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Abstract. This paper is motivated by a gauged Schrödinger equation in dimension 2 including the
so-called Chern–Simons term. The study of radial stationary states leads to the nonlocal problem

−1u(x)+

(
ω +

h2(|x|)

|x|2
+

∫
∞

|x|

h(s)

s
u2(s) ds

)
u(x) = |u(x)|p−1u(x),

where

h(r) =
1
2

∫ r

0
su2(s) ds.

This problem is the Euler–Lagrange equation of a certain energy functional. We study the global
behavior of that functional. We show that for p ∈ (1, 3), the functional may be bounded from below
or not, depending on ω. Quite surprisingly, the threshold value for ω is explicit. From this study we
prove existence and non-existence of positive solutions.

Keywords. Gauged Schrödinger equations, Chern–Simons theory, variational methods, concentra-
tion compactness

1. Introduction

In this paper we are concerned with a planar gauged nonlinear Schrödinger equation

iD0φ + (D1D1 +D2D2)φ + |φ|
p−1φ = 0. (1)

Here t ∈ R, x = (x1, x2) ∈ R2, φ : R × R2
→ C is a scalar field, Aµ : R × R2

→ R
are the components of the gauge potential andDµ = ∂µ+ iAµ is the covariant derivative
(µ = 0, 1, 2).

The classical equation for the gauge potential Aµ is the Maxwell equation. However,
the modified gauge field equation proposes to include the so-called Chern–Simons term
into the equation (see for instance [23, Chapter 1]):

∂µF
µν
+

1
2κε

ναβFαβ = j
ν with Fµν = ∂µAν − ∂νAµ. (2)
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In the above equation, κ is a parameter that measures the strength of the Chern–Simons
term. As usual, εναβ is the Levi-Civita tensor, and the superscripts are related to the
Minkowski metric with signature (1,−1,−1). Finally, jµ is the conserved matter cur-
rent,

j0
= |φ|2, j i = 2 Im(φ̄Diφ).

At low energies, the Maxwell term becomes negligible and can be dropped, giving
rise to

1
2κε

ναβFαβ = j
ν . (3)

See [7, 8, 12–14] for the discussion above.
For simplicity, fix κ = 2. Equations (1) and (3) lead to the problem

iD0φ + (D1D1 +D2D2)φ + |φ|
p−1φ = 0,

∂0A1 − ∂1A0 = Im(φ̄D2φ),

∂0A2 − ∂2A0 = − Im(φ̄D1φ),

∂1A2 − ∂2A1 =
1
2 |φ|

2.

(4)

As is usual in Chern–Simons theory, problem (4) is invariant under gauge transformation,

φ 7→ φeiχ , Aµ 7→ Aµ − ∂µχ, (5)

for any C∞ function χ .
This model was first proposed and studied in [12–14], and is sometimes called the

Chern–Simons–Schrödinger equation. The initial value problem, wellposedness, global
existence and blow-up, scattering, etc. have been addressed in [2,9,11,18,19] for the case
p = 3. See also [17] for a global existence result in the defocusing case.

The existence of stationary states for (4) and for general p > 1 has been studied
recently in [4] (with respect to that paper, our notation interchanges the indices 1 and 2).
By using the ansatz

φ(t, x) = u(|x|)eiωt , A0(x) = A0(|x|),

A1(t, x) = −
x2

|x|2
h(|x|), A2(t, x) =

x1

|x|2
h(|x|),

in [4] it is found that u solves the equation

−1u(x)+

(
ω + ξ +

h2(|x|)

|x|2
+

∫
∞

|x|

h(s)

s
u2(s) ds

)
u(x) = |u(x)|p−1u(x), x ∈ R2,

(6)
where

h(r) =
1
2

∫ r

0
su2(s) ds.

Here ξ in R is an integration constant of A0, which takes the form

A0(r) = ξ +

∫
∞

r

h(s)

s
u2(s) ds.



A variational analysis of a gauged nonlinear Schrödinger equation 1465

Observe that (6) is a nonlocal equation. Moreover, in [4] it is shown that (6) is indeed
the Euler–Lagrange equation of the energy functional

Iω+ξ : H
1
r (R

2)→ R

defined as

Iω+ξ (u) =
1
2

∫
R2

(
|∇u(x)|2 + (ω + ξ)u2(x)

)
dx

+
1
8

∫
R2

u2(x)

|x|2

(∫
|x|

0
su2(s) ds

)2

dx −
1

p + 1

∫
R2
|u(x)|p+1 dx.

Here H 1
r (R2) denotes the Sobolev space of radially symmetric functions. It is important

to observe that the energy functional Iω+ξ exhibits the competition between the nonlocal
term and the local nonlinearity. The study of the behavior of the functional under this
competition is one of the main motivations of this paper.

Given a stationary solution, and taking χ = ct in the gauge invariance (5), we obtain
another stationary solution; the functions u(x), A1(x), A2(x) are preserved, and

ω 7→ ω + c, A0(x) 7→ A0(x)− c.

Therefore, the constant ω + ξ is a gauge invariant of the stationary solutions of the prob-
lem. By the above discussion we can take ξ = 0 in what follows, that is,

lim
|x|→∞

A0(x) = 0,

which was indeed assumed in [2, 14].
For p > 3, it is shown in [4] that Iω is unbounded from below, so it exhibits a

mountain-pass geometry. In a certain sense, in this case the local nonlinearity dominates
the nonlocal term. However, the existence of a solution is not so direct, since for p ∈
(3, 5) the (PS) property is not known to hold. This problem is bypassed in [4] by using a
constrained minimization taking into account the Nehari and Pohozaev identities, in the
spirit of [20]. Moreover, infinitely many solutions have been found in [10] for p > 5
(possibly sign-changing).

A special case in the above equation is p = 3: in this case, static solutions can be
found by passing to a self-dual equation, which leads to a Liouville equation that can
be solved explicitly. Those are the unique positive solutions, as proved in [4]. For more
information on the self-dual equations, see [5, 14, 23].

In case p ∈ (1, 3), solutions are found in [4] as minimizers on an L2 sphere. There-
fore, the value ω comes as a Lagrange multiplier, and it is not controlled. Moreover, the
global behavior of the energy functional Iω is not studied.

The main purpose of this paper is to study whether Iω is bounded from below or not
for p ∈ (1, 3). In this case, the nonlocal term prevails over the local nonlinearity, in a
certain sense. As we shall see, the situation is quite rich and unexpected a priori, and
very different from the usual nonlinear Schrödinger equation. This situation also differs
from the Schrödinger–Poisson problem (see [20]), which is another problem exhibiting
the competition between local and nonlocal nonlinearities.
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We shall prove the existence of a threshold value ω0 such that Iω is bounded from
below if ω ≥ ω0, and it is not for ω ∈ (0, ω0). However, in our opinion, what is most
surprising is that ω0 has an explicit expression, namely

ω0 =
3− p
3+ p

3
p−1

2(3−p) 2
2

3−p

(
m2(3+ p)
p − 1

)− p−1
2(3−p)

(7)

with

m =

∫
∞

−∞

(
2

p + 1
cosh2

(
p − 1

2
r

)) 2
1−p

dr.

