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Abstract. We prove an almost sure local well-posedness result for the periodic 3D quintic nonlin-
ear Schrödinger equation in the supercritical regime, that is, below the critical space H 1(T3).

We also prove a long time existence result; more precisely, we show that for fixed T > 0 there
exists a set 6T with P(6T ) > 0 such that any data φω(x) ∈ H γ (T3), γ < 1, ω ∈ 6T , evolves
up to time T into a solution u(t) with u(t) − eit1φω ∈ C([0, T ];H s(T3)), s = s(γ ) > 1. In
particular we find a nontrivial set of data which gives rise to long time solutions below the critical
space H 1(T3), that is, in the supercritical scaling regime.
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1. Introduction

In this paper we continue the study of almost sure well-posedness for certain dispersive
equations in a supercritical regime. In the last two decades there has been a burst of
activity and significant progress in the field of nonlinear dispersive equations and systems.
These range from the development of analytic tools in nonlinear Fourier and harmonic
analysis combined with geometric ideas to address nonlinear estimates, to related deep
functional-analytic methods and profile decompositions to study local and global well-
posedness and singularity formation for these equations and systems. The thrust of this
body of work has focused mostly on deterministic aspects of wave phenomena where
sophisticated tools from nonlinear Fourier analysis, geometry and analytic number theory
have played a crucial role in the methods employed. Building upon work by Bourgain [1,
2, 4] several works have appeared in which the well-posedness theory has been studied
from a nondeterministic point of view relying on and adapting probabilistic ideas and
tools as well (cf. [13, 14, 34, 28, 29, 35, 25, 27, 32, 17, 26, 12, 18, 19] and references
therein).

It is by now well understood that randomness plays a fundamental role in a va-
riety of fields. Situations when such a point of view is desirable include: when there
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still remains a gap between local and global well-posedness, when a certain type of ill-
posedness is present, and in the very important supercritical regime when a deterministic
well-posedness theory remains, in general, a major open problem in the field. A set of
important and tractable problems is concerned with those (scaling) equations for which
global well-posedness for large data is known at the critical scaling level. Of special
interest is the case when the scale-invariant regularity sc equals 1 (corresponding to the
energy or the Hamiltonian functional). A natural question then is to understand the super-
critical (relative to scaling) long time dynamics for the nonlinear Schrödinger equation in
the defocusing case. Whether blow up occurs from classical data in the defocusing case
remains a difficult open problem. However, what seems within reach at this time is to
investigate these problems from a nondeterministic viewpoint, namely for random data.

In this paper we treat the energy-critical periodic quintic nonlinear Schrödinger equa-
tion (NLS), an especially important prototype in view of the results by Herr, Tzvetkov and
Tataru [23] establishing small data global well-posedness in H 1(T3), and of Ionescu and
Pausader [24] proving large data global well-posedness inH 1(T3) in the defocusing case,
the first critical result for NLS on a compact manifold. Large data global well-posedness
in R3 for the energy-critical quintic NLS had been previously established by Colliander,
Keel, Staffilani, Takaoka and Tao [16].

Our main interest in this paper is to establish a local almost sure well-posedness for
random data below H 1(T3), that is, in the supercritical regime relative to scaling1 and
without any kind of symmetry restriction on the data. In a seminal paper, Bourgain [4]
obtained almost sure global well-posedness for the 2D periodic defocusing (Wick or-
dered) cubic NLS with data below L2(T2), i.e. in a supercritical regime (sc = 0).2 Burq
and Tzvetkov obtained similar results for the supercritical (sc = 1/2) radial cubic NLW
on compact Riemannian manifolds in 3D. Both global results rely on the existence and
invariance of associated Gibbs measures. As it turns out, in many situations either the
natural Gibbs or weighted Wiener construction does not produce an invariant measure, or
(and this is particularly so in higher dimensions) a canonical construction is not expected.
In the case of the ball or the sphere and if one restricts to the radial case, constructions
of invariant measures are possible, as in [35, 14, 20, 21, 6, 7, 8]. Recently, a probabilis-
tic method based on energy estimates has been used to obtain supercritical almost sure
global results, thus circumventing the use of invariant measures and the restriction of ra-
dial symmetry. In this context Burq and Tzvetkov [15] and Burq, Thomann and Tzvetkov
[11] considered the periodic cubic NLW, while Nahmod, Pavlović and Staffilani [26]
treated the periodic Navier–Stokes equations. Colliander and Oh [17] also proved almost
sure global well-posedness for the subcritical 1D periodic cubic NLS below L2 in the
absence of invariant measures by suitably adapting Bourgain’s high-low method.

Extending the local solutions we obtain here to global ones is the next natural step; it
is worth noting however that unlike the work of Bourgain [4] one would need to proceed
in the absence of invariant measures; and unlike the work of Colliander and Oh [17] the

1 That is, for Cauchy data in H s(T3), s < sc = 1 for the quintic NLS in 3D.
2 See Brydges and Slade [9] for a study of invariant measures associated to the 2D focusing cubic

NLS.
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smoother norm in our case, namely H 1(T3), on which one would need to rest to extend
the local theory to a global one is in fact critical. This forces the bounds on the Strichartz
type norms to be of exponential type with respect to the energy, too large to close the
argument. Nonetheless, as a byproduct of our local estimates we can show the existence
of large data long time infinite energy solutions (see Section 10).

The problem we are considering here is the analogue of the supercritical local well-
posedness result3 proved by Bourgain in [4] for the periodic mass critical defocusing
cubic NLS in 2D. Of course, Bourgain then constructed a 2D Gibbs measure and proved
that for data in its statistical ensemble the local solutions obtained were in fact global,
hence establishing almost sure global well-posedness in H−ε(T2), ε > 0.

There are several major complications in the work that we present below compared
to the work of Bourgain: a quintic nonlinearity increases quite substantially the different
cases that need to be treated when one analyzes the frequency interactions in the non-
linearity; the counting lemmata in a 3D lattice are much less favorable and the Wick
ordering is not sufficient to remove certain resonant frequencies that need to be elimi-
nated. The latter is not surprising, and in fact known within the context of quantum field
renormalization (cf. Salmhofer’s book [30]). In particular, to overcome this last obstacle,
we introduce an appropriate gauge transformation, we work on the gauged problem and
then transfer the result obtained back to the original problem; which as a consequence
is studied through a contraction method applied in a certain metric space of functions.
A similar approach was used by the second author in [31].

Finally, our estimates take place in the atomic function spaces where the only deter-
ministic global well-posedness is known to hold at the H 1-critical level [23, 24]. Such
choice of function spaces over the Xs,b spaces4 in [4] is natural given our result in this
paper lays the foundation for an almost sure global well-posedness in the supercritical
regime. In turn, such choice presupposes some care while working with the absolute value
of the Fourier transform and various constraint equations of multilinear terms. This is be-
cause the norms of these atomic spaces are not defined through the absolute value of the
Fourier transform, a property which is quite useful while working with the Xs,b spaces;
see Section 8.

In this work we consider the Cauchy initial value problem,{
iut +1u = λu|u|

4, x ∈ T3,

u(0, x) = φ(x),
(1.1)

where λ = ±1.
We randomize the data in the following sense:

Definition 1.1. Let (gn(ω))n∈Z3 be a sequence of complex i.i.d. centered Gaussian ran-
dom variables on a probability space (�,A,P). For φ ∈ H s(T3), let (bn) be its Fourier
coefficients, that is,

φ(x) =
∑
n∈Z3

bne
in·x,

∑
n∈Z3

(1+ |n|)2s |bn|2 <∞. (1.2)

3 A.s. for data in H−β (T2), β > 0.
4 Our argument could also be carried out in the Xs,b spaces.
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The map from (�,A) to H s(T3) equipped with the Borel sigma algebra, defined by

ω 7→ φω, φω(x) :=
∑
n∈Z3

gn(ω)bne
in·x, (1.3)

is called a map randomization.

Remark 1.2. The map (1.3) is measurable and φω ∈ L2(�;H s(Td)) is an H s(Td)-
valued random variable. We recall that such a randomization does not introduce any H s

regularization (see [13, Lemma B.1] for a proof), indeed ‖φω‖H s ∼ ‖φ‖H s . However,
randomization gives improved Lp estimates almost surely.

Our setting to show almost sure local well-posedness is similar to that of Bourgain [4].
More precisely, we consider data φ ∈ H 1−α−ε(T3) for any ε > 0 of the form

φ(x) =
∑
n∈Z3

1
〈n〉5/2−α

ein·x (1.4)

whose randomization is
φω(x) =

∑
n∈Z3

gn(ω)

〈n〉5/2−α
ein·x . (1.5)

Our main result can then be stated as follows:

Main Theorem 1.3 (Main Theorem). Let 0 < α < 1/12, s ∈ (1+ 4α, 3/2− 2α) and φ
as in (1.4). Then there exist 0 < δ0 � 1 and r = r(s, α) > 0 such that for any δ < δ0
there exists �δ ∈ A with

P(�cδ) < e−1/δr

such that for each ω ∈ �δ there exists a unique solution u of (1.1) in the space

S(t)φω +Xs([0, δ))d

where S(t)φω is the linear evolution of the initial data φω given by (1.5).

Here we have denoted byXs([0, δ))d the metric space (Xs([0, δ)), d) where d is the met-
ric defined by (2.21) in Section 2 and Xs([0, δ)) is the space introduced in Definition 4.4
below.

The paper is organized as follows. In Section 2 we identify the problematic resonant
terms and present an equivalent gauged Cauchy initial value problem where such terms
are removed. Section 3 states the basic probabilistic results we rely upon. In Section 4
we first recall the atomic function spaces needed for the proof as well as their functional
properties. Then we also prove two multilinear propositions which play a significant role
in later sections. Section 5 contains statements on almost sure local well-posedness for the
gauged Cauchy initial value problem, while in Section 6 we collect a few counting esti-
mates and auxiliary lemmata. In Section 7 we prove all the trilinear and bilinear estimates
needed for estimating certain nonlinear terms. Section 8 contains the main argument of
the proof. In this section we prove the necessary quintilinear estimates for the top term in
the nonlinearity and use the trilinear and bilinear estimates of Section 7 to control corre-
sponding lower order nonlinear terms. Finally, in Section 9 we show how to extract a pos-
itive power of time from our estimates, which in turn allows us to close the argument via
a contraction mapping principle and obtain our almost sure local well-posedness result.
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2. Removing resonant frequencies: the gauged equation

The main idea in proving Theorem 1.3 goes back to Bourgain [4] and consists in proving
that if u solves (1.1), then w = u− S(t)φω is smoother; see also [13, 17, 26]. In fact one
reduces the problem to showing well-posedness for the initial value problem involving w,
which is in fact treated as a deterministic function. The initial value problem thatw solves
does not become a subcritical one, but it is of a hybrid type involving also rougher but
random terms, whose decay and moments play a fundamental role. For the NLS equation
this argument can be carried out only after having removed certain resonant frequencies in
the nonlinear part of the equation. In this section in fact we write the Fourier coefficients
of the quintic expression |u|4u and we identify the resonant part that has to be removed if
we want to take advantage of the moments coming from the randomized terms. We will
go back to this concept in more detail in Remark 2.1 below.

Let us start by assuming that û(n)(t) = an(t). We introduce the notation

0(n)[i1,...,ir ] := {(ni1 , . . . , nir ) ∈ Z3r
: n = ni1 − ni2 + · · · + (−1)r+1nir } (2.1)

to indicate various hyperplanes, and 0(n)c
[i1,...,ir ]

is its complement.
Next, for fixed time t , we take F , the Fourier transform in space, and write

F(|u(t)|4u(t))(n) =
∑

0(n)[1,...,5]

an1(t)an2(t)an3(t)an4(t)an5(t)

=

∑
0(n)[1,...,5]∩0(0)c[1,2,3,4]∩0(0)

c
[1,2,5,4]∩0(0)

c
[3,2,5,4]

an1(t)an2(t)an3(t)an4(t)an5(t)

+

∑
0(n)[1,...,5]∩0(0)[1,2,3,4]

an1(t)an2(t)an3(t)an4(t)an5(t)

+

∑
0(n)[1,...,5]∩0(0)[1,2,5,4]

an1(t)an2(t)an3(t)an4(t)an5(t)

+

∑
0(n)[1,...,5]∩0(0)[3,2,5,4]

an1(t)an2(t)an3(t)an4(t)an5(t)

−

∑
0(n)[1,...,5]∩0(0)[1,2,3,4]∩0(0)[1,2,5,4]∩0(0)c[3,2,5,4]

an1(t)an2(t)an3(t)an4(t)an5(t)

−

∑
0(n)[1,...,5]∩0(0)[1,2,3,4]∩0(0)[3,2,5,4]∩0(0)c[1,2,5,4]

an1(t)an2(t)an3(t)an4(t)an5(t)

−

∑
0(n)[1,...,5]∩0(0)[3,2,5,4]∩0(0)[1,2,5,4]∩0(0)c[1,2,3,4]

an1(t)an2(t)an3(t)an4(t)an5(t)

− 2
∑

0(n)[1,...,5]∩0(0)[1,2,3,4]∩0(0)[3,2,5,4]∩0(0)[1,2,5,4]

an1(t)an2(t)an3(t)an4(t)an5(t)

=

8∑
k=1

Ik.
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We now rewrite each Ik using more explicitly the constraints in the hyperplanes. I1 is the
most complicated, and we start by rewriting it. To that end we set

3(n) := 0(n)[1,...,5] ∩ 0(0)c[1,2,3,4] ∩ 0(0)
c
[1,2,5,4] ∩ 0(0)

c
[3,2,5,4], (2.2)

6(n) := {(n1, n2, n3, n4, n5) ∈ 3(n) : n1, n3, n5 6= n2, n4}. (2.3)

We have

I1 =
∑
3(n)

an1(t)an2(t)an3(t)an4(t)an5(t)

=

∑
6(n)

an1(t)an2(t)an3(t)an4(t)an5(t)

+ 6
(∑
n2

|an2 |
2
) ∑
0(n)[3,4,5], n3,n5 6=n4

an3(t)an4(t)an5(t)

− 6|an|2
∑

0(n)[3,4,5], n3,n5 6=n4

an3(t)an4(t)an5(t)

− 3
∑

0(n)[3,1,5],n3, n5 6=n1

|an1(t)|
2an1(t)an3(t)an5(t)

− 3|an|4an(t)+ 3|an|2an(t)
∑

n3+n5=2n

an3(t)an5(t)

− 6
∑

0(n)[2,4,5], n2,n5 6=n4

|an2(t)|
2an2(t)an4(t)an5(t)

+ 2
∑

n=2n2−n4, n2 6=n4

|an2(t)|
2a2
n2
(t)an4(t). (2.4)

Note here that we can write

|an|
2

∑
0(n)[3,4,5], n3,n5 6=n4

an3(t)an4(t)an5(t)

= −2|an|2an
(∑
n2

|an2 |
2
)
+ |an|

4an + |an|
2

∑
0(n)[3,4,5]

an3(t)an4(t)an5(t). (2.5)

It is easier to see that for i = 2, 3, 4,

Ii = an(t)
∑

0(0)[1,2,3,4]

an1(t)an2(t)an3(t)an4(t) = û(n)(t)

∫
T3
|u|4(x, t) dx, (2.6)

while for j = 5, 6, 7,

Ij = −a
3
n(t)

∑
n2+n4=2n

an2(t)an4(t)+ a
2
n

∑
n=n2+n4−n1

an2(t)an4(t)an1(t), (2.7)

and finally
I8 = −2a3

n(t)
∑

n2+n4=2n

an2(t)an4(t). (2.8)
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We summarize our findings from (2.4)–(2.8). In this part of the argument the time variable
is not important, hence we will omit it for now. We write

F
(
|u|4u− 3u

(∫
T3
|u|4 dx

))
(n) =

7∑
k=1

Jk(n) (2.9)

with

J1(n) =
∑
6(n)

an1an2an3an4an5 , (2.10)

J2(n) = 6m
∑

0(n)[1,2,3], n3,n1 6=n2

an1an2an3 , (2.11)

J3(n) = −6
∑

0(n)[1,2,3], n1,n3 6=n2

|an1 |
2an1an2an3

− 3
∑

0(n)[1,2,3], n1,n3,6=n2

an1 |an2 |
2an2an3 , (2.12)

J4(n) = 2
∑

n=2n1−n2,

|an1 |
2a2
n1
an2 , (2.13)

J5(n) = −6|an|2
∑

0(n)[123]

an1an2an3 + 3a2
n

∑
0(n)[214]

an2an1an4 , (2.14)

J6(n) = −5a3
n

∑
n=n2+n4

an2an4 + 3|an|2an
∑

n=n1+n3

an1an3 , (2.15)

J7(n) = −11an|an|4 + 12m|an|2an, (2.16)

where m =
∫
T3 |u(t, x)|

2 dx, the conserved mass.

Remark 2.1. In the calculations above we wrote the nonlinear terms in (1.1) in Fourier
space, we isolated the term u

∫
T3 |u|

4 dx and we subtracted it from |u|4u (see (2.9)). We
show below that indeed in doing so we separated those terms that we claim are not suitable
for smoother estimates from the ones that are. To understand this point let us replace an =
gn(ω)/〈n〉

5/2−α , for α small, whose anti-Fourier transform barely misses to be inH 1(T3).
We want to claim that the randomness coming from {gn(ω)} will increase the regularity
of the nonlinearity in a certain sense, so that it can hold a bit more than one derivative.
We realize immediately though that this claim cannot be true for the whole nonlinear
term. For example the terms Ii, i = 2, 3, 4, have no chance to improve their regularity
because they are simply linear with respect to an, hence they have to be removed. This
same problem presented itself in the work of Bourgain [4] and Colliander–Oh [17] who
considered the cubic NLS below L2. In particular in their case the problematic term was
of the type an

∫
Td |u|

2 dx and the authors removed it by Wick ordering the Hamiltonian.
An important ingredient in succeeding in this was that

∫
Td |u|

2 dx, that is, the mass, is
independent of time. In our case, Wick ordering the Hamiltonian is not helpful since
it does not remove the terms Ii, i = 2, 3, 4. As we mentioned before, the latter is not
surprising, and in fact known within the context of quantum field renormalization (cf.
Salmhofer’s book [30]).
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If we knew that
∫
T3 |u|

4 dx were constant in time, then we could simply relegate
those terms to the linear part of the equation. Since this is obviously not the case, rele-
gating these expressions to the main linear part of the equation would prevent us from
using the simple form of the solution for a Schrödinger equation with constant coeffi-
cients. A similar situation to the one just described presented itself in [31] where a gauge
transformation was used to remove the time dependent linear terms. We are able to use
the same idea in the present context and this is the content of what follows in this section.

To prove Main Theorem 1.1 we proceed in two steps. First we consider the initial value
problem {

ivt +1v = N (v), x ∈ T3,

v(0, x) = φ(x),
(2.17)

where

N (v) := λ
(
v|v|4 − 3v

(∫
T3
|v|4 dx

))
(2.18)

with λ = ±1 and φ(x) the initial datum as in (1.1). To make the notation simpler set

βv(t) := 3
∫
T3
|v|4 dx (2.19)

and define
u(t, x) := eiλ

∫ t
0 βv(s) dsv(t, x). (2.20)

We observe that u solves the initial value problem (1.1). Now suppose that one obtains
well-posedness for the initial value problem (2.17) in a certain Banach space (X, ‖ · ‖);
then one can transfer those results to the initial value problem (1.1) by using a metric
space Xd := (X, d) where

d(u, v) := ‖e−iλ
∫ t

0 βu(s) dsu(t, x)− e−iλ
∫ t

0 βv(s) dsv(t, x)‖. (2.21)

The fact that this is indeed a metric follows from the properties of the norm ‖ · ‖ and the
fact that if

e−iλ
∫ t

0 βu(s) dsu(t, x) = e−iλ
∫ t

0 βv(s) dsv(t, x)

then βv(t) = βu(t) and hence u = v.
From this moment on, we work exclusively with the initial value problem (2.17). In

particular, below we prove the following result:

Theorem 2.1. Let 0 < α < 1/12, s ∈ (1+ 4α, 3/2− 2α) and φ as in (1.4). There exist
0 < δ0 � 1 and r = r(s, α) > 0 such that for any δ < δ0 there exists �δ ∈ A with

P(�cδ) < e−1/δr

such that for each ω ∈ �δ there exists a unique solution u of (2.17) in the space

S(t)φω +Xs([0, δ))

with initial condition φω given by (1.5).

Here the space Xs([0, δ)) is defined in Section 4.
Thanks to the transformation (2.20), Theorem 2.1 translates to Main Theorem 1.3.
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3. Probabilistic set up

We first recall a classical result that goes back to Kolmogorov, Paley and Zygmund.

Lemma 3.1 ([13, Lemma 3.1]). Let {gn(ω)} be a sequence of complex i.i.d. zero mean
Gaussian random variables on a probability space (�,A,P), and (cn) ∈ `2. Define

F(ω) :=
∑
n

cngn(ω). (3.1)

Then there exists C > 0 such that for every λ > 0 we have

P({ω : |F(ω)| > λ}) ≤ exp
(
−Cλ2

‖F‖2
L2(�)

)
. (3.2)

As a consequence there exists C > 0 such that for every q ≥ 2 and every (cn) ∈ `2,∥∥∥∑
n

cngn

∥∥∥
Lq (�)

≤ C
√
q
(∑
n

|cn|
2
)1/2

.

We also recall the following basic probability results:

Lemma 3.2. Let 1 ≤ m1 < · · · < mk = m and let f1 be a Borel measurable function
of m1 variables, f2 one of m2 − m1 variables, . . . , fk one of mk − mk−1 variables. If
{X1, . . . , Xm} are real-valued independent random variables, then the k random vari-
ables f1(X1, . . . , Xm1), f2(Xm1+1, . . . , Xm2), . . . , fk(Xmk−1+1, . . . , Xmk ) are indepen-
dent random variables.

Lemma 3.3. Let k ≥ 1 and let {gnj }1≤j≤k, {gn′j }1≤j≤k ∈ NC(0, 1) be complex L2(�)

normalized independent Gaussian random variables such that ni 6= nj and n′i 6= n
′

j for
i 6= j . Then ∣∣∣∣∫

�

k∏
j=1

gnj (ω)

k∏
i=1

gn′i
(ω) dP(ω)

∣∣∣∣ ≤ ∫
�

k∏
`=1

|gn`(ω)|
2 dP(ω).

Proof. For every pair (n`, n′i) such that n` = n′i we write Knj (ω) := |gnj (ω)|
2 and

note that thanks to the independence and normalization of {gnj }, for nj 6= ni , we have
E(Knj gni ) = 0. The latter together with Lemma 3.2 gives the desired conclusion. ut

More generally, in the next sections we will repeatedly use a classical Fernique or large
deviation-type result related to the product of {Gn}1≤n≤d ∈ NC(0, 1), complex L2 nor-
malized independent Gaussians. This result follows from the hypercontractivity prop-
erty of the Ornstein–Uhlenbeck semigroup (cf. [35, 33] for a nice exposition) by writing
Gn = Hn + iLn where {H1, . . . , Hd , L1, . . . , Ld} ∈ NR(0, 1) are real centered indepen-
dent Gaussian random variables with the same variance. Note that E(G2

n) = E(Gn) = 0.

Remark 3.1. Note that for {Gn(ω)}n ∈ NC(0, 1), complex L2 normalized independent
Gaussians, if we write |Gn(ω)|2 = (|Gn(ω)|2 − 1)+ 1, then thanks to the independence
and normalization of Gn, Yn(ω) := |Gn(ω)|2 − 1 is a centered real Gaussian random
variable such that E(YnGn′) = 0 = E(YnYn′) for n 6= n′.
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Proposition 3.1 ([33, Proposition 2.4] and [35, Lemma 4.5]). Let d≥1 and c(n1, . . . , nk)

∈ C. Let {Gn}1≤n≤d ∈ NC(0, 1) be complex centered L2 normalized independent Gaus-
sians. For k ≥ 1 denote A(k, d) := {(n1, . . . , nk) ∈ {1, . . . , d}k : n1 ≤ · · · ≤ nk} and

Fk(ω) :=
∑
A(k,d)

c(n1, . . . , nk)Gn1(ω) . . . Gnk (ω). (3.3)

Then for all d ≥ 1 and p ≥ 2,

‖Fk‖Lp(�) .
√
k + 1 (p − 1)k/2‖Fk‖L2(�).

As a consequence, from Chebyshev’s inequality we have, for every λ > 0,

P({ω : |Fk(ω)| > λ}) . exp
(
−Cλ2/k

‖Fk‖
2/k
L2(�)

)
. (3.4)

Remark 3.2. In Sections 7 and 8 we will rely repeatedly on Proposition 3.1, particu-
larly (3.4), as well as on Lemma 3.1, and (3.2). Indeed, in proving our estimates we will
encounter expressions of the following type. Let

6 := {(n1, . . . , nr , `1, . . . , `s) : |nj | ∼ Nj , |`i | ∼ Li, nj 6= `i, 1 ≤ j ≤ r, 1 ≤ i ≤ s}

and

F(ω) :=
∑

(n1,...,nr ,`1,...,`s )∈6

cn1 . . . cnrb`1 . . . b`sgn1(ω) . . . gnr (ω)g`1
(ω) . . . g`s (ω)

where {gn1(ω) . . . gnr (ω), g`1(ω) . . . g`s (ω)} ∈ NC(0, 1) are complex centered L2 nor-
malized independent Gaussians. Then by Proposition 3.1, there exist C, γ = γ (r, s) > 0
such that for every λ > 0 we have

P({ω : |F(ω)| > λ}) ≤ exp
(
−Cλ2/γ

‖F‖
2/γ
L2(�)

)
.

