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Abstract. We prove an almost sure local well-posedness result for the periodic 3D quintic nonlin-
ear Schrodinger equation in the supercritical regime, that is, below the critical space H L3y,

We also prove a long time existence result; more precisely, we show that for fixed 7 > 0 there
exists a set 7 with P(Z7) > 0 such that any data ¢®(x) € HV(T3), y < l,w € Zr, evolves
up to time 7 into a solution u(¢) with u(r) — e2¢® e C([0, T]; HS(T3)), s = s(y) > 1.In
particular we find a nontrivial set of data which gives rise to long time solutions below the critical
space H! (T3), that is, in the supercritical scaling regime.
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1. Introduction

In this paper we continue the study of almost sure well-posedness for certain dispersive
equations in a supercritical regime. In the last two decades there has been a burst of
activity and significant progress in the field of nonlinear dispersive equations and systems.
These range from the development of analytic tools in nonlinear Fourier and harmonic
analysis combined with geometric ideas to address nonlinear estimates, to related deep
functional-analytic methods and profile decompositions to study local and global well-
posedness and singularity formation for these equations and systems. The thrust of this
body of work has focused mostly on deterministic aspects of wave phenomena where
sophisticated tools from nonlinear Fourier analysis, geometry and analytic number theory
have played a crucial role in the methods employed. Building upon work by Bourgain [1,
2, 4] several works have appeared in which the well-posedness theory has been studied
from a nondeterministic point of view relying on and adapting probabilistic ideas and
tools as well (cf. [13, 14, 34, 28, 29, 35, 25, 27, 32, 17, 26, 12, 18, 19] and references
therein).

It is by now well understood that randomness plays a fundamental role in a va-
riety of fields. Situations when such a point of view is desirable include: when there
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still remains a gap between local and global well-posedness, when a certain type of ill-
posedness is present, and in the very important supercritical regime when a deterministic
well-posedness theory remains, in general, a major open problem in the field. A set of
important and tractable problems is concerned with those (scaling) equations for which
global well-posedness for large data is known at the critical scaling level. Of special
interest is the case when the scale-invariant regularity s. equals 1 (corresponding to the
energy or the Hamiltonian functional). A natural question then is to understand the super-
critical (relative to scaling) long time dynamics for the nonlinear Schrédinger equation in
the defocusing case. Whether blow up occurs from classical data in the defocusing case
remains a difficult open problem. However, what seems within reach at this time is to
investigate these problems from a nondeterministic viewpoint, namely for random data.

In this paper we treat the energy-critical periodic quintic nonlinear Schrodinger equa-
tion (NLS), an especially important prototype in view of the results by Herr, Tzvetkov and
Tataru [23] establishing small data global well-posedness in H'!(T?), and of Ionescu and
Pausader [24] proving large data global well-posedness in H'(T3) in the defocusing case,
the first critical result for NLS on a compact manifold. Large data global well-posedness
in R3 for the energy-critical quintic NLS had been previously established by Colliander,
Keel, Staffilani, Takaoka and Tao [16].

Our main interest in this paper is to establish a local almost sure well-posedness for
random data below H'(T?), that is, in the supercritical regime relative to scaling' and
without any kind of symmetry restriction on the data. In a seminal paper, Bourgain [4]
obtained almost sure global well-posedness for the 2D periodic defocusing (Wick or-
dered) cubic NLS with data below L?(T?), i.e. in a supercritical regime (s, = 0).” Burq
and Tzvetkov obtained similar results for the supercritical (s, = 1/2) radial cubic NLW
on compact Riemannian manifolds in 3D. Both global results rely on the existence and
invariance of associated Gibbs measures. As it turns out, in many situations either the
natural Gibbs or weighted Wiener construction does not produce an invariant measure, or
(and this is particularly so in higher dimensions) a canonical construction is not expected.
In the case of the ball or the sphere and if one restricts to the radial case, constructions
of invariant measures are possible, as in [35, 14, 20, 21, 6, 7, 8]. Recently, a probabilis-
tic method based on energy estimates has been used to obtain supercritical almost sure
global results, thus circumventing the use of invariant measures and the restriction of ra-
dial symmetry. In this context Burq and Tzvetkov [15] and Burq, Thomann and Tzvetkov
[11] considered the periodic cubic NLW, while Nahmod, Pavlovi¢ and Staffilani [26]
treated the periodic Navier—Stokes equations. Colliander and Oh [17] also proved almost
sure global well-posedness for the subcritical 1D periodic cubic NLS below L? in the
absence of invariant measures by suitably adapting Bourgain’s high-low method.

Extending the local solutions we obtain here to global ones is the next natural step; it
is worth noting however that unlike the work of Bourgain [4] one would need to proceed
in the absence of invariant measures; and unlike the work of Colliander and Oh [17] the

I That is, for Cauchy data in HS (']I‘3), s < s¢ = 1 for the quintic NLS in 3D.

2 See Brydges and Slade [9] for a study of invariant measures associated to the 2D focusing cubic
NLS.
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smoother norm in our case, namely H 1(T3), on which one would need to rest to extend
the local theory to a global one is in fact critical. This forces the bounds on the Strichartz
type norms to be of exponential type with respect to the energy, too large to close the
argument. Nonetheless, as a byproduct of our local estimates we can show the existence
of large data long time infinite energy solutions (see Section 10).

The problem we are considering here is the analogue of the supercritical local well-
posedness result® proved by Bourgain in [4] for the periodic mass critical defocusing
cubic NLS in 2D. Of course, Bourgain then constructed a 2D Gibbs measure and proved
that for data in its statistical ensemble the local solutions obtained were in fact global,
hence establishing almost sure global well-posedness in H~¢(T?), € > 0.

There are several major complications in the work that we present below compared
to the work of Bourgain: a quintic nonlinearity increases quite substantially the different
cases that need to be treated when one analyzes the frequency interactions in the non-
linearity; the counting lemmata in a 3D lattice are much less favorable and the Wick
ordering is not sufficient to remove certain resonant frequencies that need to be elimi-
nated. The latter is not surprising, and in fact known within the context of quantum field
renormalization (cf. Salmhofer’s book [30]). In particular, to overcome this last obstacle,
we introduce an appropriate gauge transformation, we work on the gauged problem and
then transfer the result obtained back to the original problem; which as a consequence
is studied through a contraction method applied in a certain metric space of functions.
A similar approach was used by the second author in [31].

Finally, our estimates take place in the atomic function spaces where the only deter-
ministic global well-posedness is known to hold at the H'-critical level [23, 24]. Such
choice of function spaces over the X*? spaces* in [4] is natural given our result in this
paper lays the foundation for an almost sure global well-posedness in the supercritical
regime. In turn, such choice presupposes some care while working with the absolute value
of the Fourier transform and various constraint equations of multilinear terms. This is be-
cause the norms of these atomic spaces are not defined through the absolute value of the
Fourier transform, a property which is quite useful while working with the X*? spaces;
see Section 8.

In this work we consider the Cauchy initial value problem,
iut+Au=Mt|u|4, x €T3, (1)
u(0,x) = ¢ (x),

where A = £1.
We randomize the data in the following sense:

Definition 1.1. Let (g,(w)), <73 be a sequence of complex i.i.d. centered Gaussian ran-
dom variables on a probability space (2, A, P). For ¢ € H*(T?), let (b,) be its Fourier
coefficients, that is,

$Ox) =Y bue™ (14 ) ¥ byl < oc. (1.2)

neZ? neZ3

3 A.s. for datain H=#(T?), 8 > 0.
4 Our argument could also be carried out in the X s.b spaces.
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The map from (2, A) to H*(T?) equipped with the Borel sigma algebra, defined by
o ¢°,  ¢¥(x) = Z gn(@)bpe™™, (1.3)
neZz3
is called a map randomization.
Remark 1.2. The map (1.3) is measurable and ¢“ € L2(Q2; H*(T%)) is an H*(T9)-
valued random variable. We recall that such a randomization does not introduce any H*

regularization (see [13, Lemma B.1] for a proof), indeed ||¢®| gs ~ ||@|l gs. However,
randomization gives improved L? estimates almost surely.

Our setting to show almost sure local well-posedness is similar to that of Bourgain [4].
More precisely, we consider data ¢ € H'!~*~¢(T3) for any & > 0 of the form

_ 1 in-x
P(x) = XZ; e (1.4)
neus’
whose randomization is
¢ (x) = —<g>"5(/‘;ja in (1.5)
n
nez’

Our main result can then be stated as follows:

Main Theorem 1.3 (Main Theorem). Let0 <« < 1/12, s € (1 +4«,3/2 —2a) and ¢
as in (1.4). Then there exist 0 < §o < 1 andr = r(s,«) > 0 such that for any § < &g
there exists Q5 € A with

P(QS) < e /¥
such that for each w € Qs there exists a unique solution u of (1.1) in the space

S®)¢” + X* ([0, 8))a
where S(t)¢® is the linear evolution of the initial data ¢ given by (1.5).

Here we have denoted by X* ([0, §))4 the metric space (X* ([0, §)), d) where d is the met-
ric defined by (2.21) in Section 2 and X* ([0, §)) is the space introduced in Definition 4.4
below.

The paper is organized as follows. In Section 2 we identify the problematic resonant
terms and present an equivalent gauged Cauchy initial value problem where such terms
are removed. Section 3 states the basic probabilistic results we rely upon. In Section 4
we first recall the atomic function spaces needed for the proof as well as their functional
properties. Then we also prove two multilinear propositions which play a significant role
in later sections. Section 5 contains statements on almost sure local well-posedness for the
gauged Cauchy initial value problem, while in Section 6 we collect a few counting esti-
mates and auxiliary lemmata. In Section 7 we prove all the trilinear and bilinear estimates
needed for estimating certain nonlinear terms. Section 8 contains the main argument of
the proof. In this section we prove the necessary quintilinear estimates for the top term in
the nonlinearity and use the trilinear and bilinear estimates of Section 7 to control corre-
sponding lower order nonlinear terms. Finally, in Section 9 we show how to extract a pos-
itive power of time from our estimates, which in turn allows us to close the argument via
a contraction mapping principle and obtain our almost sure local well-posedness result.
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2. Removing resonant frequencies: the gauged equation

The main idea in proving Theorem 1.3 goes back to Bourgain [4] and consists in proving
that if u solves (1.1), then w = u — S(¢)¢* is smoother; see also [13, 17, 26]. In fact one
reduces the problem to showing well-posedness for the initial value problem involving w,
which is in fact treated as a deterministic function. The initial value problem that w solves
does not become a subcritical one, but it is of a hybrid type involving also rougher but
random terms, whose decay and moments play a fundamental role. For the NLS equation
this argument can be carried out only after having removed certain resonant frequencies in
the nonlinear part of the equation. In this section in fact we write the Fourier coefficients
of the quintic expression |u|*u and we identify the resonant part that has to be removed if
we want to take advantage of the moments coming from the randomized terms. We will
go back to this concept in more detail in Remark 2.1 below.
Let us start by assuming that #(n)(¢) = a, (¢). We introduce the notation

C)yi =iy, coni) €ZY in=n; —np+---+ (=)} 2.1

to indicate various hyperplanes, and F(n)fi1 ..i, 18 its complement.
Next, for fixed time ¢, we take JF, the Fourier transform in space, and write

F(u@®)[*u(®)(n) = Z Any (1)@, (1) ns (1)an, (1) ans (1)

C(n),...5
= > n, (1), (D)l (1) () lps (1)

L@, 51NT O 5 349N O 5 54N O3 55 4

+ > ny ()G () Oy (1) ()l (1)
Cm)1,...51NT0)(1,2,3,4]

+ > Ay (), () (1), ()t (1)
Cm),...51NCO0)1,2,5,4]

+ > n, () (1) (1), ()atns (1)
C()1,...51NT(0)(3,2,5,4]

- > n, (1), () (1), (D) lps (1)
C(i,...51NTO)1,2,34N (0)1,2,5,4NT(O0)f3 5 5 4

- > n, ()G, () (1), () tns (1)
C(i,...51NTO)11,2,34NC(0)3,2,5,4NC O 55 4

- > Gy ()G (6 () ()t (1)
C@i,..51NT0)13,2,54N (0)1,2,5,4NT (O] 53 4

—2 > ny ()G, () Oy (), ()15 (1)

C@)r,...,51NT0)(1,2,3,41NC(0)3,2,541NT(O0)[1,2,5,4]
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We now rewrite each I; using more explicitly the constraints in the hyperplanes. /7 is the

most complicated, and we start by rewriting it. To that end we set

A() :=Tm),.,5N F(O)f1,2,3,4] N F(O)f1’2,5,4] N F(O)f3’2’5,4]’
X(n) := {(n1, na, n3, n4, ns) € A(n) : ny, n3, ns # ny, na}.

We have
L= an, (), (1)n; (), (1)atns (1)

An)

=D an, (), (1)any (1), (1) (1)

=)

+6(3lanl) Y an O Oas0
ny

[(n)(3,4,51, n3,n5#n4

— 6lay|* > s (), (D) atns (1)

[(n)3,4,51, n3,ns7#ny

-3 > (i, (62, (1)atn; (D) atns (1)

I'(n)(3,1,5],13, n5#n1

=3lanl*an () + 3lanPa@n (@) D any(D)ans (1)

n3+ns=2n

-6 > (i (1) Py (1), ()atns (1)

[(n)2,4,51, n2,n57#n4

+2 Y lan 0P, (), (1)

n=2np—n4, na#ny

Note here that we can write

lan | > s ()2, (1) s (¢)

['(n)(3,4,51, n3.n57%n4

=—2|an|2an(z|anz|2)+|an|4an+|an|2 Dy (0, (ans (1),
ny

'(n)(3,4,5
It is easier to see that for i = 2, 3, 4,
_ — — o~ 4
Li=ay(t) ) ny (OVan, (any ()an, (1) = Wn) (1) f Nt nydx,
C0)(1,2,3,4] T
while for j = 5,6,7,
Li=—ayt) Y GnOan®+a; Y GnyO)anan, (),
ny+na=2n n=na+n4—ni

and finally
Iy = —2a,3,(l) Z Ay, (1)ay, (1).

no+ng=2n

2.2)
2.3)

2.4)

2.5)

(2.6)

Q2.7

(2.8)
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We summarize our findings from (2.4)—(2.8). In this part of the argument the time variable
is not important, hence we will omit it for now. We write

7
]:<|u|4u — 3u</ |u|4dx>>(n) = ZJk(n) 2.9)
T3 =1

with
J1() = an, @y, ans, (2.10)
=(n)
Jr(n) = 6m > A, nylins, 2.11)
['(n)[1,2,3], n3.n1#n2
J3(n) = —6 > |y |y @y iy
[ (m)[1,2,3], n1.n3#n2
=3 Y anlanfana, (2.12)
C(n)(1,2,31, 11,13, 712
Tam)y=2 " lan,|*ay n,. (2.13)
n=2n|—ny,
Js(n) = —6lan|* > an@nyany +3ay Y Gnyn,n,. (2.14)
C(n)123 C(n)214]
Jo(n) = —5a° Z @nylin, + 3lan|*a@y Z A, Ay, (2.15)
n=np+ny n=ni+ns
J1(n) = —1laylan|* + 12m|ay)ay, (2.16)

where m = ng lu(t, x)|2 dx, the conserved mass.

Remark 2.1. In the calculations above we wrote the nonlinear terms in (1.1) in Fourier
space, we isolated the term u fT3 lu|* dx and we subtracted it from |u|*u (see (2.9)). We
show below that indeed in doing so we separated those terms that we claim are not suitable
for smoother estimates from the ones that are. To understand this point let us replace a,, =
gn(w)/(n)>/>=* for o small, whose anti-Fourier transform barely misses to be in H'(T?).
We want to claim that the randomness coming from {g,(w)} will increase the regularity
of the nonlinearity in a certain sense, so that it can hold a bit more than one derivative.
We realize immediately though that this claim cannot be true for the whole nonlinear
term. For example the terms /;,i = 2, 3, 4, have no chance to improve their regularity
because they are simply linear with respect to a,, hence they have to be removed. This
same problem presented itself in the work of Bourgain [4] and Colliander—Oh [17] who
considered the cubic NLS below L2. In particular in their case the problematic term was
of the type a, de |u|? dx and the authors removed it by Wick ordering the Hamiltonian.
An important ingredient in succeeding in this was that de |u|2 dx, that is, the mass, is
independent of time. In our case, Wick ordering the Hamiltonian is not helpful since
it does not remove the terms /;,i = 2,3, 4. As we mentioned before, the latter is not
surprising, and in fact known within the context of quantum field renormalization (cf.
Salmhofer’s book [30]).
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If we knew that ng lu|* dx were constant in time, then we could simply relegate
those terms to the linear part of the equation. Since this is obviously not the case, rele-
gating these expressions to the main linear part of the equation would prevent us from
using the simple form of the solution for a Schrédinger equation with constant coeffi-
cients. A similar situation to the one just described presented itself in [31] where a gauge
transformation was used to remove the time dependent linear terms. We are able to use
the same idea in the present context and this is the content of what follows in this section.

To prove Main Theorem 1.1 we proceed in two steps. First we consider the initial value
problem

{iu, +AV=N®), xeT3, e

v(0, x) = ¢ (x),

N(v) :=A<v|v|4—3v</3|v|4dx>> (2.18)
T

with A = £1 and ¢ (x) the initial datum as in (1.1). To make the notation simpler set

where

But) =3 / ol dx (2.19)

']1‘3

and define .
u(t, x) i= e Jo Po@dsy(p 0y, (2.20)

We observe that u solves the initial value problem (1.1). Now suppose that one obtains
well-posedness for the initial value problem (2.17) in a certain Banach space (X, || - |);
then one can transfer those results to the initial value problem (1.1) by using a metric
space X4 := (X, d) where

du, v) i= e *Jo P sy p xy — o= Sy Bo@ds iyl 2.21)

The fact that this is indeed a metric follows from the properties of the norm || - || and the

fact that if o o
e—l)»fo ﬁu(s)dsu(t’ x) = e—z)\fo ﬂv(s)dsv(t’ x)

then B,(t) = B,(t) and hence u = v.
From this moment on, we work exclusively with the initial value problem (2.17). In
particular, below we prove the following result:

Theorem 2.1. Let0 <o < 1/12, s € (1 + 4w, 3/2 — 2a) and ¢ as in (1.4). There exist
0<68y K landr =r(s,a) > 0such that for any § < &y there exists Q5 € A with

P(Q5) < e /¥
such that for each w € Qs there exists a unique solution u of (2.17) in the space
S(t)p” 4+ X*([0, 8))
with initial condition ¢© given by (1.5).

Here the space X*([0, §)) is defined in Section 4.
Thanks to the transformation (2.20), Theorem 2.1 translates to Main Theorem 1.3.
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3. Probabilistic set up

We first recall a classical result that goes back to Kolmogorov, Paley and Zygmund.

Lemma 3.1 ([13, Lemma 3.1]). Let {g,(w)} be a sequence of complex i.i.d. zero mean
Gaussian random variables on a probability space (R, A, P), and (c,) € £>. Define

F@):=)_ cngn(®). 3.
n
Then there exists C > 0 such that for every . > 0 we have
—C)?
” ||L2(Q)

As a consequence there exists C > 0 such that for every g > 2 and every (c,) € {2,

12
HXn:Cngn ) < C\/E(anlcrf) .

We also recall the following basic probability results:

Lemma3.2. Let 1 < my < --- < mp = m and let f| be a Borel measurable function
of my variables, f> one of my — m variables, ..., fy one of my — my_1 variables. If
{X1, ..., X} are real-valued independent random variables, then the k random vari-
ables fi(X1,..., Xm), (X415 s Xing)s oo Su(Xing_1+1, - -, Xmy) are indepen-
dent random variables.