Let us give an idea of the proofs. It is not difficult to show that Iω is coercive when
the problem is posed on a bounded domain. So, there exists a minimizer un on the ball
B(0, n) with Dirichlet boundary conditions. To prove boundedness of un, the problem is
the possible loss of mass at infinity as n→∞. The core of our proofs is a detailed study
of the behavior of those masses. We are able to show that, if unbounded, the sequence un
behaves as a soliton, if un is interpreted as a function of a single real variable. The proof
uses a careful study of the level sets of un, which takes into account the effect of the
nonlocal term. Then, the energy functional Iω admits a natural approximation through a
convenient limit functional. Finally, the solutions of that limit functional, and their energy,
can be found explicitly, so we can find ω0. See Section 2 for a heuristic explanation of the
proof and a derivation of the limit functional.

Regarding the existence of solutions, a priori, the global minimizer could correspond
to the zero solution. And indeed this is the case for large ω. Instead, we show that
inf Iω < 0 if ω > ω0 is close to the threshold value. Therefore, the global minimizer
is not trivial, and corresponds to a positive solution. The mountain-pass theorem will
provide the existence of a second positive solution.

If ω < ω0, Iω is unbounded from below, and hence the geometric assumptions of the
mountain-pass theorem are satisfied. However, the boundedness of (PS) sequences seems
to be a hard question in this case. Solutions are found for almost all values of ω ∈ (0, ω0)

by using the well-known monotonicity trick of Struwe [22] (see also [15]).
Our main results are the following:

Theorem 1.1. For ω0 as given in (7):

(i) if ω ∈ (0, ω0), then Iω is unbounded from below;
(ii) if ω = ω0, then Iω0 is bounded from below, not coercive and inf Iω0 < 0;

(iii) if ω > ω0, then Iω is bounded from below and coercive.

Regarding the existence of solutions, we obtain the following result:

Theorem 1.2. Consider (6) with ξ = 0. There exist ω̄ > ω̃ > ω0 such that:

(i) if ω > ω̄, then (6) has no solutions different from zero;
(ii) if ω ∈ (ω0, ω̃), then (6) admits at least two positive solutions: one of them is a global

minimizer for Iω and the other is a mountain-pass solution;
(iii) for almost every ω ∈ (0, ω0), (6) admits a positive solution.
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The rest of the paper is organized as follows. Section 2 is devoted to some preliminary
results. Moreover, we give a heuristic presentation of our proofs, which motivates the
definition of the limit functional. This limit functional is studied in detail in Section 3.
Finally, in Section 4 we prove Theorems 1.1 and 1.2.

2. Preliminaries

Let us first fix some notation. We denote by H 1
r (R2) the Sobolev space of radially sym-

metric functions, and ‖ · ‖ its usual norm. Other norms, like Lebesgue norms, will be
indicated with a subscript. In particular, ‖ · ‖H 1(R), ‖ · ‖H 1(a,b) are used to indicate the
norms of the Sobolev spaces in dimension 1. If nothing is specified, strong and weak
convergence of sequences of functions are considered in the space H 1(R2).

In our estimates, we will frequently denote by C, c > 0 fixed constants, which may
change from line to line, but are always independent of the variable under considera-
tion. We also use O(1), o(1),O(ε), o(ε) to describe the asymptotic behavior of various
quantities. Finally, the letters x, y indicate two-dimensional variables, and r , s denote
one-dimensional variables.

Let us start with the following proposition, proved in [4]:

Proposition 2.1. Iω is a C1 functional, and its critical points correspond to classical
solutions of (6).

The next result deals with the behavior of Iω under weak limits in H 1
r (R2). Even if it is

not explicitly stated in this form, Proposition 2.2 follows easily from [4, Lemma 3.2] and
the compactness of the embedding H 1

r (R2) ↪→ Lq(R2), q ∈ (2,∞) (see [21]).

Proposition 2.2. If un ⇀ u, then∫
R2

u2
n(x)

|x|2

(∫
|x|

0
su2
n(s) ds

)2

dx →

∫
R2

u2(x)

|x|2

(∫
|x|

0
su2(s) ds

)2

dx.

In particular, Iω is weak lower semicontinuous. Moreover, if un ⇀ u then I ′ω(un)(ϕ)→
I ′ω(u)(ϕ) for all ϕ ∈ H 1

r (R2).

We now state an inequality which will prove to be fundamental in our analysis. It is proved
in [4], where also maximizers are found.

Proposition 2.3. For any u ∈ H 1
r (R2),∫

R2
|u(x)|4 dx ≤ 2

(∫
R2
|∇u(x)|2 dx

)1/2(∫
R2

u2

|x|2

(∫
|x|

0
su2(s) ds

)2

dx

)1/2

. (8)

As mentioned in the introduction, this paper is concerned with boundedness of Iω from
below. Let us give a rough idea of our argument. First of all, consider a fixed function u(r),
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and define uρ(r) = u(r − ρ). Let us now estimate Iω(uρ) as ρ →∞. We have

(2π)−1Iω(uρ) =
1
2

∫
∞

−ρ

(|u′|2 + ωu2)(r + ρ) dr

+
1
8

∫
∞

−ρ

u2(r)

r + ρ

(∫ r

−ρ

(s + ρ)u2(s) ds

)2

dr −
1

p + 1

∫
∞

−ρ

|u|p+1(r + ρ) dr.

We estimate the above expression by simply replacing r + ρ, s + ρ with the constant ρ:

(2π)−1Iω(u) ∼ ρ

[
1
2

∫
∞

−∞

(|u|′2 + ωu2) dr +
1
8

∫
∞

−∞

u2(r)

(∫ r

−∞

u2(s) ds

)2

dr

−
1

p + 1

∫
∞

−∞

|u|p+1 dr

]
= ρ

[
1
2

∫
∞

−∞

(|u|′2 + ωu2) dr +
1

24

(∫
∞

−∞

u2 dr

)3

−
1

p + 1

∫
∞

−∞

|u|p+1 dr

]
.

This estimate will be made rigorous in Lemma 4.1. Therefore, it is natural to define the
limit functional Jω : H 1(R)→ R by

Jω(u) =
1
2

∫
∞

−∞

(|u′|2 + ωu2) dr +
1
24

(∫
∞

−∞

u2 dr

)3

−
1

p + 1

∫
∞

−∞

|u|p+1 dr. (9)

As a consequence of the above argument, if Jω attains negative values, then Iω will be
unbounded from below.

The converse is also true, but the proof is more delicate. We will show that if un is
unbounded in H 1

r (R2) and Iω(un) is bounded from above, then somehow un contains
a certain mass spreading to infinity, as uρ does. This will be made explicit in Propo-
sition 4.2. But this will lead us to a contradiction if Jω is positive on that mass. This
argument is however far from trivial, and is the core of this paper.

Summing up, we are able to relate Iω to the limit functional Jω in the following way:

inf Iω > −∞ ⇔ inf Jω = 0.

Moreover, this characterization will give us the threshold value for ω, since the critical
points of Jω can be found explicitly, as will be shown in the next section.

3. The limit problem

In this section we deal with the limit functional Jω : H 1(R)→ R of (9).
Clearly, the Euler–Lagrange equation of (9) is

−u′′ + ωu+
1
4

(∫
∞

−∞

u2(s) ds

)2

u = |u|p−1u in R (10)
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Later, we will find explicit solutions of (10). But first let us study it from a variational
point of view: this study will give us some further information on the solutions.

