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Abstract. We develop the crystal basis theory for the quantum queer superalgebra Uq (q(n)). We
define the notion of crystal bases and prove the tensor product rule for Uq (q(n))-modules in the
category O≥0

int . Our main theorem shows that every Uq (q(n))-module in the category O≥0
int has a

unique crystal basis.
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Introduction

For the past 30 years, one of the most striking and influential developments in combina-
torial representation theory was the discovery of crystal bases for quantum groups and
their representations [10, 11]. Right after that discovery, the crystal basis theory attracted
a lot of attention and research activity because it has simple and explicit combinatorial
features and has many significant applications to a wide variety of mathematical and phys-
ical theories. In particular, crystal bases have an extremely nice behavior with respect to
tensor products, which leads to natural and exciting connections with combinatorics of
Young tableaux and Young walls [6, 9, 14, 20, 22]. Moreover, inspired by the original
works [10–13], many important and deep results have been established for crystal bases
for quantum groups associated with symmetrizable Kac–Moody algebras (see, for exam-
ple, [3, 4, 7, 8, 15–17, 21, 25]). In [18, 19], Lusztig provided a geometric approach to this
subject.
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On the other hand, not much has been known about crystal bases for quantum groups
corresponding to Lie superalgebras. A major difficulty one encounters in the superal-
gebra case is that the category of finite-dimensional representations is in general not
semisimple. Fortunately, there is an interesting and natural category of finite-dimensional
Uq(g)-modules which is semisimple for the two super-analogues of the general linear Lie
algebra gl(n): g = gl(m|n) and g = q(n). This is the category O≥0

int of so-called ten-
sor modules, i.e., those that appear as submodules of tensor powers V⊗N of the natural
Uq(g)-module V. The semisimplicity of O≥0

int is verified in [1] for the general linear Lie
superalgebra g = gl(m|n) and in [2] for the queer Lie superalgebra g = q(n).

Furthermore, the crystal basis theory of O≥0
int for g = gl(m|n) was developed in [1],

while the foundations of the highest weight representation theory of Uq(q(n)) have been
established in [2].

In this paper, we develop the crystal basis theory for Uq(q(n))-modules in the cate-
gory O≥0

int . The (quantum) queer superalgebra is interesting not only as the remaining case
for which O≥0

int is semisimple, but also due to its remarkable combinatorial properties. An
example of such properties is the queer analogue of the celebrated Schur–Weyl duality,
often referred to as Schur–Weyl–Sergeev duality, which was obtained in [26] for U(q(n))
and in [23] for Uq(q(n)).

Being very interesting on the one hand, the representation theory of the (quantum)
queer superalgebra faces numerous challenges on the other. The queer Lie superalgebra
is the only classical Lie superalgebra whose Cartan subsuperalgebra has a nontrivial odd
part. As a result, the highest weight space of any finite-dimensional q(n)-module has the
structure of a Clifford module and the corresponding gl(n)-module appears with multi-
plicity higher than one (in fact, a power of 2). Also, as observed in [2], due to the different
classification of Clifford modules over C and C(q), the classical limit of an irreducible
highest weightUq(q(n))-module is an irreducible highest weightU(q(n))-module or a di-
rect sum of two irreducible highest weight U(q(n))-modules. On top of these and in con-
trast to the case of gl(m|n), the odd root generators ei and fi ofUq(q(n)) are not nilpotent.

We overcome the challenges described above in several steps. First, we set the ground
field to be the field C((q)) of formal Laurent power series. By enlarging the base field,
we obtain an equivalence of the two categories of Clifford modules, and in particular,
establish a standard version of the classical limit theorem. As the next step, we introduce
the odd Kashiwara operators ẽ1, f̃1, and k̃1, where k̃1 corresponds to an odd element in
the Cartan subsuperalgebra of q(n). The definitions of ẽ1, f̃1 are new in the sense that
they are based solely on the comultiplication formulas for e1, f1 and lead to nilpotent
operators on L/qL, where L is a crystal lattice. Furthermore, from these definitions, we
deduce a special tensor product rule for odd Kashiwara operators.

Our definition of a crystal basis for a Uq(q(n))-moduleM in the category O≥0
int is also

new: such a basis is a triple (L, B, (lb)b∈B), where the crystal lattice L is a free C[[q]]-
submodule of M , B is a finite gl(n)-crystal, (lb)b∈B is a family of nonzero vector spaces
such that L/qL =

⊕
b∈B lb, with a set of compatibility conditions for the action of the

Kashiwara operators imposed in addition. The definition of crystal bases leads naturally
to the notion of abstract q(n)-crystals, an example of which is the gl(n)-crystal B in



Crystal bases for the quantum queer superalgebra 1595

any crystal basis (L, B, (lb)b∈B). The modified notion of crystals allows us to consider
the multiple occurrence of gl(n)-crystals corresponding to a highest weight Uq(q(n))-
module M in O≥0

int as a single q(n)-crystal.
As a result of this new setting, the existence and uniqueness theorem for crystal bases

is proved for any highest weight (not necessarily irreducible) module M in the cate-
gory O≥0

int . Moreover, the q(n)-crystal B ofM depends only on the highest weight λ ofM
and hence we may write B = B(λ). In addition to the existence and uniqueness theorem,
the decompositions of the module V⊗M and the crystal B⊗B(λ) are established, where
B is the crystal of V. These decompositions are parametrized by the set of all λ+ εj such
that λ+ εj is a strict partition (j = 1, . . . , n). One of key ingredients of the proof of our
main theorem is the characterization of highest weight vectors in B ⊗ B(λ) in terms of
even Kashiwara operators and the highest weight vector of B(λ). All these statements are
verified simultaneously by a series of interlocking inductive arguments.

This paper is organized as follows. In Section 1, we recall some of the basic proper-
ties of Uq(q(n))-modules in the category O≥0

int . Section 2 is devoted to the definitions,
examples, and some preparatory statements related to crystal bases. In particular, we
prove the tensor product rule. In Section 3, we give algebraic and combinatorial char-
acterizations of highest weight vectors in B⊗N . In Section 4, we prove our main result:
the existence and uniqueness theorem for crystal bases.

1. The quantum queer superalgebra

Let F = C((q)) be the field of formal Laurent series in an indeterminate q and let A =
C[[q]] be the subring of F consisting of formal power series in q. For k ∈ Z≥0, we define

[k] =
qk − q−k

q − q−1 , [0]! = 1, [k]! = [k][k − 1] · · · [2][1].

For an integer n ≥ 2, let P∨ = Zk1 ⊕ · · · ⊕ Zkn be a free abelian group of rank n
and let h = C ⊗Z P∨ be its complexification. Define the linear functionals εi ∈ h∗ by
εi(kj ) = δij (i, j = 1, . . . , n) and set P = Zε1⊕· · ·⊕Zεn. We denote by αi = εi− εi+1
the simple roots and by hi = ki − ki+1 the simple coroots.

Definition 1.1. The quantum queer superalgebra Uq(q(n)) is the superalgebra over F
with 1 generated by the symbols ei , fi , ei , fi (i = 1, . . . , n − 1), qh (h ∈ P∨),
kj (j = 1, . . . , n) with the following defining relations:

q0
= 1, qh1qh2 = qh1+h2 (h1, h2 ∈ P

∨),

qheiq
−h
= qαi (h)ei (h ∈ P∨),

qhfiq
−h
= q−αi (h)fi (h ∈ P∨),

qhkj = kjq
h,

eifj − fj ei = δij
qki−ki+1 − q−ki+ki+1

q − q−1 ,
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eiej − ej ei = fifj − fjfi = 0 if |i − j | > 1,

e2
i ej − (q + q

−1)eiej ei + ej e
2
i = 0 if |i − j | = 1,

f 2
i fj − (q + q

−1)fifjfi + fjf
2
i = 0 if |i − j | = 1,

k2
i
=
q2ki − q−2ki

q2 − q−2 ,

kikj + kjki = 0 if i 6= j, (1.1)

kiei − qeiki = eiq
−ki , qkiei−1 − ei−1ki = −q

−ki ei−1,

kiej − ejki = 0 if j 6= i, i − 1,

kifi − qfiki = −fiq
ki , qkifi−1 − fi−1ki = q

kifi−1,

kifj − fjki = 0 if j 6= i, i − 1,

eifj − fj ei = δij (kiq
−ki+1 − ki+1q

−ki ),

eifj − fj ei = δij (kiq
ki+1 − ki+1q

ki ),

eiei − eiei = fifi − fifi = 0,
eiei+1 − qei+1ei = eiei+1 + qei+1ei,

qfi+1fi − fifi+1 = fifi+1 + qfi+1fi,

e2
i ej − (q + q

−1)eiej ei + ej e
2
i = 0 if |i − j | = 1,

f 2
i fj − (q + q

−1)fifjfi + fjf
2
i = 0 if |i − j | = 1.

The generators ei , fi (i = 1, . . . , n − 1), qh (h ∈ P∨) are regarded as even and ei , fi
(i = 1, . . . , n − 1), kj (j = 1, . . . , n) are odd. From the defining relations, it is easy to
see that the even generators together with k1 generate the whole algebra Uq(q(n)).

Remark 1.2. The generators in (1.1) are different from those in [2, Theorem 2.1]. The
elements ei , fi , ei and fi in (1.1) correspond to qki+1ei , fiq−ki+1 , qki+1ei and fiq

−ki+1

in [2, Theorem 2.1], respectively. We rewrite the whole defining relations in [2, Theo-
rem 2.1] in terms of new generators and remove some relations which can be derived
from the others.

The superalgebra Uq(q(n)) is a bialgebra with the comultiplication 1 : Uq(q(n)) →
Uq(q(n))⊗ Uq(q(n)) defined by

1(qh) = qh ⊗ qh for h ∈ P∨,

1(ei) = ei ⊗ q
−ki+ki+1 + 1⊗ ei,

1(fi) = fi ⊗ 1+ qki−ki+1 ⊗ fi,

1(k1) = k1 ⊗ q
k1 + q−k1 ⊗ k1.

(1.2)

LetU+ (resp.U−) be the subalgebra ofUq(q(n)) generated by ei , ei (i=1, . . . , n−1)
(resp. fi , fi (i = 1, . . . , n− 1)), and let U0 be the subalgebra generated by qh (h ∈ P∨)
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and kj (j = 1, . . . , n). In [2], it was shown that the algebra Uq(q(n)) has the triangular
decomposition:

U− ⊗ U0
⊗ U+ ∼−→ Uq(q(n)). (1.3)

Hereafter, aUq(q(n))-module is understood as aUq(q(n))-supermodule. AUq(q(n))-
module M is called a weight module if M has a weight space decomposition M =⊕

µ∈P Mµ, where

Mµ := {m ∈ M; q
hm = qµ(h)m for all h ∈ P∨}.

The set of weights of M is defined to be

wt(M) = {µ ∈ P ; Mµ 6= 0}.

Definition 1.3. A weight module V is called a highest weight module with highest weight
λ ∈ P if Vλ is finite-dimensional and satisfies the following conditions:

(a) V is generated by Vλ,
(b) eiv = eiv = 0 for all v ∈ Vλ, i = 1, . . . , n− 1.

As seen in [2], there exists a unique irreducible highest weight module with highest
weight λ ∈ P up to parity change; it will be denoted by V (λ).

Set

P≥0
= {λ = λ1ε1 + · · · + λnεn ∈ P ; λj ∈ Z≥0 for all j = 1, . . . , n},

3+ = {λ = λ1ε1 + · · · + λnεn ∈ P
≥0
; λi ≥ λi+1 and λi = λi+1 implies

λi = λi+1 = 0 for all i = 1, . . . , n− 1}.

Note that each element λ ∈ 3+ corresponds to a strict partition λ = (λ1 > · · · >

λr > 0). Thus we will often call λ ∈ 3+ a strict partition. For the same reason, we call
λ = (λ1, . . . , λn) ∈ P

≥0 a partition if λ1 ≥ · · · ≥ λr > λr+1 = · · · = λn = 0. We
denote r by `(λ).

