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Abstract. We consider volume-preserving perturbations of the time-one map of the geodesic flow
of a compact surface with negative curvature. We show that if the Liouville measure has Lebesgue
disintegration along the center foliation then the perturbation is itself the time-one map of a smooth
volume-preserving flow, and that otherwise the disintegration is necessarily atomic.
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1. Introduction

If F is a foliation with C1 leaves of a compact manifoldM , then for any Borel probability
measure µ on M , there is a unique disintegration {[µx] : x ∈ M} of µ along the leaves
of F . The elements [µx] are projective measures (that is, equivalence classes of measures
up to scaling) and are defined over a full µ-measure set of x ∈ M . Each representative µx
is supported on the leaf Fx of the foliation through x. Locally, a representative measureµx
can be described as follows. One fixes a foliation box B for F with its foliation by local
leaves {F loc

x : x ∈ B}. In this box, µx is simply the conditional measure of µ relative
to F loc, evaluated at x. The conditional measures {µx : x ∈ B} are probability measures
satisfying

µ(A) =

∫
B
µx(A) dµ(x)

for any Borel set A ⊂ B, and they are essentially uniquely defined.
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The opposing notions of Lebesgue disintegration and atomic disintegration are both
well-defined; µ has Lebesgue disintegration along F if for µ-almost every x, any rep-
resentative of [µx] is equivalent to (i.e. has the same zero sets as) Riemannian volume
on Fx , and µ has atomic disintegration if [µx] is an atomic class for µ-almost every x.
Throughout this paper, we restrict to the case where µ is a volume measure on M , which
we will always denote bym. If F is aC1 foliation, then any volume measure has Lebesgue
disintegration along F , but the converse is false. A weaker condition than C1 that implies
Lebesgue disintegration of volume is absolute continuity: a foliation is absolutely con-
tinuous if holonomy maps between smooth transversals send zero volume sets to zero
volume sets.

Lebesgue disintegration and in particular absolute continuity have long played a cen-
tral role in smooth ergodic theory. Anosov and Sinai [1, 2] proved in the 60’s that the
stable and unstable foliations of globally hyperbolic (or Anosov) systems are absolutely
continuous, even though they fail to be C1 in general. This was a key ingredient in
Anosov’s celebrated proof [1] that the geodesic flow for any compact, negatively curved
manifold is ergodic.

1.1. Perturbations of the time-one map of a geodesic flow

Let ϕt : T 1S → T 1S be the geodesic flow on the unit tangent bundle to a closed, neg-
atively curved surface S. We consider a discretization of this flow, namely its time-one
map ϕ1, and examine the properties of all diffeomorphisms f that are C1-close to ϕ1.

It follows from the work of Hirsch, Pugh, and Shub [24] that for any such pertur-
bation f of ϕ1, there exists an f -invariant center foliation Wc

= Wc(f ) with smooth
leaves, that is homeomorphic to the orbit foliation O of ϕt . Moreover, the homeomor-
phism h : T 1S → T 1S sending Wc to O can be chosen close to the identity.

The original orbit foliation O of ϕt is smooth, and hence volume has Lebesgue dis-
integration along O-leaves. If the perturbation f happens to be the time-one map of a
smooth flow, then Wc is the orbit foliation for that flow, and volume has Lebesgue disin-
tegration along Wc. In general, however, a perturbation f of ϕ1 has no reason to embed
in a smooth flow, and one can ask whether the disintegration of volume along Wc-leaves
is Lebesgue, atomic, or neither. We obtain a complete answer to this question when f
preserves volume.

Main Theorem 1. Let ϕt : T 1S → T 1S be the geodesic flow for a closed negatively
curved surface S and let m be the ϕt -invariant Liouville probability measure. There is
a C1-open neighborhood U of ϕ1 in the space Diff∞m (T

1S) of m-preserving diffeomor-
phisms of T 1S such that for each f ∈ U , either

(1) there exists k ≥ 1 and a fullm-measure set Z ⊂ T 1S that intersects every center leaf
in exactly k orbits of f , or

(2) f is the time-one map of an m-preserving C∞ flow.

In case (1), m has atomic disintegration, and in case (2) it has Lebesgue disintegration
along the center foliation Wc(f ).
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Theorem 1 gives conditions under which one can recover the action of a Lie group (in
this case R) from that of a discrete subgroup (in this case Z). These themes have arisen
in the related context of measure-rigidity for algebraic partially hyperbolic actions by
Einsiedler, Katok and Lindenstrauss [21]. It would be interesting to understand more
deeply the connections between these works. Results of a similar flavor to Theorem 1 but
for the stable and unstable foliations of Anosov diffeomorphisms and flows have been
proved by Benoist, Foulon and Labourie [6, 7].

1.2. Lyapunov exponents and absolute continuity

The hidden player in Theorem 1 is the concept of center Lyapunov exponents. A real
number χ is a center Lyapunov exponent of the partially hyperbolic diffeomorphism f :

M → M at x ∈ M if there exists a nonzero vector v ∈ Ecx such that

lim
n→∞

1
n

log ‖Df n(v)‖ = χ. (1.1)

If f preserves m, then Oseledec’s theorem implies that the limit in (1.1) exists for each
v ∈ Ecx , for m-almost every x. When the dimension of Ec(f ) is 1, the limit in (1.1)
depends only on x, and if in addition f is ergodic with respect to m, then the limit takes
a single value m-almost-everywhere. When we refer to a a center exponent with respect
to volume, we mean a value in (1.1) assumed on a positive volume set, and by the center
exponent with respect to volume we mean a (the) value assumed almost everywhere. Deep
connections between Lyapunov exponents and geometric properties of invariant measures
have long been understood [35, 36, 29, 31, 32, 26, 5]. In the context of partially hyperbolic
systems, some of these connections have come to light more recently.

Absolute continuity holds in great generality for the stable and unstable foliations of
partially hyperbolic systems [11, 37], and for Pesin stable and unstable laminations of
non-uniformly hyperbolic systems [35] (see also Pugh and Shub [38] for the nonconser-
vative case). On the other hand, and in sharp contrast, Shub and Wilkinson [50] showed
that center foliations of partially hyperbolic systems are, often, not absolutely continuous.
What is more, Ruelle and Wilkinson [49] showed that, in a similar setting, the disintegra-
tion of volume along center leaves is atomic, supported on finitely many points.

The mechanism behind these results is nonvanishing center exponents: for each f in
the open set of ergodic diffeomorphisms V ⊂ Diff∞ω (T3) constructed in [50], the center
Lyapunov exponent with respect to volume is nonzero. The examples in V are obtained by
perturbing the trivial extension of a hyperbolic automorphism of T2 on T3

= T2
× R/Z.

By [24], the center foliation Wc(f ) for each f ∈ V is homeomorphic to the trivial R/Z
fibration of T3

= T2
× R/Z; in particular, the center leaves are all compact. The almost

everywhere exponential growth associated with nonzero center exponents is incompati-
ble with the compactness of the center foliation, and so the full volume set with positive
center exponent must meet almost every leaf in a zero set (in fact a finite set) for these
examples. In general, for conservative systems with compact one-dimensional leaves, ab-
solute continuity cannot occur unless the center Lyapunov exponent vanishes, and this is
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a kind of codimension-one condition. Absolute continuity is much more common among
dissipative systems, as observed by Viana and Yang [52].

Similar results hold for perturbations of the time-one map of volume-preserving
Anosov flows: there exist open sets of perturbations with nonvanishing center exponents
(Dolgopyat [19]), and the results in [49] also imply that volume must have atomic disin-
tegration for these examples.

The heart of understanding the general perturbation of these and similar examples,
then, is to see what happens when the center Lyapunov exponents vanish. For this, we
use tools that originate in the study of random matrix products. The general theme of this
work, summarized by Ledrappier in [30], is that “entropy is smaller than exponents, and
entropy zero implies deterministic.” Original results concerning the Lyapunov exponents
of random matrix products, due to Furstenberg and Kesten [23, 22], Ledrappier [30], and
others, have been extended in the past decade to deterministic products of linear cocycles
over hyperbolic systems by Bonatti, Gomez-Mont and Viana [9, 10, 51]. The Bernoulli
and Markov measures associated to random products in those earlier works are replaced
in the newer results by invariant measures for the hyperbolic system carrying a suitable
product structure.

Recent work of Avila and Viana [4] extends this hyperbolic theory from linear to
smooth (diffeomorphism) cocycles, and we use these results in a central way. Also im-
portant for our proofs here are the results of Avila, Santamaria and Viana [3] for cocycles
over volume-preserving partially hyperbolic systems, both linear and smooth.

The ideas introduced in this work have already given rise to further applications in dis-
tinct settings: the study of measures of maximal entropy [44] and physical measures [52]
for partially hyperbolic diffeomorphisms with compact 1-dimensional center foliations.

2. Preliminaries

We start by recalling a few useful facts concerning foliations and partially hyperbolic
diffeomorphisms.