Before going on, we need a technical result; we think it must be well-known, but we
have not been able to find an explicit reference.

Lemma 3.1. Let un ∈ H 1(R) be a sequence of even nonnegative functions which are
decreasing in r > 0, and assume that un ⇀ u0 weakly in H 1(R). Then u0 is also even,
nonnegative and decreasing in r > 0, and un→ u0 in Lq(R) for any q ∈ (2,∞).

Proof. Observe that the set A = {u ∈ H 1(R) : u is nonnegative, even and decreasing in
r > 0} is a closed and convex subset of H 1(R). As a consequence, u0 ∈ A.

Then, for any r ∈ R, r 6= 0,

C ≥

∣∣∣∣∫ r

0
u2
n(s) ds

∣∣∣∣ ≥ u2
n(r)|r|, so un(r) ≤

C
√
|r|
,

and the same estimate works for u0. With this inequality, we can estimate∫
∞

−∞

|un − u0|
q dr ≤

∫ R

−R

|un − u0|
q dr + 2C

∫
|r|>R

r−q/2 dr

=

∫ R

−R

|un − u0|
q dr + 4C

2
2− q

R(2−q)/2.

Taking into account that, by the Rellich–Kondrashov Theorem, un → u0 in Lq(−R,R)
for any R > 0 fixed, the above inequality implies that un→ u0 in Lq(R). ut

Some properties of the functional Jω are discussed below:

Proposition 3.2. Consider the functional Jω with p ∈ (1, 3) and ω > 0. Then:

(a) Jω is coercive and attains its infimum.
(b) 0 is a local minimum of Jω. Indeed, there exists r0 > 0 with the following property:

for any r ∈ (0, r0), there exists α > 0 such that Jω(u) > α for any u ∈ H 1(R) with
‖u‖H 1(R) = r .

(c) There exists ω0 > 0 such that min Jω < 0 if and only if ω ∈ [0, ω0).

Proof. (a) To prove coercivity, we use the Gagliardo–Nirenberg inequality:

‖u‖L4 ≤ C‖u
′
‖

1/4
L2 ‖u‖

3/4
L2 .

Hence ∫
∞

−∞

u4 dr ≤
C

2

[∫
∞

−∞

|u′|2 dr +

(∫
∞

−∞

u2 dr

)3]
.

Then

Jω(u) ≥
1
4

∫
∞

−∞

|u′|2 dr +
1

48

(∫
∞

−∞

u2 dr

)3

+ c

∫
∞

−∞

u4 dr −
1

p + 1

∫
∞

−∞

|u|p+1 dr.

(11)
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Observe that for any C > 0 we can choose D > 0 so that t3 ≥ Ct −D for every t ≥ 0.
Applying this with t =

∫
∞

−∞
u2 dr to (11), and renaming C, we obtain

Jω(u) ≥
1
4

∫
∞

−∞

|u′|2 dr +

∫
∞

−∞

(
Cu2
+ cu4

−
1

p + 1
|u|p+1

)
dr −D.

Now, it suffices to take C so that Cu2
+ cu4

−
1

p+1 |u|
p+1
≥ 0 for any u ∈ R.

Take now un such that Jω(un) → inf Jω. From coercivity, it follows that un is
bounded. Consider now the sequence vn = |un|∗ of nonnegative symmetrized functions.
Clearly, vn is also bounded, and it is easy to observe that inf Jω ≤ Jω(vn) ≤ Jω(un) →
inf Jω.

Assume, passing to a subsequence, that vn ⇀ v weakly in H 1(R). By Lemma 3.1,
vn → v in Lp+1(R). The weak lower semicontinuity of the norm allows us to conclude
that u is a minimizer of Jω.

(b) The proof is quite standard: by the Sobolev inequality,

Jω(u) ≥
1
2 min{1, ω}‖u‖2

H 1(R) − C‖u‖
p+1
H 1(R).

(c) Define φ : [0,∞)→ R by φ(ω) = min Jω. It is easy to check that φ is increasing
and continuous. Moreover, φ(ω) ≤ 0 for all ω (observe that Jω(0) = 0).

We claim that φ(ω) = 0 for large ω. Indeed, by the same arguments of the proof
of (a),

Jω(u) ≥

∫
∞

−∞

(
ω

2
u2
+ cu4

−
1

p + 1
|u|p+1

)
dr.

For ω sufficiently large, ω2 u
2
+ cu4

−
1

p+1 |u|
p+1
≥ 0 for any u ∈ R. Hence Jω(u) ≥ 0

for any u ∈ H 1(R), proving the claim.
We now show that φ(0) < 0. To this end, fix u ∈ H 1(R) and define uλ(r) =

λ2/(p−1)u(λr). Then

J0(uλ) =
1
2
λ
p+3
p−1

∫
∞

−∞

|u′|2 dr +
1

24
λ

3(5−p)
p−1

(∫
∞

−∞

u2 dr

)3

−
1

p + 1
λ
p+3
p−1

∫
∞

−∞

|u|p+1 dr.

Therefore, for λ sufficiently small, J0(uλ) has the sign of the term

1
2

∫
∞

−∞

|u′|2 dr −
1

p + 1

∫
∞

−∞

|u|p+1 dr.

It suffices to take u such that this quantity is negative to conclude.
So, we can define ω0 = min{ω ≥ 0 : φ(ω) = 0} > 0. ut

As a consequence of the previous result, for ω ∈ [0, ω0) there exists a nontrivial solution
for (10), which corresponds to a global minimum of Jω. As announced in the introduction,
the expression for ω0 will be found later on.
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We now turn to finding explicit solutions of problem (10). For any k > 0 we denote
by wk ∈ H 1(R) the unique positive radial solution of

−w′′k + kwk = w
p
k in R. (12)

Let us state some well-known properties of this equation. First, the Hamiltonian of wk is
equal to 0, that is,

−
1
2
|w′k(r)|

2
+
k

2
w2
k(r)−

1
p + 1

w
p+1
k (r) = 0 for all r ∈ R. (13)

It is also known that any solution of (12) is of the form u(x) = ±wk(x − y) for some
y ∈ R. Moreover,

wk(r) = k
1/(p−1)w1(

√
k r), where w1(r) =

(
2

p + 1
cosh2

(
p − 1

2
r

)) 1
1−p
. (14)

In what follows we define

m =

∫
∞

−∞

w2
1 dr.

The following relations are also well known, and can be deduced from (13):∫
∞

−∞

|w′1|
2 dr =

p − 1
p + 3

m,

∫
∞

−∞

w
p+1
1 dr =

2(p + 1)
p + 3

m. (15)

Proposition 3.3. Consider the equation

k = ω + 1
4m

2k
5−p
p−1 , k > 0. (16)

Then u is a nontrivial solution of (10) if and only if u(r) = wk(r − ξ) for some ξ ∈ R
and k a root of (16).

