussion, S1
α is isomorphic to SL2(Fq̃) and S1

{β,β,β}

is isomorphic to SL2(Fq), and furthermore these two groups commute with each other,
and so can only intersect in their common centre, whose order C is 2 in odd characteristic
and 1 in even characteristic. Set H to be the group generated by both S1

α and S1
{β,β,β}

;

then H is a central product of SL2(Fq) and SL2(Fq̃).
If q is even, then H is a direct product of the two subgroups. If q is odd, then H is

contained in the centraliser of an involution z, namely the non-trivial central element of
H (in the above concrete representation, one has z = diag(1,−1,−1, 1, 1,−1,−1, 1)).
Moreover, it follows from [GLS, 4.5.1] thatH has index 2 in the centraliser. In particular,
[T 1
: H ∩ T 1

] = C where C is defined as above.
Now we verify (ii). From (i) we have

|H | = (1/C +O(1/q̃))q̃12,

so it will suffice to show that

|(H ∩ U1)(H ∩ T 1nw0)(H ∩ U
1)| = (1/C +O(1/q̃))q̃12.

The representative nw0 of w0 can be chosen17 to lie in H , so that

|H ∩ T 1nw0 | = |H ∩ T
1
| =

1
C
|T 1
|

17 For instance, we may take it to be the antidiagonal matrix with entries 1,−1,−1, 1, 1,−1,
−1, 1.
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and thus
|H ∩ T 1

| = (1/C +O(1/q̃))q̃4.

Since H ∩ U1 is a maximal unipotent subgroup of H , we have |H ∩ U1
| = qq̃ = q̃4,

giving the claim.
Now we verify (iii). Let π : SL2(Fq) × SL2(Fq̃) → H be the obvious surjective

homomorphism. It suffices to show that

|{(x, y) ∈ SL2(Fq)× SL2(Fq̃) : tr(π(x, y)) ∈ Fq ′}| � q−1/6
|SL2(Fq)| |SL2(Fq̃)|,

where we view π(x, y) as an element of Mat8(Fq) in order to take an eight-dimensional
trace. We claim that

tr(π(x, y)) = ab + aq̃aq̃
2

where a = tr(x) ∈ Fq is the two-dimensional trace of x, and similarly b = tr(y) ∈ Fq̃
is the two-dimensional trace of y. This follows by noting that the 8-dimensional rep-
resentation restricted to H is a direct sum of two irreducible 4-dimensional representa-
tions (which are precisely the eigenspaces of the central involution if q is odd), arising
from span(f2, f3, f6, f7) and span(f1, f4, f5, f8), where f1, . . . , f8 is the standard basis
for k8. The first irreducible composition factor is just the tensor product of the two natu-
ral two-dimensional representations of the SL2 factors. The other irreducible is the fixed
space of SL2(q̃) and is the tensor product of the two non-trivial Frobenius twists of the
natural two-dimensional module for SL2(q).

Observe that each trace a ∈ Fq is attained by O(q2) values of x, and each trace
b ∈ Fq̃ is similarly attained by O(q̃2) values of y. So it suffices to show that

|{(a, b) ∈ Fq × Fq̃ : ab + aq̃aq̃
2
∈ Fq ′}| � q−1/6qq̃.

We may delete the contribution of the case a = 0 as it is certainly acceptable. Now note
that as q̃ = q1/3 and q ′ = q1/2, any non-zero dilate of Fq̃ and any translate of Fq ′ can
meet in a set of size at most |Fq̃ ∩ Fq ′ | = q1/6. We thus see that for fixed non-zero a,
there are at most q1/6

= q−1/6q̃ choices of b ∈ Fq̃ for which ab + aq̃aq̃
2
∈ Fq ′ . The

claim follows. ut

Next, we need to show a version of Theorem 1.2 for H .

Lemma 7.3 (Expansion in a good subgroup). LetH := SL2(Fq)◦SL2(Fq̃), and let a, b
be chosen uniformly at random from H . Then with probability 1 − O(|H |−δ), {a, b} is
ε-expanding in H for some absolute constants ε, δ > 0.

Proof. This is a special case of Theorem 8.3 proved in the next section. Note that there
is no circular argument here, because none of the two simple factors of H are of the D4
type. ut

We can now deal with the degenerate case:
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Lemma 7.4. If n ≥ C1 log |H | for a sufficiently large absolute constant C1, then

Pw∈Wn,2(w degenerate)� |G̃|−3γ .

Proof. We may take q to be large. By Lemma 7.3 and (7.2), we may find a0, b0 ∈ H such
that {a0, b0} is ε-expanding in H for some absolute constant ε > 0 and a0, b0 both lie in
the Bruhat cell U1T 1nw0U

1. If we let µa0,b0 :=
1
4 (δa0 + δb0 + δa−1

0
+ δ

b−1
0
), then from

the rapid mixing formulation of expansion (as discussed in the introduction) we have the
uniform distribution

‖µ
(n)
a0,b0
− uH‖L∞(H) ≤ |H |−10

for any n ≥ C1 log |H |. and a sufficiently large absolute constant C1, where uH is the
uniform distribution of u. For such n, this bound and (7.3) imply the estimate

Pw∈Wn,2(w(a0, b0) ∈ X)� |H |
−c
� |G̃|−c

′

for some absolute constants c, c′ > 0, which clearly implies the required bound. ut

In view of the above lemma, to conclude the proof of Theorem 1.2 in the triality case it
suffices to show that

Pa,b∈U1T 1nw0U
1(w(a, b) ∈ X)� |G̃|

−3γ

for any non-degenerate word w ∈ Wn,2, and for n of the form 2bC2 log |G|c for some
sufficiently large C2.

Fix w. The condition that w(a, b) lies in X is equivalent to the eight equations

γj (w(a, b))
q ′
− γj (w(a, b)) = 0, j = 1, . . . , 8.

By assumption, at least one of these equations does not hold identically for a, b ∈
U1T 1nw0U

1. Let j ∈ {1, . . . , 8} be such that γj (w(a, b))q
′

− γj (w(a, b)) is not iden-
tically zero on U1T 1nw0U

1. It will then suffice to show that

Pa,b∈U1T 1nw0U
1
(
γj (w(a, b))

q ′
− γj (w(a, b)) = 0

)
� |G̃|−3γ .

As w has length at most n, we know that γj (w(a, b)) is a polynomial combination
(over Fq ) of a, b of degree O(n). Unfortunately, the operation of raising to the power q ′

increases this degree to the unacceptably high level of O(nq ′). To get around this diffi-
culty we will reparameterise in terms of a smaller field Fq0 than Fq in order to linearise
the Frobenius map x 7→ xq

′

.
We turn to the details. Recall from the treatment of the Steinberg groups in Section 6

that all the products in U1T 1nw0U
1 are distinct. Also, we can express U1 as the product

of O(1) groups XS , each of which takes the form

{xα(t) : t ∈ Fq̃} or {xα(t)xα(t q̃)xα(t
q̃2
) : t ∈ Fq},
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and all the products in this decomposition of U1 are distinct, and the xα are polynomial
maps of degree O(1). Similarly, the finite abelian group T 1 is generated by groups H 1

J ,
each of which takes the form

{hα(t) : t ∈ F×
q̃
} or {hα(t)hα(t q̃)hα(t

q̃2
) : t ∈ F×q }

where the hα are rational maps of degree O(1) whose denominators are monomials. The
maps t 7→ t q̃ , t 7→ t q̃

2
are of high degree when viewed as polynomials over Fq , but if

one instead views Fq as a three-dimensional vector space over Fq̃ (thus Fq ≡ F3
q̃

and

F×q ≡ F3
q̃
\ {0}), then these maps become linear over Fq̃ . Using the above factorisations,

we can thus parameterise U1T 1nw0U
1 in terms ofO(1) coordinates, drawn from Fq̃ , F×

q̃
,

and F3
q̃
\ {0}, using rational maps whose numerators and denominators are polynomials

of degree O(1), with the denominators non-vanishing on the domain of the parameters.
This parameterisation is not quite unique (because the products of elements from H 1

J can
collide), but each element ofU1T 1nw0U

1 has the same number of representations by such
a parameterisation. Taking products, we see that we can parameterise an element (a, b)
of U1T 1nw0U

1
×U1T 1nw0U

1 by O(1) coordinates from Fq̃ , F×
q̃

, and F3
q̃
\ {0} using the

above rational maps, and with each (a, b) having the same number of representations.
From (7.1) we can view Fq̃ as a two-dimensional vector space over Fq0 , so that we

can view the above parameterisation of (a, b) ∈ U1T 1nw0U
1
× U1T 1nw0U

1 as being
in terms of a bounded number s1, . . . , sl of variables in Fq0 , omitting some coordinate
hyperplanes associated to the missing origin in F×

q̃
or F3

q̃
\ {0}. Let E ⊂ Flq0

be the
domain of the parameters (s1, . . . , sl) (thus E is Flq0

with some coordinate hyperplanes
removed). Observe that the Frobenius map x 7→ xq