2.1. Foliations

Let M be a manifold of dimension d ≥ 2. A foliation (with Cr leaves) is a partition F
of the manifold M into Cr submanifolds of dimension k, for some 0 < k < d and
1 ≤ r ≤ ∞, such that for every p ∈ M there exists a continuous local chart

8 : Bk1 × B
d−k
1 → M (Bm1 denotes the unit ball in Rm)

with 8(0, 0) = p and such that the restriction to every horizontal Bk1 × {η} is a Cr

embedding depending continuously on η and whose image is contained in some F-leaf.
The image of such a chart8 is a foliation box and the8(Bk1 ×{η}) are the corresponding
local leaves.
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2.2. Partially hyperbolic diffeomorphisms

We say that a diffeomorphism f : M → M of a compact Riemannian manifold M is
partially hyperbolic if there exists a continuous, Df -invariant splitting TM = Eu ⊕

Ec ⊕ Es into nonzero bundles, and a positive integer k such that for every x ∈ M ,

‖(Df k|Eu(x))−1
‖
−1 > 1 > ‖Df k|Es(x)‖,

‖(Df k|Eu(x))−1
‖
−1 > ‖Df k|Ec(x)‖ ≥ ‖(Df k|Ec(x))−1

‖
−1 > ‖Df k|Es(x)‖.

The time-one map of an Anosov flow is partially hyperbolic and, since partial hyperbolic-
ity is a C1-open property, so are its perturbations. Since the geodesic flow for any closed,
negatively curved manifold is Anosov, the maps considered in this paper are all partially
hyperbolic. For a discussion of partial hyperbolicity, with examples and open questions,
see [13, 40, 46].

The stable and unstable bundles Es and Eu of a partially hyperbolic diffeomorphism
are always uniquely integrable, tangent to stable and unstable foliations, Ws and Wu

respectively. The center bundle Ec is not always integrable (see [45]), but in many ex-
amples of interest, such as the time-one map of an Anosov flow and its perturbations,
Ec is tangent to a foliation Wc, as are the bundles Ecs = Ec ⊕ Es and Ecu = Ec ⊕ Eu.
We say that a partially hyperbolic diffeomorphism f is dynamically coherent if there
exist f -invariant center stable and center unstable foliations Wcs and Wcu, tangent to
the bundles Ecs and Ecu, respectively; intersecting their leaves one obtains an invariant
center foliation Wc as well. Most of the facts here are proved in [24]. More detailed dis-
cussions can be found in [8], [16] and [17]. It is not known whether every perturbation of
a dynamically coherent diffeomorphism is dynamically coherent, but this does hold for
systems that are plaque expansive.

The notion of plaque expansiveness was introduced by Hirsch, Pugh and Shub [24],
who proved among other things that any perturbation of a plaque expansive diffeomor-
phism is dynamically coherent. Roughly, f is plaque expansive if pseudo orbits that re-
spect local leaves of the center foliation cannot shadow each other too closely (in the case
of Anosov diffeomorphisms, plaque expansiveness is the same as expansiveness, which
is automatic). Plaque expansiveness holds in a variety of natural settings; in particular if
f is dynamically coherent, and either Wc is a C1 foliation or the restriction of f to Wc

leaves is an isometry, then f is plaque expansive, and so every C1 perturbation of f is dy-
namically coherent. Moreover, plaque expansive systems enjoy the previously mentioned
stability property: the center foliations of any two perturbations are homeomorphic via a
map that intertwines the dynamics on the space of center leaves.

Because they are uniformly contracted/expanded by the dynamics, the leaves of stable
and unstable foliations are always contractible; this is not the case for center foliations.
One illustration is the previously mentioned example of the time-one map of an Anosov
flow, for which the center foliation O has both compact leaves (corresponding to periodic
orbits of the flow) and noncompact ones.

If f is dynamically coherent, then each leaf of Wcs is simultaneously subfoliated by
the leaves of Wc and by the leaves of Ws . Similarly Wcu is subfoliated by Wc and Wu.
This implies that for any two points x, y ∈ M with y ∈ Ws

x there is a neighborhood Ux
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of x in the leaf Wc
x and a homeomorphism hsx,y : Ux → Wc

y with the property that
hsx,y(x) = y and in general

hsx,y(z) ∈Ws
z ∩Wc

loc,y .

We refer to hsx,y as a (local) stable holonomy map. We similarly define unstable holonomy
maps between local center leaves. We note that, because the leaves of the stable and
unstable foliations are contractible, the local holonomy maps h∗x,y for ∗ ∈ {s, u} are well-
defined and are uniquely defined as germs by the endpoints x, y.

We say that f admits global stable holonomy maps if for every x, y ∈ M with y ∈Ws
x

there exists a homeomorphism hsx,y :Wc
x →Wc

y with the property that hsx,y(x) = y and
in general hsx,y(z) ∈ Ws

z ∩Wc
y . Since global stable holonomy maps must agree locally

with local stable holonomy, we use the same notation hsx,y for both local and global.
We similarly define global unstable holonomy maps and say that f admits global su-
holonomy maps if it admits both global stable and unstable holonomy. Note that if f
admits global su-holonomy, then all leaves of Wc are homeomorphic.

Given r > 0, we say that f is r-bunched if there exists k ≥ 1 such that:

sup
p
‖Dpf

k
|Es‖ ‖(Dpf

k
|Ec)−1

‖
r < 1,

sup
p
‖(Dpf

k
|Eu)−1

‖ ‖Dpf
k
|Ec‖r < 1,

sup
p
‖Dpf

k
|Es‖ ‖(Dpf

k
|Ec)−1

‖ ‖Dpf
k
|Ec‖r < 1,

sup
p
‖(Dpf

k
|Eu)−1

‖ ‖Dpf
k
|Ec‖ ‖(Dpf

k
|Ec)−1

‖
r < 1.

(2.1)

When f is Cr and dynamically coherent, these inequalities ensure that the leaves of Wcs ,
Wcu, and Wc are Cr . If f is Cr+1 and dynamically coherent they also imply that the
local stable and local unstable holonomies are Cr local diffeomorphisms. See Pugh, Shub
and Wilkinson [41, 53]. We say that f is center bunched if it is 1-bunched. If Ec is one-
dimensional, then f is automatically center bunched. For a fixed r , the r-bunching prop-
erty is C1-open: any sufficiently C1-small perturbation of an r-bunched diffeomorphism
is r-bunched.

The ergodic-theoretic properties of center bunched partially hyperbolic diffeomor-
phisms are in many ways well understood. The state of the art is the following result.

Theorem 2.1 ([17]). Let f be C2, volume-preserving, partially hyperbolic and center
bunched. If f is (essentially) accessible, then f is ergodic with respect to the volume
measure.

A partially hyperbolic diffeomorphism is called accessible if any two points in the am-
bient manifold may be joined by an su-path, that is, a piecewise smooth path such that
every leg is contained in a single leaf of Ws or a single leaf of Wu. More generally, the
diffeomorphism is essentially accessible if, given any two sets with positive volume, one
can join some point of one to some point of the other by an su-path. Pugh and Shub [39]
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have conjectured that accessibility holds for a Cr -open and dense subset of the partially
hyperbolic diffeomorphisms, volume-preserving or not.

Concerning the conjecture, it was shown by Dolgopyat and Wilkinson [20] that acces-
sibility holds for a C1-open and dense subset of all partially hyperbolic diffeomorphisms,
volume-preserving or not. Moreover, Didier [18] proved that accessibility is C1-open for
systems with 1-dimensional center bundle; that is, accessibility implies stable accessi-
bility for such systems. More recently, Rodriguez Hertz, Rodriguez Hertz and Ures [47]
checked the complete conjecture for conservative systems whose center bundle is one-
dimensional: accessibility is Cr -dense among Cr partially hyperbolic diffeomorphisms,
for any r ≥ 1. A version of this statement for nonconservative diffeomorphisms was
obtained in [15]. It remains open whether Cr -density still holds when dimEc > 1.

Returning to the context of this paper, stable accessibility has been shown to hold for
the time-one map of any geodesic flow in negative curvature [27] and more generally for
the time-one map of any mixing Anosov flow [14]. Hence the map ϕ1 in Theorem A—
and in fact any C1-small perturbation of ϕ1—is accessible. Combining this fact with
Theorem 2.1, we see ϕ1 is stably ergodic: any C2, volume-preserving diffeomorphism
that is sufficiently C1-close to ϕ1 is ergodic with respect to the volume measure.

3. Disintegration of measure

We begin with a general discussion of disintegration of measures.

3.1. Measurable partitions and disintegration of measure

Let Z be a Polish metric space, let µ be a finite Borel measure on Z, and let P be a
partition of Z into measurable sets. Denote by µ̂ the induced measure on the σ -algebra
generated by P , which may be naturally regarded as a measure on P .