Define

ω1 =

(
(5− p)m2

4(p − 1)

)− p−1
2(3−p)

−
m2

4

(
(5− p)m2

4(p − 1)

)− (5−p)
2(3−p)

. (17)

Then:

• if ω > ω1, equation (16) has no solution and there is no nontrivial solution of (10);
• if ω = ω1, equation (16) has a unique solution k0, and wk0(r) is the only nontrivial

solution of (10) (up to translations);
• if ω ∈ (0, ω1), equation (16) has two solutions k1(ω) < k2(ω) and wk1(r), wk2(r) are

the only two nontrivial solutions of (10) (up to translations).
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Proof. Let u be a nontrivial solution of (10), and define k = ω+ 1
4 (
∫
∞

−∞
u2 dr)2. Then u

is a solution of −u′′ + ku = up, so u(r) = wk(r − ξ) for some ξ ∈ R. By using (14), we
obtain

k = ω +
1
4

(∫
∞

−∞

w2
k(r) dr

)2

= ω +
1
4
k4/(p−1)

(∫
∞

−∞

w2
1(
√
k r) dr

)2

.

A change of variables leads us to equation (16).
Moreover,

1 < p < 3, so
5− p
p − 1

> 1.

Therefore, the function (0,∞) 3 k 7→ k(5−p)/(p−1) is convex. Hence there exists ω1 > 0
with the properties indicated.

In order to get the exact value of ω1, observe that the function k 7→ ω1 +
1
4m

2k(5−p)/(p−1)
− k has a degenerate zero. Then ω1 solves the system

ω + 1
4m

2k
5−p
p−1 = k,

5− p
4(p − 1)

m2k
5−p
p−1−1

= 1.

From this one obtains formula (17). ut

In our next result, we deduce information from Proposition 3.3.

Proposition 3.4. Let ω0, ω1 be the values defined in Propositions 3.2 and 3.3 . Then:

• ω0 < ω1, and ω0 has the expression

ω0 =
3− p
3+ p

3
p−1

2(3−p) 2
2

3−p

(
m2(3+ p)
p − 1

)− p−1
2(3−p)

, (18)

where m is as in (3).
• For any ω ∈ (0, ω1), Jω(wk1) > Jω(wk2). In particular, for any ω ∈ (0, ω0), wk2 is a

global minimizer of Jω.

Proof. We consider the energy functional Jω evaluated on the curve k 7→ wk . In the
computations that follow we use (14) and a change of variables. We have

ψ(k) := Jω(wk) =
k

3+p
2(p−1)

2

∫
∞

−∞

|w′1(r)|
2 dr + ω

k
5−p

2(p−1)

2

∫
∞

−∞

w2
1(r) dr

+
k

3(5−p)
2(p−1)

24

(∫
∞

−∞

w2
1(r) dr

)3

−
k

3+p
2(p−1)

p + 1

∫
∞

−∞

|w1(r)|
p+1 dr.

Plugging (15) into that expression, we get

ψ(k) = m

[
p − 5

2(3+ p)
k

3+p
2(p−1) +

ω

2
k

5−p
2(p−1) +

m2

24
k

3(5−p)
2(p−1)

]
.



A variational analysis of a gauged nonlinear Schrödinger equation 1473

Then
d

dk
ψ(k) = mk

7−3p
2(p−1)

5− p
4(p − 1)

[
−k + ω +

1
4
m2k

5−p
p−1

]
.

In particular, the roots of (16) are exactly the critical points of ψ . Observe that

5− p
2(p − 1)

<
3+ p

2(p − 1)
<

3(5− p)
2(p − 1)

.

Hence ψ is increasing near 0 (for ω > 0) and near infinity. Therefore, for ω ∈ (0, ω1), its
first root corresponds to a local maximum ofψ and the second one to a local minimum, so
J (wk1) > J (wk2). Take now ω ∈ (0, ω0). Since in this case the minimizer is nontrivial,
it must correspond to wk2 . Moreover, ω0 < ω1.

In order to get the value of ω0, observe that Jω0(wk2) = 0. Therefore, ω0 > 0 solves
ω +

1
4
m2k

5−p
p−1 = k,

p − 5
2(3+ p)

k
3+p

2(p−1) +
ω

2
k

5−p
2(p−1) +

m2

24
k

3(5−p)
2(p−1) = 0.

From this, expression (18) follows. ut

Remark 3.5. Observe that the map ψ defined in the proof of Proposition 3.4 gives us a
quite clear interpretation of the functional Jω. Indeed, k is a critical point of ψ if and only
if wk is a critical point of Jω. Moreover, the following hold:

• If ω > ω1, then ψ is positive and increasing without critical points.
• If ω = ω1, thenψ is still positive and increasing, but it has an inflection point at k = k0.
• If ω ∈ (0, ω1), then ψ has a local maximum and minimum attained at k1 and k2,

respectively.
• If ω = ω0, then ψ(k2) = 0. In this case, the minimum of Jω0 is 0, and is attained at 0

and wk2 .
• If ω∈[0, ω0), thenψ(k2)<0 andwk2 is the unique global minimizer, with Jω(wk2)<0.

Remark 3.6. In general, we cannot obtain a more explicit expression of m depending
on p, but it can be easily approximated by using some software. In Figure 1 the maps
ω0(p) and ω1(p) have been plotted.

For some specific values of p, m can be explicitly computed, and hence ω0 and ω1.
For instance, if p = 2, m = 6, then ω1 =

2
9
√

3
and ω0 =

2
5
√

15
.

We finish this section with a technical result that will be of use later in the proof of
Theorem 1.1.

Proposition 3.7. Assume ω ≥ ω0, and un ∈ H 1(R) are such that Jω(un)→ 0. Then:

• if ω > ω0, then un→ 0 in H 1(R);
• if ω = ω0, then, up to a subsequence, either un → 0 or un(· − xn)→ wk2 in H 1(R),

for some sequence xn ∈ R.
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Fig. 1. The values ω0(p) < ω1(p) for p ∈ (1, 3).

Proof. Since Jω is coercive, we know that un is bounded. If un → 0 in H 1(R), we are
done. Otherwise, we have

on(1) = Jω(un) ≥
1
2

∫
∞

−∞

(
|u′n(r)|

2
+ ωu2

n(r)
)
dr −

1
p + 1

∫
∞

−∞

|un(r)|
p+1 dr.

Thus, un 9 0 in Lp+1(R). The concentration-compactness lemma (see [16, Lemma I.1])
shows that there exists ξn ∈ R such that

∫ ξn+1
ξn−1 u

2
n ≥ ε > 0. Therefore, ũn(r) =

un(r − ξn) ⇀ u 6= 0 weakly in H 1(R). Define vn = ũn − u, which clearly converges
weakly to 0 in H 1(R).

Step 1: vn→ 0 in L2(R). We just compute

on(1) = Jω(un) = Jω(ũn) = Jω(vn + u)

=
1
2

∫
∞

−∞

(|v′n|
2
+ |u′|2 + 2v′nu

′) dr +
ω

2

∫
∞

−∞

(v2
n + u

2
+ 2vnu) dr

+
1
8

[(∫
∞

−∞

v2
n dr

)3

+

(∫
∞

−∞

u2 dr

)3

+ 3
(∫
∞

−∞

v2
n dr

)2(∫ ∞
−∞

u2 dr

)
+ 3

(∫
∞

−∞

v2
n dr

)(∫
∞

−∞

u2 dr

)2]
−

1
p + 1

∫
∞

−∞

|vn + u|
p+1 dr + on(1).

Here the mixed products converge to zero, since vn ⇀ 0. Passing to a subsequence, we
can assume that vn→ 0 almost everywhere. Then the well-known Brezis–Lieb lemma [3]
implies that ∫

∞

−∞

|vn + u|
p+1 dr −

∫
∞

−∞

(|vn|
p+1
+ |u|p+1) dr → 0.



