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Abstract. Upper bounds for GCD sums of the form

N∑
k,`=1

(gcd(nk, n`))2α

(nkn`)
α

are established, where (nk)1≤k≤N is any sequence of distinct positive integers and 0 < α ≤ 1;
the estimate for α = 1/2 solves in particular a problem of Dyer and Harman from 1986, and the
estimates are optimal except possibly for α = 1/2. The method of proof is based on identifying the
sum as a certain Poisson integral on a polydisc; as a byproduct, estimates for the largest eigenvalues
of the associated GCD matrices are also found. The bounds for such GCD sums are used to establish
a Carleson–Hunt-type inequality for systems of dilated functions of bounded variation or belonging
to Lip1/2, a result that in turn settles two longstanding problems on the a.e. behavior of systems of
dilated functions: the a.e. growth of sums of the form

∑N
k=1 f (nkx) and the a.e. convergence of∑

∞
k=1 ckf (nkx) when f is 1-periodic and of bounded variation or in Lip1/2.

Keywords. GCD sums and matrices, Carleson–Hunt inequality, Poisson integral, polydisc, spectral
norm, convergence of series of dilated functions

1. Introduction

This paper studies two closely related topics: Greatest common divisor (GCD) sums of
the form

N∑
k,`=1

(gcd(nk, n`))2α

(nkn`)α
(1)

for 0 < α ≤ 1 and convergence properties of systems of dilated functions f (nkx) on
the unit interval [0, 1]. Here (nk)k≥1 is a sequence of distinct positive integers and f is

C. Aistleitner: Institute of Mathematics A, Graz University of Technology, Steyrergasse 30,
8010 Graz, Austria; e-mail: aistleitner@math.tugraz.at
I. Berkes: Institute of Statistics, Graz University of Technology, Keplergasse 24, 8010 Graz, Austria;
e-mail: berkes@tugraz.at
K. Seip: Department of Mathematical Sciences, Norwegian University of Science and Technology
(NTNU), NO-7491 Trondheim, Norway; e-mail: seip@math.ntnu.no

Mathematics Subject Classification (2010): 11C20, 42A20, 42A61, 42B05



1518 Christoph Aistleitner et al.

a 1-periodic real-valued function of bounded variation or belonging to the class Lip1/2.
We will introduce a new method for estimating sums of the form (1) and in particular
solve a problem posed by Dyer and Harman [14]. In addition, using estimates for (1),
we will establish a version of the Carleson–Hunt inequality that settles two longstanding
problems regarding the a.e. behavior of systems of dilated functions.

The study of GCD sums like (1) was initiated by Koksma who observed in the 1930s
that such sums can be used to estimate integrals of the form∫ 1

0

( N∑
k=1

(1[a,b)({nkx})− (b − a))
)2
dx, (2)

where the notation {·} stands for fractional part. Integrals like (2) give in turn important
information about the distribution of the sequence ({nkx})k≥1 for almost all x ∈ (0, 1).
In the case α = 1, Gál [18] proved that1

1
N

N∑
k,`=1

(gcd(nk, n`))2

nkn`
≤ c(log logN)2, (3)

and he showed that this bound is optimal up to the value of the absolute constant c. In
1986, Dyer and Harman [14] proved that

1
N

N∑
k,`=1

gcd(nk, n`)
√
nkn`

≤ C exp
(
c logN

log logN

)
(4)

for two absolute constants C and c, and they used this estimate to prove results in metric
Diophantine approximation; Dyer and Harman also found that

1
N

N∑
k,`=1

(gcd(nk, n`))2α

(nkn`)α
≤ c(α) exp((logN)(4−4α)/(3−2α))

for 1/2 < α < 1. In his monograph [22], Harman writes that “it is tempting
to conjecture” that the right-hand side of (4) can be replaced by a constant times
exp(c

√
logN/log logN). One of our examples given below will disprove this conjecture

and show that here we cannot have a function smaller than exp(2
√
(logN)/log logN).

However, the following theorem, which is our main result on GCD sums, will “almost”
confirm Harman’s conjecture and yield optimal upper bounds for (1) when 1/2 < α < 1.

Theorem 1. For every ε > 0, there exists a positive constant Cε such that the following
holds. For 0 < α < 1 and an arbitrary N -tuple of distinct positive integers n1, . . . , nN ,
we have

1
N

N∑
k,`=1

(gcd(nk, n`))2α

(nkn`)α
≤ Cε exp((1+ ε)g(α,N)),

1 Here and in what follows we may assume that N ≥ 3 so that log logN is well defined and
positive.
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where

g(α,N)

=

{( 8
1−α +

16·2−α
√

2α−1

)
(logN)1−α(log logN)−α + 1

1−α (logN)(1−α)/2, 1/2 < α < 1,

50α(logN log logN)1/2 + (1− 2α) logN, 0 < α ≤ 1/2.

Theorem 1 is in fact a corollary to a more general result which can be given a function-
theoretic interpretation on the infinite-dimensional polydisc D∞. The observation under-
lying this general theorem is that the GCD sum (1) can be written as a certain Poisson
integral evaluated at the point (p−αj ) in D∞, where pj denotes the j -th prime number.
Such integrals can be computed for arbitrary points in D∞, and our theorem is roughly
speaking stated in this generality. The proof requires a surprising blend of an intricate
combinatorial argument found in Gál’s work [18] and the explicit expression for the Pois-
son kernel on polydiscs. Thus number theory plays a minor role in establishing Theorem 1
and enters the discussion only at the final point, where we need information about the de-
cay of the sequence (p−αj ).

We will show by an example that Theorem 1 is best possible (up to a constant factor
in the exponent) when 1/2 < α < 1. We will also see that the blow-up of the constant in
front of the leading term in g(α,N) is of the right magnitude when α ↗ 1. We conjecture
that the blow-up of the same constant when α ↘ 1/2 is an artifact and that the estimate
in the range 1/2 < α < 1 should indeed extend to α = 1/2, which would then be optimal
too. On the other hand, as we will see, the estimates change abruptly when we pass from
α = 1/2 to α < 1/2, as a consequence of the divergence of the series

∑
p−2α
j ; the slow

divergence when α = 1/2 is the reason why this is a particularly delicate case. The range
0 < α < 1/2, included here for the sake of completeness, is less subtle, and it is easy to
give an example showing that the estimate of Theorem 1 is essentially best possible.

The proof of Theorem 1 and the examples showing that our results are essentially
optimal will be presented in Section 3 below. An immediate consequence of our reformu-
lation in terms of Poisson integrals is that the corresponding matrices are positive definite.
In the subsequent Section 4, we will see that in turn Theorem 1 implies precise estimates
for the largest eigenvalues of these matrices, or equivalently for their spectral norms.

2. Applications to systems of dilated functions

Our main application of Theorem 1, to be found in Section 5 below, will be to establish
a Carleson–Hunt-type inequality for systems of dilated functions of bounded variation
or belonging to Lip1/2. By standard arguments, this inequality will yield asymptotically
precise results for the growth of

N∑
k=1

f (nkx) (5)

and for the almost everywhere convergence of
∞∑
k=1

ckf (nkx) (6)
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for functions f of bounded variation or belonging to Lip1/2 that satisfy

f (x + 1) = f (x),
∫ 1

0
f (x) dx = 0. (7)

Such dilated sums arise in many problems in analytic number theory, Diophantine ap-
proximation, uniform distribution theory, harmonic analysis, ergodic theory, and prob-
ability theory. Estimating the sum (5) for centered indicator functions f = fa,b =

χ(a,b)− (b− a), which are extended with period 1, is equivalent to measuring the unifor-
mity (more precisely the deviation from uniformity) of the distribution of the sequence
(nkx)k≥1 modulo 1, and for nk = k very precise results are known. Khinchin [29] proved
that the discrepancy of the sequence (kx)1≤k≤N satisfies

NDN (x, 2x, . . . , Nx)� (logN)1+ε a.e.

for every ε > 0 and that this becomes false for ε = 0. Here the discrepancy
DN (x1, . . . , xN ) of a sequence x1, . . . , xN of real numbers is defined as

DN (x1, . . . , xN ) = sup
0≤a≤b≤1

∣∣∣∣ 1
N

N∑
k=1

fa,b(xk)

∣∣∣∣,
where again fa,b denotes the centered indicator function of the interval (a, b) ⊂ [0, 1],
extended with period 1. Thus we have∣∣∣ N∑

k=1

fa,b(kx)

∣∣∣� (logN)1+ε a.e. (8)

uniformly for such centered indicators fa,b, and, in view of Koksma’s inequality (see e.g.
[31, p. 143]), uniformly for all 1-periodic functions f satisfying (7) and Var[0,1](f ) ≤ 1.
In view of Schmidt’s lower bound [37] for the discrepancy of arbitrary infinite sequences,
the metric discrepancy behavior of (kx)k≥1 is near to extremal.