′

on Fq , while having large degree
when viewed as a polynomial over Fq , becomes linear over Fq0 when Fq is viewed as a
(six-dimensional) vector space over Fq0 . From this, we see that the quantity

γj (w(a, b))
q ′
− γj (w(a, b))

is a rational function P(s1, . . . , sl)/Q(s1, . . . , sl) of the parameters s1, . . . , sl , with nu-
merator P and denominator Q being polynomials of degree O(n), and the denominator
Q non-vanishing on E. It will thus suffice to show that

P(s1,...,sl)∈E(P (s1, . . . , sl) = 0)� |G̃|−3γ . (7.4)

(Here we use the fact that each (a, b) is parameterised by the same number of tuples
(s1, . . . , sl).) On the other hand, since γj (w(a, b))q

′

− γj (w(a, b)) is non-vanishing for
at least one (a, b) ∈ γj (w(a, b))q

′

− γj (w(a, b)), P is non-vanishing on E. Applying
Lemma 4.2 (and noting that |E| is comparable to q l0) we conclude that

P(s1,...,sl)∈E(P (s1, . . . , sl) = 0)� nq−1
0 ,

and the claim (7.4) follows from (5.1) and the choice of n. This concludes the proof of
Theorem 1.2 in the triality group case.
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8. Products of finite simple groups

In this last section, we extend the main result of the paper to products of a bounded
number of finite simple (or quasisimple) groups of Lie type of bounded rank. Here, by
product we mean either a direct product, or an almost direct product, that is, a quotient
of a direct product by a central subgroup. In particular, this includes the central product
SL2(Fq)◦SL2(Fq̃) of the quasisimple groups SL2(Fq),SL2(Fq̃) that appears in Section 7.

The Bourgain–Gamburd method applies here again, but needs to be appropriately
modified. For instance, the product theorem (Proposition 3.3) above is no longer true in
a direct product of groups G := G1 × G2, because approximate subgroups of the form
A = A1×A2 with for instance A1 small inG1 and A2 large inG2 may generateG but be
neither small nor large inG. The “correct” product theorem for such groups is as follows.

Theorem 8.1 (Product theorem for semisimple groups). Let G be a product of finite
simple (or quasisimple) groups of Lie type and suppose A is a K-approximate subgroup
of G. Then either |A| ≥ |G|/KC , or there is a proper subgroup H of G and x ∈ G such
that |A ∩ xH | ≥ |A|/KC , where C > 0 is a constant depending only on the rank of G.

Proof. All constants will depend only on the rank of G. Clearly (up to passing to a finite
quotient) we may assume that G is a direct product of finite quasisimple groups of Lie
type. We will prove by induction on the rank of G the slightly stronger statement that
eitherAm = G for some constantm, or there is a proper subgroupH such that |A∩xH | >
|A|/KC for some coset xH ofH . So supposeG ' G1×G2, whereG2 is a simple group.
By induction, we may assume that, for some constant m, Am projects onto G1 and onto
G2 (otherwise a large part of A will be contained in a coset of the pull-back of a proper
subgroup of either G1 or G2).

We view G1,G2 as commuting subgroups of G. Suppose A4m
∩G2 is non-trivial, so

that it contains some element x 6= 1. Then for some larger but still bounded m′ we must
have G2 ⊂ A

m′ . Indeed, for every g2 ∈ G2 there is g1 ∈ G1 such that g1g2 ∈ A
m and

thus
g2xg

−1
2 = (g1g2)x(g1g2)

−1
∈ AmA4mAm = A6m,

so that A6m contains a full conjugacy class of G2. But since the rank of G2 is bounded, it
is known (and follows as well from the product theorem, Proposition 3.3) that for some
constantM , CM = G2 for every non-trivial conjugacy class C ofG2. It follows thatA6mM

contains G2 and hence A12mM
= G.

Hence we may assume that A4m
∩ G2 is trivial. But then (arguing as in Goursat’s

lemma) this means that for every g1 ∈ G1, there is one and only one g2 ∈ G2 such that
g1g2 ∈ A

m. Let α : G1 → G2 be the map thus defined. The hypothesisA4m
∩G2 is trivial

similarly implies that α is a group homomorphism. This means that Am is contained in
the proper subgroup of G defined by {g1α(g1) : g1 ∈ G1}, and we are done. ut

Remark 8.2. In many important special cases, one can embed G in a linear group
GLn(F) for some finite field F and n bounded in terms of the rank of G. In this case,
we may also establish Theorem 8.1 using the results of Pyber and Szabó. Indeed, [PS,
Theorem 10] asserts that if A is a K-approximate subgroup of GLn(F), then there are
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normal subgroups L ≤ 0 of 〈A〉 such that L is solvable, 0 ⊂ A6L and A is covered by
Km coset of 0, wherem depends only on n (hence on the rank ofG). Now in Theorem 8.1
we may assume that 〈A〉 = G, since otherwise we could take H := 〈A〉. Hence L, being
normal and solvable in G, must be central and bounded in cardinality. Now if 0 = G,
then 0 ⊂ A6L implies that |A| ≥ |G|/O(K5), while if 0 is a proper subgroup, then the
fact that A is covered byKm cosets of 0 implies that |A∩ x0| ≥ |A|/Km for at least one
coset x0 and thus Theorem 8.1 follows in this case.

Using Theorem 8.1, we can now give the following extension of Theorem 1.2 to product
groups.

Theorem 8.3 (Random pairs expand in semisimple groups). Suppose that G is a prod-
uct of finite simple (or quasisimple) groups of Lie type and that a, b ∈ G are selected
uniformly at random. Let S be the smallest simple factor of G. Then with probability at
least 1 − C|S|−δ , the pair {a, b} is ε-expanding for some C, ε, δ > 0 depending only on
the rank of G.

We will deduce this result from our main theorem, Theorem 1.2. To prove Theorem 8.3 for
a particular G, one only needs to know Theorem 1.2 for those simple factors S contained
in G. Thus our proof of Theorem 1.2 for the triality groups 3D4(q) in Section 7 is not
circular, because we need Theorem 8.3 only in the case that G is a central product of
SL2(Fq) and SL2(Fq).

The proof of Theorem 1.2 will split into two cases. We will first establish Proposi-
tion 8.4 below, which asserts that a generating set of G is expanding if and only if its
projections to its primary components are expanding. Then we will treat separately the
case of a power of a single finite simple group of Lie type. Theorem 8.3 will then follow
immediately.

Proposition 8.4. Let r ∈ N and ε > 0. Suppose G = G1G2, where G1 and G2
are products of at most r finite simple (or quasisimple) groups of Lie type of rank at
most r . Suppose that no simple factor of G1 is isomorphic to a simple factor of G2. If
x1 = x

(1)
1 x

(2)
1 , . . . , xk = x

(1)
k x

(2)
k are chosen so that {x(1)1 , . . . , x

(1)
k } and {x(2)1 , . . . , x

(2)
k }

are both ε-expanding generating subsets in G1 and G2 respectively, then {x1, . . . , xk} is
δ-expanding in G for some δ = δ(ε, r) > 0.

Remark 8.5. The assumption that G1 and G2 have no common simple factor is neces-
sary in this proposition. Indeed, consider for example the case when G1 ' G2 are finite
simple groups both isomorphic to (say) PSL2(Fq), and choose ε-expanding pairs (a1, b1)

in G1 and (a2, b2) in G2 such that a2 = φ(a1) and b2 = φ(b1) for some group iso-
morphism φ : G1 → G2. Then (a1a2, b1b2) does not generate G = G1 × G2, hence
cannot δ-expand for any fixed δ > 0 as q tends to∞. The key point here is that under the
assumption of the proposition, Goursat’s lemma forces x1, . . . , xk to generate G.

Proof of Proposition 8.4. We follow the Bourgain–Gamburd method (see Appendix B)
and proceed by induction on the rank of G. Recall (see Definition 1.1) that the xi’s give
rise to the averaging operator T . Let ρ be an irreducible component of the representation
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of G associated to the eigenvalue of T with largest modulus (different from 1). Let H =
ker ρ. It is a normal subgroup of G, and hence is either central and bounded, or contains
a quasisimple non-abelian subgroup of G. In the latter case, the quotient ρ(G) ' G/H
will have strictly smaller rank thanG and will satisfy the same assumptions asG. Namely
ρ(G) = ρ(G1) · ρ(G2) and both {ρ(x1)

(1), . . . , ρ(xk)
(1)
} and {ρ(x1)

(2), . . . , ρ(xk)
(2)
}

are ε-expanding in ρ(G1) and ρ(G2) respectively (indeed, all irreducible components of
`2(ρ(Gi)) occur already in `2(Gi)). By induction hypothesis, we are then done. In the
former case, ρ is of the form σ1 ⊗ . . . ⊗ σm, where the σi’s are non-trivial irreducible
representations of them quasisimple normal subgroups Si ofG ' S1 . . . Sm. In particular
in view of the quasirandomness of quasisimple groups of Lie type (Proposition 3.2) there
is β = β(r) > 0 such that dim σi � |Si |

β for all i = 1, . . . , m, and thus

dim ρ ≥

m∏
i=1

dim σi �

m∏
i=1

|Si |
β
≥ |G|β .

