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Abstract. In this paper, we develop a new general approach to the existence and uniqueness theory
of infinite-dimensional stochastic equations of the form

dX + A(t)Xdt = XdW in (0, T )×H,

where A(t) is a nonlinear monotone and demicontinuous operator from V to V ′, coercive and
with polynomial growth. Here, V is a reflexive Banach space continuously and densely embedded
in a Hilbert space H of (generalized) functions on a domain O ⊂ Rd , and V ′ is the dual of V
in the duality induced by H as pivot space. Furthermore, W is a Wiener process in H . The new
approach is based on an operatorial reformulation of the stochastic equation which is quite robust
under perturbation of A(t). This leads to new existence and uniqueness results of a larger class of
equations with linear multiplicative noise than those treatable by the known approaches. In addition,
we obtain regularity results for the solutions with respect to both the time and spatial variable
which are sharper than the classical ones. New applications include stochastic partial differential
equations, e.g. stochastic transport equations.

Keywords. Maximal monotone operator, stochastic integral, operatorial equations

1. Introduction

This work is concerned with a new general functional approach to the existence and
uniqueness theory for nonlinear stochastic infinite-dimensional equations with monotone
and demicontinuous time dependent nonlinearities from a reflexive Banach space to its
dual. Theorem 3.1 is the main general result obtained in this way, but the main point
is the new method for its proof, namely rewriting the stochastic equation in operatorial
form, which in turn is quite robust under perturbation, as formulated in Proposition 4.4.
The latter then applies to a larger variety of examples, which do not exactly fit the gen-
eral framework of Theorem 3.1, but can be treated by a direct approach on the basis of
Proposition 4.4 (see, e.g., Section 6.3). In the literature on infinite-dimensional stochas-
tic differential equations, the type of equations in Theorem 3.1 was studied firstly by the
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classical Galerkin method, combined with monotonicity arguments by Pardoux [17] and
developed later in a general setting by Krylov and Rozovskiı̆ [13]. (A detailed presenta-
tion of these results is given in the monograph [18].) The approach we are proposing here
is, principally, different and covers more general types of nonlinear stochastic PDEs, as
long as the noise is linear multiplicative. Moreover, the results one obtains in this way are
sharper, in regard to new regularity properties of the solutions. In a few words, it consists
in representing, via a rescaling transformation, the stochastic initial value problem as a
random operator equation of monotone type in a new convenient space of stochastic pro-
cesses and in invoking the standard perturbation theory for nonlinear maximal monotone
operators to get existence and uniqueness of solutions. In the special case where the non-
linear operator is the subgradient of a convex function, the problem reduces to a convex
optimization problem.

2. Preliminaries

Here we consider the stochastic differential equation

dX(t)+ A(t)X(t)dt = X(t)dW(t), t ∈ (0, T ),
X(0) = x,

(2.1)

in a real separable Hilbert space H , whose elements are functions or distributions on a
bounded and open set O ⊂ Rd with smooth boundary ∂O. In particular, H can be any
of the spaces L2(O), H 1

0 (O), H
−1(O), H k(O), k = 1, 2, . . . , with the corresponding

Hilbertian structure. Here H 1
0 (O), H

k(O) are the standard L2-Sobolev spaces on O, and
W is a Wiener process of the form

W(t, ξ) =

∞∑
j=1

µj ej (ξ)βj (t), ξ ∈ O, t ≥ 0, (2.2)

where {βj }∞j=1 is an independent system of real-valued Brownian motions on a probability
space {�,F ,P} with natural filtration (Ft )t≥0. Here, ej ∈ C2(O) ∩H is an orthonormal
basis in H , and µj ∈ R, j = 1, 2, . . . .

The following hypotheses will be in effect throughout this work.

(i) There is a reflexive Banach space V with dual V ′ such that V ⊂ H , continuously
and densely. Hence V ⊂ H (≡ H ′) ⊂ V ′ continuously and densely. (Note that this
implies that also V is separable.) Moreover, V and V ′ are strictly convex (which
can always be achieved by considering an appropriate equivalent norm on V by
Asplund’s Theorem, see [2, Theorem 1.2, p. 2]).

(ii) A : [0, T ]×V ×�→ V ′ is progressively measurable, i.e., for every t ∈ [0, T ], this
operator restricted to [0, t] × V ×� is B([0, t])⊗ B(V )⊗ Ft -measurable.

(iii) There is δ ≥ 0 such that, for each t ∈ [0, T ], ω ∈ �, the operator u 7→ δu+A(t, ω)u

is monotone and demicontinuous (that is, strongly-weakly continuous) from V to V ′.
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Moreover, there are 1 < p < ∞ and αi , γi ∈ R, i = 1, 2, 3, α1 > 0, such that,
P-a.s.,

〈A(t, ω)u, u〉 ≥ α1|u|
p
V + α2|u|

2
H + α3, ∀u ∈ V, t ∈ [0, T ], (2.3)

|A(t, ω)u|V ′ ≤ γ1|u|
p−1
V + γ2 + γ3|u|H , ∀u ∈ V, t ∈ [0, T ]. (2.4)

(iv) e±W(t) is, for each t , a multiplier in V and a symmetric multiplier in H such
that there exists an (Ft )-adapted, R+-valued process Z(t), t ∈ [0, T ], with
E[supt∈[0,T ] |Z(t)|

r
] <∞ for all r ∈ [1,∞) and such that, P-a.s.,

|e±W(t)y|V ≤ Z(t)|y|V , ∀t ∈ [0, T ], ∀y ∈ V,

|e±W(t)y|H ≤ Z(t)|y|H , ∀t ∈ [0, T ], ∀y ∈ H.
(2.5)

Furthermore, we assume that, P-a.s.,

〈e±W(t)x, y〉 = 〈x, e±W(t)y〉, ∀x, y ∈ H, t ∈ [0, T ],

t 7→ e±W(t) ∈ H is continuous.
(2.6)

We also note that, by Fernique’s theorem,

exp
(

sup
0≤t≤T

|W(t)|∞

)
∈ Lq(�), ∀q ∈ (0,∞). (2.7)

which will be used to estimate E|eW(t)|qV and E|eW(t)|qH to verify (iv) in many situations,
where V is a subspace of Lq , 1 < q < ∞, or a Sobolev space on O ⊂ Rd . Throughout,
| · |V and | · |V ′ denote the norms of V and V ′, respectively, and 〈·, ·〉 the duality pairing
between V and V ′; on H × H , 〈·, ·〉 is just the scalar product of H . The norm of H is
denoted by | · |H , and B(H),B(V ) etc. are the classes of Borel sets in the corresponding
spaces.

As regards the basis {ej }∞j=1 in (2.2), we assume that there exist γ̃j ∈ [1,∞) such that

|yej |H ≤ γ̃j |ej |∞|y|H , ∀y ∈ H, j = 1, 2, . . . , ν :=

∞∑
j=1

µ2
j γ̃

2
j |ej |

2
∞ <∞, (2.8)

and, for

µ :=
1
2

∞∑
j=1

µ2
j e

2
j , (2.9)

we assume that µ is a multiplier in V and a symmetric multiplier inH . All these assump-
tions on W , as well as Hypothesis (iv), typically hold in applications, as we will see in
the examples in Section 6.

For y ∈ H , we define the operator

σ(y)h =

∞∑
j=1

µjy〈h, ej 〉ej , h ∈ H.

Then, by (2.8), we see that σ is linear continuous from H to the space L2(H) of all
Hilbert–Schmidt operators on H , and X dW = σ(X)dW̃ in the notation of e.g. [12],
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[18] with W̃ being the cylindrical Wiener process on H , informally written as W̃ (t) =∑
∞

j=1 βj (t)ej .

As usual, we set p′ := p/(p − 1), 1 < p <∞.

Definition 2.1. By a solution to (2.1) for x ∈ H , we mean an (Ft )t≥0-adapted process
X : [0, T ] → H with continuous sample paths which satisfies

X ∈ L∞(0, T ;L2(�;H)), (2.10)

X(t)+

∫ t

0
A(s)X(s) ds = x +

∫ t

0
X(s) dW(s), t ∈ [0, T ], (2.11)

AX ∈ Lp
′

((0, T )×�;V ′), X ∈ Lp((0, T )×�;V ). (2.12)

The stochastic integral arising in (2.11) is considered in Itô’s sense.
Under Hypotheses (i)–(iii), equation (2.1) was studied in [17] and [13]. The present

approach is a general unifying one and leads to new regularity results for (2.1) and, in
particular, implies that the solution X to (2.1) is absolutely continuous in t up to multi-
plication with e−W(t). However, it applies only to stochastic differential equations which
admit a formulation in the variational setting V ⊂ H ⊂ V ′ and with coercive nonlineari-
ties.

