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Abstract. We consider the mass critical (gKdV) equation u; + (uxx + u?)x = 0 for initial data
in H!. We first prove the existence and uniqueness in the energy space of a minimal mass blow
up solution and give a sharp description of the corresponding blow up soliton-like bubble. We then
show that this solution is the universal attractor of all solutions near the ground state which have a
defocusing behavior. This allows us to sharpen the description of near soliton dynamics obtained
in [29].
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1. Introduction

1.1. Setting of the problem. We continue the study of the mass critical generalized
Korteweg—de Vries equation

ur + (uyx + us)x =0, (t,x)el0,T) xR,

u(0, x) = uo(x), x eR, (1.1)

(gKdV) {

initiated in Part I [29]. The Cauchy problem is locally well posed in the energy space H'!
from Kenig, Ponce and Vega [15], [16], and given ug € H I there exists a unique (in a
certain sense) maximal solution u(7) of (1.1) in C([0, T'), H') and

T <oo implies lim [u(2)|l;2 = oo. (1.2)
t—>T

Y. Martel: LMV, CNRS UMR8100, Université de Versailles St-Quentin and Institut Universitaire
de France; current address: CMLS, CNRS UMR7640, Ecole Polytechnique, Paris, France;
e-mail: yvan.martel @polytechnique.edu

F. Merle: AGM, CNRS UMRS8088, Université de Cergy-Pontoise, Institut des Hautes Etudes
Scientifiques, Cergy-Pontoise, France; e-mail: merle @math.u-cergy.fr

P. Raphaél: IMT, CNRS UMRS5219, Université Paul Sabatier and Institut Universitaire de France;
current address: Laboratoire J. A. Dieudonné, CNRS UMR?7351, Université de Nice Sophia-
Antipolis, Nice, France; e-mail: pierre.raphael @unice.fr

Mathematics Subject Classification (2010): Primary 35Q53; Secondary 35B44, 35B40, 35A02



1856 Yvan Martel et al.

The Cauchy problem for (1.1) is also locally well-posed in L2, and given ug € L2, there
exists a unique maximal solution u(¢) of (1.1) in C([0, T), L?) with either T = 0o or

T <oo andthen |u = 0.
” “L)ScLé(()),T)

Moreover, H! solutions satisfy the conservation of mass and energy:

1

2 2 ! 6
M(u(t))=/u (1) =My, E(u@)= E/ux(l)— g/u (1) = Eo.

The symmetry group of (1.1) is continuous in H' and given by
€0y UGt = 10), o(x = x0)), (€0, %0, X0, f0) € {—1, 1} x RY x R x R,

In particular the scaling symmetry leaves the L? norm invariant and hence the problem is
mass or L critical.
Traveling wave solutions play a distinguished role in the analysis:

u(t,x)=0(x —1)

where Q is the ground state solitary wave

3 1/4
QW) = <cosh2(2x)>

which satisfies the sharp Gagliardo—Nirenberg inequality, [50]:

2\ 2
VveH', /|v|6§fv§<ff;2> . (13)

The conservation of mass and energy and the blow up criterion (1.2) ensure that H! initial
data with subcritical mass ||ugl/;2 < || Q|2 generate global in time solutions.

1.2. The flow near the ground state. In the series of works [23]-[26], [34], Martel and
Merle obtain the first qualitative information on the flow for small supercritical mass
initial data || Q|l;2 < lluoll;2 < Q2 + o™, 0 < o* < 1, in particular the existence of
finite time blow up solutions for Ey < 0 and the classification of Q as the unique global
attractor of all H'! blow up solutions.

In Part I [29], we have revisited the blow up analysis in light of recent developments
related to blow up for the mass critical Schrédinger equation [35]-[40] and energy critical
geometrical equations [41], [46], [47].

More precisely, define the set of initial data

A= {u(): Q+¢eo:lleoll gt < oo and / yloeé < 1},
y>0

and consider the L? tube around the family of solitary waves,

1 Q(~—)C0)
U— —
a2\ o

E*:{MGHI: inf

ro>0, X()ER

<a*t.
L2
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In [29], we have proved the following (see [29, Theorems 1.1 and 1.2] for more de-
tails).

Theorem 1.1 (Rigidity of the flow in A, [29]). Let0 < oy < a* <K 1 and ug € A. Let
u € C([0, T), H') be the corresponding solution to (1.1). Then one of the following three
SCenarios occurs:

(Blow up) The solution blows up in finite time 0 < T < oo in the universal regime

14 1
(@)l g1 = % ast — T, €(ug) > 0. (1.4)
(Soliton) The solution is global: T = oo, and converges asymptotically to a solitary
wave.

(Exit) The solution leaves the tube Ty at some time 0 < t* < oo.

Moreover, the (Blow up) and (Exit) scenarios are stable under small perturbation of the
data in A.

Our aim in this paper is first to classify the minimal mass dynamics |lugll;2 = 1Ol 2,
and then, from this classification, to complete the description obtained in Theorem 1.1
in the (Exit) regime. Indeed, we will show that for o9 small enough, the (Exit) case is
directly connected to the understanding of minimal mass dynamics.

1.3. Minimal mass dynamics. The question of existence and possibly uniqueness of
minimal blow up dynamics for dispersive and parabolic PDE’s has motivated several
works since the pioneering result by Merle [32] for the mass critical nonlinear Schrodin-
ger equation:

(NLS) idu+ Au+ ulNu=0, @ x)eRxR". (1.5)

Let us recall that for (NLS), the pseudo conformal symmetry generates an explicit mini-
mal mass blow up solution

| X
SnLs(t, x) = e Tar ’QNLS(;) (1.6)

where OnLs is the ground state solution to

AONis — Onis + Ong ' =0, 0>0,0eH"

Merle [32] proved that Snis is the unique (up to the symmetries of the equation)
minimal mass blow up element in the energy space. The proof heavily relies on the pseudo
conformal symmetry. Such minimal blow up dynamics has also been exhibited for the
energy critical NLS and wave problems [11], [10], using the virial algebra and a fixed
point argument. For the inhomogeneous mass critical (NLS) in dimension 2,

0u + Au+ k(o) |ulu =0,
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while Merle [33] derived sufficient conditions on k(x) to ensure the nonexistence of min-
imal elements, Raphaél and Szeftel [48] introduced a more dynamical approach to exis-
tence and uniqueness under a necessary and sufficient condition on k(x). A robust energy
method is implemented to completely classify the minimal mass blow up, in regimes such
that the inhomogeneity k influences dramatically the bubble of concentration (1.6)—in
contrast with direct perturbative methods developed in [1], [3], [4]; see also [18] for exis-
tence in the one-dimensional half wave problem.

Recall that for the mass critical (gKdV) problem (1.1), Martel and Merle [27] obtained
the following global existence result for minimal mass solutions with decay on the right.

Theorem 1.2 (Global existence at minimal mass, [27]). Let ug € H' with ||luo|| 12 =
1Ol 2 and

sup ng ud(x)dx < oo. (1.7)
xX>X0

x0>0

Then the corresponding solution u(t) of (1.1) is global fort > 0.

In other words, minimal mass blow up is not compatible with the decay (1.7). This is
in agreement with the analysis in [29] where the threshold dynamics for data in A be-
tween the stable (Blow up) and (Exit) regimes is proved to correspond to a solitary wave
behavior—and not to a minimal blow up. We refer to [40] for a further discussion of
threshold dynamics.

1.4. Statement of the result. The first main result of this paper is the existence and
uniqueness in the energy space of a minimal mass blow up element:

Theorem 1.3 (Existence and uniqueness of the minimal mass blow up element).

(i) (Existence) There exists a solution S(t) € C((0, 00), H') to (1.1) with minimal mass
ISl 2 = | Q2 which blows up backwards at the origin:

x+1/t+ct

1
S(I,X)—IITQ< "

)—)0 inL2a5t¢O
with speed
IS@l gt ~C*/t ast ] 0 (1.8)
for some universal constants ¢, C*. Moreover, S is smooth and well-localized to the
right in space:
vx>1, |S(1,x)| <e ¢, (1.9)
(ii) (Uniqueness) Let ug € H' with luoll;2 = | Q|2 and assume that the correspond-

ing solution u(t) to (1.1) blows up in finite time. Then u = S up to the symmetries of
the flow.
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Observe that the minimal element blows up with speed (1.8), which is the same as in
the (Blow up) regime obtained in Theorem 1.1. However, the case of (Blow up) in The-
orem 1.1 is shown to be stable under small perturbation in .4, while minimal mass blow
up is unstable under perturbation of the data S(0) — (1 — ¢)S(0), & > 0, since the cor-
responding solution has subcritical mass and is thus global in time. This shows that the
decay assumption to the right in Theorem 1.1 is essential and that the minimal blow up
solution has slow decay to the left.! The nature of the minimal blow up is different from
that of the stable blow up. We also refer to Part III [30] for examples of exotic blow up
rates for initial data with slow decay.

‘We now relate the (Exit) case in Theorem 1.1 to the minimal mass blow up dynamics.
We claim that at the (Exit) time, the solution is L? close up to renormalization to the
unique minimal solution S(¢).

Theorem 1.4 (Description of the (Exit) scenario). Let u(t, x) be a solution of (1.1) cor-
responding to the (Exit) scenario in Theorem 1.1 and let t;; > 1 be the corresponding
exit time. Then there exist 0* = o*(a*) (independent of u) and (A};, x,}) such that

I 2ues, Mix 4+ x)) — S(*, 2)|l 12 < 81 (a0),

u’

where 81 (atg) — 0as ag — 0.

Note that uniqueness in Theorem 1.3 is an essential ingredient of the proof. In view of
the universality of S as attractor to all defocusing solutions, and in continuation of Theo-
rem 1.3, it is an important open problem to understand the behavior of S(¢) as t — oo. For
the mass critical (NLS), the explicit formula (1.6) ensures that Snis scatters as t — 00,
and hence it is a connection from oo to 0. For (gKdV), the decay in space (1.9) of S(¢, x)
on the left, combined with Theorem 1.2, ensures that S(¢) is globally defined for ¢t > 0,
but scattering as  — o0 is an open problem.> We conjecture that S(¢) actually scatters,
and because scattering is a property open in L? [16], we obtain the corollary:

Corollary 1.5. Assume that S(t) scatters as t — oo. Then any solution in the (EXxit)
scenario is global for positive time and scatters ast — 00.

Related rigidity theorems near the solitary wave were recently obtained by Nakanishi and
Schlag [42], [43] for supercritical wave and Schrodinger equations using the invariant set
methods of Berestycki and Cazenave [2], the Kenig—Merle concentration-compactness
approach [14], the classification of minimal dynamics [10]-[12] and a further “no return”
lemma in the (Exit) regime. This approach relies on the virial algebra which is not known
for (gKdV).

We expect the strategy of the proof of Theorem 1.4, reducing the dynamics of defo-
cusing solutions to the sole description of the minimal mass solution, to be quite general.

' Remember that it blows up backwards in time.
2 By scattering for (gKdV), we mean that there exists a solution v(z, x) to the Airy equation
0V + Vxxx = 0 such that lim;— o0 |S(t) — v(®)ll ;2 = 0.
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Notation. We introduce the generator of L? scaling:
Af=3f+yf"

We use the L? scalar product

(f.8) = /R F(x)gx)dx.
Let the linearized operator close to Q be

Lf =—f"+f-50 (1.10)

For a given generic small constant 0 < «* < 1, §(«*) denotes a generic positive small
constant with
§(@*) = 0 asa* — 0.

Given an interval I of R, we let 1; denote the characteristic function of /.

1.5. Strategy of the proof. Let us give a brief insight into the strategy of the proof of
Theorems 1.3 and 1.4.

Step 1. Modified blow up profiles. We construct the minimal element using a variation
of the compactness argument used for the construction of nondispersive objects in [31],
[22], [6], [48]. Near blow up time, this solution will admit a decomposition
ds _ 1 X = x(1)
a0 )T (1)
e(t) > 0inH'asr | 0.

u(t, x) = (Qb(r) +€)(s,y)  with

’

1
)\1/20)

Here Qy, is the slow modulated deformation of the ground state constructed in [29] which
formally leads to the dynamical system

by +2b* =0, e A(r) = €7,
—As/Ah = b, T b)) = =A%),

and hence the blow up speed (1.8).

Step 2. The formal argument. Following [31], [48], we could build the minimal element
by considering the solution u, (¢) to (gKdV) with data

A2 (1) A(tn)

and show that there exists a time 79 > 0 independent of n such that

lun o)l gt S 1 ast, | 0.

Such an estimate is at the heart of the proof and would be a consequence of the fine
monotonicity properties exhibited in [29]. Passing to the limit 7, — 0 automatically
produces the expected blow up element.

U(tn) = — Qb(m)(x_X(tn)) with A1) = £t b(t) = —032(1y)
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We will argue slightly differently and propose a scheme adapted to the proof of both
Theorems 1.3 and 1.4 and which as in [40] illustrates the fact that the minimal element
can be obtained as the limit of a sequence of defocusing solutions. Indeed, we pick a
sequence of well-prepared initial data

un(0) = Qp,0, bn(0) =—1/n,
which by construction have subcritical mass
lun O lz2 = 1Qll2 —¢/n+o(l/n).
Such solutions are automatically in the (Exit) regime of Theorem 1.1. Moreover, we have
from [29] a complete description of the flow for t € [0, ¢,7]: the solution admits a decom-
position
An (1)

where to leading order the modulation equations for (b,, A,) are given by

n (%) = ———(Qpy) + en)(r, x_—x(”) (1.11)
(@)

bn(t)/kﬁ(t) ~b,(0) =—=1/n, (Ap)r ~ —by(0),
i.e.
A1) ~ 1 =bp(0)t,  by(r) ~ by(O)A2(1). (1.12)

The (Exit) time ¢, is the one at which the solution moves strictly away from the solitary
wave, which in our setting is equivalent to

bu(t}) = —a*

independent of . This in particular allows us to compute ¢ and show using (1.12) that
the solution defocuses:

A2(6¥) ~ by (t) /by (0) ~ na*  asn — oo.
We therefore renormalize the flow at ¥ and consider the solution to (gKdV) with data at
t¥ given by the renormalized u,, at 7}, explicitly

1/2
vp(t,x) = )m/ (t:)un(tn )Vn(l;)x + Xn (t:))s Iy = t: + T)Lz(t:)-

Then by a direct check, v, admits a decomposition

1 X = Xy, (1)
Un (T, X) = 75— (O, + &) T ——
A (T) )\’vn(f)

Un
with, from the symmetries of the flow,
An(tz) X (tr) — xp(tn)

Ly, () = e T
An (1) A ()
bvn (t) = bp(ty), Ev, (t) = en(ts).

)\vn (T) =
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The renormalized parameters can be computed approximately using (1.12):
Mt 4+ 123 (1) 1
An (1) An (1)

D (£5) — Ty (0023 (1) = 1 — Thy (A2 (1))

)\v,, (r) ~

[1 = by (0) (& + TA (1))

An ()
=1—1b, (1)) =14 ta™.

Letting n — o0, we therefore expect to extract a weak limit v, (0) — v(0) such that the
corresponding solution v(7) to (gKdV) has minimal mass [|[v(0)||;2 = || Q]| ;2 and blows
up backwards at some finite time t* ~ —1/a™ with blow up speed A,(t) ~ 7 — 7%,
ie. (1.8).