A variational analysis of a gauged nonlinear Schrödinger equation 1475

Then

on(1) = Jω(un) = Jω(vn)+ Jω(u)+
3
8

[(∫
∞

−∞

v2
n dr

)2(∫ ∞
−∞

u2 dr

)
+

(∫
∞

−∞

v2
n dr

)(∫
∞

−∞

u2 dr

)2]
+ on(1).

It is here that the assumption ω ≥ ω0 is crucial. Indeed, it implies that Jω(vn) ≥ 0 and
Jω(u) ≥ 0. Recall that u 6= 0 to conclude the proof of Step 1.

Step 2: Conclusion. By interpolation,

‖vn‖Lp+1 ≤ ‖vn‖
α
L2‖vn‖

1−α
Lp+2

for some α ∈ (0, 1). Since vn is bounded inH 1(R), all norms above are bounded. Hence,
by Step 1, ‖vn‖Lp+1 → 0. In other words, ũn→ u in Lp+1(R).

From this it is easy to conclude the proof. Indeed,

on(1) = Jω(ũn) =
1
2

∫
∞

−∞

(|ũ′n|
2
+ωũ2

n) dr+
1
8

(∫
∞

−∞

ũ2
n dr

)3

−
1

p+1

∫
∞

−∞

|ũn|
p+1 dr,

0 ≤ Jω(u) =
1
2

∫
∞

−∞

(|u′|2+ωu2) dr+
1
8

(∫
∞

−∞

u2 dr

)3

−
1

p+1

∫
∞

−∞

|u|p+1 dr.

Thus, ‖ũn‖H 1(R)→ ‖u‖H 1(R). This implies ũn→ u in H 1(R), finishing the proof. ut

4. Proof of Theorems 1.1 and 1.2

Lemma 4.1. Let U ∈ H 1(R) be an even function which decays to zero exponentially at
infinity, and define Uρ(r) = U(r − ρ). Then there exists C > 0 such that

Iω(Uρ) = 2πρJω(U)− C + oρ(1).

Proof. We have

(2π)−1Iω(Uρ) =
1
2

∫
∞

0
(|U ′ρ |

2
+ ωU2

ρ )r dr +
1
8

∫
∞

0

U2
ρ (r)

r

(∫ r

0
sU2

ρ (s) ds

)2

dr

−
1

p + 1

∫
∞

0
|Uρ |

p+1r dr. (19)

Let us first evaluate the local terms. By the evenness and the exponential decay of U , we
get ∫

∞

0
|U ′ρ |

2r dr =

∫
∞

−∞

|U ′(r − ρ)|2(r − ρ) dr + ρ

∫
∞

−∞

|U ′(r − ρ)|2 dr + oρ(1)

= ρ

∫
∞

−∞

|U ′|2 dr + oρ(1). (20)
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Analogously, ∫
∞

0
U2
ρ r dr = ρ

∫
∞

−∞

U2 dr + oρ(1), (21)∫
∞

0
|Uρ |

p+1r dr = ρ

∫
∞

−∞

|U |p+1 dr + oρ(1). (22)

For the nonlocal term, we have∫
∞

0

U2
ρ (r)

r

(∫ r

0
sU2

ρ (s) ds

)2

dr − ρ

∫
∞

0
U2
ρ (r)

(∫ r

0
U2
ρ (s) ds

)2

dr

=

∫
∞

0
U2
ρ (r)

(
1
r
−

1
ρ

)(∫ r

0
sU2

ρ (s) ds

)2

dr︸ ︷︷ ︸
(I )

+
1
ρ

∫
∞

0
U2
ρ (r)

[(∫ r

0
sU2

ρ (s) ds

)2

−

(∫ r

0
ρU2

ρ (s) ds

)2]
dr︸ ︷︷ ︸

(II )

.

Let us study the term (I ):

(I ) =

∫
∞

−∞

U2
ρ (r)

ρ− r

rρ

(∫ r

−∞

sU2
ρ (s) ds

)2

dr+oρ(1)

= −

∫
∞

−∞

U2(r)
r

(ρ+ r)ρ

(∫ r

−∞

(s+ρ)U2(s) ds

)2

dr+oρ(1)

=

∫
∞

0
U2(r)

r

(ρ− r)ρ

(∫
−r

−∞

(s+ρ)U2(s) ds

)2

dr

−

∫
∞

0
U2(r)

r

(ρ+ r)ρ

(∫ r

−∞

(s+ρ)U2(s) ds

)2

dr+oρ(1)

=

∫
∞

0
U2(r)

(
r

(ρ− r)ρ
−

r

(ρ+ r)ρ

)(∫
−r

−∞

(s+ρ)U2(s) ds

)2

dr

+

∫
∞

0
U2(r)

r

(ρ+ r)ρ

[(∫
−r

−∞

(s+ρ)U2(s) ds

)2

−

(∫ r

−∞

(s+ρ)U2(s) ds

)2]
dr

+oρ(1)

=
1
ρ

∫
∞

0
U2(r)

(
2r2ρ2

(ρ− r)(ρ+ r)

)(∫
−r

−∞

s+ρ

ρ
U2(s) ds

)2

dr

+

∫
∞

0
U2(r)

rρ

(ρ+ r)

[(∫
−r

−∞

s+ρ

ρ
U2(s) ds

)2

−

(∫ r

−∞

s+ρ

ρ
U2(s) ds

)2]
dr

+oρ(1).
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Passing to the limit by the Lebesgue Theorem, we obtain

(I ) =

∫
∞

0
U2(r)r

[(∫
−r

−∞

U2(s) ds

)2

−

(∫ r

−∞

U2(s) ds

)2]
dr + oρ(1)

= −CI + oρ(1).

Let us study the term (II ):

(II ) =
1
ρ

∫
∞

0
U2
ρ (r)

(∫ r

0
(s + ρ)U2

ρ (s) ds

)(∫ r

0
(s − ρ)U2

ρ (s) ds

)
dr

=
1
ρ

∫
∞

−∞

U2
ρ (r)

(∫ r

−∞

(s + ρ)U2
ρ (s) ds

)(∫ r

−∞

(s − ρ)U2
ρ (s) ds

)
dr + oρ(1)

=

∫
∞

−∞

U2(r)

(∫ r

−∞

s + 2ρ
ρ

U2(s) ds

)(∫ r

−∞

sU2(s) ds

)
dr + oρ(1).

Again by the Lebesgue Theorem,

(II ) = 2
∫
∞

−∞

U2(r)

(∫ r

−∞

U2(s) ds

)(∫ r

−∞

sU2(s) ds

)
dr + oρ(1) = −CII + oρ(1).

Observe that the above expression is negative since the function r 7→
∫ r
−∞

sU2(s) ds is
negative. Therefore, denoting C = CI + CII > 0, we have∫

∞

0

U2
ρ (r)

r

(∫ r

0
sU2

ρ (s) ds

)2

dr = ρ

∫
∞

0
U2
ρ (r)

(∫ r

0
U2
ρ (s) ds

)2

dr − C + oρ(1).

(23)
Hence the conclusion follows from (19)–(23). ut

In our next result we study the behavior of unbounded sequences with energy bounded
from above. This will be essential for the proof of Theorems 1.1 and 1.2.