For general (nk)k≥1, the situation changes markedly. For f (x) = 2χ[0,1/2)(x) − 1
(extended to R with period 1) and nk = 2k , the terms of (5) reduce to the Rademacher
functions, and the law of the iterated logarithm implies that for almost all x ∈ (0, 1)
the sum (5) exceeds (N log logN)1/2 for infinitely many N . Berkes and Philipp [6] con-
structed a sequence (nk)k≥1 such that for f (x) = {x} − 1/2 and for almost all x the
relation ∣∣∣ N∑

k=1

f (nkx)

∣∣∣ ≥ (N logN)1/2 (9)

holds for infinitely many N , providing an even faster growing sum (5). In the opposite
direction, R. C. Baker [3] showed, improving earlier results of Cassels [12] and Erdős and
Koksma [15], that for every increasing sequence (nk)k≥1 of integers, the discrepancy of
the sequence (nkx)1≤k≤N satisfies

DN (n1x, . . . , nNx)� N−1/2(logN)3/2+ε a.e. (10)
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for every ε > 0. As a consequence, we have∣∣∣ N∑
k=1

f (nkx)

∣∣∣� √N(logN)3/2+ε a.e. (11)

uniformly for all f satisfying (7) and Var[0,1](f ) ≤ 1. There is a gap between (9) and
(11); in particular it is not known if the uniform estimate (11) holds for ε = 0 and all
(nk)k≥1. For a fixed f ∈ BV (i.e. without uniformity), Aistleitner, Mayer, and Ziegler [2]
improved the upper bound in (11) to

O
(√
N(logN)3/2(log logN)−1/2+ε),

getting for the first time a bound better than O(
√
N(logN)3/2). (Here, and in what fol-

lows, we write f ∈ BV if Var[0,1] f <∞.) Our Carleson–Hunt-type inequality will give
the following improvement of this estimate.

Theorem 2. Let (nk)k≥1 be a strictly increasing sequence of positive integers, let f be a
function satisfying (7), and assume in addition that either f ∈ BV or f ∈ Lip1/2. Then
for every ε > 0, ∣∣∣ N∑

k=1

f (nkx)

∣∣∣� (N logN)1/2(log logN)5/2+ε a.e. (12)

when N →∞.

This estimate is sharp up to the exact value of the exponent of log logN , as shown by
the following result of Berkes and Philipp [6, Theorem 1]: There exists an increasing
sequence (nk)k≥1 such that

lim sup
N→∞

|
∑N
k=1 cos(2πnkx)|

(N logN log logN)1/2
= ∞ a.e.

The class Lip1/2 represents an interesting limiting case in this context. Kaufman and
Philipp [28] proved that, under the lacunarity condition nk+1/nk ≥ q > 1 (k = 1, 2, . . .),
the law of the iterated logarithm∣∣∣ N∑

k=1

f (nkx)

∣∣∣� (N log logN)1/2 a.e. (13)

holds uniformly for all f ∈ Lipα , α > 1/2, with a fixed Lipschitz constant, and this fails
for α < 1/2. The case α = 1/2 remains open. In the case of Theorem 2, the proof shows
that for f ∈ Lipα , α > 1/2, the exponent 5/2 in (12) can be replaced by 1/2 and this
exponent is best possible.

The second consequence of our version of the Carleson–Hunt inequality deals with
the a.e. convergence of series of the form

∞∑
k=1

ckf (nkx) (14)
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for 1-periodic functions f . By Carleson’s theorem [11], when f (x) = sin 2πx or f (x) =
cos 2πx, the series (14) converges a.e. provided that

∑
∞

k=1 c
2
k < ∞. Gaposhkin [20]

showed that this remains valid if the Fourier series of f converges absolutely; in particu-
lar, this holds if f belongs to the class Lipα for some α > 1/2. However, Nikishin [36]
showed that the analogue of Carleson’s theorem fails for f (x) = sgn sin 2πx, and it also
fails for some continuous function f . There is an extensive literature on this convergence
problem going back to the 1940s (see [7] and [19] for the history of the subject), and suf-
ficient a.e. convergence criteria have been obtained for various classes of functions such
as Lipα , 0 < α ≤ 1/2, Lp, BV, or spaces of functions defined via decay conditions on
Fourier coefficients: see e.g. [1, 7, 8, 9, 10, 19, 21, 38]. However, except for Carleson’s
theorem and its immediate consequences, no precise a.e. convergence criteria for the se-
ries (14) have been found.

The following theorem gives an essentially complete solution to the convergence
problem for BV and a substantial improvement of known results for the class Lip1/2.

Theorem 3. Let f be a function satisfying (7) and assume in addition that either f ∈ BV
or f ∈ Lip1/2. Let (ck)k≥1 be a real sequence satisfying

∞∑
k=3

c2
k(log log k)γ <∞ (15)

for some γ > 4. Then for every increasing sequence (nk)k≥1 of positive integers the series∑
∞

k=1 ckf (nkx) converges a.e.

Using the optimality of Gál’s theorem and a probabilistic argument, we will show in
Section 6 that for every 0 < γ < 2 there exists an increasing sequence (nk)k≥1 of
positive integers and a real sequence (ck)k≥1 such that (15) holds, but

∑
∞

k=1 ckf (nkx) is
a.e. divergent for f (x) = {x} − 1/2. Thus apart from the precise value of the exponent
of log log k, Theorem 3 is best possible for f ∈ BV. In the Lip1/2 case, the argument
in Section 6 gives a slightly weaker counterexample, with log log k in (15) replaced by
log log log k. On the other hand, in the case of f ∈ Lipα , 0 < α < 1/2, Theorem 3 of [5]
gives an a.e. divergent series (6) with

∞∑
k=1

c2
k(log k)γ <∞ for all 0 < γ < 1− 2α.

Comparing this result with Theorem 3, we see that there is an essential difference between
the convergence behavior of the sum (5) for α = 1/2 and α < 1/2. We conclude again
that Lip1/2 stands out as a particularly interesting limiting case.

We finally mention two additional applications of Theorem 1. First, we may obtain
a substantial improvement of the convergence criteria in [1] and [38] for 0 < α < 1/2;
we will discuss this problem in a subsequent paper. Second, Theorem 1 yields an im-
provement of a result of Harman [24] on metric Diophantine approximation. The effect
of replacing the estimate (4) in Harman’s original proof by our Theorem 1 is that a fac-
tor of order exp(c logN/ log logN) becomes a factor of order exp(c

√
logN log logN).

This result is connected with the Duffin–Schaeffer conjecture, a notoriously difficult open
problem from metric Diophantine approximation (see [22, 23]).
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3. Proof of Theorem 1 via trigonometric polynomials on D∞

We introduce multi-index notation suitable for our purposes. A multi-index is a sequence
β = (β(1), . . . , β(R), 0, 0, . . . ) consisting of nonnegative integers with only a finite num-
ber of them being nonzero. We let suppβ be the finite set of positive integers j for which
β(j) > 0; we write R(β) for the maximal element in suppβ. Two multi-indices β and
µ may be added and subtracted as sequences. Then β − µ may fail to be a multi-index,
but the sequence |β −µ| = (|β(j) −µ(j)|) will again be a multi-index. We may multiply
multi-indices by positive integers in the obvious way and express any multi-index as a
linear combination of the natural basis elements ej , where ej is the multi-index supported
by {j} with e(j)j = 1. We write β ≤ µ if β(j) ≤ µ(j) for every j . For a sequence z = (zj )
of complex numbers, we use the notation

zβ :=

R(β)∏
j=1

z
β(j)

j ;

we will sometimes write z−β for the number (zβ)−1.
We write p = (pj ) for the sequence of prime numbers ordered by ascending magni-

tude. Using our multi-index notation, we may write every positive integer n as pβ for a
multi-index β that is uniquely determined by n. If nk = pβk , then we may write

(gcd(nk, n`))2

nkn`
= p−|βk−β`|.

For an arbitrary sequence t of positive numbers in D∞ and a set of distinct multi-indices
B = {β1, . . . , βN }, we now define

S(t, B) :=
1
N

N∑
k,`=1

t |βk−β`|.

We set
0t (N) := sup

B

S(t, B),

where the supremum is taken over all possible setsB of distinct multi-indices β1, . . . , βN .
Our original problem concerning GCD sums has thus been transformed into the problem
of estimating 0t (N) in the particular case when t = (p−αj ).

For a minor technical reason, we introduce the following notation. Let η : (0, 1) →
(0, 1) be defined by the relation

η(x) :=

{
2x, 0 < x < 1/2,
x, 1/2 ≤ x < 1,

and for a sequence t = (tj ) with 0 < tj < 1, we set η(t) := (η(tj )). For a decreasing
sequence t of positive numbers in the sequence space c0, we define

κ(t) :=

{
0 if t1 < 1/2,
max{j : tj ≥ 1/2} otherwise.
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We will prove the following general theorem.