Example 1.4. Let

V =
n⊕
j=1

Fvj ⊕
n⊕
j=1

Fvj

be the vector representation ofUq(q(n)). The action ofUq(q(n)) on V is given as follows:

eivj = δj,i+1vi, eivj = δj,i+1vi, fivj = δj,ivi+1, fivj = δj,ivi+1,

eivj = δj,i+1vi, eivj = δj,i+1vi, fivj = δj,ivi+1, fivj = δj,ivi+1,

qhvj = q
εj (h)vj , qhvj = q

εj (h)vj , kivj = δj,ivj , kivj = δj,ivj .

(1.4)

Note that V is an irreducible highest weight module with highest weight ε1.

Definition 1.5. We define O≥0
int to be the category of finite-dimensional weight mod-

ules M satisfying the following conditions:
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(a) wt(M) ⊂ P≥0,
(b) for any µ ∈ P≥0 and i ∈ {1, . . . , n} such that 〈ki, µ〉 = 0, we have ki |Mµ = 0.

Remark 1.6. By Lemma 4.1 below, it is enough to assume i = 1 in (b). Note also
that (b) is equivalent to saying that every weight space Mµ is completely reducible as
a U0-module.

The fundamental properties of the category O≥0
int are summarized in the following propo-

sition.

Proposition 1.7 ( [2]). (a) Every Uq(q(n))-module in O≥0
int is completely reducible.

(b) Every irreducible object in O≥0
int has the form V (λ) for some λ ∈ 3+.

(c) The category O≥0
int is stable under tensor products.

In [2], we employed the rational function field C(q) as the base field of Uq(q(n)). But
here, we employ C((q)) instead of C(q) as the base field of Uq(q(n)). Note that when
m is a nonnegative integer, the q-integer (q2m

− q−2m)/(q2
− q−2) has a square root

in C((q)) but not in C(q). This difference gives the following two statements, which is
simpler than the corresponding statements in [2].

Proposition 1.8 (cf. [2, Corollary 3.9]). Let Cliffq(λ) be the associative superalgebra
over C((q)) generated by odd generators {ti; i = 1, . . . , n} with the defining relations

ti tj + tj ti = δij
2(q2λi − q−2λi )

q2 − q−2 , i, j = 1, . . . , n.

Then Cliffq(λ) has up to isomorphism

(a) two simple modules Eq(λ) and 5(Eq(λ)) of dimension 2k−1
|2k−1 if `(λ) = 2k,

(b) one simple module Eq(λ) ∼= 5(Eq(λ)) of dimension 2k|2k if `(λ) = 2k + 1.

Proposition 1.9 (cf. [2, Theorem 5.14]). Let V (λ) be an irreducible highest weight mod-
ule with highest weight λ ∈ 3+. Then

chV (λ) = chVcl(λ),

where Vcl(λ) is an irreducible highest weight module over q(n) with highest weight λ.

In short, in contrast to [2], we have the same classification for the modules over Cliffq(λ)
as that for the modules over the Clifford algebra with the base field C. Also we have
the same characters of the irreducible modules over Uq(q(n)) as those of the irreducible
modules over q(n).

Remark 1.10. Define O≥0
int,cl to be the category of finite-dimensional weight modules M

over q(n) such that (i) wt(M) ⊂ P≥0, (ii) ki |Mµ = 0 for i ∈ {1, . . . , n} and µ ∈ P≥0

satisfying 〈ki, µ〉 = 0. Here ki is the element of q(n) given by
( 0 Ei,i
Ei,i 0

)
, where Ei,i

is the n × n-matrix having 1 in the (i, i)-position and 0 elsewhere. Let us denote the
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Grothendieck rings of the categories byK(O≥0
int ) andK(O≥0

int,cl), respectively. Since O≥0
int,cl

and O≥0
int are semisimple categories, by taking the classical limit (i.e., taking the reduction

at q = 1), we have a ring isomorphism

K(O≥0
int )
∼−→ K(O≥0

int,cl)

which sends V (λ) 7→ Vcl(λ).

Now we give a decomposition of the tensor product of the natural representation with a
highest weight module.

Theorem 1.11. Let M be a highest weight Uq(q(n))-module in O≥0
int with highest weight

λ ∈ 3+. Then
V⊗M '

⊕
λ+εj :

strict partition

Mj ,

where Mj is a highest weight Uq(q(n))-module in the category O≥0
int with highest weight

λ+ εj and dim(Mj )λ+εj = 2 dimMλ.

Proof. We will prove that our assertion holds for finite-dimensional highest weight mod-
ules over q(n). Then, by Remark 1.10, our assertion also holds for finite-dimensional
highest weight modules over Uq(q(n)).

Let U(q(n)) be the universal enveloping algebra of q(n) and let U≥0 be the universal
enveloping algebra of the standard Borel subalgebra of q(n). Let M be a highest weight
U(q(n))-module with highest weight λ ∈ 3+ and Vcl =

⊕n
i=1(Cvi⊕Cvi) be the natural

representation of U(q(n)). Consider a surjective homomorphism

U(q(n))⊗U≥0 vλ � M,

where vλ ' Mλ as a U≥0-module. Now we have

Vcl ⊗
(
U(q(n))⊗U≥0 vλ

)
' U(q(n))⊗U≥0 (Vcl ⊗ vλ).

Then Fi(Vcl ⊗ vλ) :=
⊕
j≤i(Cvj ⊕ Cvj )⊗ vλ is a U≥0-module. We set

N := U(q(n))⊗U≥0 (Vcl ⊗ vλ), Fi(N) := U(q(n))⊗U≥0 Fi(Vcl ⊗ vλ).

Since
Fi(Vcl ⊗ vλ)/Fi−1(Vcl ⊗ vλ) ' (Cvi ⊕ Cvi)⊗ vλ,

we see that

Fi(N)/Fi−1(N) ' U(q(n))⊗U≥0
(
Fi(Vcl ⊗ vλ)/Fi−1(Vcl ⊗ vλ)

)
is a highest weight module with highest weight λ+ εi .
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Now we shall show

N '
⊕
k≤r

(Fk(N)/Fk−1(N))⊕N/Fr(N), where r = `(λ). (1.5)

First note that Fi(N)/Fi−1(N) admits the central character

χi := χλ+εi : Z → C,

where Z is the center of U(q(n)) and χµ is the central character afforded by the Weyl
module W(µ) with highest weight µ (see [2, Section 1] for Weyl modules and central
characters). From [2, Proposition 1.7], we know that χ1, . . . , χr , χr+1 are different from
each other, and χr+1 = χr+2 = · · · = χn.

Choose a ∈ Z such that χ1(a) = · · · = χr(a) = 0 and χr+1(a) 6= 0. Then
a|Fi (N)/Fi−1(N) = 0 and hence aFi(N) ⊂ Fi−1(N) for i ≤ r . It follows that arFr(N) =

F−1(N) = 0. HenceN
ar

→ N factors throughN → N/Fr(N)
ψ
→ N . Since ar : N/Fr(N)

→ N/Fr(N) is an isomorphism, we have the diagram

N

((
N/Fr(N)

ψ 66

ar

∼ // N/Fr(N)

It follows that
N ' (N/Fr(N))⊕ Fr(N).

Using a similar argument, we can conclude that

Fk(N) ' (Fk(N)/Fk−1(N))⊕ Fk−1(N)

for k ≤ r . Hence we obtain (1.5).
By [2, Proposition 1.4(3)], we know that Fi(N)/Fi−1(N) admits a finite-dimensional

quotient if and only if λ + εi is a strict partition, and N/Fr(N) has only trivial finite-
dimensional quotient. Since Vcl⊗M is a largest finite-dimensional quotient of N , we get
the desired result. ut

Corollary 1.12. Any irreducible Uq(q(n))-module in O≥0
int appears as a direct summand

of tensor products of V.

Proof. This follows immediately from Theorem 1.11. ut

2. Crystal bases

Let M be a Uq(q(n))-module in the category O≥0
int . For i = 1, . . . , n − 1, let u ∈ Mλ

(λ ∈ P) be a weight vector and consider the i-string decomposition of u:

u =
∑
k≥0

f
(k)
i uk,
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where eiuk = 0 for all k ≥ 0 and f (k)i = f ki /[k]!. We define the even Kashiwara
operators ẽi , f̃i (i = 1, . . . , n− 1) by

ẽiu =
∑
k≥1

f
(k−1)
i uk, f̃iu =

∑
k≥0

f
(k+1)
i uk. (2.1)

On the other hand, we define the odd Kashiwara operators k̃1, ẽ1, f̃1 by

k̃1 = q
k1−1k1,

ẽ1 = −(e1k1 − qk1e1)q
k1−1,

f̃1 = −(k1f1 − qf1k1)q
k2−1.

(2.2)

The following lemma is obvious.

Lemma 2.1. The operators ẽ1 and f̃1 commute with ẽi and f̃i (3 ≤ i ≤ n− 1).

Recall that an abstract gl(n)-crystal is a setB together with the maps ẽi, f̃i : B → Bt{0},
ϕi, εi : B → Zt{−∞} (i ∈ I = {1, . . . , n−1}), and wt : B → P satisfying the following
conditions (see [12]):

(i) wt(ẽib) = wt(b)+ αi if i ∈ I and ẽib 6= 0,
(ii) wt(f̃ib) = wt(b)− αi if i ∈ I and f̃ib 6= 0,

(iii) for any i ∈ I and b ∈ B, ϕi(b) = εi(b)+ 〈hi,wt(b)〉,
(iv) for any i ∈ I and b, b′ ∈ B, f̃ib = b′ if and only if b = ẽib′,
(v) for any i ∈ I and b ∈ B such that ẽib 6= 0, we have εi(ẽib) = εi(b)− 1, ϕi(ẽib) =

ϕi(b)+ 1,
(vi) for any i ∈ I and b ∈ B such that f̃ib 6= 0, we have εi(f̃ib) = εi(b)+ 1, ϕi(f̃ib) =

ϕi(b)− 1,
(vii) for any i ∈ I and b ∈ B such that ϕi(b) = −∞, we have ẽib = f̃ib = 0.

In this paper, we say that an abstract gl(n)-crystal is a gl(n)-crystal if it is realized as a
crystal basis of a finite-dimensional integrable Uq(gl(n))-module. In particular, for any b
in a gl(n)-crystal B, we have

εi(b) = max{n ∈ Z≥0; ẽ
n
i b 6= 0}, ϕi(b) = max{n ∈ Z≥0; f̃

n
i b 6= 0}.

Definition 2.2. Let M =
⊕

µ∈P≥0 Mµ be a Uq(q(n))-module in the category O≥0
int .

A crystal basis of M is a triple (L, B, lB = (lb)b∈B), where

(a) L is a free A-submodule of M such that
(i) F⊗A L

∼−→ M ,
(ii) L =

⊕
µ∈P≥0 Lµ, where Lµ = L ∩Mµ,

(iii) L is stable under the Kashiwara operators ẽi , f̃i (i = 1, . . . , n− 1), k̃1, ẽ1, f̃1.

(b) B is a gl(n)-crystal together with the maps ẽ1, f̃1 : B → B t {0} such that

(i) wt(ẽ1b) = wt(b)+ α1, wt(f̃1b) = wt(b)− α1,
(ii) for all b, b′ ∈ B, f̃1b = b

′ if and only if b = ẽ1b
′.
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(c) lB = (lb)b∈B is a family of non-zero C-vector subspaces of L/qL such that
(i) lb ⊂ (L/qL)µ for b ∈ Bµ,

(ii) L/qL =
⊕

b∈B lb,
(iii) k̃1lb ⊂ lb,
(iv) for i = 1, . . . , n− 1, 1, we have

(1) if ẽib = 0 then ẽi lb = 0, and otherwise ẽi induces an isomorphism lb
∼−→

lẽib,
(2) if f̃ib = 0 then f̃i lb = 0, and otherwise f̃i induces an isomorphism lb

∼−→

l
f̃ib

.

Proposition 2.3. Let (L, B, lB) be a crystal basis of a Uq(q(n))-module M . Then

ẽ2
1
= f̃ 2

1
= 0 as endomorphisms on L/qL.

Proof. Since every u ∈ Lλ has a 1-string decomposition u =
∑N
k=0 f

(k)
1 uk with e1uk = 0

for k = 0, . . . , N , it suffices to show that ẽ2
1
u ≡ f̃ 2

1
u ≡ 0 (mod qL) for u = f (s)1 v with

e1v = 0 and wt(v) = µ (s ≥ 0).
We first show ẽ2

1
u ≡ 0 (mod qL). From the defining relations k1e1− qe1k1 = e1q

−k1

and e1e1 = e1e1, we obtain

e1k1e1 − qe
2
1k1 = e1e1q

−k1 and k1e
2
1 − qe1k1e1 = q

−1e1e1q
−k1 = q−1e1e1q

−k1 .