We are thus in a position to apply the Bourgain–Gamburd method, as adapted to the
product setting in [BV]. Without loss of generality, we may assume that |G1| ≥ |G2|. Let
Gi be the quotient of Gi modulo its centre. Then we have epimorphisms πi : G → Gi .
Let µ be the probability measure associated to {x1, . . . , xk} as in Definition 1.1. It follows
from our assumption that {π1(x1), . . . , π1(xk)} is ε-expanding in G1. This implies that

‖π1(µ)
n
− 1‖2 ≤ (1− ε)n‖π1(µ)‖2 ≤ (1− ε)n|G1|

1/2

for all n ∈ N. However, since G1 is a quotient of G, we have

1
|G|
‖µn‖22 ≤

1

|G1|
‖π1(µ)

n
‖

2
2

since the probability of return to the identity in G is at most the probability of return to
the identity in G1. Therefore, since |G1| � |G|

1/2, for any κ ∈ (0, 1/4) we have

‖µn‖2 ≤
|G|1/2

|G1|1/2
(1+ e−εn|G1|

1/2)� |G|1/2−κ (8.1)

if n ≥ (κ/ε) log |G|, securing Phase I of the Bourgain–Gamburd method (see Ap-
pendix B).

Using the fact, proved in the first paragraph above, that dim ρ � |G|β , and in view
of Phase III of the Bourgain–Gamburd method, it remains to show that for some n ≤
C0 log |G| (where C0 depends only on ε and r) ‖µn‖2 � |G|β/10.

Suppose first that |G2| ≤ |G1|
β/5. Then |G|/|G1| � |G|

β/5 and estimate (8.1) above
already shows that

‖µn‖2 � |G|
β/10

if n ≥ 1/2−β/5
ε

log |G|. We are therefore done in this case.
We may then assume that |G2| ≥ |G1|

β/5 and proceed with Phase II of the Bourgain–
Gamburd method. This requires the modified product theorem, Theorem 8.1. Going
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through Phase II as described in Appendix B and using the weighted Balog–Szemerédi–
Gowers lemma proved in Appendix A, we obtain (keeping the same notation) a |G|η-
approximate group A, where η = cβ for some small constant c > 0, and an integer
m = Oc(log |G|) such that

µm(xA) ≥ |G|−η (8.2)

for some x ∈ G and
|A| ≤ |G|1+η/‖µm‖22.

As in Appendix B we examine the various possibilities forA given by the product theorem
(Theorem 8.1) applied to A with K = |G|η. If |A| ≥ |G|/KC , then the last displayed
equation yields ‖µm‖22 ≤ |G|

β/10 if c is chosen small enough. So we are done in this
case.

We are going to rule out the other cases. According to Theorem 8.1, there must exist
a proper subgroup H of G and y ∈ G such that |A ∩ yH | ≥ |A|/KC . We seek a contra-
diction. By Ruzsa’s covering lemma (see e.g. [Ta, Lemma 3.6]), A is contained in at most
KC left cosets of H . In view of (8.2) this implies that

µm(x0H) ≥ |G|
−(1+C)η

for at least one coset x0H of H . Since µ is symmetric, this implies

µ2m(H) ≥ |G|−2(1+C)η. (8.3)

However, µ2m(H) is non-increasing as a function of m, hence this bound holds for every
smaller m.

We only now make use of the assumption that G1 and G2 have no common simple
factor: this assumption implies that every proper subgroup of G projects to a proper sub-
group of eitherG1 or ofG2. This is an instance of Goursat’s lemma. So for some i0 equal
to 1 or 2, we conclude that H := πi0(H) is proper in Gi0 .

By assumption |G1| ≥ |G2| ≥ |G1|
β/5. This means that |G| ≤ |G1|

2 and |G| ≤
|G2|

1+5/β , so |G| ≤ |Gi |D for each i = 1, 2 if we take D = 1 + 5/β. Hence (8.3)
implies

πi0(µ)
2n(H) ≥ |Gi0 |

2D(1+C)η (8.4)

for all n ≤ m = Oc(log |G|) and in particular for n of size O(ε−1 log |Gi0 |). However,
as we will see, this is in conflict with the assumption that πi0(µ) is ε-expanding in Gi0 .
Indeed, this assumption implies that for n = O(ε−1 log |Gi0 |),

‖πi0(µ)
n
− 1‖L2(Gi0 )

≤ e−εn|Gi0 |
1/2
≤ 1,

hence

πi0(µ)
2n(H) ≤ |H |πi0(µ)

2n(1) =
|H |

|Gi0 |
‖πi0(µ)

n
‖

2
L2(Gi0 )

≤ 2
|H |

|Gi0 |
. (8.5)
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However, it follows18 from the classification of maximal subgroups of simple groups of
Lie type (see Proposition 5.5 above) that every proper subgroup of a product L of finite
simple or quasisimple groups of Lie type has index at least |L|γ , where γ > 0 is a
constant depending only on the rank of L. Now (8.4) and (8.5) are incompatible if η is
small enough. This gives the desired contradiction and ends the proof of Proposition 8.4.

ut

We are now ready for the proof of Theorem 8.3.
We first prove the result in the special case when all simple factors ofG are isomorphic

to a single simple group. IfG is simple itself, then this is our main theorem, Theorem 1.2.
In fact, we proved the result for the quasisimple bounded cover group G̃ sitting above G
and remarked at the beginning of Section 2 that it implies the expansion result for G. So
we have in fact proved the result for all quasisimple finite groups of Lie type. For the
same reason it is enough to prove the result in the case when G is a direct (as opposed to
almost direct) product of say r copies of a single quasisimple group S.

We now pass to the case when G = Sr and r ≥ 2 and S is quasisimple. The proof
follows again the Bourgain–Gamburd method (see Proposition 3.1). Quasirandomness
(item (i) in Proposition 3.1) holds in our case, because any non-trivial representation of
G must be non-trivial on some factor S of G, hence must have dimension at least |S|β =
|G|β/r , where β > 0 depends only on the rank of S. As mentioned at the beginning of this
section, the product theorem (item (ii) in Proposition 3.1) does not hold as such, but as we
will see Theorem 8.1 will serve as a replacement. Item (iii), that is, the non-concentration
estimate, was the main part of our proof of Theorem 1.2. See Proposition 2.1 above. Let
us now show that it holds as well in our case, when G = Sr .

We recall a standard group-theoretic lemma.

Lemma 8.6. Let S1, . . . , Sr be perfect groups for some r ≥ 2, and let H be a proper
subgroup ofG := S1×· · ·×Sr . Then there exists 1 ≤ i < j ≤ r such that the projection
of H to Si × Sj is also proper.

Proof. Suppose for contradiction that all projections from H to Si × Sj are surjective. In
particular, the projections of H to S1 × S2 and S1 × S3 contain S1 × {1} and S1 × {1}
respectively. Taking commutators and using the hypothesis that S1 is perfect, we conclude
that the projection ofH to S1×S2×S3 contains S1×{1}×{1}. Iterating this, we conclude
that H itself contains S1 × {1} × · · · × {1}, and similarly for permutations. But then H
must be all of S1 × · · · × Sn = G, a contradiction. ut

In view of this lemma, we see that every proper subgroup of Sr has at least one of its(
r
2

)
projections to S2 proper. From this and the union bound, we see that to prove the

non-concentration bound for all r ≥ 2, it suffices to do so in the r = 2 case.
It thus remains to verify the r = 2 case. In this case, Goursat’s lemma tells us that

H projects onto a proper subgroup of either S1 or S2, or it is contained in the pull-back
modulo the centre of a “diagonal” subgroup of the form {(s, α(s)), s ∈ S}, where S is

18 One can also establish this claim from quasirandomness, Proposition 3.2, by considering the
quasiregular representation associated to a proper subgroup.
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the simple quotient of S. In the former case, we can apply the non-concentration estimate
proved earlier in this paper in the quasisimple case. The latter case reduces to proving
the non-concentration estimate for random pairs in S × S for the subgroups of the form
Hα := {(s, α(s)) : s ∈ S}. This is dealt with in Proposition 8.7 below.

So we have now established item (iii) of Proposition 3.1 for almost all (i.e.� |G|2(1−
Cr2/|S|δ)) pairs (a, b). We also checked that item (i) holds. As already mentioned, item
(ii), the product theorem, does not hold as such inG = Sr . Let us show how Theorem 8.1
can serve as a replacement. The product theorem is only used in Phase II of the Bourgain–
Gamburd method; see Appendix B. Keeping the same notation as in this appendix, and
setting µ = µa,b (as in Definition 1.1) and picking η > 0 a small constant to be specified
later, we obtain a |G|η-approximate subgroup A of G such that

µm(xA) ≥ |G|−η (8.6)

for some m = Oη(log |G|) and some x ∈ G and

|A| ≤ |G|1+η/‖µm‖22.