The extraction of the weak limit now requires sharp control on the remaining radia-
tion &,, . Here an essential use is made of the fact that the set of data u,, (0) is well-prepared
as this induces uniform bounds for &, (0) = ¢,,(¢,)) in H I and allows us to use the H!
weak continuity of the flow in the limiting process.

Step 3. Solutions in the (Exit) regime. Theorem 1.4 follows similarly by considering
sequences (ug), of data with || (ug),l;2 — [|Qll.2 such that the corresponding solution
to (gKdV) is in the (Exit) regime. We write explicitly the solution at the (Exit) time in
the form (1.11), renormalize the flow and now aim at extracting a weak limit as n — oo.
The architecture of the proof is similar, except that we have lost the fact that the data is
well-prepared, which destroys the uniform H ! bound on v, (0). We therefore use two new
tools: a concentration-compactness argument on sequences of solutions in the critical L2
space in the spirit of [14] using the tools developed in [17], which allows us to extract a
nontrivial weak limit with suitable dynamical controls; and refined local H ! bounds on
v, (t) in order to ensure that the LZ limit is in fact also in H'!. Hence the weak limit is a
minimal mass H' blow up element.

Step 4. Uniqueness. It remains to prove the uniqueness in H' of the minimal element.
This is a delicate problem and here we adapt the direct dynamical approach developed
in [48]. The first step is to show that any A minimal blow up element blows up with
the blow up speed (1.8). Here the proof relies first on exponential decay estimates of
minimal elements proved in [25], which allow us once again to apply the monotonicity
machinery developed in [29]. Once the blow up speed is known, one may integrate the
flow backwards from the singularity and show that the blow up element is close in a
strong sense to the S(#) minimal element previously constructed. It remains to show that
the difference is exactly zero. This requires revisiting the monotonicity properties for
the difference of two such solutions, and showing that the previously obtained a priori
bound on the solution implies that the difference is exactly zero.> Let us emphasize that
as in [48], [40], we are forced to work with a finite order approximation of the solution,*
and therefore this step is always delicate.

3 This equivalently means that the integration of the flow from blow up time defining the minimal
blow up element is a contraction mapping in a suitable function space.
4 And not arbitrarily degenerate as in [3] for example.
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2. Nonlinear profiles and decomposition close to the soliton

In this section we collect a number of tools which can be explicitly found in the literature
and which we will use in the proof of the main results. We start by recalling the status
of scattering theory and profile decomposition in the critical L? space for (gKdV). We
then recall the nonlinear decomposition of the flow for data near the ground state, and the
main monotonicity formula at the heart of the analysis in [29], which will again play a
distinguished role in our analysis.

2.1. Cauchy problem and scattering from [15]. We use the notion of strong solution
in the sense of Kenig, Ponce and Vega [15]. For ug € L?, we denote by v(t) = W(t)ug
the solution of the Airy equation v; + vy, = 0 with v(0) = vg. The following space-
time Strichartz type estimate proved in [15] is essential in the resolution of the Cauchy
problem for (1.1) in L? and H':

IW@wvoll 510 < llvoll 22 2.0
We recall the following classical results.

Theorem 2.1 (Kenig, Ponce, Vega [15]).

(i) (L? theory) The Cauchy problem (1.1) is locally well-posed in L*: for all ug € L?,
there exists a unique L? solution of (1.1) defined on a maximal interval of existence
[0, T). There is continuous dependence on the data in L%, and the blow up alterna-
tive holds:
T < oo implies ”””LngTO = 00.

Moroever, there exists 6 > 0 such that ||lugl| 2 < & implies that the solution is global
with ”””Lf.L;g < 00.

(i) (H! theory) The Cauchy problem (1.1) is locally well-posed in Hl.'for allug € H',
there exists a unique H' solution of (1.1) defined on a maximal interval of existence
[0, T). There is continuous dependence on the data in H', and the blow up alterna-
tive holds:

T <oo implies lim|0xul;» = oo.
1T

(iii) (Scattering and stability of scattering) Let u(t) be a global L? solution of (1.1). If
”“”L5L},8 < 00, then the solution u(t) scatters at oo, i.e. there exists var € L? such
that

. _ + —
Jim flu() = Wy ll2 = 0.

The set S = {ug € L?: u(t) is global and scatters at oo} is open in L2

Point (iii) of Theorem 2.1 follows from [15] and standard arguments (see e.g. [14] for sim-
ilar arguments in the case of nonlinear Schrédinger equation), and means that scattering
is a stable regime without any assumption on the size of the solution.
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We now recall the known results from [49] on profile decomposition in the critical
space of sequences of solutions to the Airy equation which describes the lack of com-
pactness of the Strichartz estimate (2.1). For any xo € R and A > 0, define an operator
8xo 1 LAR) — L*(R) by

(8202 f1(¥) := A2 £ 0.7 (x — x0)).
Definition 2.2. For j # k, T} = (AL, &), x), t1)p=1 and TF = Ok gk xk 4k 1 in

(0, 00) x R3 are orthogonal if one of the following holds:

n—oo

ST ARY: J1el _ gk
e lim )\_k'i‘p"')\n@n_én' = 00,
n n

o (M), &) =k g and

lim

n—oo

<|tf: —tnl | 31 — 6l | i = x + 30 —r,i‘)(s,{>2|> e
(A3 ()2 ¥ -

Lemma 2.3 (Profile decomposition, [49]). Let {u,},>1 be a sequence of real-valued
functions bounded in L*. Then, after passing to a subsequence if necessary, there
exist (complex) L? functions {¢’ }i=1 and a family of orthogonal sequences l",{ =
Od &l xi, 1)) € (0, 00) x R3 such that for all J > 1,

_/ 93 I
wn= ) € (g i Re(e I O]) 4wy, 2.2)
I<j=<J

where the «E,f satisfy the following property: for any 1 < j < J, either %‘,{ = 0 for all
n>1or&r, — coasn— oo. Here, w,{ € L%(R) is real-valued and

: : 1/6 ,—183 . J —193, J
Jlggo h’gso‘ép{i“aﬂ [oe~ 5w, ||L§x(RxR) + e wy, ||L§L}0(RxR)} =0. 23)
Moreover, for any J > 1,
) R I
ngngo{||un 13— D lIRe[e™5 ™ 1g7]|7, — IIw,{Iliz} =0. (2.4)
1<j<J

Using this lemma for the study of the nonlinear flow (1.1) requires a suitable perturbation
theory:

Lemma 2.4 (L2 perturbation theory, [17]). Let I be an interval of R with O € I, and let
ii be an L? solution of
ur + (Uxx + MS))C = €x

on I x R for some function e. Assume that

Nl oo 21 xmy + Nl 510wy = M
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for some M > 0. Let u(0) € L? be such that
[ (0) — i(0)|| 2 < M’,
193 -
lle™" @(0) = @O s 1007y + el 11207 5m) < €

for M’ > 0 and for some small 0 < ¢ < €y(M, M'). Then the solution u(t) of (1.1)
corresponding to u(ty) is defined on I and we have the bound

i = il 51107y + e = il por2 1y < COML M. @5)

2.2. Approximate self-similar profiles. We recall the existence of suitable approximate
self-similar solutions which give the leading order profile of solutions with data near Q.
The specific sutrcture of these profiles drives both the blow speed in the (Blow up) regime
and the speed of defocusing in the (Exit) regime. Let ) be the set of functions f €
C*®(R, R) such that

Vk=0,1,2...,3Ck,rx > 0, Vy e R, |fO)| < Ce(1 +yD*e P (2.6)

Let x € C*°(R) besuchthat0 < x < 1,x'>0onR, x =1on[-1,00), x = 0on
(=00, —2]. Define
xo(y) = x(bl"y), vy =3/4 2.7

Lemma 2.5 (Approximate self-similar profiles Qp, [29]). There exists a unique smooth
function P such that P’ € Y and

wpy=aQ. tim po =3 [0 mrep=o. @8
1 2
r.0=5([e) =0 wor-o0 9)

Moreover, the localized approximate profile

Op(y) = Q) +bxps () P(y) (2.10)
satisfies:

(i) (Estimates on Q) Forall y € R,
106 S e P+ 161201161 y) + ¢ PV?), (2.11)
100 S e+ 1ble™ 2 4 bRV, (b7 y)  fork =1 (2.12)

(i) (Equation of Qp) Let
~W, = (Q) — Qb+ 0)) +bAQs. (2.13)
Then, forall y € R,

(W] S b1 Loy (167 y) + b2 (V2 + 101 (1B7 y)),  (2.14)
()] S IBITEDY L (161 y) + b2V fork > 1. 2.15)
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(iii) (Mass and energy properties of Qp)

V 0; - (/ Q2+2b/PQ>’ < P>, (2.16)

‘E(Qb)er/PQ‘ <. 2.17)

2.3. Geometrical decomposition of the flow. Let u € C([0, 1], H 1y be a solution
of (1.1) close in L? to the manifold of solitary waves, i.e. we assume that there exist
(A1(1), x1(2)) € R% x R and & (¢) such that

vt € [0,50], u(t x)—;(Q—f-s)(t x_—xl(t)> (2.18)
o R U ) '
12
Vi e[0,70], ller(®ll2 + ( / (aysl)ze—y'”dy) < Ko, (2.19)

for some small enough universal constant kg > 0. This decomposition is refined using the
Q) profiles and a standard modulation argument.

Lemma 2.6 (Decomposition and H 1 properties, [29]). Assume (2.19).

(i) (Decomposition) There exist C! functions (A, x,b) : [0, o] — (0, 00) x R2 such
that

Vi € [0,%0],  e(t,y) = A 2@ult, \(0)y + x() — Qb () (2.20)

satisfies the orthogonality conditions

(@), yAQ) = (e(1), AQ) = (¢(r), Q) =0, (2.21)
and
ez + b)) S 8ko),  Ne@®llgr S SUler®] ). (2.22)
(i1) (Equation of ) Let
t dt/
s = /0 13—(1") and sg = s(tp). (2.23)
Forall s € [0, sg],
& — (Le)y + bAe = <% +b)(AQb + Ag) + (% — 1)(Q;, +e),
+ @ + W — (Rp(e))y — (RNL(E))y, (2.24)
where Wy, is defined in (2.13) and
@y = —bs(xp + vy(X6)y) P, (2.25)

Ry(e) =5(0} — 0e,  Rnp(e) = (e + Q1) — 504 — 03, (2.26)
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(iii) (Estimates induced by the conservation laws) On [0, sg],

le) 1172 S 1b(s)] + ‘/u% — / 0*

1202(9)Eo + §b)I1QI7 1 — lley®)172] S B> () + le@)172 + 8l 2)lley ()17

: (2.27)

(2.28)
(iv) (Rough modulation equations) On [0, so],

by x 172

Fofefi s (o) e e
172
by 4+ 2b°| < |b|</ 8zey|/10) + b +/82e*‘yl/‘°. (2.30)
(v) (Minimal mass) If in addition |lu(t)|;2 = ||Q|l;2 then Eo = E(up) > 0 and on
[0, so0l,

b(s) <0,  Eor*(s) S 1b(s)| + @7, S Eor’(s). (2.31)

The proof of Lemma 2.6 is given in [29], except (2.31) which we prove now.

Proof of (2.31). Using the decomposition (2.20), one has
/“2=fQ§+/82+2/8Qh.
Since (e, Q) = 0 and x,(y) = x (|b[¥*y),

12
(6. 0n)| = bl (6. Po)| < |b|5/8(f sz> < |b|‘/8/82 s @23

Moreover, by (2.16),

/Q§=/Q2+2b/PQ+0(|b|5/4).

Thus, we obtain in general

/u2=/Q2+2b/PQ+/82+O(Ibll/g)(|b|+f82>. (2.33)

In particular, using the minimal mass assumption [ u?> = [ Q?, we obtain

2b(P. Q) + / 6 = a(xo>(|b| + / 82), (234)
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which implies » < 0. Now we write the conservation of energy using (¢, Q@) = 0 and
(2.17):

202Ey = 2E(Qp) —2/8(Qb)yy +/e§ - %/[(Qb )0 — 0]
=—2b/PQ+0(b2)+f8§—5/Q482—%fsﬁ
=2 [ el(@s = 01y + (05 - 0145 [ (0* - 0
- % /[(Qb +6)° = 0) — 60je — 150p¢” — ¢°].

1/2
L2

1/2

2 and

We estimate the nonlinear terms using the Sobolev bound [le[lz < [l&y |l
thus

222E) = —2b/PQ+/s§—5/ Q482+0(|b|1/8+||8||H1)(|b|+f82>. (2.35)

llell

Combining with (2.34), we obtain
202Eg = (L, &) + 8(ko)(Ib] + llel13,0).

The choice of orthogonality conditions on € ensures (see [29, Lemma 2.1]) the coercivity

of the linearized energy, i.e. (L, &) = ||8||§_11, and thus ||f9||§1l < A2 Eo + 8(ko)|b|, which

combined with (2.34) implies (2.31). m]

The modulation equations can be sharpened under an additional L! control of the solu-
tion.

Lemma 2.7 (Refined laws for H! solution with decay, [29]). Under the assumptions of
Lemma 2.6, assume moreover the uniform L' control on the right:

vt € [0, 1], / le(®)] < 8(ko). (2.36)
y>0

Then the quantities J1 and J, below are well-defined and satisfy on [0, t]:
o (Law of L) Let

y

4
p1(y) = W /;OOAQ, J1(s) = (e(s), p1). (2.37)

Then for some universal constant c1,

As 1 A 172
7+b+c1b2_z<(h)s+57h>'s / eze—'y/10+|b|(/ e%—y'“o) . (238)
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o (Law of b) Let

16 ((AP, 0)
- (J0)?

1
02 AQ+1”——/ Q>—8p1, J2(s) = (e(s), p2).  (2.39)

IAQI?, 2

Then for some universal constant c;,

2 3 Las
by +2b° +cb” + b (J2)3+2 AJZ

< /sze_M/lO—i- |b|*. (2.40)

e (Law of b/A%) Let
p=4p1+p2, J=1(sp).
Then p € Y so that |J| < (f e2e~PVINYZ and for cg = ¢ — 2¢y,

d (b b 1 A | 1 2 _iyl/10 4
() (a3 rags s (o). ea

2.4. Weak H' stability of the decomposition. The geometrical decomposition of Lem-
ma 2.6 is stable under weak H' limits.

Lemma 2.8 (Weak H' stability and convergence of the parameters, [23]). Let u,(0) be
a sequence of H' initial data such that

u, (0) = u(0) € H' asn— oo.

Assume that for some T > O, for all n, the corresponding solution u,, of (1.1) exists and
satisfies (2.19) on [0, T1]. Assume further that the decomposition (A, X, by) of u, given
by Lemma 2.6 satisfies

Vie[0,T1], O<c<iut)<C, A(0)=1, x,(0)=0. (2.42)

Then the H' solution u(t) of (1.1) corresponding to u(0) exists on [0, T1], satisfies (2.19)
and its decomposition satisfies

Vi €[0,T1], &,(t) —e@), l(@®)—> A1), x,(t) > x@), bu(t) — b(@).
(2.43)

This lemma is similar to a result proved in [23, Lemma 17 and Appendix D], and therefore
we omit its proof.