In a few words, the method is the following. By the rescaling transformation

X(t) = eW(t)y(t), t ≥ 0, (2.13)

one formally reduces equation (2.1) to the random differential equation

dy

dt
(t)+ e−W(t)A(t)(eW(t)y(t))+ µy(t) = 0, a.e. t ∈ (0, T ),

y(0) = x.
(2.14)

The random Cauchy problem (2.14) will be treated as an operatorial equation in a con-
venient Hilbert space of stochastic processes to be described later on. A nice feature of
the approach to be developed below is that, though (2.14) is not an equation of monotone
type, it can be rewritten as an operator equation of monotone type in an appropriate space
of infinite-dimensional stochastic processes on [0, T ]. It should be emphasized that the
rescaling approach to the treatment of stochastic PDE with linearly multiplicative noise
was previously applied in [6], [7] and one of the main advantages of this approach is
that it leads to sharp pointwise estimates and new pathwise regularity for solutions to
(2.1). It should be mentioned, however, that such a result cannot be proved for equations
with more general Gaussian processes σ(X)W , the linearity of σ being essential for this
approach. (See also Section 7.)

Notations. H k(O), k = 1, 2, and H 1
0 (O), W

1,p
0 (O), W−1,p′(O), 1 ≤ p ≤ ∞, are

Sobolev spaces on O (see, e.g., [1], [10]). If U is a Banach space we denote by
Lp(0, T ;U), 1 ≤ p ≤ ∞, the space of all Lp-integrable U -valued functions on (0, T ).
The space Lp((0, T ) × �;U) is defined similarly. By W 1,p([0, T ];U) we denote the
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space of absolutely continuous functions y : [0, T ] → U such that dy/dt ∈ Lp(0, T ;U).
In the following we refer to [2] for notation and standard results of the theory of maximal
monotone operators in Banach spaces.

3. The main result

Theorem 3.1. Under Hypotheses (i)–(iv), for each x ∈ H , equation (2.1) has a unique
solution X (in the sense of Definition 2.1). Moreover, the function t 7→ e−W(t)X(t) is
V ′-absolutely continuous on [0, T ] and

E
∫ T

0

∣∣∣∣eW(t) ddt (e−W(t)X(t))
∣∣∣∣p′
V ′
dt <∞. (3.1)

The meaning of the derivative dy
dt

will be made precise below.
As mentioned earlier, the proof strategy is to reduce (2.1) via the transformation (2.13)

to the random differential equation (2.14), which will be treated afterwards as a determin-
istic evolution equation.

A heuristic application of the Itô formula in (2.1) leads to (see Lemma 8.1 in the
Appendix for its rigorous justification)

dX = eWdy + eWydW + µeWydt, (3.2)

where y is given by (2.13). Substituting into (2.1) yields (2.14), that is,

dy

dt
+ e−WA(t)(eWy)+ µy = 0, t ∈ (0, T ),

y(0) = x.
(3.3)

Definition 3.2. A solution to (3.3) is an H -valued (Ft )t≥0-adapted process y = y(t),
t ∈ [0, T ], with continuous sample paths, V ′-absolutely continuous on [0, T ], P-a.s., and
satisfying the following conditions:

sup
t∈[0,T ]

E|eW(t)y(t)|2H <∞, (3.4)

E
∫ T

0

∣∣∣∣eW(t) dydt (t)
∣∣∣∣p′
V ′
dt <∞, (3.5)

dy

dt
(t)+ e−W(t)A(t)(eW(t)y(t))+ µy(t) = 0, a.e. t ∈ (0, T ),

y(0) = x,
(3.6)

E
∫ T

0
|eW(t)y(t)|

p
V dt <∞. (3.7)

(Hence A(t)(eWy) ∈ Lp
′

(�× (0, T );V ′), by (2.4).)
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In particular, it follows from (2.5) and (3.5), (3.7) that y : [0, T ] → V ′ is absolutely
continuous P-a.s. and

y ∈ Lp(0, T ;V ),
dy

dt
∈ Lp

′

(0, T ;V ′), P-a.s. (3.8)

The exact meaning of the function ζ = dy/dt arising in (3.5), (3.6), (3.8) is

y(t, ω) = y(0, ω)+
∫ t

0
ζ(s, ω) ds, ∀t ∈ [0, T ], ω ∈ �, (3.9)

where eW ζ ∈ Lp
′

((0, T )×�;V ′).

Proposition 3.3. Under Hypotheses (i)–(iv), for each x ∈ H , equation (3.3) has a unique
solution y.

We shall prove Proposition 3.3 in Section 4 via an operatorial approach to be described
later on in Section 4. Now, we reduce the proof of Theorem 3.1 to Proposition 3.3.

Proof of Theorem 3.1. By Lemma 8.1 in the Appendix, we know that equations (2.1) and
(3.3) are equivalent via the rescaling transformation (2.13) and so existence and unique-
ness of a solution X to (2.1) in the sense of Definition 2.1 follows from Proposition 3.3.
As regards (3.1), this is a direct consequence of (3.5), (3.8). ut

Remark 3.4. We must emphasize that (3.1) is a new and somewhat surprising regularity
result for the solution X to the stochastic equation (2.1). It amounts to saying that up
to multiplication with e−W , the process X is P-a.s. absolutely continuous V ′-valued on
[0, T ]. We recall that the standard existence theory for (2.1) under Hypotheses (i)–(iii)
provides a solution X ∈ Lp((0, T ) × �; dt × dP;V ) ∩ L2(�;C([0, T ];H)) only (see
[13], [17], [18]).

4. An operatorial approach to equation (3.3)

Without loss of generality, we may assume that A(t) satisfies the strong monotonicity
condition

〈A(t)u− A(t)v, u− v〉 ≥ ν|u− v|2H , ∀u, v ∈ V, (4.1)

where ν is defined by (2.8). Indeed, it is easily seen that, by the substitution y 7→e−(ν+δ)ty,
equation (3.3) can be equivalently written as

dy

dt
(t)+ e−W(t)Ã(t)(eW(t)y(t))+ µy(t) = 0, t ∈ (0, T ),

y(0) = x,

where
Ã(t)y = e−(δ+ν)tA(t)(e(δ+ν)ty)+ (δ + ν)y.

Then Ã : V → V ′ and Ã satisfies (ii), (iii) and (4.1).
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We note that the operator y 7→ e−W(t)A(t)(eW(t)y) is not monotone in V × V ′

and so the standard existence theory (see, e.g., [2], [15]) is not applicable in this case.
Therefore, we define new spaces H, V and V ′, as follows. H is the Hilbert space of all
(Ft )t≥0-adapted processes y : [0, T ] → H such that

|y|H =

(
E
∫ T

0
|eW(t)y(t)|2H dt

)1/2

<∞, (4.2)

where E denotes the expectation in the above probability space. The space H is endowed
with the norm | · |H coming from the scalar product

〈y, z〉H = E
∫ T

0
〈eW(t)y(t), eW(t)y(t)〉 dt. (4.3)

V is the space of (Ft )t≥0-adapted processes y : [0, T ] → V such that

|y|V =

(
E
∫ T

0
|eW(t)y(t)|

p
V dt

)1/p

<∞. (4.4)

Clearly, V is reflexive. V ′ (the dual of V) is the space of all (Ft )t≥0-adapted processes
y : [0, T ] → V ′ such that

|y|V ′ =

(
E
∫ T

0
|eW(t)y(t)|

p′

V ′
dt

)1/p′

<∞, (4.5)

where 1/p + 1/p′ = 1. If 2 ≤ p <∞, we have

V ⊂ H ⊂ V ′ (4.6)

continuously and densely, and

V ′〈u, v〉V = E
∫ T

0
〈eW(t)u(t), eW(t)v(t)〉 dt, v ∈ V, u ∈ V ′, (4.7)

is just the duality pairing between V and V ′. We also have

V ′〈u, v〉V = 〈u, v〉H, ∀u ∈ H, v ∈ V. (4.8)

In the case where 1 < p < 2 we replace V by V ∩H and still have (4.6).
We also note that we have the continuous embeddings

Lp2((0, T )×�;V ) ⊂ V ⊂ Lp1((0, T )×�;V ),
∀1 ≤ p1 < p, max(p, 2) < p2. (4.9)
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Now, we fix x ∈ H and define operators A : V → V ′ and B : D(B) ⊂ V → V ′ as
follows:

(Ay)(t) = e−W(t)A(t)(eW(t)y(t))− νy(t), a.e. t ∈ (0, T ), y ∈ V, (4.10)

(By)(t) =
dy

dt
(t)+ (µ+ ν)y(t), a.e. t ∈ (0, T ), y ∈ D(B),

D(B) =
{
y ∈ V : y ∈ AC([0, T ];V ′) ∩ C([0, T ];H), P-a.s.,

dy

dt
∈ V ′, y(0) = x

}
.