Then
e1k1e1 − qe

2
1k1 = qk1e

2
1 − q

2e1k1e1.

That is,

e1k1e1 = e
(2)
1 k1 + k1e

(2)
1 . (2.3)

Using this formula, we obtain

ẽ2
1
= (e1k1 − qk1e1)

2q2k1−1

=
(
(e
(2)
1 k1 + k1e

(2)
1 )k1 − qe1k

2
1
e1 − qk1e

2
1k1 + q

2k1(e
(2)
1 k1 + k1e

(2)
1 )

)
q2k1−1

=
q − q−1

q + q−1 q
2e2

1q
4k1 .

It follows that

ẽ2
1
u =

q − q−1

q + q−1 q
〈4k1,µ−sα1〉+2e2

1f
(s)
1 v

=
q − q−1

q + q−1 q
4〈k1,µ〉−4s+2

[〈k1 − k2, µ〉 − s + 1][〈k1 − k2, µ〉 − s + 2]f (s−2)
1 v.

Note that q2〈k1−k2,µ〉−2s+1
[〈k1 − k2, µ〉 − s + 1][〈k1 − k2, µ〉 − s + 2] ≡ 1 (mod qA).

Since

4〈k1, µ〉 − 4s + 2− (2〈k1 − k2, µ〉 − 2s + 1) = 2(〈k1 − k2, µ〉 − s)+ 4〈k2, µ〉 + 1 ≥ 1,
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we have

q4〈k1,µ〉−4s+2
[〈k1 − k2, µ〉 − s + 1][〈k1 − k2, µ〉 − s + 2] ∈ qA,

which implies ẽ2
1
u ≡ 0 (mod qL) as desired.

Now we show f̃ 2
1
u ≡ 0 (mod qL). By a similar argument to the one above, we obtain

f1k1f1 = f
(2)
1 k1 + k1f

(2)
1 .

Then

f̃ 2
1
= (k1f1 − qf1k1)

2q2k2−1

=
(
k1(f

(2)
1 k1 + k1f

(2)
1 )− qk1f

2
1 k1 − qf1k

2
1
f1 + q

2(f
(2)
1 k1 + k1f

(2)
1 )k1

)
q2k2−1

=
q − q−1

q + q−1 f
2
1 q

2k1+2k2−2.

It follows that

f̃ 2
1
u =

q − q−1

q + q−1 f
2
1 q
〈2k1+2k2,µ−sα1〉−2f

(s)
1 v

=
q − q−1

q + q−1 q
2〈k1+k2,µ〉−2

[s + 2][s + 1]f (s+2)
1 v.

If 〈k1−k2, µ〉 < s+2, then f (s+2)
1 v = 0, i.e., f̃ 2

1
u ≡ 0 (mod qL). If 〈k1−k2, µ〉 ≥ s+2,

we have
2〈k1 + k2, µ〉 − 2 ≥ 2〈k1 − k2, µ〉 − 2 ≥ 2s + 2.

Since q2s+1
[s + 2][s + 1] ≡ 1 mod qA, we have

q〈2k1+2k2,µ〉−2
[s + 2][s + 1] ∈ qA,

which proves our assertion. ut

Example 2.4. Let V =
⊕n
j=1 Fvj ⊕

⊕n
j=1 Fvj be the vector representation of Uq(q(n)).

Set

L =
n⊕
j=1

Avj ⊕
n⊕
j=1

Avj and lj = Cvj ⊕ Cvj ⊂ L/qL,

and let B be the gl(n)-crystal with the 1-arrow given below.

1
1 //

1
// 2

2 // 3
3 // · · ·

n−1 // n .

Here, the actions of f̃i (i = 1, . . . , n − 1, 1) are expressed by i-arrows. Then (L,B,
lB = (lj )

n
j=1) is a crystal basis of V.
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Remark 2.5. Let M be a Uq(q(n))-module in the category O≥0
int with a crystal basis

(L, B, lB), and let B =
∐s
k=1 Bk be the decomposition of B into connected gl(n)-

crystals. Then there exists a decomposition

M =
s⊕
k=1

mk⊕
j=1

Mk,j

of M as a Uq(gl(n))-module, where

(a) mk = dim lb for some b ∈ Bk ,
(b) Mk,j has a Uq(gl(n))-crystal basis (Lk,j , Bk,j ) such that

(i) L =
⊕

k,j Lk,j ,
(ii) there exists a gl(n)-crystal isomorphism φk,j : Bk

∼−→ Bk,j such that the vectors
φk,j (b) (j = 1, . . . , mk) form a basis of lb for each b ∈ Bk .

Remark 2.6. Let M be a Uq(q(n))-module in the category O≥0
int with a crystal basis

(L, B, lB). For i = 1, . . . , n−1, 1 and b, b′ ∈ B, if b′ = f̃ib, then we have isomorphisms
f̃i : lb

∼−→ lb′ and ẽi : lb′ ∼−→ lb. If i = 1, . . . , n − 1, then they are inverses to each other
by Remark 2.5. However, when i = 1, they are not inverses to each other in general.

The tensor product rule given in the following theorem is one of the most important
features of crystal basis theory.

Theorem 2.7. Let Mj be a Uq(q(n))-module in O≥0
int with a crystal basis (Lj , Bj , lBj )

(j = 1, 2). Set B1⊗B2 = B1×B2 and lb1⊗b2 = lb1 ⊗ lb2 for b1 ∈ B1 and b2 ∈ B2. Then
(L1 ⊗A L2, B1 ⊗ B2, (lb)b∈B1⊗B2) is a crystal basis of M1 ⊗F M2, where the action of
the Kashiwara operators on B1 ⊗ B2 is as follows:

ẽi(b1 ⊗ b2) =

{
ẽib1 ⊗ b2 if ϕi(b1) ≥ εi(b2),

b1 ⊗ ẽib2 if ϕi(b1) < εi(b2),

f̃i(b1 ⊗ b2) =

{
f̃ib1 ⊗ b2 if ϕi(b1) > εi(b2),

b1 ⊗ f̃ib2 if ϕi(b1) ≤ εi(b2),

(2.4)

ẽ1(b1 ⊗ b2) =

{
ẽ1b1 ⊗ b2 if 〈k1,wt(b2)〉 = 〈k2,wt(b2)〉 = 0,
b1 ⊗ ẽ1b2 otherwise,

f̃1(b1 ⊗ b2) =

{
f̃1b1 ⊗ b2 if 〈k1,wt(b2)〉 = 〈k2,wt(b2)〉 = 0,
b1 ⊗ f̃1b2 otherwise.

(2.5)

Proof. It is obvious that

(L1 ⊗ L2)/q(L1 ⊗ L2) =
⊕

b1∈B1, b2∈B2

lb1 ⊗ lb2 ,

lb1 ⊗ lb2 ⊂ ((L1 ⊗ L2)/q(L1 ⊗ L2))λ+µ for b1 ∈ (B1)λ, b2 ∈ (B2)µ.
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For i = 1, . . . , n− 1, our assertions were already proved in [10, 11]. Let us show the
i = 1 case. The following comultiplication formulas can be checked easily:

1(k̃1) = k̃1 ⊗ q
2k1 + 1⊗ k̃1,

1(ẽ1) = ẽ1 ⊗ q
k1+k2 + 1⊗ ẽ1 − (1− q

2)k̃1 ⊗ e1q
2k1 ,

1(f̃1) = f̃1 ⊗ q
k1+k2 + 1⊗ f̃1 − (1− q

2)k̃1 ⊗ f1q
k1+k2−1.

Clearly, L1 ⊗ L2 and lb1 ⊗ lb2 are stable under 1(k̃1) for all b1 ∈ B1, b2 ∈ B2.
We will show thatL1⊗L2 is stable under1(ẽ1) and1(f̃1). Let u1 ∈ L1 and u2 ∈ L2.

Then the comultiplication formula implies

1(ẽ1)(u1 ⊗ u2) = ẽ1u1 ⊗ q
k1+k2u2 ± u1 ⊗ ẽ1u2 − (1− q2)k̃1u1 ⊗ e1q

2k1u2,

where ± is according to whether u1 is even or odd. It is obvious that the first two terms
belong to L1⊗L2. For the last term, we may assume that u2 = f

(s)
1 v with e1v = 0. Then

we have

e1q
2k1u2 = e1q

2k1f
(s)
1 v = q2〈k1,wt(v)−sα1〉[〈k1 − k2,wt(v)〉 − s + 1]f (s−1)

1 v

= q2〈k1,wt(v)〉−2s
[〈k1 − k2,wt(v)〉 − s + 1]ẽ1u2

=
q〈3k1−k2,wt(v)〉−3s+2

− q〈k1+k2,wt(v)〉−s

q2 − 1
ẽ1u2.

Since

〈3k1 − k2,wt(v)〉 − 3s + 2 = 3(〈k1 − k2,wt(v)〉 − s)+ 2〈k2,wt(v)〉 + 2 > 0,
〈k1 + k2,wt(v)〉 − s = 〈k1,wt(u2)〉 + 〈k2,wt(v)〉 ≥ 〈k1,wt(u2)〉 ≥ 0,

if 〈k1,wt(u2)〉 = 0, then f1u2 = 0 and hence s = −〈h1,wt(u2)〉 = 〈k2,wt(u2)〉. Thus
we conclude

e1q
2k1u2 ≡ ẽ1u2 (mod L2) if 〈k1,wt(u2)〉 = 0,

e1q
2k1u2 ∈ qL2 if 〈k1,wt(u2)〉 > 0.

(2.6)

Hence L1 ⊗ L2 is stable under 1(ẽ1).
Similarly, one can show that f1q

k1+k2−1L2 ⊂ L2, which implies L1 ⊗ L2 is stable
under 1(f̃1). Thus we have shown that L1 ⊗L2 is stable under the Kashiwara operators.

We shall prove the tensor product rule. To prove the ẽ1-case, let u1 ∈ lb1 , u2 ∈ lb2 ,
and consider the following three cases separately.

Case 1: 〈k1,wt(b2)〉 = 〈k2,wt(b2)〉 = 0. By the comultiplication formula, we have

1(ẽ1)(u1 ⊗ u2) = ẽ1u1 ⊗ u2 ± u1 ⊗ ẽ1u2 − (1− q2)k̃1u1 ⊗ e1u2.

Since 〈k2,wt(b2) + α1〉 = 〈k2,wt(b2) + ε1 − ε2〉 = −1 < 0, we must have ẽ1u2 =

e1u2 = 0. Hence 1(ẽ1)(u1 ⊗ u2) = ẽ1u1 ⊗ u2.



1606 Dimitar Grantcharov et al.

If ẽ1 = 0 on lb1 , then ẽ1 ⊗ 1 = 0 on lb1 ⊗ lb2 . If ẽ1 : lb1 → lẽ1b1 is an isomorphism,
then ẽ1 ⊗ 1 : lb1 ⊗ lb2 → lẽ1b1 ⊗ lb2 is also an isomorphism as desired.

Case 2: 〈k1,wt(b2)〉 > 0. By the comultiplication formula and (2.6), we have

1(ẽ1)(u1 ⊗ u2) = ẽ1u1 ⊗ q
〈k1+k2,wt(b2)〉u2 ± u1 ⊗ ẽ1u2 − (1− q2)k̃1u1 ⊗ e1q

2k1u2

≡ ±u1 ⊗ ẽ1u2 (mod qL1 ⊗ L2).

Case 3: 〈k1,wt(b2)〉 = 0 and 〈k2,wt(b2)〉 > 0. The comultiplication formula and (2.6)
yield

1(ẽ1)(u1 ⊗ u2) = ẽ1u1 ⊗ q
〈k1+k2,wt(b2)〉u2 ± u1 ⊗ ẽ1u2 − (1− q2)k̃1u1 ⊗ e1q

2k1u2

≡ ±u1 ⊗ ẽ1u2 − k̃1u1 ⊗ e1u2 (mod qL1 ⊗ L2).