2.5. Main monotonicity functionals from [29]. We now recall the monotonicity for-
mula at the heart of the analysis in [29] and on which we shall heavily rely again. We
refer to [29] for a further introduction to the nature of these functionals and the associated
rigidity of the flow implied by (2.57).
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Let ¢, ¥ € C*°(R) be such that

e fory < —1,

p(y)=31+y for —1/2 <y <1/2, ¢ (y) >0, Vy e R,
y? fory > 2,
e?y fory < —1, ,

For B > 100 to be fixed, let

Ye(y) =v(y/B), @B =¢(y/B),

and define

N(s) = / ex(s, NYB() dy + / & (s, Y)op(y) dy.

(2.44)

(2.45)

(2.46)

Proposition 2.9 (Monotonicity formula, [29]). There exist @ > 0 and 0 < k* < kg such
that the following holds for B > 100 large enough. Assume that u(t) is a solution of (1.1)
which satisfies (2.19) on [0, ty] and thus admits on [0, ty] a decomposition (2.20) as in
Lemma 2.6. Let so = s(tp), and assume the following a priori bounds, for all s € [0, so]:

(H1) (Smallness)
lle(s)ll 2+ 1b(s) +N(s) <«

(H2) (Comparison between b and A)

&I +NG) _
EOEEE

(H3) (L? weighted bound on the right)

1
10 .2
yet(s,x)dx < 10(1 + —)
/y>0 )\lo(s)

For j € {1,2} let

Fj = f[eiwg +&2(1+ Tes — 5((e + Q) — 0f — 660} 5]
with
TJ=0-J)™ —1.
Then the following bounds hold on [0, so]:
(i) (Scaling invariant Lyapunov control)

dFi
= +uf<e§ + &%)y < Ibl*

(2.47)

(2.48)

(2.49)

(2.50)

2.51)

(2.52)
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(ii) (Scaling weighted H! Lyapunov control)

d | F 123 2 2 |b|4
LI [ s o)
(>iii) (Pointwise bounds)
1|+ 2] SN2, (2.54)
NSF SN, j=12 (2.55)

The integration of the modulation equations of Lemma 2.7 with the dispersive bounds of
Proposition 2.9 implies the control of the flow by the sole parameter b:

Lemma 2.10 (Control of the flow by b, [29]). Under the assumptions of Proposition 2.9,
the following hold:

(i) (Control of the dynamics for b) Forall 0 < s1 < 53 < S0,

852
/ b*(s)ds < f (e3(sD)VB + &2 (s1)9p) + [b(s2)| + [b(s1)], (2.56)
S1

b(s2)  b(s1)
A2(s2)  A%(s1)

- C_*[bz(n) b?(s2)
T 10 [A%(s1)  A2(s2)

1 2 2
+ 3260 /(sy(smme +e (ﬁ)(ﬂ};)},
(2.57)
for some universal constant C* > 0.

(i) (Control of the scaling dynamics) Let Ao(s) = A(s)(1 — J; (s))2. Then on [0, so),

A
‘—( 0)s + b+ clb2
A0

5/eZe*'y‘/‘OJr|bwl/2+|b|3. (2.58)
(iii) (Dispersive bounds) Forall 0 < s; < sp < 80,

N(s2) +/

S1

52

[ / (€7 + ) ()¢ + |b|4<s>} ds S N(si) + (167 (s2)] + B (s1)]).

(2.59)
N(s2) [ 2 2 , 4 :| ds _ N(s) [|b3(S1)| |b3(S2)|:|
Az(sz)—lr/“ |:/(8y+8 )($)pp+1b]7(s) ) © Az(s1)+ 260 + 60 |
(2.60)

2.6. Localization in space and decay properties of minimal mass solutions. Minimal
mass blow up solutions have been studied in some detail in [27] using tools developed
in [25] and [26]. Recall that the main result of [27] is the nonexistence of minimal mass
blow up solutions, assuming initial decay in space. In proving this result, several general
properties of minimal mass blow up solutions were derived. In the next lemma we gather
all useful information which can be deduced from [27] on general minimal mass blow
up solutions. Note that at this stage, we do not know whether a minimal mass blow up
solution should blow up in finite or infinite time. See Proposition 4.1 in Section 4 for
refined information.
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Lemma 2.11 (First properties of minimal mass blow up solutions, [27]). Let u(t) be a
solution of (1.1) defined on (T, 0], which blows up backwards in finite or infinite time

—o00 < T < 0. Assume
/uz(O) =/Q2. (2.61)

There exists t1 > T close to T such that for all t € (T, t1], u(t) or —u(t) admits a
decomposition (A(t), x(t), b(t), €(t)) as in Lemma 2.6, with

lim A(r) = 0, (2.62)
t—T

and forallt € (T, 1),

t 1204 24t —|yl/10
/ PO C T iy w1 + 160 S 20F. (263)
T

A3(t)
Moreover,
forallt,t' € (T,t), t <t implies A(t)) > 21—4A(t), (2.64)
forallt € (T,ty) andy > 0, |e(t, y)| < e™¥/2000, (2.65)

Proof. Letu(t) € C((T,0], H ) be a general backward minimal mass blow up solution
defined on (7, 0] and blowing up in finite or infinite time> —co < T < 0:

lim Ju, (1)) 2 = oo. (2.66)
t—T

From standard concentration-compactness arguments® and using the mass and energy
conservations, either u(z) or —u(¢) satisfies (2.18) and (2.19) for ¢ close to T, with in
addition

lerllgr >0 ast—T

thanks to the minimal mass assumption. Therefore, possibly considering —u(t) instead
of u(t), there exists typ > T such that the solution u(¢) admits on (7, fg] a decomposition
given by Lemma 2.6:

_ 1 x —x(t) 567
”(t’x)_m(Qb(’)+8)<t’ W) (2.67)

with
Ve (T, 0], [b@)|+lle@®lg < at, (2.68)

3 Note that the uniqueness statement in Theorem 1.3(ii) concerns only finite time blow up solu-
tions. Actually, in this paper we also prove the nonexistence of minimal mass solutions blowing up
at infinity (see Proposition 4.1 and Section 5). However, we do not treat the case of global minimal
mass solutions blowing up only on a subsequence of time.

6 See for example the lecture notes [45].
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where o* > 0 is any given small constant. With this decomposition, the (finite or infinite
time) blow up assumption (2.66) is equivalent to: lim;,_, 7 A(t) = 0, and by (2.31),

b(t) <0, Eo>0, [b®)]+Ille@®? < A%(1)Eo. (2.69)

Now, we recall results from [27]. First, recall that the solution u(t: x) is decomposed
in a different way in [27, Lemma 1]. Indeed, there exist C! functions A and ¥ such that

Et,y) =M 0u@, A(t)y + 1) — ()

satisfies the orthogonality conditions

[AQ(y)é(t,y) dy = /yAQ(y)S(t,y) dy =0.

Note that one easily compares this decomposition with (2.67), in particular, combining
the orthogonality conditions of ¢ and &, one obtains

AD 200 gy )
1 ——=|+1b@)| < g )e M dy . (2.70)
A1)
Under the general assumptions of Lemma 2.11, we now claim that for some T < #; < to,

foralls/,r € (T, 1), ift <1 thenA(r) < 4i(t), (2.71)

and
forallt € (T, 1)) and y > 0, |&(z, y)| < e™>/1000, (2.72)

To prove (2.71) and (2.72), we invoke the arguments of [27, Section 4]. Recall that
the main result of [27], stated in Theorem 1.2 of the present paper, asserts forward global
existence for minimal mass solutions under the decay assumption (1.7). Unlike Section 3,
based on the decay assumption on the initial data, Section 4 of [27] does not make use of
this assumption, except when asserting that blow up occurs in finite time. At this point,
it is important to note that here time is reversed with respect to [27], thus the left and
right in space are also reversed (recall that if u (¢, x) is a solution of (1.1), then u(—¢, —x)
is also a solution of (1.1)). First, using [27, Lemma 4], one obtains uniform exponential
decay on the right in space, on a special sequence of times t, — T,

forall y > 0, [&(ty, y)| < e /1000, (2.73)

Then, invoking Step 2 of the proof of [27, Proposition 2, p. 401], we obtain (2.71), i.e.
the almost monotonicity of A and in return, using Lemma 4 again, the decay on the right
(2.72) for all time.

Note that from (2.69) and (2.72), we have

f y19%2(t, y)dy > 0 ast — T. (2.74)
y>0
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Now, using further [27, p. 405], we claim that, forall T < £, < 11,

N[ g2e—Iy1/10* 4 s

/ JEedy < 32(1) Eo. (2.75)
15 )\43

Indeed, it is proved there that forall T < 1, < #q,

" yl/10* "([EQ)?
[V dy [ew+ [+ (I;Q Sa @79
n

%) )\3

and that there exists X(L) (relat~ed to yet another decomposition of u (¢, x) which requires
the decay (2.72)) with A(¢) & A(¢) such that, for a universal constant ¢y > 0,

3/4
< ( / §2e|y|/4) . (2.77)

Since ftt; A dt < Xz(tl) < 22(t1), we obtain (2.75) by integration.
Passing to the limit as , — T in (2.75), we obtain

—Eo\2 §/§Q <0, ‘2/5Q+COX2X,

N[ g2 I/10* 4 3
% dr S 330 Eo S 121 Eo, @78)
T

and thus, using (2.70),

f f826—2\y|/104 dy

3 dr < 2%(11) Ey. (2.79)
T

By (2.30), we have % < —b; + & [ e2¢~PV/10 dy and thus

n[ g2e=IN0 gy

dt < A%(1)Eo.
30 S ATt Eo

131 bz(t) )
<
/T FEry dt <A (1)Eg+ C

Now, we claim

/ 062(¢, y) dy < A2(0) Eo. (2.80)
y>1

Indeed, consider a smooth function

0 fory <0,

p10(y) = { 10

: /
y fory > 1, with P10 = 0.

Using the computations of [29, proof of Lemma 3.7] on & (the computations for the de-
composition (&, A, X) are actually simpler, since they correspond to the choice b = 0), we

obtain 110
1 d (- gce VIV d
L d (s / o) < L 0dy
0 dr )»3
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and thus, using (2.64), (2.78),

/§01052(t1,y)dy 5/(/)1052(t2,y) dy 4+ 2*(11) Eo.

Passing to the limit as o, — T and using (2.74) we obtain, forall T < t < fy,
/ y98%(t, y)dy < A*(1) Eo.
y>1

Finally, by (2.70) and (2.69), we obtain (2.80). m]

3. Construction of a minimal element

This section is devoted to the proof of the existence of a minimal blow up element. We
propose a strategy of proof slightly different from the recent approach developed for the
construction of nondispersive solutions in [5]-[7], [18],[19],[22], [28], [31], [48], mainly
to prepare the analysis of the (Exit) regime in Theorem 1.4; see also Section A.2 and
Remark 3.2 below.

The strategy of the proof is as follows. We consider a well-prepared sequence of initial
data (u,) with

luall2 < 1Ql,2 and  u,(0) — Qin H'.

By Theorem 1.1, such solutions are in the (Exit) scenario and we denote by #,* > 0 the cor-
responding exit time. The estimates extracted from [29] allow for a complete dynamical
description of the (Exit) regime and in particular of the defocusing structure of the solu-
tion at 7. This explicit detailed knowledge allows us to renormalize the flow and extract
in the limit n — oo a solution v € C((t*, 0], H') which blows up at time * < 0 and has
subcritical mass ||v||;2 < ||Q]l;2. But then the global well-posedness below the ground
state mass implies |[v|;2 = ||Q|l;2 and v is an H ! minimal mass blow up element.

Step 1. Well-prepared data. Let u, (0) = Oy, ), where b, (0) = —1/n so that
up(0) e AC H', u,(0)—> Q inH'asn— .

By (2.16), we have [ u%(O) <[ Q2. In particular, from energy and mass conservation,
and the Gagliardo—Nirenberg inequality (1.3), the solution u, () is global. We take n > 0
large enough and we apply Theorem 1.1. The solution u, being global, the (Blow up)
scenario is ruled out. The solution cannot converge locally to a solitary wave because of
mass conservation and the strictly subcritical mass assumption, hence (Soliton) is also
ruled out. Hence (Exit) holds and we define the exit time (related to the constant o™* of
Theorem 1.1) by
¥ =sup{t > 0:Vt' € [0, 1], un(t') € Tor}.

Note that #; — oo as n — oo from the continuous dependence of the solution of (1.1)
on the initial data, and the fact that Q(x — t) is a solution of (1.1).
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Now, we use refined information given in the (Exit) case by [29, Proposition 4.1]. In
particular, u, (¢) satisfies (2.19) and has a decomposition (A, x;, by, €,) as in Lemma 2.6
on [0, ¢;]. Moreover, (H1)—(H3) are satisfied on [0, #,], and by definition of u,,(0),

An(0) =1, x,(0)=0, b,(0)=-1/n, £,(0)=0. 3.D
In addition, from [29, proof of Proposition 4.1, (4.41)], we also have
forall0 <ty <t <tf,  Au(t2) = Sha(t). 3.2)

Note also that by continuity in time and the definition of 7,7,

inf Jlu (1) — 25 2 QOG ¢+ x0) 2 = @, (3.3)
ro>0, xpeR
o < un (%) — 2y P QO )+ xa () 12 < 8(e*). (3.4)

Step 2. Structure of the defocusing bubble. From Lemma 2.10, (3.1) and (3.4), we will
deduce:

Lemma 3.1.
(i) (Estimates on [0, £])

1—8@) _ _ ba() _ 148"

Vi € 10,171, " < Az(t) pa (3.5)
len @31 S 2@ /n < 8(a®). (3.6)
(ii) (Estimates at #,¥) For all n,
(@) S =ba(ty) < 8(a™). 3.7
2 t*

@)? < /Eﬁ(tff) S, (@f) e ( ) S 8(a™), (3.8)
0 <c(@®) < 13( *) < C(a™). (3.9)

(iii) (Control of the dynamics on [0, £,])

b (1) b (1)

—(1 - 6(a )) 2 = < (Ao (1) < —(1 +d(x ))Aﬁ(t;;)' (3.10)

Proof. Using (2.33) and (2.35) at + = 0, we obtain
/”3(0) = / 0~ E/PQ +0m™%, 2Ew,(0) = %/ PO+ 00",
n n

Combining the conservation of the L? norm, the conservation of energy and (2.33), (2.35),
we obtain, at any ¢ € (0, ¥

B 5/82+1/n, (3.11)
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and
(Len (1), a(t)) = 222 E (1, (0)) + / uZ(0) — / Q%+ 0™ + Jea ).
Thus, from ||8,,(t)||Hl < (Ley(t), €,(2)), we obtain
a3 < An (@) /n. (3.12)
Next, recall that by (3.4),
o < by () Xb, ) P+ n(t) 12 < 8(a™),
and use (2.32) and (3.11) to obtain
@)* < / e2(tF) S 8@, (@) S —ba(t)) < 8(ah). (3.13)

Now, we use the dynamical information given by the rigidity property (2.57) and the
initialization (3.1): for all € [0, #,1],

(1+8(a™))bn(0) < by(1)/An (1) < (1 — 8(*))by 0), (3.14)

and thus by (3.13),
(@? S A2t /n < 8a™). (3.15)

Finally, let us prove (3.10) and (3.9). By (2.58), we have

b 8ze’|>’/10 b
‘( on>f—+ fT |{5|(N1/2+"’ D < 2(J\fn+|bn|2>.
I’l n ll
By (2.60), (3.1), and then (3.14), we have
Nn(r><|bn<t)|3+|bn(0)|3 (o n D]
A2() ~ A2(n) 2200 ~ A2(t)
Thus, again by (3.14),
) b (1))
—-(1-34 n Aon)e (1) < —(1+6 n
(1= 8@ 330 = Gon(0) = =(1+3@") 330
which is (3.10). We integrate on [0, ] and then divide by XA , () to obtain
b, () 1 b, (£5)
(= 8(@*) <1 — < —tF 2 (1 4 8(a¥)). 3.16
"xg(z;)( (™) < o () = "Af;(t;';)( +48(a™)) (3.16)
Hence using (3.15) and A, /Ao.n < N2 < §(a*), we get
1 —8(a* t* 1+ 8(a*
- (a)i T S + (a), (3.17)
by (1) A () by (1)

which together with (3.13) implies (3.9). O
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Step 3. Renormalization and extraction of the limit. Let

Ve =5 /331,01, =1+l @),

U (T, %) = A 2 G (e, 2 (05)x + x(£5)) (3.18)
a2 (%) Mn(tF)  x(tF) — x(tr)
= Gy (O 8’”(”’ TS R WS, ) G19

so that v, is a solution of (1.1) and belongs to the tube 7+ for T € [—t,;"/)»z 5, 0].
Moreover, its decomposition (A, , X, , £y, ) satisfies, on [—¢/ )»,31 5,01,

An(ty) Xp(te) — Xn (t:)
iy (n) = 2 )
A () ! A (87)

Ay, (T) = s by, () =bu(t), &, (T) = &,4(20).