(4.11)

Here, AC([0, T ];V ′) is the space of all absolutely continuous V ′-valued functions on
[0, T ] and dy/dt is defined as in (3.9). The fact that indeed A(V) ⊂ V ′ follows from
(2.4) since p ≥ p′ if p ≥ 2, and V is replaced by V ∩H for 1 < p < 2.

We also note that if p ≥ 2 and y ∈ Lp(0, T ;V ) and dy/dt ∈ Lp
′

(0, T ;V ′), that
is, if y ∈ W 1,p′([0, T ];V ′) ∩ Lp(0, T ;V ), then y ∈ C([0, T ];H) and dy/dt is just the
derivative of y in the sense of V ′-valued distributions on (0, T ) (see, e.g., [2, Corollary
2.1, p. 33]), and so the condition y ∈ C([0, T ];H) in the definition ofD(B) is redundant.
That the same is true for 1 < p < 2 follows by Lemma 8.2 in the Appendix.

We note also that, by virtue of (4.9), we have

dy

dt
∈ Lp1((0, T )×�;V ′), ∀y ∈ D(B),

for any 1 ≤ p1 < p′ and so y : [0, T ] → Lp1(�;V ′) is absolutely continuous P-a.s.
Now, the Cauchy problem (3.3) can be written as the operatorial equation

By +Ay = 0. (4.12)

We have

Lemma 4.1. The operators A and B are maximal monotone from V to V ′.

Proof. A : V → V ′ is maximal monotone by the classical Minty–Browder result (see,
e.g., [2, p. 43]) because, as is easily seen, by (ii)–(iv) and (4.1) it is monotone, that is,

V ′〈Ay −Az, y − z〉V ≥ 0, ∀y, z ∈ V,

and demicontinuous on V (that is, strongly-weakly continuous).
Indeed, if yn → y in V , then Hypothesis (iii) implies that (along a subsequence)

yn→ y dt ⊗ P-a.e. Hence dt ⊗ P-a.e.,

(Ayn)(t) = e−W(t)A(t)(eW(t)yn(t))−νyn(t)
→ e−W(t)A(t)(eW(t)y(t))− νy(t) weakly in V ′

(4.13)

because, by Hypothesis (iv), eW(t) is a multiplier in V . We also have, by (2.4),

|Ayn|V ′ ≤ γ1|yn|
p−1
V + γ2 + γ3|yn|H, ∀n ∈ N,
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and so, by the Banach–Alaoglu theorem, (along a subsequence) we have

Ayn→ η weakly in V ′. (4.14)

On the other hand, by (4.13), for a countable dense subset of ψ ∈ V,

V ′〈Ayn(t), ψ〉V → V ′〈e
−W(t)A(t)(eW(t)y(t))−νy(t), ψ〉V , dt⊗P-a.e. on (0, T )×�.

(4.15)
By (4.14) and (4.15), we see that

η = e−W(t)A(t)(eW(t)y(t))− νy(t) = (Ay)(t), dt ⊗ P-a.e. in (0, T )×�,

as claimed.
We now prove that B is maximal monotone.
To prove the monotonicity, let y1, y2 ∈ D(B) and set y := y1 − y2. Then

V ′〈B(y), y〉V = E
∫ T

0

〈
eW(t)

d

dt
y(t), eW(t)(y(t))

〉
dt

+ E
∫ T

0
〈(µ+ ν)yeW , yeW 〉 dt. (4.16)

By Lemma 8.1(jjj) in the Appendix, we have, for y ∈ D(B),

d(yeW ) = eWdy + eWydW + µeWydt, (4.17)

and, applying Itô’s formula to |yeW |2H (which is justified because, e.g., if p ≥ 2, Theorem
4.2.5 of [18] and, if p ∈ (1, 2), Remark 4.2.8(iii) of [16], respectively, can be applied due
to Lemma 8.1(jjj) below), we obtain

1
2
d|eWy|2H =

〈
eW
dy

dt
, eWy

〉
dt + 〈eWy, eWydW 〉

+ 〈µeWy, eWy〉dt +
1
2

∞∑
j=1

|eWyej |
2
Hµ

2
j dt. (4.18)

Then, by (2.8),

E
∫ T

0

〈
eW

d

dt
y, eWy

〉
dt

≥ −E
∫ T

0
〈(µ+ ν)yeW , yeW 〉dt +

1
2
E|eW(T )y(T )|2H −

1
2
|y(0)|2H . (4.19)

Substituting into (4.16) yields (because y(0) = 0)

V ′〈By, y〉V ≥
1
2
E|eW(T )y(T )|2H . (4.20)

Hence, B is monotone. ut

As regards the maximality of B in V × V ′, we have
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Lemma 4.2. Let B : V → V ′ be the operator defined by (4.11). Then B is maximal
monotone in V × V ′.
Proof. We denote by J : V → V ′ the duality mapping of V . We recall that |J (y)|V ′
= |y|V and V ′〈J (y), y〉V = |y|

2
V . Moreover, since, by assumption, V ′ is strictly convex,

it follows that J is single-valued, monotone and demicontinuous (see [2, p. 12]). We
define a mapping F : V → V ′ as

(Fy)(t) = e−W(t)J (eW(t)y(t))|eW(t)y(t)|
p−2
V , ∀t ∈ (0, T ), y ∈ V. (4.21)

Clearly, F is monotone and demicontinuous from V to V ′. Furthermore, y 7→ F(y)|y|
2−p
V

is just the duality mapping of V if p ≥ 2. If p ∈ (1, 2), we replace F by F+I and proceed
analogously with ν + 1 replacing ν.

It suffices to show that, for each f ∈ V ′, the equation By + F(y) = f , where F is
given by (4.21), has a solution y (see [2, Theorem 2.3, p. 35]).

Equivalently, we have y ∈ D(B) and

dy

dt
+ e−WJ (eWy)|eWy|

p−2
V + (µ+ ν)y = f, t ∈ (0, T ),

y(0) = x.
(4.22)

We set G(z) = J (z)|z|p−2
V for z ∈ V and note that G is monotone, demicontinuous and

coercive from V to V ′. We denote by GH the restriction of G to H , that is, GH is the
operator with graph {(u,Gu) : u ∈ V } ∩ V ×H. The operator GH is maximal monotone
in H ×H . Let Gλ denote its Yosida approximation, that is,

Gλ(z) = G(I + λGH )
−1(z) =

1
λ
(z− (I + λGH )

−1(z)), ∀z ∈ H. (4.23)

We now consider the approximating equation of (4.22),

dyλ

dt
+ e−WGλ(e

Wyλ)+ (µ+ ν)yλ = f, t ∈ [0, T ],

yλ(0) = x.
(4.24)

We assume first that f ∈ H and prove later on that the existence extends to all of V ′. Since
Gλ is Lipschitz on H , it follows that (4.23) has a unique solution yλ ∈ C([0, T ];H),
P-a.s. Moreover, t 7→ yλ(t) is (Ft )t≥0-adapted, and by (4.18),

1
2
E|eW(t)yλ(t)|2H + E

∫ t

0
〈Gλ(e

Wyλ), e
Wyλ〉 ds + νE

∫ t

0
|eWyλ|

2
H ds

=
1
2
E
∫ t

0

∞∑
j=1

|eWyλej |
2
Hµ

2
j ds + E

∫ t

0
〈f eW , eWyλ〉 ds +

1
2
|x|2H , ∀t ∈ [0, T ]. (4.25)

Taking into account that

〈Gλ(z), z〉 ≥ (G((I + λGH )
−1(z)), (I + λGH )

−1(z))

= |(I + λGH )
−1(z)|

p
V , ∀z ∈ H, (4.26)
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we get, via Gronwall’s lemma, for all t ∈ [0, T ],

E|eW(t)yλ(t)|2H + E
∫ t

0
|(I+λGH )

−1(eWyλ(s))|
p
V ds ≤ C(|f |

2
H+|x|

2
H ). (4.27)

Hence, along a subsequence {λ} → 0, we have

eWyλ → eWy weak∗ in L∞(0, T ;L2(�;H)),

(I + λGH )
−1(eWyλ)→ z weakly in Lp((0, T )×�;V ),

Gλ(e
Wyλ)→ η weakly in Lp

′

((0, T )×�;V ′),

(4.28)

where the latter follows, since for z ∈ H , λ > 0,

|Gλ(z)|
p′

V ′
= |(I + λGH )

−1(z)|
p
V . (4.29)

(4.23) and (4.29) imply that

|eWyλ − (I + λGH )
−1(eWyλ)|

p′

V ′
≤ C1λ

p′
|(I + λGH )

−1(eWyλ)|
p
V .