A system of conditional measures (or a disintegration) of µ with respect to P is a
family {µP }P∈P of probability measures on Z such that

1. µP (P ) = 1 for µ-almost every P ∈ P .
2. Given any continuous function ψ : Z → R, the function P 7→

∫
ψ dµP is measur-

able, and ∫
M

ψ dµ =

∫
P

(∫
ψ dµP

)
dµ̂(P ).

It is not always possible to disintegrate a probability measure with respect to a parti-
tion—we discuss examples below—but disintegration is always possible if P is a measur-
able partition. We say that P is a measurable partition if there exist measurable subsets
E1, E2, . . . of Z such that

P = {E1, Z \ E1} ∨ {E2, Z \ E2} ∨ · · · mod 0. (3.1)

In other words, there exists a full µ-measure subset F0 ⊂ Z such that, for any atom P

of P , we have
P ∩ F0 = E

∗

1 ∩ E
∗

2 ∩ · · · ∩ F0
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where E∗i is either Ei or Z \ Ei , for i ≥ 1. Our interest in measurability of a partition
derives from the following fundamental result.

Theorem 3.1 (Rokhlin [48]). If P is a measurable partition, then there exists a system
of conditional measures relative to P . It is essentially unique in the sense that two such
systems coincide on a set of full µ̂-measure.

3.2. Disintegration of measure along foliations with noncompact leaves

The disintegration theorem of Rokhlin [48] does not apply directly when a foliation has
a positive measure set of noncompact leaves. Instead, one must consider disintegrations
into measures defined up to scaling, that is, equivalence classes where one identifies any
two (possibly infinite) measures that differ only by a constant factor. Here we present this
theory in a fairly general setting. See also [28, §4] and [33, §3].

Let M be a manifold of dimension d ≥ 2, and let m be a locally finite measure on M .
Let B be any (small) foliation box. By Rokhlin [48], there is a disintegration {mB

x : x ∈ B}
of the restriction of m to the foliation box into conditional probabilities along the local
leaves, and this disintegration is essentially unique. The crucial observation is that con-
ditional measures corresponding to different foliation boxes coincide on the intersection,
up to a constant factor.

Lemma 3.2. For any foliation boxes B and B′ and for m-almost every x ∈ B ∩ B′, the
restrictions of mB

x and mB′
x to B ∩ B′ coincide up to a constant factor.

Proof. Let 6 be a cross-section to B, that is, a submanifold of dimension d − k inter-
secting every local leaf at exactly one point. Let µB be the measure on 6 obtained by
projecting m|B along the local leaves. Consider any C ⊂ B and let µC be the image of
m|C under the projection along the local leaves. The Radon–Nikodym derivative

dµC
dµB

∈ (0, 1] at µC-almost every point.

For any measurable set E ⊂ C,

m(E) =

∫
6

mB
ξ (E) dµB(ξ) =

∫
6

mB
ξ (E)

dµB
dµC

(ξ) dµC(ξ).

By essential uniqueness, this proves that the disintegration of m|C along the local leaves
is given by

mC
x =

dµB
dµC

(ξ)(mB
x |C) for m-almost every x ∈ C (3.2)

where ξ is the point where the local leaf through x intersects6. Now we take C = B∩B′.
Using (3.2) twice we get

dµB
dµC

(ξ)(mB
x |C) =

dµ′B
dµC

(ξ)(mB′
x |C)

for m-almost every x. This proves the lemma. ut
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This implies that there exists a family {mx : x ∈ M} where each mx is a measure defined
up to scaling with mx(M \ Fx) = 0, the function x 7→ mx is constant on the leaves
of F , and the conditional probabilities mB

x along the local leaves of any foliation box B
coincide almost everywhere with the normalized restrictions of the mx to the local leaves
of B. It is also clear from the arguments that such a family is essentially unique. We call
it the disintegration of m and refer to the mx as conditional classes of m along the leaves
of F .

3.3. Foliations whose leaves are fixed under a measure-preserving homeomorphism

Now suppose the foliation F is invariant under a homeomorphism f : M → M , meaning
that f (Fx) = Ff (x) for every x ∈ M . Take the measure m to be invariant under f . Then,
by essential uniqueness of the disintegration, f∗(mx) = mf (x) for almost every x. We are
especially interested in the case when f fixes every leaf, that is, when f (x) ∈ Fx for
all x ∈ M . Then f∗(mx) = mf (x) for almost every x, which means that every represen-
tative mx of the conditional class mx is f -invariant up to rescaling: f∗(mx) = cmx for
some c > 0. Actually, the scaling factor c is 1:

Proposition 3.3. Suppose that m is invariant under a homeomorphism f : M → M

that fixes all the leaves of F . Then, for almost all x ∈ M , any representative mx of the
conditional class mx is an f -invariant measure.

Proof. Fix x0 ∈ M and let B be a foliation box containing both x0 and f (x0). Let 6 be a
cross-section to B and let µB be the image ofm|B under the projection p : B→ 6 along
the local leaves. Choose representatives mx of the conditional classes scaled so that the
restriction of mx to the local leaf FB

x through every x ∈ B is a probability. Then

mB
x = mx |FB

x . (3.3)

Now let B0 be a foliation box containing x0, small enough that B0 and B1 = f (B0) are
both contained in B. Note that m|B1 = f∗(m|B0), because m is invariant, and p ◦ f = p,
because all the leaves are fixed by f . Thus, p∗(m|B0) = p∗(m|B1). We denote this
measure by ν. By (3.2) and (3.3),

mB0
x =

dµB
dν

(ξ)(mx |FB0
x ) and mB1

y =
dµB
dν

(η)(my |FB1
y )

for almost every x ∈ B0 and y ∈ B1, where ξ = p(x) and η = p(y). On the other hand,
since f maps local leaves of B0 to local leaves of B1, the images of the mB0

x under f
define a disintegration of m|B1 along the leaves. By essential uniqueness, it follows that

dµB
dν

(η)(my |FB1
y ) = mB1

y = f∗(m
B0
x ) =

dµB
dν

(ξ)f∗(mx |FB0
x )

for almost every x ∈ B0, where y = f (x). Since mx = my and ξ = η, it follows
that (mx |FB1

f (x)) = f∗(mx |F
B0
x ) for almost every x ∈ B0. This proves that mx is indeed

invariant (the scaling factor is 1) for almost every point in B0. Covering M with such
foliation boxes one gets the conclusion of the proposition. ut
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3.4. Absolute continuity

This is analyzed in a lot more detail in [42]. Here we just present a few facts that are
useful for what follows. As above, let M be a Riemannian manifold. Let λ6 denote the
volume measure induced by the Riemann metric on a C1 submanifold 6 of M .

The classical definition of absolute continuity [1, 2] goes as follows. A foliation F on
M is absolutely continuous if every holonomy map h6,6′ between a pair of smooth cross-
sections6 and6′ is absolutely continuous, meaning that the push-forward (h6,6′)∗λ6 is
absolutely continuous with respect to λ6′ . Reversing the roles of the cross-sections, one
sees that (h6,6′)∗λ6 is actually equivalent to λ6′ .

Here it is convenient to introduce the following weaker notion. We say that volume
has Lebesgue disintegration along F-leaves if given any measurable set Y ⊂ M , we have
m(Y) = 0 if and only if for m-almost every z ∈ M the leaf L through z meets Y in a zero
λL-measure set. In other words, for almost every leaf L, the conditional measure mL of
m along the leaf is equivalent to the Riemann measure λL on the leaf.

Lemma 3.4. If F is absolutely continuous then volume has Lebesgue disintegration
along F-leaves.

Proof. Fixing a smooth foliation transverse to F , and using the fact that the holonomies
are absolutely continuous, one defines a local change of coordinates

(x, y) 7→ (x, h(0, x)(y))

that rectifies the leaves of F and transformsm to a measure of the form J (x, y)dxdy with
J > 0. Lebesgue disintegration is clear in these coordinates. ut

The converse is false: one can destroy absolute continuity of holonomy at a single trans-
versal while keeping Lebesgue disintegration of volume (this is an exercise in Brin and
Stuck [12]).

Lemma 3.5. Let f : M → M be C2 and partially hyperbolic. The foliations Ws(f ) and
Wu(f ) are absolutely continuous, and hence volume has Lebesgue disintegration along
Ws(f )- and Wu(f )-leaves.

Proof. This is a classical fact going back to Brin and Pesin [11]. ut

4. Lyapunov exponents and an invariance principle

In this section, we describe the main results we use concerning Lyapunov exponents and
invariant measures of smooth cocycles.

Let F : E → E be a continuous smooth cocycle over f , in the sense of [3, 4]. This
means that π : E → M is a continuous fiber bundle with fibers modeled on some Rieman-
nian manifold, and F is a continuous fiber bundle morphism over a Borel measurable map
f : M → M acting on the fibers by diffeomorphisms with uniformly bounded deriva-
tive. Let µ̂ be an F-invariant probability measure on E that projects to an f -invariant
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measure µ. We denote by Ex the fiber π−1(x) and by Fx : Ex → Ef (x) the induced
diffeomorphism on fibers.