(3.20)
By (3.7), (3.8) and (3.5), we have
Vo e [—65 /A1), 01, lew, (D31 S (™).
My (0) =1, x,(0) =0, (¢*)* < —by, (0) < 8(®).

Therefore, there exists a subsequence of (v,), which we will still denote by (v,), and
v(0) € H' such that

v, (0) = v(0) weakly in H', and |v(0) — Ol Sé(@™),
and, by (3.8) and (3.9),

o=~ - =T, T >0, —b() > b > 0.

Moreover, by (3.17),
_ * *
1 -6 <t < 1+ 68 )'
b* - - b*
We let v(7) be the backward H! solution of (1.1) with initial data v(0) at T = 0.

(3.21)

Step 4. Minimal mass blow up. We claim that v is a minimal mass blow up element,
lvliz2 = 1Qll 2 which blows up at finite negative time —t* with, for r close enough

to —1%, i .
1 —6§(®) 1+ 3(a”)
e S @l =
1+1/t 1+1/t

Indeed, we integrate (3.10) and obtain for ¢ € [0, ], n large enough,

(3.22)

* *

22(%) (I =68@a™)) < ron(t) —20,n(0) < 200 (1 + (™).

We conclude from (3.20) and the definition of 7,’ that for all = € [z,}, 0],

b (7, + 1)1 = 8(a™) = 10,0, (T) — Ao, () < b*(ry + (L +8(@™).  (3.23)
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Let 7o € (—7*, 0). From (3.8), (3.20) and &, (7;") = &,(0), we have
20,0, (1)) = A (0) /An(27) — 0 asn — oo,

and 1 — 8(a™) < Ao.y, /Ay, < 1+ 8(a*). Thus, we conclude from (3.23) that for n large
enough depending on 7y,

VT € [10,0], b*(r" + )1 = 8(@™) < Ay, (x) <" (" + 1)1 +8()),

and %b*(‘t* + 19) < Ay, (7). It follows from Lemma 2.8 that v(r) is well-defined and
Ay, (T) = Ay(7) on [70, O]. In particular, v exists on (—7*, 0], and for all 7 € (—t*, 0],

b*(* + 1)1 = 8(™) < Ap(7) < D*(r" + T)(1 + 8(a™)),

which together with (3.21) implies (3.22). Finally, by weak H'! convergence we have
[ v2(0) < lim,—o [ v2(0) = [ Q?, and since v blows up in finite time, [ v2(0) = [ Q2.
This concludes the proof of the existence of the minimal element.

Remark 3.2. We may rewrite this proof by saying that understanding the minimal mass
blow up scenario is in some sense equivalent to understanding how subcritical solutions
initially near the ground state move away from the ground state and start defocusing,
and here the sharp knowledge of the speed of defocusing is fundamental for the proof.
Another approach for the construction of the minimal blow up element in the continuation
of [S]-[71,[19],[22],[28], [31],[48] would be to take the initial data Q) at some time
t, 4 0 with b(t,) = t, and to obtain uniform H ! bounds on the corresponding forward
solution u, (¢) to (1.1) at a time 7o > 0 independent of n using the monotonicity machinery
of Proposition 2.9 and Lemma 2.10. It is not clear to us whether a direct fixed point
approach as in 2, [3], [10], [11], [21] is applicable here due to the poor localization in
space of the minimal element.

4. Sharp description of minimal mass blow up

We now turn to the proof of uniqueness in H'! of the minimal element. Let us stress that
uniqueness is always a delicate problem, in particular in the absence of suitable symme-
tries as in [28]. As in [48], the first crucial information is to derive the blow up speed for
all minimal elements, and here we shall use the a priori localization in space of minimal
elements given by Lemma 2.11 which allows us to use the monotonicity tools, Propo-
sition 2.9 and Lemma 2.10. Once the minimal mass blow up regime is sufficiently well
described, we may rerun the analysis of Proposition 2.9 for the difference of two such
bubbles and conclude that they are equal; this is done in Section 5.

4.1. Finite time blow up and blow up speed for minimal mass blow up solutions.
Our aim in this section is to derive sharp qualitative bounds on minimal mass blow up
solutions, improving general results stated in Lemma 2.11. In particular, we prove that
the blow up time is finite, 7 > —oo, and we specify the blow up speed and the behavior
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of the concentration point, which are essential preliminary pieces of information on the
singularity formation. Note that the additional information below requires the sharper
analysis of [29] and cannot be derived from [27]. We consider a minimal mass blow up
solution u(#), and in the setting of Lemma 2.11, we introduce the rescaled time

0 (s

s(t) = —/ —. “.1)
;A3

Recall that s(T) = —oo by a standard argument (see e.g. [25]).

Proposition 4.1 (Sharp bounds). Let u(t) be a solution of (1.1) defined on (T, 0], which
blows up backwards in finite or infinite time —oo < T < 0. Assume

/u2<0) = f 0%

(i) (Finite time blow up) We have
T > —o0.

(i) (Sharp controls near blow up time) There exist universal constants c, cx, cp and
£* = 0*(u) < 0, x* = x*(u) € R such that, fort closeto T,

MO =161 = T) + e e 1* ¢ = T)° + 016 — 1), 4.2)
- * koo _ 2
X0 =~y P el =D+ 0l =T, @)
b(t) _ g% b, 2 _ 3
20 E4+ep) ¢t =T)"+0[-T)"], (4.4)
NoO<@-T)°. 4.5)
(iii) (Estimates in rescaled time) For —s large,
1
ez S Il $576) S 1o (4.6)
s 1
N(s) + / / (e +&)(Nppds < re (4.7)
As Xs
- = — < <
‘)\ +b‘+ 3 1‘” sz IS @9
1 cflogls|] o 1
b(S)=z+S—2+S—2+O s_2 as s — —0Q, (49)

for some universal constants (c}, c;) € R x R.
(iv) (Global forward behavior) The solution is globally defined for t > T, u €
C((0, 00) x R) and for some C(t), y(t) > 0,

Vi>T, Vx>0, |u(t,x)| <C@t)e 7O, (4.10)
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(v) (Time decay of weighted Sobolev norms) For |s| large,

1

/82(s, )Y dy < o 4.11)

Forall9/B < w < 1/10, for |s| large,
A

3 K
> [@terspeay+ |
k=0 -

1
13y + €)™ o S o (4.13)

Remark 4.2. The constant £* in (4.2) depends on the solution, and the scaling u (¢, x) +—

(1, %) = A 7u(A3t, rox) leads to

4
1
> / @%e)* (s, e dyds' S —., (4.12)

o }=0 Is|

C(uny) = A3 (u). (4.14)

Proof of Proposition 4.1. From Lemma 2.11, E(u(¢)) > 0. Using the scaling invariance
of the (gKdV) equation, we consider the solution

iy (1, ) = A u(Adt, rox),

where 1o > 0 is chosen so that E(uy,(t)) < «*, «* being the small constant in Proposi-
tion 2.9. We work on u,, instead of working on u, all statements being scaling invariant.
Hereafter, we denote u;,, simply by u ().

Step 1. Entering the monotonicity regime. Note first that from Lemma 2.11 and
Eo < «*, (H1)-(H3) hold on (—o0, sg] for —sg large enough. The solution is therefore
in the monotonicity regime of Proposition 2.9 and Lemma 2.10 on (—o0, s¢].

Step 2. Rigidity and blow up speed. We state the key nondegeneracy relation:

*

b ' co b?
A2 2 A2

N <o@n®, <on? (4.15)

for some constant £* > 0.
Let C* > 0 be the universal constant in (2.57). Let us first remark that there exists a
sequence s, — —oo such that

ozl bis) = =C" [ +e0h, (4.16)

Indeed, assume for contradiction that there exists a time s* < sg such that (recall that
b <0)

Vs <s*,  |b(s)| < C* /(ei + D) (5)¢. (4.17)
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Thus, (2.58) implies

'S /8267\yl/10+ b < /(854—82)(5)90}9»
A0

where Ao(s) = A(s)(1 — J;(5))2. Using (2.59) we obtain

A s
Vs < s;, ‘10g< o(s) >‘ 5/ f(ai +‘92)(5/)(p}3 ds’ <1
s

) (s;‘

but together with
In/ao — 1] S I SN2 (4.18)

and (2.63), this contradicts the blow up assumption: A(s) — 0 ass — —oo. Since b < 0,
this concludes the proof of (4.16).
Inserting (4.16) in (2.57) yields the rigidity: for all » > 1 and all s such that 5, <
s = 50,
blsw) _ b(s) _ blsw)
A2(sn) T A2(s) T 2x%(sp)
We conclude using b < 0 and A(sg) = 1 that for all s < s,

b(s) _ b(so)
4b(so) < 20 =

<0. (4.19)
By (2.62) and (2.63) we have lim;_, o, AV(s) = 0. Using (2.59), we obtain, for s; < s,
52
N(s2) + / f(si + Mg ds SN (1) + B (s)l + [ (s2)].
S1
Thus, passing to the limit s1 — —o0, and using (2.69),
52
N+ [ [@+edgpas S 1061 3. (4.20)
—00
From (2.41), we have
d(b s\, b3
“(Ze CO—
ds \ A2 02
Letting s — —o0 in (2.60) yields

2] e b3
/ ﬁ(/ g2~ MI/10 4 |b|4> ds < = <t (4.22)
—00

Next, by (2.30), (4.22),

b3 1 byb 1 )
.Y - —IVI/10 o jpp
vi= s o[ et ).

1 _
< ﬁ(/ g2eMI/10 4 |b|4>. (4.21)
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so that by integration by parts and (2.29),

/f b 1 b(s) 1/S bZijLO(ﬁ)_ 1b2(s)+1/S b3+0(/\4)
Coo A2 A A2(s) 2/ o A3 A2 2] A2 ’

and thus 3 5
S b 1 b=(s) 4
— =—=——+00").
/_oo A2 2 A2(s)

It follows by integrating (4.21) and using (4.19) that

b
lim )L—(s) ={" <0, (4.23)

§—>—00 2
and more precisely, using |J| < N1/2 <23,

b co b? 4, 10l
2T R|R0M T

Step 3. Finite time blow up. From (4.20) and (2.54), we have

(1—e’)y <003). (4.24)

M=A+ORI) =r+ 00N =1+ 00Y, (4.25)
and then by (2.58), (4.24),

A A
_)L3(A0)t _ _()\‘O)S =b+6‘1b2+0(N+|b|Nl/2+|b|3)
0 0

=092 + (2 + 0,

here and below ¢ denotes various universal constants. Hence
—(ho)r = £ + ()45 + O(Ap). (4.26)

For ¢ close to T, we obtain (Ag); > £*/2 > 0, and thus ¢ vanishes backwards at some
finite time 7 > —o0; in particular, the solution blows up in finite time. Moreover, inte-
grating (4.26) on (7, t] for t > T close to T, using (4.25), yields

A(t) = ro(t) + OL(t — T)*1 = |€¥(t — T) + c|€*[*(t — T)* + O[(r — T)*1.

Together with (4.20), (4.15), this concludes the proof of (4.4), (4.2), (4.5).
We now integrate the modulation equation (2.29) for the blow up point:

1 x;

vy

1 2 172 1 3
:ﬁ[l—f-O(b +N )]Zﬁ[l—f-O(k )],
and thus, using (4.2), we obtain

1
5= 2el*+ 0t —T),

0= a0

which implies (4.3) by integration in time.
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Step 4. Sharp estimates in rescaled time. From (4.2),

to dt’ 1
=" == 1+ 0@ —T)).
' /z 3@ — T)3(1+ O((T —1')?)) 20043t — T)2( + 0( )
From Step 3 and (2.29)—(2.30), we thus get, in terms of the variable s,
1 +0(1) ]s / ) . ) 1 | +0(1)
A = s N ds’ < —, b =
(s) s (s) + . (ey +e)ppds S e (s) s
4.27)
As 1/2 1 As Xg
il O I e R B | IS 428
L[S ONPO S 1 | Z b+ -1 S @)

and |bs| < 1/|s|%, so that (4.6) and (4.8) are proved.
Now, we prove (4.9). We rewrite the sharp modulation equation (2.40) for b as

(I 1
|(b(1+12))s+2b2+czb3|gf(8§+82)<p2;+s—4+s—2./\/1/2S/(8§+82)§0§3+—|S|7/z-

Let B
b=b(1+J)=>b+ 01/|s]?. (4.29)

Then equivalently

|bs + 2b* + c2b°| < /(85 + &%)l +

| s |7 /2"
Ifcp < 1, let bg = —1, otherwise let bgp = —1/c>. In order to integrate this differential
inequality, we let
b dp 1 cylog bl
F() = _— = - = o b— 0, 4.30
b) Aﬂﬁ+qw % T Ta+t0m) s (4.30)

for some universal constant ¢y € R. Then
d - 2 2 2\ 1
By (2.60) with s; — —o0, we have

sz+f<N[@+ﬁm%wsi.

Is|

Therefore, integrating (4.31) on [s, so] and using (4.30) yields

s 1 eleglbs)l |, ny_ 1
FOW) ==75 1 +%+OQ)_S+OQT&

which is easily inverted to give

B(s) = 1+c’flog|s|+c§+0 1
=0 52 52 |s|5/2

for some universal constants ci‘, c; The estimate (4.29) now implies (4.9).
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Step 5. Global existence for t > ty. Recall that |(sg, y)| < e™¥/?0 for all y > 0. Thus,
u(t) has exponential decay in space on the right (x > 0), in particular, f o0 1042 (19) < 00.
From this fact and since u(t) has critical mass, we conclude from Theorem 1.2 that u is
globally defined for ¢t > #y. Since Q has exponential decay at co, the exponential decay
(2.65) of ¢ translates into exponential decay (4.10) of u. Finally, it is proved in [13] that a
solution of the (gKdV) equation with such exponential decay on the right is smooth, i.e.
u € C*°((0, 00) x R).