We will also apply Proposition 3.1 in the context of Remark 3.1.

Lemma 3.4. Let {gn(ω)} be a sequence of complex i.i.d. zero mean Gaussian random
variables on a probability space (�,A,P). Then:

(1) For 1 ≤ p <∞ there exists cp > 0 (independent of n) such that ‖gn‖Lp(�) ≤ cp.
(2) Given ε, δ > 0, for ω outside a set of measure O(δ),

|gn(ω)| . 〈n〉
ε. (3.5)

Proof. Part (1) follows from the fact that higher moments of {gn(ω)} are uniformly
bounded.

For part (2) first recall that if {Xj (ω)}j≥1 is a sequence of i.i.d. random variables such
that E(|Xj |) = E <∞ then

P(|Xj | ≥ j) = P(|X1| ≥ j) (3.6)
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and ∑
j

P(|Xj | ≥ j) =
∑
j

P(|X1| ≥ j) ≤ E(|X1|) <∞.

By Borel–Cantelli P(|Xj | ≥ j for infinitely many j) = 0, whence one can show that
limj→∞ |Xj (ω)|/j = 0 almost surely in ω. Egoroff’s Theorem then ensures that given
δ > 0,

lim
j→∞

|Xj (ω)|

j
= 0

uniformly outside a set of measure δ. Thus for j0 sufficiently large,

|Xj (ω)|

j
≤ 1, j ≥ j0,

for ω outside an exceptional set of δ measure. If {gn(ω)} is a sequence of i.i.d. complex
Gaussian random variables given ε > 0, if we choose r = 3/ε then E(|gn|r) < ∞. For
n 7→ jn a one-to-one map Z3

→ N such that jn ∼ |n|3, we let Xjn(ω) := |gn(ω)|
r and

reason as above. Note also that for M � 1 but fixed,

P(|gn(ω)| ≥ Mε) = P(|gM(ω)| ≥ Mε)

for all |n| ≤ M; whence for A :=
⋃
|n|≤M−1{ω : |gM(ω)| ≥ M

ε
}, we have P(A) ≤ CMδ.

We then have the desired conclusion (cf. [28, 17]). ut

4. Function spaces

To establish our almost sure local well-posedness result, it suffices to work with Xs

and Y s , the atomic function spaces used by Herr, Tataru and Tzvetkov [23]. It is worth
emphasizing that while working with these spaces, one should not rely on the notion of
the norms depending on the absolute value of the Fourier transform, a feature that is quite
useful when working within the context of Xs,b spaces.

In this section we recall their definition and summarize the main properties by follow-
ing the presentation in [23, Section 2]. In what follows, H is a separable Hilbert space
over C, and Z denotes the set of finite partitions −∞ < t0 < t1 < · · · < tK ≤ ∞ of the
real line, with the convention that if tk = ∞ then v(tK) := 0 for any function v : R→ H.

Definition 4.1 ([23, Definition 2.1]). Let 1≤p<∞. For {tk}Kk=0 ∈Z and {φk}K−1
k=0 ⊂H

with
∑K−1
k=0 ‖φk‖

p

H = 1, a Up-atom is a piecewise defined function a : R → H of the
form

a =

K∑
k=1

χ[tk−1,tk)φk−1.

The atomic Banach space Up(R,H) is then defined to be the set of all functions u :
R→ H such that

u =

∞∑
j=1

λjaj for Up-atoms aj , {λj }j ∈ `1,
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with the norm

‖u‖Up := inf
{ ∞∑
j=1

|λj | : u =

∞∑
j=1

λjaj , λj ∈ C, and aj an Up-atom
}
.

Here χI denotes the indicator function of the set I . Note that for 1 ≤ p ≤ q <∞,

Up(R,H) ↪→ Uq(R,H) ↪→ L∞(R,H), (4.1)

and functions in Up(R,H) are right continuous, limt→−∞ u(t) = 0.

Definition 4.2 ([23, Definition 2.2]). Let 1 ≤ p < ∞. The Banach space V p(R,H) is
defined to be the set of all functions v : R→ H such that

‖v‖V p := sup
{tk}

K
k=0∈Z

( K∑
k=1

‖v(tk)− v(tk−1)‖
p

H

)1/p
is finite.

The Banach subspace of all right continuous functions v : R→H such that limt→−∞ v(t)

= 0, endowed with the norm above, is denoted by V prc (R,H). Note that

Up(R,H) ↪→ V
p
rc (R,H) ↪→ L∞(R,H). (4.2)

Definition 4.3 ([23, Definition 2.5]). For s ∈ R we let Up1H
s , respectively V p1H

s , be
the space of all functions u : R → H s(T3) such that t 7→ e−it1u(t) is in Up(R, H s),
respectively in V p1H

s , with norm

‖u‖Up1H
s := ‖e

−it1u(t)‖Up(R,H s ), ‖u‖V p1H
s := ‖e

−it1u(t)‖V p(R,H s ).

We will take H to be H s . We refer the reader to [22], [23], and references therein for
detailed definitions and properties of the Up and V p spaces.

Definition 4.4 ([23, Definition 2.6]). For s ∈ R we define Xs to be the space of all
functions u : R → H s(T3) such that for every n ∈ Z3 the map t 7→ eit |n|

2
û(t)(n) is in

U2(R,C) and the norm

‖u‖Xs :=
(∑
n∈Z3

〈n〉2s‖eit |n|
2
û(t)(n)‖2

U2
t

)1/2
is finite. (4.3)

The Xs spaces are variations of the spaces Up1H
s and V p1H

s corresponding to the Schrö-
dinger flow and defined as follows:

Definition 4.5 ([23, Definition 2.7]). For s ∈ R we define Y s to be the space of all
functions u : R → H s(T3) such that for every n ∈ Z3 the map t 7→ eit |n|

2
û(t)(n) is in

V 2
rc(R,C) and the norm

‖u‖Y s :=
(∑
n∈Z3

〈n〉2s‖eit |n|
2
û(t)(n)‖2

V 2
t

)1/2
is finite. (4.4)
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Note that
U2
1H

s ↪→ Xs ↪→ Y s ↪→ V 2
1H

s, (4.5)

whence for any partition Z3
:=
⋃
k Ck ,(∑

k

‖PCku‖
2
V 2
1H

s

)1/2
. ‖u‖Y s

(cf. [23, Section 2]).
Additionally, when s = 0 by orthogonality we have(∑

k

‖PCku‖
2
Y 0

)1/2
= ‖u‖Y 0 . (4.6)

We also have the embedding

Xs ↪→ Y s ↪→ L∞t H
s
x (4.7)

for s ≥ 0 (cf. [24]).

Remark 4.6 ([23, Proposition 2.10]). From the atomic structure of the U2 spaces one
can immediately see that for s ≥ 0, T > 0 and φ ∈ H s(T3), the solution to the linear
Schrödinger equation u := eit1φ belongs to Xs([0, T )) and ‖u‖Xs ([0,T )) ≤ ‖φ‖H s .

Remark 4.7. Another important feature of the atomic structure of the U2 spaces is the
fact that just like theXs,b spaces they enjoy a ‘transfer principle’. We recall in our context
the precise statement below for completeness.

Proposition 4.1 ([22, Proposition 2.19]). Let T0 : L
2
×· · ·×L2

→ L1
loc be anm-linear

operator. Assume that for some 1 ≤ p, q ≤ ∞,

‖T0(e
it1φ1, . . . , e

it1φm)‖Lp(R,Lqx (T3)) .
m∏
i=1

‖φi‖L2(T3). (4.8)

Then there exists an extension T : Up1 × · · · × U
p
1→ Lp(R, Lq(T3)) satisfying

‖T (u1, . . . , um)‖Lp(R,Lqx (T3)) .
m∏
i=1

‖ui‖Up1
(4.9)

and such that T (u1, . . . , um)(t, ·) = T0(u1(t), . . . , um(t))(·) a.e. In other words, one can
reduce estimates for multilinear operators on functions in Up1 to similar estimates on
solutions to the linear Schrödinger equation.

We will use the following interpolation result at the end of Section 8 to obtain bounds in
terms of the Xs spaces from those in U2

1H
s and Up1H

s , just as in [23]. Its proof relies
solely on linear interpolation [22, 23].
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Proposition 4.2 ([22, Proposition 2.20] and [23, Lemma 2.4]). Let q1, . . . , qm > 2
where m = 1, 2, or 3, E be a Banach space, and T : Uq1 × · · · × Uqm → E be a
bounded m-linear operator with

‖T (u1, . . . , um)‖E ≤ C

m∏
i=1

‖ui‖U
qi
1
. (4.10)

In addition assume there exists 0 < C2 ≤ C such that

‖T (u1, . . . , um)‖E ≤ C2

m∏
i=1

‖ui‖U2
1
. (4.11)

Then

‖T (u1, . . . , um)‖E . C2

(
ln
C

C2
+1
)m m∏

i=1

‖ui‖V 2 , ui ∈V
2
rc, i = 1, . . . , m, (4.12)

where V 2
rc denotes the closed subspace of V 2 of all right continuous functions of t such

that limt→−∞ v(t) = 0.

Finally, we state two results from [23] we rely on in the next sections. In what follows,
I denotes the Duhamel operator,

I(f )(t) :=
∫ t

0
ei(t−t

′)1f (t ′) dt ′, t ≥ 0, (4.13)

defined for f ∈ L1
loc([0,∞), L

2(T3)).

Proposition 4.3 ([23, Proposition 2.11]). Let s≥ 0, T > 0. For f ∈L1([0, T ),H s(T3))

we have I(f ) ∈ Xs([0, T )) and

‖I(f )‖Xs ([0,T )) ≤ sup
v∈Y−s ([0,T )): ‖v‖Y−s=1

∣∣∣∣∫ T

0

∫
T3
f (t, x)v(t, x) dx dt

∣∣∣∣.
As a consequence,

‖I(f )‖Xs ([0,T )) . ‖f ‖L1([0,T ),H s (T3)). (4.14)

Proposition 4.4 ([23, Proposition 4.1]). Fix s ≥ 1. Then for all T ∈ (0, 2π ] and uk ∈
Xs([0, T )), k = 1, . . . , 5,∥∥∥I( 5∏

k=1

ũk

)∥∥∥
Xs ([0,T ))

.
5∑

j=1

‖uj‖Xs ([0,T ))

5∏
k=1, k 6=j

‖uk‖X1([0,T )), (4.15)

where ũk denotes either uk or uk . In particular, (4.15) follows from the estimate for the
multilinear form:∣∣∣∣∫

[0,T )×T3

5∏
k=0

ũk dx dt

∣∣∣∣ . ‖u0‖Y−s ([0,T ))

5∑
j=1

(
‖uj‖Xs ([0,T ))

5∏
k=1, k 6=j

‖uk‖X1([0,T ))

)
where u0 := P≤Nv.

Next, we recall the Lp(T×T3) Strichartz-type estimates of Bourgain’s [5] in this context.
First recall the usual Littlewood–Paley decomposition of periodic functions. For N ≥ 1
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a dyadic number, we denote by P≤N the rectangular Fourier projection operator

P≤Nf :=
∑

n=(n1,n2,n3)∈Z3: |ni |≤N

f̂ (n)ein·x .

Then PN = P≤N − P≤N−1 so that P≤N =
∑N
M=1 PM and P⊥N := I − PN . We then have

‖f ‖H s (T3) := ‖D
sf ‖L2(T3) =

(∑
n∈Z3

〈n〉2s |f̂ (n)|2
)1/2
≡

(∑
N≥1

N2s
‖PN (f )‖

2
L2(T3)

)1/2
,

where (Dsf )(n) = 〈n〉s f̂ (n).

Definition 4.8. For N ≥ 1, we denote by CN the collection of cubes C in Z3 with sides
parallel to the axes of sidelength N .

Proposition 4.5 ([23, Proposition 3.1, Corollary 3.2], cf. [5]). Let p > 4. For allN ≥ 1,

‖PNe
it1φ‖Lp(T×T3) . N3/2−5/p

‖PNφ‖L2(T3), (4.16)

‖PCe
it1φ‖Lp(T×T3) . N3/2−5/p

‖PCφ‖L2(T3), (4.17)

‖PCu‖Lp(T×T3) . N3/2−5/p
‖PCu‖Up1L

2 , (4.18)

where PC is the Fourier projection operator onto C ∈ CN defined by the multiplier χC ,
the characteristic function of C.

Finally, we prove two propositions which will play an important role in Sections 7 and 8.

Proposition 4.6. Let u, v and w be functions of x and t such that

û(n, t) = a1
n(t)a

2
n(t)a

3
n(t),

v̂(n, t) = a1
n(t)a

2
n(t)a

3
n(t)a

4
n(t)a

5
n(t),

ŵ(n, t) = a1
n(t)a

2
n(t)a

3
n(t)

∑
m

a4
ma

5
n−m,

and |n| ∼ N . Assume that J ⊆ {1, 2, 3, 4, 5} and if i ∈ J then

ain(t) =
gn(ω)

|n|3/2+ε
eit |n|

2
,

while if i /∈ J then there is a deterministic function fi such that f̂i(n, t) = ain(t). Then

‖PNu‖Lp(T×T3) .
∏

i /∈J∩{1,2,3}

‖PNfi‖Y 0 , p > 4, (4.19)

‖PNu‖L2(T×T3) .
∏

i /∈J∩{1,2,3}

‖PNfi‖Y 0 , (4.20)

‖PNv‖L2(T×T3) .
∏
i /∈J

‖PNfi‖Y 0 , (4.21)

‖PNw‖L2(T×T3) .
∏

i /∈J, i 6=4,5

‖PNfi‖Y 0

∏
j /∈J,j=4,5

‖fj‖Y 0 . (4.22)



1702 Andrea R. Nahmod, Gigliola Staffilani

Proof. To prove (4.19) we write u = k1 ∗ k2 ∗ k3, where the convolution is only with
respect to the space variable. Then by Young’s inequality in the space variable followed
by Hölder’s inequality and the embedding (4.7) we have the desired inequality.

To prove (4.20) we use Plancherel

‖PNu‖L2(T×T3) .
∥∥‖χ|n|∼Na1

na
2
na

3
n‖`2

∥∥
L∞(T) .

∥∥∥ 3∏
i=1

‖χ|n|∼Na
i
n‖`2

∥∥∥
L∞(T)

.
∥∥∥ 3∏
i=1

‖PNfi‖L2
x

∥∥∥
L∞(T)

.
∏

i /∈J∩{1,2,3}

‖PNfi‖L∞(T,L2(T3)),

and the conclusion follows from the embedding (4.7).
To prove (4.21) we proceed in a similar manner.
To prove (4.22) we first write

‖PNw‖L2(T×T3) ∼ ‖PN (k1 ∗ k2 ∗ k3 ∗ (k4k5))‖L2(T×T3),

and by the Young, Hölder and Cauchy–Schwarz inequalities we continue with

.
∥∥∥ 3∏
i=1

‖PNki‖L2‖PN (k4k5)‖L1

∥∥∥
L2(T)

.
∥∥∥ 3∏
i=1

‖PNki‖L2‖k4‖L2‖k5‖L2

∥∥∥
L2(T)

.
∏

i /∈J, i 6=4,5

‖PNfi‖L∞(T,L2(T3))

∏
j /∈J, j=4,5

‖fj‖L∞(T,L2(T3)). ut

We now state a trilinear L2 estimate that is similar to Proposition 3.5 in [23] but in which
some of the functions may be linear evolution of random data.

Proposition 4.7. Assume that N1 ≥ N2 ≥ N3 and C ∈ CN2 , a cube of sidelength N2.
Assume also that J ⊆ {1, 2, 3} and if j ∈ J then ûj (n) = ei|n|

2tgn(ω)/|n|
3/2+ε for ε > 0

small. Then

‖PCPN1 ũ1PN2 ũ2PN3 ũ3‖L2(T×T3) . N2N3
∏
j /∈J

‖PNj uj‖U4
1L

2 , (4.23)

‖PCPN1 ũ1PN2 ũ2‖L2(T×T3) . N
1/2+ε
2

∏
j /∈J

‖PNj uj‖U4
1L

2 , (4.24)

where ũk denotes either uk or uk .
Moreover (4.23) and (4.24) also hold with the Y 0 norms on the right hand side.

Proof. To prove (4.23) we follow [23, proof of (24)]. We write

‖PCPN1 ũ1PN2 ũ2PN3 ũ3‖L2(T×T3) . ‖PCPN1u1‖Lp‖PN2u2‖Lp‖PN3u3‖Lq

where 2/p + 1/q = 1/2 and 4 < p < 5. Then we use (4.17) for the random linear
functions and (4.18) for the deterministic functions to obtain

‖PCPN1 ũ1PN2 ũ2PN3 ũ3‖L2(T×T3) . N2N3

(
N3

N2

)−2+10/p∏
j /∈J

‖PNj uj‖U4
1L

2 ,

where we have used the embedding (4.1).
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To prove (4.24) we use Hölder’s inequality to write

‖PCPN1 ũ1PN2 ũ2‖L2(T×T3) . ‖PCPN1u1‖L4+ε‖PN2u2‖L4+ε ; (4.25)

we then use (4.17), (4.18) and the embedding (4.1) to continue with

. N
1/2+ε
2

∏
j /∈J

‖PNj uj‖U4
1L

2 .

To obtain the Y 0 on the right hand side we use the interpolation Proposition 4.2 and the
embedding (4.1). ut

5. Almost sure local well-posedness for the initial value problem (2.17)

We define
vω0 (t, x) := S(t)φ

ω(x) (5.1)

where φω(x) is as in (1.5), and instead of solving the initial value problem (2.17) we solve
the one for w := v − vω0 :{

iwt +1w = N (w + vω0 ), x ∈ T3,

w(0, x) = 0,
(5.2)

where N (·) was defined in (2.18). To understand the nonlinear term of (5.2) we express
it in terms of its spatial Fourier transform. Let an := v̂(n), θωn := F(S(t)φω)(n); then
bn := ŵ(n) = an − θ

ω
n . Now recall (2.9) and replace in it an with bn + θωn . Then

F(N (w + vω0 ))(n) =
7∑
k=1

Jk(bn + θ
ω
n ) (5.3)

where Jk(bn + θωn ) means that the terms Jk defined in (2.10)–(2.16) are evaluated for the
sequence bn + θωn instead of an.

We are now ready to state the almost sure well-posedness result for the initial value
problem (5.2).

Theorem 5.1. Let 0 < α < 1/12, s ∈ (1 + 4α, 3/2 − 2α). There exist 0 < δ0 � 1 and
r = r(s, α) > 0 such that for any δ < δ0, there exists �δ ∈ A with

P(�cδ) < e−1/δr

such that for each ω ∈ �δ there exists a unique solutionw of (5.2) in the spaceXs([0, δ))
∩ C([0, δ),H s(T3)).

This theorem follows from the following two propositions via a contraction mapping
argument.
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Proposition 5.1. Let 0 < α < 1/12, s ∈ (1+ 4α, 3/2− 2α), δ � 1 and r > 0. Assume
Ni , i = 0, . . . , 5, are dyadic numbers and N1 ≥ · · · ≥ N5. Then there exist ρ = ρ(s, α),
µ > 0, and �δ ∈ A with P(�cδ) < e−1/δr such that for ω ∈ �δ we have:

• If N1 � N0 or PN1w = PN1v
ω
0 then∣∣∣∣∫ 2π

0

∫
T3
Ds(N (PNi (w + v

ω
0 )))PN0h dx dt

∣∣∣∣
. δ−µrN

−ρ
1 ‖PN0h‖Y−s

(
1+

∏
i /∈J

‖PNiw‖Xs
)
. (5.4)

• If N1 ∼ N0 and PN1w 6= PN1v
ω
0 then∣∣∣∣∫ 2π

0

∫
T3
Ds(N (PNi (w + v

ω
0 )))PN0h dx dt

∣∣∣∣
. δ−µrN

−ρ
2 ‖PN0h‖Y−s‖PN1w‖Xs

(
1+

∏
i /∈J, i 6=1

‖ψδPNiw‖Xs
)
. (5.5)

Here vω0 is as in (5.1), w ∈ Xs([0, 2π ]), and J ⊆ {1, 2, 3, 4, 5} denote those indices
corresponding to random functions.

Proposition 5.2. Let 0 < α < 1/12, s ∈ (1+4α, 3/2−2α) and δ � 1. Let vω0 be defined
as in (5.1) and assume w ∈ Xs([0, 2π ]). Then there exist θ = θ(s, α) > 0, r = r(s, α)
and �δ ∈ A with P(�cδ) < e−1/δr such that for ω ∈ �δ ,

‖I(ψδN (w + vω0 ))‖Xs ([0,2π ]) . δθ (1+ ‖ψδw‖5Xs ([0,2π ])) (5.6)

where N (·) was defined in (2.18) and ψδ is a smooth time cut-off of the interval [0, δ].

The proof of Proposition 5.1 is the content of Sections 7 and 8, while Proposition 5.2 is
proved in Section 9.

6. Auxiliary lemmata and further notation

We begin by recalling some counting estimates for integer lattice sets (cf. Bourgain [5]).

Lemma 6.1. Let SR be a sphere of radius R, Br be a ball of radius r , and P be a plane
in R3. Then

|Z3
∩ SR| . R, (6.1)

|Z3
∩ Br ∩ SR| . min(R, r2), (6.2)

|Z3
∩ Br ∩ P| . r2, (6.3)

where | · | denotes cardinality.
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Next, we state a result we will invoke when the higher frequencies correspond to deter-
ministic terms and one can afford to ignore the moments given by the lower frequency
random terms as well as rely on Strichartz estimates.

Lemma 6.2. Assume Ni, i = 0, . . . , 5, are dyadic numbers and N1 ∼ N0 and N1 ≥

· · · ≥ N5. Let {C} be a partition of Z3 into cubes C ∈ CN2 , and let {Q} be a partition of
Z3 into cubes Q ∈ CN3 . Then

∑
Ni , i=0,...,5

∣∣∣∣∫ 1

0

∫
T3
PN1f1PN2f2PN3f3PN4f4PN5f5PN0h dx dt

∣∣∣∣
.

∑
Ni , i=0,...,5

(
sup
C̃

‖P
C̃
PN1f1PN2f2PN`f`‖

2
L2
xt

∑
C,Q

‖PQPCPN0hPN3f3PNrfr‖
2
L2
xt

)1/2

(6.4)

where ` 6= r ∈ {4, 5} and C̃ are cubes whose sidelength is 10N2.
Proof. This follows from orthogonality arguments. ut

Just as Bourgain [4], in the course of the proof we will use the following classical result
about matrices, which we state as a lemma for convenience.

Lemma 6.3. Let A = (Aik)1≤i≤N
1≤k≤M

be an N ×M matrix with adjoint A∗ = (Akj )1≤k≤M
1≤j≤N

.
Then

‖AA∗‖ ≤ max
1≤j≤N

M∑
k=1

|Ajk|
2
+

(∑
i 6=j

∣∣∣ M∑
k=1

AikAjk

∣∣∣2)1/2
(6.5)

where ‖ · ‖ means the 2-norm.
Proof. Decompose AA∗ into the sum of a diagonal matrixD plus an off-diagonal one F .
Then note the 2-norm of D is bounded by the square root of the largest eigenvalue
of DD∗, which, since D is diagonal, is the maximum of the absolute values of the di-
agonal entries of D. This gives the first term in (6.5). Bounding the 2-norm of F by the
Frobenius norm of F gives the second term in (6.5). ut

Notation. Given k-tuples (n1, . . . , nk) ∈ Z3k , a set C of constraints on them, and a
subset {i1, . . . , ih} ⊆ {1, . . . , k}, we denote by S(ni1 ,...,nih ) the set of (k − h)-tuples
(nj1 , . . . , njk−h) with {j1, . . . jk−h} = {1, . . . , k} \ {i1, . . . , ih} which satisfy the con-
straints C for fixed (ni1 , . . . , nih). We also denote by |S(ni1 ,...,nih )| its cardinality.

7. The trilinear and bilinear estimates

In this section, we denote by Dj := eit1PNjφ solutions to the linear equation for data φ
in L2 localized at frequency Nj , and by Rk the function defined by

R̂k(n) = χ{|n|∼Nk}(n)
gn(ω)

〈n〉3/2
eit |n|

2
, (7.1)

and representing the linear evolution of a random function of type (1.5), localized at
frequency Nk and almost L2 normalized.
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7.1. Trilinear estimates

We prove certain trilinear estimates which serve as building blocks for the proof in
Section 8. Their proofs are of the same flavor as those presented by Bourgain [4]. For
Nj , j = 1, 2, 3, dyadic numbers, let αj = 0 or 1 for j = 1, 2, 3 and define

ϒ(n,m) :=

(n1, m1; n2, m2; n3, m3) :

n = (−1)α1n1 + (−1)α2n2 + (−1)α3n3,

nk 6= n` whenever αk 6= α`,
|nj | ∼ Nj , j = 1, 2, 3,
m = (−1)α1m1 + (−1)α2m2 + (−1)α3m3

 .
(7.2)

Then define Tϒ to be the multilinear operator with multiplier χϒ .