The modified product theorem (Theorem 8.1) tells us that either |A| ≥ |G|1−Cη, in which
case we are done by the same argument as in Appendix B, or there is a proper subgroup
H of G which intersects a translate of A in a large subset. By the Ruzsa covering lemma
(see e.g. [Ta, Lemma 3.6]), this implies that xA is contained in at most |G|Cη cosets of
H , and hence (by (8.6)) that at least one of these cosets, say x0H satisfies

µm(x0H) ≥ |G|
−(1+C)η,

and thus
µ2m(H) ≥ |G|−2(1+C)η.

Since m 7→ µ2m(H) is non-increasing, this holds for all smaller m’s and thus provides
a contradiction to the non-concentration estimate once η is chosen small enough. This
ends the proof of Theorem 8.3 in the case when G has all its simple factors in the same
isomorphism class.

The general case of the theorem (i.e. when G has possibly several non-isomorphic
simple factors) is now an easy consequence of Proposition 8.4 above. Indeed, G can
be written as G = S

r1
1 . . . S

rk
k , where the Si’s are pairwise non-isomorphic quasisimple

groups of bounded rank, and the ri’s are bounded. We know that there are ε, δ, C > 0
depending only on the rank on G such that one may choose at least |Srii |

2(1 − C|Si |−δ)
pairs (ai, bi) in Srii which generate Srii and are ε-expanding. In view of Proposition 8.4
applied repeatedly, all pairs (a1 . . . ak, b1 . . . bk) are ε′-expanding generating pairs in G,
where ε′ depends only on the rank ofG. This gives at least |G|2

∏k
i=1(1−C|Si |

−δ) pairs,
hence at least |G|2(1−Ck|S|−δ) pairs. This ends the proof of Theorem 8.3, conditionally
on the proof of Proposition 8.7 which we are now ready to give.

As promised, we now turn to the proof of the non-concentration estimate for random
pairs in a group of the form S × S, where S is a finite simple group of Lie type.
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Proposition 8.7. Let S be a finite simple group of Lie type. There are constants3, κ,C, δ
> 0 depending only on the rank of S such that for at least |G|2(1− C/|G|δ) pairs (a, b)
in G := S × S, the probability measure µa,b = 1

4 (δa + δa−1 + δb + δb−1) satisfies the
non-concentration estimate

sup
H<G

µ
(n)
a,b(H) < |G|

−κ

for some n ≤ 3 log |G|, where the supremum is over all proper subgroups H < G.
Proof. Write a = (a1, a2) and b = (b1, b2) in G = S × S. According to the main
result of this paper, there are κ, δ, C > 0 depending only on the rank of S and at least
|S|2(1− C/|S|δ) pairs (a1, b1) such that

sup
H<S

µ
(n)
a1,b1

(H) < |S|−κ ,

where the supremum is over all proper subgroups H < S. The same holds for the second
factor. By Goursat’s lemma, given that S is simple, every proper subgroup of G must
either project to a proper subgroup of one of the two S factors, or be of the form Hα :=

{(s, α(s)) : s ∈ S}, where α ∈ Aut(S) is an automorphism of S. This yields at least
|G|2(1− 2C/|S|δ) pairs (a, b) in G such that

sup
H<G,H 6=Hα

µ
(n)
a,b(H) < |S|

−κ
= |G|−κ/2,

where the supremum is over all proper subgroups H < G not of the form Hα for some
α ∈ Aut(S).

To handle the subgroups Hα , we will proceed as before, using the Schwartz–Zippel
estimates from Proposition 5.4 and Borel’s dominance theorem [B, L]. Note that if a, b
are such that for some α ∈ Aut(S),

µ
(n)
a,b(Hα) ≥ |S|

−κ ,

then, setting A := Aut(S), we obtain

Pw∈Wn,2
(
w(b1, b2) ∈ A · w(a1, a2)

)
≥ |S|−κ ,

where Wn,2 is the set of (non-reduced) words on two letters of length exactly n.
Following a similar line of argument as in the treatment of the structural case in Sec-

tion 4, using Markov’s inequality and Fubini we have

Pa,b∈G
(

sup
Hα<G,α∈A

µ
(n)
a,b(Hα) ≥ |S|

−κ
)

≤ Pa,b∈G
(
Pw∈Wn,2(w(a2, b2) ∈ A · w(a1, b1)) > |S|

−κ
)

≤ |S|κ Ea,b∈G
(
Pw∈Wn,2(w(a2, b2) ∈ A · w(a1, b1))

)
≤ |S|κ Ew∈Wn,2

(
Pa,b∈G(w(a2, b2) ∈ A · w(a1, b1))

)
.

Some of the words in Wn,2 become trivial in the free group. However by Kesten’s
bound (see Lemma 4.5) at most an exponentially small fraction of them do so, hence at
most e−cn = |S|−c3, where c > 0 is an absolute constant. Taking κ > 0 very small, we
can therefore ignore the contribution of these words and focus on those that do not vanish
when reduced in the free group.



1416 Emmanuel Breuillard et al.

It is known (see [St, Theorem 30] or [C, p. 211]) that every automorphism of S
is a product of an inner automorphism, a field automorphism, a graph automorphism
and a so-called diagonal automorphism. Since the rank of S is bounded, there are only
boundedly many graph and diagonal automorphisms. The number of field automorphisms
is O(log q) = O(log |S|). It follows that every A-orbit in S is contained in at most
O(log |S|) conjugacy classes. Therefore for all n ≤ 3 log |G| we have

Pa,b∈G
(

sup
Hα<G,α∈A

µ
(n)
a,b(Hα) ≥ |S|

−κ
)

� |S|κ+23 log 4 log |S| sup
w∈W ∗

n,2

sup
C⊂S

Pa,b∈G(w(a2, b2) ∈ C),

where the second supremum is taken over all conjugacy classes in S, and W ∗n,2 is the set
of non-trivial reduced words of length at most n in the free group. Thus it suffices to show
that there is a δ0 > 0 depending only on the rank of S such that for every conjugacy class
C and every w ∈ W ∗n,2 we have

Pa2,b2∈S(w(a2, b2) ∈ C) ≤ 1/|S|δ0 .

The preimage in the bounded cover S̃ of a conjugacy class in S consists of boundedly
many conjugacy classes of S̃. Hence it is enough to prove the above for S̃ in place of S.
Now this follows directly from the Schwartz–Zippel estimate of Proposition 5.4 after we
note that the subvarieties of S × S defined by {(s1, s2) : w(s1, s2) ∈ C} have degree at
most O(n) = O(log |S|) uniformly in the choice of C and w. ut

Appendix A. A weighted Balog–Szemerédi–Gowers theorem

The aim of this section is to establish a weighted version of the Balog–Szemerédi–Gowers
theorem [BS, G1], which will be needed for the proof of Proposition 3.1 in Appendix B.
The precise statement is as follows. We use the usual Lp(G) norms

‖f ‖Lp(G) := (Ex∈G |f (x)|p)1/p

for 1 ≤ p <∞, with the usual convention

‖f ‖L∞(G) := sup
x∈G

|f (x)|.

Proposition A.1 (Weighted BSG). Let K ≥ 1. Suppose that ν : G → R≥0 is a prob-
ability measure on some finite group G which is symmetric in the sense that ν(x) =
ν(x−1) and which satisfies ‖ν ∗ ν‖L2(G) ≥ K−1

‖ν‖L2(G), where convolution is de-
fined in (3.1). Then there is an O(KO(1))-approximate subgroup H of G with |H | �
KO(1)

|G|/‖ν‖2
L2(G)

and an x ∈ G such that ν(Hx)� K−O(1).

Remark. It would be possible to formulate a version of this proposition in which ν is not
symmetric, or even with two different measures ν, ν′ having comparable L2(G)-norms.
We do not do this here, since Proposition A.1 is all that is required for our applica-
tions here. Propositions of this type are not new, appearing for example in the work of
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Bourgain–Gamburd [BG1] and the paper of Varjú. It is possible to extend this result to
infinite groups G if one removes the normalisation on the counting measure, but we will
not need this extension here.

Proof of Proposition A.1. It will be convenient to adopt some notational conventions
for this proof. If A ⊆ G is a set, write µA for the uniform measure on A, defined by
µA(x) = |G|/|A| if x ∈ A and µA(x) = 0 otherwise. We write X / Y or Y ' X as an
abbreviation for X � KO(1)Y , and X ≈ Y as an abbreviation for X / Y / X.

Set δ := 1/(100K2) and M := 10K (say), and define

ν1 := ν1ν≥M‖ν‖2
L2(G)

, ν2 := ν1ν≤δ‖ν‖2
L2(G)

,

ν̃ := ν1δ‖ν‖2
L2(G)

<ν<M‖ν‖2
L2(G)
= ν − ν1 − ν2.