Lemma 3.3. Let k > 1 and let {gn; }1<j<k, {gn}}lfjsk € Nc(0, 1) be complex L*(Q)

normalized independent Gaussian random variables such that n; # n;j and n; * n; for

i # j. Then

k k k
‘/ ngn,(w)HEn;(w)dP(w)' S/ H|gne(a))|2dp(w)-
2j=1 i=1 2 o=1

Proof. For every pair (ng, n;) such that ny = nj we write K, (@) = [gy (w)|* and
note that thanks to the independence and normalization of {g,,}, for n; # n;, we have
E(K»;gn;) = 0. The latter together with Lemma 3.2 gives the desired conclusion. m]

More generally, in the next sections we will repeatedly use a classical Fernique or large
deviation-type result related to the product of {G,}1<n<a € N (0, 1), complex L? nor-
malized independent Gaussians. This result follows from the hypercontractivity prop-
erty of the Ornstein—Uhlenbeck semigroup (cf. [35, 33] for a nice exposition) by writing
G, = H,+iL, where {H1, ..., Hy, L1, ..., Ly} € Ng(0, 1) are real centered indepen-
dent Gaussian random variables with the same variance. Note that ]E(Gﬁ) =E(G,) =0.

Remark 3.1. Note that for {G,(w)}, € Nc(0, 1), complex L? normalized independent
Gaussians, if we write |G, (a))|2 = (|G,1(a))|2 — 1) 4 1, then thanks to the independence
and normalization of G, Y, (w) = |G, (a))|2 — 1 is a centered real Gaussian random
variable such that E(Y,,G,/) = 0 = E(Y,Y,/) forn # n'.
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Proposition 3.1 ([33,Proposition2.4]and[35,Lemma4.5]). Letd>1and c(ny, ..., ng)
€ C. Let {Gy}1<n<a € Nc(0, 1) be complex centered L? normalized independent Gaus-
sians. For k > 1 denote A(k,d) == {(n1,...,nx) € {1,...,d}¥ :ny < --- < ny} and

Fr(w) = Z ey, ...,n )Gy (w)...Gy (). 3.3)
Ak,d)

Then foralld > 1 and p > 2,

IFllr@ S vVEk+1(p = DM Fell 2
As a consequence, from Chebyshev’s inequality we have, for every A > 0,
—C)\2k )

2/k
” Fk ”Lz(Q)

Po: [Fr(@)| > ) S eXP( (3.4)

Remark 3.2. In Sections 7 and 8 we will rely repeatedly on Proposition 3.1, particu-
larly (3.4), as well as on Lemma 3.1, and (3.2). Indeed, in proving our estimates we will
encounter expressions of the following type. Let

Yo=A{(ng,...,np L, ) ng | ~ Ny, [~ L, ny #F 4, 1< j<r, 1 <i<s}
and

F(w) := > Cry - Cnybey < by n (@) . gy, (@8, (@) ... 8y, (@)

where {gn, (@) ... g&n, (), g¢,(®) ... ge (W)} € Nr(0, 1) are complex centered L? nor-
malized independent Gaussians. Then by Proposition 3.1, there exist C, y = y(r, s) > 0
such that for every A > 0 we have

—C A2y )

2
IFI1>

Po: |F(w)] > A}) < eXP<
L2(Q)

We will also apply Proposition 3.1 in the context of Remark 3.1.
Lemma 3.4. Let {g,(w)} be a sequence of complex i.i.d. zero mean Gaussian random
variables on a probability space (2, A, P). Then:

(1) For1 < p < oo there exists c, > 0 (independent of n) such that ||g,|lLr (@) < Cp-
(2) Givene,§ > 0, for w outside a set of measure O (§),

lgn(@)] < (n)°. (3.5)

Proof. Part (1) follows from the fact that higher moments of {g,(w)} are uniformly
bounded.

For part (2) first recall that if {X; (w)};>1 is a sequence of i.i.d. random variables such
that E(]X;|) = E < oo then

PAX;1 = j) =P(X1] = j) (3.6)
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and
D OP(Xj1 = j) =) P(X1| = j) <E(X1]) < oo.
J J

By Borel-Cantelli P(|X;| > j for infinitely many j) = 0, whence one can show that
lim;_, » | Xj(w)|/j = 0 almost surely in w. Egoroff’s Theorem then ensures that given
s >0,

, |Xj(w)]
1m - =
j—o0 J

0

uniformly outside a set of measure §. Thus for jj sufficiently large,
el
J

for w outside an exceptional set of § measure. If {g,(w)} is a sequence of i.i.d. complex
Gaussian random variables given ¢ > 0, if we choose » = 3/¢ then E(|g,|") < oo. For
n — j, a one-to-one map Z3 — N such that j, ~ |n|3, we let X, (w) :=|gn(w)|" and
reason as above. Note also that for M > 1 but fixed,

P(lgn(@)| = M?) = P(Igm (@) = M*)

Jj = Jo,

for all |n| < M; whence for A := Uln\stl {w: |gm(w)] = M}, we have P(A) < Cy6.
‘We then have the desired conclusion (cf. [28, 17]). ]

4. Function spaces

To establish our almost sure local well-posedness result, it suffices to work with X*
and Y?, the atomic function spaces used by Herr, Tataru and Tzvetkov [23]. It is worth
emphasizing that while working with these spaces, one should not rely on the notion of
the norms depending on the absolute value of the Fourier transform, a feature that is quite
useful when working within the context of X*? spaces.

In this section we recall their definition and summarize the main properties by follow-
ing the presentation in [23, Section 2]. In what follows, # is a separable Hilbert space
over C, and Z denotes the set of finite partitions —0o < fy < t] < --- < tx < 0o of the
real line, with the convention that if #; = oo then v(fx) := 0 for any function v : R — H.

Definition 4.1 ([23, Definition 2.1]). Let 1 < p < co. For {tk}fzo € Z and {qz’)k},f;()l CH
with Z/f:_ol ||¢k||§_l = 1, a UP-atom is a piecewise defined function @ : R — H of the

form
K
a= Z Xitg—1,1) Pe—1-
k=1

The atomic Banach space U? (R, H) is then defined to be the set of all functions u :
R — H such that

o0
u= ijaj for UP-atoms a;, {A;}; € ¢!,
j=1
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with the norm

o0

0.¢]
lullyr := inf{z [Ajliu = ijaj, Aj € C, and a; an Up—atom}.
. =

j=1

Here x; denotes the indicator function of the set /. Note that for 1 < p < ¢ < oo,
UP(R,H) — UI(R,H) — LR, H), “4.1)

and functions in U? (R, H) are right continuous, lim;_, o, u(¢) = 0.

Definition 4.2 ([23, Definition 2.2]). Let 1 < p < oo. The Banach space VP (R, H) is
defined to be the set of all functions v : R — H such that

N 1/p
lolve = sup (DIt —v@-nlf) s finite.
K yeZ k=1

The Banach subspace of all right continuous functions v : R — H such that lim,_, _ 4, v(¢)
= 0, endowed with the norm above, is denoted by VL (R, H). Note that

UPR,H) — VER, H) — L®R, H). 4.2)

Definition 4.3 ([23, Definition 2.5]). For s € R we let Uy H*, respectively V H*, be
the space of all functions u : R — H*(T?) such that t — e "2u(¢) is in UP (R, H*),
respectively in Vg H?, with norm

—itA —itA

lullyp s == lle™"“uOllvr@ s, Mullypgs = lle” " “u@llve®, s

We will take H to be H®. We refer the reader to [22], [23], and references therein for
detailed definitions and properties of the U? and V? spaces.

Definition 4.4 ([23, Definition 2.6]). For s € R we define X* to be the space of all

functions u : R — H*(T3) such that for every n € 73 the map t — e”'"'zbt/(?)(n) is in
U%(R, C) and the norm

e o= (X 01 apmiz,) s fnee 4.3)

neZ3

The X* spaces are variations of the spaces U Ap H* and Vf H° corresponding to the Schro-
dinger flow and defined as follows:

Definition 4.5 ([23, Definition 2.7]). For s € R we define Y* to be the space of all
functions u : R — H*(T?) such that for every n € Z3 the map ¢ > e“'”'zu(t)(n) is in
Vr% (R, C) and the norm

fatys = (X w2 1P a@ei2,) s fnite (4.4)

neZ3
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Note that
UZH® < X* < Y < VZH", 4.5)

whence for any partition Z> := Uk Cr,

(E ” ”2 )1/2 < “ “
Pc,u Ullys
- C VKH.V ~ Y

(cf. [23, Section 2]).
Additionally, when s = 0 by orthogonality we have

(X 1Peauis) = tulye. (4.6)
k

We also have the embedding

X' — Y® < L’H; “4.7)
for s > 0 (cf. [24)]).
Remark 4.6 ([23, Proposition 2.10]). From the atomic structure of the U? spaces one

can immediately see that for‘ s >0,T > 0and ¢ € H¥(T?), the solution to the linear
Schrodinger equation u := ¢'“¢ belongs to X* ([0, T)) and llull xsqo,7y) < @Il as.

Remark 4.7. Another important feature of the atomic structure of the U? spaces is the
fact that just like the X*-? spaces they enjoy a ‘transfer principle’. We recall in our context
the precise statement below for completeness.

Proposition 4.1 ([22, Proposition 2.19]). Let Ty : L?x...xL?*—> LllOc be an m-linear
operator. Assume that for some 1 < p, q < 00,

m

1Toe ™ 1. ... ¢ )l Lo racrsy S [ 1610 220r)- (4.8)

i=1

Then there exists an extension T Uﬁ X -+ X Ug — LP(R, L1(T3)) satisfying

m
T (uy, ..., Mm)”Lp(]R‘Lz('ﬂﬂ)) 5 H [lue; ”Ug 4.9
1=
and such that T (uy, ..., u)(t, ) = To(u1(t), ..., uy,(t))(-) a.e. In other words, one can

reduce estimates for multilinear operators on functions in U K to similar estimates on
solutions to the linear Schrodinger equation.

We will use the following interpolation result at the end of Section 8 to obtain bounds in
terms of the X® spaces from those in Ui H® and U Ap H?, just as in [23]. Its proof relies
solely on linear interpolation [22, 23].
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Proposition 4.2 ([22, Proposition 2.20] and [23, Lemma 2.4]). Let q1,...,qm > 2
where m = 1,2, or 3, E be a Banach space, and T : U1 x --- x U — E be a
bounded m-linear operator with

m
T @y, ...,um)llE Scﬂlluilluzi- (4.10)
In addition assume there exists 0 < Cp < C such that
m
T @i, ...,umlle < CZl_!”ui”Ui- (4.11)
1=
Then
T (ui,...,um)llE <C2<ln—+1) nllu ly2, GVrC, =1,...,m, 4.12)

where Vr% denotes the closed subspace of V? of all right continuous functions of t such
that lim;_, o v(t) = 0.

Finally, we state two results from [23] we rely on in the next sections. In what follows,
T denotes the Duhamel operator,

t
Z(f) () ;=/ A ey, >0, (4.13)
0

defined for f € L ([0, 00), L?(T?)).
Proposition 4.3 ([23, Proposition 2.11]). Lets >0, T >0. For f € L' ([0, T), H*(T?))

we have Z(f) € X*([0, T)) and
T
/ / f@t, x)v(t, x)dxdt|.
0 T3

||I(f)||XY([0 7)) ~ ||f||L1 [0,T),HS(T3))- (4-14)
Proposition 4.4 ([23, Proposition 4.1)). Fixs = 1. Then for all T € (0,2x] and uy €

X0, 7). k=1,....5
5 5

IZ([Ta)| SO lwlwwry [ lulxigory @19

k=1 Jj=1 k=1, k#j

where Uy denotes either uy or ug. In particular, (4.15) follows from the estimate for the
multilinear form:

/[0 l_[ukdxdt

T))(’[[q k=0

IZ(H)Nxsqo,1)) < sup
veY 5 ([0,T)): v]ly-s=1

Asa consequence,

5

x(10,7)) ™~

5

<||MO||YA([0T))Z<|M]||XAOT)) [T 1lxogory)

k=1, k#j

where ug 1= P<pyv.

Next, we recall the L? (T x T3) Strichartz-type estimates of Bourgain’s [5] in this context.
First recall the usual Littlewood—Paley decomposition of periodic functions. For N > 1
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a dyadic number, we denote by P<y the rectangular Fourier projection operator
Py f = Z fnye™=,
n=(ny,ns,n3)€Z3: |n;|<N
Then Py = P<y — P<y—1 sothat P<y = ZAN/1:1 Py and PI{; := I — Py. We then have
—~ 1/2 1/2
1 gy o= 1D Fllgesy = (30 1 F ) ™ = (30 N IPV (DB,
nez? N>1
where (DS f)(n) = (n)* f(n).

Definition 4.8. For N > 1, we denote by Cy the collection of cubes C in Z> with sides
parallel to the axes of sidelength N.

Proposition 4.5 ([23, Proposition 3.1, Corollary 3.2], cf. [5]). Let p > 4. Forall N > 1,

1PN 2B Locrwrsy S N2 P Pyl 27y (4.16)
I1Pce  ll Loerrsy S N27/P | Pegll 2 r3). (4.17)
IPcull sy S NY27P ) Peullyp o, (4.18)

where Pc is the Fourier projection operator onto C € Cy defined by the multiplier xc,
the characteristic function of C.

Finally, we prove two propositions which will play an important role in Sections 7 and 8.
Proposition 4.6. Let u, v and w be functions of x and t such that

wn, 1) = a,(t)ay(1)a (1),

U, 1) = ay(Day (Oay O, (1)a (1),

W(n, 1) = al(t)al(t)a (1) Zaia;ffm’

and |n| ~ N. Assume that J C {1,2,3,4,5}and if i € J then

i _ gn(w) it|n|?
ap(1) = Inp/2+e ’

while if i ¢ J then there is a deterministic function f; such that ﬁ(n, t) = afl (t). Then

IPvullpperery S [ UPnfillyo.  p >4, (4.19)
i¢JN{1,2,3}

IPvull 2y S ] 1P fillyo. (4.20)
i¢JN{1,2,3}

1Pyl 2emrsy S [T 12w fillyo. .21
i¢J

IPvwliamersy S [T UPvfillyo TT 1fillyo- (4.22)

i¢J,i#4,5 J¢J.j=4.5
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Proof. To prove (4.19) we write u = k; * ko * k3, where the convolution is only with
respect to the space variable. Then by Young’s inequality in the space variable followed
by Holder’s inequality and the embedding (4.7) we have the desired inequality.

To prove (4.20) we use Plancherel

3
1.2 3 i
1Pyl arers) S Dm-vaaiadle | e < |[Thm-vage] .
i=1

3
. H P . S P, i |l ], 3))
S gu VIl S T IPNfillin o)

i¢JN{1,2,3}

and the conclusion follows from the embedding (4.7).
To prove (4.21) we proceed in a similar manner.
To prove (4.22) we first write

||PNU)||L2(11'><11‘3) ~ | Pn(ky * k * k3 * (k4k5))”L2(T><T3)H

and by the Young, Holder and Cauchy—Schwarz inequalities we continue with

3 3
S |TTnewkill Py sk S |TTnewkill o ikl 211k
S EII whill I Pr ek |, S E” whill 2 ka2 ksl 2 ), o
S T I filleqizasy T[] 1l 2y o

i¢J, i#4,5 jé¢J, j=4.5
We now state a trilinear L? estimate that is similar to Proposition 3.5 in [23] but in which
some of the functions may be linear evolution of random data.

Proposition 4.7. Assume that Ny > N» > N3 and C € Cy,, a cube of sidelength N».
Assume also that J € {1,2,3}and if j € J then uj(n) = ei|”|2’gn(a))/|n|3/2+8for8 >0
small. Then

| Pc Py ity Pryita Pryitsll 2 orersy S NaN3 l_[ 1P;ujlls g2 (4.23)
2
y . 1/2
| Pc PNy ity Py tinll 2 pursy S N2/ i lg 1PNyl g2, (4.24)
J

where Uiy denotes either uy or uy.
Moreover (4.23) and (4.24) also hold with the Y° norms on the right hand side.

Proof. To prove (4.23) we follow [23, proof of (24)]. We write
| Pc Py ity Pyiia Psis || p2orsersy S I1Pc Pyt llLe Il Payualle || Pasus | La
where 2/p + 1/qg = 1/2 and 4 < p < 5. Then we use (4.17) for the random linear

functions and (4.18) for the deterministic functions to obtain

N3\ 20/
| Pc Py, ity Py itz Pyl 2o ersy S N2N3 <F2) H 1PN ujll 4 g2
jgJ

where we have used the embedding (4.1).



Almost sure well-posedness for the periodic 3D quintic NLS below H 1 1703

To prove (4.24) we use Holder’s inequality to write
| Pc Py i1 Pyl 2 rersy S I1Pc Pyt || pase 1 Phyua [l pases (4.25)

we then use (4.17), (4.18) and the embedding (4.1) to continue with

1/24¢
SN 0PNl o
2

To obtain the Y on the right hand side we use the interpolation Proposition 4.2 and the
embedding (4.1). O

5. Almost sure local well-posedness for the initial value problem (2.17)

We define
vg (t, x) 1= S(H)¢® (x) 5D

where ¢®(x) is as in (1.5), and instead of solving the initial value problem (2.17) we solve
the one for w := v — v

{iw,—i—Aw:J\/’(w—i—vSﬁ, x e T3, 52)

w(0, x) =0,

where NV (-) was defined in (2.18). To understand the nonlinear term of (5.2) we express
it in terms of its spatial Fourier transform. Let a,, := v(n), 0y = F(S(t)9p“)(n); then
by := w(n) = a, — 6. Now recall (2.9) and replace in it a, with b, + 6%. Then

7
FWN @+ ) m) = Jelby +62) (5.3)

k=1

where Ji (b, 4 6’) means that the terms J; defined in (2.10)—(2.16) are evaluated for the
sequence b, + 0 instead of a,,.

We are now ready to state the almost sure well-posedness result for the initial value
problem (5.2).

Theorem 5.1. Let0 <o < 1/12, 5 € (1 + 4w, 3/2 — 2a). There exist 0 < 69 <K 1 and
r =r(s,a) > 0 such that for any § < d¢, there exists Q5 € A with

P(Q5) < e~ /Y

such that for each w € Qg there exists a unique solution w of (5.2) in the space X* ([0, §))
N C([0, §), H*(T?)).

This theorem follows from the following two propositions via a contraction mapping
argument.
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Proposition 5.1. Let0 <« < 1/12, s € (1 +40,3/2 —2w), § < 1 and r > 0. Assume
N;i, i =0,...,5, are dyadic numbers and N1 > --- > Ns. Then there exist p = p(s, o),
>0, and Qs € A with P(Q5) < e 1/%" such that for o € Q5 we have:

o If N1 > No or Py,w = Py, vy then

2
/ /3 D* (N (Py; (w + v$) Pyl dx di
0 T

< 5N TP Paghlly (1 +T] ||PNl.w||xs>. (5.4)
i¢]
e If Ny ~ No and Py,w # Py, vy then

2
[ | DY (Py, (w +v5))) Prgh dx di
o Jr

<5 N Pkl Pl (14 [ IsPywle). 65)
i¢d, il

Here v‘é) is as in (5.1), w € X*([0,2x]), and J C {1,2,3,4,5} denote those indices
corresponding to random functions.

Proposition 5.2. Let0 <o < 1/12,5 € (1+4a,3/2—2a) and § K 1. Let vy be defined
as in (5.1) and assume w € X5([0, 21]). Then there exist 0 = 0(s,a) > 0,r = r(s, &)
and Q5 € A with P(Q5) < e V% such that for w € Qg,

IZs N (w + ) lxs 0,221 S 87+ I1Wsw ks 0.2 (5.6)
where N'(-) was defined in (2.18) and s is a smooth time cut-off of the interval [0, §).

The proof of Proposition 5.1 is the content of Sections 7 and 8, while Proposition 5.2 is
proved in Section 9.

6. Auxiliary lemmata and further notation

We begin by recalling some counting estimates for integer lattice sets (cf. Bourgain [5]).

Lemma 6.1. Let Sg be a sphere of radius R, B, be a ball of radius r, and P be a plane
in R3. Then

1Z3 0 Sg| S R, 6.1)
1Z> N B, N Sg| < min(R, r?), (6.2)
1Z° N B, NP| <2, (6.3)

where | - | denotes cardinality.
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Next, we state a result we will invoke when the higher frequencies correspond to deter-
ministic terms and one can afford to ignore the moments given by the lower frequency
random terms as well as rely on Strichartz estimates.