Proposition 7.1. Fix N1 ≥ N2 ≥ N3, r, δ > 0 and C ∈ CN2 . Then there exist µ, ε > 0
and a set �δ ∈ A with P(�cδ) ≤ e

−1/δr such that for any ω ∈ �δ we have the following
space-time estimates:

‖Tϒ (PCR̄1, D̃2, R3)‖L2 . δ−µrN
5/4
2 N

−1/2
1 ‖PN2φ‖L2

x
, (7.3)

‖Tϒ (PCR̄1, D̃2, R̄3)‖L2 . δ−µrN
5/4
2 N

−1/2
1 ‖PN2φ‖L2

x
, (7.4)

‖Tϒ (PCD̃1, R̄2, R3)‖L2 . δ−µrN
3/4
2 ‖PCPN1φ‖L2

x
, (7.5)

‖Tϒ (PCD̃1, R2, R3)‖L2 . δ−µrN
3/4
2 ‖PCPN1φ‖L2

x
, (7.6)

‖Tϒ (PCR̄1, R2, D̃3)‖L2 . δ−µr [N
−3/4
1 N

1/2
2 N

5/4
3 +N

−1/2
1 N

1/2
2 N

3/4
3 ]‖PN3φ‖L2

x
,

(7.7)

‖Tϒ (PCR̄1, R̄2, D̃3)‖L2 . δ−µr [N
−3/4
1 N

1/2
2 N

5/4
3 +N

−1/2
1 N

1/2
2 N

3/4
3 ]‖PN3φ‖L2

x
,

(7.8)

‖Tϒ (PCR1, D̃2, D̃3)‖L2 . δ−µrN
1/2+3θ/4
2 N

−1/2+ε
1 min(N1, N

2
2 )

1−θ/2N
3/2
3

× ‖PN2φ‖L2
x
‖PN3φ‖L2

x
, 0 ≤ θ ≤ 1, (7.9)

‖Tϒ (PCD̃1, R2, D̃3)‖L2 . δ−µrN
1/2+ε
2 N

3/2
3 ‖PN1φ‖L2

x
‖PN3φ‖L2

x
, (7.10)

‖Tϒ (PCR̄1, R̄2, R3)‖L2 . δ−µrN
−1/2
1 N

1/2
2 , (7.11)

‖Tϒ (PCR̄1, R2, R̄3)‖L2 . δ−µrN
−1/2
1 N

1/2
2 , (7.12)

‖Tϒ (PCR̄1, R2, R3)‖L2 . δ−µrN
−1/2
1 N

1/2
2 , (7.13)

where L2
= L2(T × T3). Note that here the bar − indicates complex conjugate while

the tilde ∼ indicates both complex conjugate or not. Also, without writing it explicitly,
we always assume that if ̂̄R(n1) and R̂(n2) appear in the trilinear expressions on the left
hand side, then n1 6= n2.

Remark 7.1. In using the trilinear estimates above, sometimes it is convenient to in-
terpret a random term as deterministic and choose the minimum estimate possible. For
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example, in considering ‖PCR̄1R̄2R3‖L2 we have a choice between (7.11) and (7.8) by
thinking of R3 as an ‘almost’ L2 normalized D̃3 function.

Proposition 7.2. Let Dj and Rk be as above and fix N1 ≥ N2 ≥ N3, r, δ > 0 and
C ∈ CN2 . Then there exists µ > 0 and a set �δ ∈ A with P(�cδ) ≤ e

−1/δr such that for
any ω ∈ �δ we have (7.3) and (7.4).

Proof. As in [23] we will first assume that the deterministic functions Di are localized
linear solutions, that is,Di = PNiS(t)ψ and ψ̂(n) = an. Once an estimate is proved with
‖χNi (n)an‖`2 on the right hand side, we invoke the transfer principle of Proposition 4.1
to complete the proof.

We start by estimating (7.3). Without any loss of generality we assume that D̃2 = D2.
By using Fourier transform to write the left hand side we note that it is enough to estimate

T :=
∑

m∈Z, n∈Z3

∣∣∣∣ ∑
n=−n1+n2+n3
n1 6=n2,n3

m=−|n1|
2
+|n2|

2
+|n3|

2

χC(n1)
gn1
(ω)

|n1|3/2
an2

gn3(ω)

|n3|3/2

∣∣∣∣2 (7.14)

where we recall that C is a cube of sidelength N2. We are going to use duality and a
change of variable since, as will be apparent below, the counting with respect to the time
frequency will be more favorable.

Using duality we find that

T =
[

sup
‖γ⊗k‖

`2≤1

∣∣∣∣∑
m,n

k(n)γ (m)
∑

n=−n1+n2+n3
n1 6=n2,n3

m=−|n1|
2
+|n2|

2
+|n3|

2

χC(n1)
gn1
(ω)

|n1|3/2
an2

gn3(ω)

|n3|3/2

∣∣∣∣]2

.

Letting ζ := m− |n2|
2
= −|n1|

2
+ |n3|

2, we continue with

T =
[

sup
‖γ⊗k‖

`2≤1

∣∣∣∣∑
n2

an2

∑
ζ

γ (ζ + |n2|
2)

∑
n=−n1+n2+n3
n1 6=n2,n3

ζ=−|n1|
2
+|n3|

2

χC(n1)
gn1
(ω)

|n1|3/2
gn3(ω)

|n3|3/2
kn

∣∣∣∣]2

. sup
‖γ⊗k‖

`2≤1
‖an2‖

2
`2
n2
‖γ ‖2

`2
ζ

∑
n2,ζ

∣∣∣∣ ∑
n=−n1+n2+n3
n1 6=n2,n3

ζ=−|n1|
2
+|n3|

2

χC(n1)
gn1
(ω)

|n1|3/2
gn3(ω)

|n3|3/2
kn

∣∣∣∣2.
All in all, we then have to estimate, uniformly for ‖γ ⊗ k‖`2 ≤ 1,

‖an2‖
2
`2‖γ ‖

2
`2

∑
n2

∑
|ζ |≤N1N2

∣∣∣∑
n

σn2,nkn

∣∣∣2 (7.15)

where

σn2,n :=

∑
n2=n1+n−n3, n1 6=n2,n3

ζ=−|n1|
2
+|n3|

2

χC(n1)
gn1
(ω)

|n1|3/2
gn3(ω)

|n3|3/2
.
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Note that σn,n2 also depends on ζ but we estimate it independently of ζ . If we denote
by G the matrix of entries σn2,n, and we recall that the variation in ζ is at most N1N2, we
are reduced to estimating

‖an2‖
2
`2N1N2‖GG∗‖.

We note that by Lemma 6.3,

‖GG∗‖ . max
n2

∑
n

|σn2,n|
2
+

( ∑
n2 6=n

′

2

∣∣∣∑
n∈C̃

σn2,nσ n′2,n

∣∣∣2)1/2
=: M1 +M2,

where C̃ is a cube of sidelength approximately N2.
To estimate M1 we first define

S(ζ,n2) := {(n1, n, n3) : n2 = n1 + n− n3, n1 6= n2, n3, ζ = −|n1|
2
+ |n3|

2
},

with |S(ζ,n2)| . N3
3N1, where we use (6.1) for fixed n3. Then we have

M1 . sup
(n2,ζ )

∣∣∣∣ ∑
n2=n1+n−n3, n1 6=n2,n3

ζ=−|n1|
2
+|n3|

2

χC(n1)
gn1
(ω)

|n1|3/2
gn3(ω)

|n3|3/2

∣∣∣∣2.
Now we use (3.4) with λ = δ−r‖F2‖L2 and Lemma 3.3 to obtain, for ω outside a set of
measure e−1/δr , the bound

M1 . sup
(n2,ζ )

δ−2r
∑
S(ζ,n2)

∑
S(ζ,n2)

1
|n1|3/2

1
|n3|3/2

1
|ξ1|3/2

1
|ξ3|3/2

×

∣∣∣∣∫
�

gn1
(ω)gn3(ω)gξ1(ω)gξ3

(ω) dP(ω)
∣∣∣∣

. sup
(n2,ζ )

δ−2r
∑
S(ζ,n2)

1
|n1|3

1
|n3|3

. δ−2rN−3
1 N−3

3 N3
3N1 ∼ δ

−2rN−2
1 . (7.16)

To estimate M2 we first write

M2
2 =

∑
n2 6=n

′

2

∣∣∣∑
n∈C̃

σn2,nσ n′2,n

∣∣∣2 ∼ ∑
n2 6=n

′

2

∣∣∣∣ ∑
S(n2,n

′
2)

gn1
(ω)

|n1|3/2
gn3(ω)

|n3|3/2

gn′1
(ω)

|n′1|
3/2

gn′3
(ω)

|n′3|
3/2

∣∣∣∣2
where

S(n2,n
′

2,ζ )
:=

(n, n1, n3, n
′

1, n
′

3) :

n2 = n1 + n− n3, n
′

2 = n
′

1 + n− n
′

3,

n1 6= n2, n3, n
′

1 6= n
′

2, n
′

3, n ∈ C̃,

ζ = −|n1|
2
+ |n3|

2, ζ = −|n′1|
2
+ |n′3|

2

 .
We need to organize the estimates according to whether some frequencies are the same or
not; in all we have six cases:
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• Case β1: n1, n
′

1, n3, n
′

3 are all different.
• Case β2: n1 = n

′

1; n3 6= n
′

3.

• Case β3: n1 6= n
′

1; n3 = n
′

3.

• Case β4: n1 6= n
′

3; n3 = n
′

1.

• Case β5: n1 = n
′

3; n3 6= n
′

1.

• Case β6: n1 = n
′

3; n3 = n
′

1.

Case β1. We define the set

S(ζ ) :=

(n2, n
′

2, n, n1, n3, n
′

1, n
′

3) :

n2 = n1 + n− n3, n
′

2 = n
′

1 + n− n
′

3,

n1 6= n2, n3, n
′

1 6= n
′

2, n
′

3, n1, n
′

1 ∈ C,

ζ = −|n1|
2
+ |n3|

2, ζ = −|n′1|
2
+ |n′3|

2


and we note that |S(ζ )| . N2

1N
6
3N

3
2 since n ∈ C̃ and for fixed n3 and n′3 we use (6.1) to

count n1 and n′1. Using (3.4) with λ = δ−2r
‖F4‖L2 and again Lemma 3.3 we can write,

for ω as above,

M2
2 . δ−4r

∑
n2 6=n

′

2

∑
S(n2,n

′
2,ζ )

1
|n1|3

1
|n3|3

1
|n′1|

3
1
|n′3|

3

. δ−4rN−6
1 N−6

3 N2
1N

6
3N

3
2 ∼ δ

−4rN−4
1 N3

2 .

Case β2. First define

S(n2,n
′

2,n3,n
′

3,ζ )
:=

(n, n1) :

n2 = n1 + n− n3, n
′

2 = n1 + n− n
′

3,

n1 6= n2, n
′

2, n3, n
′

3, n ∈ C̃,

ζ = −|n1|
2
+ |n3|

2, ζ = −|n1|
2
+ |n′3|

2

 .
To compute |S(n2,n

′

2,n3,n
′

3,ζ )
| we count n1; then n is determined. Since n1 sits on a sphere,

by (6.1) we have |S(n2,n
′

2,n3,n
′

3,ζ )
| . N1. Then we set

S(ζ ) :=

(n2, n
′

2, n, n1, n3, n
′

3) :

n2 = n1 + n− n3, n
′

2 = n1 + n− n
′

3,

n1 6= n2, n
′

2, n3, n
′

3, n ∈ C̃,

ζ = −|n1|
2
+ |n3|

2, ζ = −|n1|
2
+ |n′3|

2


with |S(ζ )| . N1N

6
3N

3
2 , where we have again used that n ∈ C̃ and (6.1). Now, we find

that

M2
2 ∼

∑
n2 6=n

′

2

∣∣∣∣ ∑
S(n2,n

′
2,ζ )

|gn1(ω)|
2

|n1|3
gn3(ω)

|n3|3/2

gn′3
(ω)

|n′3|
3/2

∣∣∣∣2 . Q1 +Q2 (7.17)

where

Q1 :=
∑
n2 6=n

′

2

∣∣∣∣ ∑
S(n2,n

′
2,ζ )

|gn1(ω)|
2
− 1

|n1|3
gn3(ω)

|n3|3/2

gn′3
(ω)

|n′3|
3/2

∣∣∣∣2, (7.18)
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Q2 :=
∑
n2 6=n

′

2

∣∣∣∣ ∑
S(n2,n

′
2,ζ )

1
|n1|3

gn3(ω)

|n3|3/2

gn′3
(ω)

|n′3|
3/2

∣∣∣∣2. (7.19)

We first estimate Q2. We rewrite

Q2 ∼
∑
n2 6=n

′

2

∣∣∣∣∑
n3,n

′

3

[ ∑
S(n2,n

′
2,n3,n

′
3,ζ )

1
|n1|3

1
|n3|3/2

1
|n′3|

3/2

]
gn3(ω)gn′3

(ω)

∣∣∣∣2. (7.20)

We now proceed as in (7.16) above. We use (3.4) with λ = δ−r‖F2‖L2 , Lemma 3.3 and
(3.5) to deduce that for ω outside a set of measure e−1/δr one has

(7.20) . δ−2r
∑
n2 6=n

′

2

∑
n3,n

′

3

[ ∑
S(n2,n

′
2,n3,n

′
3,ζ )

1
|n1|3

1
|n3|3/2

1
|n′3|

3/2

]2

. δ−2rN−6
1 N−6

3

∑
n2 6=n

′

2

∑
n3,n

′

3

|S(n2,n
′

2,n3,n
′

3,ζ )
|
2

. δ−2rN−6
1 N−6

3 N1
∑
n2 6=n

′

2

∑
n3,n

′

3

|S(n2,n
′

2,n3,n
′

3,ζ )
|

. δ−2rN−6
1 N−6

3 N1|S(ζ )| ∼ δ
−2rN−4

1 N3
2 . (7.21)

To estimate Q1 we let

S(n2,n
′

2,n1,n3,n
′

3,ζ )
:=

n :
n2 = n1 + n− n3, n

′

2 = n1 + n− n
′

3,

n1 6= n2, n
′

2, n3, n
′

3, n ∈ C̃,

ζ = −|n1|
2
+ |n3|

2, ζ = −|n1|
2
+ |n′3|

2

 , (7.22)

and note that its cardinality is 1 since n is determined for fixed (n2, n
′

2, n1, n3, n
′

3). We
have

Q1 ∼
∑
n2 6=n

′

2

∣∣∣∣ ∑
n1 6=n2,n

′

2,n3,n3 6=n
′

3

[ ∑
S2
(n2,n

′
2,n1,n3,n

′
3)

1
|n1|3

1
|n3|3/2

1
|n′3|

3/2

]

× (|gn1(ω)|
2
− 1)gn3(ω)gn′3

(ω)

∣∣∣∣2.
Proceeding as above, we find that for ω outside a set of measure e−1/δr ,

Q1 . δ−2rN−6
1 N−6

3 |S(ζ )| ∼ δ
−2rN−5

1 N3
2 ,

which is a better estimate. Hence all in all we conclude that

M2
2 . δ−2rN−4

1 N3
2 . (7.23)

Case β3. In this case we first define

S(n2,n
′

2,n1,n
′

1,ζ )
:=

(n, n3) :

n2 = −n1 + n− n3, n
′

2 = n
′

1 + n− n3,

n3, n2, n
′

2 6= n1, n
′

1, n ∈ C̃,

ζ = −|n1|
2
+ |n3|

2, ζ = −|n′1|
2
+ |n3|

2
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with |S(n2,n
′

2,n1,n
′

1,ζ )
| . N2

3 by (6.2) since n is determined by n3 and the latter lies on a
sphere of radius at most N1 intersected with a ball of radius N3. If we now define

S(ζ ) :=

(n2, n
′

2, n, n1, n
′

1, n3) :

n2 = −n1 + n− n3, n
′

2 = n
′

1 + n− n3,

n3, n2, n
′

2 6= n1, n
′

1, n ∈ C̃,

ζ = −|n1|
2
+ |n3|

2, ζ = −|n′1|
2
+ |n3|

2

 ,
then |S(ζ )| . N2

1N
3
3N

3
2 , since again n ranges over a cube of size N2 and we use (6.1)

to count n1 and n′1. We follow the argument used above in (7.17)–(7.23) to bound M2
2

but now with the couple (n1, n
′

1) and corresponding sums Q1 and Q2. Just as in Case β2

above, the bound for Q2 is larger. We then obtain, for ω outside a set of measure e−1/δr ,

M2
2 . δ−2rN−6

1 N−6
3

∑
n2 6=n

′

2

∑
n1,n

′

1

|S(n2,n
′

2,n1,n
′

1,ζ )
|
2

. δ−2rN−6
1 N−6

3 N2
3

∑
n2 6=n

′

2

∑
n1,n

′

1

|S(n2,n
′

2,n1,n
′

1,ζ )
|

. δ−2rN−6
1 N−6

3 N2
3 |S(ζ )| ∼ δ

−2rN−4
1 N−1

3 N3
2 .

Case β4. In this case note that N1 ∼ N3 ∼ N2. We define two sets. First,

S(n2,n
′

2,n1,n
′

3,ζ )
:=

(n, n3) :

n2 = n1 + n− n3, n
′

2 = n3 + n− n
′

3,

n2, n
′

2, n3, n
′

3 6= n1, n ∈ C̃,

ζ = −|n1|
2
+ |n3|

2, ζ = |n3|
2
+ |n′3|

2

 ,
and since n3 lives on a sphere of radius at most N1, from (6.1) we have |S(n2,n

′

2,n1,n
′

3,ζ )
|

. N1. Next, the set

S(ζ ) :=

(n2, n
′

2, n, n1, n
′

3, n3) :

n2 = n1 + n− n3, n
′

2 = n3 + n− n
′

3,

n2, n
′

2, n3, n
′

3 6= n1, n ∈ C̃,

ζ = −|n1|
2
+ |n3|

2, ζ = −|n3|
2
+ |n′3|

2


has |S(ζ )| . N1N

3
2N

6
3 . Just as in Case β3 and following the argument in (7.17)–(7.23) but

with the couple (n1, n
′

3) we obtain, for ω outside a set of measure e−1/δr ,

M2
2 . δ−2rN−6

1 N−6
3

∑
n2 6=n

′

2

∑
n1,n

′

3

|S(n2,n
′

2,n1,n
′

3,ζ )
|
2

. δ−2rN−6
1 N−6

3 N1
∑
n2 6=n

′

2

∑
n1,n

′

3

|S(n2,n
′

2,n1,n
′

3,ζ )
|

. δ−2rN−6
1 N−6

3 N1|S(ζ )| ∼ δ
−2rN−4

1 N−3
2 .

Case β5. By symmetry this case is exactly the same as Case β4.

We now put all the estimates above together and bound T in Cases β1–β5:

T . ‖an2‖
2
`2N1N2‖GG∗‖ . ‖an2‖

2
`2N1N2(M1 +M2)

. ‖an2‖
2
`2δ
−2rN1N2N

−2
1 N

3/2
2 . δ−2rN

5/2
2 N−1

1 ‖an2‖
2
`2 .



1712 Andrea R. Nahmod, Gigliola Staffilani

Case β6. In this case we set

S(n2,n
′

2,ζ )
:=

{
(n, n1, n3) :

n2 = n1 + n− n3, n
′

2 = n3 + n− n1,

n1 6= n2, n
′

2, n3, |n1|
2
= |n3|

2, n ∈ C̃

}
.

Notice that the summation over ζ is eliminated and in this case N1 ∼ N2 ∼ N3, so
|S(n2,n

′

2,ζ )
| ∼ N4

3 . Using (3.5) we have, for ω outside a set of measure e−1/δr ,

M2
2 =

∑
n2 6=n

′

2

∣∣∣∑
n∈C̃

σn2,nσ n′2,n

∣∣∣2 ∼ ∑
n2 6=n

′

2

∣∣∣∣ ∑
S(n2,n

′
2,ζ )

|gn1(ω)|
2

|n1|3
|gn3(ω)|

2

|n3|3

∣∣∣∣2
.

∑
n2 6=n

′

2

N−6+ε
1 N−6

3 |S(n2,n
′

2,ζ )
|
2 . N−6+ε

1 N−6
3 N4

3 |S(ζ )| (7.24)

where

S(ζ ) :=

{
(n2, n

′

2, n, n1, n3) :
n2 = n1 + n− n3, n

′

2 = n3 + n− n1,

n1 6= n3, n2, n
′

2, |n1|
2
= |n3|

2, n ∈ C̃

}

and |S(ζ )| . N3
2N

4
3 . Hence M2 . N−3+ε

1 N
5/2
2 and as a consequence

T . ‖an2‖
2
`2N
−3+ε
1 N

5/2
2 .

We now notice that to prove (7.4) we first have to consider the case when n1 = n3,
which is not excluded here, and then we can use exactly the same argument as above since
a plus or minus sign in front of n3 does not change any of the counting.

Consider now (7.4) with n1 = n3. Note that N1 ∼ N2 ∼ N3. We now set

T :=
∑

m∈Z, n∈Z3

∣∣∣∣ ∑
n=−2n1+n2

m=−2|n1|
2
+|n2|

2

(gn1
(ω))2

|n1|3
an2

∣∣∣∣2. (7.25)

Let S(m,n) := {(n1, n2) : n = −2n1 + n2, m = −2|n1|
2
+ |n2|

2
}, and note that |S(m,n)|

. N1. Then

T . N1
∑
m,n

∑
S(m,n)

|gn1
(ω)|4

|n1|6
|an2 |

2
∼ N1

∑
n,n1∈Z3

|gn1
(ω)|4

|n1|6
|an+2n1 |

2 . N−2+ε
1 ‖an2‖

2
l2
,

where we use (3.5) for ω outside a set of measure e−1/δr . ut

Proposition 7.3. Let Dj and Rk be as above and fix N1 ≥ N2 ≥ N3, r, δ > 0 and
C ∈ CN2 . Then there exists µ > 0 and a set �δ ∈ A with P(�cδ) ≤ e

−1/δr such that for
any ω ∈ �δ we have (7.5) and (7.6).
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Proof. We start by estimating (7.5) where without any loss of generality we assume that
D̃1 = D1. We now set

T :=
∑

m∈Z, n∈Z3

∣∣∣∣ ∑
n=n1−n2+n3

n2 6=n3
m=|n1|

2
−|n2|

2
+|n3|

2

χC(n1)an1

gn2
(ω)

|n2|3/2
gn3(ω)

|n3|3/2

∣∣∣∣2. (7.26)

We are going to use duality and change of variables with ζ := m−|n1|
2
= −|n2|

2
+|n3|

2

again. Note though that if n1 is in a cube C of size N2 then also n will be in a cube C̃ of
approximately the same size. Hence just as in (7.15) we need to estimate

‖χCan1‖
2
`2‖γ ‖

2
`2

∑
n1

∑
|ζ |≤N2

2

∣∣∣∑
n

σn1,nχC̃(n)kn

∣∣∣2
where

σn1,n =

∑
n1=n2+n−n3, n2 6=n1,n3

ζ=−|n2|
2
+|n3|

2

gn2
(ω)

|n2|3/2
gn3(ω)

|n3|3/2
.

If we denote by G the matrix of entries σn1,n, and we recall that the variation in ζ is at
most N2

2 , we are reduced to estimating

‖χCan1‖
2
`2N

2
2 ‖GG

∗
‖.

We note that by Lemma 6.3,

‖GG∗‖ . max
n1

∑
n

|σn1,n|
2
+

( ∑
n1 6=n

′

1

∣∣∣∑
n∈C̃

σn1,nσ n′1,n

∣∣∣2)1/2
=: M1 +M2

where C̃ is a cube of sidelength approximately N2.
From this point on, the proof is similar to the one already provided for (7.3) where n2

is replaced by n1. We still go through the argument though, since the sizes of n1 and n2
are different.

To estimate M1 we first define

S(ζ,n1) := {(n2, n, n3) : n2 6= n1, n3, n2 = n1 − n+ n3, ζ = −|n2|
2
+ |n3|

2
}.

Applying (6.1) for each fixed n3, we find that |S(ζ,n1)| . N3
3N2 since n2 sits on a sphere

of radius approximately N2 . Then we proceed as in (7.16) to obtain, for ω outside a set
of measure e−1/δr , the bound

M1 . δ−rN−3
2 N−3

3 N3
3N2 ∼ δ

−2rN−2
2 .

To estimate M2 we first write

M2
2 =

∑
n1 6=n

′

1

∣∣∣∑
n∈C̃

σn1,nσ n′1,n

∣∣∣2 ∼ ∑
n1 6=n

′

1

∣∣∣∣ ∑
S(n1,n

′
1,ζ )

gn2
(ω)

|n2|3/2
gn3(ω)

|n3|3/2

gn′2
(ω)

|n′2|
3/2

gn′3
(ω)

|n′3|
3/2

∣∣∣∣2
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where

S(n1,n
′

1,ζ )
=

(n, n2, n3, n
′

2, n
′

3) :

n2 = n1 − n+ n3, n
′

2 = n
′

1 − n+ n
′

3,

n2 6= n1, n3, n
′

2 6= n
′

1, n
′

3, n ∈ C̃,

ζ = −|n2|
2
+ |n3|

2, ζ = −|n′2|
2
+ |n′3|

2

 .
We organize once again the estimates according to whether some frequencies are the

same or not. As before, we have six cases:

• Case β1: n2, n
′

2, n3, n
′

3 are all different.
• Case β2: n2 = n

′

2; n3 6= n
′

3.

• Case β3: n2 6= n
′

2; n3 = n
′

3.

• Case β4: n2 6= n
′

3; n3 = n
′

2.

• Case β5: n2 = n
′

3; n3 6= n
′

2.

• Case β6: n2 = n
′

3; n3 = n
′

2.