Therefore, z = eWy. Moreover, letting λ→ 0 in (4.24), we get, P-a.s.,

dy

dt
+ e−Wη + (µ+ ν)y = f, a.e. t ∈ (0, T ),

y(0) = x,
(4.30)

and clearly y ∈ D(B). It remains to show that η = G(eWy). To this end, by the inequality
in (4.26) and Lemma 8.3 below (see also [2, Lemma 2.3]), it suffices to show that

lim sup
λ→0

E
∫ T

0

∫ t

0
〈Gλ(e

Wyλ), e
Wyλ〉 ds dt ≤ E

∫ T

0

∫ t

0
〈η, eWy〉 ds dt. (4.31)

To this end, we note that, by (4.25) and (4.28), (4.29), we have

lim sup
λ→0

E
∫ T

0

∫ t

0
〈Gλ(e

Wyλ), e
Wyλ〉 ds dt

≤ −νE
∫ T

0

∫ t

0
|eWy|2H ds dt −

1
2
E
∫ t

0
|eW(t)y(t)|2H dt +

T

2
|x|2H

+ E
∫ T

0

∫ t

0
〈f eW , eWy〉 ds dt +

1
2
E
∞∑
j=1

∫ T

0

∫ t

0
|eWyej |

2
Hµ

2
j ds dt,

because both z 7→ E
∫ t

0 |z|
2
H ds and the function

z 7→ E
∫ T

0

∫ t

0

(
ν|z|2H −

1
2

∞∑
j=1

|zej |
2
Hµ

2
j

)
ds dt
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are continuous on L2((0, T ) × �;H) and convex, hence weakly lower semicontinuous
in L2((0, T )×�;H). On the other hand, (4.30), Lemma 8.1(jjj) and (4.18) yield

1
2

∫ T

0
E|eWy(t)|2H dt + E

∫ T

0

∫ t

0
〈η, eWy〉 ds dt

=
T

2
|x|2 − νE

∫ T

0

∫ t

0
|eWy|2H ds dt

+
1
2
E
∞∑
j=1

∫ T

0

∫ t

0
|eWyej |

2
Hµ

2
j ds dt + E

∫ T

0

∫ t

0
〈f eW , eWy〉 ds dt, (4.32)

and so (4.31) follows.
Now, let f ∈ V ′ and choose {fn} ⊂ H such that fn→ f strongly in V ′. If we denote

by yn the corresponding solution of (4.22), we obtain as in the previous case (see (4.25))

1
2
E|eW(t)yn(t)|2H + E

∫ t

0
〈G(eW(s)yn(s)), e

W(s)yn(s)〉 ds + νE
∫ t

0
|eW(s)yn(s)|

2
H ds

=
1
2
E
∫ t

0

∞∑
j=1

|eW(s)yn(s)ej |
2
Hµ

2
j ds+E

∫ t

0
〈fn(s)e

W(s), yn(s)e
W(s)
〉 ds +

1
2
|x|2H ,

and this yields as above

E|eW(t)yn(t)|2H + E
∫ t

0
|eW(s)yn(s)|

p
V ds ≤ C

(
|x|2H +

∫ t

0
|fn(s)e

W(s)
|
p′

V ′
ds

)
where C is independent of n. Hence {yn}n is bounded in V ∩L∞((0, T )×�;H), and so,
along a subsequence, we have

eWyn → eWy weak∗ in L∞(0, T ;L2(�;H)) and
weakly in Lp((0, T )×�;V ),

G(eWyn)→ η weakly in Lp
′

((0, T )⊗�;V ′),

where y satisfies (4.30). Arguing as in the proof of (4.31), we see that

lim sup
n→∞

E
∫ T

0

∫ t

0
〈G(eWyn), e

Wyn〉 ds dt ≤ E
∫ T

0

∫ t

0
〈η, eWy〉 ds dt,

and, by Lemma 8.3, this implies that η = G(eWy), and so y is a solution to (4.22), as
claimed. ut

Proof of Proposition 3.3. Since A,B are maximal monotone in V × V ′ and D(A) = V ,
we infer (see, e.g., [2, p. 43]) that A + B is maximal monotone in V × V ′. Hence, the
equation

λF(yλ)+ Byλ +Ayλ = 0 (4.33)

has, for each λ > 0, a unique solution yλ ∈ D(B). (See [2, p. 35].)
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We may rewrite (4.33) as

λJ (eW(t)yλ(t))|e
W(t)yλ(t)|

p−2
V + eW(t)

dyλ(t)

dt

+ A(t)(eW(t)yλ(t))+ µe
W(t)yλ(t) = 0, t ∈ (0, T ), ω ∈ �,

yλ(0) = x.

If we apply 〈eW(t)yλ(t), ·〉 to the latter and integrate over (0, T )×�, by (2.3) and (4.19)
we get

(α1 + λ)E
∫ t

0
|eW(s)yλ(s)|

p
V ds +

1
2
E|eW(t)yλ(t)|2H

≤
1
2
|x|2H + (|α2| + ν)

∫ t

0
E|eW(s)yλ(s)|2H ds, ∀t ∈ [0, T ].

By Gronwall’s lemma, we see that

|yλ|V ≤ C, ∀λ > 0,

where C is independent of λ, and so, along a subsequence again denoted by λ, we have

λF(yλ)→ 0 strongly in V ′, yλ→ y∗ weakly in V as λ→ 0.

Hence, Ayλ + Byλ → 0 in V ′ and, since A + B is weakly-strongly closed (as a conse-
quence of maximal monotonicity), we conclude that y∗ ∈ D(B) and

By∗ +Ay∗ = 0.

So, y∗ is a solution to (3.3) in the sense of Definition 3.2. If y and z are two solutions, by
the monotonicity of A and (4.20) we have

y(T ) = z(T ) P-a.s.

On the other hand, y, z are solutions to (3.3) on each interval (0, t) and so we conclude,
by the H -continuity of y and z, that P-a.s.,

y(t) = z(t), ∀t ∈ [0, T ]. ut

Remark 4.3. The assumption:

A(t) is single-valued and demicontinuous from V to V ′

can be relaxed to:

For each t ∈ (0, T ), A(t) is a maximal monotone (multivalued) operator from
V to V ′ such that D(A(t))=V for all t ∈ [0, T ] and A(t)(eWy) ∩ V ′ 6= ∅ for
all y ∈ V.

Then the operator A is maximal monotone in V × V ′ and, since D(A) = V , we conclude
as above that 0 ∈ R(A+ B), as desired.
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Proposition 3.3 has the following immediate extension.

Proposition 4.4. Under the above assumptions, let T : D(T ) ⊂ V → V ′ be a maximal
monotone operator (possibly multivalued) such that B + T is maximal monotone on
V × V ′. Then, for any f ∈ V ′, there is a unique solution y to the equation

By + T y +Ay = f. (4.34)

Proof. Since B + T and A are maximal monotone operators in V × V ′ and A is defined
on all of V , by the above mentioned Rockafellar result, B+ T +A is maximal monotone
on V × V ′, and so R(λF +B+ T +A) = V ′. Then, letting λ→ 0 as in the above proof,
we conclude that (4.34) has at least one solution y ∈ D(B) ∩D(T ). Uniqueness follows
as above. ut

In particular, Proposition 4.4 applies to the finite-dimensional stochastic differential equa-
tion

dX + F(X)dt 3 XdW, t ∈ (0, T ),
X(0) = x,

(4.35)

where F : R → Rd is a maximal monotone graph (multivalued) in Rd × Rd such that
D(F) = Rd . Then the operator T y = e−WF(eWy) is maximal monotone in H×H (here
H = V = V ′ = Rd) and assume D(T ) = H. Hence B + T is maximal monotone, and
so, for each f ∈ H, equation (4.34) (and, implicitly, (4.35)) has a unique solution. This
result is, in particular, applicable to the finite-dimensional stochastic differential equa-
tions (4.35) with the nondecreasing, discontinuous function F after filling the jumps at
discontinuity points.