Lemma 6.2. Assume N;,i = 0,...,5, are dyadic numbers and N1 ~ Ny and N; >
- > Ns. Let {C} be a partition of 73 into cubes C € Cn,, and let {Q} be a partition of
73 into cubes Q € Cn;. Then

N;,i=0,...,5

[ 1/2
DY (slép | P& P, f1 Py 2P fell 7 CZQ | Po PPk Py f3 P, fr12: )

1
/ /]I‘3 Py, f1 PN,y f2 PNy [3 PN, f4 Prs f5s Pngh dx dt
0

Nj,i=0,..., 5
6.4)
where £ # r € {4,5} and C are cubes whose sidelength is 10N.
Proof. This follows from orthogonality arguments. O

Just as Bourgain [4], in the course of the proof we will use the following classical result
about matrices, which we state as a lemma for convenience.

Lemma 6.3. Let A = (Ajr) 1<i<n be an N x M matrix with adjoint A* = (ij)1§k§M~

Then I<k=M 1<j<N
§ M 5 M 12
lAar = max 14l + (3] Aadi|) ©.5)
=I=NI3 iz k=1
where || - || means the 2-norm.

Proof. Decompose AA* into the sum of a diagonal matrix D plus an off-diagonal one F'.
Then note the 2-norm of D is bounded by the square root of the largest eigenvalue
of DD*, which, since D is diagonal, is the maximum of the absolute values of the di-
agonal entries of D. This gives the first term in (6.5). Bounding the 2-norm of F by the
Frobenius norm of F' gives the second term in (6.5). ]
Notation. Given k-tuples (ny,...,ng) € 73k a set € of constraints on them, and a
subset {iy,...,i} <€ {1,...,k}, we denote by S(nil’“"n"h) the set of (k — h)-tuples
(s .o onj,) with {ji, .o jk—py = {1,...,k} \ {i1, ..., ip} which satisfy the con-
straints ¢ for fixed (n;, , ..., nj,). We also denote by S, ,....n;,)| its cardinality.

,,,,,

7. The trilinear and bilinear estimates
In this section, we denote by D; := et APNJ.¢ solutions to the linear equation for data ¢
in L? localized at frequency N ', and by Ry the function defined by

Ri(n) = X{|n|~1vk}(n)%e”‘"‘z, (7.1

and representing the linear evolution of a random function of type (1.5), localized at
frequency Ny and almost L? normalized.
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7.1. Trilinear estimates

We prove certain trilinear estimates which serve as building blocks for the proof in
Section 8. Their proofs are of the same flavor as those presented by Bourgain [4]. For
Nj, j = 1,2, 3, dyadic numbers, let ¢; = O or 1 for j = 1, 2, 3 and define

n=(=0)%n; + (=1D)%n2 + (—=1)*n3,
ny # ng whenever o # oy,
Y (n,m) := { (n1, my; n2, my; n3, m3) : .
|nj| ~ Nj, J = 1,2,3,
m = (=1)%my + (=1)my + (=1)%m3
(7.2)
Then define T+ to be the multilinear operator with multiplier xvy.

Proposition 7.1. Fix Ny > N, > N3, r,8 > 0 and C € Cy,. Then there exist i1, & > 0
and a set Qs € A with P(Q5) < e V13" such that for any € Q5 we have the following
space-time estimates:

ITx (PcR1, Do, R3)llp2 S 67 Ny N2 Pyl 2, (7.3)
1T (PeRy. Do, Rl 2 < 877 Ny N2 1 Pyl 2. (7.4)
ITx(Pc Dy, Ry, Ra)ll 2 S 67 Ny | Pe Pry 2. (7.5)
ITx (PcDy. Ra, R3)l 2 S 87 Ny M| Pc Py, 2. (7.6)
ITx (PcRy. Ry D)l 2 S 877 INy ANy 2N+ Ny 2Ny 2N Py 2.
(1.7)
ITx (PcRy. Ry D3l 2 £ 877 INy ANy PN+ Ny 2Ny 2N P 2.
(7.8)
ITx (PcRy. D, D3)ll 2 S 671 Ny NIV min(wy, N7)! =072 N5
< 1Pxy @l 2| Prspll 2. 060 <1, (7.9)
T (Pe Dy, Ry, D3)llz2 S 67 Ny PN Pyl 2 11 P 2. (7.10)
ITx (PcRy, Ry, R3)ll 2 S 87H Ny V2N)2, (7.11)
1Ty (PcRi, Ry, R3)ll 2 S 67 NN, 2, (7.12)
IT+(Pc Ry, R, Rl 2 S 877 Ny VPN, (7.13)

where L> = L*(T x T?). Note that here the bar — indicates complex conjugate while
the tilde ~ indicates both complex conjugate or not. Also, without writing it explicitly,

we always assume that if R(n1) and R (n2) appear in the trilinear expressions on the left
hand side, then n1 # nj.

Remark 7.1. In using the trilinear estimates above, sometimes it is convenient to in-
terpret a random term as deterministic and choose the minimum estimate possible. For
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example, in considering || Pc Ry Ry R3||;> we have a choice between (7.11) and (7.8) by
thinking of R3 as an ‘almost’ L? normalized D; function.

Proposition 7.2. Let D; and Ry be as above and fix Ny > N > N3, 1,8 > 0 and
C € Cy,. Then there exists u > 0 and a set Q5 € A with P(Q5) < e V% such that for
any w € Qs we have (7.3) and (7.4).

Proof. As in [23] we will first assume that the deterministic functions D; are localized
linear solutions, that is, D; = Py, S(¢)y and 1///\ (n) = a,. Once an estimate is proved with
| x n; (n)ay || 2 on the right hand side, we invoke the transfer principle of Proposition 4.1
to complete the proof.

We start by estimating (7.3). Without any loss of generality we assume that Dy = D;.
By using Fourier transform to write the left hand side we note that it is enough to estimate

20 (@) gy [?

T = E E Xc(nl)—|n |3/2an2—|n e (7.14)
meZ,neZ3 n=—nj+ny+n3 1 3
ny#ny,n3

m==|n [*+Inz|*+n3|?
where we recall that C is a cube of sidelength N,. We are going to use duality and a
change of variable since, as will be apparent below, the counting with respect to the time
frequency will be more favorable.
Using duality we find that

2 (©)  guy(@) [T
T=| sup |y kmy(m) > xen) T an, o |

ly®kll 2 <1lm,n n=—n+ns+nz |n1] |n3]

ni#ny,n3
m=—|n1|*+na*+ln3l?
Letting ¢ := m — |n2|?> = —|n1|*> + |n3|%, we continue with
20 (@) guy(@) [1?

T=[ sup Y an y v@HImP) Y xem) g TRk,

ly @kl <114 3 n=—ti1 Fh2+n3 n1]27= |n3]

ny#ny,n3
_ 2 2
{=—In1|"+In3|

Z xc (nl)—gn‘ (©) gny (@) k

3/2 3270
n=—ni+ny+n3 |n1| / |7’l3| /
n1#ny,n3
t=—Im1*+lnsl?

2

2 2
S osup o llanlp IvI% )
ly®kll 2 =1 "2 TN

All in all, we then have to estimate, uniformly for ||y ® k|2 <1,

2 2
lans 27153 3 3 ok

ny |¢|SNiNy n

2

(7.15)

where
= T el
na,n - 3/2 3/2°
np=ni|+n—n3, n|#ny,n3 |I’l1| |n3|
g=—In1|*+ln3|?



1708 Andrea R. Nahmod, Gigliola Staffilani

Note that 0, ,, also depends on ¢ but we estimate it independently of ¢. If we denote
by G the matrix of entries 0, ,, and we recall that the variation in ¢ is at most N1 N, we
are reduced to estimating

lan, |17 N1 N21IGG* -

We note that by Lemma 6.3,

2 p—
196" S max Y Il + (D |32 onano
n

na#ny neC

2012
) =: M| + M>,

where C is a cube of sidelength approximately N5.
To estimate M; we first define

Senyy i={(n1,n,n3) iny =ny +n —n3, ny #na,n3, ¢ =—[n)* + [n3)?},
with [ Sz ny)| S N§’N1, where we use (6.1) for fixed n3. Then we have

M; 5 sup
(n2,¢)

_ 2
Z Xc(m)g"'(w) 8y (@) .

32 32
ny=ni+n—n3, n1#ny,n3 i In3]
r=—|n*+lns?

Now we use (3.4) with A = §7"|| F2||;2 and Lemma 3.3 to obtain, for w outside a set of
measure ¢!/ ‘Sr, the bound

1 L
< —2r
MyS sup 8 2 1372 [n3 |32 1£113/2 165132

(n2.8) Se.ng) Sgng)
X / 8, (0)&ny ()&, (W) g, (@) dP(w)‘
Q
11
Ssup 877 Y —— —— SEFNTNTNIN ~8TVNTR (7.16)
(n2,¢) S({,nz) |i’l1| |7’l3|

To estimate M, we first write

2 _
M2 = 2 :‘E :anz,ﬂorz’z,n

2 2

~ )

3 21, (@) gny () & (@) 8y (@)

1372 n332 |ny 372 |nf3]3/2

}127571/2 neé "2#”’2 S(rlz,n/z)
where
/ / /
np=ny+n—n3, np=n;+n—nj,
. / / . ! / / ~
S(nz’n/z,;‘) = (n’ nip,n3,ny, n3) - ny # nz,n3, np # n,,ns, n € Ca

2 2 2 2
¢ =—lmil”+n3l", ¢ = —[n}|" + ]

We need to organize the estimates according to whether some frequencies are the same or
not; in all we have six cases:
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o Case p: ny,n', n3, nj are all different.
e Case By: nj =n:1;n3 ;éné
o Case f83: n ;én};ng; :n/3.
e Case f84: n 7én/3;n3 =n/1.
e Case fi5: n :n;;n3 ;én/].
e Case fg: n| =n3;n3 =nj.
Case 8;. We define the set
/ / /
np=n;+n—n3, nh =n|+n-—ns,
/ / I /
Si) = (nz,n/z,n,nl,m,n/l,né) i N1 F# np, N3, Ny £ n,, ni, ni,ny € C,

2 2 122
¢ =—Iml”+In3l", & =—[ny|” + In3]

and we note that [S| < N12N36N§ since n € C and for fixed n3 and ng we use (6.1) to
count n1 and n}. Using (3.4) with A = 5§~ || F4]l ;2> and again Lemma 3.3 we can write,
for w as above,

1 1 1 1
2 2 2 il ns ni P P

rS
n n !
27‘é 2 (n2,712,[

—4r A7=6 AT—6 A72 A7O AT3 o s—4r Ay —4 A73
SN PNy N{N3N; ~ 8 "N "N;.
Case 3. First define
ny=ni+n—ns, ny=n|+n—nj,
/ 4 ~
S(nz,n’z,n3,n/3,{) =1, n): ny #Fny,ny,n3,n3, n€C,
2 2 2 12
¢ =—lmil"+In3l7, ¢ = —|m|” + |n3]
To compute |S(n2,n’2,;13,ng .oyl we count ny; then n is determined. Since n; sits on a sphere,
by (6.1) we have [Sq, u! ny.n).0)] < Nj. Then we set
ny=ni+n-—ns3, ny=n;+n-—nj,
/ / ~
Sy := { (n2,ny,n,n1,n3,n3) . ny #na,ns,n3,ns, necC,
2 2 2 712
¢ =—lnmil" +In3l%, ¢ = —[n1|” + |n3]

with [Siy] S N1 N?Ng’, where we have again used that n € C and (6.1). Now, we find

that
2

S+ (1.17)

2 o ’
M22 ~ Z Z |g”1(w)| gn3((1)) g,13(w)

lnil® n3l3/2 532

na 7&"/2 S(nz,n/z,;)

where
2

Z lgn, (@)> — 1 gny () 8n}, (@)

1| 3372 |nj |32

Q)= Z

’
naF#n,

, (7.18)

Stnynty.)
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§ : Z 1 gn () 8n,(@)|?
%= 3 - 3/2 /33/2 (7.19)
s [n1l> |n3|>7= 3]
n27£”2 ("2~”/2v§)
We first estimate Q,. We rewrite
1 1 l 8 2 7.20
e Z Z |n1|3 TREEATARE 8n3 ()8, (@) (7.20)
n27én2 3

ns, n3 S(n2 712 3, n

We now proceed as in (7.16) above. We use (3.4) with A = §7"|| F2||;2, Lemma 3.3 and
(3.5) to deduce that for w outside a set of measure e~ !/ " one has

1 1 7
-2,
7200 <877 ) Z[ > n1? n3)3/2 In’slm}

’ ’
naFEn, n3,ng S("z,n/z,n}ngx)

—2r a7—6 A7—6 2
<6 Ny "N; Z Z |S(nz,n’27n3,n§,§)|

ny#nfy n3,n

—2, —6A7—6
<34 er N3 N Z Z |S(n2,n’2,n3,n/3,{)|

ny#n)y nz,ng
SETUNONTONY ISl ~ 87 NTUN3. (7.21)

To estimate Q; we let

ny =ny+n—n3, ny=n|+n—nj,

P . / / ~
S(nz’n/z’nl,n”g,;) = n:ny #ny,ny,n3ny, necC, , (7.22)
2 2 2 2
¢ =—lmil” +In3l”, ¢ = —|n|” + |n}]
and note that its cardinality is 1 since n is determined for fixed (12, n}, n1, n3, nj). We
have
1 1 1
Q ~ Z Z Z 3 32 1,7 13/2
|n1|° [n3|>/= |n5]
ny#ny ny#ng,nh,n3,ny#Eny ‘ 3

(n2 n2 ny,n3, n3)
2

x (18 (@)° = Dgny ()8, (@)

Proceeding as above, we find that for w outside a set of measure eV ‘sr,
Q<8 2rN—6N—6|S({)| ~5 2rN—5N2’
which is a better estimate. Hence all in all we conclude that
M3 S8TUNTANS. (7.23)
Case f33. In this case we first define
ny = —njy+n—n3, nh=n\+n—ns,
S(nz,n’z,nl,n’l,g“) =4 (n,n3) : n3,na,ny #ny,ny, ne C,

2 2 2 2
¢ =—lnmil" +In3l%, ¢ = —[n|” + |n3]
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with |S(,,2’n/2,,11,n/1,§)| < N32 by (6.2) since n is determined by n3 and the latter lies on a
sphere of radius at most N intersected with a ball of radius N3. If we now define

ny = —ni+n—n3, ny=n}+n-—ns,

Sy := { (n2,nh,n,ny,ny,n3): n3,na,ny #ny,n, necC, ,
2 2 2 2
¢ =—|m|*+In3|°, ¢ =—[n} "+ |n3]

then [Si)| S leNg’NS, since again n ranges over a cube of size N and we use (6.1)

to count n and n’1 We follow the argument used above in (7.17)—(7.23) to bound M22
but now with the couple (n1, n/l) and corresponding sums Q; and Q5. Just as in Case 3
above, the bound for Q5 is larger. We then obtain, for @ outside a set of measure e~/ s

2 —2r a7—6 A7—6 2
M 58 Nl N3 Z Z'S(Hz,néqnl»n’pﬁ'

ny#n nyn

—2r A7—6 A7—6 A72
<6 er N3 7N3 Z Z |S(nz,n/2,n1,n’1,§)|

iy ny
SETUNONONSIS) | ~ 8 NN NG,
Case 4. In this case note that N; ~ N3 ~ N,. We define two sets. First,
ny=ni+n—n3, ny=n3+n—nj,
S(nz’n/z’nl’ng’;) =4 (n,n3) : na,nh,n3,ny #ni, ne C, ,
¢ ==l +nsl?, & = Ins® + Inj?

and since n3 lives on a sphere of radius at most Ny, from (6.1) we have |S(n2‘n/2,
< Nj. Next, the set

nl,ng,é“)'

ny =ni+n—n3, nh=n3z+n—nj,
Sy = { (2. nh.n,ny,n,n3) s na,ny,n3,ny#ny, neC,
¢ =—lmPP+n3?, ¢ = —lns® + Ins
has [S)| S Ny N23N36. Just as in Case 83 and following the argument in (7.17)—(7.23) but

with the couple (n1, n’3) we obtain, for w outside a set of measure ¢~/ 5,-’

2 e o2 A —6r1—6 2
My S 677NN Z Z'SW’"&’”I»”%*?)'

ny#ny ny,ng

2 Aj—6 A —6
<6 er N3 "Ny Z Z'S(Hz,n'pnl.né’{)'

ny#ny ny,ng
SETTNTONTON Sl ~ 8 NN,
Case Bs. By symmetry this case is exactly the same as Case f4.
We now put all the estimates above together and bound 7 in Cases 81—fs:
T < Many I NiN21IGG || S Nlan, 17 N1t No (M + M)

2 o2 —2a73/2 —2r A753/2 n7—1 2
< Nlan, |87 NiNaNTENS < 672 NS PN a1
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Case f8g. In this case we set

np=ni+n-—n3, nh=n3+n-—ny,
2 2 ~
ni #ny,nh,n3, Ini|°=ln3|°, neC

S(nz,n’z,;') = {(na ni,n3):

Notice that the summation over ¢ is eliminated and in this case Ny ~ N ~ N3, so
|S(n2,n/2’§)| ~ N;*. Using (3.5) we have, for w outside a set of measure 8—1/3’,

5 _ 2
M= Y [Yemiaf ~ ¥

na#ny neC ny#ny

S Y NTOENTOIS 2 S NSNS NS S o)l (7.24)

!
nyF#Eny

2

¥ lgn, (@) 1gn; (@)]?

Iny|3 In3|3

S(nz,n/z.c)

where

S@) = {(ﬂz,n/z,n,m,ns) :

np=ni+n-—n3, ny=n3+n-—ny,
2 2 ~
ni #nz, na,nh, Ini|°=ln3|°, neC

and |Sy| S N;N?. Hence M, < N1_3+£N25/2 and as a consequence

2 ar—3+ea/5/2
Tﬁllanzllgle ¢ 92 -

We now notice that to prove (7.4) we first have to consider the case when n; = n3,
which is not excluded here, and then we can use exactly the same argument as above since
a plus or minus sign in front of n3 does not change any of the counting.

Consider now (7.4) with n; = n3. Note that N| ~ Ny ~ N3. We now set

Z @, (@)*

T = an,| - 7.25
> i pERCE (7.25)
meZ,neZ3' n=—2ni+ny
m==2In|*+|n2|?
Let Sgu,ny :={(n1,n2) :n = -2n1 +ny,m = —2|n1|? + |n2)?}, and note that [Sn,m)l

< Ni. Then

18, (@)* 18,, (@)|* _
TSN D lan P ~ N Y e lanion T S Ny llan, I,

6 6
m,n S(m.n) |n1 | n,nleZ3 |n1 |

where we use (3.5) for w outside a set of measure e~/ & ]

Proposition 7.3. Let D; and Ry be as above and fix Ny > N, > N3, 1,8 > 0 and
C € Cy,. Then there exists 1 > 0 and a set Qs € A with ]P’(Qg) < e % such that for
any w € Qs we have (7.5) and (7.6).
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Proof. We start by estimating (7.5) where without any loss of generality we assume that
D{ = D;. We now set

T = Z

meZ, neZ’

- 2
8ny (w) 8n3 (w)
Z xc(n1)an, W W . (7.26)

n=n|—nz+nj3
;lz#mz )
m=|ny|=—|nz|"+|n3|

We are going to use duality and change of variables with { := m — |n} 12 = —|ny2+ n3 |2
again. Note though that if n1 is in a cube C of size N, then also n will be in a cube C of
approximately the same size. Hence just as in (7.15) we need to estimate

2
xcan 120712 D D7 1D o nxekn

"o¢|<NZ M

where _
8ny (w) 8nj (w)
2 3/2 |n3]3/%

Onin =
ny=ny+n—n3, ny#n1,n3
2 2
{=—In2|"+In3|

If we denote by G the matrix of entries oy, ,, and we recall that the variation in ¢ is at
most N22, we are reduced to estimating

lxcan 15 N31GG*I.
We note that by Lemma 6.3,

2 —
19611 € max Yol + (D |32 0w
n

ni#n| neC

20 1/2
) — M+ M,

where C is a cube of sidelength approximately N.

From this point on, the proof is similar to the one already provided for (7.3) where ny
is replaced by n1. We still go through the argument though, since the sizes of n; and nj
are different.

To estimate M we first define

Sy =12, n,n3) iny #ny,n3, np=ny—n-+n3, { = —Ina|* + |n3|?}.