Case β1. We define

S(ζ ) :=

(n1, n
′

1, n, n2, n3, n
′

2, n
′

3) :

n2 = n1 − n+ n3, n
′

2 = n
′

1 − n+ n
′

3

n2 6= n1, n3, n
′

2 6= n
′

1, n
′

3, n1, n
′

1 ∈ C,

ζ = −|n2|
2
+ |n3|

2, ζ = −|n′2|
2
+ |n′3|

2

 ,
and note that |S(ζ )| . N2

2N
6
3N

3
2 by Lemma 6.1 since for n3 fixed, n2 and n′2 sit on a

sphere of radius ∼ N2, and n ∈ C̃, a cube of sidelength approximately N2. Hence, for ω
outside a set of measure e−1/δr , we obtain

M2
2 . δ−4rN−6

2 N−6
3 N2

2N
6
3N

3
2 ∼ δ

−4rN−1
2 .

Case β2. In this case we define two sets. We start with

S(n1,n
′

1,n3,n
′

3,ζ )
:=

(n, n2) :

n2 = n1 − n+ n3, n2 = n
′

1 − n+ n
′

3,

n2 6= n1, n
′

1, n3, n
′

3, n ∈ C̃,

ζ = −|n2|
2
+ |n3|

2, ζ = −|n2|
2
+ |n′3|

2

 .
To compute |S(n1,n

′

1,n3,n
′

3,ζ )
|, it is enough to count n2; then n is determined. Since n2 sits

on a sphere of radius ∼ N2, by (6.1) we have |S(n1,n
′

1,n3,n
′

3,ζ )
| . N2. Then we set

S(ζ ) :=

(n1, n
′

1, n, n2, n3, n
′

3) :

n2 = n1 − n+ n3, n2 = n
′

1 − n+ n
′

3,

n2 6= n1, n
′

1, n3, n
′

3, n ∈ C̃,

ζ = −|n2|
2
+ |n3|

2, ζ = −|n2|
2
+ |n′3|

2

 ,
for which |S(ζ )| . N2N

6
3N

3
2 , where we have used again that n ∈ C̃. Arguing as in

(7.17)–(7.23), we then find that for ω outside a set of measure e−1/δr ,
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M2
2 . δ−2rN−6

2 N−6
3

∑
n6=n′

∑
n3,n

′

3

|S(n1,n
′

1,n3,n
′

3,ζ )
|
2

. δ−2rN−6
2 N−6

3 N2
∑
n1 6=n

′

1

∑
n3,n

′

3

|S(n1,n
′

1,n3,n
′

3,ζ )
|

. δ−2rN−6
2 N−6

3 N2|S(ζ )| ∼ δ
−2rN−1

2 .

Case β3. In this case we define first

S(n2,n
′

2,n1,n
′

1,ζ )
:=

(n, n3) :

n2 = n1 − n+ n3, n
′

2 = n
′

1 − n+ n3,

n2, n
′

2 6= n3, n1, n
′

1, n ∈ C̃,

ζ = −|n2|
2
+ |n3|

2, ζ = −|n′2|
2
+ |n3|

2


for which |S(n2,n

′

2,n1,n
′

1,ζ )
| . N2

3 , since n is determined by n3 and the latter lies on a
sphere of radius at most N1 intersected with a ball of radius N3 (see Lemma 6.1). Then
we define

S(ζ ) :=

(n2, n
′

2, n, n1, n
′

1, n3) :

n2 = n1 − n+ n3, n
′

2 = n
′

1 − n+ n3,

n2, n
′

2 6= n3, n1, n
′

1, n ∈ C̃,

ζ = −|n2|
2
+ |n3|

2, ζ = −|n′2|
2
+ |n3|

2


for which |S(ζ )| . N2

2N
3
3N

3
2 , since again n ranges over a cube of size N2. We then find,

as usual using (3.4) and (3.5) as above, that for ω outside a set of measure e−1/δr ,

M2
2 . δ−2rN−6

2 N−6
3

∑
n1 6=n

′

1

∑
n2,n

′

2

|S(n2,n
′

2,n1,n
′

1,ζ )
|
2

. δ−2rN−6
2 N−6

3 N2
3

∑
n1 6=n

′

1

∑
n2,n

′

2

|S(n2,n
′

2,n1,n
′

1,ζ )
|

. δ−2rN−6+ε
2 N−6

3 N2
3 |S(ζ )| ∼ δ

−2rN−1+ε
2 N−1

3 .

Case β4. In this case note that N3 ∼ N2. We define two sets:

S(n1,n
′

1,n2,n
′

3,ζ )
:=

(n, n3) :

n2 = n1 − n+ n3, n3 = n
′

1 − n+ n
′

3,

n2 6= n1, n3, n3 6= n
′

3, n
′

1, n ∈ C̃,

ζ = −|n2|
2
+ |n3|

2, ζ = −|n3|
2
+ |n′3|

2


with |S(n1,n

′

1,n2,n
′

3,ζ )
| . N2 since n3 lives on a sphere of radius at most N2; and

S(ζ ) :=

(n1, n
′

1, n, n2, n
′

3, n3) :

n2 = n1 − n+ n3, n3 = n
′

1 − n+ n
′

3,

n2 6= n1, n3, n3 6= n
′

3, n
′

1, n ∈ C̃,

ζ = −|n2|
2
+ |n3|

2, ζ = −|n3|
2
+ |n′3|

2
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with |S(ζ )| . N2N
3
2N

6
3 since for fixed n3, n

′

3, the frequencies n2 sit on a sphere of ra-
dius at most N2 and n ∈ C̃ (see Lemma 6.1). Then as above, for ω outside a set of
measure e−1/δr ,

M2
2 . δ−2rN−6

2 N−6
3

∑
n 6=n′

∑
n2,n

′

3

|S(n1,n
′

1,n2,n
′

3,ζ )
|
2

. δ−2rN−6
2 N−6

3 N2
∑
n 6=n′

∑
n2,n

′

3

|S(n1,n
′

1,n2,n
′

3,ζ )
|

. δ−2rN−6
2 N−6

3 N2|S(ζ )| ∼ δ
−2rN−1

2 .

Case β5. By symmetry this case is exactly the same as Case β4.

We now put all the estimates together and bound T in Cases β1–β5:

T . ‖χCan1‖
2
`2N

2
2 ‖GG

∗
‖ . ‖an1‖

2
`2N

2
2 (M1 +M2)

. ‖χCan1‖
2
`2δ
−2rN2

2N
−1/2
2 ∼ ‖χCan1‖

2
`2δ
−2rN

3/2
2 .

Case β6. In this case

S(n1,n
′

1,ζ )
:=

{
(n, n2, n3) :

n2 = n1 − n+ n3, n3 = n
′

1 − n+ n2,

n2 6= n3, n1, |n2|
2
= |n3|

2, n ∈ C̃

}
.

Notice that 1ζ = 1 and in this case N2 ∼ N3, so |S(n1,n
′

1,ζ )
| ∼ N4

3 . Then, as in (7.24),

M2
2 . N−6+ε

2 N−6
3 N4

3 |S(ζ )|

where

S(ζ ) :=

{
(n1, n

′

1, n, n2, n3) :
n2 = n1 − n+ n3, n3 = n

′

1 − n+ n2,

n2 6= n3, n1, |n2|
2
= |n3|

2, n ∈ C̃

}
and |S(ζ )| . N3

2N
4
3 . Hence, all in all, for ω outside a set of measure e−1/δr , we have

M2 . N
−1/2+ε
2 , and as a consequence

T . ‖χCan1‖
2
`2N
−1/2+ε
2 ,

which is a better bound.
To prove (7.6) we write

T :=
∑

m∈Z, n∈Z3

∣∣∣∣ ∑
n=n1+n2+n3

m=|n1|
2
+|n2|

2
+|n3|

2

χC(n1)an1

gn2(ω)

|n2|3/2
gn3(ω)

|n3|3/2

∣∣∣∣2. (7.27)

We can repeat the argument above after checking the case n2 = n3. In this case (7.27)
becomes

T =
∑

m∈Z, n∈Z3

∣∣∣∣ ∑
n=n1+2n2

m=|n1|
2
+2|n2|

2

χC(n1)an1

(gn2(ω))
2

|n2|3

∣∣∣∣2.
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Let S(m,n) := {(n1, n2) : n = n1 + 2n2, m = |n1|
2
+ 2|n2|

2
}, and note that by Lemma

6.1, |S(m,n)| . min(N1, N
2
2 ). Then

T . min(N1, N
2
2 )
∑
m,n

∑
S(m,n)

|gn2(ω)|
4

|n2|6
|χCan1 |

2

∼ min(N1, N
2
2 )
∑
n,n1

|g(n−n1)/2(ω)|
4

|(n− n1)/2|6
|χCan1 |

2 . min(N1, N
2
2 )N

−3+ε
2 ‖χCan1‖

2
l2
,

where we have used (3.5) for ω outside a set of measure e−1/δr . ut

Proposition 7.4. Let Dj and Rk be as above and fix N1 ≥ N2 ≥ N3, r, δ > 0 and
C ∈ CN2 . Then there exists µ > 0 and a set �δ ∈ A with P(�cδ) ≤ e

−1/δr such that for
any ω ∈ �δ we have (7.7) and (7.8).

Proof. Without loss of generality we assume that D̃3 = D3. We write

T :=
∑

m∈Z, n∈Z3

∣∣∣∣ ∑
n=−n1+n2+n3
n1 6=n2,n3

m=−|n1|
2
+|n2|

2
+|n3|

2

χC(n1)
gn1
(ω)

|n1|3/2
gn2(ω)

|n2|3/2
an3

∣∣∣∣2 (7.28)

where C ∈ CN2 . Let us now define

σn,n3 :=

∑
n=−n1+n2+n3, n1 6=n2,n3
m=−|n1|

2
+|n2|

2
+|n3|

2

χC(n1)
gn1
(ω)

|n1|3/2
gn2(ω)

|n2|3/2
.

If we denote by G the matrix with entries σn,n3 , since the variation in m is at most N1N2
we can continue the estimate of T in (7.28) by

T . ‖an3‖
2
`2N1N2‖GG∗‖.

Once again by Lemma 6.3,

‖GG∗‖ . max
n

∑
n3

|σn,n3 |
2
+

(∑
n 6=n′

∣∣∣∑
n3

σn,n3σ n′,n3

∣∣∣2)1/2
=: M1 +M2.

To estimate M1 we first define

S(m,n) := {(n1, n2, n3) : n1 6= n2, n3, n = −n1+ n2+ n3, m = −|n1|
2
+ |n2|

2
+ |n3|

2
}.

By (6.3) we have |S(m,n)| . N3
3N

2
2 since once n3 is fixed we use m = −|n2+ n3− n|

2
+

|n2|
2
+|n3|

2 to count n2 which lives on the intersection of a plane with a ball of radiusN2.
Then as in (7.16), for ω outside a set of measure e−1/δr , we have

M1 . sup
n,m

∑
n3

∣∣∣∣ ∑
n=−n1+n2+n3,n1 6=n2,n3
m=−|n1|

2
+|n2|

2
+|n3|

2

gn1
(ω)

|n1|3/2
χC(n1)

gn2(ω)

|n2|3/2

∣∣∣∣2

. sup
n,m

δ−rN−3
1 N−3

2 |S(m,n)| . δ−2rN−3
1 N−3

2 N3
3N

2
2 ∼ δ

−2rN−3
1 N−1

2 N3
3 .
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To estimate M2 we first write

M2
2 =

∑
n 6=n′

∣∣∣∑
n3

σn,n3σ n′,n3

∣∣∣2 ∼∑
n6=n′

∣∣∣∣ ∑
S(n,n′,m)

gn1
(ω)

|n1|3/2
gn2(ω)

|n2|3/2

gn′1
(ω)

|n′1|
3/2

gn′2
(ω)

|n′2|
3/2

∣∣∣∣2
where

S(n,n′,m)

:=

(n3, n1, n2, n
′

1, n
′

2) :

n = −n1+ n2+ n3, n
′
= −n′1+ n

′

2+ n3,

n1 6= n2, n3, n
′

1 6= n
′

2, n3, n1, n
′

1 ∈ C,

m = −|n1|
2
+ |n2|

2
+ |n3|

2, m = −|n′1|
2
+ |n′2|

2
+ |n3|

2

 .
Just as in the proof of (7.3), we need to organize the estimates according to whether some
frequencies are the same or not; in all we have six cases.

• Case β1: n1, n
′

1, n2, n
′

2 are all different.
• Case β2: n1 = n

′

1; n2 6= n
′

2.

• Case β3: n1 6= n
′

1; n2 = n
′

2.

• Case β4: n1 6= n
′

2; n2 = n
′

1.

• Case β5: n1 = n
′

2; n2 6= n
′

1.

• Case β6: n1 = n
′

2; n2 = n
′

1.

Case β1. In this case we let

S(m) :=(n, n′, n3, n1, n2, n
′

1, n
′

2) :

n = −n1+n2+n3, n
′
= −n′1+n

′

2−n3,

n1 6= n2, n3, n
′

1 6= n
′

2, n3, n1, n
′

1 ∈ C,

m = −|n1|
2
+|n2|

2
+|n3|

2, m = −|n′1|
2
+|n′2|

2
+|n3|

2


with |S(m)| . N2

1N
6
2N

3
3 . As in the argument for (7.16), this implies that for ω outside a

set of measure e−1/δr ,

M2
2 . δ−4rN−6

1 N−6
2 N2

1N
6
2N

3
3 ∼ δ

−4rN−4
1 N3

3 .

Case β2. In this case we define two sets. We start with

S(n,n′,n2,n
′

2,m)
:=

(n3, n1) :

n = −n1+n2+n3, n
′
= −n1+n3+n

′

2,

n1 6= n2, n
′

2, n3,

m = −|n1|
2
+|n2|

2
+|n3|

2, m = −|n1|
2
+|n3|

2
+|n′2|

2

 .
To compute |S(n,n′,n2,n

′

2,m)
| we count n3; then n1 is determined. Since the n3 sit on a

plane, we see by (6.3) that |S(n,n′,n2,n
′

2,m)
| . N2

3 . Then we set

S(m)

:=

(n, n′, n3, n1, n2, n
′

2) :

n = −n1+n2+n3, n
′
= −n1+n3+n

′

2,

n1 6= n2, n
′

2, n3,

m = −|n1|
2
+|n2|

2
+|n3|

2, m = −|n1|
2
+|n3|

2
+|n′2|

2
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for which |S(m)| . N1N
6
2N

3
3 . Following the argument in (7.17)–(7.23) we have, for ω

outside a set of measure e−1/δr ,

M2
2 . δ−2rN−6

1 N−6
2

∑
n 6=n′

∑
n2,n

′

2

|S(n,n′,n2,n
′

2,m)
|
2

. δ−2rN−6
1 N−6

2 N2
3

∑
n 6=n′

∑
n2,n

′

2

|S(n,n′,n2,n
′

2,m)
| . δ−2rN−6

1 N−6
2 N2

3 |S(m)| ∼ δ
−2rN−5

1 N5
3 .

Case β3. In this case we define first

S(n,n′,n1,n
′

1,m)
:=

(n2, n3) :

n = −n1+n2+n3, n
′
= −n′1+n2+n3,

n2, n3 6= n1, n
′

1, n1, n
′

1 ∈ C,

m = −|n1|
2
+|n2|

2
+|n3|

2, m = −|n′1|
2
+|n2|

2
+|n3|

2


with |S(n,n′,n1,n

′

1,m)
| . N2

3 , since n2 is determined by n3 and the latter lies on a sphere of
radius at most N1. On the other hand,

S(m)

:=

(n, n′, n2, n1, n
′

1, n3) :

n = −n1+n2+n3, n
′
= −n′1+n2+n3,

n2, n3 6= n1, n
′

1, n1, n
′

1 ∈ C,

m = −|n1|
2
+|n2|

2
+|n3|

2, m = −|n′1|
2
+|n2|

2
+|n3|

2


has |S(m)| . N2

1N
3
3N

3
2 . Hence arguing as above we have

M2
2 . δ−2rN−6

1 N−6
2

∑
n 6=n′

∑
n1,n

′

1

|S(n,n′,n1,n
′

1,m)
|
2

. δ−2rN−6
1 N−6

2 N2
3

∑
n 6=n′

∑
n1,n

′

1

|S(n,n′,n1,n
′

1,m)
|

. δ−2rN−6
1 N−6

2 N2
3 |S(m)| ∼ δ

−2rN−4
1 N−3

2 N5
3

for ω outside a set of measure e−1/δr .

Case β4. We define two sets:

S(n,n′,n1,n
′

2,m)
:=

(n2, n3) :

n = −n1+n2+n3, n
′
= −n2+n

′

2+n3,

n2, n3 6= n1, n
′

2,

m = −|n1|
2
+|n2|

2
+|n3|

2, m = −|n2|
2
+|n′2|

2
+|n3|

2

 ,
for which, since n3 lives on a sphere of radius at most N1, we have |S(n,n′,n1,n

′

2,m)
| .

min(N1, N
2
3 ); and

S(m)

:=

(n, n′, n3, n1, n
′

2, n2) :

n = −n1+ n2+ n3, n
′
= −n2+ n

′

2+ n3,

n2, n3 6= n1, n
′

2,

m = −|n1|
2
+ |n2|

2
+ |n3|

2, m = −|n2|
2
+ |n′2|

2
+ |n3|

2
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with |S(m)| . N1N
3
3N

6
2 . Then

M2
2 . δ−2rN−6

1 N−6
2

∑
n6=n′

∑
n1,n

′

2

|S(n,n′,n1,n
′

2,m)
|
2

. δ−2rN−6
1 N−6

2 min(N1, N
2
3 )
∑
n6=n′

∑
n1,n

′

2

|S(n,n′,n1,n
′

2,m)
|

. δ−2rN−6
1 N−6

2 min(N1, N
2
3 )|S(m)| ∼ δ

−2rN−4
1 N3

3

for ω outside a set of measure e−1/δr .

Case β5. This case is exactly the same as Case β4.

We now estimate T in Cases β1–β5:

T . ‖an2‖
2
`2N1N2‖GG∗‖ . ‖an2‖

2
`2N1N2(M1 +M2)

. ‖an2‖
2
`2δ
−4r
[N1N2(N

−5/2
1 N

5/2
3 +N−2

1 N
3/2
3 )] . δ−4r

[N
−3/2
1 N2N

5/2
3

+N−1
1 N2N

3/2
3 ]‖an2‖

2
`2 .

Case β6. In this case we set

S(n,n′,m) :=

{
(n3, n1, n2) :

n = −n1 + n2 + n3, n
′
= −n2 + n1 + n3,

n1 6= n2, n3, |n1|
2
= |n2|

2, m = |n3|
2

}

so N1 ∼ N2 and 1m . N2
3 . We have |S(n,n′,m)| . N3

2N3 since n3 sits on a sphere of
radius at most N3. As in (7.24), for ω outside a set of measure e−1/δr , we have

M2
2 . N−6+ε

1 N−6
2 N3

2N3|S(m)|

where

S(m) :=

{
(n, n′, n3, n1, n2) :

n = −n1 + n2 + n3, n
′
= −n2 + n1 + n3,

n1 6= n2, n3, |n1|
2
= |n2|

2, m = |n3|
2

}

and |S(m)| . N3N
3
2N2 since again n3 sits on a sphere of radius at mostN3 and for fixed n2

we see that n1 sits on a sphere of radius at most N2. Hence M2 . N
−5/2+ε
1 N3 and so

T . ‖an3‖
2
`2N

3
3N
−5/2+ε
1 .

The proof of (7.8) proceeds very much like the one we have just presented. Actually
when n1 = n2 the estimates may be made better since we will not have planes, but spheres
involved in the counting. On the other hand, here n1 = n2 could be a possibility. In this
case we set

T :=
∑

m∈Z, n∈Z3

∣∣∣∣ ∑
n=−2n1+n3

m=−2|n1|
2
+|n3|

2

(gn1
(ω))2

|n1|3
an3

∣∣∣∣2.
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Let S(m,n) := {(n1, n3) : n = −2n1 + n3, n3 6= n1, m = −2|n1|
2
+ |n3|

2
}, and note that

by Lemma 6.1, |S(m,n)| . min(N1, N
2
3 ). Then using (3.5), for ω outside a set of measure

e−1/δr we have

T . min(N1, N
2
3 )
∑
m,n

∑
S(m,n)

|gn1(ω)|
4

|n1|6
|an−2n1 |

2 . min(N1, N
2
3 )N

−3+ε
1 ‖an3‖

2
l2
. ut

Proposition 7.5. Let Dj and Rk be as above and fix N1 ≥ N2 ≥ N3, r, δ > 0 and
C ∈ CN2 . Then there exist µ, ε > 0 and a set �δ ∈ A with P(�cδ) ≤ e

−1/δr such that for
any ω ∈ �δ we have (7.9) for any 0 ≤ θ ≤ 1, and (7.10) .

Proof. We first handle (7.9). Without loss of generality we assume that D̃i=Di , i=2, 3.
We set

T :=
∑

m∈Z, n∈Z3

∣∣∣∣ ∑
n=n1+n2+n3

m=|n1|
2
+|n2|

2
+|n3|

2

χC(n1)
gn1(ω)

|n1|3/2
an2an3

∣∣∣∣2.
Then

T .
∑

m∈Z, n∈C̃

∣∣∣∑
n2,n3

σn,n2an2an3

∣∣∣2
where C̃ is again a cube of sidelength approximately N2 and

σn,n2 =


gn−n2−n3(ω)

|n− n2 − n3|3/2
if m = |n− n2 − n3|

2
+ |n2|

2
+ |n3|

2,

0 otherwise.

Note that σn,n2 also depends on m and n3 but we estimate it independently of m and n3
and take the supremum over them. By Cauchy–Schwarz in n3, the fact that 1m . N1N2
and Lemma 6.3 we have

T . ‖an3‖
2
`2‖an2‖

2
`2N1N2N

3
3 ‖GG

∗
‖;

and as usual by Lemma 6.3 we have

‖GG∗‖ . max
n

∑
n2

|σn,n2 |
2
+

( ∑
n6=n′∈C̃

∣∣∣∑
n2

σn,n2σ n′,n2

∣∣∣2)1/2
=: M1 +M2.

To estimateM1 we will use the set S(n, n3, m) := {n2 : m = |n−n2−n3|
2
+|n2|

2
+|n3|

2
},

with cardinality |S(n,n3,m)| . N1 since this set describes a sphere whose radius is at
most N1. Using (3.5) we estimate

M1 .
∑

n2∈S(n,n3,m)

N−3+ε
1 . N−2+ε

1 (7.29)

for ω outside a set of measure e−1/δr .
To estimate M2 we first define

S(n3,m)

:= {(n, n′, n2) : m = |n−n2−n3|
2
+|n2|

2
+|n3|

2, m = |n′−n2−n3|
2
+|n2|

2
+|n3|

2
}
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and note that |S(n3,m)| . N3
2N

2
1 . Then using (3.4) and arguments similar to those for

(7.17)–(7.23) we have

M2
2 . δ−2rN−6

1 |S(n3,m)| . δ−2rN−6
1 N3

2N
2
1 . (7.30)

From the estimates of M1 and M2 we deduce that for ω outside a set of measure e−1/δr ,

T . ‖an3‖
2
`2‖an2‖

2
`2δ
−rN1N2N

3
3N
−2
1 N

3/2
2 . ‖an3‖

2
`2‖an2‖

2
`2δ
−rN−1

1 N
5/2
2 N3

3 . (7.31)

We will interpolate this estimate with the one we obtain below:

T . N1N2 sup
m

∑
n∈Z3

∣∣∣ ∑
n=n1+n2+n3

m=|n1|
2
+|n2|

2
+|n3|

2

χC(n1)
gn1(ω)

|n1|3/2
an2an3

∣∣∣2

. N1N2‖an3‖
2
`2 sup

m

∑
n,n3∈Z3

∣∣∣ ∑
n=n1+n2+n3

m=|n1|
2
+|n2|

2
+|n3|

2

χC(n1)
gn1(ω)

|n1|3/2
an2

∣∣∣2
. N1N2‖an3‖

2
`2N
−3+ε
1 sup

m

∑
n,n3∈Z3

|S(n,n3,m)|

∑
S(n,n3,m)

|an2 |
2

. N1N2‖an3‖
2
`2N
−3+ε
1 min(N2

2 , N1) sup
m

∑
n2

∑
S(n2,m)

|an2 |
2

. N1N2‖an3‖
2
`2‖an2‖

2
`2N
−3+ε
1 min(N2

2 , N1)N1N
3
3

∼ N−1+ε
1 N3

3N2 min(N2
2 , N1)‖an2‖

2
`2‖an3‖

2
`2 (7.32)

where S(n,n3,m) := {(n1, n2) : n = n1+n2+n3, n1 ∈ C, m = |n1|
2
+|n2|

2
+|n3|

2
} with

|S(n,n3,m)| . min(N2
2 , N1), S(n2,m) := {(n, n1, n3) : n = n1 + n2 + n3, n1 ∈ C, m =

|n1|
2
+ |n2|

2
+ |n3|

2
} with |S(n2,m)| . N1N

3
3 , and we have used (3.5) for ω outside a set

of measure e−1/δr .
The estimate of (7.9) now follows by interpolating (7.32) with (7.31).
We now move to (7.10). Again without loss of generality we assume that D̃i =

D1, i = 1, 3. We use duality and the change of variables ζ = m− |n1|
2
= |n2|

2
+ |n3|

3

as in the proof of Proposition 7.2. We note that the variation of ζ is at most N2
2 and that

n ∈ C̃, a cube of sidelength approximatelyN2. We use (3.5) for ω outside a set of measure
e−1/δr and Lemma 6.1 to reduce the bound for T to estimating

N2
2 sup

ζ

∑
n1∈Z3

∣∣∣∣ ∑
n1=n−n2−n3
ζ=|n2|

2
+|n3|

2

χ
C̃
(n)kn

gn2(ω)

|n2|3/2
an3

∣∣∣∣2‖χCan1‖
2
`2

. N2
2 ‖χCan1‖

2
`2‖an3‖

2
` sup

ζ

∑
n1,n3∈Z3

∣∣∣∣ ∑
n1=n−n2−n3
ζ=|n2|

2
+|n3|

2

χ
C̃
(n)kn

gn2(ω)

|n2|3/2

∣∣∣∣2

. N2
2 ‖χCan1‖

2
`2‖an3‖

2
`2N
−3+ε
2 sup

ζ

∑
n1,n3∈Z3

|S(n1,n3,ζ )|

∑
S(n1,n3,ζ )

χ
C̃
(n)|kn|

2
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. N2
2 ‖χCan1‖

2
`2‖an3‖

2
`2N
−3+ε
2 N2 sup

ζ

∑
n

∑
S(n,ζ )

|kn|
2

. N2
2 ‖χCan1‖

2
`2‖an3‖

2
`2N
−3+ε
2 N2N2N

3
3 ‖kn‖

2
`2 ∼ N

1+ε
2 N3

3 ‖χCan1‖
2
`2‖an3‖

2
`2‖kn‖

2
`2

where S(n1,n3,ζ ) := {(n, n2) : n1 = n − n2 − n3, n ∈ C̃, ζ = |n2|
2
+ |n3|

2
} with

|S(n1,n3,ζ )| . N2, and S(n,ζ ) = {(n1, n2, n3) : n1 = n−n2−n3, n1 ∈ C, ζ = |n2|
2
+|n3|

2
}

with |S(n,ζ )| . N2N
3
3 . ut

Proposition 7.6. Let Rk be as above and fixN1 ≥ N2 ≥ N3, r, δ > 0 and C ∈ CN2 . Then
there exists µ > 0 and a set �δ ∈ A with P(�cδ) ≤ e

−1/δr such that for any ω ∈ �δ we
have (7.11)–(7.13).