Since 〈k1,wt(b2)〉 = 0 and k̃2
1
= (1− q4)−1(1− q4k1), we have

k1̄u2 = 0, k̃2
1
e1u2 =

1− q4k1

1− q4 e1u2 = e1u2.

It follows that

ẽ1u2 = −q
−1(e1k1̄ − qk1̄e1)q

k1u2 = k1̄e1q
k1u2 = k1̄q

k1−1e1u2 = k̃1e1u2.

Hence we obtain
k̃1ẽ1u2 = k̃

2
1
e1u2 = e1u2,

which implies

1(ẽ1)(u1 ⊗ u2) ≡ ±u1 ⊗ ẽ1u2 − k̃1u1 ⊗ k̃1ẽ1u2 ≡ (1− k̃1 ⊗ k̃1)(1⊗ ẽ1)(u1 ⊗ u2).

The operator 1 − k̃1 ⊗ k̃1 on lb1 ⊗ lẽ1b2 is invertible because (k̃1 ⊗ k̃1)
2
= −k̃2

1
⊗ k̃2

1
=

−(1−q4)−1(1−q4k1)⊗ id acts on lb1⊗ẽ1b2 as multiplication by a scalar different from 1.
Hence the map 1(ẽ1) : lb1 ⊗ lb2 → lb1 ⊗ lẽ1b2 is either 0 or an isomorphism according to
whether ẽ1b2 = 0 or not.

The assertions on f̃1 can be verified in a similar manner. The remaining property
(b)(ii) in Definition 2.2 follows immediately from formula (2.5). ut

Motivated by the properties of crystal bases, we introduce the notion of abstract crystals.

Definition 2.8. An abstract q(n)-crystal is a gl(n)-crystal together with two maps
ẽ1, f̃1 : B → B t {0} satisfying the following conditions:

(a) wt(B) ⊂ P≥0,
(b) wt(ẽ1b) = wt(b)+ α1, wt(f̃1b) = wt(b)− α1,
(c) for all b, b′ ∈ B, f̃1b = b

′ if and only if b = ẽ1b
′,

(d) if 3 ≤ i ≤ n− 1, then

(i) the operators ẽ1 and f̃1 commute with ẽi and f̃i ,
(ii) if ẽ1b ∈ B, then εi(ẽ1b) = εi(b) and ϕi(ẽ1b) = ϕi(b).

Note that any crystal basis of Uq(q(n))-modules in O≥0
int has property (d) by Lemma 2.1.
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Let B1 and B2 be abstract q(n)-crystals. The tensor product B1 ⊗ B2 of B1 and B2
is defined to be the gl(n)-crystal B1 ⊗ B2 together with the maps ẽ1, f̃1 defined by (2.5).
Then it is an abstract q(n)-crystal.

The following associativity of the tensor product is easily checked.

Proposition 2.9. Let B1, B2 and B3 be abstract q(n)-crystals. Then

(B1 ⊗ B2)⊗ B3 ' B1 ⊗ (B2 ⊗ B3).

Example 2.10. (a) If (L, B, lB) is a crystal basis of a Uq(q(n))-module M in the cate-
gory O≥0

int , then B is an abstract q(n)-crystal.
(b) The crystal graph B of the vector representation V is an abstract q(n)-crystal.
(c) By the tensor product rule, B⊗N is an abstract q(n)-crystal. When n = 3, the

q(n)-crystal structure of B⊗ B is given below.

1 ⊗ 1
1 //

1
��

2 ⊗ 1

1
��

1
��

2 // 3 ⊗ 1

1
��

1
��

1 ⊗ 2

2
��

2 ⊗ 2 2
// 3 ⊗ 2

2
��

1 ⊗ 3
1
//

1 //
2 ⊗ 3 3 ⊗ 3

(d) For a strict partition λ = (λ1 > · · · > λr > 0), let Yλ be the skew Young diagram
having λ1 boxes on the principal diagonal, λ2 boxes on the second diagonal, etc. For
example, if λ = (7 > 6 > 4 > 2 > 0), then

Yλ = .

Let B(Yλ) be the set of all semistandard tableaux of shape Yλ with entries from
1, . . . , n. Then by an admissible reading introduced in [1], B(Yλ) can be embedded
in B⊗N , where N = λ1 + · · · + λr , and it is stable under the Kashiwara operators ẽi, f̃i
(i = 1, . . . , n − 1, 1). Hence it becomes an abstract q(n)-crystal. Moreover, the q(n)-
crystal structure thus obtained does not depend on the choice of admissible reading.

Indeed, since Yλ is a skew Young diagram, it is stable under the even Kashiwara
operators, and the gl(n)-crystal structure does not depend on the choice of admissible
reading. Let T be a semistandard tableau of shape λ and let β be the lowest box with
entry 1 on the principal diagonal of T . Since a box with entry 1 must lie on the principal
diagonal of T , every box with entry 1 except β lies northeast of β. Let ψ : B(Yλ)→ B⊗N
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be an admissible reading. It follows that β is the rightmost box with entry 1 in ψ(T ). If
there is a box, say γ , with entry 2 southwest of β in T , then γ must appear after β in
ψ(T ). Thus we get f̃1(ψ(T )) = 0. If there is no box with entry 2 southwest of β in T ,
then we know that every box with entry 2 must lie northeast of β in T , and hence there
is no box with entry 2 after β in ψ(T ). Thus f̃1 acts on β. Since the entry of the right
box of β in T is greater than or equal to 2, we have f̃1(ψ(T )) = ψ(T

′), where T ′ is the
semistandard tableau of shape λ obtained from T by replacing the entry of β from 1 to 2.
It follows that B(Yλ) is stable under the action of f̃1 and it does not depend on the choice
of admissible reading.

Let δ be the leftmost box with entry 2 in T . If δ lies on the second diagonal, the
entry of the box lying to the left of δ must be 1. Then, for any admissible reading ψ ,
ẽ1ψ(T ) = 0. Thus we may assume that δ lies on the principal diagonal of T , and our
assertion on ẽ1 follows from similar arguments to those above.

In Figure 1, we illustrate the crystal B(Yλ) for n = 3 and λ = (3 > 1 > 0). Note that
it is connected. However, in general, B(Yλ) is not connected.

1
1 2

1
1

||
2 ��

1

""
1

2 2
1

1

||
1||

2 ��

1
1 3

1

1 ��
1

""

1
1 2

2

2 ��
1

2 2
2

2 ��

1
2 3

1
1

||
1||

2 ��

2
1 3

1

1 ��
1

""

1
1 3

2

1 �� 2 ""

1
1 2

3

1 �� 1��
1

2 3
2

2 ��

1
3 3

1

1||
1 ��

2
2 3

1

1 �� 1��
2

||

2
1 3

2

2 ��

1
1 3

3
1

||
1

""

1
2 2

3

2 ��
1

3 3
2

2 ""

2
3 3

1

1 ""

1

""

2
2 3

2

2 ��

2
1 3

3

1 �� 1��

1
2 3

3

1
3 3

3

1 ""

1

""

2
3 3

2

2 ��

2
2 3

3

2
3 3

3

Fig. 1. B(Yλ) for n = 3, λ = (3 > 1 > 0).
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Let B be an abstract q(n)-crystal. For i = 1, . . . , n− 1, we define the automorphism
Si on B by

Sib =

{
f̃
〈hi ,wt(b)〉
i b if 〈hi,wt(b)〉 ≥ 0,
ẽ
−〈hi ,wt(b)〉
i b if 〈hi,wt(b)〉 ≤ 0.

(2.7)

Let w be an element of the Weyl group W of gl(n). Then, as shown in [13], there exists a
unique action Sw : B → B of W on B such that Ssi = Si for i = 1, . . . , n− 1. Note that
wt(Swb) = w(wt(b)) for any w ∈ W and b ∈ B.

For i = 1, . . . , n− 1, we set

wi = s2 · · · sis1 · · · si−1. (2.8)

Thenwi is the shortest element inW such thatwi(αi) = α1. We define the odd Kashiwara
operators ẽi , f̃i (i = 2, . . . , n− 1) by

ẽi = Sw−1
i
ẽ1Swi , f̃i = Sw−1

i
f̃1Swi .

We say that b ∈ B is a highest weight vector if ẽib = ẽib = 0 for all i = 1, . . . , n− 1.

Remark 2.11. These actions can be lifted to actions on Uq(q(n))-modules. Let M be a
Uq(q(n))-module in O≥0

int . For each i = 1, . . . , n− 1, we have

M =
⊕

`≥k≥0
λ∈P, 〈hi ,λ〉=`

f
(k)
i (Ker (ei)λ).

Hence we can define the endomorphism Si of M by

Si(f
(k)
i u) = f

(`−k)
i u for u ∈ Ker (ei)λ. (2.9)

Then S2
i = idM and Si(Mλ) = Msiλ. If (L, B, lB) is a crystal basis ofM , then L is stable

under Si , and Si induces an action on L and L/qL. Obviously, Si(lb) = lSib for b ∈ B,
where Sib is defined in (2.7). We define the endomorphisms ẽi and f̃i of M by

ẽi = (S2 · · · SiS1 · · · Si−1)
−1
◦ ẽ1 ◦ (S2 · · · SiS1 · · · Si−1),

f̃i = (S2 · · · SiS1 · · · Si−1)
−1
◦ f̃1 ◦ (S2 · · · SiS1 · · · Si−1).

(2.10)

Then
ẽiMµ ⊂ Mµ+αi and f̃iMµ ⊂ Mµ−αi for every µ ∈ P≥0.

Let (L, B, lB) be a crystal basis of M . Then L is stable under the action of ẽi , and ẽi
induces an action on L/qL, and we have{

(i) if ẽib 6= 0, then ẽi induces an isomorphism lb
∼−→ lẽib,

(ii) if ẽib = 0, then ẽi(lb) = 0.

Similar properties hold for f̃i . Note that

Ker(ẽi : L/qL→ L/qL) = Ker(ẽ1Swi ) = S
−1
wi
(Ker ẽ1) = Sw−1

i
(Ker ẽ1)

= S
w−1
i

( ⊕
ẽ1b=0

lb

)
=

⊕
ẽ1b=0

lS
w
−1
i

b =
⊕

ẽ1Swi b=0
lb =

⊕
ẽib=0

lb.



1610 Dimitar Grantcharov et al.

Example 2.12. Let λ be a strict partition. Observe that B(Yλ) has a unique element of
weight λ, say bYλ . Since λ + αi /∈ wt(B(Yλ)) for any i = 1, . . . , n − 1, bYλ is a highest
weight vector. Thus, for each admissible reading ψ , ψ(bYλ) is a highest weight vector
in B⊗N .

Lemma 2.13. Every abstract q(n)-crystal contains a highest weight vector.

Proof. Recall that λ ∈ wt(B) := {wt(b); b ∈ B} is called maximal if λ+ αi /∈ wt(B) for
i = 1, . . . , n − 1. Since wt(ẽib) = wt(b) + αi , a vector in a crystal B with a maximal
weight is a highest weight vector. Because wt(B) is a finite set, there exists a maximal
element λ so that we have an element b ∈ B with a maximal weight λ. ut

Remark 2.14. (a) Let λ be a strict partition with `(λ) = r and let M be a highest weight
module of highest weight λ in O≥0

int . Set k̃i = q
ki−1ki for i = 1, . . . , n. Since M ∈ O≥0

int ,

we have k̃i = 0 onMλ for i > r . Note that k̃2
i
=

1−q4λi

1−q4 onMλ and
( 1−q4λi

1−q4

)−1/2
∈ A ⊂ F.

Let

Ci :=

(
1− q4λi

1− q4

)−1/2

k̃i .

Then on Mλ, we have

C2
i = 1, CiCj + CjCi = 0 (i 6= j). (2.11)

Thus Mλ can be regarded as a module over F[C1, . . . , Cr ], where F[C1, . . . , Cr ] is the
associative F-algebra generated by {Ci; i = 1, . . . , r} with the defining relations (2.11).

(b) Let C[C1, . . . , Cr ] and A[C1, . . . , Cr ] be the associative C-algebra and A-algebra,
respectively, generated by {Ci; i = 1, . . . , r} with the defining relations (2.11). For a
superring R, we define Mod(R) and S-Mod(R) to be the category of R-modules and the
category of R-supermodules, respectively.