Theorem 4. Let t = (tj ) be a sequence of positive numbers in D∞ ∩ c0 such that
(τj ) := η(t) is a decreasing sequence. Fix a positive number ξ > (log 2)−1, and set
rN = [ξ logN ] + κ(t). Then, for arbitrary numbers 1 > v1 ≥ · · · ≥ vrN satisfying also
vj > τ 2

j for 1 ≤ j ≤ rN , we have

0t (N) ≤

rN∏
j=1

(1− vj )−1(1− v−1
j τ 2

j )
−1

N−1∏
k=rN+1

(1− v−1
r(N)τ

2
k )
−1
+ exp

(
C

N−1∑
`=1

t2`

)
, (16)

where C is a positive constant depending only on ξ .

This theorem is clearly applicable when the sequence t is in `2, but it can also be used
when the series

∑
j t

2
j is “slowly” divergent, as we will now see.

Proof of Theorem 1. We now take Theorem 4 for granted and show that it implies Theo-
rem 1. We begin with the case 1/2 < α < 1 and observe first that then

exp
(
C

N−1∑
`=1

t2`

)
≤ exp

(
c + Cmin(log logN, 1/(2α − 1))

)
for some constant c. This inequality has the consequence that the exponential term in (16)
will contribute only with a fixed constant factor, independent of ε, in Cε. Assuming that
N is so large that (2α − 1)−1/2

≤ τ1, we choose

vj := max(τj , (2α − 1)−1/2τrN )

in the first term on the right-hand side of (16), with τj = η(p−αj ). (The decay of τj
is a minor technical point which can be dealt with by an obvious rearrangement of the
sequence. For smaller N , we set vj := τ0 for all j . We choose ξ = 2 and note that
p−αj < 1/2 for j ≥ 3, whence τj = 2p−αj for j ≥ 3 and rN = [2 logN ] + 2. We set

sN := max{1 ≤ j ≤ rN : τj ≥ (2α − 1)−1/2τrN }

and split accordingly the first product into two factors. Hence, using the definition of τj ,
we obtain

51 :=

sN∏
j=j0

(1− vj )−1(1− v−1
j τ 2

j )
−1
≤

rN∏
j=j0

(1− 2p−αj )−2

≤ exp
(
(1+ ε/2)4

rN∑
j=j0

p−αj

)
(17)

and

52 :=

rN∏
j=sN+1

(1− vj )−1(1− v−1
j τ 2

j )
−1
≤ (1−min(τ0, (2α − 1)−1/22p−αrN ))

−2rN

≤ C exp((1+ ε/2)8(2α − 1)−1/2p−αrN logN) (18)



GCD sums from Poisson integrals and systems of dilated functions 1525

if j0 and thus sN are large enough, with C an absolute constant. By the prime number
theorem, we have pj = (1 + o(1))j log j when j → ∞, so that (17) and (18) become
respectively

51 ≤ exp
(
(1+ ε)4

rN∑
j=j0

(j log j)−α
)

(19)

and
52 ≤ C exp

(
(1+ ε)8 · 2−α(2α − 1)−1/2(logN)1−α(log logN)−α

)
(20)

if j0 is large enough. The sum in (19) can be estimated as

rN∑
j=j0

(j log j)−α ≤ (log j0)
−α
[(logN)1/2]∑
j=j0

j−α + 2α(log logN)−α
rN∑
j=2

j−α,

whence we finally get

51≤C exp
(
(1+ε)

(
8

1− α
(logN)1−α(log logN)−α+

1
1− α

(logN)(1−α)/2
))
, (21)

assuming again that j0 is sufficiently large.
For the second product in (16), we obtain

53 :=

N−1∏
k=rN+1

(1− v−1
r(N)τ

2
k )
−1
≤ exp

(
(1+ ε/2)v−1

rN
4

N−1∑
j=rN+1

p−2α
j

)
.

We appeal again to the prime number theorem and get

53 ≤ C exp
(
(1+ ε)4 · 2α(2α − 1)1/2(logN)α(log logN)−α

∞∑
j=rN+1

j−2α
)

≤ C exp
(
(1+ ε)8 · 2−α(2α − 1)−1/2(logN)1−α(log logN)−α

)
. (22)

The desired estimate for the function g(α, n) in Theorem 1 follows from our three esti-
mates (21), (20), and (22), if we take into account that the contribution from the factors
omitted in the first product in (16) by the restriction on j0 can be bounded by a constantCε
which is independent of α.

The case α = 1/2 is dealt with in the same way, the only difference being that we now
choose vj = max(η(p−1/2

j ), (log logN)1/2/(logN)1/2). Retaining the notation from the
preceding case and assuming that j0 is large enough, we get respectively

51 ≤ C exp
(
(1+ ε)(16(logN)1/2(log logN)−1/2

+ (logN)1/4)
)
,

52 ≤ C exp
(
(1+ ε)4(logN log logN)1/2

)
,

53 ≤ C exp
(
(1+ ε)4(logN log logN)1/2

)
,



1526 Christoph Aistleitner et al.

where in the last step we have used Mertens’s second theorem. Combining these esti-
mates, we arrive at the required bound for g(1/2, N) since we may assume that N is so
large that log logN ≥ 1.

Finally, to deal with the case 0 < α < 1/2, we apply Hölder’s inequality with expo-
nents 1/(2α) and 1/(1− 2α):

1
N

N∑
k,`=1

(gcd(nk, n`))2α

(nkn`)α
≤

( N∑
k,`=1

gcd(nk, n`)
(nkn`)1/2

)2α

N1−4α,

and so the desired result follows from what was just proved in the case α = 1/2. ut

To see to what extent Theorem 1 is sharp for 1/2 ≤ α < 1, we consider the following
example: Set N = 2r and take n1, . . . , nN to be all square-free numbers composed of the
first r primes. Then

N∑
k,`=1

(gcd(nk, n`))2α

(nkn`)α
= N

r∏
j=1

(1+ p−αj ),

which follows from an argument in [18, p. 21]. By the prime number theorem, we there-
fore get

1
N

N∑
k,`=1

(gcd(nk, n`))2α

(nkn`)α
≥ exp

(
c

1− α
(logN)1−α(log logN)−α

)
for some positive constant c. Thus our estimate in Theorem 1 is of the right order of
magnitude when 1/2 < α < 1, as is the blow-up of the multiplicative constant 1/(1− α)
in g(α,N) when α ↗ 1. However, this example does not settle the cases α ↘ 1/2 and
α = 1/2. In fact, we see that there is a discrepancy of a factor log logN in the exponent
between our estimate and the lower bound obtained from the example. It seems likely
that the blow-up of the constant c(α) when α ↘ 1/2 is an artifact. The trouble is that
the divergence of the series

∑
j p
−1
j implies that the number of primes involved in the

sum plays a role. We believe the number of primes should be O(logN) when the sum is
maximal, but we can only infer from our method of proof that this number is bounded
by N − 1.

Our estimate is however essentially optimal when 0 < α < 1/2. To see this, it suffices
to consider the example n1 = 2, n2 = 3, . . . , nN = pN . Using the prime number theorem
in a similar way to the proof of Theorem 1, we obtain

1
N

N∑
k,`=1

(gcd(nk, n`))2α

(nkn`)α
≥ c(logN)−2αN−2α+1

for a positive constant c. The reason for the abrupt change at α = 1/2 is that the relatively
fast divergence of

∑
j p
−2α
j (as in this example) plays a dominant role when 0 < α < 1/2.
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We will now prepare for the proof of Theorem 4 by making the passage to Poisson
integrals as alluded to above. We let σK denote normalized Lebesgue measure on the unit
polycircle TK and write

PK(ζ, z) :=

K∏
k=1

1− |ζk|2

|1− ζkzk|2
,

which is the Poisson kernel for the unit polydisc DK at the point ζ . It is convenient in
this definition to allow ζ to be a point in the infinite-dimensional polydisc D∞. The only
property of PK needed is the identity

t |β−µ| =

∫
TK
zβzµPK(t, z) dσK(z),

valid for positive sequences t in D∞, which is obtained by computing the integral over TK
as an iterated integral over K copies of the unit circle. It leads immediately to the follow-
ing lemma.