Proof. We start by estimating (7.11). We consider

T :=
∑

m∈Z, n∈Z3

∣∣∣∣ ∑
n=n1+n2−n3
n1,n2 6=n3

m=|n1|
2
+|n2|

2
−|n3|

2

χC(n1)
gn1
(ω)

|n1|3/2

gn2
(ω)

|n2|3/2
gn3(ω)

|n3|3/2

∣∣∣∣2. (7.33)

Note that if n1 = n2 we get, say, (gn1
(ω))2 which are still independent and mean zero

since the gni (ω) are complex Gaussian random variables. Hence we are still within the
framework of Lemma 3.4 and so this case does not require a separate argument.

We first remark that the variation 1m is ∼ N1N2. Then we use Lemma 3.4 to obtain,
for ω outside a set of measure e−1/δr ,

T . δ−3r/2N1N2N
−3
1 N−3

2 N−3
3 sup

m
|S(m)| . δ−3r/2N−1

1 N2

where S(m) := {(n, n1, n2, n3) : n = n1 + n2 − n3, n1 ∈ C, m = |n1|
2
+ |n2|

2
− |n3|

2
}

and |S(m)| . N3
3N

3
2N1.

To estimate (7.12) and (7.13) we proceed just as above. ut

7.2. Bilinear estimate

We prove the following bilinear estimate which will be used in Section 8. We use the
same notation as in Subsection 7.1.

Proposition 7.7. Fix N1 ≥ N2 ≥ N3 and r, δ > 0. Assume also that C is a cube of
sidelengthN2. Then there exist µ, ε > 0 and a set�δ ∈ A with P(�cδ) ≤ e

−1/δr such that
for any ω ∈ �δ and 0 ≤ θ ≤ 1 we have

‖PCR1D2‖L2([0,1]×T3)

. δ−µrN
−1/2+ε
1 min(N1, N

2
2 )
(1−θ)/2N

1/2+3θ/4
2 ‖D2‖U2

1L
2
x
. (7.34)

Proof. We follow the argument for (7.9) after applying Cauchy–Schwarz. In fact we have

‖PCR1D2‖
2
L2 =

∑
m∈Z, n∈Z3

∣∣∣∣ ∑
n=n1+n2

m=|n1|
2
+|n2|

2

χC(n1)
gn1(ω)

|n1|3/2
an2

∣∣∣∣2.
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Then

‖PCR1D2‖
2
L2 .

∑
m;n∈C̃

∣∣∣∑
n2

σn,n2an2

∣∣∣2
where C̃ is a cube of sidelength approximately N2 and

σn,n2 :=


gn−n2(ω)

|n− n2|3/2
if m = |n− n2|

2
+ |n2|

2,

0 otherwise.

We then have
‖PCR1D2‖

2
L2 . ‖an2‖

2
`2N1N2‖GG∗‖.

Then using the estimates (7.29) and (7.30) we obtain, forω outside a set of measure e−1/δr,

‖PCR1D2‖L2 . ‖an2‖`2δ
−rN

−1/2+ε
1 N

5/4
2 . (7.35)

We also use (7.32) to estimate (7.9). By repeating the argument to prove (7.32) in our
bilinear setting, we obtain, for ω outside a set of measure e−1/δr ,

‖PCR1D2‖
2
L2 . N1N2 sup

m

∑
n∈Z3

∣∣∣∣ ∑
n=n1+n2

m=|n1|
2
+|n2|

2

χC(n1)
gn1(ω)

|n1|3/2
an2

∣∣∣∣2

. N1N2‖an3‖
2
`2 sup

m

∑
n∈Z3

∣∣∣∣ ∑
n=n1+n2

m=|n1|
2
+|n2|

2

χC(n1)
gn1(ω)

|n1|3/2
an2

∣∣∣∣2

. N1N2N
−3+ε
1 sup

m

∑
n∈Z3

|S(n,m)|
∑
S(n,m)

|an2 |
2

. N1N2N
−3+ε
1 min(N2

2 , N1) sup
m

∑
n2

∑
S(n2,m)

|an2 |
2

. N1N2‖an2‖
2
`2N
−3+ε
1 min(N2

2 , N1)N1

∼ N−1+ε
1 N2 min(N2

2 , N1)‖an2‖
2
`2

where S(n,m) := {(n1, n2) : n = n1 + n2, n1 ∈ C, m = |n1|
2
+ |n2|

2
} with |S(n,m)| .

min(N2
2 , N1), S(n2,m) := {(n, n1) : n = n1 + n2, n1 ∈ C, m = |n1|

2
+ |n2|

2
} with

|S(n2,m)| . N1, and we have used (3.5). Hence we also have

‖PCR2D1‖L2 . ‖an2‖`2N
−1/2+ε
1 N

1/2
2 min(N2

2 , N1)
1/2. (7.36)

By interpolating (7.35) and (7.36) we finally deduce the estimate (7.34). ut

Remark 7.2. Later we only use (7.34) with θ = 1 while estimating in the next section
the term J4 defined in (2.13).
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8. Proof of Proposition 5.1

In this section we use notation similar to the one introduced at the beginning of Section 7
to indicate deterministic and random functions. The reader should pay attention though
to the fact that the new functions we define in this section have a different normalization
than the ones in Section 7, hence the slight change of notation.

If ui is random, then we write

P̂Niui(n) = χ{|n|∼Ni }(n)
gn(ω)

|n|5/2−α
ei|n|

2t
∼ R̂i(n);

while if ui is deterministic we write

P̂Niui(n) ∼ D̂i(n)

where D̂i(n) is supported in {|n| ∼ Ni}. Below we will make heavy use of Proposition
7.1 with the functions Ri instead of Ri . This will not be explicitly mentioned every time,
but the reader will notice that a normalization will take place at the appropriate places.

We first estimate the terms J2–J7, and then we turn to J1.

8.1. Estimates involving the term J2

We start by estimating the term J2 as in (2.11). This reduces to analyzing the sum over
N0, N1, . . . , N3 of quatrilinear forms∣∣∣∣∫

T

∫
T3
Tϒ (PN1u1, PN2u2, PN3u3)PN0h dx dt

∣∣∣∣ (8.1)

where Tϒ is the multilinear operator defined in (7.2).
The general outline of the proof involves the use of Cauchy–Schwarz, cutting the

top frequency window if necessary, the transfer principle Proposition 4.1 and suitably
applying the trilinear estimates of Subsection 7.1. Without any loss of generality, we then
fix the relative ordering N1 ≥ N2 ≥ N3 above and consider the following cases where
Tϒ acts on:

• Case 1: (a) (R̄1,R2,R3), (b) (R1, R̄2,R3), (c) (R1,R2, R̄3),

• Case 2: (a) (D̄1,R2,R3), (b) (D1, R̄2,R3), (c) (D1,R2, R̄3),

• Case 3: (a) (R̄1,R2,D3), (b) (R1, R̄2,D3), (c) (R1,R2, D̄3),

• Case 4: (a) (R̄1,D2,R3), (b) (R1, D̄2,R3), (c) (R1,D2, R̄3),

• Case 5: (a) (D̄1,R2,D3), (b) (D1, R̄2,D3), (c) (D1,R2, D̄3),

• Case 6: (a) (R̄1,D2,D3), (b) (R1, D̄2,D3), (c) (R1,D2, D̄3),

• Case 7: (a) (D̄1,D2,R3), (b) (D1, D̄2,R3), (c) (D1,D2, R̄3),

• Case 8: (a) (D̄1,D2,D3), (b) (D1, D̄2,D3), (c) (D1,D2, D̄3).

Case 1(a). If N1 ∼ N0 we cut the support of ĥ and hence that of R̂1 with cubes C of
sidelength N2 and use Cauchy–Schwarz to get

(8.1) . ‖PCPN0h‖L2
x,t
‖Tϒ (PCR̄1,R2,R3)‖L2

x,t
.
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To estimate the second factor we use (7.13) and normalization and we obtain the bound

(8.1) . δ−µrN
−3/2+α
1 N

−1/2+α
2 N1−α

3 ‖PCPN0h‖L2
x,t
.

Renormalizing h and using the embedding (4.7) we obtain∣∣∣∣∫ π

0

∫
T3
Tϒ (PCPN1u1, PN2u2, PN3u3)PCPN0h dx dt

∣∣∣∣
. δ−µrN s

0N
−3/2+α
1 N

−1/2+α
2 N−1+α

3 ‖PCPN0h‖Y−s

. δ−µrN
s+α−3/2
1 ‖PCPN0h‖Y−s , (8.2)

which suffices provided s + α < 3/2 and α < 1/2.
If N1 ∼ N2 the cut with the cubes C above is not needed and the argument proceeds

as above. The condition here is s < 2− 2α.

Cases 1(b), (c) are treated similarly replacing (7.13) respectively by (7.12) and (7.11).

Case 2(a). Assume that N0 ∼ N1. We use the argument above. To estimate

‖Tϒ (PCD̄1,R2,R3)‖L2
x,t

we use (7.6) and after taking derivatives and normalizing we obtain the bound

(8.2) . δ−µrN
α−1/4
2 ‖PN1u1‖U2

1H
s‖PCPN0h‖Y−s ,

which suffices provided α < 1/4. A similar bound holds when N1 ∼ N2 without cutting
with cubes C.

Cases 2(b), (c) are treated similarly replacing (7.6) by (7.5).

Cases 3(a)–(c). We use the argument above with (7.7) and (7.8). If N1 ∼ N0 we obtain
a bound of the form

(8.2) . δ−µrN s
0 [N

α−7/4
1 N

−1/2+α
2 N

5/4−s
3

+N
α−3/2
1 N

−1/2+α
2 N

3/4−s
3 ]‖PN3u3‖U2

1H
s‖PCPN0h‖Y−s

. δ−µrN
−β(s,α)

1 ‖PN3u3‖U2
1H

s‖PCPN0h‖Y−s

provided α < 1/4 and s + α < 3/2. A similar bound holds when N1 ∼ N2 without
cutting with cubes C.

Cases 4(a)–(c). We use the argument above with (7.3) and (7.4). If N1 ∼ N0 we obtain
a bound of the form

(8.2) . δ−µrN
−β(s,α)

1 ‖PN2u2‖U2
1H

s‖PCPN0h‖Y−s

provided α < 1/4 and s + α < 3/2. A similar bound holds when N1 ∼ N2 without
cutting with cubes C.
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Cases 5(a)–(c). We use the argument above with (7.10). If N1 ∼ N0 we obtain a bound
of the form

(8.2) . δ−µrN1+α−s
2 ‖PN2u2‖U2

1H
s‖PN3u3‖U2

1H
s‖PCPN0h‖Y−s ,

which suffices provided s > 1+α. A similar bound holds whenN1 ∼ N2 without cutting
with cubes C.

Case 6(a). If N1 ∼ N0 we proceed as above to bound∣∣∣∣∫
T

∫
T3
Tϒ (PCPN1R̄1, PN2D2, PN3D3)PCPN0h dx dt

∣∣∣∣
. ‖Tϒ (PCPN1R̄1, PN2D2, PN3D3)‖L2

xt
‖PCPN0h‖L2

xt
.

Then we use (7.9), normalization and the embedding (4.7) to obtain the bound

(8.1) . δ−µrN
s−3/2+α+ε
1 N

1/2+3θ/4−s
2 min(N1, N

2
2 )
(1−θ)/2N

−s+3/2
3

×‖PN3u3‖U2
1H

s‖PN2u2‖U2
1H

s‖PCPN0h‖Y−s .

If N1 ≥ N
2
2 then

N
s−3/2+α+ε
1 N

1/2+3θ/4−s
2 min(N1, N

2
2 )
(1−θ)/2N

−s+3/2
3 ≤ N

s−3/2+α+ε
1 N

3−2s−θ/4
2

≤ N
α+ε−θ/8
1

provided that s < 3/2− θ/8 which forces α < θ/8.
On the other hand, if N1 < N2

2 we have

N
s−3/2+α+ε
1 N

1/2+3θ/4−s
2 min(N1, N

2
2 )
(1−θ)/2N

−s+3/2
3 ≤ N

s−1+α+ε−θ/2
1 N

2−2s+3θ/4
2

≤ N
2α+ε−θ/4
2

provided s > 1 + θ/2 − α. By letting, for example, θ = 10α we obtain 1 + 4α < s <

3/2− 2α in this case, while still satisfying the requirement that α < θ/8 from Case (a).
If N1 ∼ N2 the argument is similar and easier. For Case 6(b), (c) we repeat the

argument since (7.9) is not sensitive to conjugation on the random function.

Case 7(a). In this case we would like to use the Strichartz estimate (4.23). But since

Tϒ (D̄1,D2,R3) 6= D̄1D2R3

we need to add back the frequencies that have been removed, i.e. allow for n2 or n3 to be
equal to n1. If we were working with spaces whose norms are based on the absolute value
of the time-space Fourier coefficients, like the Xs,b space, this would not be an issue, but
since we are using UpL2 spaces we need to put back those missing frequencies. We show
below that reintroducing these frequencies will not bring back the whole linear term that
we have gauged away but only a part that has sufficient regularity to be controlled.
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We start by assuming that the Fourier coefficient associated to D1(t) is an1(t), to
D2(t) is bn2(t) and to R3(t) is cn3(t). Then we write∑
n=−n1+n2+n3, n2,n3 6=n1

χN1an1χN2bn2χN3cn3 = −χN3cn

(∑
n1

χN1an1χN2bn1

)
− χN2bn

(∑
n3

χN1an3χN3cn3

)
+ χN1anχN2bnχN3cn

+

∑
n=−n1+n2+n3

χN1an1χN2bn2χN3cn3 = A1(n)+ A2(n)+ A3(n)+ A4(n).

Then we have

(8.1) .
4∑
i=1

∣∣∣∣∫
T

∫
T3

F−1(Ai)(x, t)PN0h(x, t) dx dt

∣∣∣∣.
We now start with the estimate ofA1. Using Plancherel and Cauchy–Schwarz we have∣∣∣∣∫

T

∫
T3

F−1(A1)(x, t)PN0h(x, t) dx dt

∣∣∣∣ . ‖A1(n)‖L2(T,`2)‖PN0h(x, t)‖L2
x,t
.

We first notice that A1 is not zero only if N3 ∼ N1. Then

‖A1(n)‖L2(T,`2) . ‖D1‖L∞t L2
x
‖D2‖L∞t L2

x
‖R3‖L2(T,L2(T3)).

By renormalizing and using the embedding (4.7) we obtain∣∣∣∣∫
T

∫
T3

F−1(A1)(x, t)PN0h(x, t) dx dt

∣∣∣∣
. N−s−1+α

2 ‖PN1u1‖U2
1H

s‖PN2u2‖U2
1H

s‖PN0h‖Y−s .

We now note that A2 = 0 unless N0 ∼ N1 ∼ N2, and

‖A2(n)‖L2([0,π ],`2) . ‖D2‖L2(T,L2(T3))‖D1‖L∞t L2
x
‖R3‖L∞t L2

x
.

Also in this case we then have∣∣∣∣∫
T

∫
T3

F−1(A2)(x, t)PN0h(x, t) dx dt

∣∣∣∣
. N−s−1+α

2 ‖PN1u1‖U2
1H

s‖PN2u2‖U2
1H

s‖PN0h‖Y−s .

Now we note that A3 = 0 unless N1 ∼ N2 ∼ N3. Then

‖A3(n)‖L2(T,`2) . ‖D1‖L∞t L2
x
‖D2‖L∞t L2

x
‖R3‖L2(T,L2(T3)),

where we have used ‖an‖`∞ . ‖an‖`2 . Hence also in this case∣∣∣∣∫
T

∫
T3

F−1(A3)(x, t)PN0h(x, t) dx dt

∣∣∣∣
. N−s−1+α

2 ‖PN1u1‖U2
1H

s‖PN2u2‖U2
1H

s‖PN0h‖Y−s .
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Finally we estimate the term involving A4. Assume first that N0 ∼ N1. Then we need
to estimate ∣∣∣∣∫

T

∫
T3

F−1(A4)(x, t)PCPN0h(x, t) dx dt

∣∣∣∣ (8.3)

where we cut with cubes C of size length N2. We use Cauchy–Schwarz, (4.23), embed-
ding (4.7) and normalization to obtain

(8.3) . N s
0N
−s
1 N1−s

2 Nα
3 ‖PCPN1u1‖U4

1H
s‖PN2u2‖U4

1H
s‖PCPN0h‖Y−s

. N1−s+α
2 ‖PCPN1u1‖U4

1H
s‖PN2u2‖U4

1H
s‖PCPN0h‖Y−s .

If N1 ∼ N2 then the cutting with cubes C is automatic and a similar bound holds.
Cases (b) and (c) are similar since the argument presented above is not affected by

complex conjugation.

Case 8. This case is similar and better than Case 7.

8.2. Estimates involving the term J3

We start by noting that J3 consists of terms of the form∑
0(n)[123], n1,n3 6=n2

ŵn1(t)an2(t)bn3(t), (8.4)

where ŵn1(t) = cn1(t)dn1(t)rn1(t). We note that in the worst case, i.e. when the three
factors of ŵ correspond to random functions, we have w(t) ∈ H 3−3α , hence w can
always be thought of as a deterministic function. We estimate J3 using the arguments
presented for J2 in Subsection 8.1, but for the reason just explained we do not have to
consider Case 1 of that section. For Cases 2–6 we proceed by first applying the transfer
principle to the quintilinear expression associated to (8.4) and then regroup into a single
deterministic function those with the same frequency n1. Then we apply the appropriate
trilinear estimates of Proposition 7.1. The term involving the `2 norm of the product of
the three coefficients in n1 can be bounded by the product of the `2 norms of each. We
transfer and normalize back as usual.

This same argument is also used to estimate the Ai(x, t), i = 1, 2, 3, of Case 7. To
estimate A4 we use again the Strichartz inequality of Proposition 4.5 placing w in Lp

with p > 4. Then we use (4.19).

8.3. Estimates involving the term J4

Let w now be such that ŵn2(t) = an2(t)cn2(t)dn2(t)rn2(t) and v such that v̂(n1) = bn1 .
To estimate the contribution of J4 we need to estimate a term such as∫

T

∫
T3
PN0(wv)PN0h dx dt =

∫
T

∫
T3
PN0

( ∑
N1,N2

PN1vPN2w
)
PN0h dx dt.
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Since w ∈ H 4−4α , hence much smoother than v, the least advantageous situation is when
N1 ∼ N0 and N2 � N1 and this is the one we consider below. We cut the frequency
support of PN0h with cubes C of size N2 and we write(∫

T

∫
T3
PN0PN1vPN2wPN0h dx dt

)2

.
(∑
C

‖PCPN0h‖
2
L2
t L

2
x

sup ‖PCPN1vPN2w‖L2
t L

2
x

)2
.

We assume first that v is random. Then the remarks in Subsection 8.2 combined with the
transfer principle and the bilinear estimate (7.34) with θ = 1 give

‖PCPN1vPN2w‖L2
t L

2
x
. δ−µrN

−1/2+ε
1 N

5/4
2

∏
i /∈J

‖Di‖U2
1L

2 .

After normalizing we obtain the bound N−3/2+s+ε+α
1 N

−11/4+4α
2 , which entails s + α

< 3/2.
If v is deterministic then we use the bilinear estimate (4.24) and after normalization

we obtain the bound N−7/2+4α
2 .

8.4. Estimates involving the terms J5, J6 and J7

We work with the first term of J5, the second term being analogous. Given a dual function
h we define a new function k such that

k̂(n, t) = χN0a
1
n(t)a

2
n(t )̂h(n, t)

where the ain(t) are the Fourier coefficients of either a random or a deterministic function.
Assume that N1 ∼ N0. Then we cut the support of ĥ with cubes C of sidelength N2. By
Plancherel and Cauchy–Schwarz we need to bound

‖PCk‖L2
xt

and
∥∥∥ ∑
0(n)[1,2,3]

χCχN1bn1χN2 c̄n2χN3dn3

∥∥∥
L2
t `

2
.

Clearly

‖PCk‖L2
t L

2
x
. ‖PCPN0h‖L∞t L2

x

2∏
i=1

‖χNia
i
n‖

2
L∞t `

2 .

On the other hand, by (4.23) we find that∥∥∥ ∑
0(n)[1,2,3]

χCχN1bn1χN2 c̄n2χN3dn3

∥∥∥
L2
t `

2

has a bound of N2N3. By normalizing, assuming at worst that all functions are random,
we obtain the bound N s−2+2α

0 N−1+3α
1 . If N1 ∼ N2 the situation is similar.

To estimate J6 we use Cauchy–Schwarz and (4.22), while for the two terms in J7 we
use respectively (4.21) and (4.20).
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8.5. Estimates involving the term J1

The term J1 in (2.10) can be written as the sum over N0, N1, . . . , N5 (dyadic numbers)
of ∣∣∣∣∫

T

∫
T3
PN0Tϒ (PN1 ũ1, PN2 ũ2, PN3 ũ3, PN4 ũ4, PN5 ũ5)PN0h dx dt

∣∣∣∣ (8.5)

where Tϒ is the multilinear operator associated to the multiplier χϒ , the indicator function
of the set ϒ now defined by

ϒ(n,m) :=

(n1, m1, . . . , n5, m5) :

n = (−1)α1n1 + · · · + (−1)α5n5,

nk 6= n` whenever αk 6= α`,
|nj | ∼ Nj , j = 1, . . . , 5,
m = (−1)α1m1 + · · · + (−1)α5m5

 (8.6)

where the αj are 0 or 1 for j = 1, . . . , 5.

8.5.1. The all deterministic case DDDDD. Without loss of generality we assume that u2
and u4 are conjugated. Our goal is to use Strichartz estimates as in (4.23), but the operator
Tϒ (PN1u1, PN2u2, PN3u3, PN4u4, PN5u5) is not a product of the functions involved since
in the convolution of the Fourier coefficients some frequencies have been removed. We
need to add back the frequencies that have been removed, i.e. allow for n2 or n3 to be
equal to n1. If we were working with spaces whose norms are based on the absolute value
of the time-space Fourier coefficients, like the Xs,b space, this would not be an issue, but
since we are using UpL2 spaces we need to put back those missing frequencies. We show
below that reintroducing these frequencies will not bring back the whole linear term that
we have gauged away but only a part that has sufficient regularity to be controlled. See
also Subsection 8.1.

From (2.9) we see that

PN0(F
−1J1)(x, t) = PN0Tϒ (PN1u1, PN2u2, PN3u3, PN4u4, PN5u5)(x, t)

= PN0(PN1u1PN2u2PN3u3PN4u4PN5u5)(x, t)

−

5∑
i=1

PN0PNiui(x, t)

∫
T3

∏
j 6=i, j∈{1,2,3,4,5}

PNj ũj (x, t) dx

−

7∑
i=2

ciPN0F
−1Ji(PN1u1, PN2u2, PN3u3, PN4u4, PN5u5)(x, t), (8.7)

where the ci are constants and we specified as an argument of F−1J1 the functions in-
volved in its definition. The last sum involving J2–J7 has already been estimated in Sub-
sections 8.1–8.4 above. On the other hand, the first term, which is now a product of
functions, can be estimated as in Proposition 4.4. Finally, we estimate∥∥∥∥ 5∑

i=1

PN0PNi ũi(x, t)

∫
T3

∏
j 6=i, j∈{1,2,3,4,5}

PNj ũj (y, t) dy

∥∥∥∥
L2
x,t

. (8.8)
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We first note that each term of the sum is zero unless Ni ∼ N0 and that

(8.8) .
5∑
i=1

‖PN0PNiui‖L∞t L2
x

∏
j 6=i, j∈{1,2,3,4,5}

N
1/4
j ‖PNj uj (x, t)‖U4

1L
2
x
, (8.9)

and this is enough since all are deterministic.