We say that a real number χ is a fiberwise exponent of F at ξ ∈ E if there exists a
nonzero vector v ∈ TξEπ(ξ) in the tangent space to the fiber at ξ such that

lim
n→∞

1
n

log ‖DξFn(v)‖ = χ.

By Oseledec’s theorem, this limit χ(ξ, v) exists for µ̂-almost every ξ ∈ E and every
nonzero v ∈ TξEπ(ξ), and it takes finitely many values at each such ξ . Let

χ(ξ) = sup
‖v‖=1

χ(ξ, v) and χ(ξ) = inf
‖v‖=1

χ(ξ, v).

The following result follows almost immediately from [49, Theorem II] and uses no
assumptions on the base dynamics f : M → M other than invertibility. The hypothesis
on the fibers can be weakened, but the statement that follows is sufficient for our purposes.

Theorem 4.1 ([49]). Let F : E → E be a smooth cocycle over f . Assume that the
fibers of E are compact. Assume that F preserves an ergodic probability measure µ̂ that
projects to an (f -invariant, ergodic) probability µ onM and that f is invertible on a full
µ-measure set. Let X− be the set of ξ ∈ E such that χ(ξ) < 0, and X+ be the set of ξ ∈ E
such that χ(ξ) > 0. Then both X− and X+ coincide up to zero µ̂-measure subsets with
measurable sets that intersect each fiber of E in finitely many points.

The next result, from [3, 4], treats the possibility that all fiberwise exponents vanish. It
admits more general formulations, but we state it in the context in which we will use it,
namely, when f is a partially hyperbolic diffeomorphism.

We say that F admits a ∗-holonomy for ∗ ∈ {s, u} if, for every pair of points x, y lying
in the same W∗-leaf, there exists a Hölder continuous homeomorphism H ∗x,y : Ex → Ey
with uniform Hölder exponent, satisfying:

(i) H ∗x,x = id,
(ii) H ∗x,z = H

∗
y,z ◦H

∗
x,y ,

(iii) Fy ◦H
∗
x,y = H

∗

f (x),f (y) ◦ Fx , and
(iv) (x, y) 7→ H ∗x,y(ξ) is continuous on the space of pairs of points (x, y) in the same

local W∗-leaf, uniformly in ξ .

The existence of a ∗-holonomy is equivalent to the existence of an F-invariant foliation
(with potentially nonsmooth leaves) of E whose leaves project homeomorphically (in the
instrinsic leaf topology) to W∗-leaves in M .

A disintegration {µ̂x : x ∈ M} is ∗-invariant, where ∗ ∈ {s, u}, over a set X ⊂ M

if the homeomorphism H ∗x,y pushes µ̂x forward to µ̂y for all x, y ∈ X with y ∈ W∗x .
We call a set X ⊂ M ∗-saturated, ∗ ∈ {s, cs, c, cu, u}, if it consists of entire leaves
of W∗. Observe that f is accessible if and only if the only nonempty set inM that is both
s-saturated and u-saturated is M itself.
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Theorem 4.2 ([3, Theorem C]). Let F be a smooth cocycle over the C2, volume-pre-
serving partially hyperbolic diffeomorphism f . Assume that f is center bunched and
accessible and that F preserves a probability measure m̂ that projects to the volume m.
Suppose that χ(ξ) = χ(ξ) = 0 for m̂-almost every ξ ∈ E . Then there exists a continuous
disintegration {m̂sux : x ∈ M} of m̂ that is invariant under both s-holonomy and u-
holonomy.

Notice that the hypotheses on f in Theorem 4.2 coincide with the hypotheses of the
ergodicity criterion in Theorem 2.1; they are satisfied by all maps considered in this paper.

5. Starting the proof of Theorem A

The proof of Theorem A runs through this and the next two sections. Here we con-
struct, over every diffeomorphism close to the time-one map, a certain smooth cocycle
F : E → E with su-holonomy, endowed with an invariant measure mE , whose fiberwise
Lyapunov exponent coincides with the center Lyapunov exponent of the diffeomorphism.

Let S be a negatively curved surface and ϕt : M → M be the geodesic flow on the
unit tangent bundle M = T 1S, whose orbits are lifts to M of geodesics in S. The unit
tangent bundle M̃ = T 1S̃ of the universal cover S̃ is a cover (though not the universal
cover) of M and the geodesic flow ϕ̃t : M̃ → M̃ covers ϕt . Since S is negatively curved,
the Cartan–Hadamard Theorem implies that S̃ is contractible and the exponential map
expp : TpS̃ → S̃ is a diffeomorphism for each p ∈ M . In particular, the orbits of ϕ̃t are
all open, diffeomorphic to R.

Consider the time-one map ϕ1, and note that ϕ̃1 is a lift of ϕ1. As explained in Sec-
tion 2.2, the map ϕ1 is partially hyperbolic, center bunched and stably accessible. The-
orem 2.1 implies that ϕ1 is stably ergodic. The foliation Wc(ϕ̃1) by ϕ̃-orbits is clearly
ϕ̃1-invariant, and ϕ̃1 acts as translation by 1 in each Wc(ϕ̃1)-leaf. The foliation Wc(ϕ̃1) is
also normally hyperbolic and, being smooth, plaque expansive. The projection of Wc(ϕ̃1)

to M is the center foliation Wc(ϕ1). It has a natural orientation determined by the vector
field ϕ̇.

Let f : M → M be a C∞ volume-preserving diffeomorphism C1-close to ϕ1. Then
f is partially hyperbolic, center bunched, accessible and ergodic. In addition, f is dy-
namically coherent. Let f̃ : M̃ → M̃ be the lift of f that is C1-close to ϕ̃1. The lifted
foliations W∗(f̃ ) are homeomorphic to W∗(ϕ̃1) for ∗ ∈ {c, cu, cs}. The action of f̃ on
each leaf of Wc(f̃ ) is uniformly close to translation by 1, and therefore is topologically
conjugate to a translation. The leaves of Wcs(f̃ ) are bifoliated by the leaves of Wc(f̃ )

and Ws(f̃ ). Before perturbation, the Ws(ϕ̃1)-holonomy maps between center leaves are
orientation-preserving isometries: this follows from the fact that the flow ϕt preserves the
stable foliation.

Lemma 5.1. The map f̃ admits global su-holonomy.

Proof. To check that f̃ admits global stable holonomy maps, we must show that for any
v, v′ ∈ M̃ with v′ ∈ Ws(f̃ )v , and for every w ∈ Wc(f̃ )v , there is a unique point w′ in
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the intersection Ws(f̃ )w ∩Wc(f̃ )v′ . Since f̃ acts on center leaves close to translation
by 1, and uniformly contracts stable leaves, it suffices to prove this claim for w lying a
distance ≤ 2 from v, and v′ a fixed small distance from v. But the claim clearly holds
in this case, since the stable holonomy for f̃ between center leaves at a distance ≤ ε is
uniformly close to the stable holonomy of ϕ1, which is an isometry. This proves that f̃
has global stable holonomy. The proof for unstable holonomy is analogous. ut

The fact that f̃ admits global su-holonomy allows us to construct a fiber bundle Ẽ over M̃
whose fibers are leaves of the center foliation Wc(f̃ ), as follows. For v,w ∈ M̃ and
∗ ∈ {s, c, u}, we write v ∼∗ w if v ∈W∗(f̃ )w. Let

Ẽ = {(v,w) ∈ M̃2
| v ∼c w}

and let p̃1, p̃2 : Ẽ → M̃ be the coordinate projections onto the first and second M̃ factor,
respectively.

Lemma 5.2. The projection p̃1 : Ẽ → M̃ defines a fiber bundle with the following
properties:

(1) p̃2 sends each fiber Ẽv = (p̃1)
−1(v), v ∈ M̃ , homeomorphically onto the center leaf

Wc(f̃ )v;
(2) Ẽ admits a canonical continuous “diagonal” section sending each v ∈ M̃ to (v, v) =

(p̃2)
−1(v) ∩ Ẽv .

We remark that the conclusions of this lemma hold with the roles of p̃1 and p̃2 switched.
When we refer to the “fiber bundle Ẽ”, it is with respect to the first projection p̃1.

Proof. Given any v ∈ M̃ and v′ in a small neighborhood U of v in M̃ , define w to be the
point in Ws

loc(f̃ )v ∩Wcu
loc(f̃ )v′ and w′ to be the point in Wu

loc(f̃ )w ∩Wc
loc(f̃ )v′ . Notice

that w and w′ depend continuously on v′. Then hv,v′ = huw,w′ ◦h
s
v,w is a homeomorphism

from Wc(f̃ )v to Wc(f̃ )v′ that depends continuously on v′. It follows that

gv,U : U ×Wc(f̃ )v → π−1(U), (v′, η) 7→ (v′, hv,v′(η)),

is a homeomorphism mapping each vertical {v′} ×Wc(f̃ )v to (p̃1)
−1(v′). This defines

on Ẽ the structure of a continuous fiber bundle. It is clear that every fiber (p̃1)
−1(v) =

{v} ×Wc(f̃ )v is mapped homeomorphically to Wc(f̃ )v by the second projection p̃2, as
claimed in (1). The diagonal embedding M̃ → Ẽ defines a section as in (2). ut

The fundamental group π1(S) acts on M̃ by isometries preserving the ∼∗ equivalence
relations:

v ∼∗ w ⇒ γ v ∼∗ γw, for all γ ∈ π1(S), v,w ∈ M̃ and ∗ ∈ {s, u, c}.