The proofs of (4.11) and (4.12)—(4.13) are given in Appendix A. ]

4.2. Sharp description of S(t). We conclude from Proposition 4.1 that the minimal
element constructed in Section 3 satisfies the following sharp bounds which conclude the
proof of statements (i) and (iii) of Theorem 1.3.

Corollary 4.3. There exists a solution S € C((0, 00), H') N C*®((0, 00) x R) ro (1.1)

with critical mass ||S(t)| ;2 = | Q|2 such that
10xS@)l2 ~ 19xQll2/t  ast |0, (4.32)
1 1/t +ct
S(t,x) — 5 (M> >0 inL® ast o0, (4.33)
t1/2 t
Vx >0, |S(1,x)| Se 7, (4.34)

for some universal constants (¢, y) € R x Rj_. Moreover,

d
E(xl><i)nflem< 15@) = Qs = xl)”iz) =41(P, Q) + 0(t?). (4.35)

Proof. Let v(t, x) be the minimal mass blow up solution constructed in Section 3 with
finite backward blow up time 7' < 0. Let £* = £*(v) and x* = x*(v) be the constants cor-
responding to v in Proposition 4.1. From the invariances of the equation and Remark 4.2,
S(t) defined by

S@t,x) = (@) V)3 + T, (097 2% +x%)

satisfies equation (1.1), and the estimates of Proposition 4.1 with £*(S) = 1, x*(§) = 0
and S blows up backwards in time at the origin. In particular, there exist €(z), b(¢), A(¢)
and x(¢) such that

1 x —x(1)
b(t) = -2+ 0@, r0)=t+0@1), x@t)=—1/t+ct+ 0%, (437)
ez St @D 41,0006 + ey dy S 4.38)

We now prove (4.33). Since

) 1 =)
W(r)g(’ 0 )

= lle®ll> S,
L2
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we are reduced to estimating

—x(1) 1 -+ 1/t +ct
HW@Q“”( (0 >_ﬂ7Q( t )

L2

ALz A 1/1
Qm>——;%QQ(JQx+;<;+Er+mﬂ>>

t L2
A
S0 + |1 - 2 )‘ ‘ ( e “”))‘
and (4.33) is proved.
Let (see (4.36))
. 2 2
A@t) = AOJ)I}XfoeR 1S(2) — Qi (- — x0) 72 = e lnf || Opy + (1) — Qu, (- —x1) |72 -

Let 11 (¢) and x{ (¢) realize the infimum in the definition of A(¢). (The existence, unique-
ness and regularity of A1 (¢) and x;(¢) follow by standard arguments.)
Note that by extremality of A1 and x1,

0 0
/(Qb+8—QA1(' —Xx1)) a%jl (-—x1) =0, /(Qb+€_QA1(' —Xx1)) anl (-—x1) =0,
(4.39)

and from [|S(®) .2 = [1Qp + €ll2 = 1 Q2.

a
f(Qb o) (Qp+e) =0,

so that

L,
2 di

0 d , 0
Z/(Qb+8—le('—xl))<a—(Qb+8)—)¥/1 Qi) 4 Q*‘(— ))
t oAl

0 d
—fQM<~—x1>—(Qb+s>=—/QM<~—x1)(bt o

8bb +8t>
90»
/Qm Xl)——[8t<Q»\.('—X1)—Q—()»l—l)AQ>,

where we have used [¢Q = [eAQ = 0.
To estimate this term, we now claim that from (4.39) and (4.37), (4.38),

|A1—1|5‘/(Qb+e—Q)AQ'5r2, |x1|5|/<Qb+s—

(the extra smallness of |x1] is due to (P, Q") = 0). Using b, ~ —2¢ and the equation of &,
(after integration by parts, and using (4.37) and (4.38)), we obtain

11M0—%/PQ+0@) O
2 dt - ‘
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5. Uniqueness

In this section we prove the uniqueness statement, i.e. part (ii) of Theorem 1.3. The stat-
egy is to rerun the monotonicity machinery of Proposition 2.9 for the difference of two
solutions. The reintegration of the Lyapunov functional backwards from blow up time us-
ing the sharp a priori bounds of Proposition 4.1 will show that this difference is zero. The
proof is delicate because as in [48], we only have a finite order expansion of the approx-
imate solution and of the error. Therefore, reintegrating the difference of the modulation
equations requires sharp dispersive controls on the difference of two solutions to close
the estimates.

5.1. Reduction of the proof. We consider the minimal mass blow up solution con-
structed in Corollary 4.3. Let u>(¢) be another minimal mass solution S(¢, x) = u (¢, x)
of (1.1) which blows up in finite time. From Proposition 4.1, u>(¢) is defined on a maxi-
mal time interval of the form (—oo, T') or (T, oo) for a finite time 7. By time translation
invariance, we may assume that u;(¢) is defined on (0, co) and blows backwards as ¢ |, 0.
Let fp > 0 be small such that u| and u; admit the decomposition of Lemma 2.6 on (0, #y]
(see also Lemma 2.11)

gi(s,y) = A ()i (1 (5), 2 ()Y + xi(5)) — Qi) (),

where ¢; (s) satisfies dt; /ds = )\?, t;(—1) = t9. Applying Proposition 4.1 to u, shows that
estimates (4.2)—(4.12) hold for u;(¢), for some £*(uy) and x*(u»).

Using scaling and translation invariance (see Remark 4.2), we assume further that the
limits as defined in Proposition 4.1 are equal:

Cup) =05S) =1, x*(up) =x*(S) =0.
The uniqueness statement reduces to proving that
Ui = uo. 5.1
Note that for i = 1, 2, ¢; satisfies, on (—o0, —1] x R,
(6i)s — (Lei)y + biAe; =T (AQyp, + Agi) + Xi(Qp, + &)y + Vi — (Ri(ei))y
with
i = Qi)s/Mi +bi,  Xi = (xi)s/Mi — 1,
Wi = Wy, — (bi)s (X, + vY(xs,)y)P. Wy being defined in (2.13),
Ri(ei) = 5(Qp, — Qi + (si + Qi) — 50361 — 0 .
We form the difference
(s, y) = e2(s,y) — &1(s, y),
which satisfies the orthogonality conditions (2.21) and the equation

()VZ)X
2

ey — (Le)y =TAQp, + X(Qp,)y + Ae + E + F) 5.2)
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with

F=I-TI1, b=b—-b, X=X —-Xj,
E =T —b)Aey +T'1A(Qp, — Op)) + (W2 — V), (5.3)
F =X1(Qp, — Op,) + Xoe + Xe1 — Ro(e2) + Ri(e1). 5.4

For B as in Proposition 2.9, we consider 100 < B < 51—03 , large enough (in the next

lemma, we need B large, so we take a possibly larger universal B in Proposition 2.9). We
define the norms

N(s) = / &3 (s, MY dy + f (s, NegN dy,  Nioels) = / & (s, M)@(y) dy.

The key to the proof of uniqueness is the following proposition which revisits Propo-
sition 2.9 for &:

Proposition 5.1 (Bounds on the difference). For |s| large, we have:

(i) (Refined control of b) Let J» = (g, p2) with py given by (2.39). Then

—1/2 d D
b < , b
Mol SN ‘ds{ (*2)}

<5 / g2 PV10 1 512 1p| 415 /2N 2,

5.5
(i) (Refined bounds) Let
For= | %(85 —50%2 — £5/3) + pge?(s, ) dy
P22 (s, y) dy. (5.6)
ol
Then
N+—/e*2y825f5/7+ / *2y g2, (5.7)
Vsl Vsl
Moreover, there exists (1 > 0 such that, for |s| large,
d
—(s2F) + us? /(ei + Dl < |s|'V10p2, (5.8)
ds B

Remark 5.2. The first term in the definition of F in (5.6) corresponds to a refined com-
bination of virial estimates and monotonicity properties, which was used in [29] (see also
Proposition 2.9 of the present paper). Unfortunately, the scaling term of the equation of ¢,
i.e. the term ((A2)/A2) Ag, produces bad a priori lower order terms which prevent us from
closing the estimates as in [29]. To control these terms we have to add to the definition of
F the second term |s|~!/2 f e*2Ye2, which is a lower order corrective term. Note that this
term is scaling invariant and thus it does not produce such bad terms.

The next two sections are devoted to the proof of Proposition 5.1.
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5.2. Proof of (i). We start with the control of the modulation parameters and the proof
of the improved bound (5.5).

Step 1. Modulation equations. We start by computing the modulation equations and
state the following bounds:

12
ITI+1X] < <f sze"y/l‘)) + H (5.9)
L L(AQ) 1 172 p
L2

1/2
lbs| < /826_|y|/10+ i(/ 8ze_|y|/10> L (5.11)

Is| Is|”

Indeed, we compute the modulation parameters I', X using (5.2) and the orthogonality
conditions (2.21). We argue as for the proof of (2.29), (2.30) (see [29]), taking the scalar
product of the equation of ¢ by AQ, yA Q and then by Q. We obtain

1/2
T+ 1X] S (/sze'y'/m)

1/2
+ |b|<|b1| + |6l + Ty + 1X1] + (f e%e—'Y'/w) ) + |bs ],

2 ,—Iyl/10y1/2
bs| < /82e*|y|/10 4 (f”%
s

1/2
+ |b|<|b1| + 161+ T+ [ X1 + (/ s%e_lyl/lo> > + b1 (T + 1 XD.

Next, using estimates (4.6)—(4.9) for 1, we find (5.9) and (5.11).
Note that estimate (5.9) can be improved to

2 10 1 2 10 V2 b
S/e e/ +<|b|+—></8 e~V ) + =
Is| N
1/2
< /Sze—y|/10+i(/EZe—IyI/IO) _,_@,
|s| |s]

Step 2. Proof of (). The estimate |J>| < N”Z follows from the properties of p;:

’F (e, L(AQ))
- 2
1AQI2,

which is (5.10).

1p2] < Lymo 4+ e V101, g,

‘We now turn to the proof of the refined equation of 5. We claim that

Nl/z b]

2p=yij10 22 L
|bs + 4b2b + ba(2)s| S /5 e + Is|3/2 7 |s)3/2°

(5.12)
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which follows by combining the following two estimates:

(f 82€—|y|/10)1/2 |b]

_ / 2 _—|yl/10
|bs + 4bob bz(e,L(pz))|§/g e IV1/10 4 R + nEE (5.13)
—1/2
, N b
|(J2)s + (&, L(p))] < / eze—'>'“°+T '|—|' (5.14)
) S

Assume (5.13), (5.14). From (5.14),
, — b
|(2)s] £ /eze*'“/“) el

and expanding b; in (5.12) according to (4.9) yields (5.5).

Proof of (5.13). Taking the scalar product of the equation of & by Q, we obtain (using
LQ' =0)

d O‘Z)s
0= 7 (e, Q) =T (AQp,, Q)+ X((Qby)y, Q) + ——(Ag, Q)
s Ao

+(E,Q)— (F—¢, Q). (5.15)

Using the definition of Qp in (2.10), we have [(A Qp,, Q) — (AP, Q)by| < Is|710,
and thus using (5.10), we obtain

' 2¢=Iy1/10 20=1y1/10y1/2
(S,L(Ag))ﬁfee _I_ﬂz_l_(fsez )"
IAQI7, Is] |51 s

L'(AQp,, Q) — b2(AP, Q)

Similarly, since |((Qp,)y, Q)] < Is|710, using (5.9), we get

(] 826—|y\/10)1/2 4 |b|
X ((Q)y. Q)] < it .

Now, we compute (E, Q). By the expression of W, (see [29, (2.17)]), and the formula

(10P2Q3%) + AP, Q) = 5[ QII3,, we have

(Wp, — Wy, Q) = —3babl| Q171 + O(b/s?).

Next, using the expression of @, and (P, Q) = || Q”il’
_ 1 2 10
(Pp, — Ppy, Q) = —16bs Q7 + OB/s ™).

Thus,
(W) — Wy, Q) = —%1QI7, (bs + 4b2b) + O(b/s?). (5.16)

Since (Aeq, Q) = —(e1, AQ) = 0 and (using (4.8) on €1)

IT1(A(Qby, — Op))s O < Is| 732 b,
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we obtain
(E. Q) = — 10113, (b + 4bob) + O(b/s]*/?).

Now, we compute (F — &3, Q). First, since | X1| + | X2| + i ler|ePI/10 < |5 73/2,
we have
(f 82ef|y\/10)1/2 |b|
|s|3/2 |s|3/2‘

1X1(Qp, — Qb QNN + 1 X2(e, QN+ X (e1, 0N S

Second, we estimate (R2(g2) — Ri(s1), Q). From the expression of R;(g;), we observe

that

|Ry(22) — Ri(e1) — 2002 P Q¢ < |Ra(e2) — Ra(e1) — 2062 P Qe| + | Ra(21) — Ry (21)]
S lel(sI 7> + le1] + le2l) + 1B] lea,

and so by (4.7),

, , (f82e—|y\/10)1/2 b
(Rae2) = Rie). @) = 20ba(e, POPQN S i+ o575

‘We have thus obtained, for this term,

(f82e*\y|/10)1/2 |b]
|s|3/2 |S|3/2'

I((F — %)y, Q) +20ba(e, PO* Q)| <

Inserting the above computations into (5.15), we obtain

by + 4byb —

16 [MRQ)
2

(e, L(AQ)) +20(e, PQ* ’)}
o, 2Linop, & HAe o rete

< | g2emlyl/10 4 (f g2e1¥1/10y1/2 b
- s]372 FEGR
|| Is|

Using the formula’ from [29, proof of Lemma 2.7],

16 |:(AP, 0)

(e, L(0y)) =
S0, Lo,

(e, L(AQ)") + 20(e, PQ3Q’)},

we obtain (5.13).

Proof of (5.14). To complete the proof of (5.12), we take the scalar product of the equa-
tion of € by p>. We obtain first
d ()‘2)s

— 4+
ds 2 Ao

(&, Ap2) = —(&, (Lp2)") + T(AQs,, 2) + X((Q1,)y, £2)

+(E, ;) + (—F 4 &3, pb).

7 Which of course motivates the definition of P in (2.39).
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Note that
—1/2

(6. Ap2)| = (2l + (e, yp)D) S = N

Using the orthogonahty (AQ,p2) =0 (see [29]), and (5.9), we have

b
IT(AQb,, p2)| = ITB2AP Kby, p2)| S [(/ eze'y'/‘°> 4! '] i

Is|

( 2):

and similarly, using (Q, p}) = 0,

1X((Qby)y. 02|+ I(E, p2)| + [(=F + &, pb)|
_ —1)2
< (f 826 |y\/10)1/2 + |b| +N /826*|y|/10,

~

Is|

and (5.14) is proved.

5.3. Proof_of (ii). The functional F in (5.6) is defined similarly to Proposition 2.9 for a
parameter B large enough but smaller than B/10 where B is used in Proposition 2.9.