Lemma 1. For a positive sequence t in D∞, arbitrary multi-indices β1, . . . , βN with
K = maxj R(βj ), and complex numbers c1, . . . , cN , we have

N∑
k,`=1

t |βk−β`|ckc` =

∫
TK

∣∣∣ N∑
j=1

cjz
βj

∣∣∣2PK(t, z) dσK(z). (23)

The fact that the quadratic form on the left-hand side of (23) can be written as the square
of a norm was first observed in [34] in the special case when t = (p−αj ) and α > 1/2,
based on ideas from [25]. The present formulation seems more illuminating and leads to
an interesting problem for trigonometric polynomials on D∞. We will take a closer look
at this problem in the next section, where we will estimate the `2-norm of the quadratic
form on the left-hand side of (23), or, in other words, the largest eigenvalue of the ma-
trix (t |βk−β`|).

For the proof of Theorem 4, we only need (23) when ck ≡ 1. Incidentally, this restric-
tion is crucial for the combinatorial argument that leads to Lemma 2 below, which is our
next auxiliary result. It is interesting to note that this lemma relies on the left-hand side
of (23), while the subsequent analytic part of the proof of Theorem 4 departs from the
right-hand side of this identity.

We will use a variant of Gál’s terminology: A set B of N multi-indices β1, . . . , βN is
said to be κ-canonical for 0 ≤ κ < N if β ∈ B and ej ≤ β for some j with κ < j ≤ N

imply that β− ej ∈ B. The following lemma is a modification of a theorem in [18, p. 17].

Lemma 2. Suppose B is a set of N multi-indices. Let t be a decreasing sequence of
positive numbers in D∞ ∩ c0. If κ(t) < N , then there exists a κ(t)-canonical set of N
multi-indices B ′ = {β ′1, . . . , β

′

N } such that S(η(t), B ′) ≥ S(t, B) and #
⋃N
j=1 suppβ ′j

≤ N − 1.



1528 Christoph Aistleitner et al.

Proof. We will modify B and t by an inductive algorithm. We break the argument into
two parts, the first of which will give a set of multi-indices for which the union of their
supports has cardinality at most N − 1.

Part 1: It will be convenient to use the following terminology. We say that a multi-index β
inB is j -maximal if j is in suppβ but (β(j)+1)ej 6≤ µ for everyµ inB. We will construct
from B a new set B̃ with the property that if β in B̃ is j -maximal, then also β − ej is
in B̃, while at the same time S(t, B̃) ≥ S(t, B). Writing B̃ = {β̃1, . . . , β̃N }, we see that,
as a consequence, we will have #

⋃N
j=1 supp β̃j ≤ N − 1.

Fix a positive integer j in
⋃
k suppβk . Let ν be the largest integer such that νej ≤ β

for some β in B. Suppose there is a j -maximal multi-index β in B such that νej ≤ β but
β − ej is not in B. For every such β, we replace β in B by β − ej ; we call the new set of
multi-indices Bν . A term by term comparison shows that S(t, Bν) ≥ S(t, B).

If there is a j -maximal multi-index in Bν with β(j) = µ, then it must have the desired
property that also β − ej is in Bν , and no further action is needed. In the opposite case,
we repeat the argument with ν replaced by ν − 1. The iteration terminates when either
the desired property holds for some Bη with 1 ≤ η ≤ ν or j is not in the support of any
multi-index in B1.

We repeat this iteration for every j in
⋃
k suppβk and thus obtain the desired set B̃.

Part 2: By part 1, we may from now on assume that, for every j in
⋃
k suppβk , any j -

maximal multi-index β in B has the property that β − ej is in B. This is irrelevant for
the argument to be given below, but we need it to reach the desired conclusion about the
cardinality of

⋃
j suppβj .

We now assume that κ(t) < N . We fix a j > κ(t) in
⋃
j suppβj and divide B

into disjoint subsets b1, . . . , b` (1 ≤ ` ≤ N ), which we call j -chains of multi-indices,
according to the following rule: two distinct multi-indices β and µ belong to the same
j -chain b if |β − µ| = ηej for some η > 0. This means that every element β in b is of
the form β = µ+ ηej , where µ(j) = 0 and µ is thus a multi-index that characterizes the
j -chain b. We now modify each j -chain bk by replacing it by the set

b̃k := {µ,µ+ ej , . . . , µ+ (#b − 1)ej },

and we set B̃ :=
⋃`
k=1 b̃k .

It is immediate that S(t, b̃) ≥ S(t, b). To compare the terms of the sum corresponding
to pairs of multi-indices from different j -chains, we introduce the notation

S(t; a, b) :=
∑

β∈a, µ∈b

t |β−µ|,

where a and b are two different j -chains. Sorting, by descending order of magnitude, the
possible values of |β(j)−µ(j)| for all β and µ in a and b and in ã and b̃, respectively, we
obtain the inequality

S(t; a, b) ≤
∑

β∈ã, µ∈b̃, β(j)=µ(j)

t |β−µ| + 2
∑

β∈ã, µ∈b̃, β(j) 6=µ(j)

t |β−µ|.
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This implies that S(t; a, b) ≤ S(t + tj ej ; a, b) and, more generally, that S(t + tj ej , B̃)
≥ S(t, B).

The result follows if we make this modification in turn for every j in
⋃
k suppβk for

which j > κ(t). ut

Proof of Theorem 4. To simplify the notation, we write τ := η(t). By Lemma 2, it
suffices to estimate S(τ, B) for every κ(t)-canonical set B = {β1, . . . , βN } of N multi-
indices satisfying

#
N⋃
j=1

suppβj ≤ N − 1.

It is clear that we may assume that

N⋃
j=1

suppβj = {1, . . . , K}

for some K ≤ N − 1 since we are seeking an upper bound for all sums S(τ, B) and τ is
a decreasing sequence. Note that we may write

PK(τ, z) =

K∏
k=1

(1− τ 2
k )

∣∣∣ ∑
β:R(β)≤K

τβzβ
∣∣∣2.

By Lemma 1 and the orthonormality of the monomials zβ , we therefore get

S(τ, B) =
1
N

K∏
k=1

(1− τ 2
k )

∑
β:R(β)≤K

( ∑
j :βj≤β

τβ−βj
)2
. (24)

Let B1 denote the set of those multi-indices β such thatR(β) ≤ K and # suppβ ≤ rN ,
and let B2 denote the set of all other multi-indices β with R(β) ≤ K . By the Cauchy–
Schwarz inequality, we get∑

β∈B2

( ∑
j :βj≤β

τβ−βj
)2
≤

∑
β∈B2

N
∑

j :βj≤β

τ 2(β−βj ),

which may be written as∑
β∈B2

( ∑
j :βj≤β

τβ−βj
)2
=

N∑
j=1

∑
β∈B2:βj≤β

Nτ 2(β−βj ).

Since B is assumed to be κ(t)-canonical, # suppβj ≤ (logN)/ log 2 + κ(t) for every j ,
and hence # supp(β − βj ) ≥ ε logN for a positive ε, depending on our choice of ξ , when
β is in B2. We assume for convenience that ε logN is an integer. Suppose 2τ 2

j > e−1/ε

for j = 1, . . . , J ≤ N − 1. Then we may estimate the inner sum as an Euler product and
obtain ∑

β∈B2

Nτ 2(β−βj ) ≤ eJ/ε
J∏
j=1

(1− τ 2
j )
−1

N−1∏
k=J

(1− τ 2
k e

1/ε)−1,
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which means that
K∏
k=1

(1− τ 2
k )
∑
β∈B2

( ∑
j :βj≤β

τβ−βj
)2
≤ N exp

(
C

N−1∑
j=1

t2j

)
(25)

for a constant C that only depends on ε.
We next consider the summation over B1. Let β be an arbitrary multi-index in this set

with
suppβ = {j1, . . . , ji},

where i ≤ rN by the definition of B1. For any numbers vk satisfying the hypothesis of
Theorem 4, we define a sequence wβ by requiring

w
(jk)
β :=

{
vk for k = 1, . . . , i,
0 otherwise.

We now apply the Cauchy–Schwarz inequality and get( ∑
j :βj≤β

τβ−βj
)2
≤

∑
j :βj≤β

w
β−βj
β

∑
k: βk≤β

w
−(β−βk)
β τ 2(β−βk)

≤

rN∏
j=1

(1− vj )−1
∑

k: βk≤β

w
−(β−βk)
β τ 2(β−βk).

Now summing over β in B1 and changing the order of summation, we get∑
β∈B1

( ∑
j :βj≤β

τβ−βj
)2
≤

rN∏
j=1

(1− vj )−1
N∑
k=1

∑
β∈B1

w
−(β−βk)
β τ 2(β−βk). (26)

Since (vj ) is a nonincreasing sequence, we have

w
(j)
β ≥

{
vj for j ∈ suppβ ∩ {1, . . . , rN },
vrN for j ∈ suppβ ∩ {rN + 1, . . . , N − 1}.

Plugging this estimate into the right-hand side of (26) and estimating the sum over β ∈ B1
in terms of an Euler product, we conclude that∑

β∈B1

( ∑
j :βj≤β

τβ−βj
)2
≤ N

rN∏
j=1

(1− vj )−1(1− v−1
j τ 2

j )
−1

N−1∏
k=rN+1

(1− v−1
rN
τ 2
k )
−1.