Consider the induced diagonal action of π1(S) on M̃2. Since this action preserves the ∼c
relation and the product structure, it preserves the fiber bundle Ẽ . The stabilizer of each
fiber of Ẽ under this action is trivial.
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There is also a Z× Z-action ρ̃ on M̃2 commuting with the π1(S)-action, defined by

ρ̃(m, n)(x, y) = (f̃ n(x), f̃m(y)).

Then ρ̃ also preserves the ∼∗ equivalence relations and in particular defines an action
on Ẽ . The action of ρ̃(1, 0) on each p̃1-fiber is topologically conjugate to a translation, and
the action of ρ̃(0, 1) on each p̃2-fiber is also conjugate to a translation. Let F̃ = ρ̃(1, 1)
and G̃ = ρ̃(0, 1). Note that

p̃1 ◦ F̃ = f̃ ◦ p̃1, p̃2 ◦ F̃ = f̃ ◦ p̃2, p̃1 ◦ G̃ = p̃1, p̃2 ◦ G̃ = f̃ ◦ p̃2.

Let E be the quotient of Ẽ by the diagonal π1(S)-action. Denote by pi : E → M ,
i = 1, 2, the quotient projections. The fibers of p1 : E → M are homeomorphic to R,
and for any v ∈ M ,

p2 ◦ p
−1
1 (v) = p1 ◦ p

−1
2 (v) =Wc(f )v.

Since ρ̃ commutes with the π1(S)-action on Ẽ , it also induces an action on the bundle E ,
which we denote by ρ. Let F = ρ(1, 1) and G = ρ(0, 1). Then

p1 ◦ F = f ◦ p1, p2 ◦ F = f ◦ p2, p1 ◦G = p1, p2 ◦G = f ◦ p2.

The fiber Ev of E over v ∈ M is naturally identified with the leaf Wc(f̃ )v′ through any
lift v′ of v to M̃ . The action of G on this fiber is then naturally identified with the action
of f̃ on this leaf. For almost every (all but countably many) v ∈ M , the leaf Wc(f )v
is noncompact and hence is canonically identified with any lift to M̃ . For such v, we
identify Ev with Wc(f )v and the action of G on Ev with the action of f .

We define F̃-invariant foliations F̃∗ of the bundle Ẽ whose leaves project homeomor-
phically under p̃1 to leaves of W∗(f̃ ), as follows:

F̃∗(v,w) = {(v
′, w′) ∈ Ẽ | v′ ∼∗ v and w′ ∼∗ w}

for ∗ ∈ {s, u} (recall Lemma 5.1) and

F̃c
(v,w) = {(v

′, w) ∈ Ẽ | v′ ∼c v} = {(v′, w) ∈ Ẽ | v′ ∼c w} = (p̃2)
−1(w).

It follows from the construction that F̃∗ is invariant under the action ρ̃. Notice that for
∗ ∈ {s, u}, the leaves of F̃∗ also project homeomorphically under p̃2 to leaves of W∗(f̃ ).

Let F∗ be the induced quotient foliations of E . Those foliations are clearly F-invariant.
By definition, for each ∗ ∈ {s, u} and any v, v′ lying in the same W∗-leaf in M , there
exists a holonomy map

H ∗v,v′ : Ev → Ev′ (5.1)

sending ξ ∈ Ev to the unique point H ∗
v,v′
(ξ) in the intersection F∗(ξ)∩ Ev′ . Invariance of

the foliations F∗ under F implies that for ∗ ∈ {s, u}, we have

F ◦H ∗v,v′ = H
∗

f (v),f (v′) ◦ F. (5.2)

In other words, the cocycle F : E → E admits su-holonomy. It will also be useful to
consider the c-holonomy

H c
v,v′ : Ev → Ev′ , (5.3)

which is given by (v,w) 7→ (v′, w) for all v, v′ in the same Wc-leaf inM . The invariance
property (5.2) remains valid for the c-holonomy.
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5.1. Constructing a measure on E

Denote by m̃ the π1(S)-invariant lift ofm to M̃ . It is a σ -finite, f̃ -invariant measure whose
restriction to any π1(S) fundamental domain is a probability measure that projects to m
on M . We next construct a Radon measure m̃Ẽ on Ẽ that projects to m̃, whose restriction
to a 〈G̃, π1(S)〉 fundamental domain is a probability measure and which is ρ̃-invariant
and π1(S)-invariant.

For v andw lying in the same Wc(f̃ )-leaf, we denote by [v,w) the positively oriented
arc in Wc(f̃ )v from v to w. Let {m̃v} be a disintegration of m̃ along Wc(f̃ )-leaves. For
each v ∈ M̃ , choose a representative m̃v of the conditional class m̃v normalized by

m̃v
(
[v, f̃ (v))

)
= 1. (5.4)

(By f̃ -invariance, the class m̃v is nonvanishing over a fundamental domain of the action
of f̃ on Wc(f̃ )v , for m̃-almost every v, so that (5.4) does make sense.) This choice of a
normalization immediately implies that

f̃∗m̃v = m̃f̃ (v). (5.5)

Moreover, using Proposition 3.3, we have

m̃v
(
[w, f̃ (w))

)
= m̃v

(
[v, f̃ (v))

)
= 1 for every w ∈Wc(f̃ )v ,

so that
m̃w = m̃v for every w ∈Wc(f̃ )v . (5.6)

Then m̃Ẽ = m̃vdm̃(v) defines a Radon measure on Ẽ that is F̃-invariant, by the choice
of normalization (5.4); G̃-invariant, because of property (5.5); and π1(S)-invariant, since
m̃ is.

The measure m̃Ẽ projects to a measure mE on E ; writing mE = mvdm(v), the con-
ditional measure mv of mE on each fiber Ev is naturally identified with the measure m̃v′ ,
where v′ is any lift of v to M̃ . In particular,

mw = mv for every w ∈Wc(f )v, (5.7)
f∗mv = mf (v) = mv for every v ∈ M. (5.8)

Property (5.7) may be rewritten as (H c
v,w)∗mv = mw for every v,w in the same cen-

ter leaf; we say that the family {mv} is invariant under c-holonomy. For those v ∈ M
for which the center leaf is noncompact, the measure mv can be naturally regarded as a
measure on Wc(f )v via the push-forward under p2|Ev .

Let 6̃ ⊂ Ẽ be the “half-closed” set bounded by the diagonal section of Ẽ and its image
under G̃, including the former and excluding the latter. Notice that 6̃ is F̃-invariant and
π1(S)-invariant. We denote by m̃6̃ the restriction of the measure m̃Ẽ to 6̃. Then m̃6̃ is
also F̃-invariant and π1(S)-invariant.

Lemma 5.3. (p̃1)∗m̃6̃ = m̃ = (p̃2)∗m̃6̃ .
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Proof. The first equality is a direct consequence of the normalization (5.4). To prove the
second one, begin by noting that

(i) (p̃2)∗m̃6̃ is the π1(S)-invariant lift of a probability measure on M .

Indeed, m̃6̃ is π1(S)-invariant, and if 6̃0 ⊂ 6̃ is a fundamental domain for the π1(S)-
action on Ẽ then m̃Ẽ (6̃0) = 1, since (p̃1)∗(m̃Ẽ |6̃) = m̃. Moreover,

(ii) (p̃2)∗m̃6̃ is f̃ -invariant.

That is because m̃6̃ is F̃-invariant. Furthermore,

(iii) (p̃2)∗m̃6̃ is absolutely continuous with respect to m̃.

Indeed, if a Borel set X ⊂ M̃ has zero m̃-measure, then m̃v(X) = 0 for m̃-almost every
v ∈ M̃ , and then the definition of m̃Ẽ gives m̃Ẽ ((p̃2)

−1(X)) = 0. Since f is m-ergodic,
m̃ is the unique measure on M̃ satisfying properties (i)–(iii). So, (p̃2)∗m̃6̃ = m̃ as
claimed. ut

Let 6 be the projection of 6̃ to E ; equivalently, 6 is the “half-closed” set bounded by
the diagonal section of E and its image under G, including the former and excluding the
latter. Let m6 be the probability measure on E induced by m̃6̃ . Note that m6 gives zero
measure to the complement of6, and hence it is supported on the closure of6. Moreover,
m6 is F-invariant and satisfies

(p1)∗m6 = m = (p2)∗m6 . (5.9)

Recalling that almost every fiber Ev is naturally identified with Wc(f )v , we can write
m6 = (mv|[v, f (v))) dm(v).