Step 1. Coercivity of . The upper and lower bounds (5.7) on F follow from the coer-
civity of the linearized energy [ (85 + &2 — 50%¢?) under the orthogonality conditions
(2.21) together with standard localization arguments. We refer to [29, proof of Proposi-
tion 3.1(iii)], for example, for more details.

Step 2. Proof of (5.8). We now turn to the proof of the monotonicity (5.8). We decom-
pose F = Fi + |s|~1/2F, with

Fl= /[%(53 —50%?% +<p§82], Fr = /e“yez,

and state the following monotonicity formulas for |s| large enough:

d]:l b2 1 IR

D [@ s B e e (5.17)
dfz M2 Ly |b|?

—+ Nini elzy(gi +e) < /823 [y1/10 4 |S|2/5 (5.18)

Assume (5.17), (5.18); then for |s| large,
d  ,— — — 3 — d — d —
—(PF + 1P = 25F — ZIsI'P R 4+ P —F + IsPP-F
ds 2 ds ds
< —ws? / (e3 + &) — als| / e*2Ye? + CIs|'V10? + Cls| / yle™P1/Pe?
y<0
T C|S|3/2/82€7M/10

5—’“ 2f<e +eD)gl — M2|s|/ Ve + Cls|"102 4 Cyls| [ |yle™ VB2,
y<0
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Then, for 0 < k < u1/(4BC1) and |s| large enough (depending on B),

Cils| IylePVBe2 = s lyle PVBe2 4 Cyls] lyle™1/B g2
y<0 ks<y<0 y<ks
< C1Bis*Nioe + Cils| sup (Jyle”M1/@B)) / e PI/CB)2
y<ks

IA

M1 257 “2 )
732N10c+7|5|/3A2}82,
and thus

d J— J—

SET PR + B2 [ g Bl [ oet < o0

which implies (5.8).
Step 3. Proof of (5.17). We compute the time derivative of F using (5.2):

1 dF, ,
3 o= [ast=vige, + (Lo + (o5 — vpe)
— /[(Le)y +TAQp, + X(Qpy)y + A2)s pe v E 4 Fy]
2

x [—ygey + yg(Le) + (o5 — Yp)el.
We now estimate all these terms as in [29, proof of Proposition 3.1(1)].

o First, we claim that for B large enough, for some p1 > 0,

/(Le)y[—tlf’gey + Yg(Le) + (o5 — ¥p)el < — /cp’g(ei +&%). (5.19)

The proof is mainly based on local virial estimates for ¢ and explicit computations similar

to the ones for the term fl(i; in [29, proof of Proposition 3.1]. Here, computations are eas-

ier than in [29]. We sketch these computations and estimates for the sake of completeness.
By explicit computations (mainly integrations by parts, see [29] for details), one gets

2 [ (o), - wpe, + vpLe) + (o5 — vpe)
== [, + Gelp+ v - Wed + (W = e’
+ / 5Q4g2(¢/§ _ 1/,’?) + / 20Q3Q/82(1/f§ _ %) + ]O/ w/Eey{4Q/Q3g + Q48y}

= [0t - 100% (e, + )
=I~+I1I"+1I

where 1<~ respectively correspond to integration on y < —B/2, |y|<B/2, y> B/2.
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In the region y > B/2, we have Y2(y) = 0, and thus
I~ = —/ [3¢5e5 + (@ — ¢f)e H[ 50% 0y
y>B/2 y>B/2
+/ 200°0'eX(1 - ¢p).
y>B/2

Using ¢/ < Eizga’f and the exponential decay of Q we obtain, for B large enough,
8¢ X 5 p y g

C 1
1>5—/7 ¢/§(8§+82)+_—2/7 (,0%825——/7 (p/E(e§+82).
y>B/2 B~ Jy>B)2 2 JysBn

In the region |y| < B/2, we have () =1+ y/B. ,¥5() = 1and 1//” = 1//§ =0.
Thus,

15
I~ =—= [3e2 4+ &2 — 50%2 +20y03 0'¢?) / el
B Jiy<gp B 3 )<

From [29, Lemma 3.4] (local virial estimate), for some x> 0 and for B large,

1 ,
/ _ Bej+e* +150% —20y0°0'e? > “f (2 + %) — =/826—m/27
vI<B/2 : B

lyl<B/2

and since [|e||} 0 < [s]72, we have fv|<B/2 g0 < |52 f‘y|<§/2 &2, so that for B large and
|s| large,

1 1
wa—ﬁ: B (854—82)4—_—2/8267‘”/2.
2 B Jiy|<B)2 B

In the region y < —B/2, we use v < E_ZI/f/E, Yo S o e S E_z(p’F, and the
exponential decay of Q to obtain as before, for B large enough,

1 / 1 o2 2
IS <—= px(e; +€%).
2 y<—§/2 By
Gathering the estimates for /=, /™ and /=, we get (5.19).

e Next, arguing as for estimating f7 , @ and s @ in [29, proof of Proposition 3.1], we find

2

‘F/Ath[—W;8y+¢§(L8)+( —ypel| < 100

2

b
< — C 5.21
= IOONIOC + ( )

'X f (Qby)y[—Viey + Yg(Le) + (05 — Yp)e]
Indeed, using the algebraic facts

(AQ,Le) = =2(Q,8) =0, (8,yAQ) =(s,AQ) =(e,y0) =0, LQ' =0,
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the exponential decay of Q, |b2| < 1/4/]s]|, and integrating by parts to remove all deriva-
tive from e, we obtain

V AQp, [—V5ey + Yg(Le) + (95 — ¥pel| S

B isl
/ 1 \/E v
‘ f (Qi)y[—Vity + W (Le) + (o5 — Yple]| < <§ + W)N e

Thus, using (5.9), the estimates (5.20) and (5.21) follow for B large and |s| large.
At this point, B is fixed and thus B in Proposition 2.9 is also fixed. B and B are
universal constants.

e The next term is similar to f; (@7) in [29]. Using the properties of ¥ and gz and (2.29)
we have

(}"2)5
A2

/Ae[_(wﬁgy)y +ope — Yp(5Q% + 7))

1 (A2)s /2 1 2, 2\
=_§T2/y¢§£ + 0 m (Sy+8)(p§.

From (4.5), (4.8) and (4.9), we have, for s large,

G 1,
Ao 4s

1 (A 1 ,
(A2)s /y(p%gz < _/ Iyl VB g2,
2 A2 [s] y<0

Eventually, we have proved that for s large.

1
< —
P

and thus

()"Z)S
A2

[ Aet=wge), +ope — G0t +e5)

- 22 / ~I¥I/B g2
<t [@rer e [ e

We now estimate terms coming from E and F. For this, we will need higher order
Sobolev estimates on &1 and &, coming from Proposition 4.1. Since B < B/50, from
(4.12) and (4.13) we have, for all %% <w< % andi =1, 2,

f (05> (s, y)e™ dy + / / @5en>(s', y)e® dy ds’ <ﬁ (5.22)
Ook =0

1((e)3y + ()3 ()e™ |l S H' (5.23)
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e Estimate for E. In view of the expression of E in (5.3), the first term to estimate is

‘(r ~b) [ Aerl-we, + vsLe) + (o5 - vpe]

1/2 1/2
S (|b| + ( / aze-'”“’) )( / (e3 +82>w;)

1/2
x <f(<sl>§y + D3 +eD + 1y )w)

/\

= 100 /(8 +e0p +Cb2/((81)y> (e1); +e2)eBY dy
2

b
< 100/(8 +¢ )(pB—i-C

using (5.9), integration by parts, and then (5.22). For the next term, we need to estimate
A(Qp, — Op,). From Lemma 2.5, we have

Op, — Qb =bPxp, +b1P(Xby — Xby)s
and using (4.9),

|b1 — b3

Xos — 01| 'f —db‘<sup|yxl
|b1]

Thus, |Qp, — Op,| S 16| | P]. Arguing similarly, we obtain

(@b, = b))y +1(A by = AQp)y | +A(Qp, = Ob)I S 16l (Ly<o+e 710, (5.24)
Using (5.24) and the estimates for I'; from Proposition 4.1 yields

[ 1180 = 0oy + Vp(Le )+ (0~ vpel| S TEAls
b2
= lOONloc + C
Next, from the definition of Wj, and @, (see [29, Lemma 2.5 and (2.17)]), (5.11), (2.30),
(4.7), we have

W, — W, | S 1,0 + e P1/10),
[(b1)s1D] _
|q>b2_q>b1|§ (|bs|+T y <0+e |)’\/10)

2,—1y1/10y1/2 b
< (/ g2e= /10 4 WT) n H>(1y<o b0y,
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and similar estimates for the derivatives of these terms. In particular, we obtain
Wy — W]+ [(W2 — Wp)y| + [(W2 — 1)yl

o (f g2e~1¥1/10y1/2 |b] B
< g2e~IVI/10 + (1y—o + e 1710y
(/ 5| Vist)
—l1/2

— N |b] _
< Nige + = +—) 1,0 + e~ 21710y, 5.25
N( 1 N m(yo ) (5.25)

Thus,

‘/(‘I’z — WD[=ygey + Yg(Le) + (o5 — Ypel

—1/2 By
— N |b| 172 b
S Nioe + =2 + — |V L N oe +C—.
”( toe 1 Wm) 00 = g0+ €
In conclusion, for E we have obtained
/ b2
) [ B, + vpiLe) + (o5 — )| < 308 / €+ g+

e Estimate for F. Similarly, we easily get the following three estimates:

‘X I f (Qb, — Qb)yl—Viey + Y5(Le) + (95 — Vp)e]

bl =12 o b2
~ WM“ S Tog Vet C g

‘Xz / ey[—vzey + Yg(Le) + (¢ — Ypel

1
5|s|—3/z/(8 +s>¢3_100/(e + )¢l

‘X /(Sl)y[_w/gsy + Yg(Le) + (95 — ¥p)e]

|b| 1/2 1/2
S (m + <-/ 82€y'/10> )(/(85 +82)(p2;)

1/2
x ( / (eN2, + (D)2 + eD)e¥/BY dy)

/(s + &%)l +Cb—
=700 5T

The remaining nonlinear term for F is estimated using the Sobolev bound (5.22). We
decompose the nonlinear term as follows:

Ry(e2) —Ri(e)=F1 + I
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where
Fi = Ry(e1) — Ri(e1), F2 = Ra(e2) — Ra(er).

Using the expression for R; and [&1]/z < |s|~!/2, we obtain
|(FDyl + [(FDyyl S 1bI(er] + [(e1)y| + |(81)§| + 1) yyDs

and then by (5.23),

2 2

b
((FDyl + [(FDyyDes S bl(er] + [yl + [(eD)yyDes + ﬁ|(8l)y|-

Thus, integrating by parts, and using the Cauchy—Schwarz inequality and (5.22), we get

‘ / (FD)y[—vey + vg(Le) + (o5 — Yp)e]

< [ AL+ 1FD D el + 1oy oy
161 [ 1G]+ 10,1+ 115 DeB + 10, 163 el + I, o

|b] SN Sy 2 2\ b?

We decompose F» as follows:

Fy =5(0), — 0M)e + 1003, (5 — e]) + 1005, (63 — &) + 500, (63 — £1)
+e) — e

_ 4 4 3 2 (2 2

= £[5(Q}, — 0") + 100} (62 + £1) + 1005, (65 + 162 + £7)

+50p, (83 + 8%81 + 828% + 8%) + (8; + 8%81 + 8%8% + 828% + 8?)].

Therefore, by suitable integration by parts, we have

‘ / (F2)y[—¥rgey + ¥g(Le — &) + (95 — Yp)e]
< |bal /<s§ + %)l + /<s§ +eMpg(ler] + leal)

+ [@ g 3 el + 1,1+ 160 + 15D

i=1,2

These terms are next treated as follows:

M1
Clba| / (e + 95 < 155 / (&5 + D)l
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and using (5.23), ||l&; || < 1/4/]s] and the notation y; = max(0, y),
[ @+ eegterl +leal) < (len 1+ Iy Dllm + lealt + 134Dl [ (63 + 6

2
<100/( +£)W

Finally, using 5 < (p/ﬁe-V/E and (5.23), we get

/(8 +e WB Z(|81|+ |(81))|+|(81) |+|(51))y|)

i=1,2

S ||<|si|+|(e,->y|+|(ei>§|+|<ei)yy|>ey/3||mo/<e§+82)¢’§5 100/(8 +e%)gl.

Combining the above estimates yields the bound

2

2 b
< 100 (8 +¢ )(pB+C—

‘ / Fyl—yey + Yg(Le — €5) + (o5 — Upe]| < o

Step 4. Proof of (5.18). We compute the time derivative of F using (5.2):

1dF A ‘
2 dsz _ ( ;)S /ye)hzy82+/\e)t2y(as€)8

_ (A2)s /ye)"zyé‘z
2

+ /|:(L8)y +TAQp, + X (Qp,)y +

()\’2)SA +E+ F} )Lzye.

Since [ Age*?Ve = —%)»2 i e2ye*2Y | the scaling term cancels. By usual integrations by
parts, we get

1df2 3 2)\. /2)»
il 2 _ x Y 2y
2 ds 2 2/ 2(1 =2

+ f (—100°Qy + 31, 0% + / [CAQp, + X(Qpy)y + E + Fyle*e.

Using > ~ 1/4/2|s| and the decay properties of Q we get, for |s| large,

1dFR 1 2 20 A [ 2 —lyl/10
it A + 2y 4 Iyl/
2 ds 4\/|s—|/(8y &)e e

+ ‘/[FAsz + X(sz)y + E + Fy]e)qyg .
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Now, we estimate the remaining terms. First, from (5.9) and the definition of Qy,

‘FfAsze)‘zys + ‘X/(Q,,z)yems
12y 12 b 12
- c<</ 8ze|y|/10) Ll /&f'yl/lo n /Szem
- |s] N2y
Mo oo 2 —iyisto , PP
fm/862y+C/£ey +Cs—2.

Second, we estimate the terms coming from E. Since

/Aslee“y = —/slAsekzy —)»2/yslse“y,

we get

‘(r —b)/Aelems

1/2 1/2 1/2
5 <</ 826_y|/10) + |b|> (/‘(Sy% +82)e)»2y> (/(1 +y2)812e)»2y> .

We estimate the term involving &1 using Proposition 4.1: for some 0 < w < o' < 1/10,
using Ay > %kl for |s| large, we get

/yzefe)‘zy 5/ yzefe)‘zy +/ yzsfe“’y
y<0 y>0

! ! /s
Ssup[yzexly/zo]/ 81269A1)/10+/ 262
y<0 y<0 y>0

1/10 9/10
: A12(/ 8‘2> (/ 812e“y> [ e s
y<0 y<0 y>0
1/2 1/2
5 |S|9/20<(/ Szel)’/l()) + |b|) (/‘(85 +82)e)w2)y)

2
2 —IyI/10 . T (e BC NP v
SC/se +C|s|2/5+100 (8},+8)e2.

For the second term coming from E, we use (5.24) and |T";| < 1/]s], so that

bl ) 21110}’
<= lele*?? + g2e= W/
Is| y<0
bl (14 2\’ 2 —|yl/10 12
—| Is] ge™? + gce VY
y<0

Is|
b|?