8.5.2. The case DDDDR. In (8.5) we assume without any loss of generality that u5 is
random and N1 ≥ N2 ≥ N3 ≥ N4. Also in the argument below one can check that the
location of the complex conjugates does not affect the proof, hence here we assume that
u2 and u4 are complex conjugate.

We consider the following cases:

• Case (a): N5 ∼ N0 and N1 ≤ N5.
• Case (b): N1 ∼ N0 and N2 ≤ N5 ≤ N1.
• Case (c): N1 ∼ N5 and N0 ≤ N1.
• Case (d): N1 ∼ N0 and N5 ≤ N2.
• Case (e): N1 ∼ N2 and N5 ≤ N1.

Case (a). Proceeding as in the trilinear estimates we first decompose the support of χN0 ĥ

using cubes C of sidelength N1 in (8.5). By Cauchy–Schwarz, the transfer principle and
Plancherel we are reduced to estimating∑

(m,n)∈Z×Z3

∣∣∣∣ ∑
n=n5−n2+n3−n4+n1
n1,n3,n5 6=n2,n4

m=|n5|
2
−|n2|

2
+|n3|

2
−|n4|

2
+|n1|

2

χC(n5)
gn5(ω)

|n5|3/2
an1an2an3an4

∣∣∣∣2. (8.10)

We define

S(n5,n,m) :=

(n1, n2, n3, n4) :

n = n5 − n2 + n3 − n4 + n1,

n1, n3, n5 6= n2, n4, n5 ∈ C,

m = |n5|
2
− |n2|

2
+ |n3|

2
− |n4|

2
+ |n1|

2


and note that |S(n5,n,m)| . N3

4N
3
3N

2
2 . Also note that the variation of m is ∼ N5N1,

therefore by Lemma 3.4, for ω outside a set of measure e−1/δr we have

(8.10) . δ−2µrN5N1N
−3
5

∑
m

∑
n5

∣∣∣ ∑
S(n5,n,m)

an1an2an3an4

∣∣∣2
. δ−2µrN−2

5 N1 sup
m

∑
n5

∑
S(n5,n,m)

|S(n5,n,m)| |an1 |
2
|an2 |

2
|an3 |

2
|an4 |

2

. δ−2µrN−2
5 N1N

3
4N

3
3N

2
2

∑
n1,n2,n3,n4

|an1 |
2
|an2 |

2
|an3 |

2
|an4 |

2
|S(n1,n2,n3,n4,m)|

. δ−2µrN−1
5 N1N

3
4N

3
3N

2
2

4∏
i=1

‖ani‖
2
`2



Almost sure well-posedness for the periodic 3D quintic NLS below H 1 1733

where

S(n1,n2,n3,n4,m) :=

{
(n1, n5) :

n = n5 − n2 + n3 − n4 + n1, n5 ∈ C,

m = |n5|
2
− |n2|

2
+ |n3|

2
− |n4|

2
+ |n1|

2

}
and in the last inequality we have used |S(n1,n2,n3,n4,m)| ≤ N5. After renormalizing and
taking square roots we obtain the bound of N−3s+α+3

5 , which entails s > 1+ α/3.

Case (b). We will proceed by duality and a change of variables ζ = m− |n1|
2 as in the

proof of Proposition 7.2 (in particular see (7.15)). We also cut the N1 window with cubes
C of sidelength N5. We have to bound

‖γ ‖2
`2
ζ

‖χCan1‖
2
`2

∑
(ζ,n1)∈Z×Z3

∣∣∣∣ ∑
n=n5−n2+n3−n4+n1
n1,n3,n5 6=n2,n4

ζ=|n5|
2
−|n2|

2
+|n3|

2
−|n4|

2

gn5(ω)

|n5|3/2
χ
C̃
(n)knan2an3an4

∣∣∣∣2 (8.11)

where C̃ is of size approximately N5. We define

S(n5,n1,ζ ) :=

(n, n2, n3, n4) :

n = n5 − n2 + n3 − n4 + n1,

n1, n3, n5 6= n2, n4, n ∈ C̃,

ζ = |n5|
2
− |n2|

2
+ |n3|

2
− |n4|

2


and note that |S(n5,n1,ζ )| . N3

4N
3
3N

2
2 . Note also that 1ζ . N2

5 , hence we can continue
for ω outside a set of measure e−1/δr with

(8.11) . δ−2µ
‖γ ‖2

`2
ζ

‖χCan1‖
2
`2N

2
5N
−3
5 sup

ζ

∑
n1,n5

∣∣∣ ∑
S(n5,n1,ζ )

χ
C̃
(n)knan2an3an4

∣∣∣2
. δ−2µ

‖γ ‖2
`2
ζ

‖χCan1‖
2
`2N
−1
5

× sup
ζ

∑
n1,n5

∑
S(n5,n1,ζ )

|S(n5,n1,ζ )| |an2 |
2
|an3 |

2
|an4 |

2
|χ
C̃
(n)kn|

2

. δ−2µ
‖γ ‖2

`2
ζ

‖χCan1‖
2
`2N
−1
5 N3

4N
3
3N

2
2

×

∑
n,n2,n3,n4

|an2 |
2
|an3 |

2
|an4 |

2
|χ
C̃
(n)kn|

2
|S(n,n2,n3,n4,ζ )|

. δ−2µ
‖χCan1‖

2
`2N

3
4N

3
3N

2
2

4∏
i=2

‖ani‖
2
`2‖kn‖

2
`2‖γ ‖

2
`2
ζ

where

S(n,n2,n3,n4,ζ ) :=

{
(n, n5) :

n = n5 − n2 + n3 − n4 + n1, n5 ∈ C,

ζ = |n5|
2
− |n2|

2
+ |n3|

2
− |n4|

2

}
and in the last inequality we have used |S(n,n2,n3,n4,ζ )| ≤ N5. After renormalizing and
taking square roots we obtain a bound of N−3s+α+3

5 , which entails s > 1+ α/3.
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Case (c). This is like Case (b), but now we do not need to cut the support of the N1
window with N5.

Case (d). In this case we proceed as in Subsection 8.5.1, the only difference being in the
treatment of the terms in (8.7). More precisely, here we show how to estimate the random
term in (8.9). For vω0 as in (5.1) we have

N s
0N
−1+α
3 ‖PN0PN3v

ω
0 ‖L∞t H

1−α
x

4∏
j=1

N
1/4−s
j ‖PNj uj (x, t)‖U4

1H
s , (8.12)

where we notice that N3 ∼ N0, otherwise the contribution would be null. This is enough
to obtain the desired bound.

Case (e). This is like Case (d), but now we do not need to cut the support of the N1
window with N2.

8.5.3. The DDDRR case. To estimate the expression in (8.5) we will assume without
any loss of generality that u4, u5 are random and N4 ≥ N5. We can also assume that
N1 ≥ N2 ≥ N3. We have two different scenarios: Case 1: u4u5 or Case 2: u4u5, the
other cases being obtained by complex conjugation since we do not care about bars on
deterministic functions. The only difference between Cases 1 and 2 is that in Case 2 we
automatically have n4 6= n5 which allows us to use Proposition 3.1, and hence the same
argument as in Case 1 applies. We discuss Case 1 within the context of the following cases
( Case 2 being analogous after appropriately rewriting the corresponding constraints):

• Case (a):

(i) N4 ∼ N5 ≥ N0, N1.
(ii) N4 ∼ N1 ≥ N0 .

• Case (b): N4 ∼ N0 and

(i) N5 ≥ N1.
(ii) N4 ≥ N1 ≥ N5 ≥ N2.

(iii) N4 ≥ N1 and N2 ≥ N5 ≥ N3.
(iv) N4 ≥ N1 and N3 ≥ N5.

• Case (c): N1 ∼ N0 and

(i) N1 ≥ N4, N5 ≥ N2.
(ii) N1 ≥ N4 ≥ N2 ≥ N5 ≥ N3.

(iii) N1 ≥ N4 ≥ N2 ≥ N3 ≥ N5.
(iv) N2 ≥ N4, N5 ≥ N3.
(v) N2 ≥ N4 ≥ N3 ≥ N5.

(vi) N3 ≥ N4.

• Case (d): N1 ∼ N2 ≥ N0, N4.

Below we always treat Case 1 and without any loss of generality we may assume ũ1 = u1,
ũj = uj , j = 2, 3.
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Case (a)(i). In this case,N4 ∼ N5 ≥ N0, N1. By Cauchy–Schwarz, the transfer principle
and Plancherel we are reduced to estimating∑

(m,n)∈Z×Z3

∣∣∣∣∑
n4,n5

[ ∑
S(n4,n5,n,m)

an1an2an3

1
|n4|3/2

1
|n5|3/2

]
gn4(ω)gn5(ω)

∣∣∣∣2 (8.13)

where

S(n4,n5,n,m) :=

(n1, n2, n3) :

n = n4 + n5 + n1 − n2 − n3,

n2, n3 6= n1, n4, n5,

m = |n4|
2
+ |n5|

2
+ |n1|

2
− |n2|

2
− |n3|

2


with |S(n4,n5,n,m)| . N3

3N
2
2 and 1m ∼ N2

4 . We then have, for ω outside a set of measure
e−1/δr ,

(8.13) . δ−2µrN2
4N
−3
4 N−3

5 sup
m

∑
n4,n5,n

∣∣∣ ∑
S(n4,n5,n,m)

an1an2an3

∣∣∣2
. δ−2µrN−1

4 N−3
5 sup

m

∑
n4,n5,n

∑
S(n4,n5,n,m)

|S(n4,n5,n,m)||an1 |
2
|an2 |

2
|an3 |

2

. δ−2µrN−1
4 N−3

5 N2
2N

3
3 sup

m

∑
n1,n2,n3

|an1 |
2
|an2 |

2
|an3 |

2
|S(n1,n2,n3,m)|

. δ−2µrN−1
4 N−3

5 N2
2N

3
3N4N

3
5

∑
n1,n2,n3

|an1 |
2
|an2 |

2
|an3 |

2

. δ−2µrN2
2N

3
3

3∏
i=1

‖ani‖
2
`2 (8.14)

where

S(n1,n2,n3,m) :=

(n, n4, n5) :

n = n4 + n5 + n1 − n2 − n3,

n2, n3 6= n1, n4, n5,

m = |n4|
2
+ |n5|

2
+ |n1|

2
− |n2|

2
− |n3|

2


with |S(n1,n2,n3,m)| . N3

5N4. Taking square roots and normalizing we then obtain the
bound N s−2+2α

4 , which requires s < 2− 2α.

Case (a)(ii). In this case N4 ∼ N1 ≥ N0, we repeat the argument in Case (a)(i), but in
this case after taking square roots and normalizing we obtain the bound N3/2−2s+α

4 .

Case (b)(i). In this case, N4 ∼ N0 and N5 ≥ N1. From (8.5), we first decompose the
support of χN0 ĥ by taking cubes C of sidelengthN5 and then apply Cauchy–Schwarz, the
transfer principle and Plancherel. We are thus reduced to estimating an expression just as
in (8.13) but where now 1m ∼ N4N5 and thus we obtain instead of (8.14) the estimate
δ−2µrN−1

4 N5N
2
2N

3
3
∏3
i=1 ‖ani‖

2
`2 . Taking square roots and normalizing we obtain the

bound N s−3/2+α
4 provided α < 1/2, which in turn entails 1 ≤ s < 3/2− α.
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Case (b)(ii). In this case we have N4 ∼ N0 and N1 ≥ N5. The proof follows that of
Case (b)(i) except that now we first decompose the support of χN0 ĥ (and hence the N4
Fourier window) with cubes C of sidelength N1. We then have 1m ∼ N4N1 and instead
of (8.14) we obtain the estimate δ−2µrN−1

4 N1N
2
2N

3
3
∏3
i=1 ‖ani‖

2
`2 . Taking square roots

and normalizing we obtain the bound N s−3/2+α
4 as before.

Cases (b)(iii), (iv) are analogous to Case (b)(ii).

Case (c)(i). In this case we have N0 ∼ N1 ≥ N4, N5 ≥ N2. We will proceed by duality
and the change of variables ζ = m − |n1|

2 as in the proof of Proposition 7.2, (7.15) and
also as in (8.11). We also cut the N1 window with cubes C of sidelength N4. We have to
bound

‖χCan1‖
2
`2‖γ ‖

2
`2
ζ

∑
ζ∈Z,n1∈Z3

∣∣∣∣ ∑
n=n1+n4+n5−n2−n3
n2,n3 6=n1,n4,n5

ζ=|n4|
2
+|n5|

2
−|n2|

2
−|n3|

2

gn4(ω)

|n4|3/2
gn5(ω)

|n5|3/2
χ
C̃
(n)knan2an3

∣∣∣∣2,
(8.15)

where C̃ is of size approximately N4. Let us now define

σn1,n2 :=

∑
n=n1+n4+n5−n2−n3
n2,n3 6=n1,n4,n5

ζ=|n4|
2
+|n5|

2
−|n2|

2
−|n3|

2

χ
C̃
(n)knan3

gn4(ω)

|n4|3/2
gn5(ω)

|n5|3/2
, (8.16)

and note that then 1ζ ∼ N2
4 . Then

(8.15) . ‖χCan1‖
2
`2‖γ ‖

2
`2
ζ

N2
4 sup

ζ

∑
n1∈C

|σn1,n2an2 |
2

≤ N2
4 ‖χCan1‖

2
`2‖γ ‖

2
`2
ζ

‖an2‖
2
`2 sup

ζ

‖GG∗‖. (8.17)

As in Section 7, we write

‖GG∗‖ . max
n1

∑
n2,n2 6=n1

|σn1,n2 |
2
+

( ∑
n1 6=n

′

1

∣∣∣∑
n2

σn1,n2σ n′1,n2

∣∣∣2)1/2
=: M1 +M2, (8.18)

and estimate each term separately. For M1 we proceed as follows:

M1 = sup
n1

∑
n2,n2 6=n1

∣∣∣∣∑
n4,n5

[ ∑
S(n1,n2,n4,n5,ζ )

χ
C̃
(n)knan3

1
|n4|3/2

1
|n5|3/2

]
gn4(ω)gn5(ω)

∣∣∣∣2,
. δ−2µr sup

n1

∑
n2 6=n1,n4,n5

N−3
4 N−3

5

∣∣∣ ∑
S(n1,n2,n4,n5,ζ )

χ
C̃
(n)knan3

∣∣∣2
. δ−2µr sup

n1

∑
n2,n4,n5

N−3
4 N−3

5 |S(n1,n2,n4,n5,ζ )|

∑
S(n1,n2,n4,n5,ζ )

|χC(n)kn|
2
|an3 |

2 (8.19)
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for ω outside a set of measure e−1/δr , where

S(n1,n2,n4,n5,ζ ) :=

(n, n3) :

n = n1 + n4 + n5 − n2 − n3,

n2, n3 6= n1, n4, n5, n ∈ C̃,

ζ = |n4|
2
+ |n5|

2
− |n2|

2
− |n3|

2


with |S(n1,n2,n4,n5,ζ )| . N2

3 . Hence for

S(n,n3,ζ ) :=

(n2, n4, n5) :

n = n1 + n4 + n5 − n2 − n3,

n2, n3 6= n1, n4, n5, n ∈ C̃,

ζ = |n4|
2
+ |n5|

2
− |n2|

2
− |n3|

2


we have

(8.19) . δ−2µrN−3
4 N−3

5 N2
3

∑
n,n3

|χ
C̃
(n)kn|

2
|an3 |

2
|S(n,n3,ζ )|

. δ−2µrN−3
4 N−3

5 N2
3N

3
2N

3
5N4‖χC̃(n)kn‖

2
`2‖an3‖

2
`2

. δ−2µrN−2
4 N3

2N
2
3 ‖χC̃(n)kn‖

2
`2‖an3‖

2
`2 .

Hence the contribution of M1 to (8.17) is

δ−2µrN2
4N
−2
4 N3

2N
2
3 ‖χCan1‖

2
`2‖an2‖

2
`2‖an3‖

2
`2‖γ ‖

2
`2
ζ

‖χ
C̃
(n)kn‖

2
`2 .

After taking square roots and normalizing we obtain a bound ofN−1+α
4 N

−s+1/2+α
5 , which

suffices provided s > 1/2+ α.
To estimate M2 we first write

M2
2 =

∑
n1 6=n

′

1

∣∣∣∑
n2

σn1,n2σ n′1,n2

∣∣∣2
∼

∑
n1 6=n

′

1

∣∣∣∣ ∑
S(n1,n

′
1,ζ )

χ
C̃
(n)knχC̃(n

′)kn′an3an′3

gn4(ω)

|n4|3/2
gn5(ω)

|n5|3/2

gn′4
(ω)

|n′4|
3/2

gn′5
(ω)

|n′5|
3/2

∣∣∣∣2 (8.20)

where

S(n1,n
′

1,ζ )
:=

(n, n2, n3, n
′

3, n4, n
′

4, n5, n
′

5) :

n = n1 + n4 + n5 − n2 − n3,

n′ = n′1 + n
′

4 + n
′

5 − n2 − n
′

3,

n2, n3 6=n1, n4, n5; n
′

2, n
′

3 6= n
′

1, n
′

4, n
′

5; n, n
′
∈ C̃,

ζ = |n4|
2
+ |n5|

2
− |n2|

2
− |n3|

2,

ζ = |n′4|
2
+ |n′5|

2
− |n2|

2
− |n′3|

2


.

(8.21)
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To streamline the exposition let

C :=


n = n1 + n4 + n5 − n2 − n3, n

′
= n′1 + n

′

4 + n
′

5 − n2 − n
′

3;

ζ = |n4|
2
+ |n5|

2
− |n2|

2
− |n3|

2, ζ = |n′4|
2
+ |n′5|

2
− |n2|

2
− |n′3|

2
;

n2, n3 6= n1, n4, n5; n
′

2, n
′

3 6= n
′

1, n
′

4, n
′

5; n, n
′
∈ C̃.

We need to organize the estimates according to whether some frequencies are the
same or not; in all we have seven cases:

• Case β1: n4, n5 6= n
′

4, n
′

5.

• Case β2: n4 = n
′

4; n5 6= n
′

5.

• Case β3: n4 6= n
′

4; n5 = n
′

5.

• Case β4: n4 6= n
′

5; n5 = n
′

4.

• Case β5: n4 = n
′

5; n5 6= n
′

4.

• Case β6: n4 = n
′

5; n5 = n
′

4.

• Case β7: n4 = n
′

4; n5 = n
′

5.

Case β1. To estimate the contribution of M2, we first define

S(n1,n
′

1,n4,n
′

4,n5,n
′

5,ζ )
:= {(n, n′, n2, n3, n

′

3) satisfying C },

with |S(n1,n
′

1,n4,n
′

4,n5,n
′

5,ζ )
| . N6

3N
2
2 . Next, for ω outside a set of measure e−1/δr , we

estimate M2
2 as follows:

(8.20) . δ−4µr
∑
n1 6=n

′

1

N−6
4 N−6

5

∑
n4 6=n

′

4,n5 6=n
′

5

[ ∑
S(n1,n

′
1,n4,n

′
4,n5,n

′
5,ζ )

χC(n)knχC(n
′)kn′an3an′3

]2

. δ−4µr

×

∑
n1 6=n

′

1

N−6
4 N−6

5 N6
3N

2
2

∑
n4,n

′

4,n5,n
′

5

∑
S(n1,n

′
1,n4,n

′
4,n5,n

′
5,ζ )

|χ
C̃
(n)kn|

2
|χ
C̃
(n′)kn′ |

2
|an3 |

2
|an′3
|
2

. δ−4µrN−6
4 N−6

5 N6
3N

2
2

∑
n,n′,n3,n

′

3

|S(n,n′,n3,n
′

3,ζ )
| |χ

C̃
(n)kn|

2
|χ
C̃
(n′)kn′ |

2
|an3 |

2
|an′3
|
2

. δ−4µrN−6
4 N−6

5 N6
3N

2
2N

3
2N

6
5N

2
4 ‖χC̃(n)kn‖

2
`2‖χC̃(n

′)kn′‖
2
`2‖an3‖

2
`2‖an′3

‖
2
`2

. δ−4µrN−4
4 N6

3N
5
2 ‖χC̃(n)kn‖

2
`2‖χC̃(n

′)kn′‖
2
`2‖an3‖

2
`2‖an′3

‖
2
`2 ,

where we have used the fact that S(n,n′,n3,n
′

3,ζ )
:= {(n1, n

′

1, n2, n4, n
′

4, n5, n
′

5) satisfy-

ing C } has cardinality less than or equal to N3
2N

6
5N

2
4 .

All in all, the contribution of 1ζM2 is bounded by N3
3N

5/2
2 . Taking square roots

and normalizing we finally obtain the bound N−1+α
4 N

7/4−2s+α
5 , which suffices provided

s > 7/8+ α/2.
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Case β2. Now we have n4 = n
′

4 while n5 6= n
′

5, rendering (8.20) equal to∑
n1 6=n

′

1

∣∣∣∣ ∑
S(n1,n

′
1,ζ )

χ
C̃
(n)knχC̃(n

′)kn′an3an′3

|gn4(ω)|
2

|n4|3
gn5(ω)

|n5|3/2

gn′5
(ω)

|n′5|
3/2

∣∣∣∣2. (8.22)

We proceed in a similar fashion to (7.17)–(7.23) and define

Q1 :=
∑
n1 6=n

′

1

∣∣∣∣ ∑
S(n1,n

′
1,ζ )

kC̃n k
C̃
n′an3an′3

|gn4(ω)|
2
− 1

|n4|3
gn5(ω)

|n5|3/2

gn′5
(ω)

|n′5|
3/2

∣∣∣∣2, (8.23)

Q2 :=
∑
n1 6=n

′

1

∣∣∣∣ ∑
S(n1,n

′
1,ζ )

kC̃n k
C̃
n′an3an′3

1
|n4|3

gn5(ω)

|n5|3/2

gn′5
(ω)

|n′5|
3/2

∣∣∣∣2, (8.24)

where we have denoted kC̃n := χC̃(n)kn and similarly for kC̃
n′

.
To estimate Q2 define

S(n1,n
′

1,n5,n
′

5,ζ )
:= {(n, n′, n2, n4, n3, n

′

3) satisfying C },

with |S(n1,n
′

1,n5,n
′

5,ζ )
| . N6

3N
3
2N4. Then for ω outside a set of measure e−1/δr ,

(8.24) . δ−4µr
∑
n1 6=n

′

1

N−6
4 N−6

5

∑
n5 6=n

′

5

[ ∑
S(n1,n

′
1,n5,n

′
5,ζ )

kC̃n k
C̃
n′an3an′3

]2

. δ−4µr
∑
n1 6=n

′

1

N−6
4 N−6

5 N6
3N

3
2N4

∑
n5,n

′

5

∑
S(n1,n

′
1,n5,n

′
5,ζ )

|kC̃n |
2
|kC̃n′ |

2
|an3 |

2
|an′3
|
2

. δ−4µrN−6
4 N−6

5 N6
3N

3
2N4

∑
n,n′,n3,n

′

3

|S(n,n′,n3,n
′

3,ζ )
| |kC̃n |

2
|kC̃n′ |

2
|an3 |

2
|an′3
|
2

. δ−4µrN−6
4 N−6

5 N6
3N

3
2N4N

3
2N

6
5N4‖χC̃(n)kn‖

2
`2‖χC̃(n

′)kn′‖
2
`2‖an3‖

2
`2‖an′3

‖
2
`2

. δ−4µrN−4
4 N6

3N
6
2 ‖χC̃(n)kn‖

2
`2‖χC̃(n

′)kn′‖
2
`2‖an3‖

2
`2‖an′3

‖
2
`2

where we have used the fact that S(n,n′,n3,n
′

3,ζ )
:= {(n1, n

′

1, n2, n4, n5, n
′

5) satisfying C }

has cardinality less than or equal to N3
2N

6
5N4.

The bound for Q1 is smaller, just as in the proof of Proposition 7.2, (7.17)–(7.23). We
omit the details.

Thus the contribution of1ζM2 is bounded by N3
3N

3
2 , which after taking square roots

and normalizing gives a bound of N−1+α
4 N2−2s+α

5 , which suffices provided s > 1+α/2.

Case β3. Now n4 6= n
′

4 while n5 = n
′

5, rendering (8.20) equal to∑
n1 6=n

′

1

∣∣∣∣ ∑
S(n1,n

′
1,ζ )

kC̃n k
C̃
n′an3an′3

|gn5(ω)|
2

|n5|3
gn4(ω)

|n4|3/2

gn′4
(ω)

|n′4|
3/2

∣∣∣∣2. (8.25)

We proceed as above, defining analogous Q1 and Q2 terms bounding (8.25) in this case.
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To estimate Q2 we define

S(n1,n
′

1,n4,n
′

4,ζ )
:= {(n, n′, n2, n5, n3, n

′

3) satisfying C }

with |S(n1,n
′

1,n4,n
′

4,ζ )
| . N6

3N
3
2 min(N2

5 , N4) ≤ N6
3N

3
2N

2
5 . Then for ω outside a set of

measure e−1/δr ,

Q2 . δ−4µr
∑
n1 6=n

′

1

N−6
4 N−6

5

∑
n4 6=n

′

4

[ ∑
S(n1,n

′
1,n4,n

′
4,ζ )

kC̃n k
C̃
n′an3an′3

]2

. δ−4µr
∑
n1 6=n

′

1

N−6
4 N−6

5 N6
3N

3
2N

2
5

∑
n4,n

′

4

∑
S(n1,n

′
1,n4,n

′
4,ζ )

|kC̃n |
2
|kC̃n′ |

2
|an3 |

2
|an′3
|
2

. δ−4µrN−6
4 N−6

5 N6
3N

3
2N

2
5

∑
n,n′,n3,n

′

3

|S(n,n′,n3,n
′

3,ζ )
| |kC̃n |

2
|kC̃n′ |

2
|an3 |

2
|an′3
|
2

. δ−4µrN−6
4 N−6

5 N6
3N

3
2N

2
5N

3
2N

3
5N

2
4 ‖k

C̃
n ‖

2
`2‖k

C̃
n′‖

2
`2‖an3‖

2
`2‖an′3

‖
2
`2

. δ−4µrN−4
4 N−1

5 N6
3N

6
2 ‖χC̃(n)kn‖

2
`2‖χC̃(n

′)kn′‖
2
`2‖an3‖

2
`2‖an′3

‖
2
`2 (8.26)

where we have now used the fact that S(n,n′,n3,n
′

3,ζ )
:= {(n1, n

′

1, n2, n4, n
′

4, n5) satisfy-

ing C } has cardinality less than or equal toN3
2N

3
5N

2
4 . Note this is a better bound than that

obtained in Case β2.
Since just as before, the bound for Q1 is smaller, the contribution of1ζM2 is bounded

by N3
3N

3
2 . After taking square roots and normalizing, the latter gives the same bound as

in Case β2.