Proposition 4.2. Assume ω > 0 and un ∈ H 1
r (R2) are such that ‖un‖ is unbounded but

Iω(un) is bounded from above. Then there exists a subsequence (still denoted by un) such
that:

(i) for all ε > 0,
∫
∞

ε‖un‖2
(|u′n|

2
+ u2

n) dr ≤ C;

(ii) there exists δ ∈ (0, 1) such that
∫ δ−1

‖un‖
2

δ‖un‖2
(|u′n|

2
+ u2

n) dr ≥ c > 0;
(iii) ‖un‖L2(R2)→∞.

Proof. The beginning of the proof follows the ideas of [20, Theorem 4.3]. The main
difference is that here we cannot conclude directly that Iω is bounded from below, and
indeed this fact depends on ω. The proof of Theorem 1.1 will require much more work.

We start by using inequality (8) and the Cauchy–Schwarz inequality to estimate Iω:

Iω(u) ≥
π

2

∫
∞

0
(|u′|2 + ωu2)r dr +

π

8

∫
∞

0

u2(r)

r

(∫ r

0
su2(s) ds

)2

dr

+ 2π
∫
∞

0

(
ω

4
u2
+

1
8
u4
−

1
p + 1

|u|p+1
)
r dr. (24)
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Define
f : R+→ R, f (t) =

ω

4
t2 +

1
8
t4 −

1
p + 1

tp+1.

Then the set {t > 0 : f (t) < 0} is of the form (α, β), where α, β are positive constants
depending only on p,ω. Moreover, we denote −c0 = min f < 0.

For each function un, we define

An = {x ∈ R2
: un(x) ∈ (α, β)}, ρn = sup{|x| : x ∈ An}.

With these definitions, we can rewrite (24) in the form

Iω(un) ≥
π

2

∫
∞

0
(|u′n|

2
+ωu2

n)r dr+
π

8

∫
∞

0

u2
n(r)

r

(∫ r

0
su2
n(s) ds

)2

dr−c0|An|. (25)

In particular this implies that |An| must diverge, and hence so does ρn. This already
proves (iii).

By Strauss’s Lemma [21], we have

α ≤ un(ρn) ≤
‖un‖
√
ρn
, so ‖un‖

2
≥ α2ρn. (26)

We now estimate the nonlocal term. For that, define

Bn = An ∩ B(0, γn) for γn ∈ (0, ρn) such that |Bn| = 1
2 |An|. (27)

Then∫
∞

0

u2
n(r)

r

(∫ r

0
su2
n(s) ds

)2

dr ≥
1

4π2

∫
∞

γn

u2
n(r)

r

(∫
Bn

u2
n(x) dx

)2

dr

≥ c|An|
2
∫
∞

γn

u2
n(r)

r
dr ≥ c|An|

2
∫
An\Bn

u2
n(x)

|x|2
dx

≥ c
|An|

2

ρ2
n

∫
An\Bn

u2
n(x) dx ≥ c

|An|
3

ρ2
n

. (28)

Hence, by (24), (26) and (28), we get

Iω(un) ≥ cρn + c
|An|

3

ρ2
n

− c0|An| = ρn

(
c + c

|An|
3

ρ3
n

− c0
|An|

ρn

)
.

Observe that t 7→ c + ct3 − c0t is strictly positive near zero and goes to∞ as t → ∞.
Then we can assume, passing to a subsequence, that |An| ∼ ρn. In other words, there
exists m > 0 such that ρn|An|−1

→ m as n→∞.
Taking into account (25) we conclude that up to a subsequence, ‖un‖2 ∼ ρn. More-

over, for any fixed ε > 0, we have

Cρn ≥ ‖un‖
2
L2 ≥

∫
∞

ερn

u2
nr dr ≥ ερn

∫
∞

ερn

u2
n dr.

An analogous estimate works also for
∫
∞

ερn
|u′n|

2 dr . This proves (i).
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We now show that for some δ > 0, ‖un‖H 1(δρn,ρn)
9 0, which implies (ii). First,

recall the definition of Bn and γn in (27). Then∫ ρn

γn

u2
n(r) dr ≥ ρ

−1
n

∫ ρn

γn

u2
n(r)r dr ≥ ρ

−1
n

∫
An\Bn

u2
n(x)dx ≥ ρ

−1
n |An \Bn|α

2 > c > 0.

To conclude it suffices to show that γn ∼ ρn. Indeed, define

Cn = Bn ∩ B(0, τn) for τn ∈ (0, γn) such that |Cn| = 1
2 |Bn|. (29)

We can repeat the estimate (28) with An, Bn replaced with Bn, Cn respectively to obtain∫
∞

0

u2
n(r)

r

(∫ r

0
su2
n(s) ds

)2

dr ≥ c
|Bn|

3

γ 2
n

.

Hence,

Iω(un) ≥ cρn + c
|An|

3

γ 2
n

− c0|An| = γn

(
c
ρn

γn
+ c
|An|

3

γ 3
n

− c0
|An|

γn

)
.

And we are done since Iω(un) is bounded from above. ut

Proof of Theorem 1.1. If ω ∈ (0, ω0), then Jω(wk2) < 0 (see Proposition 3.2): applying
Lemma 4.1 to U = wk2 we deduce assertion (i).

We now prove (ii) and (iii). Let us denote by H 1
0,r(B(0, R)) the Sobolev space of

radial functions with zero boundary value. Given any n ∈ N, Proposition 4.2 implies that
Iω|H 1

0,r (B(0,n))
is coercive (indeed, this is an immediate consequence of (24)). So, there

exists a minimizer un for Iω|H 1
0,r (B(0,n))

. Moreover,

Iω(un)→ inf Iω as n→∞.

If un is bounded, then Iω(un) is also bounded and therefore inf Iω is finite. In what fol-
lows we assume that un is an unbounded sequence. Then it satisfies the hypotheses of
Proposition 4.2. Let δ > 0 be given by that proposition.

The proof will be divided into several steps.

Step 1:
∫ (2/δ)‖un‖2
(δ/2)‖un‖2

|un|
p+1 dr 9 0. By Proposition 4.2(i), we have

[(δ/2)‖un‖2]∑
k=1

∫ (δ/2)‖un‖2+k

(δ/2)‖un‖2+k−1
(|u′n|

2
+ u2

n) dr ≤

∫ δ‖un‖
2

(δ/2)‖un‖2
(|u′n|

2
+ u2

n) dr ≤ C.

Taking the smaller summand on the left hand side we find xn such that

δ

2
‖un‖

2
≤ xn ≤ δ‖un‖

2
− 1, ‖un‖

2
H 1(xn,xn+1) ≤

C

‖un‖2
.
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Reasoning in an analogous way, we can choose yn such that

δ−1
‖un‖

2
+ 1 ≤ yn ≤ 2δ−1

‖un‖
2, ‖un‖

2
H 1(yn,yn+1) ≤

C

‖un‖2
.

Observe that if δ−1
‖un‖

2
≥ n, the choice of yn can be arbitrary, but this is not necessary.

Let φn : [0,∞] → [0, 1] be a C∞ function such that

φn(r) =

 0 if r ≤ xn,
1 if xn + 1 ≤ r ≤ yn,
0 if r ≥ yn + 1.

|φ′n(r)| ≤ 2.