We note that ν1 is small in L1(G): indeed,

‖ν1‖L1(G) := Ex∈G ν1(x) ≤ Ex∈G ν(x)
ν(x)

M‖ν‖2
L2(G)

≤
1

10K
. (A.1)

In contrast, ν2 is small in L2(G), since

Ex∈G ν2(x)
2
= Ex∈G ν(x)21ν(x)≤δ‖ν‖2

L2(G)
≤ δ‖ν‖2

L2(G)
Ex∈G ν(x) = δ‖ν‖2L2(G)

.

Therefore

‖ν2‖L2(G) ≤
1

10K
‖ν‖L2(G). (A.2)

Recall Young’s inequality, an instance of which is the bound ‖f ∗ g‖L2(G) ≤

‖f ‖L1(G)‖g‖L2(G) (this is also easily established from Minkowski’s inequality). Starting
from the assumption that ‖ν∗ν‖L2(G) ≥ K

−1
‖ν‖L2(G), we may apply Young’s inequality

and (A.1), (A.2), noting that ν, ν1, ν2 are all symmetric, to obtain

‖ν∗ ∗ ν1‖L2(G), ‖ν∗ ∗ ν2‖L2(G) ≤
1

10K
‖ν‖L2(G)

for ν∗ = ν, ν1, ν2, and hence by the triangle inequality

‖ν̃ ∗ ν̃‖L2(G) ≥
1

2K
‖ν‖L2(G) ' ‖ν‖L2(G). (A.3)

Using another application of Young’s inequality, together with the bound ‖ν̃‖L1(G) ≤

‖ν‖L1(G) = 1, we thus have

‖ν̃‖L2(G) ' ‖ν‖L2(G). (A.4)

Setting A := supp(ν̃) and noting that

ν(x) ≈ ‖ν‖2
L2(G)
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uniformly in x ∈ A, it follows easily that µA(x) ≈ ν(x) uniformly in x. From (A.3) it
hence follows that

‖µA ∗ µA‖L2(G) ' ‖µA‖L2(G),

which means that the multiplicative energy (that is, the number of solutions to a1a
−1
2 =

a3a
−1
4 ) of A is ' |A|3. Applying the (non-commutative) Balog–Szemerédi–Gowers the-

orem for sets [Ta], we find that there is anO(KO(1))-approximate group H together with
some x ∈ G such that

|A ∩Hx| ' max(|A|, |H |).

This implies that
ν(Hx) ≥ ν̃(Hx) ' µA(Hx) ' 1.

From (A.4) we also have

|H | / |A| =
|G|

‖µA‖
2
L2(G)

/
|G|

‖ν̃‖2
L2(G)

/
|G|

‖ν‖2
L2(G)

,

thereby confirming the proposition. ut

Appendix B. Proof of the Bourgain–Gamburd reduction

The purpose of this section is to prove Proposition 3.1. Thus, we fix a finite group G
and a symmetric set S ⊂ G of k generators that obey the quasirandomness, product
theorem, and non-concentration estimate hypotheses of Proposition 3.1 for some choices
of parameters κ,3, δ′(·). Henceforth we allow all constants in the asymptotic notation
to depend on these parameters. Our goal is then to obtain a uniform lower bound on the
expansion of S.

Consider the convolution operator TS : L2(G)→ L2(G) on the Hilbert space L2(G)

given by Tf := f ∗µS . As stated in the introduction, it will suffice to establish the rapid
mixing property

‖µ(n) − uG‖L∞(G) ≤ |G|−10

for some n = O(log |G|).
In [BG1], Bourgain and Gamburd verify this mixing property, using the three ingre-

dients detailed in the statement of Proposition 3.1. This in turn is undertaken in three
phases, described below, corresponding to the “evolution” of the convolution power µ(n)

as the time n increases. The aim is to show that µ(n) becomes more and more spread out.
This “spread” will be measured by the smallness of the L2 norm

‖µ(n)‖L2(G) := (Eg∈G µ
(n)(g)2)1/2.

Note from Young’s inequality that we have the monotonicity property

|G|1/2 ≥ ‖µ(1)‖L2(G) ≥ ‖µ
(2)
‖L2(G) ≥ · · · ≥ 1.
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Phase I. The aim here is to show that, by time n ∼ C0 log |G|, the measure µ(n) has
become at least reasonably spread out in the sense that

‖µ(n)‖L2(G) ≤ |G|
1/2−κ/2.

The main tool here will be the non-concentration hypothesis.
Phase II. The aim here is to show that, by some later time n ∼ C1 log |G|, the mea-

sure µ(n) is extremely spread out in the sense that

‖µ(n)‖L2(G) ≤ |G|
κ/10.

The main tool here will be the product theorem hypothesis.
Phase III. Finally, we show that at some still later time n ∼ C2 log |G|, we have the

desired bound
‖µ(n) − 1‖L∞(G) ≤ |G|−10.

The main tool here will be the quasirandomness hypothesis.
The constants 0 < C0 < C1 < C2 will depend only on k, κ,3, and the function δ′(·).

Remark. Bourgain and Gamburd organise things slightly differently, deducing a spectral
gap directly from the roughly uniform measure resulting from Phase II rather than the
highly uniform one resulting from Phase III. To achieve this one must use the fact that
all eigenvalues of TS occur with high multiplicity, a fact which follows easily from the
quasirandomness of G. This form of the argument stems from an idea of Sarnak and
Xue [SX]. Which argument one prefers is definitely a matter of taste, and on some not-
especially-deep level they are equivalent.

We turn now to the discussion of the three phases in turn. Throughout the discussion
that follows, the parameters k, κ,3 are as in the statement of Proposition 3.1.

Phase I. Recall that our task is to show that there is some C0, such that if n ≥ C0 log |G|,
we have ‖µ(n)‖L2(G) ≤ |G|

1/2−κ/2. This is actually a very simple task given the non-
concentration estimate (iii), applied to the special case H = {id}. This implies that
‖µ(n)‖L∞(G) ≤ |G|

1−κ , and so by a trivial instance of Hölder’s inequality

‖µ(n)‖L2(G) ≤ ‖µ
(n)
‖

1/2
L∞(G)‖µ

(n)
‖

1/2
L1(G)

= ‖µ(n)‖
1/2
L∞(G) ≤ |G|

1/2−κ/2, (B.1)

as required.

Phase II. This is the heart of the argument in some sense. Suppose that ν is a symmetric
probability measure on G such that

ν(xH) ≤ |G|−κ (B.2)

for all cosets xH of proper subgroupsH < G. We begin by noting that this automatically
implies the same estimate for any convolution ν ∗ µ, and in particular

ν(m)(xH) ≤ |G|−κ (B.3)
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for all m. Indeed, note that for any x0 we have

sup
x
ν(xH) ≥ Ex µ(x)Ey ν(y)1H (x−1

0 xy) = Ex µ(x)Ez ν(x−1x0z)1H (z)

= Ez(Ex µ(x)ν(x−1z))1x0H (z) = (µ ∗ ν)(x0H),

and so
sup
x
ν(xH) ≥ sup

x
(µ ∗ ν)(xH).

The non-concentration estimate, item (iii) of Proposition 3.1, states that some measure
ν = µ(n) satisfies (B.2), for some n ≤ 3(log |G|)/2. Indeed, if µ(n)(xH) > |G|−κ for
some coset xH , then by symmetry we also have µ(n)(Hx−1) > |G|−κ , and hence by
convolution µ(2n)(H) > |G|−2κ , which will contradict (iii) for a suitable choice of n. By
the conclusion (B.1) of Phase I and the monotonicity of the L2(G) norms ‖µ(n)‖L2(G) we
may, by increasing 3 to O3,κ(1) if necessary, assume that ν additionally satisfies

‖ν‖L2(G) ≤ |G|
1/2−κ/2. (B.4)

To establish Phase II we need only show that there is m = Oκ,k,3(log |G|) such
that ‖ν(m)‖L2(G) ≤ |G|

κ/10. Let η > 0 be a quantity to be chosen later, depending on
κ, k,3. Consider the sequence of measures ν, ν(2), ν(4), . . . , ν(2

m0 ). If m0 = Oη(1) is
large enough then by the pigeonhole principle there is some j such that

‖ν(2
j+1)
‖L2(G) ≥ |G|

−η
‖ν(2

j )
‖L2(G).

Writing µ := ν(2
j ), this of course implies that

‖µ ∗ µ‖L2(G) ≥ |G|
−η
‖µ‖L2(G).

We now apply a weighted version of the noncommutative Balog–Szemerédi–Gowers the-
orem from additive combinatorics, stated and proved in Appendix A. This tells us that
there is a |G|Cη-approximate group A ⊆ G with

|A| ≤ |G|1+Cη/‖µ‖2
L2(G)

(B.5)

and some x ∈ G such that
µ(xA) ≥ |G|−Cη. (B.6)

As a consequence of the product theorem (item (ii) in Proposition 3.1), one of the follow-
ing three alternatives must hold provided that η is chosen sufficiently small:

(i) |A| < |G|κ/2;
(ii) |A| > |G|1−κ/10;

(iii) A generates a proper subgroup of G.

We shall also assume, since this will be required below, that η < cκ for some small
constant c > 0. We now examine the above three possibilities in turn.
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If (i) holds then, by (B.6) and the pigeonhole principle, there is some x ∈ G with

µ(x) ≥ |G|−Cη−κ/2 ≥ |G|−κ .