Applying (6.1) for each fixed n3, we find that | S n )| S N;Nz since ny sits on a sphere
of radius approximately N, . Then we proceed as in (7.16) to obtain, for @ outside a set
of measure ¢~ 1/%" , the bound

—r A7—=3a7—3 73 —2r a7—2
My S67'N, N3y "N3Ny ~ 37N, .
To estimate M, we first write
2

2 —
M3 = D |2 OBl ~ )

ni#n| ne€ ny#n

Z ?nz(w) 8nj (w) gn’z(a)) gn%(w) 2
2P [nsP72 Iny P2 Ty P72

Stnyn).0)
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where
/ / /
np =np—n-+n3, np=n; —n-+ns,
/ / / / / ~
S(nl,n/.,f) = (n,n2,n3,n5,n3) : np #ny,n3, np #nj,n3, necC,

2 2 2 2
¢ = —ln2|” + In3l”, ¢ = —In5|" + |nj]

We organize once again the estimates according to whether some frequencies are the
same or not. As before, we have six cases:

e Case p: na, nj, n3, nj are all different.
Case fr: np =nhin3 #nj.
Case 3: ny # n):n3 = nj.
Case f4: ny # nlyin3 = nj,.
Case fs: ny = nj;n3 # nj,.
Case fig: ny = nj;n3 =nj.

Case 8;. We define
ny=ny—n+nsz, nh=n} —n+nj
Sy i= 1 (1, ny, n,na, n3, nhy, nh) : na #ni,n3, ny #nlns, npnpeC, 1
2 2 2 2
¢ =—Ina|” + |n3|", ¢ = —n5|" + |nj]

and note that | S| < N22N36N§ by Lemma 6.1 since for n3 fixed, ny and n/, sit on a

sphere of radius ~ N, and n € C, a cube of sidelength approximately N,. Hence, for o
outside a set of measure ¢!/ ‘Sr, we obtain

2 < o—Ar \7—6 A7 —6 72 A76 73 s—dr nr—1
M5 S8 Ny Ny " NyN3IN; ~ 67N, .
Case f,. In this case we define two sets. We start with
ny) =ny —n -+ n3, nzzn/l —n+n/3,

/ / ~
S(nl,n’.,n3,n§,4“) =1 (n,n2) : np #ny,n},n3,n3, ne€C,

2 2 2 12
¢ = —n2|" +[n3l", ¢ = —[na|” + |n3]
To compute |S(n1,n’1 3, ©) |, it is enough to count n2; then n is determined. Since ny sits

on a sphere of radius ~ N, by (6.1) we have |S(”1~”’|a"3’"/3’€)| < N,. Then we set

ny =ny—n+ns3, np=n}y —n+nj,
Sy = { (n1,ny,n,na,n3,n%) 0 ny #ni,ny,n3,ny, necC, ,

2 2 2 /2

¢ = —ln2” +In3l”, ¢ = —Ina|” + |n3]

for which [Si)| S N2N36N23 , where we have used again that n € C. Arguing as in
(7.17)—(7.23), we then find that for w outside a set of measure 6—1/5"
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2« s=2r \r—6pr—6 2
My S8TUNTONTO Y Y IS 1,04 m3.5,0)]

n#n' n3,n

—2r A7—6 A7 —6
56 er N3 N2 Z Z |S(n],n/l,n3,n’3,{)|

’ ’
ny#n| n3,ny

S 8Ny ONTONL IS () ~ 87 Ny
Case f83. In this case we define first

ny) =ny —n—+ n3, n/2 =n/l —n—+n3,
. . / / ~
S(nz,n’z,nl,n’],f) = (ns n3) s na2,n, # n3,ni,ng, n € Ca
2 2 12 2
¢ = —ln2|” +In3l”, ¢ = —Iny|” + |n3]
. 2 . . . .
for which |S(,,2,,,/2’,,]’n/1,§)| < Nj, since n is determined by n3 and the latter lies on a

sphere of radius at most N intersected with a ball of radius N3 (see Lemma 6.1). Then
we define

ny=ny —n+ns, n)=n\)—n+ns,
Sy == { (n2,ny, n,ny,ny,n3): na,nhy #n3,ni,ny, ne C,
2 2 2 2
¢ = —nal|” + In3l”, ¢ = —In5|” + |n3]

for which [S)| S N22N§’ Ng, since again n ranges over a cube of size N. We then find,
as usual using (3.4) and (3.5) as above, that for w outside a set of measure e 18

2 —2r x\7—6 A7—6 2
M3 S8TNTONTE D0 3 St ayni |

/ !
ny#n n,ny

—2r A7—6 A7—6 772
SEFNTONTONE DS ISyt o]

ny#n| ny,n

Case f84. In this case note that N3 ~ N,. We define two sets:

ny) =ny —n -+ ns, ng:n'l—n+n/3,
/ / ~
S(nl,n’,,nz,ng,{) i=1(n,n3): ny #ny1,n3, n3 #n3,ny, neC,
2 2 2 72
¢ = —In2|” + In3|”, ¢ = —|n3|” + |n3|

with |S(n1’n/1’n2,n/3’§)| < Nj since n3 lives on a sphere of radius at most N;; and

ny=ny—n+ns3, n3=n}) —n+nj,

Sy := { (n1,ny,n,na, 0, n3) 0 ny #ni,n3, n3 #ny,ny, ne C,
2 2 2 72
¢ = —|n2|” +In3l", ¢ = —In3|” + |n3|
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with [S(g)] < N2N23 N36 since for fixed ns, n’3, the frequencies n; sit on a sphere of ra-

dius at most N> and n € C (see Lemma 6.1). Then as above, for » outside a set of
measure e~ /%",

» —2r A7—6 A/—6 2
My S 8TINTONTE D Y ISt ol

n#n’ ny,n’

-2 —6A7—6
<6 rN2 Nj NZZ Z |S(n1,n'1,n2,”§»§)|

n#n ng,ny
SNy ONONIS ()l ~ 87F N,
Case 5. By symmetry this case is exactly the same as Case 4.
We now put all the estimates together and bound 7 in Cases 81—Ps:
T < Ixcan 1 N31GG* 1 S llan, 17 N3 (M) + M)
< lxcan 1587 N3N ~ lixcan 1587 Ny .
Case f8g. In this case

o ( ) n) =ny —n-+ns, n3=n’1—n+n2,
(.00 =, n2,n3) 2 2 ~ .
! ny #nz,ny, |n2|” =|n3|°, neC

Notice that A¢ = 1 and in this case Ny ~ N3, so |S(n1,n’1,;)| ~ N;‘. Then, as in (7.24),
M3 < Ny *TNTONS IS o)

where

np) =ny—n-+n3, n3 =n/1 —n+n2,}

Sy ==} (n1,n,n,na2,n3) : -
9 9 : b 2 2
ny #n3,ny, |nal” =1n3|", neC

and [S¢)| < N23N§. Hence, all in all, for w outside a set of measure 8—1/5"’ we have
My SN, 1/27€ and as a consequence
—1/2+
T < lxcan 15N, 727,
which is a better bound.
To prove (7.6) we write
2
o gnz(w) 8ns (w)
T= 3 > xe(man {25 TR (7.27)

n=ni+nz+nj

meZ, neZ3 ) ; )
m=|n1|“+[nz|“+[n3|

We can repeat the argument above after checking the case n, = n3. In this case (7.27)

becomes
T= X

meZ, neZ?

3 (gn, (@)* |

Xc(nl)anlw

n=n1+2n;
m=|n[>42|n;|?
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Let Soun) = {(n1,n2) : n =ny +2ny, m = |ny |2 + 2|n2|2}, and note that by Lemma
6.1, [Sn,m| < min(Ny, N3). Then

T < min(Ni, N3) Y Z lg’”( )| | xcan, |*

mnS(

) |g(n7n1)/2(a))|4
~ min(Ny, N22) -
,;‘: l(n —np)/2/°

where we have used (3.5) for @ outside a set of measure e~ 1/9" ]

2 . 2 -3 2
|Xcan, I* < min(N1, NH)N; 7\ xcan, 17

Proposition 7.4. Let D; and Ry be as above and fix Ny > Ny > N3, r,6 > 0 and
C € Cy,. Then there exists p > 0 and a set Q5 € A with P(Q5) < e~ Y% such that for
any w € Qs we have (7.7) and (7.8).

Proof. Without loss of generality we assume that D3 = D3. We write

2
P g”l( ) gnz(w)
T = Z Z xc(n )| 372 a2 An; (7.28)
meZ, neZ3 n=-—ny+nz+n3
ny#na,n3

m=—|ni [*+|na|*+ln3|*
where C € Cy,. Let us now define
— 8n, (@) gn, (@)
On,nz = Z XC(”1)|n1|3/2 |n2|3/2«

n=—n1+ny+n3, ny#ny,n3
2 2 2
m=—|n1|"+|n2|"+|n3|

If we denote by G the matrix with entries o, ,,, since the variation in m is at most Ni N>
we can continue the estimate of 7 in (7.28) by

T < llans 17 N1 N2 GG* |1
Once again by Lemma 6.3,

2
2 p—
1961 S max " (6mnsl? + (|32 onunsTn
n3

n#n’ N3

12
) =: My + M>.

To estimate M we first define
2 2 2
Sonny = {(n1,n2,n3) 1 ny #na,n3, n = —ny+ny+n3, m=—n1|”+In2|”+n3|°}.

By (6.3) we have |Sgy.n)| S N;’sz since once n3 is fixed we use m = —|ny +nz —n|* +
|n2|%+ |n3|? to count n» which lives on the intersection of a plane with a ball of radius N,.
Then as in (7.16), for w outside a set of measure eV ar, we have

2, (@) gnr (@) 7
M, SSUPZ Z n1|3/2 xc(ny) n2|3/2

M ny A p=—ny+ny+nz,n #n,n; In In2
m=—|n *+|na|*+In3|*

Ssup 8 NTINT P Senm S 8TFNTINSINGNG ~ 87NN, NG
n,m
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To estimate M, we first write
2

2 J—
M= S [Sonninf ~ ¥

n#n' N3 n#n’

Z gnl(a)) gnz(w) gn’l (w) gn/z(w) 2

1372 nal 32 |0} 1372 ny[3/2

S(n,n’,m)
where

S(n.n’.m)
n = —nj+ny+ns, n = —n/l +n/2+n3,
i= Y (n3,n1, na, ), ny) : m1 # na,n3, ny #ny,n3, ny,ng €C,
m = —|m >+ na|* +[n3|%, m = —In} > + |n5)* + In3]?

Just as in the proof of (7.3), we need to organize the estimates according to whether some
frequencies are the same or not; in all we have six cases.

e Case B1: np,n, ny, n), are all different.
Case : n| =nj;ny # nj,.
Case f3: ny #n)iny =nj,.
Case f4: ny #n)iny =nj.
Case B5: n| =nhiny #n.
Case fg: n| =nhiny =nj.

Case f8;. In this case we let

S(m) =
n=-—ni+ny+nz, n' = —n|+n)—ns,
(n,n’,n3,ny, ny, ny,ny) : i # na,ns, ny #nh,n3, ni,n} €C,
m = —lni P+ na +1nsl?, m = =0} P+ 5] + [ns

with [Sg] S N12N26N33. As in the argument for (7.16), this implies that for @ outside a

set of measure e~/ ‘Sr,

M3 S5V NTONSONENSNG ~ 67 NTANS.

Case 3. In this case we define two sets. We start with

n=—nj+ny+n3, n' = —nj+n3+n,
/
S(n,n’,nz,n/z,m) = { (n3,ny) : N1 # na,ny, N3,
2 2 2 2 2 2
m = —|n|"+[nal"+n3|%, m = —|n1|"+|n3|"+|nj]

To compute |S(n’n,’n2’n/2’m)| we count n3; then ny is determined. Since the n3 sit on a

plane, we see by (6.3) that |S(n‘n/’n2)n/2)m)| < N32. Then we set

S(m)
n=-ni+ny+n3, n' = —nj+n3+n,
/7
=1 (n,n',n3,n1, na, nh) : N1 # na,ny, ns,

2 2 2 2 2 2
m = —|n1|”+|n2|* +n31", m = —|n1|” +|n3|"+|n}|
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for which S| S N N26N33. Following the argument in (7.17)—(7.23) we have, for w

. _ r
outside a set of measure e~ /%",

2 —2r A7—6 A7—6 2
M5 <$ er N2 Z Z |S(n,n/,n2,n/2,m)|
n#n' ny,nly
—2r Ar—6 A7—6 A72 —2r A7—6 A7—6 772 —2r NS N5
<8 NTONSON Z Z|S(n7”,’n2,n,2’m)|§5 "N; N, N3 [Sguy| ~ 877" N, °N3.
n#n' ny,nly

Case f83. In this case we define first

n=-nj+ny+ns, n' = —n|+ny+ns,
/
S(n,n’,n.,n’l,m) i= 1 (n2,n3) : n2,n3 #ny,ny, ny,n €C,
2 2 2 2 2 2
m = —|n1|*+na|” +n3|%, m = —|n}|*+|na|” + |n3|

with |S¢, L) ml S N32, since n> is determined by n3 and the latter lies on a sphere of
radius at most Ni. On the other hand,

Somy
n=-—ni+ny+nz, n' =—n|+ny+ns,
= {(n,n',ny,ni,ny,n3): n2,n3 #ny,ny, ni,n) €C,
m = —|m? +1na? +1n3P, m = —|nj | +naf® +|n3f?
has [Som)| S N lzNg Ng’ . Hence arguing as above we have
M3 SSTNTONTO Y D Sty

/ /
n#n ny,n}

—2r A\7=6 A7—6 772
S8 er N2 N3 Z Z |S(n,n’,n1,n/l,m)|

n#n' ny,n}

S8 NTONSONZSemy ~ 8 NN N;

for w outside a set of measure e~ 1/%".

Case B4. We define two sets:
n=—ni+ny+nz, n' = —ny+n)+ns,

Stuntmyymy = § (12,13) = M2, M3 F i, ny, ,
m = —lniP+lna P13, m = —lna >+ 1n5 >+ |ns

for which, since n3 lives on a sphere of radius at most Ny, we have |S(n’nfynl’n/2,m)| S
min(Ny, N32); and
Sm)
n=-ny+ny+n3, n =—ny+n+ns,
=14 (n,n',n3,n, n/z, np) : N2, 3 #ny, n/21

2 2 2 2 2 2
m = —|n1|”+n2|” + In3|”, m = —|na|” + nj|" + |n3|
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with [S¢m| < NiN; NS. Then

2 o—2r Aj—6 A/—6 2
My S8 NN, Z Z IStu.n’ nyntym)|

n#n' ny,nl
—2 —6A7—6 - 2
S8TYNTONT min(NE, N Y D ISy ]
n#n’ ny,n)
S8 NTONS O min(Ny, N3)[Semy| ~ 87 NT4N3

. _ r
for w outside a set of measure e~ 1/%".

Case fs. This case is exactly the same as Case 4.

We now estimate 7 in Cases 81—fs:

T < lany 1 NiN2 GG S llan, 17, N1 N2 (M + M)

—4r —5/2,,5/2 — 3/2 — —3/2 5/2
S lan 158 [N N2 (N PN 4+ NN S 87 NP NN

— 3/2
+ NGNS, 1%

Case f8g. In this case we set
s ( ) n=—ny+ny+n3, n' =—ny+ny+ns,
(n,n',m) = n3,ni,ny): ) 5 )

ny # na,n3, |n1l” = [n2|*, m = |n3|

so Ni ~ Ny and Am <

~

radius at most N3. As in (7.24), for w outside a set of measure e

N32. We have [Sq, 0 m)| S N23N3 since n3 sits on a sphere of

’l/ar,we have

M3 < NN ONS N3 S|
where

n=—ny+ny+ns, n’=—nz+n1+n3,}

Somy = { (n,n’, n3,ny,ny) :
b b b 9 2 2 2
ny # na,n3, |ni|” = |n2|", m = |n3|

and [Somy | S N3 N23 N3 since again n3 sits on a sphere of radius at most N3 and for fixed n;

we see that n] sits on a sphere of radius at most N>. Hence My < N]_ 5/2te N3 and so

2 73 a7—5/24¢
T < llan |2 N3N

The proof of (7.8) proceeds very much like the one we have just presented. Actually
when n] = nj the estimates may be made better since we will not have planes, but spheres
involved in the counting. On the other hand, here ny = n, could be a possibility. In this

case we set
T= %

meZ, neZ3

3 n, @)?

a
m3

n=-—2n1+n3
m==2In[>+|n3|?
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Let Sgn.n) = {(n1,n3) : n = —2n1 +n3, n3 # ny, m = —2|n1|> + |n3/?}, and note that
by Lemma 6.1, [S¢n, 0| S min(Ny, N32). Then using (3.5), for w outside a set of measure
e~ 1/%" we have

. |gn, (@)]* . _
T Smin(Np, N Y > =2 fay o, [* S min(Ny, NNl | O
o S 1]
Proposition 7.5. Let D; and Ry be as above and fix Ny > Ny > N3, r,6 > 0 and
C € Cp,. Then there exist ji, ¢ > 0 and a set Qs € A with P(Q§) < e~V such that for
any w € Qs we have (7.9) forany 0 < 0 < 1, and (7.10) .
Proof. We first handle (7.9). Without loss of generality we assume that ﬁ,- =D;,i=2,3.

We set 5
gnl(w)
T = Z Z XC(”l)manzarg
meZ, neZ? n=ni+ny+n3 !
m=|ni>+|na*+n3 2
Then

2

T,S E ‘E Opn,nyQnyQny

meZ, neC "2:13

where C is again a cube of sidelength approximately N, and

&n—ny—n3 (@)
On,ny = [n —ny — n3|3/2
0 otherwise.

ifm = |n—ny —n3® + |n2|® + |n3)?,

Note that 0, ,, also depends on m and n3 but we estimate it independently of m and n3
and take the supremum over them. By Cauchy—Schwarz in n3, the fact that Am < Ni N,
and Lemma 6.3 we have

T < Nans |2 lan, 17, N1 N2 NS IIGG ¥ ;
and as usual by Lemma 6.3 we have

2 —
1961 S max > lown P+ (3 |3 onnsFurns
ny ~

n#n'eC 2

2 1/2
) =: My + M>.

To estimate M| we will use the set S(n, n3, m) := {ns : m = |n—ny—n3|*+|n2|*>+|n3|*},
with cardinality |S¢, n;,m)| < Ni since this set describes a sphere whose radius is at
most Njp. Using (3.5) we estimate
—3+e —2+e¢
M S Y NPTSN, (7.29)
npeS(n,n3,m)

for w outside a set of measure e~ 1/%".

To estimate M, we first define
S(nz.m)
= {(n,n',m2) s m = |n—ny—n3P + 2>+ [n3?, m = n —na —n3]* + |naf* + n3 |}
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and note that [S¢,,,m)| S N23N12. Then using (3.4) and arguments similar to those for
(7.17)—(7.23) we have

M3 <87 N0 Sy m | S 87 NTONSNE. (7.30)
From the estimates of M| and M> we deduce that for w outside a set of measure e~ /%",

32

_ 5/2
T S llan 1% lan 158" Ny NaNFNT2ND S g 1 llany 128 NTUNS2NG. (7.31)

We will interpolate this estimate with the one we obtain below:

2
TS NN, sup Z’ > Xc(n1)|g |(3/§an2an3

nez3 n:)§1+n2—£—n3 5
m=[ny|"+lna|"+Ins|

n (@) |2
< NiNallags |17, sup Z ‘ Z Xc(n1)| NEEhE

n,n3€Z3 n=n1+nz+n3
m=|n1 P +lna*+n3)?

-3
S NiNallan |5 N7 7 sup > Sngm | Y lan

n,n3€Z3 S(nnz,m)

< NiNalans |5 Ny min(N, Nsup Y - Y lag, |

" n2 S(nz,m)
2 2 -3 : 2 3
< NiNallans |22 lan, ;2 Ny min(N3, Ny)NiNj
-1+ 3 : 2 2 2
~ N[N Ny min(N3, N llan, (175 lldns 1 (1.32)

where S ny,m) = {(n1,n2) :n = n1+n2+n3, neC,m= |n1|2+|n2|2+|n3|2} with
|S(nn3 m)| S min(sz, Ny), S(nz m) = ={(m,n,n3):n=n+ny+n3, neC,m=
Ini |2 + |n2|2 + |n3|?} with [Stm | S N1N3, and we have used (3.5) for w outside a set
of measure e~ /%"

The estimate of (7.9) now follows by interpolating (7.32) with (7.31).