We finally observe that, in view of (24), this inequality along with the preceding estimate
(25) leads to the desired inequality (16). ut

It is worth pointing out that the most essential use of Lemma 2 was to reduce the problem
to the case when the cardinalities # suppβj are uniformly bounded by a constant times
logN . It would be desirable to find a way to arrive at this reduction without involving
the auxiliary sequence η(t). In particular, if this could be done, then our method of proof
would allow us to recapture Gál’s theorem (3). Unfortunately, we can only conclude from
Theorem 4 that 0

(p−1
j )
(N)� (log logN)4.
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4. Spectral norms of generalized GCD matrices

This section will show that with little extra effort we may obtain from Theorem 4 precise
estimates for the largest eigenvalues of the matrices (t |βk−β`|), which we will refer to as
generalized GCD matrices. Since, by (23), these matrices are positive definite, we see
that

3t (N) := sup
β1,...,βN

sup
c 6=0

∑N
k,`=1 t

|βk−β`|ckc`∑N
j=1 |cj |

2

is the least upper bound for these eigenvalues, where the suprema are taken over re-
spectively all N -tuples of distinct multi-indices β1, . . . βN and all nonzero vectors c =
(c1, . . . , cN ) in CN . We may also refer to 3t (N) as the supremum of the spectral norms
of the matrices (t |βk−βl |) for fixed N . The problem of estimating 3t (N) for t = (p−αj )

was raised in [7, p. 10]. Based on purely arithmetical arguments, Hilberdink [26, pp. 362–
363] gave precise estimates for the spectral norms of our GCD matrices in the special case
when pβj = j or, in other words, for the matrix corresponding to the first N integers.

Trivially, 3t (N) ≥ 0t (N). In the opposite direction, we have the following estimate.

Theorem 5. We have

3t (N) ≤ (e
2
+ 1)([logN ] + 2) max

1≤n≤N
0t (n)

whenever t = (tj ) is a decreasing sequence of positive numbers in D∞.

A few remarks are in order before we give the proof of this theorem. First, the result is of
interest only when t fails to be in `1 because if t is in `1, then the easy estimate

3t (N) ≤

N−1∏
j=1

1+ tj
1− tj

, (27)

which can be obtained from the right-hand side of (23), shows that 3t (N) is uniformly
bounded when N → ∞. Note that a special version of this estimate is given in [34,
p. 152]. We will prove both (27) and a corresponding estimate for the smallest eigenvalue
of (t |βk−β`|) at the end of this section, as a generalization of the result in [34, p. 152].

In our terminology, Dyer and Harman [14] obtained (4) from the estimate

3
(p
−1/2
j )

(N) ≤ C exp
(
c logN

log logN

)
.

Apart from the results of [34] and [14], we are not aware of previous estimates of 3t (N)
for any other values of t . If we combine Theorem 1 with Theorem 5, then we obtain
precise estimates for3(p−αj )(N)when 0 < α < 1. From Gál’s theorem (3) and Theorem 5
we also get

3
(p−1
j )
(N) ≤ c(logN)(log logN)2
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for an absolute constant c. A more subtle application of our estimates for GCD sums, to
be given in the next section, will lead to the better bound 3

(p−1
j )
(N)� (log logN)4. An

interesting point is that this improved estimate is obtained from Theorem 1 and does not
require Gál’s theorem.

As an application of our result on spectral norms, we note that we may replace λN in
Theorem 1.1 of [7, p. 10] by our quantity 3(p−αj )(N) and then improve Corollary 1.2 of
[7, p. 11] significantly by using our estimates for 3(p−αj )(N).

The phenomenon captured by Theorems 4 and 5 is interesting from a function-the-
oretic point of view: While holomorphic polynomials F of fixed L2 norm (in terms of
their coefficients) are uniformly bounded at any fixed point in D∞ ∩ `2 [13], this is not so
in general for the Poisson integrals of |F |2. Indeed, the two theorems give a surprisingly
precise statement about the relation between the growth of the number of monomials
involved in the polynomials and the growth of such Poisson integrals at points ζ in the
complement of D∞ ∩ `1. We believe it could be of interest to clarify how these estimates
relate to the distributional properties of polynomial chaos as studied for instance in [32].

Finally, we would like to emphasize the striking point that the combinatorial Lemma 2
seems indispensable in the deduction of our estimates for the spectral norms.

Proof of Theorem 5. We will estimate the quadratic form

N∑
k,`=1

t |βk−β`|ckc`

for arbitrary multi-indices β1, . . . , βN and vectors c = (c1, . . . , cN ) satisfying
∑N
j=1 |cj |

2

= 1. We may clearly assume that the coefficients cj are nonnegative. Set

C` := {j : e−`−1 < cj ≤ e
−`
}.

By the Cauchy–Schwarz inequality, we get

∣∣∣ N∑
j=1

cjz
βj

∣∣∣2 ≤ ([logN ] + 2)
(∣∣∣ ∑
j : cj≤N

−1

cjz
βj

∣∣∣2 + ∑
`: 0≤`<logN

∣∣∣ ∑
k: k∈C`

ckz
βk

∣∣∣2). (28)

Using (23) and again the Cauchy–Schwarz inequality, we get∫
TK

∣∣∣ ∑
j : cj≤N

−1

cjz
βj

∣∣∣2PK(t, z) dσK(z) ≤ 1.

Applying (23) a second time, we also obtain∫
TK

∣∣∣ ∑
k: k∈C`

ckz
βk

∣∣∣2PK(t, z) dσK(z) ≤ e−2`(#C`) 0t (#C`),
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which, by the definition of C` and the fact that c is a unit vector, implies∑
`: 0≤`<logN

∫
TK

∣∣∣ ∑
k: k∈C`

ckz
βk

∣∣∣2PK(t, z) dσK(z) ≤ e2 max
1≤n≤N

0t (n).

Returning to (28) and making a final application of (23), we obtain the desired result

3t (N) ≤ ([logN ] + 2)(1+ e2) max
1≤n≤N

0t (n). ut

Let now λt (N) denote the infimum of the smallest eigenvalues of the generalized GCD
matrices (t |βk−βl |) for fixedN . We then obtain the following generalization of the theorem
in [34, p. 152].

Theorem 6. We have
N−1∏
j=1

1− tj
1+ tj

≤ λt (N) ≤ 3t (N) ≤

N−1∏
j=1

1+ tj
1− tj

(29)

whenever x = (xj ) is a decreasing sequence of positive numbers in D∞.
Proof. Note first that the leftmost and rightmost expressions are respectively the mini-
mum and the maximum of PN−1(t, z) when z varies over TN−1. Thus the estimates in
(29) follow from (23) if we first make the observation that it suffices to integrate over an
(N − 1)-circle to compute the L2(σK)-norm of a function of the form

∑N
j=1 cjz

βj . ut

5. A Carleson–Hunt-type inequality

We have now come to our main application of Theorem 1, namely to establish a Carleson–
Hunt-type inequality. To this end, we will require the following special case of the classi-
cal Carleson–Hunt inequality [27, Theorem 1].

Lemma 3. There exists an absolute constant c such that∫ 1

0

(
max

1≤M≤N

∣∣∣ M∑
k=1

ck cos 2πkx
∣∣∣)2

dx ≤ c

N∑
k=1

c2
k

for every finite sequence (ck)1≤k≤N .

Our generalized version of this inequality reads as follows (as in the introduction, we
write f ∈ BV if the function f has bounded variation on [0, 1]).

Lemma 4. For every function f satisfying (7) and either f ∈ BV or f ∈ Lip1/2, there
exists a constant c such that the following holds. For every finite and strictly increasing
sequence (nk)1≤k≤N of positive integers and every associated finite sequence (ck)1≤k≤N
of real numbers, we have∫ 1

0

(
max

1≤M≤N

∣∣∣ M∑
k=1

ckf (nkx)

∣∣∣)2
dx ≤ c(log logN)4

N∑
k=1

c2
k . (30)

We do not know whether the exponent of log logN is optimal in (30), but the following
argument shows that it cannot be smaller than 2 for f in BV: If we choose f (x) =
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{x} − 1/2, then we have the identity∫ 1

0
f (mx)f (nx) dx =

1
12
(gcd(m, n))2

mn
,

which has been first stated by Franel [17] and first proved by Landau [33]. Consequently,
for this particular function f the left-hand side of (30) exceeds

1
12

N∑
k,`=1

(gcd(nk, n`))2

nkn`
ckc`.

By the optimality of Gál’s theorem (3), we know that 3
(p−1
j )
(N) � (log logN)2 in the

notation of the preceding section, and therefore 2 is a lower bound for the exponent. This
can also be seen from Hilberdink’s computation of the spectral norm of the GCD matrix
((gcd(m, n))2/(m, n))Nm,n=1 (see [26]).