We have

0 = I ′ω(un)[φnun] ≥ 2π
∫ yn

xn

(|u′n|
2
+ ωu2

n)r dr − 2π
∫ yn

xn

|un|
p+1r dr +O(1)

≥ ‖un‖
2
(
δ

2

∫ yn

xn

(|u′n|
2
+ ωu2

n) dr −
2
δ

∫ yn

xn

|un|
p+1 dr

)
+O(1).

Since ‖un‖H 1(xn,yn)
9 0, this concludes the proof of Step 1.

Step 2: Exponential decay. At this point we can apply the concentration-compactness
principle (see [16, Lemma 1.1]): there exists σ > 0 such that

sup
ξ∈[xn, yn]

∫ ξ+1

ξ−1
u2
n dr ≥ 2σ > 0.

Define

Dn =

{
ξ > 0 :

∫ ξ+1

ξ−1
(|u′n|

2
+ u2

n) dr ≥ σ

}
6= ∅, ξn = maxDn ∈ [xn, n+ 1). (30)

Observe that ξn ∼ ‖un‖2; indeed, ξn ≥ xn ≥ c‖un‖2, and moreover

‖un‖
2
≥ c

∫ ξn+1

ξn−1
(|u′n|

2
+ u2

n)r dr ≥ c(ξn − 1)
∫ ξn+1

ξn−1
(|u′n|

2
+ u2

n) dr ≥ c(ξn − 1).

By definition,
∫ ζ+1
ζ−1 (|u

′
n|

2
+u2

n) dr < σ for all ζ > ξn. By embedding ofH 1(ζ−1, ζ+1)
inL∞, we have 0 < un(ζ ) < Cσ for any ζ > ξn. From this we will get exponential decay
of un. Indeed, un is a solution of

−u′′n(r)−
u′(r)

r
+ ωun(r)+ fn(r)un(r) = |un(r)|

p−1un(r)

with

fn(r) =
h2
n(r)

r2 +

∫ n

r

hn(s)

s
u2
n(s) ds, hn(r) =

1
2

∫ r

0
u2
n(s)s ds.
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It is important to observe that 0 ≤ fn(r) ≤ C for all r > δ‖un‖
2. Then, by taking a

smaller σ if necessary, we can conclude that there exists C > 0 such that

|un(r)| < C exp(−
√
ω(r − ξn)) for all r > ξn.

The local C1 regularity theory for the Laplace operator (see [6, Section 3.4]) implies a
similar estimate for u′n(r). In other words,

|un(r)| + |u
′
n(r)| < C exp(−

√
ω(r − ξn)) for all r > ξn. (31)

Step 3: Splitting of Iω(un). Reasoning as at the beginning of Step 1, we can take zn such
that

ξn − 3‖un‖ ≤ zn ≤ ξn − 2‖un‖, ‖un‖
2
H 1(zn,zn+1) ≤

C

‖un‖
.

Define ψn : [0,∞] → [0, 1] to be a smooth function such that

ψn(r) =

{
0 if r ≤ zn,
1 if r ≥ zn + 1, |ψ ′n(r)| ≤ 2. (32)

In what follows we want to estimate Iω(un) with Iω(ψnun) and Iω((1 − ψn)un). Let us
start by evaluating the local terms:∫ n

0
|u′n|

2r dr =

∫ n

0
|(unψn)

′
|
2r dr +

∫ n

0
|(un(1− ψn))′|2r dr +O(‖un‖),∫ n

0
u2
nr dr =

∫ n

0
|unψn|

2r dr +

∫ n

0
|un(1− ψn)|2r dr +O(‖un‖),∫ n

0
|un|

p+1r dr =

∫ n

0
|unψn|

p+1r dr +

∫ n

0
|un(1− ψn)|p+1r dr +O(‖un‖).

Let us now study the nonlocal term:

∫ n

0

u2
n(r)

r

(∫ r

0
su2
n(s) ds

)2

dr =

∫ n

0

u2
n(r)ψ

2
n(r)

r

(∫ r

0
su2
n(s)ψ

2
n(s) ds

)2

dr

+

∫ n

0

u2
n(r)(1− ψn(r))

2

r

(∫ r

0
su2
n(s)(1− ψn(s))

2 ds

)2

dr

+

∫ n

0

u2
n(r)ψ

2
n(r)

r

(∫ r

0
su2
n(s)(1− ψn(s))

2 ds

)2

dr︸ ︷︷ ︸
(I )

+ 2
∫ n

0

u2
n(r)ψ

2
n(r)

r

(∫ r

0
su2
n(s)ψ

2
n(s) ds

)(∫ r

0
su2
n(s)(1− ψn(s))

2 ds

)
dr︸ ︷︷ ︸

(II )

+O(‖un‖).
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We now estimate:

(I ) ≥ 0,

(I I ) =

∫ n

zn

u2
n(r)ψ

2
n(r)

r

(∫ r

zn

su2
n(s)ψ

2
n(s) ds

)(∫ zn+1

0
su2
n(s)(1− ψn(s))

2 ds

)
dr

+O(‖un‖)

≥ cn‖un(1− ψn)‖2L2(R2)
+O(‖un‖),

where

cn =

∫ n

zn

u2
n(r)ψ

2
n(r)

r

(∫ r

zn

su2
n(s)ψ

2
n(s) ds

)
dr ≥ c > 0.

Therefore, we get

Iω(un) ≥ Iω(unψn)+ Iω(un(1− ψn))+ c‖un(1− ψn)‖2L2(R2)
+O(‖un‖). (33)

Step 4: The following estimate holds:

Iω(unψn) = 2πξnJω(unψn)+O(‖un‖). (34)

Indeed, by taking into account Proposition 4.2, (31) and the definition (32) ofψn, we have∣∣∣∣∫ n

0
(unψn)

2r dr − ξn

∫ n

0
(unψn)

2 dr

∣∣∣∣ ≤ ∫ n

0
(unψn)

2
|r − ξn| dr

≤

∫ ξn+‖un‖

ξn−3‖un‖
u2
n|r − ξn| dr + o(1) ≤ O(‖un‖)

∫ ξn+‖un‖

ξn−3‖un‖
u2
n dr + o(1) = O(‖un‖).

The estimates for the other local terms of Iω are similar. For the nonlocal term, we get

∫ n

0

(unψn)
2(r)

r

(∫ r

0
s(unψn)

2(s) ds

)2

dr−ξn

∫ n

0
(unψn)

2(r)

(∫ r

0
(unψn)

2(s) ds

)2

dr

=

∫ n

0
(unψn)

2(r)

(
1
r
−

1
ξn

)(∫ r

0
s(unψn)

2(s) ds

)2

dr︸ ︷︷ ︸
(I )

+
1
ξn

∫ n

0
(unψn)

2(r)

[(∫ r

0
s(unψn)

2(s) ds

)2

−

(∫ r

0
ξn(unψn)

2(s) ds

)2]
dr︸ ︷︷ ︸

(II )

,

where

(I ) ≤

∫ ξn+‖un‖

ξn−3‖un‖
u2
n(r)
|ξn − r|

rξn

(∫ ξn+‖un‖

ξn−3‖un‖
su2
n(s) ds

)2

dr + o(1) = O(‖un‖) (35)
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and

(II ) ≤
1
ξn

∫ ξn+‖un‖

ξn−3‖un‖
u2
n(r)

∣∣∣∣∫ ξn+‖un‖

ξn−3‖un‖
(s + ξn)u

2
n(s) ds

∣∣∣∣∣∣∣∣∫ ξn+‖un‖

ξn−3‖un‖
(s − ξn)u

2
n(s) ds

∣∣∣∣ dr
+ o(1)
= O(‖un‖). (36)

Step 5: Conclusion for ω > ω0. By (33) and (34), we have

Iω(un) ≥ 2πξnJω(unψn)+ Iω(un(1− ψn))+ c‖un(1− ψn)‖2L2(R2)
+O(‖un‖). (37)

Recall that ‖unψn‖2H 1(R) ≥ σ > 0. By Proposition 3.7, we have Jω(unψn)→ c > 0 up

to a subsequence. Since ξn ∼ ‖un‖2, it turns out from (37) that Iω(un) > Iω(un(1−ψn)).
But this contradicts the definition of un, proving that inf Iω > −∞.