We now move to (7.10). Again without loss of generality we assume that D; =
D1, i = 1, 3. We use duality and the change of variables ¢ = m — |n;|> = |nz|2 In3 |3
as in the proof of Proposition 7.2. We note that the variation of ¢ is at most N2 and that
n € C, acube of sidelength approximately N». We use (3.5) for w outside a set of measure
e~1/%" and Lemma 6.1 to reduce the bound for 7 to estimating

8ny (@)
Nisw 3| > xc(n)kn|”2|3/2 s

n1€Z3 n|y=n—nz—ns3
g=|ny>+1n3|?

Ixca an, 1%

2

&n, (W)

> xeMkn s
ny=n—nj—nj3 |n2|
¢=Ina>+In3|?

2 2 2 -3 2
S N3llxcan 12llan 1N sup > [Swymsol Y, xelkl

rll,l’lgez3 S(nl,n3,Z)

2 2 2
S Nilixcan, Iz llans |y sup
¢

ny,n3eZ3
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2 2 2 —34 2
< N3 lIxcan, 122 lans |15 N5 > Nosup Y Y [k
n S

2 2 2 —3+ 3 2 1+ 3 2 2 2
< N2lxcan 1P llan 12Ny NaNaN3 el 2 ~ NIHE N3 e, 12 s 125 1k 125

where S(uy.n5,0) = {(n,n2) 1 ny =n—ny —n3, n € C, ¢ = |n2)? + |n3]?} with
1Sty.m3.0)| S Nayand Sgu ey = {(n1, n2,n3) : ny = n—np—n3, ny € C, ¢ = [na>+|n3l?}
with |S.,)| S NaNj. o

Proposition 7.6. Let Ry be as above and fix Ny > N» > N3, 1,8 > 0and C € Cy,. Then
there exists @ > 0 and a set Qs € A with ]P’(Qg) < e Y such that for any w € Qs we
have (7.11)—(7.13).

Proof. We start by estimating (7.11). We consider

- - 2
T .= Z Z XC(”l)gnl(w) gnz(w) &ns () . (1.33)

32 1132 Tha32
meZ, neZ? ] [n2| |n3|

n=ni+ns—nj3
ni,na7#n3

m=|ny[*+ln > —|n3]*

Note thatif ny = ny we get, say, (g, (w))? which are still independent and mean zero
since the g, (w) are complex Gaussian random variables. Hence we are still within the
framework of Lemma 3.4 and so this case does not require a separate argument.

We first remark that the variation Am is ~ NiN2. Then we use Lemma 3.4 to obtain,
for w outside a set of measure ¢~ 1/%" R

T <873 2NINaNTINS PN sup [Senyl S 872/2N; TN,
m

where Sgny = {(n,n1,n2,n3) :n =nyi +ny —n3, ny € C, m = |ni 2 + |nal* — |n3|?)
and |Son | < N3N3N;.
To estimate (7.12) and (7.13) we proceed just as above. ]

7.2. Bilinear estimate

We prove the following bilinear estimate which will be used in Section 8. We use the
same notation as in Subsection 7.1.

Proposition 7.7. Fix Ny > N, > N3z and r,§ > 0. Assume also that C is a cube of
sidelength N,. Then there exist i, ¢ > 0 and a set Qs € A with P(Q5) < e~ Y% such that
forany w € Q5 and 0 < 6 < 1 we have

| Pc RiD2llr2(10,17xT3)
<5 NP min(vy, sz)(l_g)/zNzl/2+30/4||D2||U§L§. (7.34)

Proof. We follow the argument for (7.9) after applying Cauchy—Schwarz. In fact we have

2
8ny (w)
Z XC(”I)—3/20nz
n=ni+ny Inl'

m=|n[>+|n|?

IPcRID2F, = )

meZ, neZ?




1724 Andrea R. Nahmod, Gigliola Staffilani

Then

2
”PCR1D2||L2 S ‘ Gn,nzanz

m;neC "2

where C is a cube of sidelength approximately N, and

g‘—(‘;’)z if m=|n—na® +|na?,
On,ny = |n —ns| /
0 otherwise.
We then have
IPcR1DI3, < lldny |15 N1 N2 (|GG |1
Then using the estimates (7.29) and (7.30) we obtain, for w outside a set of measure e~ 178"
IPcRI D2l 2 S llan, 287" Ny 2HE N, (7.35)

We also use (7.32) to estimate (7.9). By repeating the argument to prove (7.32) in our
bilinear setting, we obtain, for w outside a set of measure e~/ b

g (@) |
Z XC(nl)l WA

n=ni—+np
m=|ny[>+|n|?

IPcRiDall7, S NiNasup )

neZz3

S NiNalang 7 sup 3

" nezd

2
Z XC(nl)gnl|(3/§ ’l2

n=nj+ny |
m=|ny[>+n|?

SNININT T sup Y (S| Y lan,|®

m n€Z3 S(n,m)
S NN N min(NG, N sup D Y lan
m n2 S(nz.m)

< NiNallan, [Ny >+ min(N3, NNy
~ Ny N min(N3, N1 llan, 132
where Sgm) = {(n1,n2) : n =ny +nz, ny € C, m = |n1|> + |n2|?} with |Sgmy| <

min(N3, N1), Sgymy i= {(n,n1) : n = ni +na,n € C,m = |n|> + [na2|*} with
[S(ny,m)| S N1, and we have used (3.5). Hence we also have

IPcR2 Dyl 2 S Nlanyll 2Ny /27 Ny min(NZ, Np)'/2, (7.36)
By interpolating (7.35) and (7.36) we finally deduce the estimate (7.34). m]

Remark 7.2. Later we only use (7.34) with & = 1 while estimating in the next section
the term J4 defined in (2.13).
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8. Proof of Proposition 5.1

In this section we use notation similar to the one introduced at the beginning of Section 7
to indicate deterministic and random functions. The reader should pay attention though
to the fact that the new functions we define in this section have a different normalization
than the ones in Section 7, hence the slight change of notation.

If u; is random, then we write

— gn(w) ;. 2 ~
Py, u; () = X{jn|~N;) (1) In|"5/2_a ¢t~ Rin);

while if u; is deterministic we write
Py,uj(n) ~ Dj(n)

where ﬁ- (n) is supported in {|n| ~ N;}. Below we will make heavy use of Proposition

7.1 with the functions R; instead of R;. This will not be explicitly mentioned every time,

but the reader will notice that a normalization will take place at the appropriate places.
We first estimate the terms J>—J7, and then we turn to J.

8.1. Estimates involving the term J

We start by estimating the term J; as in (2.11). This reduces to analyzing the sum over
No, N1, ..., N3 of quatrilinear forms

/T/TS Ty (Py,u1, Py,ttz, Py,u3) Py hdx dt 8.1

where T+ is the multilinear operator defined in (7.2).

The general outline of the proof involves the use of Cauchy—Schwarz, cutting the
top frequency window if necessary, the transfer principle Proposition 4.1 and suitably
applying the trilinear estimates of Subsection 7.1. Without any loss of generality, we then
fix the relative ordering N1 > N, > N3 above and consider the following cases where
T~ acts on:

Case 1: (a) (R1, R2, R3), (b) (Ri,R2,R3), (¢) (R1, Rz, Ra),
Case 2: (a) (D1, R2, R3), (b) (D1, Rz, R3), (¢) (D1, Ra, R3),
Case 3: (a) (R1,R2,D3), (b) (Ri,Ra, D3), (¢) (Ri,Ra, D3),
Case4: (a) (R1, D2, R3), (b) (Ri,D2,R3), (¢) (Ri, Dz, R3),
Case 5: (a) (D1, R2, D3), (b) (D1, R2,D3), (¢) (D1, Rz, D3),
Case 6: (a) (R1, D2, D3), (b) (R1,D2,D3), (¢) (Ri, Dz, D3),
Case 7: (a) (D1, D2, R3), (b) (D1, D2, R3), (¢) (D1, D2, Ra),
Case 8: (a) (D1, D2, D3), (b) (D1, D2, D3), (¢) (D1, D2, D3).

Case 1(a). If Ny ~ Np we cut the support of 7 and hence that of ﬁl with cubes C of
sidelength N, and use Cauchy—Schwarz to get

8.1) S I1Pc Prghll 2 I+ (PR, Ra, Ra)ll 2 -
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To estimate the second factor we use (7.13) and normalization and we obtain the bound
(8.1) S 87NN TN P Py 2

Renormalizing / and using the embedding (4.7) we obtain

7T
/ /3 T (Pc Pnyut, Pnyua, Pynyuz) Pc Pyyhdx dt
0 T

S 8THINGNY N NS e Pyl
<8N P Pyl 62

which suffices provided s + o < 3/2 and o < 1/2.
If N1 ~ N, the cut with the cubes C above is not needed and the argument proceeds
as above. The condition here is s < 2 — 2¢.

Cases 1(b), (c) are treated similarly replacing (7.13) respectively by (7.12) and (7.11).

Case 2(a). Assume that Ny ~ N1. We use the argument above. To estimate
1Ty (PcD1. Ra, Ra)ll 2,

we use (7.6) and after taking derivatives and normalizing we obtain the bound

- —-1/4
(82) S 67 N5~ Pyt Nz s I Pe Prghlly—,

which suffices provided o < 1/4. A similar bound holds when N; ~ N, without cutting
with cubes C.

Cases 2(b), (c) are treated similarly replacing (7.6) by (7.5).

Cases 3(a)—(c). We use the argument above with (7.7) and (7.8). If N; ~ Ny we obtain
a bound of the form

—pr arspar@=T/4 \—1/24a \/5/4—s
(82) S 5NN TN
—3/2,,—1/2 3/4—
+ NN RN Pl g Pe Pl -
5 Sfl”Nl_ﬂ(s’a) I PN3M3 “Uﬁ[-]s | Pc PNOh”Yﬂ

provided ¢ < 1/4 and s + @ < 3/2. A similar bound holds when N; ~ N, without
cutting with cubes C.

Cases 4(a)—(c). We use the argument above with (7.3) and (7.4). If N; ~ Ny we obtain
a bound of the form

(82) S 87 Ny PO Pryuall g2 | P Prghlly—

provided o < 1/4 and s + ¢ < 3/2. A similar bound holds when N; ~ N, without
cutting with cubes C.
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Cases 5(a)—(c). We use the argument above with (7.10). If Ny ~ Ny we obtain a bound
of the form

— 1 —
(8.2) S 8Ny T N Pryuallyz s | Prstesll gz s | Pe Prighlly=s.

which suffices provided s > 14 «. A similar bound holds when N; ~ N, without cutting
with cubes C.

Case 6(a). If N; ~ Ny we proceed as above to bound

/T /w Ty (Pc Py, R1, Pn, D2, Py, D3) Pc Py hdx dt
S Iy (Pc Py, Ry, Py, Da, Pyn;D3) 2 1 Pe Prghll 2. -
Then we use (7.9), normalization and the embedding (4.7) to obtain the bound
(8.1) § 5—;”fo3/2+a+sN21/2+36/47x min(Nj, sz)(1_9)/2N;s+3/2
X I1PNsuslly2 s | Py u2lly2 s 1 Pe Prghlly s
If N; > N22 then
N1s—3/2+a+£N21/2+39/4—s min(Nj, sz)(1_0)/2N3—s+3/2 < N1s—3/2+a+£N§—2s—9/4
< Niersf(-)/S

provided that s < 3/2 — 6/8 which forces o < 0/8.
On the other hand, if N| < N22 we have

s—1 +0(+€79/2N2725+39/4
1 2

< N22a+8—0/4

Nf*3/2+0l+8N21/2+39/47S l’l’lin(N], N22)(1_9)/2N;s+3/2 <N

provided s > 1 4 6/2 — «. By letting, for example, & = 10« we obtain 1 +4a < 5 <
3/2 — 2« in this case, while still satisfying the requirement that @ < 6/8 from Case (a).

If Ny ~ N; the argument is similar and easier. For Case 6(b), (c) we repeat the
argument since (7.9) is not sensitive to conjugation on the random function.

Case 7(a). In this case we would like to use the Strichartz estimate (4.23). But since
Tr(Dy, D2, R3) # DiDrR3

we need to add back the frequencies that have been removed, i.e. allow for n; or n3 to be
equal to ny. If we were working with spaces whose norms are based on the absolute value
of the time-space Fourier coefficients, like the X* b space, this would not be an issue, but
since we are using U? L? spaces we need to put back those missing frequencies. We show
below that reintroducing these frequencies will not bring back the whole linear term that
we have gauged away but only a part that has sufficient regularity to be controlled.
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We start by assuming that the Fourier coefficient associated to D (¢) is ay, (1), to
D;(t) is by, (1) and to R3(t) is ¢, (¢). Then we write

Z XN]an|XN2bn2XN3Cn3 - _XN3Cn <Z XN]amXszn])

n=—n)+ny+n3, ny,n3#£n| ni

- Xszn (Z XNlan3XN3Cn3) + XNlanXsznXN3cn
n3

+ D XNy XNyb XNy ey = A1) + Aa(n) + A3(n) + Aa(n).

n=-—ni+ny+n3

Then we have

4
DY
i=1

We now start with the estimate of A;. Using Plancherel and Cauchy—Schwarz we have

_/_/ F N AN (x, 1) Pyh(x, 1) dx dt|.
T JT13

S NATOD 2r, )| Paoh e, D)l 2

/ / F N AN (x, 1) Pryh(x, 1) dx dt
T JT3
We first notice that Aj is not zero only if N3 ~ Nj. Then

IATM 212y S IPillger2 D2l oo 2 IR3 N L2 (r, 213y -

By renormalizing and using the embedding (4.7) we obtain

‘/ / F AN (x, 1) Pyyh(x, 1) dx dt
T JT3

<Ny T PN i 2 gl Proua s gl Prghlly—.
We now note that A» = 0 unless Ng ~ N1 ~ N», and

| A2(n) ||L2([0,n],£2) 5 D2 ||L2(11*,L2(11‘3)) D1 ||L;>°L§ 7R3 ||L,°CL§ .

Also in this case we then have
V / F A (x, ) Pryh(x, 1) dx dt
T JT3
S N27571+a | Pnyuey ”UiHs ”PNZuz”UiH" | Pnohlly—s.
Now we note that A3 = O unless N; ~ N> ~ N3. Then

||A3(”)||L2 T, ¢2 5 ||Dl||L°0L2 ||D2||L°°L2||R3||L2 T,L2(T3))»
(T,€%) 1 Ly Ly ( (T°)

where we have used ||a, [|¢~ < [lanlly2. Hence also in this case

/f F 1 (A3)(x, 1) Prgh(x, 1) dx dt
T JT3

—s—1
S N TPl s I P2 g s | Py =
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Finally we estimate the term involving A4. Assume first that No ~ N;. Then we need
to estimate

f / F Y (Ag)(x, 1) Pc Pygh(x, 1) dx di (8.3)
T JT3

where we cut with cubes C of size length N,. We use Cauchy—Schwarz, (4.23), embed-
ding (4.7) and normalization to obtain

— 1—
(8.3) S NyN{°N, SNgl”PCPNlul”UiHs||PN2”2||UiHs||PCPN0h||Yﬂ‘
1—s
< Ny 7PN Pe Py utlly s | Pryuzlgt s | Pe Prighlly=s.

If N1 ~ N, then the cutting with cubes C is automatic and a similar bound holds.
Cases (b) and (c) are similar since the argument presented above is not affected by
complex conjugation.

Case 8. This case is similar and better than Case 7.

8.2. Estimates involving the term J3

We start by noting that J3 consists of terms of the form

D W (O, ()b (1), (8.4)

T'(m)1231, n1,n3#n2

where Wy, (1) = cp, (t)dy, (t)ry, (). We note that in the worst case, i.e. when the three
factors of W correspond to random functions, we have w(f) € H373%, hence w can
always be thought of as a deterministic function. We estimate J3 using the arguments
presented for J, in Subsection 8.1, but for the reason just explained we do not have to
consider Case 1 of that section. For Cases 2—6 we proceed by first applying the transfer
principle to the quintilinear expression associated to (8.4) and then regroup into a single
deterministic function those with the same frequency n1. Then we apply the appropriate
trilinear estimates of Proposition 7.1. The term involving the £> norm of the product of
the three coefficients in 717 can be bounded by the product of the £2 norms of each. We
transfer and normalize back as usual.

This same argument is also used to estimate the A;(x,t),i = 1, 2, 3, of Case 7. To
estimate A4 we use again the Strichartz inequality of Proposition 4.5 placing w in L?
with p > 4. Then we use (4.19).

8.3. Estimates involving the term Jy

Let w now be such that Wy, (t) = ay, (t)cy, (1)dn, (t)rn, () and v such that v(ny) = by,.
To estimate the contribution of J4 we need to estimate a term such as

/T/TS PNO(wv)PNOhdxdtsz/;rg PNO( 3 PvaPNzw)PNohdxdt.

Ni,N,



1730 Andrea R. Nahmod, Gigliola Staffilani

Since w € H* %, hence much smoother than v, the least advantageous situation is when
N1 ~ Np and Ny < Nj and this is the one we consider below. We cut the frequency
support of Py,h with cubes C of size N, and we write

2
(/E /ﬂﬁ PNOPNIUPNZWPNOI’Z dx dl)

) 2
< (; | Pe Pyl sup | Pe P Pryl 22 )

We assume first that v is random. Then the remarks in Subsection 8.2 combined with the
transfer principle and the bilinear estimate (7.34) with 8 = 1 give

_ —1/2+¢e ,,5/4
| PePryv Py wll 22 S 87N PN TTID g2 0
‘ i¢J
After normalizing we obtain the bound N 3/ 2+HHO‘NZ_ /4+4a - which entails s + a
< 3/2.
If v is deterministic then we use the bilinear estimate (4.24) and after normalization

we obtain the bound N, 7/2+4a

8.4. Estimates involving the terms Js, Jg and J7

We work with the first term of Js, the second term being analogous. Given a dual function
h we define a new function k such that

k(n, 1) = xnoa) ()a2(e)hn, 1)

where the a,’; (t) are the Fourier coefficients of either a random or a deterministic function.
Assume that N1 ~ Ny. Then we cut the support of 4 with cubes C of sidelength N,. By
Plancherel and Cauchy—Schwarz we need to bound

”PCkHL%t and ” Z XCXNlanXN25n2XN3dn3

L2
C(n)(1,2,31 d

Clearly
2

i 12
IPckll 22 S IPeProhllers [ T 1w anlly o o
i=l

On the other hand, by (4.23) we find that

H Z XCXNlbn1XN25n2XN3dn3

L2¢2
L(n)[1,2,3] !

has a bound of N, N3. By normalizing, assuming at worst that all functions are random,
we obtain the bound NS;ZHO‘ N{ 1432 1f Ny ~ N, the situation is similar.

To estimate Jg we use Cauchy—Schwarz and (4.22), while for the two terms in J; we
use respectively (4.21) and (4.20).
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8.5. Estimates involving the term Ji

The term J; in (2.10) can be written as the sum over Ny, N1, ..., N5 (dyadic numbers)
of

/ /3 PNy T (P, i1, Pn,iia, Py,it3, Py,iia, Pysiis) Py,h dx dt (8.5)
TJT

where T is the multilinear operator associated to the multiplier x, the indicator function
of the set T now defined by

n=(=D%ni+ -+ (=1)%ns,

ny # ng whenever oy # oy,
Y(n,m) = {(ny,my,...,n5,ms): . (8.6)
|nj|~Nj, ]=1,...,5,

m=(=D%my +--+(=1)%ms

where the j are Oor 1 for j =1,...,5.