A 2 ry / 2 — 10
< = 2 4 v/ cZ
< 100/8 e + g%e + |

Hence we obtain

(F—b)/Aslems

‘rl f A(Qy, — Opy)ee™

A
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For the last term in E, we use (5.25) and argue similarly:

‘ f (W) — Wy)eel?Y

2,—1y1/10y1/2 1/2
< (/ g2o-bino e PV 1B )(/ ele + (/ Sze—y|/10> )
~ Is| Vls| y<0

) 2 1 / 2, b/
< e 2 4 C /10 4 ~20
< 100/8 e’ + + s
Now, we estimate the terms coming from F. Arguing as before, since |X| < |s|~3/2
and using (5.24), we obtain
A2 /Szem jL/‘gze—M/loJr 1512
~ 100 Is|

Next, since | X2| < |s|73/2, A2 < |s|~!/2, by integration by parts

1 A
‘Xzfs seh?y < s—2/82ekzy < ﬁ/szekw.
Then, by integration by parts, (5.9) and (4.11),
12 p) 1/2 1/2
‘X/(E)yal)ee}‘zy < <</ 826y|/10> - |)</ 2 m) </(8§+82)em)

2
Aoy 2,-lyito . 1617
100/(8>’+8)e +/” T

Finally, we decompose Ry(¢2) — Ri(e1) as follows, using ||&;|lze < Is|~1/2 and |b;| ~
|s| ="

‘Xl / (O, — Opy)yee™| <

[R2(e2) — Ri(e1)| < |R2(e2) — Ra(e1)| + |Ra(e1) — Ry(e1)]
< lel(lbal + e P11 1 1b1 feq] S Is17 el + lele™ 110 4 1b) ey,

and thus, using also (4.11), we estimate the last term coming from F as follows:

‘ / (Ra(82) — Ri(e1))(ey + rag)e™?”

1 1/2 1/2
< — f(si + e2)e + / gre™MI/10 4 |b|</ s%e)‘zy) </ sze)‘zy)

2
/(8 L edd 4 fgzefm/lo L e
100 Is|

Combining the above bounds yields (5.18).
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5.4. Conclusion. We are now in a position to conclude the proof of uniqueness (5.1).
First, recall the following estimates from Proposition 4.1 as s — —oo:

—1/2

NSl LI SN S1/1sP2 b=o(1/ls]). (5.26)

Moreover, from (4.11), (4.12) we estimate

, 1 ity 1
/ Ve? / Vel + f M3 S / Mt = S| el [ Ve 5
N 0 0 S

y< y>

9/10

1 1 1

< —9/10A1]y[ o2 y10.2, ~ <« —rilylg2 <

N/ e &1+ e Sq+t5 3 e &1 += 3 975 -
y<0 y>0 S S S

This yields in particular from (5.7) the bound
F < 1/s23/10, (5.27)
Recall from (5.5) and (5.8) (using f g2e~¥I/10 < Nige) that

d J — —1/2
2 (b + 2 < 2 Noe + 1511216] + 15112N2,
ds 2s

d _
%(ﬁ}') + 5 Nioe < Is"/1052, (5.28)

Using also (5.26), it follows that for Ky > 0 large enough,

d J — —_
d—{s2<b+ = +K0}">} S Isl"21b] + 152N 4 s110p2 < V2 1) 4 |5 AT,
s s
(5.29)
We now deduce from (5.26), (5.27) the a priori bound
s2(|b] + |2l /Is| + F) = 0 ass — —oo.
We then integrate (5.28) on (—o0, s]:
2 : M11/102.2 0 I\ o/ L A2 ds’'
Sf(S)S[m|S| b(S)dSSKW(S)b(S)WTm
< (s 6N
~ |S|19/10 s/ €(—00,5] ’
so that
1
IsIF12() S o, sup ]<s/>2|b(s’)|. (5.30)

s’'€(—00,s
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Next, by integration of (5.29) on (—oo, s] and (5.7) and (5.26),

$ —1/2
s21b(s)] < |s||Jz|+s2f+/ (s'1"21b] + 15| 2N 2y s’
—0Q
/

12 5 § ;o ds Sl ds
SISV + s f+/_oo|b||s| |s/|3/2+/_oo|s| N
1
S A, S {2+ s F2(s). (5.31)
s'e(—00,s]

Putting together (5.30) and (5.31), we get

sup  {(s")2b(sN) 4+ (sHTAFV2(sN). (5.32)

s’ €(—00,s]

s21b(s)| + Is|"AF2(s) <

|S|1/5

This gives immediately for |s| large, by (5.7), |b(s)| + N(s) = and thus &(s, y) = 0.
Therefore, for some ¢ > 0, u>(¢) is a rescaling and translation of S(#), and thus it is so for
all time by uniqueness of the Cauchy problem in H'. This concludes the proof of (5.1)
and Theorem 1.3.

6. Description of the (Exit) scenario

This section is devoted to the proof of Theorem 1.4. The argument relies first on an ex-
tension of the compactness argument of Section 3 and second on the uniqueness up to
symmetries of the minimal mass blow up solution.

6.1. Reduction of the proof. Theorem 1.4 is a direct consequence of the following
proposition which describes the defocusing bubble in the (Exit) regime at the exit time.

Proposition 6.1 (Compactness of sequences of solutions at the (Exit) time). There ex-

ists a small universal constant a* > 0 such that the following holds. Let (u,(0)) be a

sequence in H' satisfying:

(1) un(0) € A;

) Nun(0) = Qllgr < 1/n;

(3) the solution u,, € C([0, T,), Hl) of (1.1) corresponding to (u,(0)),>1 satisfies the
(Exit) scenario, i.e. for all n large enough,

t¥ =sup{t > 0:Vt' €0, 1], un(t') € Tor} < Th. 6.1)
Then there exists 0* = o™(a*) (independent of the sequence uy) such that
h 2 G (tF 263 -+ 30 (1)) = A0SO As(0%) - +x5(0*) in L (6.2)

asn — oQ.
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6.2. Proof of Proposition 6.1. The strategy of the proof is similar to the proof of exis-
tence of Theorem 1.3 in Section 3. However, the initial data in Section 3 are well-prepared
and in particular generate H' bounded sequences after renormalization (see (3.6)). Here
the H' bound is lost, and one needs to invoke a concentration-compactness argument in
the critical L2 space for sequences of solutions to (1.1) and uniform local estimates to
recover a nontrivial weak limit.

Step 1. Renormalization. Let C* > 0 be the universal constant in (2.57) of Lemma 2.10.
Let ¢ be the exit time (6.1), and consider the decomposition of u, (¢) on [0, #}] given by
Lemma 2.6. It follows from [29, proof of Theorem 1.2, Section 4.3] that there exists a
time 0 < tf"n < t¥ such that

ba(tf,) < —C* / (@yen)* ) VB + 61 (17 ) 0p). (6.3)
Mt )~ 1, byt D+ Nt ,) — 0 asn — oo, (6.4)

where N, denotes the quantity A/ defined in (2.46) for u,,. This time corresponds to when
the (Exit) regime is decided (b,, is negative and becomes predominant in the sense (6.3)),
and it is proved in [29] that such a time tin can be chosen so that the solution has moved
only §(|lu,(0) — Q| ;1) away from the initial data (see [29, (4.37)]), which implies (6.4)
in the present situation (since ||u, (0) — Q| — 0 asn — o0).

Recall also from [29] that u, (¢) satisfies (H1)-(H3) on [0, #,7].

Define
ty —tf
n
Vrelr, 0l t=6r+Th(), T =—"m
A (67)

and consider on [z,’, 0] the renormalized solution v, (7) at the exit time #*,

Va (T, %) = 2 2 () (0, dn (E5)x + x (1))

1/2 In (L i Xn () — xn(tf))'

Al
= —(an(’r) + Sn)<tt’ An(t7) An(to)

1/2
a2 ()

(6.5)

Then v, is solution of (1.1) and belongs to the L? tube T+ fort € [z,, 0]. Moreover, its
decomposition (Ay,, xy,, &,) satisfies on [z,7, 0]

An(t) xXp(tr) — xn(t::)
— X, ()= ——————
An(t) A (1)

Step 2. Preliminary estimates on the renormalized sequence. We claim:

)Mv,l(f) = s bvn (t) = bu(tr), Ev, (t) =¢en(t:). (6.6

Lemma 6.2. There exist b*, T* such that, possibly after extracting a subsequence,

ba(t¥) — —b*,  (@*)? < b* < 8(a¥), (6.7)

t*
[Agep——— L - 6.8
" A3 () ©:8)
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Moreover, for all n large and T € [z}, 0],

Ay, (0) =1, x,(0)=0, (6.9)
by, (D) + Ny, () + llew, (D12 S 8(a™), (6.10)
flr |:/((ay8vn)2 +e) T —TiByi + |bvn|4]k3‘j;) < 8, ©.11)
by, (TOI/A2 (1) S 8™, o, (1) = 1/An(6}) = 0 asn — oo, (6.12)
(X0,u,)7 (7) = b*, (6.13)
X, () S =1/(B" Ay, (1)) = —00  asn — oo. (6.14)

(Recall that Ag is defined in Lemma 2.10. Here, X, denotes this quantity for v,. Simi-
larly, V,, denotes the quantity N for v,. As usual y4 = max(0, y).)

Proof of Lemma 6.2. Arguing as in the proof of Lemma 3.1, using conservation of mass
and energy of u, (¢), we first obtain

(@) S —ba (i) S 5(a®). (6.15)

Next, using (2.57) on [tin, t*], and (6.3), (6.4), one obtains

—bn (1) /15 (1) & =D (1} ), (6.16)
and thus, by (6.15),
@) /Iba(tf DI S A (1) S 8(@®)/1ba (8}, (6.17)

which implies |b,, (‘L’,T)V)\%n (t)) S 8(a™). Next, by definition of ¢, |ley, (D)2 =
len(t)ll 2 < 8(a™). By (2.59) and (6.4), for n large,

t’f 2 2N 7 dt

No() + / / (@yen + D0l | 55

tl*.n n
SNt} ,) + 1Ba P + bt )P < 8(@®).  (6.18)

Now, we use [29, Lemma 4.3] to obtain a slightly different estimate. From [29, (4.12)]
with i = 1, using the definition of ¢; p in [29, p. 84], and then using (6.3), we obtain

o dt
9.6 + g2y B AN

2
@) (s + 200 bGP B 1G]
~ Mt ,) A (69 M, TR,
< §(a%). (6.19)
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Moreover, by (2.58) and (6.16),
Oon)e (£) 2 1B (£ /A2 (1)), (6.20)

By definition of v,, we obtain (6.9)—(6.13) from the above estimates.
Now, we prove (6.14). Integrating the estimate of (Aq,y, )<, We obtain

)‘O,vn (T) - )‘O,vn (t:) ~ b*(‘l,' - T:)‘

Finally, since (xy,)r ~ 1/ )‘0 v,» W€ obtain by integration on [z,’, 0] and x,,, (0) = 0, for n

large,
% « 1 1
— Xy, (7:”) = Xy, 0) — Xv, (Tn) ~ b_* o () s
Un\*n

and (6.14) is proved. ]

Step 3. Monotonicity estimates. We now state the following bound on v,, which will
allow us to recover H! bounds in the limit:

/ (0, v2)%(0, x) dx < 1. 6.21)
x>—A2(t¥)

In fact, we prove the following estimate on &,, (0), which together with Lemma 6.2 and
Ay, (0) = 1 implies (6.21):

[ @e0ndy Ss@, (622)
y>—2A2(t¥)

Proof of (6.22). For t € [t),0], let s = — fro d‘l,'/)»i” (t) be the rescaled time for v,,
and s} = — f iy /)»13)” (t). We perform monotonicity estimates on &, to complement

the ones obtained in (2.59). We define ¢ € C*°(R) such that

e fory < —1,
o0 = { 1- %e’y fory > —1/2,

and we consider ¥ defined as in (2.45). Let

+l —s* - +l ok
¢B(s,y)=¢(w), ¢B<s,y>=w<%>,

¢'(y) >0, Vy e R, (6.23)

and

Fa(s) = PERE )f[ veu,)’ o+ - (()) £r BB

— 1 ((ey, + 0p)° — QF — 6ey, Q?,)d?B](s, y)dy.

We state the following estimates, proved in Appendix B.
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Lemma 6.3. For B large enough,

d
2 2 ¥B
+ E/((E)yauﬂ) W)y A%n |bvn| , (6.24)
1 -
Fp =~ XT /((8y8vn)2¢3 + 812)H¢B)- (6.25)
Un

0] and then use (6.19) and Lemma 6.2:

B dt
L +|bv,1|4>
1 + y+ Un(T)

+ by, (0] < 8(a™).

We now integrate (6.24) on [t,*

ﬂ’

0
Fp(0) < Fp(z,) + C/ (/((8ysvn)2 +ep)

by, (7)1

<Nv*—
(t,) + 2 (o)

And thus, by (6.25), 1, (0) = 1 and the definition of ¢p, q~53, since

S*__/O v (° dt R
R P ER (D! e O, (T + 0¥ — 7)) b* A2 ()]

we finally obtain

/ e (ayav,,)zgf | (Bye,)” S (@), (6.26)
y>=2Ay, (1) y>550

Step 4. Extraction of the limit. Since |[v,(0) — Q|2 < 8(a™), there exists v(0) € L?
and a subsequence still denoted (v, (0)) such that v, (0) — v(0) weakly in L? as n — oo.
Moreover, by the properties of weak convergence,

v 2 < 1Qll2,  1v(0) = Qll 2 < 8(a™), (6.27)
and since A, () — oo, it follows from (6.21) that v(0) € H'.
Let 8o > 0 be small enough, §o < & where § is defined in Theorem 2.1(i). We consider
a* small enough, but universal, such that

v (0) — v(O)ll 2 < do/2. (6.28)

In order to exhibit a nontrivial weak limit, we decompose the sequence (v,(0) — v(0))
into profiles according to Lemma 2.3: there exist

Ui (0) = e (g3 [Re(e! 5> "¢f)])
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and w,{ (0) € L? such that (up to a subsequence)

J
i . . —193
v (0) = v(0) = Y UL (©O) +w;/(0),  lim Timsup e %w; O 1510 m) = 0,

J—00 p—soo

j=1
(6.29)
‘I .
102 (0) = vO)I72 = D IUX )15 = ;) )17, = 0n(1). (6.30)
Jj=1
Moreover, by the weak convergence v, (0) — v(0), we have
/v(oxvn(O) —v(0)) = 0u (1),
and thus
J .
loa )72 = 0 O)[172 = Y UL O)I32 — llwy )72 = 0u(1).  (6.31)

j=1

In particular, by (6.29) and (6.31), v(0) is interpreted as the first profile U 0 of the de-
composition of v, (0) with g0 = g1, 20 = 0 and 10 = 1. By (6.28) and (6.30), for n
large,

] .
MU O)7: + llwy O)7, S 8(a*) < 85/2.
j=1
Define U,{ (t) and w,{ () to be the (global) solutions of the nonlinear equation (1.1)

corresponding to the initial data U,/ (0) and w,{ (0). Let 9 < 0 be such that v(t) exists on
[70, 0]. We claim that, for n large, v, exists on [1g, 0] and

lim limsup sup
I=00 n—0o refr.0]

J .
v (1) —v(r) — Z Ul (v) — w,{(r)‘ 12 =0. (6.32)
j=l1

Indeed, (6.32) is a by now standard corollary of the perturbation Lemma 2.4 (see e.g. [8,
Proposition 2.8]). In particular, there exist ng > 1 and Jo > 1 such that for n > ng,

Jo )
b (D) = v(0) = Y UL —wh @] | <0,
j=

and thus, for all T € [1p, 0],

1
L F I @l +80 S 80 < 151Qlz2, (6.33)

Jo )
ln(®) = vl = | YUl @)
=1

choosing now §p small but universal. In particular, let A be such that, for all T € [zg, 0],

/ vz(t,x) dx < L/ Q2.
Ix|>A 100
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Then from (6.33),
1
2 2
va(t,x)dx < —/Q .
/|x>A " 25

Now, recall from (6.14) that x,, (r,/) — —o0 as n — 00, and in particular, for n large
enough, —x,, (7)) < A; thus,

3
/ v,zl(r:,x) dx > —/ 02
x<—A 4

We conclude that necessarily 79 > t,* for n large enough, and thus

190> —7* =lim7,.
n

It follows that v(t) blows up at a finite time Tmax(v) > —7* = lim,, 7,". Since [|[v(0)||;2 <
1Qll;2 and v(0) € H', we have lvliz2 = 1@l 2. In particular, by weak convergence,
and lim,—, oo [[vx (0)|| .2 = |[v(0)]| 2, we obtain lim,— o ||V, (0) — v(0)]|;2 = 0.
From the uniqueness statement in Theorem 1.3, there exist A* > 0, x* € R and
o* > 0 such that
v(0, x) = WHY2S(0*, Ax + x¥).