5.2. Lyapunov exponents

Let χc(v) denote the center Lyapunov exponent of f at a point v ∈ M , that is,

χc(v) = lim
n→∞

1
n

log ‖Df n|Ecv‖.

By ergodicity, there exists χc ∈ R such that χc(v) = χc for m-almost every v ∈ M .
Since Ec is 1-dimensional, the ergodic theorem ensures that χc can be expressed as an
integral

χc =

∫
M

log ‖Df |Ecv‖ dm(v),

with respect to any fixed Riemannian structure on M .

Lemma 5.4. The fiberwise exponent of the cocycle F exists at a point ξ ∈ E if and only
if the center Lyapunov exponent for f exists at p2(ξ), and then the two are equal:

lim
n→∞

1
n

log ‖DξFn‖ = χc(p2(ξ)).

In particular, the fiberwise exponent of the cocycle F is equal to χc almost everywhere
with respect to m6 .
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Proof. Note that the F-orbit of any ξ ∈ E is precompact (indeed, {Gk(6)}k∈Z is a parti-
tion of E into precompact F-invariant sets), and so the existence and value of the fibered
Lyapunov exponent at ξ do not depend on a particular choice of a fiberwise Riemannian
metric. Since p2 restricts to an immersion on each fiber of E , a particular choice of fiber-
wise Riemannian metric can be obtained by pulling back the Riemannian metric on M
under p2. With respect to this metric, we have the identity ‖DξF‖ = ‖Df |Ecp2(ξ)

‖ (where
the derivative of F is taken along the fibers of E). The conclusion follows. ut

6. The atomic case

At this point there are two very different cases in our analysis: χc 6= 0 and χc = 0. The
first is handled easily by existing methods and implies that Wc(f ) has atomic disintegra-
tion of volume. In handling the second case, we will introduce the meat of the arguments
in this paper.

6.1. The case of nonvanishing center exponents

Suppose that χc 6= 0. Let X = {v ∈ M | χc(v) = χc}, which is a full measure subset
of M . Let X = p−1

2 (X) ∩ 6; Lemma 5.4 implies that X is the set of ξ ∈ 6 where the
fiberwise exponent of F is equal to χc. We want to use Theorem 4.1 to conclude that X
coincides, up to zero m6-measure, with a measurable set Y ⊂ 6 meeting almost every
fiber of E in finitely many points.

Strictly speaking, the theorem does not apply directly to the fiber bundle 6 → M ,
because its fibers are not compact. However, this can be turned into a fiber bundle6→ M

with compact fibers: just take 6 to be the quotient of E by G, so that the quotient map
restricts to a continuous bijection P : 6 → 6. The map F goes down to the quotient
to define a smooth cocycle F on 6, which admits an invariant measure P∗(m6 |6). Fix
an arbitrary Riemannian metric on the fibers of 6 depending continuously on the base
point; any two such metrics are uniformly equivalent, since 6 is compact. Notice that the
restriction of P to each fiber is smooth, with derivative uniformly bounded away from
zero and infinity, and so the fibered Lyapunov exponent of F with respect to P∗(m6 |6)
is the same as the Lyapunov exponent of F with respect to m6 |6. Thus, we can apply
Theorem 4.1 in 6, and then take the preimage under P to obtain the conclusion in 6.

By construction, the family {mv|[v, f (v)) : v ∈ M} is a disintegration of m6 along E
fibers. Since Y has full m6-measure, its intersection with almost every fiber has full
conditional measure on the fiber. This implies that mv|[v, f (v)) is atomic, with finitely
many atoms, form-almost every v. The function that assigns to each v ∈ M the number of
atoms is a measurable, f -invariant function. So, ergodicity of f implies that this number
is m-almost everywhere constant. Let k ≥ 1 be this constant. Then there exists some full
m6-measure set Z ⊂ 6 whose intersection with almost every fiber Ev coincides with the
support of mv|[v, f (v)) and contains exactly k points.

The projection p2(Z) is a full m-measure subset of M , by property (5.9). Moreover,
p2(Z) is f -invariant, because mv is f -invariant; recall (5.8) and (5.7). Since [v, f (v)) is
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a fundamental domain for the action of f on any noncompact center leaf, it follows that
the intersection of p2(Z) with almost every Wc(f )v consists of exactly k orbits, whose
points are the atoms of the corresponding measure mv . Then p2(Z) coincides, up to zero
m-measure, with some measurable set that intersects every center leaf in exactly k orbits.
So, alternative (1) of Theorem A holds in the case where χc 6= 0.

6.2. Vanishing center exponents: using the invariance principle

Now let us suppose that χc = 0. Using the invariance principle stated in Theorem 4.2,
we prove:

Lemma 6.1. There is a continuous1 family {m̂v : v ∈ M} of Radon measures on the
fibers of E with the following properties:

(1) m̂v = mv for m-almost every v ∈ M;
(2) the family is ρ-invariant; in particular,

F∗m̂v = m̂f (v) and G∗m̂v = m̂v for all v ∈ M;

(3) the family is invariant under su-holonomy:

(H s
v,v′)∗m̂v = m̂v′ and (H u

w,w′)∗m̂w = m̂w′

for all v′ ∈Ws(f )v and w′ ∈Wu(f )w.

Proof. Note that f satisfies the hypotheses of Theorem 4.2: it is partially hyperbolic,
volume-preserving, center bunched (since Ec is 1-dimensional) and accessible (since ϕ1
is stably accessible). As we have seen, the bundle E admits su-holonomy, and the prob-
ability measure m6 on E projects to the volume m and is invariant under the smooth
cocycle F. We are in the case where χc = 0, which by Lemma 5.4 implies that the fiber-
wise Lyapunov exponent for F vanishes m6-almost everywhere. Applying Theorem 4.2,
we conclude that there is a continuous F-invariant and su-holonomy invariant family of
probability measures supported on the fibers of 6 and agreeing m-almost everywhere
with the disintegration {mv|[v, f (v))} of m6 . Since [v, f (v)) is a fundamental domain
for the action of G on the fiber Ev , we can extend this continuous family of probabilities
to a continuous family of σ -finite measures m̂v supported on the fibers of E . By con-
struction, this family is invariant under ρ and under su-holonomy. Moreover, it agrees
m-almost everywhere with the family {mv}. ut

The family of measures {m̂v : v ∈ M} given by Lemma 6.1 is a disintegration of mE
and shares some properties with the family {mv : v ∈ M}, for example ρ-invariance.
The family {m̂v : v ∈ M} has the extra properties of continuity and invariance under
su-holonomy. On the other hand, the family {mv : v ∈ M} has one extra property that
is not a priori enjoyed by {m̂v : v ∈ M}: invariance under c-holonomy. This reflects the

1 We recall that the space of Radon measures on E can be seen as a cone in the dual of the space
of compactly supported continuous functions on E , and hence inherits a natural weak-∗ topology.
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fact that {mv : v ∈ M} comes from a disintegration of m along local Wc(f )-leaves, and
is not just an arbitrary disintegration of mE along E fibers.

We can characterize whether {m̂v : v ∈ M} is invariant under c-holonomy by looking
at the supports supp m̂v of these measures on the fibers. To this end we show:

Lemma 6.2. Either

(i) there exists k ∈ N such that # supp m̂v ∩6 = k for all v ∈ M , or
(ii) supp m̂v = Ev for all v ∈ M .

The key ingredient in the proof of Lemma 6.2 is the following lemma, which shows that
the measures m̂v have a strong homogeneity property under holonomy maps.

Lemma 6.3. For any v ∈ M and for any ξ, ξ ′ ∈ supp m̂v , there is an orientation-
preservingC1 diffeomorphismHξ,ξ ′ : Ev → Ev (a composition of s-, u- and c-holonomies
in E) with the following properties:

(1) Hξ,ξ ′(ξ) = ξ ′;
(2) (Hξ,ξ ′)∗m̂v = m̂v;
(3) if ξ, ξ ′ ∈ supp m̂v , then Hξ,ξ ′(supp m̂v) = supp m̂v;
(4) if f is r-bunched, then Hξ,ξ ′ is a Cr diffeomorphism.

Proof of Lemma 6.3. Note that m̂w = mv for every w ∈ suppmv and almost every v,
because m̂v = mv almost everywhere, m̂v is continuous in v, and mv is constant on every
center leaf.

Let w,w′ be the p2-projections of ξ, ξ ′. By accessibility of f , there is an su-path γ
in M connecting w to w′. Since p1 maps leaves of F∗ homeomorphically to leaves
of W∗(f ), for ∗ ∈ {s, u}, we can lift γ to an su-path in E connecting η = (w,w) to
η′ = (w′, w′). Let H : Ew → Ew′ be the su-holonomy map along this su-path. Then H
sends η to η′, and since the disintegration {m̂u : u ∈ M} is invariant under su-holonomy,
it maps m̂w to m̂w′ .