Remark 4.5. Equation (2.1) with additive noise, that is, dX+A(t)Xdt=dW, X(0)=x,
reduces via the transformation X = Y −W to the random differential equation

dY

dt
+ A(t)(Y +W(t)) = 0, Y (0) = x,

which, under assumptions (i)–(iii), has a unique solution Y = Y (t, ω) by the standard
existence theory for the Cauchy problem associated with nonlinear, monotone and demi-
continuous operators Y 7→ A(t)(Y +W(t)) from V to V ′. (See [2, p. 183] and [15].)

5. The subgradient case A(t) = ∂ϕ(t, ·)

Assume now that A satisfies (ii), (iii) and is the subdifferential of a continuous convex
function on V . More precisely, A(t) = ∂ϕ(t, ·), where ϕ(t) = ϕ(t, ω, y) is measurable
in (t, ω), continuous and convex in y ∈ V . That is,

A(t)y = {η ∈ V ′ : 〈η, y − z〉 ≥ ϕ(t, y)− ϕ(t, z), ∀z ∈ V, t ∈ (0, T ), P-a.s.}.
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Then A defined by (4.10) is itself the subdifferential ∂8 : V → V ′ of the convex lower
semicontinuous function 8 : V → R defined by

8(y) = E
∫ T

0
(ϕ(t, eW(t)y(t))− ν/2|eW(t)y(t)|2H ) dt, ∀y ∈ V.

Taking into account that 8∗(u)+8(y) ≥ 〈y, u〉V ′ for all u ∈ V ′, y ∈ V , with equality if
u ∈ ∂8(y), we may equivalently write equation (4.12) as

By + u = 0, 8(y)+8∗(u)− V ′〈u, y〉V = 0, (5.1)

where 8∗ : V ′→ R is the conjugate of 8, that is,

8∗(v) = sup{V ′〈v, u〉V −8(u) : u ∈ V}.

Taking into account that

8(z)+8∗(v)− V ′〈v, z〉V ≥ 0, ∀v ∈ V ′, z ∈ V,

it follows that the solution y to equation (4.12) (equivalently, (3.3)) is the solution to the
minimization problem

Min{8(y)+8∗(u)− V ′〈u, y〉V : By + u = 0}.

Equivalently,
Min{8(y)+8∗(−By)+ V ′〈By, y〉V : y ∈ D(B)}. (5.2)

In this way, the Cauchy problem (3.3) and, implicitly, the stochastic differential equation
(2.1) reduces to the convex minimization problem (5.2).

Taking into account that, under Hypotheses (i)–(iii), the function

y 7→ 8(y)+8∗(−By)+
1
2
E|eW(T )y(T )|2H

is convex, lower semicontinuous and coercive on V , we infer (without invoking Proposi-
tion 3.3) that (5.2) has a solution which turns out to be just the solution to (4.12). This
might be an alternative way to prove existence and uniqueness for equation (4.12) in this
special subgradient case.

This variational approach to (2.1) in the subgradient case A = ∂ϕ inspired by the
Brezis–Ekeland principle was already developed in [3]–[5] for some specific stochastic
differential equations and it opens up the way to use convex analysis methods in stochastic
differential equations.

6. Examples

Here, we briefly present a few classes of stochastic partial differential equations for which
Theorem 3.1 is applicable. Everywhere in the following, W is the Wiener process (2.2)
satisfying (2.8).
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6.1. Nonlinear stochastic parabolic equations

Consider the stochastic equation in O ⊂ Rd ,

dX − div(a(∇X))dt + ψ(X)dt = XdW in (0, T )×O,
X = 0 on (0, T )× ∂O, X(0) = x in O.

(6.1)

Here, a : Rd → Rd is a continuous mapping such that a(0) = 0 and

(a(r1)− a(r2)) · (r1 − r2) ≥ 0, ∀r1, r2 ∈ Rd ,

a(r) · r ≥ a1|r|
p
d + a2, ∀r ∈ Rd ,

|a(r)|d ≤ c1|r|
p−1
d + c2, ∀r ∈ Rd ,

(6.2)

where a1, c1 > 0, p > 1.
The function ψ : R→ R is continuous, nondecreasing, 0 = ψ(0) and

|ψ(r)| ≤ C(|r|
q
d + 1), ∀r ∈ R. (6.3)

Here, O ⊂ Rd is a bounded open subset with smooth boundary ∂O, and | · |d is the
Euclidean norm of Rd .

Consider the spaces H = L2(O), V = W 1,p
0 (O), V ′ = W−1,p′(O) and the operator

A : V → V ′ defined by

V ′〈Ay, ϕ〉V =

∫
O
(a(∇y) · ∇ϕ + ψ(y)ϕ) dξ, ∀ϕ ∈ W

1,p
0 (O).

Under assumptions (6.2), (6.3), where

q <
dp

d − p
− 1 if d > p, q ∈ (1,∞) if d = p, (6.4)

and no growth condition on ψ if d ≤ p, by the Sobolev–Gagliardo–Nirenberg embedding
theorem (see [1], [10]), it follows that A satisfies Hypotheses (i)–(iii). As regards the
Wiener process W , we assume here that besides (2.8) the following condition holds:

∞∑
j=1

µ2
j |∇ej |

2
∞ <∞. (6.5)

Taking into account that ∇(eWy) = eW (y∇W + ∇y) and by (2.8), (6.5),
W,∇W ∈ L∞(O), for all t ≥ 0, it follows by (2.7) that Hypothesis (iv) holds for
V = W

1,p
0 (O) and H = L2(O), Z(t) = C(|∇W(t)|

p
∞ + |W(t)|

p
∞)

1/peW(t), where
C is a positive constant. We have, therefore, by Theorem 3.1,

Corollary 6.1. Under assumptions (2.8), (6.3), (6.4), (6.5), equation (6.1) has, for
x ∈ L2(O), a unique solutionX ∈ L∞(0, T ;L2(�;L2(O)))∩Lp((0, T )×�;W 1,p

0 (O)).
Moreover, t 7→ e−W(t)X(t) is W−1,p′(O)-absolutely continuous on [0, T ), P-a.s.
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Of course, the result remains true for the progressively measurable processes a =
a(t, r, ω), ψ = ψ(t, r, ω), where a(t, ·), ψ(t, ·) satisfy (6.2), (6.3), and the functions
t 7→ a(t, r), t 7→ ψ(t, r) are of class L∞ for each r ∈ R.

Remark 6.2. The case p = 1, which was studied in [7], is not covered, however, by
the present result. In fact, in this case, the space V = W

1,1
0 (O) is not reflexive and

the solution X to (6.1) exists and is unique in a weak variational sense in the space of
functions with bounded variation on O.

Remark 6.3. Equation (6.1) with nonlinear boundary value conditions of the form

a(∇y) · En+ γ (y) = 0 on (0, T )× ∂O,

where En is the normal to ∂O, and γ : R → R is an increasing continuous function
satisfying a growth condition (6.3), can be completely similarly treated in the variational
setting H = L2(O), V = W 1,p(O).

Remark 6.4. By Remark 4.3, Corollary 6.1 remains true for multivalued maximal mono-
tone graphs ψ which satisfy the growth condition (6.3), (6.4). This more general case
corresponds to equations of the form (6.1) with variable structure, that is, with discontin-
uous ψ .

The Hölder continuity of e−WX. Taking into account that y = e−WX is the solution to
the random parabolic equation

yt − e
−Wdiv(a(∇(eWy)))+µy + e−Wψ(eWy) = 0 in QT = (0, T )×O,

y = 0 on (0, T )× ∂O, y(0, ξ) = x(ξ), ξ ∈ O,
(6.6)

one can obtain from the regularity theory for parabolic quasi-linear equations with princi-
pal part in divergence form (see [14]) for x ∈ L∞(O), the Hölder regularity for solutions
y to (6.6) and hence for solutions of (6.1). The result we obtain here is new for stochastic
parabolic equations and illustrates the advantages of the method.