This contradicts the non-concentration hypothesis (with H = {id}).
If (ii) holds then, by (B.5), we obtain

‖µ‖L2(G) ≤ |G|
Cη+κ/20

≤ |G|κ/10,

which is the desired outcome of Phase II.
Finally, suppose that (iii) holds. Then, by (B.6), we have

µ(xH) ≥ µ(xA) ≥ |G|−Cη ≥ |G|−κ ,

whereH = 〈A〉 is the group generated by A, and by assumptionH is proper, and so once
again the non-concentration estimate is violated. This concludes the analysis of Phase II.

Phase III. Our task here is to prove the following lemma.

Lemma B.1. Suppose that ν is a probability measure on G with ‖ν‖L2(G) ≤ |G|
κ/100

such as the one output by Phase II above. Then for sufficiently largem = Oκ(1), we have

‖ν(m) − 1‖L∞(G) ≤ |G|−10. (B.7)

Proof. We use the quasirandomness of G, and in particular an inequality of Babai,
Nikolov and Pyber [BNP], related to earlier work of Gowers [G2]. The inequality states19

that for any probability measures ν1, ν2 on G we have

‖ν1 ∗ ν2 − 1‖L2(G) ≤

√
1

dmin(G)
‖ν1 − 1‖L2(G)‖ν2 − 1‖L2(G), (B.8)

where dmin(G) is the smallest dimension of a non-trivial representation (over C) ofG. By
assumption we have dmin(G) ≥ |G|

κ , and so for any probability measure ν we have

‖ν(2) − 1‖L2(G) ≤ |G|
−κ/2
‖ν − 1‖L2(G).

Applying this repeatedly, afterOκ(1) convolutions we will end up with somem0 = Oκ(1)
such that

‖ν(m0) − 1‖L2(G) ≤ |G|
−5.

Finally, a single application of the Hausdorff–Young inequality allows us to conclude that

‖ν(2m0) − 1‖L∞(G) = ‖(ν(m0) − 1) ∗ (ν(m0) − 1)‖L∞(G)

≤ ‖ν(m0) − 1‖L2(G) ≤ |G|
−10. ut

19 Note that Babai, Nikolov and Pyber use the counting measure on G rather than the normalised
counting measure as we do. This is why we omit a factor of

√
n from their estimate.
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Appendix C. A locally commutative subgroup of the affine group of the plane

In this section, we consider the problem of finding a strongly dense free subgroup in the
group of (special) affine transformations of the plane, i.e. the group G(k) = k2 o SL2(k).
This is a non-semisimple but perfect algebraic group. The purpose of this appendix is
to establish the existence of strongly dense free subgroups in this group, as this will be
needed to obtain strongly dense free subgroups of Sp4 in the next section.

More precisely, we establish the following.

Theorem C.1 (Strongly dense affine groups). Let k be a field which is not locally fi-
nite.20 Then G(k) := k2 o SL2(k) contains a strongly dense free subgroup on two gener-
ators, i.e. a free subgroup such that every non-abelian proper subgroup is Zariski-dense
in G.

For the rest of this section, k and G are as in Theorem C.1. We begin with the following
classification of Zariski closures of free subgroups of G.

Lemma C.2. Let F be a free group on two generators in G, and let H be the Zariski
closure of F . Then either H is equal to all of G, or there exists an element x ∈ k2 such
that H is equal to the stabiliser Stab(x) := {g ∈ G(k) : gx = x} of x (using the obvious
action of the affine group G on the plane k2).

Proof. We may assume without loss of generality that H is proper. We project H to SL2
under the quotient map from G to SL2. This is a closed subgroup of SL2, and is thus
either virtually solvable or all of SL2. In the former case, H is virtually solvable and thus
cannot contain a free group; and so H projects onto all of SL2.

Now consider the intersection of H with k2. Since H projected surjectively onto SL2,
H ∩ k2 must be a closed subgroup of k2 that is normalised by the SL2 action, and is
thus either trivial or all of k2. In the latter case, we have H = G, so we may assume that
H∩k2

= {0}, and so the projection from H to SL2 is an isomorphism of algebraic groups.
In particular, H induces a class in the first cohomology group of SL2. However, we have
the following well-known lemma.

Lemma C.3 (Vanishing of cohomology). The first cohomology group of SL2 acting on
its natural module k

2
is trivial.

Proof. For the convenience of the reader, we provide a short proof when char(k) 6= 2
and we refer the reader to [J, II.4.13] for the general case (which is not needed for our
application to Sp4 in characteristic 3). We need to show that any closed subgroup H of G
which maps isomorphically to SL2 under the quotient homomorphism stabilises a point
in k

2
, and is thus conjugate to the stabiliser of 0 in k

2
. Since SL2 has a non-trivial centre

{±1}, H must contain an element of order 2. The eigenvalues of the linear part of this
element must be equal to −1, hence this element must fix a (unique) point in k

2
. This

20 A field k is locally finite if every finite subset of k generates a finite subfield. In particular,
locally finite fields are necessarily positive characteristic and countable.
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fixed point must therefore be preserved by the centraliser of this involution, hence by all
of H. We are done. ut

It follows immediately that H and our free subgroup must fix a point in k
2
. Since fixed

points of elements of G(k) are defined over k, they must lie in k2, and the claim of
Lemma 2 follows. ut

As a consequence of Lemma C.2, Theorem C.1 may now be reformulated as follows.

Proposition C.4. Let k be a field which is not locally finite. Then there exists a non-
abelian free subgroup on two generators in G(k) whose action on k2 is locally commuta-
tive in the sense that the stabiliser of every point in k2 is commutative.

When k = R, this proposition was first proven by K. Sato [Sa], and answered a long-
standing open problem (see [Wa, Problem 19.c, p. 233] and [Sa]) regarding paradoxical
decompositions of the affine plane. Indeed, as is well-known (see [Wa, Ch. 4]), Propo-
sition C.4 implies that one can duplicate the plane k2 by affine maps using only four
pieces. In other words, one can write k2

= A1 ∪ B1 ∪ A2 ∪ B2, a partition of k2 into
disjoint (non-measurable) sets, and find affine maps g1, g2 ∈ k2 o SL2(k) such that
R2
= A1 ∪ g1B1 = A2 ∪ g2B2.
Sato’s proof used a direct computation in the spirit of Hausdorff’s original 1914 argu-

ment [Ha] for the existence of a free subgroup of SO3(R). We will present here a different
argument, based on a ping-pong argument, which is valid in arbitrary characteristic.

We now begin the proof of Proposition C.4. Since fixed points of elements in G(k) are
defined over k, we may assume that k is a finitely-generated infinite field. It is well-known
that every infinite finitely-generated field embeds in some local field K (i.e. R, C, a finite
extension of the field Qp of p-adic numbers, or the field Fq((t)) of Laurent series over a
finite field) in such a way that k is dense in K . Let | · | be an absolute value on K defining
the topology of K .

We parameterise any element g ∈ G(k) = k2 o SL2(k) as g = (c(g), `(g)), thus
c(g) ∈ k2 is the translation part of g, `(g) ∈ SL2(k) is the linear part, and the action on
k2 is given by

g · x = `(g)x + c(g).

If `(g) is not unipotent (i.e. does not have 1 as eigenvalue), then g fixes a unique point
x(g) on k2 given by the formula x(g) := (1− `(g))−1c(g).

We perform the following ping-pong type construction. First, we choose a generic el-
ement h ∈ G(k), and then choose an element L ∈ k with |L| sufficiently large depending
on h (in particular, we will require |L| > 1). Let a ∈ G(k) be the affine map

a · (x, y) := (L10x, L−10y).

Thus, x(a) = 0, and the two a-invariant lines of K2 are the x-axis and the y-axis. If we
introduce the norm ‖(x, y)‖ := max(|x|, |y|) on K2 and define the regions

U−a := {(x, y) ∈ K
2
: ‖(x, y)‖ < L−1 or |x| > |L||y|},

U−
a−1 := {(x, y) ∈ K

2
: ‖(x, y)‖ < L−1 or |y| > |L||x|},
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U+a := {(x, y) ∈ K
2
: |y| > max(|L| |x|, |L|)},

U+
a−1 := {(x, y) ∈ K

2
: |x| > max(|L| |y|, |L|)},

then we observe that

U+a ⊂ U
−

a−1 , U+
a−1 ⊂ U

−
a , a(K2

\ U−a ) ⊂ U
+
a , a−1(K2

\ U−
a−1) ⊂ U

+

a−1 .

Furthermore, for L large enough, we have the norm dilation property

‖ap‖ > ‖p‖ for all p ∈ K2
\ U−a ,

and similarly
‖a−1p‖ > ‖p‖ for all p ∈ K2

\ U−
a−1 .