Suppose first that v ∈ suppmv (this holds m-almost everywhere). Then the condition
ξ ∈ supp m̂v means thatw ∈ suppmv , which implies m̂w = mv = m̂v . Analogously,w′ ∈
suppmv and m̂w′ = mv = m̂v . Identifying the fibers Ew, Ew′ to Ev through c-holonomy
in E , we obtain a homeomorphism Hξ,ξ ′ : Ev → Ev satisfying properties (1)–(3).

The assumption on v is readily removed, as follows. Given any v ∈ M let v0 be any
point such that v0 ∈ suppmv0 and let γ be an su-path in M connecting v to v0. The
su-holonomy H0 : Ev → Ev0 along the lift of γ maps supp m̂v to supp m̂v0 . Let ξ0, ξ

′

0
be the images of ξ, ξ ′ under H0. Conjugating Hξ0,ξ

′

0
by H0 we obtain a homeomorphism

Hξ,ξ ′ satisfying conclusions (1)–(3).
Since f̃ is partially hyperbolic with 1-dimensional center, it is center bunched, and

so the (globally defined) su-holonomy maps between Wc(f̃ ) leaves are C1. This implies
that Hξ,ξ ′ is a C1 diffeomorphism. Moreover, if f is r-bunched, then so is f̃ , and the
leaves of Wc(f̃ ) and all holonomies are Cr ; in this case Hξ,ξ ′ is a Cr diffeomorphism,
satisfying property (4). ut

Proof of Lemma 6.2. The support of each m̂v is a locally compact subset of the fiber Ev .
If supp m̂v has bilateral accumulation points for some (and hence all) v ∈ M , then



1454 Artur Avila et al.

Lemma 6.3 implies that supp m̂v = Ev: otherwise one would have an interval in the
complement of supp m̂v whose boundary points would fail to be bilateral accumulation
points. This means that conclusion (ii) holds.

If supp m̂v has no bilateral accumulation points then it is countable; since it is locally
compact, it therefore contains (and hence consists of) isolated points. Hence, the support
of every m̂v|[v, f (v)) is finite. But m6 = (m̂v|[v, f (v))) dm(v) is F-invariant, and so
# supp(m̂v|[v, f (v))) is an f -invariant positive measurable function. By ergodicity of f ,
there exists k ≥ 1 such that # supp(m̂v|[v, f (v))) = k for m-almost all v. Conclusion (i)
now follows from the continuity of m̂v . ut

We call alternative (i) of Lemma 6.2 the atomic case, and alternative (ii) the continuous
case. Let us consider the atomic case first. Then, for every v in some full m-measure
subset, supp(mv|[v, f (v))) = supp(m̂v|[v, f (v))) consists of exactly k points. Since
[v, f (v)) is a fundamental domain for the action of f on Wc(f )v , assuming the cen-
ter leaf is noncompact, it follows that the support of mv consists of exactly k orbits, for
every v in some fullm-measure Borel setM0 ⊂ M . We may further assume that m̂v = mv
for v ∈ M0. Taking the unions of the supports⋃

v∈M0

suppmv = p2

( ⋃
v∈M0

supp m̂v
)

we obtain a full measure set2 meeting almost every Wc(f )-leaf in exactly k orbits of f .
Then there exists a full measure set such that this happens for every center leaf, as claimed
in alternative (1) of Theorem A.

Finally, observe that in the atomic case the family {m̂v : v ∈ M} is not invariant
under c-holonomy. Indeed, consider any v such that v ∈ suppmv and let w ∈ Wc(f )v \

suppmv . Then v ∈ supp m̂v and, by accessibility, w ∈ supp m̂w. The latter implies m̂w 6=
mv = m̂v .

7. The continuous case

One case remains in the proof of Theorem A, in which the fiberwise exponent χc vanishes
and the family of measures {m̂v : v ∈ M} has full support on the fibers of E . We shall see
that in this case the family {m̂v : v ∈ M} is invariant under c-holonomy and can be used
to define a continuous disintegration of volume along center leaves. The existence of this
disintegration leads to alternative (2) in Theorem A: the existence of a smooth vector field
in which f embeds. Then the center foliation is smooth and, in particular, has Lebesgue
disintegration. The first step is to establish c-invariance of the measures {m̂v : v ∈ M}.

Lemma 7.1. The family {m̂v : v ∈ M} is invariant under c-holonomy of F : E → E .

2 Note that
⋃
v∈M0

supp m̂v is a Borel subset (by continuity of m̂v), hence its image under p2 is
analytic, and hence Lebesgue measurable.
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Proof. The fact that supp m̂v = Ev for every v implies that every set of full m̂-measure
must be dense in almost every fiber. Recall that m̂v = mv almost everywhere and {mv :
v ∈ M} is invariant under c-holonomy of E . This implies that {m̂v : v ∈ M} is invariant
under c-holonomy restricted to a dense set of points in a dense set of center leaves. Since
the family {m̂v : v ∈ M} is continuous, it follows that it is invariant under c-holonomy on
the whole of E . ut

7.1. Absolute continuity of Wc(f )

For v ∈ M , denote by λv the Riemannian measure on the fiber and denote by I (ξ, r)
the interval in Ev centered at ξ of radius r , with respect to the p2-pullback metric of the
Riemannian structure on Wc(f̃ )v .

Lemma 7.2. For each v ∈ M , the measure m̂v is equivalent to Lebesgue measure λv .
The limit

1v(ξ) = lim
r→0

m̂v(I (ξ, r))

λv(I (ξ, r))

exists everywhere, is continuous, and takes values in (0,∞).

Proof. For v ∈ M and ξ ∈ Ev let

1v(ξ) = lim sup
r→0

m̂v(I (ξ, r))

λv(I (ξ, r))
, 1v(ξ) = lim inf

r→0

m̂v(I (ξ, r))

λv(I (ξ, r))
.

For m̂v-almost every ξ ∈ Ev , we have

1v(ξ) = 1v(ξ) ∈ (0,∞].

Since supp m̂v = Ev , Lemma 6.3 implies that for any two points ξ, ξ ′ ∈ Ev , there is a
diffeomorphismHξ,ξ ′ : Ev → Ev preserving m̂v and sending ξ to ξ ′. Since C1 diffeomor-
phisms have continuous and positive Jacobians, it follows that for any ξ, ξ ′,

1v(ξ) = 1v(ξ) ⇔ 1v(ξ
′) = 1v(ξ

′).

Thus 1v = 1v everywhere on Ev; denote this function by 1v .
Then m̂v has a singular part with respect to λv if and only if there is a positive

m̂v-measure set X ⊂ Ev such that 1v(ξ) = ∞ for ξ ∈ X. On the other hand, again
using the diffeomorphisms Hξ,ξ ′ we see that for every ξ, ξ ′,

1v(ξ) = ∞ ⇔ 1v(ξ
′) = ∞.

Hence if m̂v had a singular part with respect to λv , this would imply that 1v ≡ ∞
on Ev , contradicting the local finiteness of m̂v . Therefore m̂v is absolutely continuous
with respect to λv . Similarly, we see that λv is absolutely continuous with respect to m̂v ,
and so the two measures are equivalent.

The function 1 is a pointwise limit of the continuous functions

ξ 7→
m̂v(I (ξ, r))

λv(I (ξ, r))
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and hence is a Baire class 1 function; it follows that 1 has a point of continuity [34,
Theorem 7.3]. Again using Lemma 6.3, we see that every point in E is a point of continuity
of 1, and so 1 is continuous. ut

Recall that for almost every v ∈ M , we have m̂v = mv , where mv is a representative of
the disintegration of volume on the (noncompact) leaf Wc(f )v . The previous lemma thus
implies that mv is equivalent to Lebesgue measure on Wc(f )v , for almost every v. We
conclude:

Lemma 7.3. Wc(f ) is leafwise absolutely continuous.

7.2. Embedding f̃ in a continuous flow

Consider the continuous vector field Z on E given by

Z(ξ) = Z0(ξ)/1(ξ),

where Z0 is the positively oriented unit speed vector field tangent to the fibers of E (with
respect to the p2-pullback metric). Since 1v = dm̂v/dλv , it follows that Z generates a
flow φt on E satisfying

m̂v
(
[ξ, φt (ξ))

)
= t

for all v ∈ M , ξ ∈ Ev and t ∈ R. Since m̂v[ξ,G(ξ)) = 1, it follows that φ1(ξ) = G(ξ)
for all ξ .

The invariance properties of m̂v translate into invariance properties of the flow:

• φt commutes with the ρ-action on E ;
• φt commutes with u-, s- and c-holonomy.

The analogous properties hold for the vector field Z; in particular:

• Z is preserved by the ρ-action on E ;
• Z is preserved by u-, s- and c-holonomy.

The c-invariance of Z implies that Z projects under p2 to a well-defined continuous
vector field X on M tangent to the leaves of Wc(f ). The G-invariance of Z implies
that f∗X = X. Let ψt be the flow generated by X; it satisfies φt ◦ p2 = p2 ◦ ψt for all t .
Since φ1 = G and p2 ◦ G = f ◦ p2, we see that ψ1 = f ; in other words, f embeds in
the flow ψt .