In the following, we assume that the above conditions on a and ψ are satisfied with
p = 2 and, according to (6.4), q is taken such that 1 < q < d+2

d−2 if d > 2, while
q ∈ (1,∞) if d = 2.

We rewrite (6.6) as

yt − div ã(t, ξ, y,∇y)+ ã0(t, ξ, y,∇y) = 0 in QT ,

y = 0 on (0, T )× ∂O,
y(0, ξ) = x(ξ), ξ ∈ O,

(6.7)

where
ã(t, ξ, y, η) = e−W(t,ξ)a((∇W(t, ξ)y + η)eW(t,ξ)),

ã0(t, ξ, η) = −e
−W(t,ξ)

∇W(t, ξ) · a((∇W(t, ξ)y + η)eW(t,ξ))

+ µ(ξ)y + e−W(t,ξ)ψ(eW(t,ξ)y).
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Taking into account that, by (2.7),

e−|W(t,ξ)| ≥ γ (ω) > 0, ∀(t, ξ) ∈ [0, T ] ×O, ω ∈ �,
e|W(t,ξ)| ≤ γ̃ (ω) <∞, ∀(t, ξ) ∈ [0, T ] ×O,

where γ, γ̃ ∈
⋂

0<q<∞ L
q(�), we see that, for some γ1 = γi(ω) ∈ R, i = 1, . . . , 5,

γ1(ω) > 0, we have

ã(t, ξ, y, η) · η ≥ γ1|η|
2
d − γ2|y|

2,

|(̃a + ã0)(t, ξ, y, η)|d ≤ γ3|η|d + γ4|y|
q
+ γ5,

for all (t, ξ, y, η) ∈ [0, T ] ×O × R× Rd .
Since by Corollary 6.1 the solution y to (6.7) is in the space C([0, T ];L2(O)) ∩

L2(0, T ;H 1
0 (O)), it follows by [14, Theorem 2.1, p. 425] that, for x ∈ L∞(O), the

solution y is bounded, i.e.,

|y(t, ξ)| ≤ M, ∀(t, ξ) ∈ (0, T )×O.

Hence, without loss of generality, we may replace in (6.7) the functions ã and ã0 by ã∗

and ã(0), where

ã∗(t, ξ, y, η) =

{
ã(t, ξ, y, η) if |y| ≤ M,
ã(t, ξ,My/|y|, η) if |y| > M,

ã(0)(t, ξ, y, η) =

{
ã0(t, ξ, y, η) if |y| ≤ M,
ã0(t, ξ,My/|y|, η) if |y| > M,

and so we may assume that ã and ã0 satisfy Hypotheses (1.1)–(1.3) of Theorem 1.1 in
[14, p. 419]. Then, according to this theorem, for x ∈ L∞(O), the solution y belongs to
the space Hα,α/2(QT ) of Hölder continuous functions of order α in ξ ∈ O and order α/2
in t on QT for some α > 0.

We have, therefore,

Proposition 6.5. Let x ∈ L∞(O) and let a,ψ satisfy (6.2), (6.3) with p = q = 2. Then
the solution X to equation (6.1) satisfies

e−WX ∈ Hα,α/2(QT ), P-a.s., (6.8)

for some α = α(ω) ∈ (0, 1). In particular, for each t ∈ (0, T ) and P-a.s., ξ 7→ X(t, ξ)

is Hölder continuous on O.

Remark 6.6. By applying Theorem 4.1 of [14, p. 444], one can obtain for the solution y
to (6.6), and implicitly for (6.1), L∞-estimates for the gradient ∇y. We omit the details.

Remark 6.7. Assume further that ai, ψ, ∂ai/∂rj ∈ C(QT ) for i, j = 1, . . . , d, and that
x ∈ H 2+γ (O), x = 0 on ∂O which is of class H 2+γ . Then, by Theorem 6.1 in [14,
p. 453], equation (6.7) has a unique solution y ∈ H 2+γ,1+γ /2([0, T ]×O), where γ is the
Hölder exponent ofW(t). Moreover, in this case, the solution y is continuous with respect
to the initial data x from H 2+γ (O) to H 2+γ,1+γ /2(QT ). This implies, in particular, that
the solution y to (6.6) is pathwise continuous with respect to x ∈ H 2+γ (O).
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6.2. The porous media equation

We first note that conditions (H1)–(H4) in [18, p. 56] imply our Hypotheses (i)–(iii) onA.
Therefore, all examples of stochastic partial differential equations from [18, Section 4.1]
are covered by our results provided the noise is linear multiplicative. Nevertheless, in
this subsection we present an example from [18], namely, the stochastic porous media
equation, in more detail.

Consider the stochastic equation

dX −1ψ(t, ξ,X)dt = XdW in (0, T )×O,
X(0, ξ) = x(ξ) in O,
ψ(t, ξ,X(t, ξ)) = 0 on (0, T )× ∂O,

(6.9)

where O is a bounded domain in Rd , ψ : [0, T ] ×O×R→ R is continuous, increasing
in r , and there exist a ∈ (0,∞) and c ∈ [0,∞) such that

rψ(t, ξ, r) ≥ a|r|p − c, ∀r ∈ R, (t, ξ, r) ∈ [0, T ] ×O,
|ψ(t, ξ, r)| ≤ c(1+ |r|p−1), ∀r ∈ R, (t, ξ, r) ∈ [0, T ] ×O,

(6.10)

where p ∈ [2d/(d + 2),∞) if d ≥ 3, and p ∈ (1,∞) for d = 1, 2.
By the Sobolev–Gagliardo–Nirenberg embedding theorem, we have Lp(O) ⊂

H−1(O). To write (6.9) in the form (2.1), we change the pivot space H . Namely, we
take V = Lp(O), H = H−1(O), and V ′ is the dual of V with the pivot space H−1(O).
Then V ⊂ H ⊂ V ′ and

V ′ = {θ ∈ D′(O) : θ = −1v, v ∈ Lp
′

(O)},

where 1 is taken in the sense of distributions. The duality V ′〈·, ·〉V is defined as

V ′〈θ, u〉V =

∫
O
θ̃u dξ, θ̃ = (−1)−1θ.

1 is the Laplace operator with homogeneous Dirichlet boundary conditions, and so
θ̃ ∈ Lp(O).

The operator A(t) : V → V ′ is defined by

V ′〈A(t)y, v〉V =

∫
O
ψ(t, ξ, y)v dξ, ∀y, v ∈ V, t ∈ [0, T ].

By (6.10), we infer that A(t) satisfies (2.3), (2.4), that is,

V ′〈A(t)y, y〉V ≥ α1|y|
p
V + α2, ∀y ∈ V,

|A(t)y|V ′ ≤ γ1|y|
p−1
V + γ2, ∀y ∈ V.

(See [18, pp. 71–72] for details.) It is also readily seen that A(t) : V → V ′ is demicon-
tinuous.
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As regards Hypothesis (iv), it is easily seen by (2.8) that e±W(t) is a multiplier in
Lp(O) and H−1(O), and that (2.5) holds for V = Lp(O), H = H−1(O) and Z(t) =
C exp |W(t)|∞ for some C > 0.

Then, applying Theorem 3.1, we find:

Corollary 6.8. For each x ∈ H−1(O) there is a unique solution X ∈ L∞(0, T ;
L2(�,H−1)) to (6.9) which satisfies X ∈ Lp((0, T )×�;Lp(O)).

Moreover, t 7→ e−W(t)X(t) is V ′-absolutely continuous on [0, T ], P-a.s., and

E
∫ T

0

∣∣∣∣eW(t) ddt (e−W(t)X(t))
∣∣∣∣p′
V ′
dt <∞. (6.11)

Remark 6.9. Through (6.11), Corollary 6.8 improves the corresponding results in [18]
if the noise is linear multiplicative. In addition, Corollary 6.8 can be generalized. In fact,
we can take V = Ld ∩ H−1(O), where Ld is the Orlicz space on O corresponding to a
12-regular d-function (see [1, p. 232]). Also, if ej are multipliers in H−1(Rd), we can
apply Theorem 3.1 to the case of the unbounded domain O = Rd . Then, by Theorem 3.1
we recover and improve many of the results of [19] and [8], provided the noise is linear
multiplicative.