If r is odd, then we have the following commutative diagram:

Mod(A) ∼ //

F⊗A(−)

��

S-Mod(A[C1, . . . , Cr ])

F⊗A(−)

��
Mod(F) ∼ // S-Mod(F[C1, . . . , Cr ])

If r is even, then we have the following commutative diagram:

S-Mod(A) ∼ //

F⊗A(−)

��

S-Mod(A[C1, . . . , Cr ])

F⊗A(−)

��
S-Mod(F) ∼ // S-Mod(F[C1, . . . , Cr ])

In both cases, the horizontal arrows are given by

K 7→ V ⊗C K

for each module K in the left hand side, where V denotes an irreducible supermodule
over C[C1, . . . , Cr ].
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To summarize, we obtain the following proposition.

Proposition 2.15. (a) For a strict partition λ ∈ 3+ with `(λ) = r , let HT(λ) be the
category of highest weight modules with highest weight λ in O≥0

int . Then HT(λ) is
equivalent to S-Mod(F[C1, . . . , Cr ]), where the equivalence is given by

HT(λ) 3 M 7→ Mλ ∈ S-Mod(F[C1, . . . , Cr ]).

In particular, the homomorphism EndUq (q(n))(M) → EndF[C1,...,Cr ](Mλ) is an iso-
morphism for any M ∈ HT(λ).

(b) For a Uq(q(n))-module M ∈ HT(λ), let L, L′ be finitely generated free A-sub-
modules of Mλ such that

(i) L and L′ are stable under k̃i’s (i = 1, . . . , n),
(ii) F⊗A L ' F⊗A L

′
' Mλ.

Then there exists a Uq(q(n))-module automorphism ϕ of M such that ϕL = L′.

3. Highest weight vectors in B⊗N

In this section, we will give algebraic and combinatorial characterizations of highest
weight vectors in the abstract q(n)-crystal B⊗N .

Definition 3.1. Let B be an abstract q(n)-crystal.

(i) An element b ∈ B is called a gl(a)-highest weight vector if ẽib = 0 for 1 ≤ i <

a ≤ n.
(ii) An element b ∈ B is called a q(a)-highest weight vector if ẽib = ẽib = 0 for

1 ≤ i < a ≤ n.

In particular, a highest weight vector in B is a q(n)-highest weight vector.

From now on, we denote by
⊗
j≥m≥i(r1 r2 · · · rm)

⊗ym the following vector in B⊗N :

(r1⊗· · ·⊗rj )⊗· · ·⊗(r1⊗· · ·⊗rj )︸ ︷︷ ︸
yj times

⊗ (r1⊗· · ·⊗rj−1)⊗· · ·⊗(r1⊗· · ·⊗rj−1)︸ ︷︷ ︸
yj−1 times

⊗

· · ·⊗(r1⊗· · ·⊗ri+1)⊗· · ·⊗(r1⊗· · ·⊗ri+1)︸ ︷︷ ︸
yi+1 times

⊗ (r1⊗· · ·⊗ri)⊗· · ·⊗(r1⊗· · ·⊗ri)︸ ︷︷ ︸
yi times

,

where N =
∑j
m=i mym.

Let b be an element of a gl(n)-crystalB. We denote byC(b) the connected component
of B containing b.

Definition 3.2. Let Bi be a gl(n)-crystal and let bi ∈ Bi (i = 1, 2). We say that b1 is
gl(n)-crystal equivalent to b2 if there exists an isomorphism of gl(n)-crystals C(b1)

∼−→

C(b2) sending b1 to b2.
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Recall that wi = s2 · · · sis1 · · · si−1.

Lemma 3.3. Let B be a gl(n)-crystal.

(a) A vector b0 in B ⊗ B is a gl(n)-highest weight vector if and only if b0 = 1 ⊗
f̃1 · · · f̃j−1b for some j ∈ {1, . . . , n} and some gl(n)-highest weight vector b ∈ B
such that wt(b0) = wt(b)+ εj is a partition.

(b) Let b be a gl(n)-highest weight vector in B and j ∈ {1, . . . , n}. If wt(b) + εj is a
partition, then b0 = 1⊗ f̃1 · · · f̃j−1b is a gl(n)-highest weight vector in B⊗ B and
we have

Swib0 =


3⊗ f̃3 · · · f̃j+1Swib if j + 1 ≤ i < n,

1⊗ Swib if i = j,
1⊗ f̃1Swib if i = j − 1,

and
Suib0 = 1⊗ f̃1f̃2Suib

′ if i ≤ j − 2,

where zi = s3s4 · · · si+1, ui = ziwi and b′ = f̃i+2 · · · f̃j−1b.

Proof. (a) For a partition λ, let us denote by Bgl(n)(λ) the crystal graph of the highest
weight gl(n)-module with highest weight λ. It is enough to show that the assertion holds
for B = Bgl(n)(λ) for any partition λ.

Let b0 = 1⊗f̃1 · · · f̃j−1b for some gl(n)-highest weight vector b ∈ B such that wt(b0)

is a partition. Since any two gl(n)-highest weight vectors with the same highest weight
are gl(n)-crystal equivalent, by embedding B into B⊗N for some N , we may assume that
b =

⊗
n≥m≥1(12 · · ·m)⊗xm , where xm = 〈km − km+1,wt(b)〉 for 1 ≤ m ≤ n− 1. Since

wt(b)+ εj = wt(b0) is a partition, we have xj−1 ≥ 1. Thus

1⊗ f̃1f̃2 · · · f̃j−1b

= 1⊗
⊗
m≥j

(1 · · ·m)⊗xm ⊗ (23 · · · j)⊗
⊗

j−1≥m≥1
(1 · · ·m)⊗(xm−δm,j−1), (3.1)

which is a gl(n)-highest weight vector in B⊗ B. Since

B⊗ B '
⊕

λ+εj : partition
Bgl(n)(λ+ εj ),

the number of highest weight vectors in B ⊗ B is the same as the number of vectors of
the form in (3.1).

(b) We may assume that b =
⊗

n≥m≥1(12 · · ·m)⊗xm as above. Then by (3.1),

b0 = 1⊗
⊗
m≥j

(12 · · ·m)⊗xm ⊗ (23 · · · j)⊗
⊗

j−1≥m≥1
(12 · · ·m)⊗(xm−δm,j−1). (3.2)

We also have

Swib =
⊗

m≥i+1
(12 · · ·m)⊗xm ⊗ (134 · · · i + 1)⊗xi ⊗

⊗
i−1≥m≥1

(34 · · ·m+ 2)⊗xm . (3.3)

Here we have used the following facts:
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(1) For w ∈ W and gl(n)-highest weight vectors b1 and b2,

Sw(b1 ⊗ b2) = Swb1 ⊗ Swb2.

(2) Suppose that 0 < a1 < · · · < ar ≤ n, 0 < x1 < · · · < xr ≤ n and w({a1, . . . ar}) =

{x1, . . . xr}. Then
Sw(a1 ⊗ · · · ⊗ ar) = x1 ⊗ · · · ⊗ xr .

Case 1: j + 1 ≤ i < n. From (3.2), we have

Swib0 = 3⊗
⊗

m≥i+1
(12 · · ·m)⊗xm ⊗ (134 · · · i + 1)⊗xi

⊗
⊗

i−1≥m≥j
(34 · · ·m+ 2)⊗xm ⊗ (45 · · · j + 2)

⊗
⊗

j−1≥m≥1
(3 · · ·m+ 2)⊗(xm−δm,j−1).

On the other hand, from (3.3), we have

f̃3 · · · f̃j+1Swib =
⊗

m≥i+1
(12 · · ·m)⊗xm ⊗ (134 · · · i + 1)⊗xi

⊗
⊗

i−1≥m≥j
(34 · · ·m+ 2)⊗xm ⊗ (45 · · · j + 2)

⊗
⊗

j−1≥m≥1
(34 · · ·m+ 2)⊗(xm−δm,j−1).

Thus we get Swib0 = 3⊗ f̃3 · · · f̃j+1Swib.

Case 2: i = j . From (3.2) and (3.3), we have

Swib0 = Swi

(
1⊗

⊗
m≥j

(1 · · ·m)⊗xm ⊗ (2 · · · j)⊗
⊗

j−1≥m≥1
(1 · · ·m)⊗(xm−δm,j−1)

)
= S2 · · · Sj

(
1⊗

⊗
m≥j

(1 · · ·m)⊗xm ⊗
⊗

j−1≥m≥1
(2 · · ·m+ 1)⊗xm

)
= 1⊗

⊗
m≥j+1

(1 · · ·m)⊗xm ⊗ (134 · · · j + 1)⊗xj ⊗
⊗

j−1≥m≥1
(3 · · ·m+ 2)⊗xm

= 1⊗ Swib.

Case 3: i = j − 1. From (3.2), we have

Swib0 = S2 · · · Sj−1

(
1⊗

⊗
m≥j

(1 · · ·m)⊗xm ⊗ (2 · · · j)⊗ (12 · · · j − 1)⊗(xj−1−1)

⊗
⊗

j−2≥m≥1
(2 · · ·m+ 1)⊗xm

)
= 1⊗

⊗
m≥j

(1 · · ·m)⊗xm ⊗ (2 · · · j)⊗ (134 · · · j)⊗(xj−1−1)

⊗
⊗

j−2≥m≥1
(3 · · ·m+ 2)⊗xm .
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On the other hand, from (3.3), we have

1⊗ f̃1Swib

= 1⊗ f̃1

(⊗
m≥j

(1 · · ·m)⊗xm ⊗ (134 · · · j)⊗xj−1 ⊗
⊗

j−2≥m≥1
(3 · · ·m+ 2)⊗xm

)
= 1⊗

⊗
m≥j

(1 · · ·m)⊗xm ⊗ (2 · · · j)⊗ (134 · · · j)⊗(xj−1−1)
⊗

⊗
j−2≥m≥1

(3 · · ·m+ 2)⊗xm .

Hence we get Swib0 = 1⊗ f̃1Swib.

Case 4: i ≤ j − 2. Note that

ui(m) =



m+ 3, 1 ≤ m < i,

1, m = i,

2, m = i + 1,
3, m = i + 2,
m, m ≥ i + 3.

We have

Suib0 = S3 · · · Si+1

(
1⊗

⊗
m≥j

(1 · · ·m)⊗xm ⊗ (2 · · · j)⊗
⊗

j−1≥m≥i+1
(1 · · ·m)⊗(xm−δm,j−1)

⊗(13 · · · i + 1)⊗xi ⊗
⊗

i−1≥m≥1
(3 · · ·m+ 2)⊗xm

)
= 1⊗

⊗
m≥j

(1 · · ·m)⊗xm ⊗ (2 · · · j)⊗
⊗

j−1≥m≥i+2
(1 · · ·m)⊗(xm−δm,j−1)

⊗ (124 · · · i + 2)⊗xi+1 ⊗ (14 · · · i + 2)⊗xi ⊗
⊗

i−1≥m≥1
(4 · · ·m+ 3)⊗xm .

On the other hand,

f̃1f̃2(Suib
′) = f̃1f̃2Sui

(⊗
m≥j

(1 · · ·m)⊗xm ⊗ (1 · · · i + 1 i + 3 · · · j)

⊗
⊗

j−1≥m≥1
(1 · · ·m)⊗(xm−δm,j−1)

)
= f̃1f̃2

(⊗
m≥j

(1 · · ·m)⊗xm ⊗ (124 · · · j)⊗
⊗

j−1≥m≥i+2
(1 · · ·m)⊗(xm−δm,j−1)

⊗(124 · · · i + 2)⊗xi+1 ⊗ (14 · · · i + 2)⊗xi ⊗
⊗

i−1≥m≥1
(4 · · ·m+ 3)⊗xm

)
=
⊗
m≥j

(1 · · ·m)⊗xm ⊗ (234 · · · j)⊗
⊗

j−1≥m≥i+2
(1 · · ·m)⊗(xm−δm,j−1)

⊗ (124 · · · i + 2)⊗xi+1 ⊗ (14 · · · i + 2)⊗xi ⊗
⊗

i−1≥m≥1
(4 · · ·m+ 3)⊗xm .

Thus, we obtain Suib0 = 1⊗ f̃1f̃2Suib
′. ut
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Lemma 3.4. Assume that b ∈ B⊗N satisfies f̃1b 6= 0 and ẽ1f̃1b = 0. Then ẽ1b = 0.