Lemma 7.4. The flow ψ preserves the volume m.

Proof. Fix t ∈ R. Since Wc(f ) is leafwise absolutely continuous and ψt is C1 along the
leaves of Wc(f ), the map ψt preserves the measure class of m. Hence ψt has a Jacobian
with respect to volume:

Jac(ψt ) =
d((ψt )

∗m)

dm
.

Since ψt ◦ f = f ◦ ψt , it follows that Jacψt (f (t)) = Jac(ψt ). Ergodicity of f implies
that Jac(ψt ) is almost everywhere constant, and hence almost everywhere equal to 1. This
immediately implies that (ψt )∗m = m. ut
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7.3. Showing that the flow is smooth

Let ψ be the volume-preserving flow on M satisfying f = ψ1 that we have just con-
structed. Our remaining task is to prove that the flow ψ is C∞. This is accomplished in
two steps. In the first step, we show that ψt is C∞ along the leaves of Wc(f ). In the sec-
ond step we show thatψt isC∞ along the leaves of Wu(f ) and Ws(f ). A straightforward
application of a result of Journé then shows that the flow ψ is C∞.

To show C∞ smoothness along the leaves of Wc(f ) one must first establish that the
leaves of Wc(f ) areC∞. A priori, these leaves have only finite smoothness determined by
the C1 distance from f to ϕ1. However in the case under consideration, in which volume
has Lebesgue disintegration along Wc(f )-leaves, we have more information about the
action of f on center leaves.

In particular, since f preserves a continuous vector field X tangent to Wc(f )-leaves,
the derivatives Df k|Ec, k ∈ Z, of its iterates along the central direction are uniformly
bounded. This implies that f is r-bunched for every r > 0; recall (2.1). Hence, the
leaves of Wcs(f ), Wcu(f ) and Wc(f ) are C∞, and the Ws(f )-holonomies and Wu(f )-
holonomies between Wc(f )-leaves are also C∞.

This in turn implies that the fibers of E and the diffeomorphisms Hξ,ξ ′ given by
Lemma 6.3 are C∞. We will use this information to conclude that the function 1 is C∞

along the fibers of E , which implies that X is C∞ along the leaves of Wc(f ).

Lemma 7.5. The function 1 given by Lemma 7.2 is C∞ along the fibers of E , with
derivatives varying continuously from fiber to fiber. Consequently, X is C∞ along the
leaves of Wc(f ), uniformly in the leaves, as is the flow ψt .

Proof. Fix v ∈ M . For any ξ ∈ Ev and any diffeomorphism H of Ev preserving m̂v , we
have

1v(H(ξ)) =
1(ξ)

Jac(H)(ξ)
. (7.1)

If H is C∞, then so is the Jacobian Jac(H). Consider the graph of 1v:

graph(1v) = {(ξ,1(ξ)) : ξ ∈ Ev} ⊂ Ev × R.

Since the function1 is continuous, graph(1v) is locally compact. If H is an m̂v-preserv-
ing C∞ diffeomorphism, then (7.1) implies that the C∞ diffeomorphism

(ξ, t) 7→

(
H(ξ),

t

Jac(H)(ξ)

)
preserves graph(1v).

Combining this observation with Lemma 6.3, we find that for any pair of points
q = (ξ,1v(ξ)) and q ′ = (ξ ′,1v(ξ

′)) in graph(1v), there is a C∞ diffeomorphism
of Ev × R sending q to q ′ and preserving graph(1v). That is, the locally compact set
graph(1v) is C∞ homogeneous. A result of Repovš, Skopenkov and Ščepin [43] implies
that graph(1v) is a C∞ submanifold of Ev ×R (see also [53]). Thus1v is C∞ off the set
of its singularities (by “singularities,” we mean points where the projection of graph(1v)
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onto Ev fails to be a submersion). But if 1v has any singularities, then it is easy to see
that every point in Ev must be a singularity, which violates Sard’s theorem. Hence1v has
no singularities and therefore is C∞.

To see that the derivatives of 1v vary continuously as a function of v, note that one
can move from the fiber over v to any neighboring fiber by a composition of local u-, s-
and c-holonomies. The derivatives of these holonomy maps vary continuously with the
fiber. Equation (7.1) implies that the fiberwise derivatives vary continuously. ut

Our next step is to establish the C∞ smoothness of X along Ws(f )- and Wu(f )-leaves.
Note first that because ψt ◦f = f ◦ψt for all t , it follows that ψt preserves the foliations
Ws(f ) and Wu(f ). To see this, observe that, since f preserves a nonvanishing continu-
ous vector field, the leaf of Ws(f ) through v is uniquely characterized as the set of points
w such that

lim
n→∞

d(f n(v), f n(w)) = 0;

since ψt commutes with f , for such v,w we will also have

lim
n→∞

d
(
f n(ψt (v)), f

n(ψt (w))
)
= lim
n→∞

d
(
ψt (f

n(v)), ψt (f
n(w))

)
= 0;

and so ψt (w) ∈Ws(f )ψt (v).
We first show that for every t the restriction of ψt to the leaves of Ws(f ) is uni-

formly C∞. Here we use the property that ψt preserves volume. The basic idea is that ψt
must also preserve the disintegration of volume along Ws(f )-leaves in a foliation box,
up to a constant scaling factor along each leaf. But these disintegrations are C∞ along
Ws(f )-leaves; when the leaves are one-dimensional, this forces ψt to be C∞ along the
leaves as well.

The following lemma is well-known (see [8, formula (11.4)]):

Lemma 7.6. Let f : M → M be any C∞ partially hyperbolic diffeomorphism. For
any foliation box B ⊂ M for Ws(f ), there is a continuous disintegration of m|B along
leaves of Ws(f ) (defined at every point p ∈ B). These disintegrations are equivalent to
Riemannian measure in the Ws(f )-leaves. The densities of the disintegrations are C∞

along leaves and transversely continuous. The same is true for Wu(f ).

Lemma 7.7. For any Ws(f ) foliation box B, any t ∈ R, and any v ∈ B, the map ψt
sends the disintegration msv of m|B along Ws(f )-leaves at v to the disintegration msψt (v)
of m|ψt (B) along Ws(f )-leaves at ψt (v). The same is true for Wu(f ).

Proof. Denote by {msv : v ∈ B} the disintegration of m along Ws(f )-leaves inside the
box B. By Lemma 7.6, the map v 7→ msv is continuous.

Fix t ∈ R. Since ψt preserves both m and the leaves of Ws(f ) , we obtain

ψt∗m
s
v = m

s
ψt (v)

(7.2)

for m-almost every v ∈ B, where the disintegration on the right hand side takes place in
the box ψt (B). Since v 7→ msv is continuous (on both sides of the equation) and ψt is a
homeomorphism, equation (7.2) holds everywhere. ut
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Lemma 7.8. For every t ∈ ψt , the map ψt is uniformly C∞ along Ws(f )-leaves and
uniformly C∞ along Wu(f ) leaves.

Proof. Lemma 7.7 implies thatψt satisfies an ordinary differential equation along Ws(f )

leaves with C∞ (and transversely continuous) coefficients, and so the solutions are C∞

and vary continuously with the leaf. ut

At this point, we have shown that for every t ∈ R and v ∈ M:

• the restriction of ψt to Wc(f )v is C∞ (Lemma 7.5);
• the restrictions of ψt to Ws(f )v and Wu(f )v are C∞ (Lemma 7.8);
• the map t 7→ ψt (v) is C∞ (Lemma 7.5).

Moreover, these statements hold uniformly in t and v.
Our final tool is the so-called “Journé Lemma” which allows us to deduce smoothness

of a function by checking along leaves of two transverse foliations with smooth leaves:

Theorem 7.9 (Journé [25]). Let F1 and F2 be transverse foliations of a manifold M
whose leaves are uniformly C∞. Let ψ : M → R be any continuous function such that
the restriction of ψ to the leaves of F1 is uniformly C∞ and the restriction of ψ to the
leaves of F2 is uniformly C∞. Then ψ is uniformly C∞.

Let us use this result to finish the proof of Theorem A. To show that the flow ψ is C∞,
we must show that it is C∞ on M × R. Fix t and v, and consider the restriction of ψt to
the leaf Wcs(f )v . This leaf is uniformly subfoliated by the foliations Wc(f ) and Ws(f ).
The map ψt is uniformly C∞ when restricted to the leaves of each of these foliations.
Theorem 7.9 implies that ψt is uniformly C∞ along leaves of Wcs(f ). But the restriction
ofψt to leaves of Wu(f ) is also uniformlyC∞. Applying Theorem 7.9 again, we find that
for each t , the map ψt is C∞ on M , uniformly in t . Since t 7→ ψt (v) is C∞, uniformly
in v, a final application of Theorem 7.9 shows that ψ is C∞ on M × R.
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