6.3. The stochastic transport equation

Consider the stochastic first order hyperbolic equation

dX(t, ξ)−

d∑
i=1

ai(t, ξ)
∂X(t, ξ)

∂ξi
dt + b(t, ξ)X(t, ξ)dt

+ λ|X(t, ξ)|p−2X(t, ξ)dt = X(t, ξ)dW(t, ξ) in (0, T )×O,
X(0, ξ) = x(ξ), ξ ∈ O,

X(t) = 0 on 6 =
{
(t, ξ) ∈ [0, T ] × ∂O :

d∑
i=1

ai(t, ξ)ni(ξ) < 0
}
,

(6.12)

where O ⊂ Rd is, as usual, an open and bounded subset with smooth boundary ∂O,
n = {ni}

d
i=1 is the normal vector to ∂O and ai, b : [0, T ] × O → R, i = 1, . . . , d , are

continuous functions with ∇ξai ∈ C([0, T ] × O), i = 1, . . . , d . We also assume that
λ > 0, p ≥ 2, and that x ∈ H 1(O) ∩ Lp(O), x = 0 on 6.

By transformation (2.13), we reduce (6.12) to the random differential transport equa-
tion

∂y

∂t
−

d∑
i=1

aie
−W ∂

∂ξi
(eWy)+(b + µ)y + λe(p−2)W

|y|p−2y = 0
in (0, T )×O,

y(0, ξ) = x(ξ), ξ ∈ O, y = 0 on 6.

(6.13)
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We now consider the spaces V,H,V ′ defined in Section 4, where V = Lp(O),
H = L2(O), V ′ = Lp′(O), and set

Ay = λe(p−2)W
|y + x|p−2(y + x)−

d∑
i=1

aie
−W ∂

∂ξi
(eWx)+ (b + µ)x, y ∈ V,

By =
dy

dt
+ (µ+ ν)y, y ∈ D(B),

where we have used the transformation y 7→ y − x; D(B) is given by (4.11) with x
replaced by 0, and ν is defined in (2.8). Then (6.13) can be equivalently written as

By + T0(y)+Ay = 0,

where T0 : V → V ′ is given by

T0(y) = −

d∑
i=1

aie
−W ∂

∂ξi
(eWy)+ (b − ν)y, ∀y ∈ D(T0),

D(T0) = {y ∈ V : e−Wa · ∇(eWy) ∈ V ′, y = 0 on 6}.

The trace of y on 6 is taken in a weak distributional sense (see [9]).
We assume that

1
2 divξ a(t, ξ)+ b(t, ξ) > ν, ∀(t, ξ) ∈ [0, T ] ×O, (6.14)

where a = {ai}di=1. Then, as is easily seen, T0 is monotone. Note that Proposition 4.4 is
not directly applicable here because T0 + B is not maximal monotone. However, by [9]
(see also [15, p. 330]), the operator B+ T0 is closable in Lp((0, T )×O) for fixed ω ∈ �
and its closure L is maximal monotone in Lp((0, T )×O)×Lp′((0, T )×O). This implies
that, for each fixed ω ∈ �, the equation

Ly + e−WF(e−Wy) = 0 in (0, T )×O

has a solution y ∈ D(L) and so, arguing as in the proof of Lemma 4.2, it follows that the
closure B + T0 of B + T0 in V × V ′ is maximal monotone.

We also note that Hypothesis (iv) can be checked in this case as in Example 6.2.
Then, by Proposition 4.4, the equation

B + T0(y)+Ay = 0

has a unique solution y ∈ D(B + T0). In other words, there is a sequence {yn} ⊂
D(B + T0) such that yn→ y in V and

(B + T0)(yn)+Ayn→ 0 in V ′. (6.15)

We call such a y a generalized solution to (6.13) and the corresponding X = eWy is a
generalized solution to (6.12) in the above sense.

Remark 6.10. Similarly, one can treat stochastic equations of type (6.12) with an integral
transport term

∫
�̃
K(t, x, z, z′)X(t, z; z′) dz′ (see, e.g., [15, p. 346]).
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7. Extension to more general multiplicative noise

In this section, we indicate how the rescaling approach developed in the previous sections
extends mutatis mutandis to stochastic equations of the form

dX + A(t)Xdt =

m∑
k=1

σk(X)dβk(t), t ∈ [0, T ],

X(0) = x,

(7.1)

where σk : D(σk) ⊂ H → H are linear generators of mutually commuting C0 groups
onH . In this case, (7.1) reduces to a random differential equation in the spaceH . (See [12,
p. 203].) Namely, via the transformationX = U(t)y, where U(t) =

∏m
k=1 e

σk(βk(t)), (2.1)
reduces to the random differential equation

dy

dt
+ U−1(t)A(t)(U(t)y)+

1
2

m∑
k=1

U−1(t)σ 2
k (U(t)y) = 0, t ∈ (0, T ),

y(0) = x.

(7.2)

Here etσk is the global flow on H generated by σk .
The existence in (7.2) follows as in the previous case, by taking

Ay = U−1(t)A(t)(U(t)y)+
1
2

m∑
k=1

U−1(t)σ 2
k (U(t)y)

and replacing H, V by the spaces of (Ft )t≥0-adapted processes y on (0, T ) such that

E
∫ T

0 |U(t)y(t)|
2
H dt <∞ (and, respectively, E

∫ T
0 |U(t)y(t)|

p
V dt <∞).

We assume that U satisfies Hypothesis (iv) with U(t) instead of eW(t) and endow H
with the scalar product

〈u, v〉 = E
∫ T

0
〈U(t)u, U(t)v〉 dt,

which extends to a duality pairing V ′〈u, v〉V on V×V ′.Moreover, the space V is reflexive
and V ⊂ H ⊂ V ′. If A(t) + 1

2
∑m
k=1 σ

2
k : V → V ′ satisfies Hypotheses (i)–(iii), then

clearly A : V → V ′ is monotone, demicontinuous and coercive, i.e., has all the properties
of operator (4.10). If B is defined as in (4.11), we rewrite (4.22) as By +Ay = 0. More-
over, Lemma 4.2 remains true in the present situation. The proof is completely similar,
considering instead of (4.22) the equation

dy

dt
+ U−1(t)J (U(t)y)|U(t)y|

p−2
V + (µ+ ν)y = f,

y(0) = x,
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for f ∈ V ′. Then we conclude, as in the proof of Proposition 3.3, that the range of
B +A is all of V ′, and in particular equation (7.2) has a unique (Ft )t≥0-adapted solution
y : [0, T ] → H such that

E sup
t∈[0,T ]

|U(t)y(t)|2H <∞, (7.3)

E
∫ T

0

∣∣∣∣U(t) dydt
∣∣∣∣p′
V ′
dt <∞. (7.4)

Then Theorem 3.1 remains valid in the present case with U(t) instead of eW(t). (See also
Remark 7.1 below.)

Consider as an example the nonlinear diffusion equation (see [5], [11])

dX − div(a(∇X))dt − 1
2b · ∇(b · ∇X)dt = b · ∇X dβ, t ∈ [0, T ], ξ ∈ O,

X(0, ξ) = x(ξ), ξ ∈ O; X = 0 on (0, T )× ∂O.
(7.5)

Here, O ⊂ Rd , d = 1, 2, 3, is a bounded open domain with smooth boundary, β is
a Brownian motion, a : Rd → Rd is a monotone mapping satisfying (6.2), and b ∈
(C1(O))d satisfies div b = 0, b · ν = 0 on ∂O (ν is the normal to ∂O). It should be
mentioned that (7.5) is equivalent to the Stratonovich stochastic equation

dX − div(a(∇X))dt = (b · ∇X) ◦ dβ in (0, T )×O,
X(0) = x, X = 0 on (0, T )× ∂O.

Equation (7.5) is of the form (7.1), where H = L2(O), V = W 1,p
0 (O), V ′ = W 1,p′(O),

and
(U(t)f )(ξ) = exp(β(t)b)(f )(ξ) = f (Z(β(t), ξ)), t ≥ 0, ξ ∈ O,

where Z = Z(s) is the flow of diffeomorphisms on O generated by the Cauchy problem

dZ

dt
= b(Z), s ≥ 0, Z(0) = ξ ∈ O.

(See [5], [11].) Then, (7.2) is, in this case,

∂y

∂t
(t, ξ)− U−1(t)(div(a(∇ξ (U(t)y(t)))) = 0, t ∈ [0, T ], ξ ∈ O,

y(0, ξ) = x(ξ), y = 0 on (0, T )× ∂O,
(7.6)

and, as seen above, we obtain the existence of a solution y : [0, T ] → L2(O) satisfying
(7.3)–(7.4). More details will be contained in a forthcoming work.