Proof. If b does not contain 2, then it is trivial. Assume that b contains 2 and ẽ1b 6= 0.
Then we can write b = b1 ⊗ 2⊗ b2 such that b2 contains neither 1 nor 2. Since f̃1b 6= 0,
we have f̃1b = (f̃1b1)⊗ 2⊗ b2 and f̃1b1 6= 0. Therefore, ẽ1f̃1b = (f̃1b1)⊗ 1⊗ b2 does
not vanish, which is a contradiction. ut

Theorem 3.5. Suppose that b is a gl(n)-highest weight vector in B⊗(N−1) and b0 =

1⊗ f̃1 · · · f̃j−1b is a highest weight vector in B⊗N . Then b is a highest weight vector in
B⊗(N−1).

Proof. We shall prove ẽib = 0 for 1 ≤ i < n.

Case 1: j + 1 ≤ i < n. By Lemma 3.3, we have Swib0 = 3 ⊗ f̃3 · · · f̃j+1Swib. Since
0 = ẽ1Swib0 = ẽ1(3⊗ f̃3 · · · f̃j+1Swib), we obtain ẽ1Swib = 0.

Case 2: i = j . We have Swib0 = 1⊗ Swib. Since 0 = ẽ1Swib0 = ẽ1(1⊗ Swib), we get
ẽ1Swib = 0.

Case 3: i = j−1. Since Swib0 = 1⊗f̃1Swib,we have ẽ1f̃1Swib = 0.Hence Lemma 3.4
implies ẽ1Swib = 0.

Case 4: i ≤ j − 2. Set b′ := f̃i+2 · · · f̃j−1b. Then ẽkb′ = 0 for k ≤ i + 1. Hence b′ is a
gl(i + 2)-highest weight vector. Since u−1

i (α1) and u−1
i (α2) are positive roots, Suib

′ is a
gl(3)-highest weight vector. Here we have used the fact:

if b is a gl(n)-highest weight vector and w−1(αi) is a positive root
for w ∈ W and i, then ẽiSwb = 0. (3.4)

For the same reason, Suib0 is a gl(n)-highest weight vector.
By Lemma 3.3, we have

Suib0 = 1⊗ f̃1f̃2Suib
′.

Since ẽ1 commutes with S3, . . . Sn−1, ẽ1 commutes with Szi . Hence

ẽ1Suib0 = ẽ1SziSwib0 = Szi ẽ1Swib0 = 0.

Since w2ui = ziwi+1, we also have

ẽ1Sw2Suib0 = ẽ1SziSwi+1b0 = Szi ẽ1Swi+1b0 = 0.

Thus Suib0 is a q(3)-highest weight vector. By Lemma 3.6 below, we have ẽ1Suib
′
= 0.

Since ẽ1 commutes with Szi , we get ẽ1SziSwib
′
= Szi ẽ1Swib

′, and hence we conclude
ẽib
′
= 0.

On the other hand, ẽi commutes with ẽj−1 · · · ẽi+2, because ẽk (k ≥ i + 2) commutes
with S1, . . . , Si and ẽ1. Hence ẽj−1 · · · ẽi+2 commutes with ẽi . Since b = ẽj−1 · · · ẽi+2b

′,
we obtain ẽib = ẽi ẽj−1 · · · ẽi+2b

′
= ẽj−1 · · · ẽi+2ẽib

′
= 0. ut
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Lemma 3.6. Suppose that b is a gl(3)-highest weight vector in B⊗(N−1) and b0 = 1 ⊗
f̃1f̃2b is a q(3)-highest weight vector in B⊗N . Then ẽ1b = 0.

Proof. If ẽ1b 6= 0, then b = b1 ⊗ 2 ⊗ b2, where b2 contains neither 1 nor 2. Since
ẽ1b0 = 0, we have ẽ1f̃1f̃2b = 0 and hence Lemma 3.4 implies ẽ1f̃2b = 0. It follows that
f̃2b = b1 ⊗ 3 ⊗ b2. Hence ẽ1f̃2b = 0 implies ẽ1b1 = 0. Moreover, f̃2(b1 ⊗ 2 ⊗ b2) =

b1 ⊗ 3 ⊗ b2 implies that ϕ2(b1) = 0 and b2 does not contain 3. Since ε2(b1) = 0, we
conclude that b1 is gl(3)-crystal equivalent to 1⊗x for some positive integer x. Thus

S2S1b0 = S2S1(1⊗ f̃1f̃2b) = S2S1(1⊗ f̃1b1 ⊗ 3⊗ b2)

= S2(1⊗ S1b1 ⊗ 3⊗ b2) = 1⊗ ẽ2S2S1b1 ⊗ 3⊗ b2. (3.5)

Here the third equality follows from

S1(1⊗ f̃1(1⊗x)) = S1(1⊗ 2⊗ 1⊗(x−1)) = 1⊗ 2⊗ 2⊗(x−1)
= 1⊗ S1(1⊗x),

and the last equality follows from

S2(1⊗ S1(1⊗x)⊗ 3) = S2(1⊗ 2⊗x ⊗ 3) = 1⊗ 3⊗(x−1)
⊗ 2⊗ 3 = 1⊗ ẽ2S2S1(1⊗x)⊗ 3.

Since ẽ2b0 = 0 by assumption, we have ẽ1S2S1b0 = 0, and (3.5) implies

ẽ1ẽ2S2S1b1 = 0.

On the other hand, f̃1(b1⊗ 3⊗ b2) = f̃1f̃2b 6= 0 implies f̃1b1 6= 0. Hence b1 contains 1,
and ẽ1b1 = 0 implies that b1 = b3 ⊗ 1⊗ b4 where b4 contains neither 1 nor 2. Since b3
is a gl(3)-highest weight vector, we have S1b1 = S1b3 ⊗ 2 ⊗ b4. Since ẽ2S1b1 = 0 by
(3.4), we have ẽ2S1b3 = 0. Consequently, ẽ2S2S1b1 = b5 ⊗ 2⊗ b4 for some b5, because
ẽ2S2(2⊗y ⊗ 2⊗ 3⊗z) = ẽ2(3⊗(y+1−z)

⊗ 2⊗z ⊗ 3⊗z) = 3⊗(y−z) ⊗ 2⊗z ⊗ 2⊗ 3⊗z. This
contradicts ẽ1ẽ2S2S1b1 = 0. Hence we get the desired result ẽ1b = 0. ut

Lemma 3.7. If ε1(b) = 0 and 〈k1,wt(b)〉 = 〈k2,wt(b)〉 > 0, then ẽ1b 6= 0.

Proof. Assume that ẽ1b = 0. Then b = b1⊗1⊗b2 for some b1 and b2, where b2 contains
neither 1 nor 2. Since ε1(b1) = 0, we have

〈k1,wt(b)〉 = 1+ 〈k1,wt(b1)〉 ≥ 1+ 〈k2,wt(b1)〉 = 〈k2,wt(b)〉 + 1,

which is a contradiction. ut

Proposition 3.8. If b is a highest weight vector in B⊗N , then wt(b) is a strict partition.

Proof. Assuming that 〈ki,wt(b)〉 = 〈ki+1,wt(b)〉 > 0, we shall derive a contradiction.
Set b′ := Swib. Since w−1

i (α1) = αi , (3.4) implies ẽ1b
′
= 0. Hence Lemma 3.7 implies

ẽ1b
′
6= 0, which is a contradiction. ut

Lemma 3.9. Let b be a vector in B⊗N .

(a) If ẽ1b = ẽ1b = 0 and 〈k1,wt(b)〉 ≥ 〈k2,wt(b)〉 + 2, then ẽ1(1⊗ f̃1b) = 0.
(b) If ẽ1b = ẽ1b = ẽ2b = 0 and 〈k2,wt(b)〉 > 〈k3,wt(b)〉, then ẽ1(1⊗ f̃1f̃2b) = 0.
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Proof. (a) Since 〈k1,wt(b)〉 > 0 and ẽ1b = 0, we can write b = b1⊗ 1⊗ b2 for some b1
and b2 such that b2 contains neither 1 nor 2. Then we get

2 ≤ 〈k1,wt(b)〉 − 〈k2,wt(b)〉 = 〈k1,wt(b1)〉 − 〈k2,wt(b1)〉 + 1 = ϕ1(b1)− ε1(b1)+ 1.

Thus ϕ1(b1) > 0 = ε1(1) and hence f̃1b = f̃1b1⊗1⊗b2. It follows that ẽ1(1⊗ f̃1b) = 0.
(b) Since 〈k1,wt(b)〉 ≥ 〈k2,wt(b)〉 > 0 and ẽ1b = 0, we can write b = b1⊗1⊗b2 for

some b1 and b2 such that b2 contains neither 1 nor 2. It follows that ε2(b1) = ϕ2(b2) = 0.
Observe that

ϕ2(b1) = 〈k2,wt(b1)〉 − 〈k3,wt(b1)〉 > 〈k3,wt(b2)〉 − 〈k2,wt(b2)〉 = ε2(b2).

Hence f̃2b = f̃2b1 ⊗ 1⊗ b2. Since ε1(f̃2b1) = 0, we deduce that

ϕ1(f̃2b1) = 〈k1−k2,wt(f̃2b1)〉 = 〈k1−k2,wt(b1)〉+1 = ϕ1(b1)+1 > 0 = ε1(1⊗b2),

and hence f̃1f̃2b = f̃1f̃2b1 ⊗ 1⊗ b2. Therefore ẽ1(1⊗ f̃1f̃2b) = 0. ut

Proposition 3.10. If b ∈ B⊗(N−1) is a highest weight vector with 〈kj−1,wt(b)〉 ≥
〈kj ,wt(b)〉 + 2, then b0 = 1⊗ f̃1 · · · f̃j−1b is a highest weight vector in B⊗N .

Proof. We will show ẽib0 = 0 for i = 1, . . . , n− 1.

Case 1: i ≥ j + 1. By Lemma 3.3, we have Swib0 = 3 ⊗ f̃3 · · · f̃j+1Swib. Thus we
obtain ẽ1Swib0 = 3⊗ f̃3 · · · f̃j+1ẽ1Swib = 0.

Case 2: i = j . Since Swib0 = 1⊗ Swib, we have ẽ1Swib0 = 0.

Case 3: i = j − 1. We have Swib0 = 1⊗ f̃1Swib and

〈k1,wt(Swib)〉 = 〈kj−1,wt(b)〉 ≥ 〈kj ,wt(b)〉 + 2 = 〈k2,wt(Swib)〉 + 2.

By Lemma 3.9(a), we obtain ẽ1Swib0 = 0.

Case 4: i ≤ j−2. Set b′ := f̃i+2 · · · f̃j−1b. Here we understand b′ = b if i = j−2. Then
b′ is a gl(i + 2)-highest weight vector and ẽ1b

′
= 0. Because ẽ1 commutes with Sui , we

have ẽ1Suib
′
= 0. Since u−1

i (α1) and u−1
i (α2) are positive roots, Suib

′ is a gl(3)-highest
weight vector by (3.4).

By Lemma 3.3, we have Suib0 = 1⊗ f̃1f̃2Suib
′. Observe that

〈k2,wt(Suib
′)〉 − 〈k3,wt(Suib

′)〉 = 〈ki+1,wt(b′)〉 − 〈ki+2,wt(b′)〉
= 〈ki+1 − ki+2,wt(b)− εi+2 + εj 〉

= 〈ki+1 − ki+2,wt(b)〉 + 1− δj,i+2 ≥ 1.

By Lemma 3.9(b), we get ẽ1Suib0 = 0. Since Sui = SziSwi and ẽ1 commutes with Szi ,
we obtain ẽ1Swib0 = 0. ut
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Theorem 3.11. Assume that b is a gl(n)-highest weight vector in B⊗(N−1) and b0 := 1⊗
f̃1 · · · f̃j−1b is a gl(n)-highest weight vector in B⊗N . Then b0 is a highest weight vector
if and only if b is a highest weight vector and wt(b0) = wt(b)+ εj is a strict partition.