Case β4. In this case n4 6= n
′

5 while n5 = n
′

4, rendering (8.20) equal to

∑
n1 6=n

′

1

∣∣∣∣ ∑
S(n1,n

′
1,ζ )

kC̃n k
C̃
n′an3an′3

|gn5(ω)|
2

|n5|3
gn4(ω)

|n4|3/2

gn′5
(ω)

|n′5|
3/2

∣∣∣∣2. (8.27)

Once again, we proceed by defining the corresponding Q1 and Q2 terms bounding (8.27)
and note the estimate for Q1 is better than that for Q2. In the latter case, we proceed as in
(8.26) in Case β3, but now

S(n1,n
′

1,n4,n
′

5,ζ )
:= {(n, n′, n2, n5, n3, n

′

3) satisfying C }

has |S(n1,n
′

1,n4,n
′

5,ζ )
| . N6

3N
3
2N4. Furthermore, since n5 = n

′

4, we have 1ζ . N2
5 from

the definition of C . Thus for ω outside a set of measure e−1/δr ,

Q2 . δ−4µr
∑
n1 6=n

′

1

N−3
4 N−9

5

∑
n4 6=n

′

5

[ ∑
S(n1,n

′
1,n4,n

′
5,ζ )

kC̃n k
C̃
n′an3an′3

]2

. δ−4µr
∑
n1 6=n

′

1

N−3
4 N−9

5 N6
3N

3
2N4

∑
n4,n

′

5

∑
S(n1,n

′
1,n4,n

′
5,ζ )

|kC̃n |
2
|kC̃n′ |

2
|an3 |

2
|an′3
|
2



Almost sure well-posedness for the periodic 3D quintic NLS below H 1 1741

. N−3
4 N−9

5 N6
3N

3
2N4

∑
n,n′,n3,n

′

3

|S(n,n′,n3,n
′

3,ζ )
| |kC̃n |

2
|kC̃n′ |

2
|an3 |

2
|an′3
|
2

. δ−4µrN−3
4 N−9

5 N6
3N

3
2N4N

3
2N

5
5N4‖k

C̃
n ‖

2
`2‖k

C̃
n′‖

2
`2‖an3‖

2
`2‖an′3

‖
2
`2

. δ−4µrN−1
4 N−4

5 N6
3N

6
2 ‖χC̃(n)kn‖

2
`2‖χC̃(n

′)kn′‖
2
`2‖an3‖

2
`2‖an′3

‖
2
`2 (8.28)

where now S(n,n′,n3,n
′

3,ζ )
:= {(n1, n

′

1, n2, n4, n
′

5, n5) satisfying C } has cardinality less

than or equal to N3
2N

3
5N4. Thus

1ζM2 . δ−4µrN2
5N
−1/2
4 N−2

5 N3
3N

3
2 ‖χC̃(n)kn‖`2‖χC̃(n

′)kn′‖`2‖an3‖`2‖an′3
‖`2 ,

whence after taking square roots and normalizing we obtain a bound ofN−5/4+α
4 N2−2s+α

5 ,
which suffices provided s > 1+ α/2.

Case β5. In this case n4 = n
′

5 while n5 6= n
′

4, rendering (8.20) equal to

∑
n1 6=n

′

1

∣∣∣∣ ∑
S(n1,n

′
1,ζ )

kC̃n k
C̃
n′an3an′3

|gn4(ω)|
2

|n4|3

gn′4
(ω)

|n′4|
3/2

gn5
(ω)

|n5|3/2

∣∣∣∣2. (8.29)

Once again, we define the corresponding Q1 and Q2 terms bounding (8.29). We treat Q2
as in (8.26) in Case β3 but with

S(n1,n
′

1,n
′

4,n5,ζ )
:= {(n, n′, n2, n4, n3, n

′

3) satisfying C }

having |S(n1,n
′

1,n
′

4,n5,ζ )
| . N6

3N
3
2N4. Then for ω outside a set of measure e−1/δr ,

Q2 . δ−4µr
∑
n1 6=n

′

1

N−9
4 N−3

5

∑
n′4 6=n5

[ ∑
S(n1,n

′
1,n
′
4,n5,ζ )

kC̃n k
C̃
n′an3an′3

]2

. δ−4µr
∑
n1 6=n

′

1

N−9
4 N−3

5 N6
3N

3
2N4

∑
n′4,n5

∑
S(n1,n

′
1,n
′
4,n5,ζ )

|kC̃n |
2
|kC̃n′ |

2
|an3 |

2
|an′3
|
2

. N−9
4 N−3

5 N6
3N

3
2N4

∑
n,n′,n3,n

′

3

|S(n,n′,n3,n
′

3,ζ )
| |kC̃n |

2
|kC̃n′ |

2
|an3 |

2
|an′3
|
2

. δ−4µrN−9
4 N−3

5 N6
3N

3
2N4N

3
2N

3
5N

2
4 ‖k

C̃
n ‖

2
`2‖k

C̃
n′‖

2
`2‖an3‖

2
`2‖an′3

‖
2
`2

. δ−4µrN−6
4 N6

3N
6
2 ‖χC̃(n)kn‖

2
`2‖χC̃(n

′)kn′‖
2
`2‖an3‖

2
`2‖an′3

‖
2
`2

where now S(n,n′,n3,n
′

3,ζ )
:= {(n1, n

′

1, n2, n4, n
′

5, n5) satisfying C } has cardinality less

than or equal to N3
2N

3
5N

2
4 .

Thus the contribution of 1ζM2 is bounded by N−1
4 N−2

5 N3
3N

3
2 . After taking square

roots and normalizing we obtain a bound of N−3/2+α
4 N2−2s+α

5 , which suffices provided
s > 1+ α/2.
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Case β6. In this case n4 = n
′

5 and n5 = n
′

4, and (8.20) has enough decay to use Lemma
3.4. We define

S(n1,n
′

1,ζ )
:= {(n, n′, n2, n3, n

′

3, n4, n
′

4) satisfying C }

with |S(n1,n
′

1,ζ )
| . N6

3N
3
2N

4
4 and proceed as follows for ω outside a set of measure e−1/δr :

∑
n1 6=n

′

1

∣∣∣∣ ∑
S(n1,n

′
1,ζ )

kC̃n k
C̃
n′an3an′3

|gn4(ω)|
2

|n4|3

|gn′4
(ω)|2

|n′4|
3

∣∣∣∣2
. N−12+ε

4

∑
n1 6=n

′

1

|S(n1,n
′

1,ζ )
|

∑
S(n1,n

′
1,ζ )

|kC̃n |
2
|kC̃n′ |

2
|an3 |

2
|an′3
|
2,

. N−12+ε
4 N6

3N
3
2N

4
4N

3
2N

4
4

∑
n,n′,n3,n

′

3

|S(n,n′,n3,n
′

3,ζ )
| |kC̃n |

2
|kC̃n′ |

2
|an3 |

2
|an′3
|
2

. N−4+ε
4 N6

3N
6
2 ‖χC̃(n)kn‖

2
`2‖χC̃(n

′)kn′‖
2
`2‖an3‖

2
`2‖an′3

‖
2
`2 (8.30)

where we have used the fact that S(n,n′,n3,n
′

3,ζ )
:= {(n1, n

′

1, n2, n4, n
′

4) satisfying C } has

cardinality less than or equal to N3
2N

4
4 .

Thus the contribution of 1ζM2 is bounded by Nε
4N

3
3N

3
2 . After taking square roots

and normalizing we obtain a bound of N−1+α+ε
4 N2−2s+α

5 , which suffices provided s >
1+ α/2.

Case β7. In this case n4 = n
′

4 and n5 = n
′

5, and once again (8.20) has enough decay to
use Lemma 3.4. Define

S(n1,n
′

1,ζ )
:= {(n, n′, n2, n3, n

′

3, n4, n5) satisfying C }

with |S(n1,n
′

1,ζ )
| . N6

3N
3
2N

3
5N4 and proceed as follows for ω outside a set of measure

e−1/δr :∑
n1 6=n

′

1

∣∣∣∣ ∑
S(n1,n

′
1,ζ )

kC̃n k
C̃
n′an3an′3

|gn4(ω)|
2

|n4|3
|gn5(ω)|

2

|n5|3

∣∣∣∣2
. N−6+ε

4 N−6
5

∑
n1 6=n

′

1

|S(n1,n
′

1,ζ )
|

∑
S(n1,n

′
1,ζ )

|kC̃n |
2
|kC̃n′ |

2
|an3 |

2
|an′3
|
2,

. N−6+ε
4 N−6

5 N6
3N

3
2N

3
5N4

∑
n,n′,n3,n

′

3

|S(n,n′,n3,n
′

3,ζ )
| |kC̃n |

2
|kC̃n′ |

2
|an3 |

2
|an′3
|
2

. N−4+ε
4 N6

3N
6
2 ‖χC̃(n)kn‖

2
`2‖χC̃(n

′)kn′‖
2
`2‖an3‖

2
`2‖an′3

‖
2
`2

where we have used the fact that

S(n,n′,n3,n
′

3,ζ )
:= {(n1, n

′

1, n2, n4, n5) satisfying C for fixed (n, n′, n3, n
′

3, ζ )}

has cardinality less than or equal to N3
2N

3
5N4.
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Thus the contribution of 1ζM2 is bounded by Nε
4N

3
3N

3
2 . After taking square roots

and normalizing we obtain a bound of N−1+α+ε
4 N2−2s+α

5 , which suffices provided s >
1+ α/2.

Case (c)(ii). In this case we have N0 ∼ N1 ≥ N4 ≥ N2 ≥ N5 ≥ N3. As in Case (c)(i)
after duality, changing variables ζ := m− |n1|

2 and cutting the N1 window with cubes C
of sidelength N4 we have to estimate expression (8.15). Since 1ζ ∼ N2

4 we once again
bound (8.15) by

‖χCan1‖
2
`2‖γ ‖

2
`2
ζ

N2
4 sup

ζ

∑
n1∈C

|σn1,n2an2 |
2
≤ N2

4 ‖χCan1‖
2
`2‖γ ‖

2
`2
ζ

‖an2‖
2
`2 sup

ζ

‖GG∗‖

where σn1,n2 is defined as in (8.16) and G denotes, as usual, the matrix of entries σn1,n2 .
Just as in Case (c)(i) we are then reduced to estimating M1 and M2 as defined in (8.18).

To estimate M1 we proceed just as in (8.19) to obtain for ω outside a set of measure
e−1/δr the same bound

M1 . δ−2µrN−2
4 N3

2N
2
3 ‖χC̃(n)kn‖

2
`2‖an3‖

2
`2 . (8.31)

Hence 1ζM1 is bounded once again by

δ−2µrN3
2N

2
3 ‖χCan1‖

2
`2‖an2‖

2
`2‖an3‖

2
`2‖γ ‖

2
`2
ζ

‖χ
C̃
(n)kn‖

2
`2 ,

which after taking square roots and normalizing gives the bound N−s+1/2+α
4 , which suf-

fices provided s > 1/2+ α.
The estimate for M2 proceeds as in Case (c)(i) by analyzing Cases β1–β7 as stated

there, yielding the same bounds for 1ζM2. We do not repeat the arguments but rather
indicate the bound we obtain in each case after taking square roots and normalizing since
now N2 ≥ N5 ≥ N3, so we need to trade the slower decay of the random term ũ5 for the
better regularity of the deterministic function ũ2 .

Case β1. In this case the contribution of 1ζM2 is bounded by N3
3N

5/2
2 . Taking square

roots and normalizing we obtain the bound N−1+α
4 N

5/4−s
2 N

1/2−s+α
5 , which suffices pro-

vided s > 1/2+ α and α < 1.

Cases β2 and β3. In these cases the contribution of 1ζM2 is bounded by N3
3N

3
2 . Taking

square roots and normalizing we obtain the bound N1/2−s+α
4 N

1/2−s+α
5 , which suffices

provided s > 1/2+ α.

Case β4. In this case the contribution of 1ζM2 is bounded by N−1/2
4 N3

2N
3
3 . Taking

square roots and normalizing gives the bound N1/4−s+α
4 N

1/2−s+α
5 , which suffices pro-

vided s > 1/2+ α.

Case β5. In this case the contribution of 1ζM2 is bounded by N−1
4 N−2

5 N3
2N

3
3 , which is

smaller than the bound in Case β4.
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Cases β6 and β7. In these cases the contribution of1ζM2 is bounded byNε
4N

3
2N

3
3 . After

taking square roots and normalizing we get the boundN1/2−s+α+ε
4 N

1/2−s+α
5 , which once

again suffices provided s > 1/2+ α.

Case (c)(iii). In this case N0 ∼ N1 ≥ N4 ≥ N2 ≥ N3 ≥ N5. Since1ζM1 is bounded by

δ−2µrN3
2N

2
3 ‖χCan1‖

2
`2‖an2‖

2
`2‖an3‖

2
`2‖γ ‖

2
`2
ζ

‖χ
C̃
(n)kn‖

2
`2 ,

after taking square roots and normalizing we have the bound N−s+1/2+α
4 just as before.

The latter suffices provided s > 1/2+ α. For M2, following the scheme presented above
for Case (c)(ii) we now have:

Case β1. Since the contribution of 1ζM2 is bounded by N3
3N

5/2
2 , after taking square

roots and normalizing we obtain the bound N7/4−2s+α
4 , which suffices provided s >

7/8+ α/2.

Cases β2 and β3. In these cases the contribution of 1ζM2 is bounded by N3
3N

3
2 . Taking

square roots and normalizing we obtain the bound N2−2s+α
4 , which suffices provided

s > 1+ α/2.

Case β4. In this case the contribution of 1ζM2 is bounded by N−1/2
4 N3

2N
3
3 , which is

smaller than the bound in Cases β2, β3.

Case β5. In this case the contribution of 1ζM2 is bounded by N−1
4 N−2

5 N3
2N

3
3 , which is

smaller than the bound in Case β4.

Cases β6 and β7. In these cases the contribution of 1ζM2 is bounded by Nε
4N

3
2N

3
3 .

After taking square roots and normalizing we get the bound N2−2s+α+ε
4 , which once

again suffices provided s > 1+ α/2.

Cases (c)(iv)–(vi) and (d). In these cases we proceed as in Subsection 8.5.1. Assume
N0 ∼ N1 ≥ N2 ≥ N4, Case (d) having similar or better bounds. The estimates of the
trilinear expressions will give after normalization

N s
0N
−s
1 N−s+1

2 N1−s
3 Nα

4 N
α
5

and we assume that s > 1+ α.
One also needs to estimate the terms in (8.7). Here we show how to estimate the term

involving the random function at frequency N4 in (8.9). We first observe that in order for
this term not to be zero it must be that N4 ∼ N0. Then for vω0 in (5.1), after normalization
we have the bound

N s
0N
−s
1 N−s2 N−s3 N−1+α

4 N−1+α
5

× ‖PN0PN4v
ω
0 ‖L∞t H

1−α
x
N

1/4
5 ‖D

1−α(PN0PN5v
ω
0 )‖L4

t L
4
x

∏
j=1,2,3

N
1/4
j ‖PNj uj (x, t)‖U4

1H
s .

The latter together with the Strichartz estimate (4.16) are enough to obtain the desired
bound since for α < 3/4, we have

N s
0N
−s+1/4−1+α
0 ∼ N

−3/4+α
0 < 1.
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8.5.4. The DDRRR case. To estimate the expression in (8.5) we first observe that in terms
of bars we need to estimate only the following cases: Case 1: u1, u3, u5 are random, that
is, none of the random functions are conjugated, and Case 2: only one of these functions
is conjugated; the other cases are obtained by conjugating the whole expression in (8.5).
We will remark later on how the estimates change depending on these two cases.

We now assume that the first three functions are random and the last two are deter-
ministic. We also assume that N1 ≥ N2 ≥ N3 and N4 ≥ N5. We then have the following
subcases:

• Case (a): N4 = max(N1, N4) and

(i) N2 ≤ N5 ≤ N4.
(ii) N2 ≤ N5 ≤ N1 ≤ N4.

(iii) N3 ≤ N5 ≤ N2 ≤ N1 ≤ N4.
(iv) N5 ≤ N3 ≤ N2 ≤ N1 ≤ N4.

• Case (b): N1 = max(N1, N4), N2 ≥ N4 and

(i) N3 ≥ N4.
(ii) N5 ≤ N3 ≤ N4 ≤ N2.

(iii) N3 ≤ N5 ≤ N4 ≤ N2.

• Case (c): N1 = max(N1, N4), N4 ≥ N2 and

(i) N2 ≤ N5 ≤ N4 ≤ N1.
(ii) N3 ≤ N5 ≤ N2 ≤ N4 ≤ N1.

(iii) N5 ≤ N3 ≤ N2 ≤ N4 ≤ N1.

Case (a)(i). In this case we proceed as in Subsection 8.5.1. Assume for simplicity that
N0 ∼ N4; the other cases are smoother. The estimates of the trilinear expressions will
give after normalization

N s
0N
−s
4 N−s+1

5 Nα
3 N

α
2 N

α
1 ,

and we assume that s > 1 + 3α. One also needs to estimate the terms in (8.7). Here we
show how to estimate the factor involving the random term at frequency N1 in (8.9). We
have, for vω0 of (5.1),

N s
0N
−1+α
1 N−1+α

2 N−1+α
3 ‖PN0PN3v

ω
0 ‖L∞t H

1−α
x

∏
j=4,5

N
1/4−s
j ‖PNj uj (x, t)‖U4

1H
s , (8.32)

where we notice that N1 ∼ N0 since otherwise the contribution would be null. This is
enough to obtain the desired bound since

N s
0N
−1+α
0 N

1/4−s
4 ∼ N

−3/4+α
4 .

Also note that this case is not affected by conjugation, hence it is the same in Case 1 and
Case 2.

Case (a)(ii). We also assume that N4 ∼ N0, this is the least favorable situation. We
proceed by duality and a change of variables ζ = m±|n4|

2 as in the proof of Proposition
7.2 (in particular see (7.15)).
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We have to bound

‖γ ‖2
`2
ζ

‖an4‖
2
`2

∑
(ζ,n4)∈Z×Z3

∣∣∣∣ ∑
n=±n1±n2±n3±n4±n5

ni ,nj ,nk 6=nr ,np

ζ=±|n1|
2
±|n2|

2
±|n3|

2
±|n5|

2

g̃n1(ω)

|n1|3/2
g̃n2(ω)

|n2|3/2
g̃n3(ω)

|n3|3/2
knãn5

∣∣∣∣2.
(8.33)

We now consider two cases:

• Case A0: n1, n2, n3 are all different from each other.
• Case A1: At least two of the frequencies n1, n2, n3 are equal.

Case A0. We define the set

S(ζ,n4,n1,n2,n3) :=

(n, n5) :

n = ±n1 ± n2 ± n3 ± n4 ± n5,

ni, nj , nk 6= nr , np,

ζ = ±|n1|
2
± |n2|

2
± |n3|

2
± |n5|

2


with |S(ζ,n4,n1,n2,n3)| . N2

5 and we write

(8.33) . ‖γ ‖2
`2
ζ

‖an4‖
2
`2

×

∑
(ζ,n4)∈Z×Z3

N−3
1 N−3

2 N−3
3

∣∣∣ ∑
n1,n2,n3

g̃n1(ω)g̃n2(ω)g̃n3(ω)
∑

S(ζ,n4,n1,n2,n3)

knãn5

∣∣∣2.
By using Lemma 3.4 we can continue, for ω outside a set of measure e−1/δr , with

. δ−2µr
‖γ ‖2

`2
ζ

‖an4‖
2
`2

×

∑
(ζ,n4)∈Z×Z3

N−3
1 N−3

2 N−3
3

∑
n1,n2,n3

∑
S(ζ,n4,n1,n2,n3)

|S(ζ,n4,n1,n2,n3)| |kn|
2
|an5 |

2

. δ−2µr
‖γ ‖2

`2
ζ

‖an4‖
2
`2N
−3
1 N−3

2 N−3
3 N2

5

∑
n,n5

|kn|
2
|an5 |

2
|S(n5,n)|

where

S(n,n5) :=

(ζ, n4, n1, n2, n3) :

n = ±n1 ± n2 ± n3 ± n4 ± n5,

ni, nj , nk 6= nr , np,

ζ = ±|n1|
2
± |n2|

2
± |n3|

2
± |n5|

2


and |S(n,n5)| . N3

1N
3
2N

3
3 , where we have used 1ζ . N2

1 . Hence we can continue with

. δ−2µr
‖γ ‖2

`2
ζ

‖an4‖
2
`2N

2
5 ‖kn‖

2
`2‖an5‖

2
`2

and after taking square roots and normalizing we obtain the bound

N1−s
5 N−1+α

1 N−1+α
2 N−1+α

3 .

We note that this case is the same in Case 1 and Case 2.
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Case A1. We first assume that only two frequencies are equal. The important remark
is that we have removed the frequencies that would give rise to |gn(ω)|2 so in (8.33)
we would see either (g̃n1)

2(ω)g̃n3(ω) or g̃n1(ω)(g̃n2)
2(ω). In both cases we can still use

Lemma 3.4 and proceed as above to obtain in fact better estimates, since the cardinalities
of the sets involved are smaller due to the collapse of the frequencies that are equal.

If all three frequencies are equal, and this can happen only in Case 2, then N1 ∼

N2 ∼ N3 and

(8.33) . ‖γ ‖2
`2
ζ

‖an4‖
2
`2

∑
(ζ,n4)∈Z×Z3

N−12
1

∑
n3

|gn3(ω)|
3
∣∣∣ ∑
S(ζ,n4,n3)

knãn5

∣∣∣2
where

S(ζ,n4,n3) := {(n, n5) : n = ±3n3 ± n4 ± n5, ζ = ±3|n3|
2
± |n5|

2
}.

Then by using Lemma 3.4 we can continue, for ω outside a set of measure e−1/δr , with

. ‖γ ‖2
`2
ζ

‖an4‖
2
`2

∑
(ζ,n4)∈Z×Z3

N−12+ε
1

∑
S(ζ,n4)

|kn|
2
|an5 |

2
|S(ζ,n4)|

where

S(ζ,n4) := {(n, n3, n5) : n = ±3n3 ± n4 ± n5, ζ = ±3|n3|
2
± |n5|

2
}

with |S(ζ,n4)| . N2
5N3, and we continue with

. ‖γ ‖2
`2
ζ

‖an4‖
2
`2N
−12+ε
1 N2

5N3
∑
n,n5

|kn|
2
|an5 |

2
|S(n,n5)|

where

S(n,n5) := {(ζ, n, n3, n4) : n = ±3n3 ± n4 ± n5, ζ = ±3|n3|
2
± |n5|

2
}

with |S(n,n5)| . N3
3 . We obtain the bound N−6+ε

1 , which clearly suffices without any
further restriction when we take square roots and normalize.

We now observe that Cases (a)(iii), (iv) can be analyzed just like Case (a)(i) since N4
and N1 are still the top frequencies and the order of the rest is not relevant.

Case (b)(i). We assume first that N1 ∼ N0. We cut the N0 and N1 frequency windows
with cubes C of sidelength N2. After using Cauchy–Schwarz we need to estimate∑
m∈Z,n∈C

∣∣∣∣ ∑
n1,n2,n3;n1∈C

g̃n1(ω)g̃n2(ω)g̃n3(ω)

[ ∑
S(m,n,n1,n2,n3)

1
|n1|3/2

1
|n2|3/2

1
|n3|3/2

ãn5 ãn4

]∣∣∣∣2
(8.34)

where

S(m,n,n1,n2,n3)

:=

{
(n4, n5) :

n = ±n1 ± n2 ± n3 ± n4 ± n5,

ni, nj , nk 6= nr , np, m = ±|n1|
2
± |n2|

2
± |n3|

2
± |n5|

2
± |n4|

2

}
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with |S(m,n,n1,n2,n3)| . N2
5 . We now consider two cases:

• Case A0: n1, n2, n3 are all distinct.
• Case A1: At least two of the frequencies n1, n2, n3 are equal.