Remark 7.1. If σk ∈ L(H,H), then we may take in (7.2) U as the solution to the
stochastic equation

dU(t)) =

N∑
k=1

σk(U(t))dβk(t), t ≥ 0,

U(0) = I.
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8. Appendix

Lemma 8.1.

(j) Let y = y(t), t ∈ [0, T ], be an H -valued (Ft )t≥0-adapted process with continuous
sample paths, V ′-absolutely continuous on (0, T ) and satisfying (3.4)–(3.7). Then
X = eWy is a strong solution to (2.1) which satisfies (2.10)–(2.12).

(jj) LetX = X(t), t ∈ [0, T ], be anH -valued (Ft )t≥0-adapted process with continuous
sample paths satisfying (2.10)–(2.12). Then y = e−WX satisfies (3.4)–(3.7).

(jjj) Let y ∈ D(B) (see (4.11)). Then t 7→ y(t)eW(t) ∈ H is continuous P-a.s. and, for
all t ∈ [0, T ],

y(t)eW(t) = y(0)+
∫ t

0

[
eW(s)

dy

ds
+ µeW(s)y(s)

]
ds +

∫ t

0
y(s)eW(s) dW(s).

Proof. We shall follow an argument from [7]. We first note that, by the last item in (2.6),
together with y also t 7→ eW(t)y(t) ∈ H is continuous. We shall only prove (j); (jj) and
(jjj) follow by the same arguments. If {fj } is an orthonormal basis in H such that fj ∈ V
for all j , we have, for each ϕ ∈ V and t ∈ [0, T ],

〈ϕ, eW(t)y(t)〉 =

∞∑
j=1

〈eW(t)ϕ, fj 〉〈fj , y(t)〉,

and, by Itô’s formula,

eW(t,ξ) = 1+
∫ t

0
eW(s,ξ) dW(s, ξ)+ µ(ξ)

∫ t

0
W(s, ξ) ds, ∀t ∈ [0, T ], ∀ξ ∈ O.

This yields, via the stochastic Fubini theorem,

〈eW(t)ϕ, fj 〉 = 〈ϕ, fj 〉 +

∞∑
k=1

〈
ϕekfj ,

∫ t

0
eW(s,ζ ) dβk(s)

〉
+

∫ t

0
〈µeW(s)ϕ, fj 〉 ds

= 〈ϕ, fj 〉 +

∞∑
k=1

∫ t

0
〈eke

W(s)ϕ, fj 〉 dβk(s)+

∫ t

0
〈µeW(s)ϕ, fj 〉 ds.

Let yε = Jε(y) and Jε ∈ L(V ′, H) be a mollifier operator such that limε→0 Jε(y) = y

in V ′. (Such a family of mappings Jε always exists.) Then, by (3.6),

dyε

dt
+ Jε(e

−Wη)+ Jε(µy) = 0, a.e. t ∈ (0, T ),

yε(0) = Jε(x),
(8.1)

that is,

yε(t)+

∫ t

0

(
Jε(e

−W(s)η(s))+ Jε(µy(s))
)
ds = Jε(x), ∀t ∈ [0, T ],
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where η = A(t)(eW(t)y(t)). Since t 7→ 〈fj , yε(t)〉 is absolutely continuous, we can apply
the Itô product rule to deduce, by (8.1), that

〈eW(t)ϕ, fj 〉〈fj , yε(t)〉 = 〈ϕ, fj 〉〈fj , x〉

−

∫ t

0
〈eW(s)ϕ, fj 〉〈fj , Jε(e

−W(s)η(s)+ µy(s))〉 ds

+

∞∑
k=1

∫ t

0
〈fj , yε(s)〉〈eke

W(s)ϕ, fj 〉 dβk(s)

+

∫ t

0
〈fj , yε(s)〉〈µe

W(s)ϕ, fj 〉 ds, ∀j ∈ N,

where η = Ay. Summing up and interchanging the sum with the integrals, we obtain
P-a.s., for all t ∈ [0, T ] and all ϕ ∈ V ,

〈ϕ, eW(t)yε(t)〉 = 〈e
W(s)ϕ, x〉 −

∫ t

0
〈eW(s)ϕ, Jε(e

−W(s)η(s)+ µy(s))〉 ds

+

∞∑
k=1

∫ t

0
〈ϕ, eke

W(s)yε(s)〉 dβk(s)+

∫ t

0
〈µeW(s)ϕ(s), yε(s)〉 ds.

Letting ε → 0, we see that X = eWy satisfies (2.11). It is also clear that X satisfies all
the conditions in Definition 2.1. ut

Lemma 8.2. Let 1 < p < 2 and y ∈ Lp(0, T ;V ) ∩ L2(0, T ;H) such that dy/dt ∈
Lp
′

(0, T ;V ′)+ L2(0, T ;H). Then y ∈ C([0, T ];H) and

1
2
|y(t)|2H =

1
2
|x|2H +

∫ t

0

〈
dy

ds
, y

〉
ds, ∀t ∈ [0, T ].

Proof. We have (dy/dt is taken in D′(0, T ))

dy

dt
= f1 + f2, f1 ∈ L

p′(0, T ;V ′), f2 ∈ L
2(0, T ;H).

We consider a mollifier ρε ∈ C∞ and set

yε(t) = (y ∗ ρε)(t), f 1
ε = f1 ∗ ρε, f 2

ε = f2 ∗ ρε.

We have yε ∈ C1([0, T ];V ) and dyε/dt = f 1
ε + f

2
ε . This yields

1
2
|yε(t)− yε′(t)|

2
H =

1
2
|x|2H +

∫ t

0
〈f 1
ε (s)− f

1
ε′(s), yε(s)− yε′(s)〉 ds

+

∫ t

0
〈f 2
ε (s)− f

2
ε′(s), yε(s)− yε′(s)〉 ds.
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Since
f 1
ε → f 1 in Lp

′

(0, T ;V ′),

f 2
ε → f 2 in L2(0, T ;H),

yε → y in Lp(0, T ;V ) ∩ L2(0, T ;H),
as ε→ 0, we conclude that

yε → y in C([0, T ];H) as ε→ 0,

and
1
2
|y(t)|2H =

1
2
|x|2H +

∫ t

0
〈f 1
+ f 2, y〉 ds, ∀t ∈ [0, T ],

as claimed. ut

Lemma 8.3. LetG(z) = J (z)|z|p−2
V and {zn} ⊂ Lp((0, T )×�;V ) be such that zn→ z

weakly in Lp((0, T ) × �;V ) and G(zn) → η weakly in Lp
′

((0, T ) × �;V ′). Assume
that

lim sup
n→∞

E
∫ T

0
(T − t)〈G(zn(t)), zn(t)〉 dt ≤ E

∫ T

0
(T − t)〈η(t), z(t)〉 dt. (8.2)

Then η = G(z) a.e. in (0, T )×�.

Proof. We set8(z) = (1/p)|z|pV and note that8 is Gâteaux differentiable and ∇8 = G.
Since 8 is convex and continuous on V , by Fatou’s lemma we have

lim inf
n→∞

E
∫ T

0
(T − t)8(zn(t))dt ≥ E

∫ T

0
(T − t)8(z(t)) dt. (8.3)

We also have, for u ∈ Lp((0, T )×�;V ),

E
∫ T

0
(T − t)〈G(zn(t)), zn(t)− u(t)〉 dt ≥ E

∫ T

0
(T − t)(8(zn(t))−8(u(t)) dt.

Then, letting n→∞, by (8.2)–(8.3) we get

E
∫ T

0
(T − t)(8(z(t))−8(u(t))) dt ≤ E

∫ T

0
(T − t)〈η(t), z(t)− u(t)〉 dt.

Taking u = z+ λv, v ∈ Lp((0, T )×�;V ), dividing by λ and letting λ→ 0, we obtain,
since ∇8 = G,

E
∫ T

0
(T − t)〈G(z(t))− η(t), v(t)〉 dt ≤ 0, ∀v ∈ Lp((0, T )×�;V ),

where we have used the elementary inequality

1
p
ap −

1
p
bp ≤ max(ap−1, bp−1)|a − b|, a, b ∈ [0,∞),

to justify the interchange of limλ→0 with the integrals. Hence η = G a.e. in (0, T ) × �,
as claimed. ut
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