Proof. Note that wt(b) and wt(b0) are partitions.
If b0 is a highest weight vector, then by Theorem 3.5 and Proposition 3.8, b is a highest

weight vector and wt(b0) is a strict partition.
Conversely, if b is a highest weight vector such that wt(b) is a strict partition and

wt(b) + εj is still a strict partition, then 〈kj−1 − kj ,wt(b)〉 ≥ 2 and hence, by Proposi-
tion 3.10, b0 is a highest weight vector. ut

4. Existence and uniqueness

In this section, we state and prove the main result of our paper: the existence and unique-
ness theorem for crystal bases. We first prove several lemmas that are needed in the proof
of our main theorem.

We set

k̃i = q
ki−1ki for all i = 1, . . . , n. (4.1)

Lemma 4.1. Let M be a Uq(q(n))-module in O≥0
int .

(a) For µ ∈ wt(M) and i ∈ {1, . . . , n− 1} such that µ+ αi 6∈ wt(M), we have

k̃i+1 = Si ◦ k̃i ◦ Si as endomorphisms of Mµ,

where Si is defined in Remark 2.11.
(b) Assume that λ ∈ wt(M) satisfies λ+αi 6∈ wt(M) for all i = 1, . . . , n−1. If (L, B, lB)

is a crystal basis of M , then Lλ is invariant under k̃i for all i = 1, . . . , n.

Proof. (a) Set ` := 〈hi, µ〉 ≥ 0. Then Si : Mµ
∼−→ Msiµ is given by f (`)i , and its inverse

is given by e(`)i . Note that eiMµ = 0.
From the defining relation it follows that

eifi − fiei = eiq
−kiqki fi − fieiq

−kiqki

= (kiei − qeiki)q
kifi − fi(kiei − qeiki)q

ki

= (kiei − qeiki)fiq
ki−1
− fi(kiei − qeiki)q

ki

= kieifiq
ki−1
− qeikifiq

ki−1
− fikieiq

ki + qfieikiq
ki

= ki

(
fiei +

qhi − q−hi

q − q−1

)
qki−1

− qeikifiq
ki−1
− fikieiq

ki + qfieikiq
ki .

Thus on Mµ, we have

eifi − fiei = ki
qhi − q−hi

q − q−1 qki−1
− eikifiq

ki ,
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which yields

ki+1 = q
−hiki − (eifi − fiei)q

−ki

= q−hiki −

(
ki
qhi − q−hi

q − q−1 qki−1
− eikifiq

ki

)
q−ki

= q−hiki − ki
qhi − q−hi

q − q−1 q−1
+ eikifi

= −ki

(
qhi−1

− q−hi+1

q − q−1

)
+ eikifi = −[`− 1]ki + eikifi . (4.2)

On the other hand, we have, similarly to (2.3),

e
(2)
i ki = eikiei − kie

(2)
i .

By induction on s, we obtain

e
(s)
i ki = eikie

(s−1)
i − [s − 1]kie

(s)
i (s ≥ 1).

If ` > 0, on Mµ we have

e
(`)
i q

ki−1kif
(`)
i = q

−`e
(`)
i kif

(`)
i qki−1

= q−`(eikie
(`−1)
i − [`− 1]kie

(`)
i )f

(`)
i qki−1

= q−`(eikifi − [`− 1]ki)q
ki−1

= (eikifi − [`− 1]ki)q
ki+1−1

= ki+1q
ki+1−1

= k̃i+1.

If ` = 0, then fiMµ = 0, and hence (4.2) implies ki+1 = ki . Therefore k̃i+1 =

ki+1q
ki+1−1

= kiq
ki−1
= k̃i on Mµ. In both cases, k̃i+1 = S

−1
i k̃iSi on Mµ.

(b) Let M ′ = Uq(q(n))Mλ ⊂ M , and let L′ = L ∩ M ′. Set µj := sj · · · si−1λ for
j = 1, . . . , i. Then 〈hj , µj+1〉 ≥ 0, sjµj+1 = µj , and µj+1 + αj /∈ wt(M ′). From (a)
it follows that k̃j+1|M ′µj+1

= Sj ◦ k̃j ◦ Sj |M ′µj+1
. Hence, if L′µj is stable under k̃j , then

L′µj+1
is stable under k̃j+1. Since L′µ1

is stable under k̃1, L′µj is stable under k̃j for all

j = 1, . . . , i by induction. In particular, Lλ = L′λ is stable under k̃i . ut

Lemma 4.2. Let M be a Uq(q(n))-module in O≥0
int , and λ ∈ P≥0. Let (L, B, lB) be a

crystal basis of M such that any connected component of B intersects Bλ. Let L′ be an
A-submodule ofM with the weight space decomposition L′ =

⊕
µ∈P≥0(L′∩Mµ), which

is stable under ẽi , f̃i (i = 1, . . . , n− 1, 1). Then

(a) L′λ ⊂ Lλ implies L′ ⊂ L,
(b) L′λ ⊃ Lλ implies L′ ⊃ L.
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Proof. (a) Assume that L′λ ⊂ Lλ. Set S := (L ∩ qL′)/(qL ∩ qL′). Then S ⊂ L/qL and
S is stable under ẽi , f̃i (i = 1, . . . , n− 1, 1). Note that

Sλ = S ∩ (L/qL)λ = (Lλ ∩ qL
′
λ)/(qLλ ∩ qL

′
λ) = 0.

For each b ∈ B, let Pb : L/qL � lb be the canonical projection. Since Sλ = 0, we have
Pb(S) = 0 for any b ∈ Bλ. If ẽib 6= 0 for some i = 1, . . . , n−1, 1, then ẽi ◦Pb = Pẽib◦ ẽi
implies ẽiPb(S) = Pẽibẽi(S) ⊂ Pẽib(S). Therefore, if Pẽib(S) = 0, then Pb(S) = 0. The
same property holds for f̃i .

Since any b ∈ B can be connected to an element of weight λ by a sequence of opera-
tors in ẽi , f̃i (i = 1, . . . , n−1, 1), we have Pb(S) = 0 for all b ∈ B. It follows that S = 0
and hence L ∩ qL′ ⊂ qL.

Since
L′ ∩ q−mL ⊂ q−(m−1)(L′ ∩ q−1L) ⊂ q−(m−1)L

for all m ≥ 1, we have L′ ∩ q−mL ⊂ L′ ∩ q−(m−1)L. Hence we obtain L′ ∩ q−mL ⊂ L.
It follows that L′ ⊂ L as desired.

(b) Assume that L′λ ⊃ Lλ. Set S := (L′ ∩ L)/(L′ ∩ qL). Then S ⊂ L/qL and S
is stable under ẽi , f̃i . Note that lb ⊂ S for any b ∈ Bλ. If ẽib 6= 0 and lb ⊂ S, then
lẽib = ẽi lb ⊂ ẽiS ⊂ S.

The same is true for f̃i . Thus L/qL =
⊕

b∈B lb ⊂ S. By Nakayama’s lemma, we
have L′ ∩ L = L. ut

Lemma 4.3. Let M be a highest weight Uq(q(n))-module with highest weight λ ∈ 3+

in the category O≥0
int . Suppose that M has a crystal basis (L, B, lB) such that Bλ = {bλ}

andB is connected. LetLλ =
⊕s
j=1 Ej be a decomposition into indecomposable modules

over A[C1, . . . , Cr ] (see Remark 2.14), where r = `(λ), and let

Mj := Uq(q(n))Ej , Lj :=Mj ∩ L, l
j
b := lb ∩ (Lj/qLj ).

Then

(a) Mj is irreducible over Uq(q(n)),
(b) M =

⊕s
j=1Mj , L =

⊕s
j=1 Lj and lb =

⊕s
j=1 l

j
b ,

(c) (Lj , B, (l
j
b )b∈B) is a crystal basis of Mj .

Proof. By Remark 2.14, we see that (Mj )λ ' F ⊗A Ej is an irreducible module over
F[C1, . . . , Cr ] for each j = 1, . . . , s. Hence, Proposition 2.15(a) implies that Mj is irre-
ducible over Uq(q(n)) and M =

⊕s
j=1Mj . Note that

Lj/qLj ⊂ L/qL (j = 1, . . . , s).

Since
⊕s
j=1(Lj )λ =

⊕s
j=1(Mj ∩ Lλ) =

⊕s
j=1 Ej = Lλ, we have

lbλ = Lλ/qLλ =
s⊕

j=1

(
(Lj )λ/q(Lj )λ

)
=

s⊕
j=1

l
j
bλ
.
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Consider b1, b2 ∈ B such that b2 = ẽib1 (equivalently, b1 = f̃ib2) for some i =
1, . . . , n− 1, 1. Then we have injective maps

ẽi |ljb1
: l
j
b1

� l
j
b2
, f̃i |ljb2

: l
j
b2

� l
j
b1
.

Hence comparing the dimensions, we conclude that

ẽi : l
j
b1
∼−→ l

j
b2

and f̃i : l
j
b2
∼−→ l

j
b1

for all j = 1, . . . , s.

Therefore lb1=
⊕s
j=1 l

j
b1

if and only if lb2=
⊕s
j=1 l

j
b2

. Since B is connected,
⊕s
j=1 l

j
b = lb

for all b ∈ B. Since

L/qL =
⊕
b∈B

lb =
s⊕

j=1

⊕
b∈B

l
j
b ⊂

s⊕
j=1

Lj/qLj ,

Nakayama’s lemma implies that L =
⊕s
j=1 Lj , and (Lj , B, (l

j
b )b∈B) is a crystal basis

of Mj . ut

Lemma 4.4. Let M be a Uq(q(n))-module in the category O≥0
int and let (L1, B1, l

1
B1
),

(L2, B2, l
2
B2
) be two crystal bases of M such that L1 = L2. If B1 is a connected abstract

q(n)-crystal and there exist b1 ∈ B1 and b2 ∈ B2 such that l1b1
= l2b2

, then there exists a
bijection ϕ : B1 → B2 which commutes with the Kashiwara operators and l1b = l

2
ϕ(b) for

all b ∈ B1.

Proof. Let us set S = {b ∈ B1; there exists b′ ∈ B2 such that l1b = l
2
b′
}. Then it is easy to

see that it is stable under the Kashiwara operators and it contains b1. Hence S coincides
with B1. Therefore for every b ∈ B1, there exists a b′ ∈ B2 such that l1b = l

2
b′

. Such a b′

is unique and we can define ϕ by ϕ(b) = b′. Since L1/qL1 =
⊕

b∈B1
l1b =

⊕
b∈B2

l2b ,
ϕ : B1 → B2 is bijective. ut

Lemma 4.5. Let λ ∈ 3+ and assume that V (λ) has a crystal basis (L0, B0, lB0) such
that B0 is connected and (B0)λ = {bλ}. Let M ∈ O≥0

int be a highest weight Uq(q(n))-
module with highest weight λ ∈ 3+. If E is a free A-submodule of Mλ, which is stable
under k̃i for i = 1, . . . , n and generates Mλ over F, then there exists a unique crystal
basis (L, B, lB) such that

(a) Lλ = E,
(b) B ' B0 as an abstract q(n)-crystal.

Proof. By Lemma 4.1 and Proposition 2.15, there exists a finitely generated free
A-module K such that M ' K ⊗A V (λ) and E ' K ⊗A (L0)λ. Then (K ⊗A (L0), B0,

(K⊗ lb)b∈B0) is a crystal basis forM . Uniqueness follows from Lemmas 4.2 and 4.4. ut

For a weight λ = λ1ε1 + · · · + λnεn ∈ P , define |λ| =
∑n
i=1 λi . Now we are ready to

state our main theorem.
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Theorem 4.6.

(a) LetM be an irreducible highest weightUq(q(n))-module with highest weight λ∈3+.
Then there exists a crystal basis (L, B, lB) of M such that
(i) Bλ = {bλ},

(ii) B is connected.
Moreover, such a crystal basis is unique up to an automorphism of M . In particular,
B depends only on λ as an abstract q(n)-crystal and we write B = B(λ).