Let us now show that Iω is coercive. Indeed, take an unbounded sequence un ∈
H 1(R2), and assume that Iω(un) is bounded from above. By Proposition 4.2(iii), we
obtain Iω̂(un)→−∞ for any ω0 < ω̂ < ω, a contradiction.

Step 6: Conclusion for ω = ω0. As above, (37) gives a contradiction unless
Jω(unψn) → 0. Proposition 3.7 now implies that ψnun(· − tn) → wk2 up to a subse-
quence, for some tn ∈ (0,∞). Since ξn ∈ Dn (see definition in (30)), we see that |tn− ξn|
is bounded. With this extra information, we have a better estimate of the decay of the
solutions: indeed,

|un(r)| + |u
′
n(r)| < C exp(−

√
ω |r − ξn|) for all r > ξn − 2‖un‖. (38)

This allows us to do the cut-off in a much more accurate way. Indeed, take

z̃n = ξn − ‖un‖.

Then (38) implies that

‖un‖
2
H 1(z̃n,z̃n+1) ≤ C exp(−

√
ω ‖un‖). (39)

Define ψ̃n : [0,∞] → [0, 1] accordingly:

ψ̃n(r) =

{
0 if r ≤ z̃n,
1 if r ≥ z̃n + 1, |ψ̃ ′n(r)| ≤ 2.

The advantage is that, in the estimate of Iω(un), the errors are now exponentially small.
Indeed, by repeating the estimates of Step 3 with the new information (39), we obtain

Iω(un) ≥ Iω(unψ̃n)+ Iω(un(1− ψ̃n))+ c‖un(1− ψ̃n)‖2L2(R2)
+ o(1).

Let us show that in this case (34) becomes

Iω(unψ̃n) = 2πξnJω(unψ̃n)+O(1).
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Indeed, by (38) and (39), we have∣∣∣∣∫ n

0
(unψ̃n)

2r dr − ξn

∫ n

0
(unψ̃n)

2 dr

∣∣∣∣ ≤ ∫ ∞
−∞

(unψ̃n)
2
|r − ξn| dr ≤ C;

the other local terms can be estimated similarly. For the nonlocal term, we repeat the
arguments of the previous case using in (35) and (36) the information contained in (38)
and (39). Thus,

Iω(un) ≥ Iω(unψ̃n)+ Iω(un(1− ψ̃n))+ c‖un(1− ψ̃n)‖2L2(R2)
+O(1)

= 2πξnJω(unψ̃n)+ Iω(un(1− ψ̃n))+ c‖un(1− ψ̃n)‖2L2(R2)
+O(1)

≥ Iω+2c(un(1− ψ̃n))+O(1).

But, by Step 1, we already know that Iω+2c is bounded from below, and hence
inf Iω0 > −∞.

Finally, applying Lemma 4.1 to U = wk2 , we readily see that Iω0 is not coercive. ut

Proof of Theorem 1.2. We shall prove each statement separately.
(i) Let u be a solution of (6). We multiply (6) by u and integrate: taking into ac-

count (8), we get

0 =
∫
R2
(|∇u|2 + ωu2) dx +

3
4

∫
R2

u2(x)

|x|2

(∫
|x|

0
su2(s) ds

)2

dx −

∫
R2
|u|p+1 dx

≥
1
4

∫
R2
|∇u|2 dx +

∫
R2

(
ωu2
+

3
4
u4
− |u|p+1

)
dx.

Observe that there exists ω̄ > 0 such that, for ω > ω̄, the function t 7→ ωt2+ 3
4 t

4
−|t |p+1

is nonnegative. Therefore u must be identically zero.
(ii) First, we observe that since inf Iω0 < 0, there exists ω̃ > ω0 such that inf Iω < 0

if and only if ω ∈ (ω0, ω̃). Since, by Theorem 1.1 and Proposition 2.2, Iω is coercive and
weakly lower semicontinuous, we infer that the infimum is attained.

Clearly, 0 is a local minimum for Iω. Next, if ω ∈ (ω0, ω̃), the functional satisfies
the geometrical assumptions of the mountain-pass theorem [1]. Since Iω is coercive, (PS)
sequences are bounded. By the compact embedding ofH 1

r (R2) intoLp+1(R2) and Propo-
sition 2.2, standard arguments show that Iω satisfies the Palais–Smale condition and so
we can find a second solution which is at a positive energy level.

(iii) Let now consider ω ∈ (0, ω0). Performing the rescaling u 7→ uω =
√
ω u(
√
ω ·),

we get

Iω(uω) = ω

[
1
2

∫
R2
(|∇u|2 + u2) dx +

1
8

∫
R2

u2(x)

|x|2

(∫
|x|

0
su2(s) ds

)2

dx

−
ω(p−3)/2

p + 1

∫
R2
|u|p+1 dx

]
.
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Define λ = ω(p−3)/2 and Iλ : H 1
r (R2)→ R as

Iλ(u) =
1
2

∫
R2
(|∇u|2 + u2) dx +

1
8

∫
R2

u2(x)

|x|2

(∫
|x|

0
su2(s) ds

)2

dx

−
λ

p + 1

∫
R2
|u|p+1 dx.

Since Iλ satisfies the geometrical assmptions of the mountain-pass theorem, from [15,
Theorem 1.1] we infer that, for almost every λ, the functional Iλ has a bounded Palais–
Smale sequence un. Assume un ⇀ u; Proposition 2.2 and standard arguments imply that
u is a critical point of Iλ. Making the change of variables back we obtain a solution of (6)
for almost every ω ∈ (0, ω0).

Finally, in order to find positive solutions of (6), we simply observe that the whole
argument applies to the functional I+ω : H

1
r (R2)→ R given by

I+ω (u) =
1
2

∫
R2
(|∇u|2 + ωu2) dx +

1
8

∫
R2

u2(x)

|x|2

(∫
|x|

0
su2(s) ds

)2

dx

−
1

p + 1

∫
R2
(u+)p+1 dx.

Due to the maximum principle, the critical points of I+ω are positive solutions of (6). ut
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[2] Bergé, L., de Bouard, A., Saut, J. C.: Blowing up time-dependent solutions of the pla-
nar Chern–Simons gauged nonlinear Schrödinger equation. Nonlinearity 8, 235–253 (1995)
Zbl 0822.35125 MR 1328596
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