Case A0. We use Lemma 3.4 and, for ω outside a set of measure e−1/δr , we have

(8.34) . δ−2µr
∑

m∈Z,n∈C

∑
n1,n2,n3;n1∈C

[ ∑
S(m,n,n1,n2,n3)

1
|n1|3/2

1
|n2|3/2

1
|n3|3/2

ãn5 ãn4

]2

. δ−2µrN−3
1 N−3

2 N−3
3

∑
m∈Z, n∈C

∑
S(m,n)

#S(m,n,n1,n2,n3)|an5 |
2
|an4 |

2

. δ−2µrN−3
1 N−3

2 N−3
3 N2

5

∑
n4,n5

|an5 |
2
|an4 |

2
|S(n4,n5)|

where

S(n4,n5) :=

{
(m, n, n1, n2, n3) :

n = ±n1 ± n2 ± n3 ± n4 ± n5,

m = ±|n1|
2
± |n2|

2
± |n3|

2
± |n5|

2
± |n4|

2

}
with |S(n4,n5)| . N1N2N1N

3
2N

3
3 , which finally gives

(8.34) . δ−2µrN−1
1 N2‖an5‖

2
`2‖an4‖

2
`2 .

By taking square roots and normalizing we require that

N s
0N
−3/2+α
1 N

−1/2+α
2 N−1+α

3 N−s4 N−s5 . N
−β

1 ,

and this follows from assuming s < 3/2− α.

Case A1. We proceed just as in the same case for Case (a)(ii). Here we only work out the
details for the case when all frequencies are equal; again this can happen only in Case 2.
We have N1 ∼ N2 ∼ N3 and

(8.34) .
∑

(m,n)∈Z×Z3

N−12
1

∣∣∣∑
n3

|gn3(ω)|
3
∑

S(m,n,n3)

ãn4 ãn5

∣∣∣2
where

S(m,n,n3) := {(n4, n5) : n = ±3n3 ± n4 ± n5, m = ±3|n3|
2
± |n4|

2
± |n5|

2
}.

Then by using Lemma 3.4, for ω outside a set of measure e−1/δr , we can continue with

.
∑

(m,n)∈Z×Z3

N−12+ε
1

∑
S(m,n)

|an4 |
2
|an5 |

2
|S(m,n)|

where

S(m,n) := {(n3, n4, n5) : n = ±3n3 ± n4 ± n5, m = ±3|n3|
2
± |n4|

2
± |n5|

2
}

with |S(m,n)| . N2
5N3, and we continue with

. N−12+ε
1 N2

5N3
∑
n4,n5

|an4 |
2
|an5 |

2
|S(n4,n5)|
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where

S(n4,n5) := {(m, n, n3) : n = ±3n3 ± n4 ± n5, m = ±3|n3|
2
± |n4|

2
± |n5|

2
}

with |S(n4,n5)| . N2
1N3. We obtain the bound N−6+ε

1 , which clearly suffices without any
further restriction when we take square roots and normalize.

Now assume thatN1 ∼ N2. Here we do not need to cut with cubesC, but the argument
and the estimates are similar to the ones we have just analyzed.

Cases (b)(ii), (iii). These cases are estimated just like the case we have just analyzed since
the two highest frequencies are still N1 and N2 and the order of the others is not relevant.

Case (c)(i). Assume first N0 ∼ N1. This case is handled like Case (b)(i) above. Here we
cut with cubes C of sidelength N4. This gives in particular 1m . N1N4.

Case A0. Just as in Case (b)(i) we have, for ω outside a set of measure e−1/δr ,

(8.34) . δ−2µrN−3
1 N−3

2 N−3
3 N2

5

∑
n4,n5

|an5 |
2
|an4 |

2
|S(n4,n5)|

where now |S(n4,n5)| . N1N4N1N
3
2N

3
3 since 1m . N1N4. This finally gives

(8.34) . δ−2µrN−1
1 N4‖an5‖

2
`2‖an4‖

2
`2 .

By taking square roots and normalizing we require that

N s
0N
−3/2+α
1 N−1+α

2 N−1+α
3 N

−s+1/2
4 N−s5 . N

−β

1 ,

and this follows from assuming again s < 3/2− α.

Case A1: This is like the same case for Case (b)(i).

Case (c)(i). Now assume N4 ∼ N1. Here we do not need to cut, and the same estimates
as before hold.

Cases (c)(ii), (iii). These cases are estimated just like the case we have just analyzed
since the two highest frequencies are still N1 and N4 and the order of the others is not
relevant.

8.5.5. The DRRRR case. To estimate the expression in (8.5) we assume without any loss
of generality that u5 is the deterministic function and it is not conjugated. By Cauchy–
Schwarz and Proposition 4.1 we are reduced to estimating∑
m∈Z, n∈C

∣∣∣∣ ∑
n1,n2,n3,n4
n1,n3 6=n2,n4

[ ∑
n5=−n1+n2−n3+n4−n

n5 6=n2,n4
m=|n1|

2
−|n2|

2
+|n3|

2
−|n4|

2
+|n5|

2

an5

]gn1(ω)

|n1|3/2

gn2
(ω)

|n2|3/2
gn3(ω)

|n3|3/2

gn4
(ω)

|n4|3/2

∣∣∣∣2
(8.35)

where we have assumed that û5(n5, t) = e
it |n5|

2
an5 and C is a cube of sidelength to be

determined later.
Since we have removed the frequencies n1, n3 = n2 or n1, n3 = n4, which would

give rise to terms of the form |gi(ω)|2, we can invoke Lemma 3.4 and proceed by further
considering the following subcases, for i, j ∈ {1, 2, 3, 4}:
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• Case (a): There exists j such that N0 ∼ Nj , N5 . Nj .
• Case (b): There exist j 6= i such that Ni ∼ Nj and N5, N0 . Ni .
• Case (c): N0 ∼ N5 and Nj . N5.
• Case (d): There exist j 6= i such that N5 ∼ Nj and N0, Ni . Nj .

Case (a). Assume Nk, k ∈ {1, 2, 3, 4, 5}, k 6= j , is the second largest frequency. Then
let C be of sidelength Nk and let

S(n,m,n1,n2,n3,n4) :=

n5 :

n5 = −n1 + n2 − n3 + n4 − n,

n5 6= n2, n4, nj ∈ C,

m = |n1|
2
− |n2|

2
+ |n3|

2
− |n4|

2
+ |n5|

2

 .
By Lemma 3.4, for ω outside a set of measure e−1/δr , we have

(8.35) . δ−2µr
∑

m∈Z, n∈C
N−3

1 N−3
2 N−3

3 N−3
4

∑
n1,n2, n3,n4

∣∣∣ ∑
S(n,m,n1,n2,n3,n4)

an5

∣∣∣2
. δ−2µr

∑
m∈Z, n∈C

N−3
1 N−3

2 N−3
3 N−3

4

∑
S(n,m)

|an5 |
2

where

S(n,m) :=

{
(n1, n2, n3, n4, n5) :

n = n1 − n2 + n3 − n4 + n5, nj ∈ C,

m = |n1|
2
− |n2|

2
+ |n3|

2
− |n4|

2
+ |n5|

2

}
.

We now define the set

S(n5) :=

{
(m, n, n1, n2, n3, n4) :

n = n1 − n2 + n3 − n4 + n5, nj ∈ C,

m = |n1|
2
− |n2|

2
+ |n3|

2
− |n4|

2
+ |n5|

2

}

with |S(n5)| . N2
j N

4
kN

3
pN

3
q . Then we continue with

(8.35) . δ−2µrN−3
1 N−3

2 N−3
3 N−3

4

∑
n5

|an5 |
2
|S(n5)| . δ−2µrN−1

j Nk‖an5‖
2
`2 ,

By taking square roots and normalizing we obtain the bound N s+α−3/2
j N

−1/2+α
k , which

entails s + α < 3/2 and α < 1/2.

Case (b). We go back to (8.35) and we let C be of its natural sidelength N0. We then
repeat the argument above with the role of Nk played by Nj and we count the set

S(n5) :=

{
(m, n, n1, n2, n3, n4) :

n = n1 − n2 + n3 − n4 + n5,

m = |n1|
2
− |n2|

2
+ |n3|

2
− |n4|

2
+ |n5|

2

}

obtaining |S(n5)| . N3
j N

3
i N

3
pN

3
q . By taking square roots and normalizing we obtain the

bound N s+2α−2
j , which entails s + 2α < 2.
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Case (c). We proceed as in Case (b) of Subsection 8.5.2; more precisely we use duality
and the change of variables ζ = m−|n5|

2 as in the proof of Proposition 7.2 (in particular
see (7.15)). Here we let C be of its natural sidelength N0. Let also Nk , k ∈ {1, . . . , 4}, be
the second largest frequency. We have to bound

‖γ ‖2
`2
ζ

‖χCan5‖
2
`2×∑

(ζ,n5)∈Z×Z3

∣∣∣∣ ∑
n=n5−n2+n3−n4+n1
n1,n3,n5 6=n2,n4

ζ=|n1|
2
−|n2|

2
+|n3|

2
−|n4|

2

χC(n)kn
gn1(ω)

|n1|3/2

gn2
(ω)

|n2|3/2
gn3(ω)

|n3|3/2

gn4
(ω)

|n4|3/2

∣∣∣∣2. (8.36)

We proceed again as above where now we have to replace S(n5) by

S(n) :=

{
(ζ, n1, n2, n3, n4, n5) :

n = n1 − n2 + n3 − n4 + n5,

ζ = |n1|
2
− |n2|

2
+ |n3|

2
− |n4|

2

}

with |S(n)| . N3
kN

3
i N

3
pN

3
q , where we have used 1ζ . N2

k . By taking square roots and
normalizing we obtain the bound Nα−1

k .

Case (d). This case is analogous to Case (c).

8.5.6. The all random RRRRR case. Since we have removed the frequencies with
n1, n3 = n2 or n1, n3 = n4, which would give rise to terms of the form |gi(ω)|2, we
can invoke Lemma 3.4 and proceed to estimate the expression in (8.5) by further consid-
ering the following two subcases,

• Case (a): N0 ∼ Ni for some i = 1, . . . , 5.
• Case (b): Ni ∼ Nj for i, j 6= 0.

Case (a). Let Nj be the second largest frequency size after Ni . We cut the N0 window
with cubes C of sidelength Nj . By Cauchy–Schwarz and Plancherel we estimate

∑
m∈Z,n∈Z3

∣∣∣∣ ∑
n=n1−n2+n3−n4+n5
n1,n3,n5 6=n2,n4

m=|n1|
2
−|n2|

2
+|n3|

2
−|n4|

2
+|n5|

2

gn1(ω)

|n1|3/2

gn2
(ω)

|n2|3/2
gn3(ω)

|n3|3/2

gn4
(ω)

|n4|3/2
gn5(ω)

|n5|3/2

∣∣∣∣2.
(8.37)

By Lemma 3.4 we have, for ω outside a set of measure e−1/δr ,

(8.37) . δ−2µr
∑

m∈Z,n∈Z3

∑
n=n1−n2+n3−n4+n5
n1,n3,n5 6=n2,n4,ni∈C

m=|n1|
2
−|n2|

2
+|n3|

2
−|n4|

2
+|n5|

2

1
|n1|3

1
|n2|3

1
|n3|3

1
|n4|3

1
|n5|3

. δ−2µr
|S|

5∏
k=1

N−3
k . N−1

i Nj
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where

S :=

{
(m, n, n1, . . . , n5) :

n = n1 − n2 + n3 − n4 + n5, ni ∈ C,

m = |n1|
2
− |n2|

2
+ |n3|

2
− |n4|

2
+ |n5|

2

}
with |S| . N2

i N
4
j

∏
k 6=i,j,0N

3
k . Taking square roots and normalizing we obtain the bound

N
s+α−3/2
i N

−1/2+α
j

∏
k 6=i,j,0

N−1+α
k ,

which suffices provided s + α < 3/2 and α < 1/2.

Case (b). This is like Case (a), but now we do not need to cut the support of the N0
window with Nj .

8.5.7. The U4
1L

2 estimates. Assume that Ni are dyadic numbers and without loss of
generality N1 ≥ · · · ≥ N5. We start by rewriting∫ 2π

0

∫
T3
Ds(N (PNi (w + v

ω
0 )))PN0h dx dt =

∫ 2π

0

∫
T3
Ds(N (PNiw))PN0h dx dt

+

∫ 2π

0

∫
T3
Ds(N (PNiv

ω
0 ))PN0h dx dt

+

∫ 2π

0

∫
T3
Ds(N (PNiw,PNiv

ω
0 ))PN0h dx dt,

= T1 + T2 + T3

where in T3 we include all the nonlinear expressions with both random and deterministic
terms. Our goal is to obtain an estimate for the first and last term with the U4

1L
2 norms

of w on the right hand side possibly paying the prize of Nγ

2 , with γ > 0. Then using
the interpolation Proposition 4.2, we combine this estimate with the ones involving the
U2
1L

2 norms of previous sections and the embeddings (4.5) and (4.7) to finally conclude
the proof of Proposition 5.1.

Clearly we do not need to estimate T2 that involves purely random terms. For the other
two we have

T1 + T3 . [‖N (PNiw)‖L4
t L

2
x
+ ‖N (PNiw,PNiv

ω
0 )‖L4

t L
2
x
]‖PN0h‖L∞t L2

x
,

and from (2.9), with a certain abuse of notation,

‖N (PNiw)‖L4
t L

2
x
+ ‖N (PNiw,PNiv

ω
0 )‖L4

t L
2
x

.
9∑
i=1

‖F−1Ji(w)‖L4
t L

2
x
+

9∑
j=1

‖F−1Ji(PNiw,PNiv
ω
0 )‖L4

t L
2
x
=

9∑
i=1

(S i1 + S i2)

where Ji(w, vω0 ) indicates that the functions involved could be bothw and vω0 . To estimate
S i1 and S i2 we use the transfer principle of Proposition 4.1 and we assume that ŵ(t, n) =
eit |n|

2
bn(t). Below we write ajnj to indicate bn or the Fourier coefficients of vω0 or their
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conjugates. Now define

8i(n, t) :=

∣∣∣ ∑
n=
∑5
i=1±ni ,ni∼Ni

Wi (n1,n2,n3,n4,n5)

a1
n1
e±it |n1|

2
a2
n2
e±it |n2|

2
a3
n3
e±it |n3|

2
a4
n4
e±it |n4|

2
a5
n5
e±it |n5|

2
∣∣∣2

where Wi(n1, n2, n3, n4, n5) indicates the constraints among the five frequencies in Ji .
Then for i = 1, . . . , 9 and k = 1, 2,

(S ik)
2 . sup

t∈[0,2π ]

∑
n

8i(n, t) . sup
t∈[0,2π ]

∑
n

∣∣∣∑
S(n)

|a1
n1
| |a2

n2
| |a3

n3
| |a4

n4
| |a5

n5
|

∣∣∣2
where

S(n) =
{
(n1, n2, n3, n4, n5) : n =

5∑
j=1

±nj , nj ∼ Nj

}
.

Assume now that N1, the highest frequency, is such that N1 ∼ N0, which is in fact the
least favorable situation. Then |S(n)| . N3

2N
3
3N

3
4N

3
5 and by Cauchy–Schwarz

∣∣∣∑
S(n)

|a1
n1
| |a2

n2
| |a3

n3
| |a4

n4
| |a5

n5
|

∣∣∣2 . N3
2N

3
3N

3
4N

3
5 ‖a

1
n1
‖

2
`2

5∏
j=2

‖a
j
nj ‖

2
`2 . (8.38)

We then have

S i1 . N6−4s
2 ‖PN1w‖U4

1H
s

5∏
j=2

‖PNjw‖U4
1H

s . (8.39)

We observe that a similar estimate holds for S i2 when the function associated to frequency
N1 is also deterministic. In fact, in this case we have

S i2 . N2+4α
2 ‖PN1w‖U4

1H
s

∏
j /∈J,j 6=1

‖PNjw‖U4
1H

s . (8.40)

Finally, if the function associated to frequency N1 is random, then

S i2 . N s−1+α
1 N2+4α

2

∏
j /∈J

‖PNjw‖U4
1H

s . (8.41)

We conclude by using the interpolation Proposition 4.2. Note here that in both (8.39)
and (8.40) the interpolation at most introduces a factor of Nε

2 which can be easily ab-
sorbed by the negative power of N2 in the estimates involving norms U2

1L
2 (see previous

subsections). On the other hand, (8.41) and interpolation introduce a factor of Nε
1 . But

this too can be absorbed thanks to the presence of a negative power of N1 in the estimates
involving U2

1L
2 norms in those cases in which the highest frequency is associated to a

random function.
This concludes the proof of Proposition 5.1.
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9. Proof of Proposition 5.2

We first give an improved version of Proposition 5.1: if r > 0 is small enough then there
exists θ > 0 such that for ω ∈ �δ we have: if N1 � N0 or PN1w = PN1v

ω
0 then∣∣∣∣∫ 2π

0

∫
T3
Ds
(
ψδ(t)N (PNi (w + v

ω
0 ))
)
PN0h dx dt

∣∣∣∣
. δθN−ε1 ‖PN0h‖Y−s

(
1+

∏
i /∈J

‖ψδPNiw‖Xs
)
, (9.1)

and if N1 ∼ N0 and PN1w 6= PN1v
ω
0 then∣∣∣∣∫ 2π

0

∫
T3
Ds
(
ψδ(t)N (PNi (w + v

ω
0 ))
)
PN0h dx dt

∣∣∣∣
. δθN−ε2 ‖PN0h‖Y−s‖ψδPN1w‖Xs

(
1+

∏
i /∈J,i 6=1

‖ψδPNiw‖Xs
)
, (9.2)

for some small ε > 0.
To prove (9.1) and (9.2) we first observe that in the proof of Proposition 5.1, in par-

ticular the estimates involving the terms J2, . . . , J7 in (5.3), we always have the factor
‖PN0h‖L2

t L
2
x

on the right hand side. We can then replace this by

‖ψδ(t)PN0h‖L2
t L

2
x
. δ1/2

‖ψδ(t)PN0h‖L∞t L2
x
. δ1/2

‖ψδ(t)PN0h‖Y 0 , (9.3)

where we have used (4.7), and obtain the proof of Proposition 5.2 for the nonlinear terms
involving J2, . . . , J7.

To estimate the term involving J1 we go back to Subsections 8.5.1–8.5.6. We recall
that except when the top frequencies, say N1 and N2, are associated to two deterministic
functions, also in this case we have ‖PN0h‖L2

t L
2
x

on the right hand side, and (9.3) can be
used again.

We are then reduced to estimating the term involving J1 where the top frequenciesN1
and N2 are associated to two deterministic functions. So we consider∣∣∣∣∫ 2π

0

∫
T3

F−1J1(ψδ(t)PNi (ui))ψδ(t)PN0h dx dt

∣∣∣∣ (9.4)

where without loss of generality N1 ≥ · · · ≥ N5 and u1 and u2 are deterministic func-
tions, while uNi , i = 3, 4, 5, represents either w or vω0 . We consider two cases, for σ > 0
to be determined later:

• Case 1: δ−σ > N2.
• Case 2: δ−σ ≤ N2.

Case 1. We observe that the estimate of (9.4) can be reduced to analyzing an expression
such as ∣∣∣∣∫ δ

0

∫
T3
ũN1 ũN2 ũN3 ũN4 ũN5 h̃N0 dx dt

∣∣∣∣ (9.5)
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where uNi are as above. In fact to obtain the full product as in (9.5) one needs to put back
some frequencies, and hence some terms (see for example (8.7) in Subsection 8.5.1).
But these terms are similar to those involved in J2, . . . , J7 and again the gain on δ is
guaranteed by (9.3).

We then go back to (9.5) and we further assume that N1 ∼ N0, which is the least
favorable situation. We cut the N0, and hence N1, frequency window with cubes C of
sidelength N2 and we obtain the bound∣∣∣∣∫ δ

0

∫
T3
ũN1 ũN2 ũN3 ũN4 ũN5 h̃N0 dx dt

∣∣∣∣2 . δ
∑
C

‖PC ũN1‖
2
L12
t L

12
x
‖PC h̃N0‖

2
L12
t L

12
x

× ‖ũN2‖
2
L12
t L

12
x
‖ũN3‖

2
L12
t L

12
x
‖ũN4‖

2
L12
t L

12
x
‖ũN5‖

2
L12
t L

12
x
,

and from (4.16)–(4.18) we can continue with

. δN
m(α,s)
2

∑
C

‖PCuN1‖
2
U12
1 L

2‖PChN0‖
2
U12
1 L

2

∏
i /∈J,i 6=1

‖uNi‖
2
U12
1 L

2 (9.6)

where J ⊂ {2, 3, 4, 5} is the set of indices corresponding to random linear solutions.
Then normalizing, interpolating through Proposition 4.2, and using the embedding

(4.7) combined with (4.6), we have∣∣∣∣∫ δ

0

∫
T3
ũN1 ũN2 ũN3 ũN4 ũN5 h̃N0 dx dt

∣∣∣∣
. δ1/2N

m(α,s)
2 ‖PN0h‖Y−s‖ψδPN1w‖Xs

(
1+

∏
i /∈J,i 6=1

‖ψδPNiw‖Xs
)

. δ1/3
‖PN0h‖Y−s‖ψδPN1w‖XsN

−ε
2

(
1+

∏
i /∈J,i 6=1

‖ψδPNiw‖Xs
)

if we take σ < 1/(100m(α, s)).
Case 2. Here we go back to (5.4) and (5.5). We recall that PN1u1 is deterministic and
again we assume that N1 ∼ N0; the other cases can be treated similarly. Then we use
(5.4) and we have∣∣∣∣∫ 2π

0

∫
T3

F−1J1(ψδ(t)PNi (ui))ψδ(t)PN0h dx dt

∣∣∣∣
. δγ δ−γ−µrN

−ρ(α,s)
2 ‖PN0h‖Y−s‖ψδPN1w‖Xs

∏
i /∈J,i 6=1

‖ψδPNiw‖Xs

. δγN−ε2 ‖PN0h‖Y−s‖ψδPN1w‖Xs
(

1+
∏

i /∈J, i 6=1

‖ψδPNiw‖Xs
)

provided σ ≥ (γ + µr)/(ρ(α, s)), which is satisfied for γ, r small enough.
To finish the proof we now need to sum the dyadic blocks just as in [23]. In (9.1)

we have enough decay in the highest frequency N1 that we can use Cauchy–Schwarz
in all the smaller frequency terms and just pay with an N−ε/21 . In (9.2) instead we use
Cauchy–Schwarz for the lower frequencies N5, N4, N3 and pay with an N−ε/22 that can
be absorbed and use Cauchy–Schwarz on N0 ∼ N1. ut
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10. Long time large data infinite energy solutions

In this section we show that by inspecting the proof of the local result above we are able
to prove the following long time and large data result.

Theorem 10.1. For fixed T > 0 there exists a set 6T with P(6T ) > 0 such that for
α > 0 small and every ω ∈ 6T ,

φω(x) :=
∑
n∈Z3

gn(ω)

〈n〉5/2−α
ein·x ∈ H γ (T3), γ = γ (α) < 1,

evolves up to time T into a solution u(t) of the initial value problem (1.1). Moreover
u(t)− eit1φω ∈ Xs([0, T ))d , s = s(α) > 1, as in Theorem 1.3.

This theorem in particular shows that we find a nontrivial set of large data which gives
rise to long time solutions below the critical space H 1(T3), that is, in the supercritical
scaling regime.

Proof. We follow the same steps as in the proof of Theorem 1.3. In these steps, whenever
we apply Proposition 3.1 we replace δ−r by ρβ , for β > 0. This will determine a set
of ω that we call 6ρ such that P(6cρ) < e−ρ

β
. Therefore the bounds on the gn(ω) from

Lemma 3.4 hold on 6ρ .
We consider the initial value problem (2.17) and set up the fixed point argument for

the difference equation (5.2). We repeat the estimates leading to the proof of Proposition
5.2 and obtain a set 6ρ such that for ω ∈ 6ρ ,

‖I(N (w + vω0 ))‖Xs ([0,2π ]) . C(ρ + ‖w‖Xs ([0,2π ]))
5 (10.1)

where I denotes the Duhamel operator as in (4.13) and N (·) was defined in (2.18).
We want to prove that we can find ρ = ρ(T ) small enough such that for any ω∈6ρ(T )

we can iterate the argument up to time T . To this end we perform a continuity argument
to obtain a uniform bound for w(t) in H s for all t ∈ [0, T ].

We have
‖w‖Xs ([0,2π ]) ≤ C(ρ + ‖w‖Xs ([0,2π ]))

5,

and also since the estimates are subcritical we have, for δ � 1,

‖w‖Xs ([0,δ]) ≤ Cδ
γ (ρ + ‖w‖Xs ([0,δ]))

5. (10.2)

We now study the function

f1(x) = C(ρ + x)
5
− x

where x = x(t) = ‖w‖Xs ([0,t]). We easily find that f1(0) = Cρ5, the value x0 =( 1
5C

)1/4
ρ is a minimum point, and for x1 = 2Cρ5 < x0 we have f1(x1) < 0 and

x(0) ≤ x1 thanks to (10.2). As a consequence of the fact that x(t) is continuous in time
we have

‖w‖Xs ([0,2π ]) ≤ 2Cρ5 and ‖w(t)‖H s ≤ 2Cρ5, t ∈ [0, 2π ].
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A similar argument at step m with

fm(x) = 2(m− 1)Cρ5
+ C(ρ + x)5 − x, xm = 2Cmρ5,

gives

‖w‖Xs ([0,m2π ]) ≤ 2Cmρ5 and ‖w(t)‖H s ≤ 2Cmρ5, t ∈ [0, m2π ],

and in order for this process to be continued to step m+ 1 we need to guarantee that

4∑
i=0

αi(2mC)5−iρ25−4i <
ρ5

100
,

where the αi are the binomial coefficients. At the final step T we then pick ρ = ρ(T )

small enough and finish the proof. ut
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