(b) The q(n)-crystal B(λ) has a unique highest weight vector bλ.
(c) A vector b ∈ B⊗ B(λ) is a highest weight vector if and only if

b = 1⊗ f̃1 · · · f̃j−1bλ

for some j such that λ+ εj is a strict partition.
(d) Let M be a finite-dimensional highest weight Uq(q(n))-module with highest weight

λ ∈ 3+. Assume thatM has a crystal basis (L, B(λ), lB(λ)) such that Lλ/qLλ = lbλ .
Then

(i) V⊗M =
⊕

λ+εj : strictMj , where Mj is a highest weight Uq(q(n))-module with
highest weight λ+ εj and dim (Mj )λ+εj = 2 dimMλ,

(ii) if we set Lj = (L ⊗ L) ∩Mj and Bj = {b ∈ B ⊗ B(λ); lb ⊂ Lj/qLj }, then
B⊗ B(λ) =

∐
λ+εj : strict Bj and Lj/qLj =

⊕
b∈Bj

lb,
(iii) Mj has a crystal basis (Lj , Bj , lBj ),
(iv) Bj ' B(λ+ εj ) as an abstract q(n)-crystal.

Proof. We shall argue by induction on |λ|.
For a positive integer k, we denote by (a)k , (b)k , (c)k and (d)k the assertions (a), (b),

(c) and (d) for λ with |λ| = k, respectively.
It is straightforward to check (a)1 and (b)1. Assuming the assertions (a)k , (b)k for

k ≤ N and the assertions (c)k , (d)k for k < N , let us show (a)N+1, (b)N+1, (c)N
and (d)N .

Step 1: We shall prove (c)N . Let λ be a strict partition with |λ| = N . By choosing a
sequence of strict partitions ε1 = λ1, λ2, . . . , λN = λ such that λk+1 = λk+ εjk for some
jk and applying (d)k on each λk successively for k < N , we can embed B(λ) into B⊗N .
It follows that B⊗B(λ) ⊂ B⊗(N+1). By (b)N , we know that there exists a unique highest
weight vector, say bλ, in B(λ). By Theorem 3.11, an element b ∈ B ⊗ B(λ) is a highest
weight vector if and only if

b = 1⊗ f̃1 · · · f̃j−1bλ

for some j such that λ+ εj is a strict partition. So (c)N holds.

Step 2: We shall show that (d)N holds except (iv). Let M be a finite-dimensional high-
est weight module with highest weight λ ∈ 3+ with |λ| = N and let (L, B(λ), lB(λ))
be a crystal basis of M . By Theorem 1.11, we have a decomposition V ⊗ M =⊕

λ+εj : strictMj , whereMj is a highest weightUq(q(n))-module with highest weight λ+εj
and dim (Mj )λ+εj = 2 dimMλ.
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By Theorem 2.7, V⊗M admits a crystal basis (L̃,B⊗B(λ), lB⊗B(λ))where L̃:=L⊗L.
Set Lj :=Mj ∩ L̃. Note that

F⊗A Lj
∼−→ Mj and Lj =

⊕
µ∈P≥0

Lj ∩ (Mj )µ.

Then
Lj/qLj ⊂ L̃/qL̃ =

⊕
b∈B⊗B(λ)

lb.

Since ẽi(Mj )λ+εj = ẽi(Mj )λ+εj = 0 for any i = 1, . . . , n − 1 (see Remark 2.11), we
have, as subspaces of L̃/qL̃,

(Lj )λ+εj /q(Lj )λ+εj ⊂
(n−1⋂
i=1

Ker ẽi ∩
n−1⋂
i=1

Ker ẽi
)
λ+εj
=

⊕
wt(b)=λ+εj
ẽib=ẽib=0

lb = lbj ,

where bj = 1⊗ f̃1 · · · f̃j−1bλ in B⊗ B(λ). Here, the last equality follows from (c)N .
Because rankA (Lj )µ = dimF (Mj )µ for any µ ∈ wt(Mj ), we have

dimC
(
(Lj )λ+εj /q(Lj )λ+εj

)
= rankA (Lj )λ+εj = dimF (Mj )λ+εj

= 2 dimFMλ = dimC lbj

and hence
(Lj/qLj )λ+εj = (Lj )λ+εj /q(Lj )λ+εj = lbj .

Let Bj be the connected component containing bj in B⊗B(λ). By (c)N and Lemma 2.13,
we obtain

⋃
j Bj = B⊗ B(λ). Since Lj is stable under ẽi, f̃i, ẽ1 and f̃1, we have⊕

b∈Bj

lb ⊂ Lj/qLj .

It follows that

L̃/qL̃ =
⊕

b∈B⊗B(λ)
lb =

⊕
b∈
⋃
j Bj

lb ⊂
∑
j

(Lj/qLj ).

By Nakayama’s lemma, we get

L̃ =
∑
j

Lj . (4.3)

Since
∑
j Lj =

⊕
j Lj , we obtain L̃ =

⊕
j Lj and⊕

b∈
⋃
j Bj

lb = L̃/qL̃ '
⊕
j

(Lj/qLj ) ⊇
⊕
j

⊕
b∈Bj

lbj .

Therefore,
Lj/qLj =

⊕
b∈Bj

lb and B⊗ B(λ) =
∐
j

Bj .

Thus (Lj , Bj , lBj = (lb)b∈Bj ) is a crystal basis of Mj . Note that each Bj has a unique
highest weight vector bj and that Bj is connected.
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Step 3: We will show (a)N+1. Since an irreducible highest weight module is uniquely
determined up to parity change, and since the crystal structure does not vary under the
parity change functor, it is enough to show that there exists an irreducible highest weight
module with a crystal basis which satisfies (i) and (ii) of (a).

Let λ be a strict partition with |λ| = N + 1. Choose a strict partition µ and ` in
{1, . . . , n} such that λ = µ + ε`. By (a)N , there exists an irreducible highest weight
Uq(q(n))-moduleM of highest weight µwhich has a crystal basis (L, B(µ), lB(µ)). Then

V⊗M =
⊕

µ+εj : strict
Mj ,

and each Mj has a crystal basis as in Step 2. Therefore there exists a finite-dimensional
highest weight Uq(q(n))-module M with highest weight λ which has a crystal basis
(L, B, lB) such that B is connected and Bλ = {b`}. Moreover we see that in Step 2,
B has a unique highest weight vector. By Lemma 4.3, we conclude that each irreducible
summand of M admits a crystal basis with the abstract crystal B which satisfies (i) and
(ii) of (a) and B has a unique highest weight vector.

Uniqueness in (a)N+1 immediately follows from Lemma 4.1, Lemma 4.4 and Propo-
sition 2.15. Property (b)N+1 is obvious. The remaining (iv) of (d)N follows from Lem-
ma 4.5. ut

Corollary 4.7. (a) Every Uq(q(n))-module in the category O≥0
int has a crystal basis.

(b) If M is a Uq(q(n))-module in the category O≥0
int and (L, B, lB) is a crystal basis

of M , then there exist decompositions M =
⊕

a∈AMa as a Uq(q(n))-module, L =⊕
a∈A La as an A-module, B =

∐
a∈A Ba as a q(n)-crystal, parametrized by a set A

such that the following conditions are satisfied for any a ∈ A:

(i) Ma is a highest weight module with highest weight λa and Ba ' B(λa) for some
strict partition λa ,

(ii) La = L ∩Ma , La/qLa =
⊕

b∈Ba
lb,

(iii) (La, Ba, lBa ) is a crystal basis of Ma .

Proof. (a) Our assertion follows from the semisimplicity of the category O≥0
int . Indeed, if

M =
⊕

νMν is a decomposition of M into irreducible Uq(q(n))-modules, then each Mν

is an irreducible highest weight module, and hence it admits a crystal basis (Lν, Bν, lBν )
by Theorem 4.6. Set

L :=
⊕
ν

Lν, B :=
∐
ν

Bν, lB := (lb)b∈B .

Then (L, B, lB) is a crystal basis of M .
(b) Let λ be a maximal element in wt(B) = wt(M). Note that if `(λ) = r is odd, then

we have the following commutative diagram (see Remark 2.14 for notation):

Mod(A) ∼ //

C⊗A/qA(−)

��

S-Mod(A[C1, . . . , Cr ])

C⊗A/qA(−)

��
Mod(C) ∼ // S-Mod(C[C1, . . . , Cr ])
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and if r is even, then we have the following commutative diagram:

S-Mod(A) ∼ //

C⊗A/qA(−)

��

S-Mod(A[C1, . . . , Cr ])

C⊗A/qA(−)

��
S-Mod(C) ∼ // S-Mod(C[C1, . . . , Cr ])

The horizontal arrows are given by K 7→ V ⊗C K for each module K in the left hand
side, where V denotes an irreducible supermodule over C[C1, . . . , Cr ].

Let M(λ)
:= Uq(q(n))Mλ be the isotypic component of M that is a highest weight

module of highest weight λ. Let Bλ = {bν; ν = 1, . . . , s}. Then Lλ/qLλ =
⊕s

ν=1 lbν .
Hence one can find an A[C1, . . . , Cr ]-submodule Eν of Lλ for each ν = 1, . . . , s such
that

Eν/qEν = lbν and Lλ =
s⊕
ν=1

Eν .

Setting Mν
:= Uq(q(n))Eν , we have

M(λ)
=

s⊕
ν=1

Mν .

By Lemma 4.5, Mν has a crystal basis

(L(Mν), B(λ), (lνb )b∈B(λ))

such that L(Mν)λ = Eν . Hence the direct sum
⊕s

ν=1(L(M
ν), B(λ), (lνb )b∈B(λ)) is a

crystal basis of M(λ). Set L(M(λ)) := M(λ)
∩ L. Since L(M(λ))λ = Lλ =

∑
ν Eν =

(
∑
ν L(M

ν))λ, Lemma 4.2 implies L(M(λ)) =
⊕s

ν=1 L(M
ν). In particular, L(Mν) =

L ∩Mν , and we can regard L(Mν)/qL(Mν) as a subspace of L/qL.
The set {b ∈ B(λ); lνb = lb′ for some b′ ∈ B} is stable under the Kashiwara operators

and contains bλ, and hence it coincides with B(λ). Therefore the map φν : B(λ) → B

given by lνb = lφν (b) (b ∈ B(λ)) is injective and commutes with the Kashiwara operators.
Its image Cν is thus the connected component of bν and we obtain

L(Mν)/qL(Mν) =
⊕
b∈Cν

lb.

Write B = B1 t B2, where B1 =
∐s
ν=1 Cν . Then (L(M(λ)), B1, lB1) is a crystal ba-

sis of M(λ) and coincides with the direct sum of the crystal bases (L(Mν), B(λ), lνB(λ))

of Mν .
LetM = M(λ)

⊕M̃ be the decomposition as a Uq(q(n))-module, and set L̃ :=L∩M̃ .
Set S := q−1L(M(λ)) ∩ (q−1L̃+ L(M(λ))). Then S is invariant under the Kashiwara

operators and Sλ = L(M(λ))λ. Hence by Lemma 4.2, we have S = L(M(λ)), which
implies L(M(λ)) ∩ (L̃+ qL(M(λ))) = qL(M(λ)). Hence

(L(M(λ))/qL(M(λ))) ∩ (L̃/qL̃) = 0 as a subspace of L/qL. (4.4)

By comparing dimensions, we have

L/qL = (L(M(λ))/qL(M(λ)))⊕ (L̃/qL̃).
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Therefore, by Nakayama’s lemma,

L = L(M(λ))+ L̃ = L(M(λ))⊕ L̃. (4.5)

Now, we shall show

L̃/qL̃ =
⊕
b∈B2

lb. (4.6)

For b ∈ B, let Pb : L/qL� lb be the canonical projection. Then, for i = 1, . . . , n− 1, 1
satisfying ẽib ∈ B, we have a commutative diagram

L/qL
ẽi //

Pb

��

L/qL

Pẽi b

��
lb

∼

ẽi

// lẽib

Hence Pẽib(L̃/qL̃) = 0 implies Pb(L̃/qL̃) = 0. Similarly, P
f̃ib
(L̃/qL̃) = 0 implies

Pb(L̃/qL̃) = 0. Hence S := {b ∈ B1; Pb(L̃/qL̃) = 0} is stable under the Kashiwara
operators. Since Sλ = Bλ, we obtain S = B1. Hence L̃/qL̃ ⊂

⊕
b∈B2

lb. Then (4.5)
implies the desired result L̃/qL̃ =

⊕
b∈B2

lb.
Therefore (L̃, B2, (lb)b∈B2) is a crystal basis of M̃ . Hence the crystal basis (L, B, lB)

of M is the direct sum of a crystal basis of M̃ and crystal bases of Mν (ν = 1, . . . , s).
Since dim M̃ < dimM , our assertion follows by induction on dimM . ut
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