The argument just given also shows that Lemma 4 implies that 3
(p−1
j )
(N) �

(log logN)4, as announced in the preceding section. Since the maximal operator appear-
ing in Lemma 4 is not needed in the computation of the spectral norm, one may suspect
that we could do better if our sole goal was to estimate 3

(p−1
j )
(N). However, the proof

given below does not give any better bound if we remove the maximal operator on the
left-hand side of (30).

Before turning to the proof of Lemma 4, we introduce the following conventions.
We write c for appropriate positive constants, not always the same, which may depend
on f , but not on N or anything else. Any additional dependence is made explicit; we may
sometimes, for example, write c(ε) instead of c. We will use the notation

‖g‖ :=

(∫ 1

0
(g(x))2 dx

)1/2

,

where g is assumed to be a real-valued function.

Proof of Lemma 4. Let f be any function satisfying (7), and assume that either f ∈ BV
or f ∈ Lip1/2. To simplify the exposition, we assume that f is even so that its Fourier
series is a pure cosine-series:

f (x) ∼

∞∑
j=1

aj cos 2πjx.

Under the assumption that
∑
k c

2
k = 1, the coefficients ck satisfying |ck| ≤ N−2 will

give a negligible contribution to the left-hand side of our maximal inequality. We may
therefore assume without loss of generality that N−2

≤ |ck| ≤ 1.
To make our proof as transparent as possible, we will first prove Lemma 4 when

f ∈ BV. The proof for f ∈ Lip1/2 is technically more involved and will be given subse-
quently. In what follows, we will use the notation

δi =

{
1 for i = 0,
0 otherwise.
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Proof in the case f ∈ BV: By [39, p. 48], the Fourier coefficients aj of a function f in
BV satisfy

|aj | ≤ cj
−1, j ≥ 1. (31)

Set

p(x) =

J∑
j=1

aj cos 2πjx, r(x) = f (x)− p(x), (32)

where J will be chosen later. Then, by Minkowski’s inequality,∥∥∥ max
1≤M≤N

∣∣∣ M∑
k=1

ckf (nkx)

∣∣∣∥∥∥ ≤ ∥∥∥ max
1≤M≤N

∣∣∣ M∑
k=1

ckp(nkx)

∣∣∣∥∥∥+∥∥∥ max
1≤M≤N

∣∣∣ M∑
k=1

ckr(nkx)

∣∣∣∥∥∥. (33)

By (31) and Lemma 3, we have∥∥∥ max
1≤M≤N

∣∣∣ M∑
k=1

ckp(nkx)

∣∣∣∥∥∥ ≤ J∑
j=1

|aj |

∥∥∥ max
1≤M≤N

∣∣∣ M∑
k=1

ck cos 2πjnkx
∣∣∣∥∥∥

≤ c(log J )
( N∑
k=1

c2
k

)1/2
. (34)

Estimating the second term on the right-hand side of (33) is more difficult. Let arbitrary
numbers 0 ≤ M1 < M2 ≤ N be given. We want to find a good estimate for

∥∥∥ M2∑
k=M1+1

ckr(nkx)

∥∥∥. (35)

We now sort the coefficients by size in the same way as we did in the proof of Theorem 5.
Hence, for every ` in {0, d2 logNe}, we define

K` := {k : M1 < k ≤ M2 and e−`−1 < |ck| ≤ e
−`
}. (36)

As observed above, we may assume that N−2
≤ |ck| ≤ 1 for 1 ≤ k ≤ N . Thus

d2 logNe∑
`=0

∑
k∈K`

ckr(nkx) =

M2∑
k=M1+1

ckr(nkx).

Now fix an arbitrary ` in {0, d2 logNe}, and setN` := #K`. By (31) and the orthogonality
of the trigonometric system, we have∫ 1

0

(∑
k∈K`

ckr(nkx)
)2
dx =

1
2

∑
k1,k2∈K`

∞∑
j1,j2=J+1

ck1ck2aj1aj2δj1nk1−j2nk2

≤ ce−2`
∑

k1,k2∈K`

∞∑
j1,j2=J+1

(j1j2)
−1δj1nk1−j2nk2

. (37)
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Let v < w be positive integers. Then, following an argument of Koksma [30], we have

∞∑
j1,j2=J+1

(j1j2)
−1δj1v−j2w ≤

∞∑
j1,j2=1

(j1j2)
−1δj1v−j2w

=

∞∑
j=1

1
j2

gcd(v,w)
v

gcd(v,w)
w

≤ 2
(gcd(v,w))2

vw
. (38)

On the other hand, as in [2, p. 104], we have

∞∑
j1,j2=J+1

(j1j2)
−1δj1v−j2w =

∑
j≥d(J+1) gcd(v,w)/ve

(gcd(v,w))2

j2vw

≤
2

d(J + 1) gcd(v,w)/ve
(gcd(v,w))2

vw

≤
2
J

gcd(v,w)
w

≤
2
J

gcd(v,w)
√
vw

. (39)

Let 0 < ε < 1 be a number to be chosen later. Combining (38) and (39), we obtain

∞∑
j1,j2=J+1

(j1j2)
−1δj1v−j2w ≤

(
2
(gcd(v,w))2

vw

)1−ε( 2
J

gcd(v,w)
√
vw

)ε
=

2
J ε

(gcd(v,w))2−ε

(vw)1−ε/2
. (40)

Thus the integral in (37) is bounded by

ce−2`
∑

k1,k2∈K(`)

2
J ε

(gcd(nk1 , nk2))
2−ε

(nk1nk2)
1−ε/2 ,

which, by Theorem 1 (for α = 1− ε/2), is at most

ce−2`J−εN` exp
(
c

ε
(logN`)ε/2

)
.

By Minkowski’s inequality, we therefore get the following estimate for (35):

∥∥∥ M2∑
k=M1+1

ckr(nkx)

∥∥∥ ≤ d2 logNe∑
`=0

∥∥∥∑
k∈K`

ckr(nkx)

∥∥∥
≤ c

d2 logNe∑
`=0

e−`N
1/2
` J−ε/2 exp

(
c

ε
(logN`)ε/2

)
.
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Applying the Cauchy–Schwarz inequality, we infer from this bound that∥∥∥ M2∑
k=M1+1

ckr(nkx)

∥∥∥ ≤ cJ−ε/2(logN)1/2
(d2 logNe∑

`=0

e−2`N`

)1/2
exp

( ĉ
ε
(logN)ε/2

)

≤ cJ−ε/2(logN)1/2
( M2∑
k=M1+1

c2
k

)1/2
exp

(
ĉ

ε
(logN)ε/2

)
. (41)

The constant ĉ in (41) is marked by ˆ to indicate that its value (unlike the value of the other
constants denoted by c) does not change in what follows. Without loss of generality, we
may assume that ĉ ≥ 4. We now choose J by requiring that

J ε/2 = (logN)1/2 exp
(

2ĉ
ε
(logN)ε/2

)
, (42)

so that (41) becomes∥∥∥ M2∑
k=M1+1

ckr(nkx)

∥∥∥ ≤ c( M2∑
k=M1+1

c2
k

)1/2
exp

(
−
ĉ

ε
(logN)ε/2

)
.

Now imitating the proof of the Rademacher–Men’shov inequality (see [35, p. 123]), we
see that this estimate implies∥∥∥ max

1≤M≤N

∣∣∣ M∑
k=1

ckr(nkx)

∣∣∣∥∥∥ ≤ c logN exp
(
−
ĉ

ε
(logN)ε/2

)( N∑
k=1

c2
k

)1/2
. (43)

Choosing ε = 1/(log logN) and recalling that ĉ ≥ 4, we see that the expression in (43)
is bounded by c(

∑N
k=1 c

2
k)

1/2. On the other hand,

log J =
1
ε

log logN +
4ĉ
ε2 (logN)ε/2, (44)

which is less than or equal to c(log logN)2 with our choice of ε. Thus (34) becomes∥∥∥ max
1≤M≤N

∣∣∣ M∑
k=1

ckp(nkx)

∣∣∣∥∥∥ ≤ c(log logN)2
( N∑
k=1

c2
k

)1/2
,

which, together with (43), proves the lemma in the case f ∈ BV.