8.5.1. The all deterministic case DDDDD. Without loss of generality we assume that u7
and u4 are conjugated. Our goal is to use Strichartz estimates as in (4.23), but the operator
Ty (Pnyu1, Pnyua, Pnyus, Pyyus, Pysus) is not a product of the functions involved since
in the convolution of the Fourier coefficients some frequencies have been removed. We
need to add back the frequencies that have been removed, i.e. allow for n, or n3 to be
equal to ny. If we were working with spaces whose norms are based on the absolute value
of the time-space Fourier coefficients, like the X* b space, this would not be an issue, but
since we are using U” L? spaces we need to put back those missing frequencies. We show
below that reintroducing these frequencies will not bring back the whole linear term that
we have gauged away but only a part that has sufficient regularity to be controlled. See
also Subsection 8.1.
From (2.9) we see that

Py (F LI (x, 1) = Py, Ty (Py,u1, Pn,ita, Pyyus, Py,iia, Pygus)(x, 1)

= Py, (Py w1 PNyuo Pyyus Py g Pygus)(x, t)

5
_ZPNOPN,-IM()C,I)/3 1—[ PN_/.ﬂj(x,t)dx
T° j+i, je{1,2,3,4,5)

i=1
7

- Zci Py F = Ji(Pnyu1, Prytia, Pyyus, Pyiia, Pasus)(x, 1), (8.7)
i=2

where the ¢; are constants and we specified as an argument of F~!J; the functions in-
volved in its definition. The last sum involving J>—J7 has already been estimated in Sub-
sections 8.1-8.4 above. On the other hand, the first term, which is now a product of
functions, can be estimated as in Proposition 4.4. Finally, we estimate

5
> Py Py;ii(x, t)/ I1 Py,iij(y, 1) dy H : (8.8)
i=1 T3 j4i, je{1,2,3,4,5) L2

Xt
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We first note that each term of the sum is zero unless N; ~ Ny and that

5
1/4
B8 IPw Pyl [T NPy Olgg e 89)
izl j#i, je{1,2,3,4,5)

and this is enough since all are deterministic.

8.5.2. The case DDDDR. In (8.5) we assume without any loss of generality that us is
random and N; > N, > N3 > Ny. Also in the argument below one can check that the
location of the complex conjugates does not affect the proof, hence here we assume that
uy and u4 are complex conjugate.

We consider the following cases:

Case (a): Ns ~ Ngand N; < Ns.
Case (b): N; ~ Npand N, < N5 < Nj.
Case (¢): N; ~ N5 and Ny < N;.
Case (d): Ny ~ Npand N5 < N».
Case (e): N; ~ N and N5 < Nj.

Case (a). Proceeding as in the trilinear estimates we first decompose the support of x Noiz\
using cubes C of sidelength Nj in (8.5). By Cauchy—Schwarz, the transfer principle and
Plancherel we are reduced to estimating

2

(m,n)eZx73

2

s (@) _ _
3 X 15) 5 Gy, | - (8.10)
n=ns—ny+n3—nq+n| |n5|
n1,n3,ns57#n3,n4
m=|ns>—|nz|>+n3|?—|n4|+n; |*

We define
n=ns—ny+n3—n4+ng,
Sts.nm) = { (n1,n2,n3,n4) : N1,N3,n5 # ny,ng, ns € C,
m = Ins|> = n2? + |n3)* = Inal* + Im|?

and note that [ S nm| S NENS?’NZZ. Also note that the variation of m is ~ NsNj,

—1/8"

therefore by Lemma 3.4, for w outside a set of measure e we have

(8.10) S 62 NsMiNG> S 37| D an@sansin,

m ns

2

S(n5.n,m)

-2 -2 2 2 2 2
5 ) MrN5 N1 sup E E |S(n5,n,m)| |an1| |anz| |an3| |an4|
m

ns S(ns.n,m)

-2 -2 373 A72 2 2 2 2
58 MrN5 N1N4N3N2 Z |an1| |anz| Ian3| |an4| |S(n1,i12,n3,n4,m)|

ni,na,n3,n4

4
) -1 373 A72 2
<82 NS NN NING T N, 1%
i=1
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where

S ( ) n=ns—ny+n3—ng+ny, nsecC,

(n1,n2,n3,n4,m) -— Y1, N5) : ) ) ) ) )
m = |ns|” — |n2|” + |n3]” — [n4|” + 01|

and in the last inequality we have used |S(u,.ny,13,n4,m)| < Ns. After renormalizing and

taking square roots we obtain the bound of Ns 35+e+3 which entails s > 1 + « /3.

Case (b). We will proceed by duality and a change of variables { = m — |n{|* as in the
proof of Proposition 7.2 (in particular see (7.15)). We also cut the N; window with cubes
C of sidelength N5. We have to bound

2
ns (W) _ _
3 g5_(3/zxé(n)kna,12an3an4 (8.11)
n=ns—ny+n3—n4+n) Ins|
n1,n3,n5#n03,n4
¢=Ins2—|nz 2 +In3|2—|n4|?

2 2
1711 1 xcan 11 >

(¢,n)eZXZ3

where C is of size approximately Ns5. We define
n=mns—ny+n3—ng+ng,
Stusnyc) o= 1 (n,n2,n3,n4) : ny,n3,ns #na,na, neC,
¢ = Insl® = In2* + |n3|* — |nal?

and note that |S(s n,.¢)| S Nj N3 NZ. Note also that A; < N2, hence we can continue
for w outside a set of measure e~ /%" with

2
(8.11>58*2“||y||,§§||><cam ||§2N52N5—3supz\ > XMW knlinynyan,

ni,ns S("S'”Ivg)
-2, 2 2 -1
S 87y xcan I7:Ns
2 2 2 2
) Sup > D Sasr o) lany Plans Plan, 21 x (k]
¢ ni,ns S("Sv”h{)
-2, 2 2 —1A73 A73 A72
Sé M”V”lg“XCan]”gz]\G N, N3N,

2 2 2 2
x>y Plan Plan, Plxe 0kal* 1m0 5 n.0)]

n,njp,n3,ng4
4
-2 2 A3 a3 72 2 2 2
< 87 xcan I NZ NN [ T e, 12 1kn 172117117,
i=2 ¢
where
g ( ) n=mns—ny+n3y—n4g+ny, nsecC,
(n,n3,n3,n4,¢) = Y, N5): ) 2 ) 2
¢ = |ns|” — [n2|” + |n3]” — |n4|

and in the last inequality we have used S ny,n5,n4,0)] < Ns. After renormalizing and
taking square roots we obtain a bound of Ny 3s+et3 which entails s > 1+« /3.
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Case (c). This is like Case (b), but now we do not need to cut the support of the N
window with Ns.

Case (d). In this case we proceed as in Subsection 8.5.1, the only difference being in the
treatment of the terms in (8.7). More precisely, here we show how to estimate the random
term in (8.9). For v as in (5.1) we have

4
- 1/4—s
NN PNy Py vl oo e [ [N PN e Dl s (8112)
j=1

where we notice that N3 ~ Ny, otherwise the contribution would be null. This is enough
to obtain the desired bound.

Case (e). This is like Case (d), but now we do not need to cut the support of the N
window with Nj.

8.5.3. The DDDRR case. To estimate the expression in (8.5) we will assume without
any loss of generality that u4, us are random and N4 > Ns. We can also assume that
Ni; > N, > Nj3. We have two different scenarios: Case 1: uqus or Case 2: uqus, the
other cases being obtained by complex conjugation since we do not care about bars on
deterministic functions. The only difference between Cases 1 and 2 is that in Case 2 we
automatically have ns # ns which allows us to use Proposition 3.1, and hence the same
argument as in Case 1 applies. We discuss Case 1 within the context of the following cases
( Case 2 being analogous after appropriately rewriting the corresponding constraints):

o Case (a):

(i) N4 ~ N5 > Ny, Nj.
(i1) Ny~ N1 > Np.

o Case (b): Ny ~ Ny and

(i) Ns > Nj.

(i) N4 > N1 = N5 > N.
(iii)) N4 > Ny and No > N5 > Ns.
(iv) N4 > N; and N3 > Ns.

e Case (¢): N; ~ Np and

(i) N1 = N4, N5 > N>.

(ii) N1 > N4 > N» > N5 > Ns.
(iii) Ny = N4 = N> > N3 > Ns.
(iv) N2 = N4, Ns > Ns.

(v) N2 > Ny > N3 > Ns.
(vi) N3 > Ny.

o Case (d): N| ~ Ny > Ny, N4.

Below we always treat Case 1 and without any loss of generality we may assume 4| = uy,
uj =uj, j=2,3.
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Case (a)(i). Inthis case, Ny ~ N5 > Ny, Ni. By Cauchy—Schwarz, the transfer principle
and Plancherel we are reduced to estimating

2
Z Z [ Z “"'5"25"3;3/2 %ﬂ}gm(w)gns () (8.13)
(m,n)€ZxZ3'"4:15 =S(ny ns.n,m) 4] 5]
where
n =n4+ns+ny—ny—ns,
Stna.ns,nmy = § (M1, N2, n3) © N2, N3 # N1, N4, ns,

2 2 2 2 2
m = |n4|” + |ns5|” + |n1|” — |n2|” — |n3|

with [S¢uyns.0.m)| S N;’sz and Am ~ N}. We then have, for w outside a set of measure
—1/8"
e b

2
B.13) SETHININPNT sup Y | >y, Gy

m
ng4,ns.n S(n4,115,n.m)

-2, —1A7-3 2 2 2
SOTNSINT sup > D [Sagnsim a1 lan |l |

mn n4,ns.n S(n4,n5,n,m)
-2 —1aA7=3 72773 2 2 2
ga MVN4 NS N2N3 sup Z |an1| |an2| |an2| |S(nl,n2,n3,m)|
M ni.ny,n3

-2 —1A7=3a72 A73 3 2 2 2
SOTINSINSINININGNE Y lan, Plan, ¥ lan, |

ni,na,n3
3
—2ur A72 A73 2
< 87 NING [T e, 12 (8.14)
i=1
where
n=n4+ns+n;—ny—ns3,
Sty nynsm) = 3 (1, n4,n5) 1 N2, N3 F Ny, N4, ns,

2 2 2 2 2
m = |ng4|” + |ns5|” + |n1]” — [n2|” — |n3]

with [Se, nonam)| S N53N4. Taking square roots and normalizing we then obtain the

§—2+2«
Ny

bound , which requires s < 2 — 2¢.

Case (a)(ii). In this case Ny ~ N > Ny, we repeat the argument in Case (a)(i), but in
3/2—-2s+a

this case after taking square roots and normalizing we obtain the bound N,
Case (b)(i). h}\ this case, Ny ~ Np and N5 > Nj. From (8.5), we first decompose the
support of xx,/ by taking cubes C of sidelength N5 and then apply Cauchy—Schwarz, the
transfer principle and Plancherel. We are thus reduced to estimating an expression just as
in (8.13) but where now Am ~ N4Ns and thus we obtain instead of (8.14) the estimate
S_ZWNZINSN%N; ]_[?:l llay, ||§2. Taking square roots and normalizing we obtain the

bound N273/2+a provided o < 1/2, which in turn entails 1 <5 < 3/2 — «.
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Case (b)(ii). In this case we have Ny ~ Ngp and Ni > Ns. The proof follows that of
Case (b)(i) except that now we first decompose the support of XNO;Z\ (and hence the N4
Fourier window) with cubes C of sidelength Ni. We then have Am ~ N4Nj and instead
of (8.14) we obtain the estimate 8‘2‘”N4_1N1 N%N;’ ]_[1-321 llan, ||§2. Taking square roots

§—=3/24a

and normalizing we obtain the bound N, as before.

Cases (b)(iii), (iv) are analogous to Case (b)(ii).

Case (c)(i). In this case we have Ng ~ N| > N4, N5 > N,. We will proceed by duality
and the change of variables ¢ = m — |n; |2 as in the proof of Proposition 7.2, (7.15) and
also as in (8.11). We also cut the N; window with cubes C of sidelength N4. We have to
bound

2
2 2 &ny (@) gns(w) —
I xcan 1217115 = 22 X (W knGny s |
C
4 ¢ |n |3/2 |n |3/2
¢ {eZ,nleZ3 n=n|+n4+ns—ny—nj3 4 5
ny,n3F#N|,n4,ns 8.15
¢ =lngl2Hns 2= n =32 (8.15)

where C is of size approximately Ny. Let us now define

_ 1, (@) 8ns(w)
Oy = 3 X Ol 202 S0 (8.16)
n=ni+n4+ns—np—n3 |l’l4| |n5|
ny,n3#EN|,ng,ns
g=|ng>+Ins>=|nz|?—|n3|?

and note that then A ~ N3. Then

(8:15) 5 llxcan I 1y 5, N sup > 1w mainy I

n1€C

< Nilixcan 17, ||y||§g Nl 172 sup IGG*|. (8.17)

As in Section 7, we write

2 —
19671 S max D~ o+ (D |3 0w

na,naF#n| nyF#n| 2

2172
) — M, + My, (8.18)

and estimate each term separately. For M we proceed as follows:

My = sup Z

n
U np,np#n

2

)

1 1
Z [ Z X (M)knan, W W]gm (@) gns ()

n
ng,ns S(”]~"21”4=”5~C) | 4
2
<6 Msup Y N4_3N5_3‘ S xe Wk,
1 n25‘énl,n4:n5 S(nl,nz,n4.n§,{)

SO sup Y NN Saymamens.ol Y. Ixc@kaPlan* (8.19)

" ny,ng,ns

S(n14n2.n4,n5,{)
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for w outside a set of measure e~ /%" where
n=mny+nq4+ns—ny—ns3,
S(nl,n2,n4,n5,§) i=1(m,n3): na,n3 #ny,ng,ns, ne C‘,
¢ = Inal® + Ins® = n2f* = ns?

with [Sy.ny.n4.n5.0) ] S N32. Hence for

n=mny+nq4+ns—ny—ns,
S,ny.0) = | (12, n4,n5) : na,n3 #ny,ng,ns, n € C,
2 2 2 2
¢ = |n4al” + |ns|” — |n2|” — |n3]

we have

(8.19) S 87 NNTING Y ke Mk P 1S 0y 0|

n,n3
-2 =3 a7=3p72 2 i
S 87N NS NN N3 Nallx e (ka1 72 llans 1172
_ 2
S 8NN NE e () 1 Nty 1o

Hence the contribution of M1 to (8.17) is

-2 2a7—2a73 A2 2 2 2 2 2
8~ NyN,“N5N3 IIXcanlIIZzIIdnzllezIIan3|IEz|I)/I|l§IIXé(n)knllﬂ

After taking square roots and normalizing we obtain a bound of N, Y s stl/2+a , which
suffices provided s > 1/2 + «.
To estimate M, we first write

2 _ —
M; = Z ‘E :Um,nzan’l,nz

ny#ny N2

2

o o 2
_ 8n, (@) gns(w) gng(w) gn’s(w)
~ x&MWknx e (kyran,a, (8.20)
nlz#;'swzm CHMACT TS Ing P2 (s P2 ny P2 | P2

where

Stnymi0) =
n=ny+nq4+ns—ny—ns3,
n' =n\ +ny+ns—ny—nj,

(n,na, n3, nj, ng, ny, ns, ng) : N2, N3#n1, N4, ns; ny,ny #n'y,ny,ns; n,n' € C,
¢ = Inal® + Ins|® = Inal* = In3/?,

2 2 2 2
¢ = Inyl” + In5|° — |n2|” — Inj|

8.21)
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To streamline the exposition let

n=ny+n4+ns—ny—n3, n =ny+ny+n5—ny—nj;
) 2 2 2 2 2 12 2 /2.
C = ¢ = Ingl” + |ns|” — In2l” — |n3l|", ¢ = |nyl” + |n5|° — 2| — |3~

ny, n3 # ny, na, ns; nh,ny #ny,ny,ns; n,n' €C.

We need to organize the estimates according to whether some frequencies are the
same or not; in all we have seven cases:

e Case f1: n4,ns # nj, ns.
e Case B ny4 = nj;ns # ns.
o Case f3: n4 # njy; ns = n.
o Case f4: n4 # ng;ns = nj.
o Case f5: ny4 = ng;ns # n.
e Case fs: n4 =ng;ns =nj.
[ ]

Case 7: n4 = nj;ns = nj.

Case f8;. To estimate the contribution of M;, we first define

L , , .
S(nl,n/l,n4,ng,n5,n’5,§) = {(n, n', ny, n3, n3) satisfying ¢},

with |S(n1,n’.sn4,nipnsqn%»§)| < N36N22. Next, for w outside a set of measure e~ /%" we

estimate M22 as follows:

(820) S8 N NONSO D [ > XC(”)anC(n/)kn’amang]z

! ’ !
nl#nl n47én4‘n57én5 S(n|,n/1,n4,n£,n5,n/5,§)
—4pr
<3

x Y N;ONSONSNF Y > X ka1 x 6 0 Ve 1P s Pl |

’ ’ ’
"I#nl n4,ny,ns,ns S(nl,n/l,n4,n£‘,n5,n/5,()

—4, —6 A7—6 A76 AT2 2 2= 2 2
SOTHINSONSONING D ISl 1xe 0kal*1xe (0 Vi Py Pl |
n.n',n3,ng
—4 —6 A7—6 A6 A72 A73 ATO AT2 2 2 2 2
S 8TMINLONSONING N3 NN e (kalls e (n Ve 1 latns 1 Nl 11

—4 —4 A76 775 2 / 2 2 2
< 87 NTANSNS ¢ 0kl 2 e 0 e 122 Nty 12 s, 12

where we have used the fact that S(n,n/’nw%’;) = {(n1,n)}, n2, ng, njy, ns, ng) satisfy-
ing €’} has cardinality less than or equal to N23 NSGN Z.

All in all, the contribution of A{M> is bounded by N33 N25/ 2, Taking square roots

and normalizing we finally obtain the bound N '+ N/ /425t

s>T/84 /2.

, which suffices provided
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Case . Now we have ngy = nj; while ns # ng, rendering (8.20) equal to

|gn4(a))|2 gn5(a)) gn/s(w) 2

~ ~ / T
Z ’ Z Xc(n)knxc(n )kn/ansan’3 nal>  |ns)32 P2
m#ny Syt o) 3

(8.22)

We proceed in a similar fashion to (7.17)—(7.23) and define

Q) = Z

’
ni#n}

Q= Z

’
ni#ng

2

/an3an/
" S |naf? Ins|3/2 |n§|3/2

Z kfké_ |gn4(a))|2 -1 8ns (w) gn’s (w)

. (823)
Stnynf.0)
2

, (8.24)

S kG, ay - (@) Bl
" gl Ins|3/2 |ns) 3/

Stnynf)

where we have denoted kf = x&(n)ky and similarly for kf,.
To estimate Q, define
S(nl,n’lyns,ng—,t) :={(n, n', na, na, n3, n}) satisfying ¢},

with |S(n1,n/1,n§,n’5,;‘)| S N36N§N4. Then for w outside a set of measure e~ /%",

% = 2
(824) S 574 3 NONSS Z[ 3 kfkn(j,ﬁn3an;]
nl#”/] ”57/:"/5 S(nl,nll,n5,n’5.{)
—4 —6 A7—6 A76 A73 Ci2,C2= 12 2
SOTHEN T NSONSONINING L D Ty Pk Pl Play |
”l#n/l n5>n/5 S(nl,n/l,ns.n/s,;)
—4 —6 A7—6 A76 A73 Ci2.C2= 12 2
SOTINSONSONINING D Sy o)) 1K Pl Plans Play |

n,n’,n3,n’3
—4 —6 A7—0 776 773 3776 2 2 2 2
< 57N ONS SN NI NGNENE Nl e 00k 12 e 00 Vo 122 g 1 i, 12
—4 —4 776 776 2 2 2 2
< 57 NTANENS 1 0k 12 e 1V 1 iy 12 et 12

where we have used the fact that S(n‘n’,n3,n§,§) = {(ny, n’l ny, n4, ns, n/S) satisfying €’}

has cardinality less than or equal to N23 N56N4.

The bound for Q) is smaller, just as in the proof of Proposition 7.2, (7.17)—(7.23). We
omit the details.

Thus the contribution of A¢ M> is bounded by Ng’ N23, which after taking square roots

1+aN2—2s+a
5

and normalizing gives a bound of N, , which suffices provided s > 1+ «/2.

Case f3. Now n4 # nj; while ns = n’, rendering (8.20) equal to

2 3 2

5 & ()

§: 2: knck,?ﬁngang lgTS(TsN fn4|(36;)§ |"/4 | (8.25)
nﬁénl] S(nl,n’l.{) s 4 4

We proceed as above, defining analogous Q1 and Q; terms bounding (8.25) in this case.