Now we define the conjugate b := hah−1
∈ G(k) of a by h. As we chose h to be

generic, the fixed point x(b) = h(x(a)) = h(0) of b will be distinct from that of a;
furthermore, the two b-invariant lines (i.e. the images of the x-axis and y-axis under h)
will not contain x(a) or be parallel to either of the two a-invariant lines, and vice versa.
If we then set

U−b := h(U
−
a ), U−

b−1 := h(U
−

a−1), U+b := h(U
+
a ), U+

b−1 := h(U
+

a−1)

then by conjugation we have the inclusions

U+b ⊂ U
−

b−1 , U+
b−1 ⊂ U

−

b , b(K2
\ U−b ) ⊂ U

+

b , b−1(K2
\ U−

b−1) ⊂ U
+

b−1 ,

and the norm dilation property

‖bp‖ > ‖p‖ for all p ∈ K2
\ U−b ,

and similarly
‖b−1p‖ > ‖p‖ for all p ∈ K2

\ U−
b−1 .

Finally, we define the regions

�− := U−a ∪ U
−

a−1 ∪ U
−

b ∪ U
−

b−1 . �+ := U+a ∪ U
+

a−1 ∪ U
+

b ∪ U
+

b−1 ⊂ �
−.

Note that for L large enough, the four regions U+a , U
+

a−1 , U
+

b , U
+

b−1 in �+ are disjoint.
Also, since by construction x(a) (resp. x(b)) is not on the b-invariant lines (resp. a-
invariant lines), taking |L| large enough, we may also arrange that the six intersections
U−a ∩U

−

a−1 , U−a ∩U
−

b , U−a ∩U
−

b−1 , U−
a−1 ∩U

−

b−1 , U−
a−1 ∩U

−

b , and U−
b−1 ∩U

−

b are disjoint,
and thus any given point of the plane belongs to at most two regions of the form U−u ,
where u is one of the four letters a, a−1, b, b−1; see Figure 2.

This is a classical ping-pong situation:

Lemma C.5 (Ping-pong lemma). The transformations a and b generate a free sub-
group.
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







 










Fig. 2. The ping-pong table.

Proof. Let w be a non-trivial reduced word in the free group F2 on two generators. It
suffices to show that the action of w(a, b) on K2 is non-trivial. However, from the inclu-
sions given above and an easy induction on the length |w| of w, we see that w(a, b)maps
K2
\ �− to U+c ⊂ �

+
⊂ �−, where c ∈ {a, b, a−1, b−1

} is the first symbol of w, and
the claim follows. ut

Next, we use the norm dilation property to locate the fixed point of various wordsw(a, b).
For any non-trivial reduced word w ∈ F2, let E(w) ∈ {a, b, a−1, b−1

} denote the last
letter of w (i.e. E(w) is the unique u ∈ {a, b, a−1, b−1

} such that |wu−1
| < |w|).

Lemma C.6. If w is a reduced word in the free group F2 and if u = E(w), then the fixed
point of w(a, b) must belong to U−u .

Proof. If p ∈ K2
\ U−u , then ‖w(a, b)p‖ > ‖p‖, because this norm keeps increasing

every time we add a letter. Hence w(a, b)p 6= p. Taking contrapositives, we obtain the
claim. ut

Recall that each point in the plane belongs to at most two regions of the formU−u , where u
is one of the four letters a, a−1, b, b−1. From this and the preceding lemma we conclude:

Lemma C.7. Let w1, w2 and w3 be three reduced words in F2 and assume that their last
letters E(w1), E(w2), E(w3) are all distinct. Then w1(a, b), w2(a, b) and w3(a, b) do
not have a common fixed point in K2.

In order to exploit this lemma, we use the following elementary fact from combinatorial
group theory.

Lemma C.8 (Non-abelian subgroups of the free group). A subgroupH of the free group
F2 is non-abelian if and only if there is g ∈ F2 such that E(gHg−1) := {E(gkg−1) :

k ∈ H } has at least three elements.

Before giving the proof of this lemma, let us conclude the proof of Theorem C.1.
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Proof of Theorem C.1. We in fact give a proof of Proposition C.4, which was seen to
be equivalent to Theorem C.1 in the discussion following the statement of that theorem.
Let a, b,K be as in the preceding discussion. By Lemma C.5 we know that the subgroup
〈a, b〉 generated by a, b is a free subgroup. Let p ∈ K2 and let Hp be the stabiliser of
p in the free subgroup 〈a, b〉. If Hp were non-abelian, then by Lemma C.8 above, we
could conjugate Hp by some element g ∈ 〈a, b〉 in such a way that |E(gHpg−1)| ≥ 3.
However, gHpg−1

= Hg·p, so gHpg−1 is a subgroup of 〈a, b〉 which has a fixed point
in K2 and contains three elements w1(a, b), w2(a, b) and w3(a, b) whose last letters are
all distinct. This contradicts Lemma C.7 and concludes the proof. ut

It remains to give a proof of the combinatorial group theory lemma. This can be done
combinatorially by choosing two non-commuting elementsw1 andw2 inH and cyclically
conjugating w1 and w2 until three different letters arise. Instead, we present an elegant
geometric argument, which was suggested to us by Thomas Delzant.

Proof of Lemma C.8. In one word: a graph whose fundamental group is not Z must have
a vertex of degree at least 3. Let us now explain this sentence. The free group F2 is the
fundamental group of the wedge X of two circles. We can label the first circle by a and
the second by b and draw an arrow on each circle. The universal cover X̃ of X is a tree
with edges labelled by arrows and letters a or b, and F2 acts freely on it by graph auto-
morphisms. Every vertex has two incoming edges and two outgoing edges. The quotient
graph X̃/H is also a graph labelled in the same manner and its fundamental group is iso-
morphic to H . More precisely, if we fix the base point x0 of X (to be the intersection of
the two circles), a lift ˜̃x0 in X̃ and its projection x̃0 in X̃/H , then the homotopy classes
of loops based at x̃0 are in one-to-one correspondence with the elements of H . Non-
backtracking paths (i.e. paths not passing through the same edge consecutively) from x̃0
to x̃0 correspond to elements of H as one can read off the letters appearing in the words
in H as the sequence of letters read as one follows the path.

If x̃1 is another vertex of X̃/H , then the non-backtracking loops starting and ending
at x̃1 are in one-to-one correspondence with the reduced words in gHg−1, where g is any
element of the free group F2 such that g · x̃0 = x̃1. Now the graph X̃/H may be pruned by
deleting all branches with no loop: the resulting graph will have isomorphic fundamental
group and in particular, if H is non-abelian, then the graph will not be homotopic to a
circle and hence will admit a vertex, say x̃1, of degree at least 3. Thus there will exist
three non-backtracking paths around x̃1 with distinct last edge. This means that when
considering all reduced words appearing in gHg−1, at least three different letters will
arise as the last letter of a word. We are done. ut

Remark. Our proof in fact shows slightly more than the claim of Theorem C.1, namely
that every finitely generated Zariski-dense subgroup 0 of G(k) contains a strongly dense
free subgroup. This answers positively Problem 1 in our previous paper [BGGT] for the
affine group of the plane. This is because one can use the Zariski-density hypothesis to
locate elements a, b in the group 0 that obey the properties used in the above construction
(namely, that they are conjugate with one large eigenvalue, and have distinct fixed points
and distinct invariant lines). We omit the details.
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Appendix D. Strongly dense subgroups of Sp4

In this section, we complete the proof of the main theorem of [BGGT] by proving the
existence of strongly dense subgroups of Sp4(k) when k is an uncountable algebraically
closed field of characteristic 3. This case was left aside in [BGGT], because our proof
for all other groups broke down in that particular case (and only in that case). Actually,
our arguments here will work in all characteristics other than 2. Our main tool will be the
results of Appendix C. As in [BGGT], one can reduce to the case of finite transcendence
degree.

Henceforth we fix an uncountable algebraically closed field k with characteristic
not 2. Let G(k) = Sp4(k). Recall that a subset of G(k) is called generic if its com-
plement is contained in at most countably many proper algebraic subvarieties. We will
need the following general fact:

Lemma D.1. Suppose that G(k) is a semisimple algebraic group and that w,w′ ∈ F2
are non-commuting words. Then for generic (a, b) ∈ G(k)×G(k) the elements w(a, b),
w′(a, b) generate a group whose closure 〈w(a, b),w′(a, b)〉 is infinite and is either
(i) G(k) or (ii) a proper semisimple subgroup H < G(k) with rk(H) = rk(G).

Proof. See [BGGT, Lemma 2.7]. The key is to show that generically, w(a, b), w′(a, b),
and [w(a, b),w′(a, b)] each generate a Zariski-dense subgroup of a maximal torus (see
[BGGT, Lemma 2.6]). ut

Lemma D.2. Let w1, w2 be non-commuting words in F2, the free group on two gener-
ators. Then the set of (a, b) ∈ G(k) × G(k) with 〈w1(a, b), w2(a, b)〉 Zariski-dense in
G(k) is generic.