Proof in the case f ∈ Lip1/2: If f ∈ Lip1/2, then by [39, p. 241] we have

2m+1∑
j=2m+1

a2
j ≤ c2

−m, m ≥ 0. (45)

Note that if f ∈ BV, then (45) also holds as a consequence of (31); thus the proof for
f ∈ BV could have been included in the present proof. However, (45) is significantly
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weaker than (31), which makes the proof in the present case more complicated. By the
Cauchy–Schwarz inequality, (45) implies that

2m+1∑
j=2m+1

|aj | ≤ c,

and hence
J∑
j=1

|aj | ≤ c log J (46)

for any J ≥ 1. Define p, r as in (32), with J to be chosen later. We estimate the second
term on the right-hand side of (33). To this end, assume that 0 < ε < 1, and set

Sm := {2m < j ≤ 2m+1
: |aj | ≤ 2−m(1−ε)}, Tm := {2m + 1, . . . , 2m+1

} \ Sm.

Then from (45) it is clear that
#Tm ≤ c2m−2mε. (47)

Let 0 ≤ M1 < M2 ≤ N be given, and let µ denote the largest integer such that 2µ ≤ J .
Replacing all coefficients by their absolute values (which is permitted due to the orthogo-
nality of the trigonometric system), starting the summation at 2µ instead of J and apply-
ing Minkowski’s inequality twice we get

∥∥∥ M2∑
k=M1+1

ckr(nkx)

∥∥∥ ≤ ∞∑
m=µ

∥∥∥ M2∑
k=M1+1

2m+1∑
j=2m+1

|aj | |ck| cos 2πjnkx
∥∥∥

≤

∞∑
m=µ

(∥∥∥ M2∑
k=M1+1

∑
j∈Sm
|aj | |ck| cos 2πjnkx

∥∥∥+ ∥∥∥ M2∑
k=M1+1

∑
j∈Tm
|aj | |ck| cos 2πjnkx

∥∥∥).
We reverse the order of summation and use Minkowski’s inequality along with (47), (45),
and the orthogonality of the trigonometric system to estimate the second norm on the
right-hand side of this inequality. Using also the definition of Sm to deal with the first
norm, we thus get∥∥∥ M2∑

k=M1+1

ckr(nkx)

∥∥∥
≤

∞∑
m=µ

(∥∥∥ M2∑
k=M1+1

∑
j∈Sm

j−1+ε
|ck| cos 2πjnkx

∥∥∥+ c2−mε( M2∑
k=M1+1

c2
k

)1/2)
. (48)

Now let m be fixed. We define K` as in (36), and observe that∫ 1

0

(∑
k∈K`

∑
j∈Sm

j−1+ε
|ck| cos 2πjnkx

)2
dx

≤ ce−2`
∑

k1,k2∈K`

∞∑
j1,j2=2m+1

(j1j2)
−1+εδj1nk1−j2nk2

. (49)
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Instead of (38), we get

∞∑
j1,j2=2m+1

(j1j2)
−1+εδj1v−j2w ≤

∞∑
j=1

1
j2−2ε

(
gcd(v,w)

v

gcd(v,w)
w

)1−ε

≤ c
(gcd(v,w))2−2ε

(vw)1−ε
, (50)

and as a replacement for (39), we have

∞∑
j1,j2=2m+1

(j1j2)
−1+εδj1v−j2w =

∑
j≥d(2m+1) gcd(v,w)/ve

(gcd(v,w))2

j2−2εvw

≤
c

2m(1−2ε)
(gcd(v,w))1+2ε

(vw)1/2+ε
. (51)

Combining (50) and (51) with exponents 1− 2ε and 2ε, respectively, we have

∞∑
j1,j2=2m+1

(j1j2)
−1+εδj1v−j2w ≤ c

(
(gcd(v,w))2−2ε

(vw)1−ε

)1−2ε( 1
2m(1−2ε)

(gcd(v,w))1+2ε

(vw)1/2+ε

)2ε

≤ c2−2mε(1−2ε)
(
(gcd(v,w))2

vw

)1−2ε+4ε2

≤ c2−mε
(
(gcd(v,w))2

vw

)1−ε

(where we can assume that ε ≤ 1/5), and consequently (49) becomes∫ 1

0

(∑
k∈K`

∑
j∈Sm

j−1+ε
|ck| cos 2πjnkx

)2
dx ≤ ce−2`

∑
k1,k2∈K(`)

2−mε
(gcd(nk1 , nk2))

2−ε

(nk1nk2)
1−ε/2 .

As in (41), we therefore obtain the upper bound

∥∥∥ M2∑
k=M1+1

∑
j∈Sm

j−1+ε
|ck| cos 2πjnkx

∥∥∥
≤ c2−mε/2(logN)1/2

( M2∑
k=M1+1

c2
k

)1/2
exp

(
c

ε
(logN)ε/2

)
. (52)

Along with (48) this yields∥∥∥ M2∑
k=M1+1

ckr(nkx)

∥∥∥ ≤ cJ−ε/2(logN)1/2
( M2∑
k=M1+1

c2
k

)1/2
exp

(
c

ε
(logN)ε/2

)
,

which is identical to (41). Hence the rest of the proof can be carried out as in the case
when f ∈ BV. ut
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Proof of Theorems 2 and 3. Assuming the validity of Theorem 3, the series (6) converges
a.e. for any (nk)k≥1 and ck = (k log k)−1/2(log log k)−(5/2+ε) (ε > 0) and thus by the
Kronecker lemma, (12) is valid. Thus Theorem 2 follows from Theorem 3, and it suf-
fices to prove the latter. Let (nk)k≥1 be an increasing sequence of integers and (ck)k≥1 a
sequence of real numbers such that for some δ > 0 we have

∞∑
k=1

c2
k(log log k)4+δ <∞.

Let Nm be an increasing sequence of integers such that

log logNm ∼ mγ with γ ≥ 6/δ.

Clearly

Nm+1∑
k=Nm+1

c2
k ≤ (log logNm)−(4+δ)

Nm+1∑
k=Nm+1

c2
k(log log k)4+δ ≤ c(log logNm)−(4+δ),

and thus by Lemma 4 and the Chebyshev inequality we get, writing λ for the Lebesgue
measure,

λ
({
x ∈ (0, 1) : max

Nm+1≤M≤Nm+1

∣∣∣ M∑
k=Nm+1

ckf (nkx)

∣∣∣ ≥ m−2
})

≤ cm4
( Nm+1∑
k=Nm+1

c2
k

)
(log logNm+1)

4
≤ cm4

( Nm+1∑
k=Nm+1

c2
k

)
(log logNm)4

≤ cm4(log logNm)−δ ≤ cm−2.

We set SN (x) :=
∑N
k=1 ckf (nkx) and see that the latter estimate, along with the Borel–

Cantelli lemma, yields

max
Nm≤M≤Nm+1

|SM − SNm | = max
Nm+1≤M≤Nm+1

∣∣∣ M∑
k=Nm+1

ckf (nkx)

∣∣∣� m−2 a.e. (53)

In particular,
∑
∞

m=1 |SNm+1 −SNm | <∞ a.e., which implies the a.e. convergence of SNm .
Using (53), we finally obtain the a.e. convergence of SN . ut

6. Divergence of series involving dilations of {x} − 1/2

We finally turn to the example showing that Theorem 3 is essentially best possible for the
class BV. In what follows, we will use the notation ϕ(x) := {x} − 1/2. Our arguments
will be probabilistic and we will use the symbols P and E with respect to the unit interval
equipped with the Borel σ -field B and the Lebesgue measure.
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Theorem 7. For every 0 < γ < 2, there exists an increasing sequence (nk)k≥1 of posi-
tive integers and a real sequence (ck)k≥1 such that

∞∑
k=1

c2
k(log log k)γ <∞,

but
∑
∞

k=1 ckϕ(nkx) is a.e. divergent.

We will need the following variant of Lemma 2 of [5].

Lemma 5. Let 1 ≤ p1 < q1 < p2 < q2 < · · · be integers such that pm+1 ≥ 16qm;
let I1, I2, . . . be sets of integers such that Im ⊂ [2pm , 2qm ] and each element of Im is
divisible by 2pm . For m ≥ 1 and ω ∈ (0, 1) set

Xm = Xm(ω) :=
∑
k∈Im

ϕ(kω).

Then there exist independent random variables Y1, Y2, . . . on the probability space
((0, 1),B,P) such that |Yk| ≤ card Ik , EYk = 0 and

‖Xm − Ym‖ ≤ 2−m for m ≥ m0,

where ‖ · ‖ denotes the L2(0, 1) norm.

Proof. Let Fm denote the σ -field generated by the dyadic intervals

Uj := [j2−16qm , (j + 1)2−16qm ], 0 ≤ j < 216qm , (54)

and set

ξk = ξk(·) := E(ϕ(k ·) |Fm), k ∈ Im,

Ym = Ym(ω) :=
∑
k∈Im

ξk(ω).