1740 Andrea R. Nahmod, Gigliola Staffilani

To estimate Q> we define
Sty ngnlpry = {1, n', ny, ns, n3, n3) satisfying ¢’}

with 1Sy nany. ) < N36N23 min(N2, Ny) < N36N23N52. Then for w outside a set of

_ r
measure e 178 s

o 2
—4ur —6A7—6 CC—
Qo™ 3NN I Y kSkSanay ]
nl#”ll ”47&”2; S(nl,n/l,n4,n£‘,§)
—4 —6 n7—6 A76 A73 AT2 C21.C21= |2 2
SOTHTN T ONJONSONSNING Y Y kS PIRG Pl Play

/ ’
ny#n) ng,ny S(nl,n’l,n4.n:‘,§)

—4 —6 77—6 A76 A73 NT2 C2.C 2= 2 2
SOTHINDONSONINING D ISt vy Ve Pl Plains Pl |
n.n',n3,n}
—4 —6A7—6 A6 A3 N2 A3 A3 A2 .C 12 1. 02 2 2
S OTING P NS NIN;y NS Ny NS Ny Nk o 1k e llans 1z a1 e

< OTMINTENS NSNS x (ka2 (b [ llams N s 172 (8.26)

where we have now used the fact that S(n’n/’nz’ng’;) = {(n1,n}, n2, ng, nly, ns) satisfy-

ing %’} has cardinality less than or equal to N23 N 53 N f. Note this is a better bound than that
obtained in Case §;.

Since just as before, the bound for Q) is smaller, the contribution of A¢ M> is bounded
by N33 N23. After taking square roots and normalizing, the latter gives the same bound as
in Case ;.

Case f4. In this case ny # n§ while ns = n)y, rendering (8.20) equal to

¢ 2 O

C,C— |gn5(w)| gn4(w) gn5
Z/ Z kn kn/a}’uanf3 |}’l5|3 |n4|3/2 |n,5|3/2 . (827)
m#En S(”lﬁ/lvt)

Once again, we proceed by defining the corresponding Q; and Q5 terms bounding (8.27)
and note the estimate for Q; is better than that for Q5. In the latter case, we proceed as in
(8.26) in Case S3, but now

Stnynynantycy = (0,0, n2, ns, n3, n3) satisfying ¢}

has S, n) g0 < N36N23N4. Furthermore, since ns = n%, we have A¢ < N52 from
the definition of %. Thus for @ outside a set of measure e~ 1/9"

= 2
Qs NSNS Y[ Ak
”17'&”/1 ”47&"/5 S(nl,n/l,n4.n’5,[)

SO NSONSINGNING Y Yk PRSPl Play

! ’
nl?é”] n4,ng S(n|,n/l,n4,n/5,{)
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—3 779 A76 773 Ci2,C2= 12 2
SNONGININING Y IS K PIKS P (s Pl |

' n3.n
< 87 NZINTONS NG NaN3 NS NallkS 12 IKG 1% llans 12, a1
S 87N NSNS NS X (ke 2 e (0 Ve I s 12l 122 (8:28)
where now S(,,,n/,,,wg’{) = {(n1, n)}, na, ng, ng, ns) satisfying ¢’} has cardinality less
than or equal to N23 N53 Ny. Thus

—_ —1/2 5\,—
ALMy S 87 NZNG NN N ekl 2 e (ko N2 s 2 et 2,

whence after taking square roots and normalizing we obtain a bound of N, Mty 52_2“’“,

which suffices provided s > 1 + «/2.

Case 5. In this case ny = n§ while ns # ny, rendering (8.20) equal to

. 2 , = 2
N k,,ckcaﬂ,'gm(‘”)' 8, (@) s (@) |* (8.29)

r“n3n
ni#n Se a0 ’ o IngP |n£1|3/2 |ns|3/2
1 ny.ny,

Once again, we define the corresponding Q; and Q; terms bounding (8.29). We treat Q»
as in (8.26) in Case 3 but with

, / e
S(nl,n’l,nﬁpns,é) = {(n, n’, n2, n4, n3, n3) satistying €’}
having |S(n1,n/1,ni’n5’{)| < N§N§N4. Then for w outside a set of measure e~/%",
. 2
Qs Y NN Y[ Y AkCaa]
m;ﬁn/l nﬁﬁénﬁ S(nl,n’l,ni‘.n&()
4 —9 A7—3 A76 A73 C21,C 2= |2 2
SO N NDINSINGNING Y D kS PIKG P, Play |
nl;ﬁn,] nian S(nl.n/l,na,ns,{)

—9A7—3 A76 773 C21.C21= 2 2
SNONSNINING D" 1Syl Tk PG [@ns 1 lay |

n,n',n3,n}
—4 —927=3 A76 A73 3a3021.Cn2 12.C 112 2 2
g 8 MrN4 NS N3 N2N4N2N5N4 ”kn ||€2||kn/||gz||an3||¢2||ang||ez

—4 —6 776 A70 2 2 2 2
< 87 NZONENE ¢ (k12 e (0 122t 12 s 1%

where now S, ,/ = {(n1, n)}, n2, ng, ng, ns) satisfying ¢’} has cardinality less

3,1%,8)
than or equal to N23N53Nf.

Thus the contribution of A{M; is bounded by N, INS_ 2N§’ N23. After taking square

. . -3/2 Z
roots and normalizing we obtain a bound of N, /2+a N52 Zta

s>14+a/2.

, which suffices provided
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Case Sg. In this case ny = n’5 and ns = ng, and (8.20) has enough decay to use Lemma
3.4. We define

S(nl,n/l,é“) = {(n,n’, na, n3, n%, na, n)y) satisfying ¢’}

with [S.,, v o < NON3NHand proceed as follows for w outside a set of measure e 1/
(n1,n},0)1 S V3V Vg
G 2 gy (@)]* 2
C;.C— |gn4(w)| ny
Z Z ki k”’a”3a"/3 Ina)3 n,|3
ny#n S("lv"/p{) 4
—12+ C21,C 2= |2 2
SN IS ol Y Ty PSP (@ns P lay 1,
ny#n) S(nl,n/l,:)
—12+¢ a6 n73 A74 A73 A4 C21,C 2= |2 2
SNy PHENSNININGNG > 1St ) ki 121 P [ et |
n,n',n3,n
—4 6776 2 1 2 2 2
S N TENSND e ka7 1 xe (0 )k 12 s 172 llan, 15> (8.30)

where we have used the fact that S, v ; n, o) = {(n1, n'y, ny, ng, ny) satisfying €’} has
cardinality less than or equal to Ng’ Nf.

Thus the contribution of A¢M, is bounded by Ny N;’ N23. After taking square roots
and normalizing we obtain a bound of N, 't N2~ which suffices provided s >
1+a/2

Case f7. In this case n4 = ny and ns = n’, and once again (8.20) has enough decay to
use Lemma 3.4. Define
Sty 0y = {(n,n', ny, n3, n%, na, ns) satisfying €’}
with |S(n1»n’1,§)| < N36N§’N53N4 and proceed as follows for w outside a set of measure
—1/8".
e :

2

U 2 2
S| T G0, 8L L)

43 ns|3

nl#n/l S(n].n/l,[)
-6 -6 Ci21,.C121= 2 2
SNEENTO Y Sumol Y Ik Pl Plan, Play, 1,

n|7én/1 S(nl-ﬂ’],l)

—648 A7—6 76 A73 A7 3 C12,,C2 2 2
SNSOPENSONINSNING D ISty | s P 1RG  ans Pl |

n,n',n3,n}
—4+4¢€ 776 776 2 2 2 2
S NSTENSNS lxe Wkl e (e 152 Nl any g2 llan 12
where we have used the fact that

S(,,,n/’n3,n/3’;) := {(n1, n'}, n2, n4, ns) satisfying ¢ for fixed (n, n’, n3, n%, £)}

has cardinality less than or equal to N23 N 53 Ny.
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Thus the contribution of A¢M, is bounded by Ny N;’ N23. After taking square roots

and normalizing we obtain a bound of N, 1+"H'gst_zs'H”

1+ /2.

, which suffices provided s >

Case (c)(ii). In this case we have N9 ~ N; > N4 > N> > N5 > Nj3. As in Case (¢)(i)
after duality, changing variables ¢ := m — |n1|? and cutting the N; window with cubes C
of sidelength N4 we have to estimate expression (8.15). Since A ~ N, f we once again
bound (8.15) by

2 2 a72 - 12 2 2 2 2

I xcan, 211y II72 N sup E |01 n2ny 1™ < Nillxcan I 1y 11z llan, Il sup GG

9 ¢
neC ¢

where 0, ,, is defined as in (8.16) and G denotes, as usual, the matrix of entries oy, ,.
Just as in Case (c¢)(i) we are then reduced to estimating M| and M, as defined in (8.18).

To estimate M; we proceed just as in (8.19) to obtain for w outside a set of measure
e~ 1/% the same bound

My < 87NN NS e (ka7 lans 115, - (8.31)
Hence A¢ M is bounded once again by
87 NI N3l xcan, 17 lany 122 llans 172 11y ||§§ X e kall?

NP2 which suf-

which after taking square roots and normalizing gives the bound
fices provided s > 1/2 4 «.

The estimate for M, proceeds as in Case (c)(i) by analyzing Cases B1—p7 as stated
there, yielding the same bounds for A M. We do not repeat the arguments but rather
indicate the bound we obtain in each case after taking square roots and normalizing since
now N> > N5 > N3, so we need to trade the slower decay of the random term it5 for the

better regularity of the deterministic function i, .

Case B;. In this case the contribution of A¢M> is bounded by Ng’st 2, Taking square

roots and normalizing we obtain the bound N, '™ N25 /4=s NS1 [2=sta

videds > 1/2+aand o < 1.

, which suffices pro-

Cases (B, and B3. In these cases the contribution of A¢ M> is bounded by N;’ N23. Taking

N; /2—s+a N5] /2—s+a

square roots and normalizing we obtain the bound , which suffices

provided s > 1/2 + «.

Case 4. In this case the contribution of A¢M, is bounded by N, Y 2N§’ N33. Taking

square roots and normalizing gives the bound N, i/ st NS1 / 27”“, which suffices pro-
videds > 1/2 + «.

Case f5. In this case the contribution of A¢ M is bounded by N, ! Ny ZNS N;, which is
smaller than the bound in Case 4.
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Cases i and 7. In these cases the contribution of A¢ M5 is bounded by Ny N23 N;. After

1/2— 1/2—s
N4/ v+a+sN5/ s+o

taking square roots and normalizing we get the bound , which once

again suffices provided s > 1/2 + «.

Case (c)(iii). In this case No ~ N1 > N4 > Ny > N3 > Ns. Since A¢ M is bounded by
87 N3 N3 Il xcan, 172 llany 172 lans 172 11y ||§? X (m)kn 2.

after taking square roots and normalizing we have the bound N, s+1/2te just as before.

The latter suffices provided s > 1/2 + «. For M>, following the scheme presented above
for Case (c)(ii) we now have:

Case ;. Since the contribution of A¢M; is bounded by N33 N25/ 2, after taking square

roots and normalizing we obtain the bound NZ/ 4_2S+a, which suffices provided s >

7/8 +a/2.

Cases B, and B3. In these cases the contribution of A¢ M is bounded by N;’ N;. Taking
square roots and normalizing we obtain the bound N f_zﬁ'“, which suffices provided
s> 14+a/2.

Case B4. In this case the contribution of A¢Mj is bounded by N, 1/ 2N23N§’, which is

smaller than the bound in Cases 3, 3.

Case B5. In this case the contribution of A¢ M is bounded by N, 1N5_ ZNS’ N;, which is
smaller than the bound in Case f4.

Cases s and B7. In these cases the contribution of AZM; is bounded by Ny N23 N33.

After taking square roots and normalizing we get the bound N, 3_2”‘”8, which once
again suffices provided s > 1 4 «/2.

Cases (c)(iv)-(vi) and (d). In these cases we proceed as in Subsection 8.5.1. Assume
No ~ N1 = Ny > Na, Case (d) having similar or better bounds. The estimates of the
trilinear expressions will give after normalization

s A7—S A7—S+1 arl—s a7 A7t
NoN{ "N, " N3 "N Ns
and we assume that s > 1 4 «.
One also needs to estimate the terms in (8.7). Here we show how to estimate the term
involving the random function at frequency N4 in (8.9). We first observe that in order for

this term not to be zero it must be that N4 ~ No. Then for vy in (5.1), after normalization
we have the bound

§ AT—S NJ—S Aj—S A7 — 14 A —1+
NyN{ Ny Ny N, TN ™
1/4 - 1/4
X 1| Py P08 o g1-o N3 1D (Povg Puso) s [T N 1Pa15 Ge, D)l s
j=1,2,3
The latter together with the Strichartz estimate (4.16) are enough to obtain the desired
bound since for o < 3/4, we have

NSNO_X+1/4_1+0[ N N0—3/4+oz <1
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8.5.4. The DDRRR case. To estimate the expression in (8.5) we first observe that in terms
of bars we need to estimate only the following cases: Case 1: u1, u3, us are random, that
is, none of the random functions are conjugated, and Case 2: only one of these functions
is conjugated; the other cases are obtained by conjugating the whole expression in (8.5).
We will remark later on how the estimates change depending on these two cases.

We now assume that the first three functions are random and the last two are deter-
ministic. We also assume that N; > N> > N3 and N4 > Ns5. We then have the following
subcases:

e Case (a): Ny = max(Ny, N4) and

(i) N2 < Ns < Ng.

(i) N2 < N5 < N1 < Na.
(iii) N3 < N5 < N2 < N; < N4.
(iv) Ns < N3 < N2 < Ni < Ng.

e Case (b): N = max(Ny, Nyg), N > N4 and

(i) N3 > Ns.
(i) Ns < N3 < Ny < Ns.
(iii)) N3 < N5 < N4y < Nj.

e Case (¢): Ny = max(Ny, Ng), Ny > N and

(i) N2 < N5 < N4 < Ni.
(ii) N3 < N5 < Ny < N4 < N1.
(iii) Ns < N3 < N» < Ny < Ny.

Case (a)(i). In this case we proceed as in Subsection 8.5.1. Assume for simplicity that
No ~ Ng; the other cases are smoother. The estimates of the trilinear expressions will
give after normalization
S AT—=S AT—S+1 a7 AT ATO
NoNy " Ns N3N, Ny,
and we assume that s > 1 4 3«. One also needs to estimate the terms in (8.7). Here we

show how to estimate the factor involving the random term at frequency Nj in (8.9). We
have, for vg’ of (5.1),

— _ — 1/4—
N(_)YN] l+CtN2 1+D{N3 1+Ot ” PN() PN3 U(c;)”Lth;_a 1_[ Nj/ &) || PN]‘ I,[] ()C, t)”UiHS N (832)
=45

where we notice that N1 ~ Ny since otherwise the contribution would be null. This is
enough to obtain the desired bound since

s —14o 1/4—S ~ —3/4-‘1—0{
NoNy "N, N, .
Also note that this case is not affected by conjugation, hence it is the same in Case 1 and
Case 2.

Case (a)(ii). We also assume that N4 ~ N, this is the least favorable situation. We
proceed by duality and a change of variables { = m = |n4|? as in the proof of Proposition
7.2 (in particular see (7.15)).
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We have to bound

~ ~ ~ 2
2 2 8ni (W) gny (@) gny (@), .
MHAZAPES Knding
& ¢ In13/2 |na|3/2 |n3)3/2
({,)14)€Z><Z3 n=xn|tnytnztngstns
ni,nj,ngFE,Np
r=2£|ny|*£na|*E|n3 s |? (8.33)
We now consider two cases:
e Case Ag: ny, no, nyz are all different from each other.
e Case A: Atleast two of the frequencies n1, ny, n3 are equal.
Case Ap. We define the set
n==n; £ny£n3y+ngxns,
Stcnanynanz) = 3 (M, n5) @ Ni, Nj, Nk F Ny, N,
2 2 2 2
¢ = =x|ni|” = |na]” £ [n3]” £ [ns|
with |S({,n4,n1,n2,n3)| S N52 and we write
2 2
(8.33) < Iyl llan, I
¢
2

X Z NF3N{3N3‘3’ Z &ny (@) &ny (@) Ens (@) Z ki

({',}14)€Z><Z3 np,na,n3 S([,n4,n1.n2,n3)

. . . _ r .
By using Lemma 3.4 we can continue, for w outside a set of measure e~!/%", with

-2 2 2
STyl lang Nl
:

-3 -3 n-3 2 2
x Y NONSNT T Y Sy e lans]
(¢,na)E€ZXTL? R1N213 S(eny ny np,n3)

-2, 2 2 ar—3a7-3a7-3 72 2 2
N R Mr”V”(z ||an4||e2N1 N, N3~ N3 § 1k lans 1S Gus,m) |
9

n,ns
where
n=d=n; £n, £n3tng £ns,
Stons) = § (£, na,ni,nz,n3) 1 i, Nj, Mg F Ny, N,
¢ =i £ |naf® £ Ins* £ Ins)?
and | S ns)| S N13N23N33, where we have used A < le. Hence we can continue with

-2 2 2 2 2 2
< 87 I e N2 N2 W 2 e

and after taking square roots and normalizing we obtain the bound
1—s pp—14o Ar—14a pr—14a
Ns N, N, TUN; .

We note that this case is the same in Case 1 and Case 2.
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Case A|. We first assume that only two frequencies are equal. The important remark
is that we have removed the frequencies that would give rise to |g, (a))|2 so in (8.33)
we would see either (g, 2 () 8ns (@) or gy, (w) (g,,z)Z(w). In both cases we can still use
Lemma 3.4 and proceed as above to obtain in fact better estimates, since the cardinalities
of the sets involved are smaller due to the collapse of the frequencies that are equal.

If all three frequencies are equal, and this can happen only in Case 2, then N; ~
N> ~ N3 and

(8.33)§||y||§§||an4||§2 > N;”Z|g,,3(w>|3) 3" konding
n3

(¢,n4)€ZXZ3 S({,n4.n3)

2

where
Senany) = {(n,ns) 1 n = +3n3 £ ng £ ns, £ = £3[n3)> + [ns|?}.
Then by using Lemma 3.4 we can continue, for » outside a set of measure el ’Sr, with

2 2 —12+ 2 2
Shyilanly D N7 lkalPlansP1Sng |
‘ (¢.n4)€TxT3 Stc.ng)

where
Sy = {0, n3,n5) : n = +3n3 £ ng £ ns, £ = £3|n3)* + |ns|*}

with | Sz n,)| S N2N3, and we continue with
2 2 1246 A2 2, 2
S 11z llang 2 Ny TENFN; E k| lans 1“1 S(n,ns)|
¢ n,ns

where
Stuns) = (&, n,n3,n4) 1 n = £3n3 £ ng £ ns, ¢ = +3[n3)% £ |ns|*)

with [Si )| S N33. We obtain the bound N, +¢  which clearly suffices without any
further restriction when we take square roots and normalize.

We now observe that Cases (a)(iii), (iv) can be analyzed just like Case (a)(i) since N4
and N are still the top frequencies and the order of the rest is not relevant.

Case (b)(i). We assume first that N1 ~ No. We cut the Ny and N; frequency windows
with cubes C of sidelength N,. After using Cauchy—Schwarz we need to estimate

3 3 5 1 1 | I
Z Z gnl(w)gm(w)gm(w) Z |n |3/2 |n |3/2 |}’l |3/2an5an4
meZ,neC'ny,ny,ny;n €C S(m,n,nl,nz.n3) 1 2 3
(8.34)
where
S(m,n,nl,nz,%)
( ) n==n; £ny+tnsytng*ns,
= n4,ns) :
nionj g #nenp, m=Eni > & nof* £ n3® £ ns|® £ ng|?
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with [Son.nnynann) ] S N52. We now consider two cases:

e Case Ag: ny, no, n3 are all distinct.
e Case A;: Atleast two of the frequencies n1, ny, n3 are equal.