Proof. By Lemma D.1, the set of pairs (a, b) such that the Zariski closure of
〈w1(a, b), w2(a, b)〉 is semisimple of rank 2 is generic. Since the only proper semi-
simple rank 2 subgroups of G(k) are the stabilisers of non-degenerate 2-spaces in k4, we
see that either the result holds, or for every (a, b), 〈w1(a, b), w2(a, b)〉 stabilises some
2-dimensional subpace (in the natural 4-dimensional representation). This follows as in
[BGGT, Lemma 3.4(i)].

Let J be the derived subgroup of the stabiliser of a 1-dimensional subspace. So J
is the centraliser of a long root subgroup Z. Let Q be the unipotent radical of J . Then
Z = [Q,Q] and J/Z ∼= k2 o SL2(k). By Theorem C.1, there exists (a, b) ∈ J × J
such that Z〈w1(a, b), w2(a, b)〉 = J . Since Z is contained in the Frattini subgroup of J ,
this implies that J = 〈w1(a, b), w2(a, b)〉. However, J leaves no 2-dimensional space
invariant, whence the result. ut

Since there are only countably many pairs of words in F2, we immediately obtain the
following.

Theorem D.3. The set of (a, b) ∈ G(k) × G(k) with 〈a, b〉 free and strongly dense in
Sp4(k) is generic. In particular, at least one such pair (a, b) exists.
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Appendix E. Equivalence of one- and two-sided expansion

The purpose of this appendix is to establish that “combinatorial expansion implies spectral
expansion”. Though this is not needed elsewhere in the paper, it may be of interest to
readers.

Proposition E.1. Let G be a finite group, let k ≥ 1, and let x1, . . . , xk ∈ G be combina-
torially expanding in the sense that

|(Ax1 ∪ Ax
−1
1 ∪ · · · ∪ Axk ∪ Ax

−1
k ) \ A| ≥ ε′|A| (E.1)

for every set A ⊆ G with |A| ≤ |G|/2, and some ε′ > 0. Suppose also that there
does not exist an index two subgroup H of G which is disjoint from the x1, . . . , xk . Then
{x1, . . . , xk} is ε-expanding (in the sense of Definition 1.1) for some ε > 0 depending
only on ε′, k.

In other words: if a Cayley graph is an expander graph, and is not bi-partite, then the
averaging operator T defined in Definition 1.1 has spectrum not only bounded away from
1 but also from −1. This feature is quite special to Cayley graphs and does not hold for
arbitrary regular graphs.

Note that the condition that an index two subgroup H disjoint from x1, . . . , xk does
not exist is necessary, since otherwise the convolution operator T defined in Definition
1.1 has an eigenvalue at −1 with eigenfunction 1H − 1G\H , and the Cayley graph is
bi-partite. It is not hard to show that this is in fact the only way that T can attain an
eigenvalue at −1 if x1, . . . , xk generatesG. WhenG is a non-abelian simple group, there
are no index two subgroups H , and so we see that spectral expansion and combinatorial
expansion are essentially equivalent in this setting. From the discrete Cheeger inequality
(see [Al, AM, Do], or [Lu2, Prop. 4.2.4]) the combinatorial expansion hypothesis already
gives one side of ε-expansion, in that the operator T has spectrum in [−1, 1−ε] for some
ε > 0 depending only on ε′, k; the novelty in Proposition E.1 is that spectrum can also be
excluded in the interval (−1,−1+ ε]. On the other hand, our argument relies heavily on
the Cayley graph structure, whereas the discrete Cheeger inequality is valid for arbitrary
regular graphs.

We now prove this proposition. Let G, k, x1, . . . , xk, ε
′ be as in the proposition, and

let ε > 0 be a sufficiently small quantity (depending on ε′, k) to be chosen later. Write
S := {x1, . . . , xk, x

−1
1 , . . . , x−1

k }, thus (E.1) tells us that

|SA \ A| ≥ ε′|A| (E.2)

whenever A ⊂ G with |A| ≤ |G|/2. Since |SA \ A| is, up to a multiplicative constant
depending on k, the number of edges in the Cayley graph connectingA to its complement,
we also have the variant estimate

|SA \ A| ≥ ε′′|G \ A| (E.3)

when |A| ≥ |G|/2, where ε′′ > 0 depends on ε and k.
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We use o(X) to denote a quantity bounded in magnitude by cε′,k(ε)X, where cε′,k(ε)
is a quantity depending only on ε′, k, ε that goes to zero as ε → 0 for all fixed ε′, k.
Suppose for contradiction that T has a non-trivial eigenvalue outside of [−1+ ε, 1− ε],
so that T 2 has a non-trivial eigenvalue in [(1 − ε)2, 1]. Applying the discrete Cheeger
inequality [Al, AM, Do] to the (weighted) Cayley graph associated to S2, we can then
find a non-empty set A ⊂ G with |A| ≤ |G|/2 such that

|S2A \ A| = o(|A|).

In particular |S(A∪ SA) \ (A∪ SA)| = o(|A|), which by (E.2), (E.3) forces |A∪ SA| =
|G| − o(|A|) or |A ∪ SA| = o(|A|). The latter is not possible for ε small enough, hence
|A ∪ SA| = (1 − o(1))|G|; since |SA| ≤ |S2A| ≤ |A| + o(|A|) and |A| ≤ |G|/2, we
conclude that |A| = (1/2− o(1))|G|. Also we have

|SB 4 B| = o(|G|)

for B = A ∩ SA, which by another application of (E.2) forces |A ∩ SA| = o(|G|). In
particular, for any s ∈ S, since |sA| = |A| = (1/2 − o(1))|G|, we conclude that sA is
nearly the complement of A in the sense that

|sA4 (G \ A)| = o(|G|). (E.4)

Let g ∈ G be arbitrary; then we also have

|sAg 4 (G \ Ag)| = o(|G|).

Thus if we write Ag := A ∩ Ag and A′g := G \ (A ∪ Ag) then

|sAg 4 A
′
g| = o(|G|)

for all s ∈ S, and thus also by symmetry

|sA′g 4 Ag| = o(|G|).

Hence we have
|SB 4 B| = o(|G|)

for B equal to Ag ∪ A′g and its complement, which by (E.2) forces |Ag ∪ A′g| to equal
either o(|G|) or (1− o(1))|G|. Since |Ag ∪A′g| = 2|A∩Ag| and |A| = (1/2− o(1))|G|,
we arrive at the following dichotomy: for any g ∈ G, we have either

|A ∩ Ag| ≥ (1− o(1))|A| (E.5)
or

|A ∩ Ag| ≤ o(1)|A|. (E.6)

We now use a “pivoting” argument similar to that in an old paper of Freiman [F] (though
the use of the “pivot” terminology originates in [Hel2]). LetH denote the set of all g ∈ G
for which |A∩Ag| ≥ 0.9|A| (say) holds, which by the above dichotomy implies (E.5) (if
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ε is small enough). Clearly H is symmetric and contains the identity. Also, if g, h ∈ H ,
then by the triangle inequality we see that

|A ∩ Agh| ≥ (1− o(1))|A|

and so gh ∈ H . Thus H is a subgroup of G. On the other hand, from the estimate

|A|2 =
∑
g∈G

|A ∩ Ag| = |A| |H | + o(|G|2)

we see that
|H | = (1/2+ o(1))|G|

and hence the index of H in G is exactly 2 (if ε is small enough). Now note that∑
g∈H

|A ∩ Ag| = |A ∩H |2 + |A \ (A ∩H)|2

and thus by (E.5),

|A ∩H |2 + |A \ (A ∩H)|2 = |A|2 + o(|A|2),

which we can rearrange as

|A ∩H | |A \ (A ∩H)| = o(|G|2)

and thus one has |A4Hg| = o(|G|) for one of the two cosets Hg of G. From (E.4) one
concludes that

|sH ∩H | = o(|G|)

for all s ∈ S, which (for ε small enough) forces S ⊂ G \ H since any two cosets of H
are either equal or disjoint. But this contradicts the hypotheses of Proposition E.1, and the
claim follows.

Remark. There is a slightly different way to prove Proposition E.1 relying more on spec-
tral theory than on combinatorial methods, which we sketch here. The key observation
is that once one has the expansion property (E.1), then there cannot be two orthogonal
eigenfunctions φ,ψ in the region [−1,−1 + ε] of the spectrum for ε sufficiently small,
basically because the function φψ would then have mean zero and be almost T -invariant,
contradicting the Cheeger inequality.21 Thus, if there is an eigenfunction φ in this re-
gion, then it must be real-valued (up to multiplication by scalars), and every right shift
φ(·g) of this eigenfunction is equal to either φ or −φ. This gives a homomorphism from
G to {−1,+1} whose kernel H is an index two subgroup, with φ being a multiple of
1H − 1G\H , and as φ is an eigenfunction with eigenvalue close to −1 one can then easily
deduce that x1, . . . , xk ∈ G \H .

21 The argument is actually a bit more complicated than this, because φ,ψ are a priori only
bounded inL2 and so φψ is controlled only inL1 instead ofL2, and one needs additional arguments
related to the proof of the Cheeger inequality to address this, but we ignore this issue for the sake
of the sketch.
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