Since |ϕ| ≤ 1, we have |ξk| ≤ 1 and thus |Ym| ≤ card Im. Further, by ϕ ∈ BV the Fourier
coefficients of ϕ are O(1/k) and thus from Lemma 3.1 of [4] it follows that

‖ξk(·)− ϕ(k ·)‖ � (k2−16qm)1/6, k ∈ Im,

and since Im has at most 2qm elements, we get

‖Xm − Ym‖ � 2−qm ,

which implies
‖Xm − Ym‖ ≤ 2−m for m ≥ m0.

Since pm+1 ≥ 16qm and since each k ∈ Im+1 is a multiple of 2pm+1 , each interval Uj
in (54) is a period interval for all ϕ(kx), k ∈ Im+1, and thus also for ξk , k ∈ Im+1.
Hence Ym+1 is independent of the σ -field Fm, and since F1 ⊂ F2 ⊂ · · · and Ym is
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Fm-measurable, the random variables Y1, Y2, . . . are independent. Finally Eξk = 0 and
thus EYm = 0. ut

Proof of Theorem 7. We will actually prove a little more than what is stated in the theo-
rem: we show that for any positive sequence εk → 0 there exists an increasing sequence
(nk)k≥1 of integers and a real sequence (ck)k≥1 such that

∞∑
k=1

c2
k(log log k)2εk <∞

and
∑
∞

k=1 ckϕ(nkx) diverges a.e. Let ε∗k = supj≥k εj and let (ψk)k≥1 be a sequence of
positive integers growing so rapidly that ψk+1/ψk ≥ 2 for k ≥ 1 and

∞∑
m=1

ε∗Mm−1
<∞ where Mm :=

∑
k≤m

ψ4
k .

Set rk := ψ3
k . By the result of Gál [18] stated in the introduction, there exists, for each

m ≥ 1, a sequence n(m)1 < · · · < n
(m)
ψm

of positive integers such that

∫ 1

0

( ψm∑
k=1

ϕ(n
(m)
k ω)

)2
dω ≥ cψm(log logψm)2 (55)

(here and below, c denotes appropriate positive constants, not always the same). Note that
by the upper estimate in Gál’s theorem [18], the opposite inequality to (55) with a suitable
c is automatically valid. We define sets

I
(1)
1 , I

(1)
2 , . . . , I (1)r1 , I

(2)
1 , . . . , I (2)r2 , . . . , I

(m)
1 , . . . , I (m)rm

, . . . (56)

of positive integers by requiring

I
(m)
k := 2a

(m)
k {n

(m)
1 , . . . , n

(m)
ψm
}, 1 ≤ k ≤ rm, m ≥ 1,

where a(m)k are suitable positive integers. (Here for any set {a, b, . . . } ⊂ R and µ ∈ R
we write µ{a, b, . . . } for the set {µa,µb, . . . }.) Clearly we can choose the integers a(m)k

inductively so that the sets I (m)k in (56) satisfy the conditions assumed in Lemma 5 for
the sets Im. Since the left-hand side of (55) does not change if we replace every n(m)k with
an

(m)
k for some integer a ≥ 1, setting

X
(m)
k = X

(m)
k (ω) :=

∑
j∈I

(m)
k

ϕ(jω),

we have
E(X(m)k )2 ≥ cψm(log logψm)2. (57)
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Note that, just as in the case of (55), the opposite inequality with a suitable c is also
valid in (57). By Lemma 5, there exist independent random variables Y (m)k (1 ≤ k ≤ rm,
m ≥ 1), such that |Y (m)k | ≤ ψm, EY (m)k = 0 and∑

m,k

‖X
(m)
k − Y

(m)
k ‖ <∞, (58)

whence ∑
m,k

|X
(m)
k − Y

(m)
k | <∞ a.e. (59)

By (57) and (58) we have

E(Y (m)k )2 ≥ cψm(log logψm)2.

Hence setting

Zm :=
1

√
rmψm log logψm

rm∑
k=1

Y
(m)
k , σ 2

m := E
( rm∑
k=1

Y
(m)
k

)2
,

we deduce from the central limit theorem with Berry–Esseen remainder term (see e.g.
[16, p. 544]), (7), and rm = ψ3

m that

P(Zm ≥ 1) ≥ P
( rm∑
k=1

Y
(m)
k ≥ c1σm

)
≥ 1−8(c1)− c

rmψ
3
m

(rmψm(log logψm)2)3/2

≥ 1−8(c1)− o(1) ≥ c2 > 0 for m ≥ m0,

where 8 denotes the Gaussian distribution function and c1 and c2 are positive absolute
constants. Since the random variables Zm are independent, the Borel–Cantelli lemma
implies that P(Zm ≥ 1 for infinitely many m) = 1 and consequently

∑
∞

m=1 Zm is a.e.
divergent, which, in view of (59), shows that

∞∑
m=1

1
√
rmψm log logψm

rm∑
k=1

X
(m)
k is a.e. divergent.

In other words,
∑
∞

k=1 ckϕ(nkx) is a.e. divergent, where

(nk)k≥1 :=

∞⋃
m=1

rm⋃
k=1

I
(m)
k

and
c2
k :=

1
rmψm(log logψm)2

for Mm−1 < k ≤ Mm.

Now for Mm−1 < k ≤ Mm, by the exponential growth of (ψk)k≥1 with quotient q ≥ 2
we have

k ≤ 2ψ4
m and log log k ≤ 2 log logψm for m ≥ m0.
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Consequently, for Mm−1 < k ≤ Mm, we have

c2
k(log log k)2εk ≤ c

1
rmψm

ε∗Mm−1
.

Hence
∞∑
k=1

c2
k(log log k)2εk ≤ c

∞∑
k=1

ε∗Mk−1
<∞,

which means that we have reached the desired conclusion. ut
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Note added in proof. After the submission of our paper, Bondarenko and Seip (Bull. London Math.
Soc. 47, 29–41 (2015)) improved the estimate for α = 1/2 in Theorem 1 (the only statement in the
theorem which was not optimal) to

exp
(
C

√
logN log log logN

log logN

)
.

This is best possible, except perhaps for the factor log log logN . Lewko and Radziwiłł
(arXiv:1408.2334) showed that in Theorem 3 for f ∈ BV the convergence condition can be re-
laxed to

∑
∞
k=1 c

2
k
(log log k)γ <∞ with γ > 2 (instead of γ > 4), which is again optimal. Finally,

Aistleitner, Berkes, Seip and Weber (Acta Arith. 168, 221–246 (2015)) found sharp convergence
conditions for dilated series

∑
∞
k=1 ckf (kx) when f belongs to the class Cα of functions with

Fourier coefficients O(j−α), 1/2 < α < 1.
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[35] Loève, M.: Probability Theory. II. 4th ed., Grad. Texts in Math. 46, Springer, New York (1978)
Zbl 0385.60001 MR 0651018

[36] Nikishin, E. M.: Resonance theorems and superlinear operators, Russian Math. Surveys 25,
no. 6, 125–187 (1970) Zbl 0226.47042 MR 0296584

[37] Schmidt, W.: Irregularities of distribution VII. Acta Arith. 21, 45–50 (1972) Zbl 0244.10035
MR 0319933

[38] Weber, M.: On systems of dilated functions. C. R. Math. Acad. Sci. Paris 349, 1261–1263
(2011) Zbl 1234.42002 MR 2861996

[39] Zygmund, A.: Trigonometric Series. Vols. I, II. Cambridge Univ. Press, Cambridge (1988)
(reprint of the 1979 edition) Zbl 0628.42001 MR 0933759

http://www.emis.de/cgi-bin/jfmen/MATH/JFM/quick.html?first=1&maxdocs=20&type=html&an=50.0125.01&format=complete
http://www.ams.org/mathscinet-getitem?mr=1512207
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0043.27701&format=complete
http://www.ams.org/mathscinet-getitem?mr=0045165
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0281.10001&format=complete
http://www.ams.org/mathscinet-getitem?mr=0419394
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0622.60026&format=complete
http://www.ams.org/mathscinet-getitem?mr=0893914
http://www.emis.de/cgi-bin/jfmen/MATH/JFM/quick.html?first=1&maxdocs=20&type=html&an=50.0119.02&format=complete
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0898.11007&format=complete
http://www.ams.org/mathscinet-getitem?mr=1614259
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0385.60001&format=complete
http://www.ams.org/mathscinet-getitem?mr=0651018
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0226.47042&format=complete
http://www.ams.org/mathscinet-getitem?mr=0296584
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0244.10035&format=complete
http://www.ams.org/mathscinet-getitem?mr=0319933
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1234.42002&format=complete
http://www.ams.org/mathscinet-getitem?mr=2861996
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0628.42001&format=complete
http://www.ams.org/mathscinet-getitem?mr=0933759

	Introduction
	Applications to systems of dilated functions
	Proof of Theorem 1 via trigonometric polynomials on D
	Spectral norms of generalized GCD matrices
	A Carleson–Hunt-type inequality 
	Divergence of series involving dilations of {x}-1/2
	References