1/8

Case Ap. We use Lemma 3.4 and, for w outside a set of measure e~ r, we have

1 1 1 2
—2ur -~ o~
@398 2 2 2 PR mee |n3|3/2“”5“"“]

meZ,neC ny,ny,n3;n €C S(in,n,n14n2.n3)
—2ur ar—=3 Aa7—=3 73 2 2
58 s Nl N2 N3 Z Z #S(m,n,nl,nz,n3)|an5| |an4|
meZ,neC Sgn,n)
-2 =3 ar=3 7372 2 2
SETINTINTINTING Y lans P lan, P Singns)|

n4,ns
where
n==n; £ny, £n3tng £ns,
St 1= {(m’ IR P gl £ nsf? = sl |n4|2}

with [S(n,.n5)| < N1N2Ny N3 N3, which finally gives
(8.34) S 87 N Nallang 12 llan, 112
By taking square roots and normalizing we require that
N N;3/2+a N;1/2+O(N3—1+01N4—s NI S Nfﬁ,
and this follows from assuming s < 3/2 — «.

Case A|. We proceed just as in the same case for Case (a)(ii). Here we only work out the
details for the case when all frequencies are equal; again this can happen only in Case 2.
We have N; ~ N ~ N3 and

B3HS Y N g @F Y dndn
n3

(m,n)eZxZ3

2

S(m,n,n3)
where
Stm.nny) i={(na, ns) 1 n = £3n3 + ng £ ns, m = +3|n3)> & |na|* £ |ns)).

1/8

Then by using Lemma 3.4, for w outside a set of measure e~ r, we can continue with

—12 2 2
SO0 N an Plans 1S
(m,n)eZx73 Son.n)

where
Semmy = {(n3,n4,ns) 1 n = £3n3 £ ng £ns, m = £3In3|* £ |nal* & ns|*}

with [Son.n)| S N52N3, and we continue with

—12+ 2 2 2
SNy PFENENG Y lan Plans P Signs)|

ng4,ns



Almost sure well-posedness for the periodic 3D quintic NLS below H 1 1749

where
Stuans) i= ((m,n,n3) s n = +3n3 £ ng £ ns, m = £3|n3)* + |ng|* + |ns|*)

with [S¢y 0] SN 12N3. We obtain the bound N, 6+¢ which clearly suffices without any
further restriction when we take square roots and normalize.

Now assume that N; ~ N;. Here we do not need to cut with cubes C, but the argument
and the estimates are similar to the ones we have just analyzed.

Cases (b)(ii), (iii). These cases are estimated just like the case we have just analyzed since
the two highest frequencies are still N1 and N, and the order of the others is not relevant.

Case (¢)(i). Assume first Ny ~ Nj. This case is handled like Case (b)(i) above. Here we
cut with cubes C of sidelength N4. This gives in particular Am < Ny Na.

Case Ag. Just as in Case (b)(i) we have, for w outside a set of measure e 18

(8.34) S8 NN NGNS Y lans Plan, I*1Sen.ns)]

ng4,ns
where now [S,, 15| S N1 NNy N;N; since Am < NjNgy. This finally gives
(8.34) S 8~ Ny Nallans |7, lan I
By taking square roots and normalizing we require that

NéN;3/2+o¢N2—1+01N3—1+aN47S+1/2N5_y 5 N;ﬂ,

and this follows from assuming again s < 3/2 — «.
Case A;: This is like the same case for Case (b)(i).

Case (¢)(i). Now assume N4 ~ Nji. Here we do not need to cut, and the same estimates
as before hold.

Cases (c)(ii), (iii). These cases are estimated just like the case we have just analyzed
since the two highest frequencies are still N1 and N4 and the order of the others is not
relevant.

8.5.5. The DRRRR case. To estimate the expression in (8.5) we assume without any loss
of generality that us is the deterministic function and it is not conjugated. By Cauchy—
Schwarz and Proposition 4.1 we are reduced to estimating

= = 2
Z Z Z a ]gnl(a)) gnz(w) &ny (@) gn4(w)
ns 3/2 3/2 3/2 3/2
mebmec! n b e T In113/2 |nal3/2 |n3|32 |ngl?/
ny,n3#EN,Nng ns#ny,ng

m=|ni[>=|na|*+In3 2 —|ng|*+|ns]* (8.35)

where we have assumed that u5(ns, t) = e’ |"5‘2an5 and C is a cube of sidelength to be
determined later.

Since we have removed the frequencies n1, n3 = np or ny, n3 = n4, which would
give rise to terms of the form |g; ()|, we can invoke Lemma 3.4 and proceed by further
considering the following subcases, for i, j € {1, 2, 3, 4}:
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Case (a): There exists j such that Ny ~ N;, N5 S Nj.

Case (b): There exist j # i such that N; ~ N; and N5, Ng S N;.
Case (¢c): No ~ Nsand N; < Ns.

Case (d): There exist j # i such that N5 ~ N; and Ny, N; S N;.

Case (a). Assume N, k € {1,2,3,4,5}, k # j, is the second largest frequency. Then
let C be of sidelength Ny and let

ns = —ny +ny —n3 +n4 —n,
Stm.nymynzng) = 15 1 M5 # n2,n4, nj € C,

2 2 2 2 2
m = |n1|” — |n2|” + |n3]” — [n4|” + |ns|

By Lemma 3.4, for w outside a set of measure e/ ‘V, we have
-2 =373 a7-3A7-3 2
(3587 3 NONPNINT Y | Y
meZ,neC M2 N304 S0 mgmg,ng)
“our —3 =3 n—3 A3 2
<8 > ONPNSNTING D s
meZ,neC S(,,ﬁ,,l)

where

n=ny—ny+n3—n4+ns, nj €C, }

St,my = 1 (n1, n2, n3, nq, ns) :
; » 112,113, 14, 2 2 2 2 2
m = |n1|” — |n2|” + |n3|” — |n4l” + |ns|

‘We now define the set

S ( ) n=n;—ny+n3—n4+ns, nj €C,
(ns) = (m,n,ny,ny,n3, ng): ) ) ) ) )
m = |n1|” — |n2|” + |n3]” — [n4|” + |ns|

with |[S(us)| SN J.2N,f NS N;. Then we continue with

(835) S8 NTINTINTNG D lansP1Ss) | S 872 N Nillans 12,

ns

By taking square roots and normalizing we obtain the bound N;+°‘73/ ’N a /2% \which
entails s + o < 3/2and o < 1/2.

Case (b). We go back to (8.35) and we let C be of its natural sidelength Ny. We then
repeat the argument above with the role of Ny played by N; and we count the set

S ( ) n=ny—ny+n3z—n4+ns,
(n5) = m,n,ni,na,n3, n4 : 2 2 2 2 2
m = |n1|” — |n2|” + [n3]" — |na]” + |ns]
obtaining || S N/3 Ni3 N 2 N;. By taking square roots and normalizing we obtain the
bound N;—i—2oz—2’ which entails s + 2o < 2.
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Case (c). We proceed as in Case (b) of Subsection 8.5.2; more precisely we use duality
and the change of variables { = m — |n5|? as in the proof of Proposition 7.2 (in particular
see (7.15)). Here we let C be of its natural sidelength Ng. Let also Ni, k € {1, ..., 4}, be
the second largest frequency. We have to bound

2 2
Y 1152 | xcans I <
¢

2

(¢.ns)ELXT3

2

Z xc(mk 8n, (@) &y (@) gy (@) &ny (@)

8.36
1372 a3/ |n3 32 |ngl3/2 (830

n=ns—ny+n3—n4+ni
ny,n3,n5#n2,n4
¢=ln1 P =In2 P +lns > ~|nal?

We proceed again as above where now we have to replace S(,) by

n=ny —ny+n3—ng+ns, }

Swy = 1 (&, n1,n2, n3, ng,ns) :
9 : b 9 9 2 2 2 2
¢ = |n1|” — In2|” + |n3|” — |n4]

with [Siy| S N,?NfN;N;, where we have used A¢ < N7. By taking square roots and

normalizing we obtain the bound N} -1

Case (d). This case is analogous to Case (c).

8.5.6. The all random RRRRR case. Since we have removed the frequencies with
ni,n3 = np or n1, n3 = nyg, which would give rise to terms of the form |g; (a))|2, we
can invoke Lemma 3.4 and proceed to estimate the expression in (8.5) by further consid-
ering the following two subcases,

e Case (a): Ng ~ N, forsomei =1,...,5.
o Case (b): N; ~ N fori, j #0.

Case (a). Let N; be the second largest frequency size after N;. We cut the Ny window
with cubes C of sidelength N;. By Cauchy—Schwarz and Plancherel we estimate

- - 2
Z Z gnl(a)) gnz(w) gn3(a)) gn4(w) gns(a))
w102 s P (g P72 s
n1,n3,n57N02,04
m=|n 2—|n2|>+In3 |2 —|ns >+ ns|? (8.37)

By Lemma 3.4 we have, for w outside a set of measure eV ‘Sr,

B3NS > > Lot

oy .- A In1® |n2l3 In3l3 |ngl? |nsp?
’ nl,n3,n57én2,n4,n,-ec
m=|n1 > =|na>+In3 >~ |na|?+|ns|?

5
SIS NG S NN
k=1
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where
n=ny—ny+n3—n4+ns, nj €C,

S:={(m,n,ny,...,ns):
A R 2 2 2 2 2
m = [n1|” = |n2|” + |n3|” — [n4a]” + |ns|

with || < Ni2N ]4 I ki j.0 N ,? . Taking square roots and normalizing we obtain the bound
s+a—3/2 7, —1/2+4 —1+
N, NTEEOTT N
ki, j,0
which suffices provided s + @ < 3/2 and @ < 1/2.

Case (b). This is like Case (a), but now we do not need to cut the support of the Ny
window with N;.

8.5.7. The UéL2 estimates. Assume that N; are dyadic numbers and without loss of
generality N1 > --- > Ns5. We start by rewriting

2 2
/ f DS(./\/(PN,.(w+v‘5’)))PNOhdx dt:/ / DS(N(PNiw))PNOhdxdt
0 T3 0 T
2
+/ / D*(N (P, vg)) Pnyh dx dt
0 T3

2
+/ / DS(N(PNiw, Py, U(‘)U))PNOh dxdt,
0 T3

=T+ T+ Ts

where in 73 we include all the nonlinear expressions with both random and deterministic
terms. Our goal is to obtain an estimate for the first and last term with the U 2L2 norms
of w on the right hand side possibly paying the prize of NJ, with y > 0. Then using
the interpolation Proposition 4.2, we combine this estimate with the ones involving the
UiL2 norms of previous sections and the embeddings (4.5) and (4.7) to finally conclude
the proof of Proposition 5.1.

Clearly we do not need to estimate 7 that involves purely random terms. For the other
two we have

Ti+ T3 S UNPywllpa2 + IV (Pyw, Pyvg)llpa 21 Paghlizeer2.

and from (2.9), with a certain abuse of notation,

IV (Pr,w) 2 + IV (Prw, Priog)l s 2
9 9 ‘
SO NF Il + D NF T Ii(Prw, Pro)l sz = ) (S)+8))
i=1 j=1 i=1
where J; (w, v(‘)” ) indicates that the functions involved could be both w and v(‘)” . To estimate
S{ and Sé we use the transfer principle of Proposition 4.1 and we assume that w(z, n) =

ey, (). Below we write aﬁj to indicate b, or the Fourier coefficients of vg or their
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conjugates. Now define

. ._ 1 it |2 2 +itlno|? 3 +itlns|> 4 +itlng|? 5 +it|ns|?
CDZ(n,t).—‘ E ay e a,e a,.e a,,e a,e

5
n:Zi:l +n;,ni~N;
Wi(ny,na,n3,n4,ns)

where W;(n1, no, n3, n4, ns) indicates the constraints among the five frequencies in J;.
Thenfori =1,...,9and k =1, 2,

SD*S sup Y din.r) < sup Z\Da 12, a2, 1a, a3 1|

tel0,2n] tel0,27] St

where
5
Sy = {(Vll,nz,m,m,ns) n= Z:I:nj, nj ~ Nj]-
j=1

Assume now that Ny, the highest frequency, is such that Ni ~ Ny, which is in fact the
least favorable situation. Then | S| S Né’ Ng’ N 2 N53 and by Cauchy—Schwarz

5
]Zm lap, | lay, |y, ] lan, | " S NINININZa), ||€21"[||a£j||§2. (8.38)
Sy =2
We then have
5
i < NS py, wllys grs I1 1Py w4 s (8.39)
j=2

We observe that a similar estimate holds for Sé when the function associated to frequency
N is also deterministic. In fact, in this case we have

Sy SN PN wlya e [T 1Pvwliys e (8.40)
Jgd,j#1

Finally, if the function associated to frequency N is random, then

Sy S Ny HENTH T PN, gt s (8.41)
j¢J
We conclude by using the interpolation Proposition 4.2. Note here that in both (8.39)
and (8.40) the interpolation at most introduces a factor of N5 which can be easily ab-
sorbed by the negative power of N> in the estimates involving norms UﬁL2 (see previous
subsections). On the other hand, (8.41) and interpolation introduce a factor of N f But
this too can be absorbed thanks to the presence of a negative power of N in the estimates
involving UiL2 norms in those cases in which the highest frequency is associated to a
random function.
This concludes the proof of Proposition 5.1.
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9. Proof of Proposition 5.2

We first give an improved version of Proposition 5.1: if r > 0 is small enough then there
exists & > 0 such that for w € Q5 we have: if N; > No or Py,w = Py, vy then

2
‘/0 /11‘3 DS (Wa(t)N(PNi(w + vé“)))p—NOh dxdt

S NPl (1+ T T I Pawllxs ). ©.1)
i¢]

and if Ny ~ No and Py, w # Py, vy then

2
‘/{) /11‘3 Ds(lﬁé(f)N(PNi(w—i—v(‘)‘))))PNohdxdt

S 8N Prohlly s s Prywlies (14 T s Puwiix).  02)
igli#l
for some small ¢ > 0.
To prove (9.1) and (9.2) we first observe that in the proof of Proposition 5.1, in par-
ticular the estimates involving the terms Js, ..., J7 in (5.3), we always have the factor
| Pny el 212 0N the right hand side. We can then replace this by

s @) Paghll 22 S 821050 Prghll o2 S 8'2 105 (@0 Prghllyo, — (93)

where we have used (4.7), and obtain the proof of Proposition 5.2 for the nonlinear terms
involving Ja, ..., J7.

To estimate the term involving J; we go back to Subsections 8.5.1-8.5.6. We recall
that except when the top frequencies, say N1 and N;, are associated to two deterministic
functions, also in this case we have || Py, k|| 212 On the right hand side, and (9.3) can be
used again.

We are then reduced to estimating the term involving J; where the top frequencies N
and N, are associated to two deterministic functions. So we consider

2 R
/0 /;r F LW 0) P, )W 1) Pgh dx di 9.4)

where without loss of generality N; > --- > N5 and u;| and u, are deterministic func-
tions, while uy;, i = 3, 4, 5, represents either w or vg’ . We consider two cases, foro > 0
to be determined later:

e Casel: 679 > N,.
e Case2: 6779 < N,.

Case 1. We observe that the estimate of (9.4) can be reduced to analyzing an expression
such as

§
/(; '/;1‘3 ﬁNlﬁNzﬁN3ﬁN4ﬁN5hN0dxdl‘ 9.5)
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where uy, are as above. In fact to obtain the full product as in (9.5) one needs to put back
some frequencies, and hence some terms (see for example (8.7) in Subsection 8.5.1).
But these terms are similar to those involved in Js, ..., J7 and again the gain on § is
guaranteed by (9.3).

We then go back to (9.5) and we further assume that N; ~ Ny, which is the least
favorable situation. We cut the Ny, and hence Np, frequency window with cubes C of
sidelength N, and we obtain the bound

2
~ 2 T 2
S 8 E ”PCMN] ”L,llez”PChNO”L,lle.z
C X X

8
/ /3 ﬂNlﬁNzﬁN3ﬂN4ﬂN5hN0dxdt
0 JT

~ 2 ~ 2 P) -2
X HMNZHL}ZL;ZHMM”L}ZL}}||MN4||L}2L;2||MN5 ”L,”L}(z’
and from (4.16)—(4.18) we can continue with
m(a,s) 2 2 2
SONS O Y IPcun g Pkl [T lewile, 2 (9.6)
c i¢J,i#l
where J C {2, 3, 4, 5} is the set of indices corresponding to random linear solutions.

Then normalizing, interpolating through Proposition 4.2, and using the embedding
(4.7) combined with (4.6), we have

3
/ /3ﬁN1ﬂN2ﬁN3ﬁN4ﬁN5hN0dxdt
0 JT

< SYANY O Py hlly s s Prywlls (14 T s Pl

¢l il
<8Py s Py wlles Ny (14 TT s Prwilxs )
i¢lJ il

if we take o0 < 1/(100m(a, 5)).

Case 2. Here we go back to (5.4) and (5.5). We recall that Py, u is deterministic and

again we assume that N; ~ Ny; the other cases can be treated similarly. Then we use
(5.4) and we have

2
fo /T3 F LI (s (0) Py, (ui)) s (1) Pygh dx dt

<878 NP | Prghlly—< s Py wlixs [T 16 Pawllxs
i¢l]i#l

S 0N Prohlly s Pyywlis (14 [T s Prwiixe)
i¢], i#1
provided o > (y + ur)/(p(«, s)), which is satisfied for y, r small enough.
To finish the proof we now need to sum the dyadic blocks just as in [23]. In (9.1)
we have enough decay in the highest frequency N that we can use Cauchy—Schwarz

in all the smaller frequency terms and just pay with an N 2 In (9.2) instead we use

Cauchy—Schwarz for the lower frequencies Ns, N4, N3 and pay with an N; ¢/2 that can
be absorbed and use Cauchy—Schwarz on Ny ~ Nj. O
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10. Long time large data infinite energy solutions

In this section we show that by inspecting the proof of the local result above we are able
to prove the following long time and large data result.

Theorem 10.1. For fixed T > O there exists a set X7 with P(X1) > 0 such that for
o > 0 small and every w € X,

gn(w)

(n)5/2—« " e HY (T, y=y() <1,

¥ (x) =

neZ?

evolves up to time T into a solution u(t) of the initial value problem (1.1). Moreover
u(t) — ¢ € X5([0, T))a, s = s(a) > 1, as in Theorem 1.3.

This theorem in particular shows that we find a nontrivial set of large data which gives
rise to long time solutions below the critical space H'(T?), that is, in the supercritical
scaling regime.
Proof. We follow the same steps as in the proof of Theorem 1.3. In these steps, whenever
we apply Proposition 3.1 we replace " by pf, for 8 > 0. This will determine a set
of o that we call X, such that IP’(EZ) < ¢=*” . Therefore the bounds on the g, (w) from
Lemma 3.4 hold on X,.

We consider the initial value problem (2.17) and set up the fixed point argument for
the difference equation (5.2). We repeat the estimates leading to the proof of Proposition
5.2 and obtain a set X, such that for w € X,

IZWN (w + v§D Nl xs 0.2 S Clo + llwllxsg0.21)° (10.1)

where Z denotes the Duhamel operator as in (4.13) and N (-) was defined in (2.18).

‘We want to prove that we can find p = p(7') small enough such that for any w € X (r)
we can iterate the argument up to time 7. To this end we perform a continuity argument
to obtain a uniform bound for w(¢) in H* for all ¢t € [0, T].

We have

lwllxs 0,22 < Cp + llwllxs 0,271

and also since the estimates are subcritical we have, for § < 1,
lwllxsqo.s1 < €87 (p + lwllxsro.67)°- (10.2)
We now study the function
fi@) =Clp+x)° —x
where x = x(t) = |[wllxso,,)- We easily find that f1(0) = C,05, the value xo =

(%)1/4,0 is a minimum point, and for x; = 2Cp> < xo we have fi(x;) < 0 and

x(0) < x1 thanks to (10.2). As a consequence of the fact that x(¢) is continuous in time
we have

lwllxso,2r)) <2Co° and  Jw(@®)|lgs <2Cp°, t € [0, 27].
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A similar argument at step m with

gives

fn(x) =2(m — 1DCP° +C(p+x)° —x, X =2Cmp°,

lwllxs qo.m2ayy < 2Cmp> and ()]s <2Cmp°, 1 € [0, m27],

and in order for this process to be continued to step m + 1 we need to guarantee that

! 5—i 25—4i P’
2 C —1 —4al —,
;al( mC)™ " p < 100

where the «; are the binomial coefficients. At the final step 7 we then pick p = p(T)
small enough and finish the proof. O
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