Moreover, denoting by (bs, Ag, xs) the parameters of the decomposition of S, we observe
that
(0 =1= 050", x,(0)=0=uxs(c*) —x*

and thus
v(0,x) = Ay (0%)S(0*, hs(0™)x + x5(0™)).

In particular, by scaling,
(T, x) = )»é/z(a*)S(a* + )%(a*)r, As(0™)x + xs(o*)).
Since v blows up at Tmax (v), and S blows up at time 0 (by convention), we have
o* = —)L?g(o*)rmax(v) < Ag(a*)r*.
From the definition of #* and then strong L? convergence, we have

o = inf flun(t;) — Q3¢ — xD)ll 2 = inf [[v4(0) — s, - — x1)l 2
AX1 Apx
= xinf 1S(@*) = O, (- = xD)l 2. (6.34)
1,X1
Moreover, recall that by definition of #;; and t;¥, for all T € [z, 0] we have
inf [[va(7) = @3, ¢ —xD)ll2 <,
A1X1

and so for all r € (0, o *],

Ainf [S®) — Qx, ¢ —xDll2 < ™. (6.35)
1,X1
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From (4.35), we fix tg > 0 such that the distance of S(¢) to the family of solitons is
increasing on (0, tg). Take o* > 0 small enough so that

o < % inf [[S(ts) — Qx, (- — x1)ll 2.
Al,X]

By (6.35), it is clear that o* € (0, tg). Moreover, o * is uniquely defined by (6.34) (small
for o™ small) and thus does not depend on the subsequence but only on «*. In particular,
the whole sequence converges to the same limit, and the proposition is proved.

Appendix A. End of the proof of Proposition 4.1
In this appendix, we finish the proof of Proposition 4.1 by proving (4.11)—(4.13). For the

reader’s convenience, we recall the main estimates already proved on ¢ and the parameters
b, A, x: for |s| large,

< < c1(uo) ca(uo) _
el S el S NG 5 < Als) = N b(s) 2 (A.1)
s 1
N(s) + / / (67 + ) )gpds’ < P (A2)
As X 1
= - [ < —

A.1. Proof of (4.11). Since u(¢) is a minimal mass blowing up solution and A(s) is
increasing for |s| large, from Lemma 2.11 and then using the properties of Q,, (see Lemma
2.5) we obtain, for |s| large,

Yy >0, |e(s, y)| < e /0, (A.4)
Thus, by (A.1),
lim | &%(s, y)e*®Y dy = 0. (A.5)
S—>—00

Now, to prove (4.11), we compute the time derivative of | g?¢*. Using the equation
of ¢ (see (2.24)), we have

1 d A

E % Szeky = ?s\/‘yeky82+/8‘y8€)hy
_ As Ay .2 Ay As Ly As Ay
=3 yvere“+ | (Le)yee™ + T—i_b AQpee +7 eAee

+();—S— l) /(Qb—}-s)ysely—i-f Cbbse)‘y—{—/ Wy ee™Y

- / (Ry(6))y8¢™ — / (RyL(8))yse™.
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Since [ eAge™ = —%A i e2ye™ | the scaling terms cancel (this is because the quantity
is scaling invariant). Next, using (A.3), we have

1
f(Ls)>,ee = ——A/ ye =2 —/\2)fs2eky +/(—10Q3 —310%e%e

<=7 [+ eHe + i

A
(G +0) [ aeuee]+|(5 1) feamee
< 1 |:(/ 2 —|)|/10) + |b|</ 2 )uy)l/2</ e)hy>1/2:|
~ |S|3/2 y<0
1 1 12 1
< 2 Ay 20 4 _—
~ |s|3/2[|s|3/2 " (/8 ‘ ) ] o) & TR
R /syse”=& T /2“ /
A 21\ A
Ay < A 1 2 A 2 A 12
djee lbs| | |P]lele™ < — s |2 Pe™ ge™
1 2 C
< 2 Ay <« = 2 Ay -
> |s|7/4</8 ‘ ) = 100/8 MR

Using (2.14) (recall y = 3/4), we get
‘/\Dbee)‘y < |b|7/4/ le|le™ + |b|2/ |e|e”+|b|2/ lele /4
—2|b|73/4 <y<—|b|73/4 y<0 y>0
1 1/2 12 1/2 12 4
</ e”) </ 8%”) +—</ eky> (/ eze”) +—
5174\ <o 152 \Jy<o0 Is1®
Iy p-3e 1 / 172 1 A C
- |b] - 2 Ay - 2 Ay
(er +|s|7/4>< ) TR =100 T TR

Next, since |Rp(¢)| = 5|Q2 — 0% |e| < |b| |¢|, we have

A

A

<

‘ / (Ry(2))yee™ / Ry (e)(Me| + ley])e”
/(5 + &%),

Finally, since [RNL(€)| < [le]l (€]} + [b] +e7/10)]e], we get

< b 2 )Ly
| |/<s\,+s)e < =

RNL(8) (Mgl + |ey|)e™

1
S NEE /‘(83—1—82)6” < m/(a + &2)eM.

‘ / (RaL())ye¢™
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Combining the above bounds gives

i / 2 )»y < 1
ds ~ s
and integration on (—o0, s] using (A.5) yields (4.11).
A.2. Proofs of (4.12)-(4.13). Note first that by standard arguments,
1(332)* + (3,8)*)()e™ [l L S / (@3e)* + (07e) + (Bye)” + £2) (s, y)e™ dy,

and so it is sufficient to prove (4.12).

The proof is similar to [22, Section 3.4] and involves some computations originally
introduced in [13]. To prove (4.12), we need only rough bounds on ¢ and it is therefore
simpler to decompose

e+ 0p=¢+0,

which satisfies
05 + ay(a E—e+ F(8) = —(AQ + Ag) + (— — 1)(8yQ + 0y8) (A.6)
with
FE) =(Q+8>—0°.
From (A.1), (A.2) and Q) — Q = bPy, (see Lemma 2.5) we have the following

estimates on &:
—pi/1o o 1

< L
Il ¢|T [t s o (A7)

1
/8 (s)<03+/ /(8 +&7) (s gpds’ S S P

and thus, since |b(s)| < 1/|s], for |s| large we have

From (A.2),

$ 1
/ E(9)ep + / / &+ &) epds S P (A.8)

Moreover, since u(t) is a minimal mass blowing up solution and A(s) is increasing for |s|
large, from Lemma 2.11 and then using the properties of O}, (see Lemma 2.5) we obtain,
for |s| large,

Vy >0, le(s, )| S e andso Vy >0, |5(s, y)| < e /%, (A.9)

In particular, it follows that for all 1/B < w < 1/10,

lim [ &(s, y)e® dy = 0. (A.10)

§——00
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Step 1. Forall1/B < w < 1/10, for |s| large,

s
‘ 1
/52(s,y)e‘”y dy+/ /(5§(s’,y) + (s, y)e™ dyds' S Mk (A.11)
—00

Define |
Ho(s) = 3 / &2(s, y)e*Y dy.
Then

%HO_/gSgewy
= = A Yr 2 As Y32 Xs Iz O\ ,0¥
= —/(—8»’+8—F(8))(ee y)y+—/(AQ+A8)ee y+(7—1> /(Q +&y)Ee™
= —Ea)/~2 “’y——a)(l— 2)/ e“’y+/F(§)(§e‘”y)y
—/AQ@ oy — — /8 ye‘“’+<——l)/Q’~ @y — —<——1)/§2e“’y.

First, by the decay properties of O and since ||§3||%oo < 1/]s| (by (A.7)), for |s| large we
have

‘/F(é)(ée%y §/<|5|Q4+|é|5>(|éy|+|é|)ewy

100/(8 +é )e‘”y—i-/(e +&%)ps.
Second, from |Ag/A| + |xg/A — 1| < 1/]s], the decay properties of Q and (A.7),

A 2
—"/AQéewy + ‘(— —~ >/Q e (/ éze_y'/m) < —. (A12)
A ~lsi?

Finally, for 1/B < o’ < w < &' < 1/10, and then using (A.10), we obtain

X 1 1/2 1/2
_sf~2 @Y S o /82y26wy /éZea)y
A |51

1 2 7 / 1/2 2 1/2 w 2 1
< 32?0y o'y 520V < | 820y 4
~ sl (/ (€ e )> (/ ¢ ) ~ 100/ Tty
In conclusion,

d

C
d—Ho<——/(8 +52)e“’ydy+C/(s +£2)<PB+| BR
N

Integrating on (—o0, s], using (A.8) and limy_, _c Ho(s) = 0 by (A.10), we get (A.11).
In particular, for some sequence s, — —o0,

lim [ & (sy. y)e® dy =0. (A.13)

n—oo
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Step 2. Forall1/B < w < 1/10, for |s| large,

s
1
/ég(s,y)ewy dy +f /égy(s’, e dyds' < P (A.14)

—00

Define

1 =2 ~2 wy (Q+g)6 ~ A5 Q6 wy
His) = [ | 5505, 3) + & (s, y)e” = — —8Q° — < )¢ dy.
Then
d

%Hl = /és(—éyy—i—é—F(é))e“’y—w/Exéye‘”y
- —g/(—éyy~|—§—F(E))ze“’y—w/(—éyy+é—F(§))y§ye’”y
As o= = - o As o~
+—= /(AQ—FAS)(—Syy—FS—F(S))Ew) +w—f(AQ+A8)£yewy
+<——1> /(Q +&y)(—&yy +8—F(e))e“’y+w(——1) /(Q +&,)&,e”
< —a)/ g2 ”’y—w(l——w2)f 26 — /F(é)(éyewy)y

As o, o~ ~ - As -
+—/(AQ+A8)(—£yy+8—F(£))e‘”y+a)—f(AQ+A8)£ye‘”y

—i—(——l)/(Q +E))(—&yy+E— F(e))ewv—i—w(——l)/(Q +&,)&ye™.

First, as in Step 1, for |s| large,

‘/F(é)(éyewy)y S /(|§|Q4+ EP) (1| + 18, De™

100/(8}, + &5 —l—e)e‘“y—i-/(e +5)pp.

Second, the following estimates are proved as in Step 1, (A.12), after possible integrations

by parts:
A ~
TS / AQEye™

Xs / = = = .
+‘(7—1>/Q(—8yy+8—f7(8))6 Y+

For example, by the decay properties of Q and (A.8),

As -
T / AQSyyew

As

- / AQ(=8yy + & — FE)e™| +

l\)l'—

/|<AQe“")W||é|
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Finally, we observe that
/(Aé)éyyewy = [(—é?e‘”v + 1w?E%e +§2(ye“’y)y),
and thus for some 1/B < o’ < w < o' < 1/10,
)‘n ~ ~ 1 -~ - / 7/
TY /(As)syye“’y < sl /(83 + &%) (e + ).

All the remaining terms are easier and are treated similarly to Step 1.
Combining the above bounds yields

d 2, w2, =2 =2, =2
ng S —/(Syy +é&y+¢€ )ewydy-l—/(Ey-i-S )PB

1
+/(5§+ )(e‘”+e‘”)+| B

Note that lim,,_, oo Hi(s,) = 0 by (A.10) and (A.13). Integrating on [s,, s], and then
letting n — 00, using (A.8) and (A.11) for ' and ", we find (A.14). In particular, there
exists a subsequence still denoted (s;,) such that

Tim [ &, + &) +E) (50, e dy = 0. (A1)
Step 3. Forall3/B < w < 1/10, for |s| large,
1
/ /
/sw(s y)e® dy +f / yVy(s , e dyds’ < m (A.16)
Define | 95
~2 ~2~4
M) = 5 [Ser =2 [aate
Then
d - wy 25 [ 23wy
aHz = [ &yysEyye™” — 3 (ayxsys + 28, s £)e”” = Hy1+ Hap.
First,

Hoi =[-8, 48 = F@)pene”

As = = wy Xs 1 ’ = = wy

+7 (AQ + A&)yyeyye™ + | — — (O +&y)yyEyye
3 v I ,

= —Ew/ Eyyye™ — —(1 1) )/ g2 ™ /egyeys%‘”

+ f (FE) — %)y (eyye™),
5

+ Ew/ 3), 4oy +30/8 e + 15wf8482e“’>

A - . X - -
+ TS /(AQ + A&)yyEyye™ + (75 B 1) /(Q/ + &y)yyeyye”
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Second,

25
H2’2 - — / 5S((§yg4ewy)y _ 2§§g3ewY)

25 ~4
=3 (—&yy +&— F(s))y(sy}s +28 & + wEyET)e™”

+——/(AQ+A8)(8V}8 +2£ & + w8, g™

+§(——1)/(Q +8y)(8yy8 -|-28 & + wE & ey

=50/ g2 §y83ewy+§a)/§2 ghe® — —f~5~ “’y——w'/j‘ 2y

25 25 T 9 .
— —a)3/§3§3e‘” - —/(F(s) - )y(syys +28y8 +w£y84)ewy

9 ¥
25 Ay
+ — —/(AQ—i—As)(syvs +28253 + wé ey
25 4
+? Iy /(Q +5})(syys +2£s + wEyET)e™ .

The main observation when looking at the above expressions of Hy 1 and H> 7 is that
the higher order nonlinear term f 5 5y83e“’y cancels in the expression of %Hz. All other

yy
1 f
< [ &2 e
~ |S| yy

terms are now controlled as follows.
First, by (A.7),
' / &5 %™
Second, by the Holder inequality, (1.3), and then (A.11), (A.14), for 3/100 < w < 1/10,
5/6 1/6
‘ / 88| < ( f ggewy) < f 5%@)
2 2 2 /3 >/ 2 2 / 1376
= =2 | = : =2 | = 3
5(/(8yy+8)’+8)ewy ) (f(8y+8)ewy )

- . 1
g[(8§y+8§+82)€wy/3+m

Similar estimates are proved for | [ é‘y‘éze“’yl and | [ 5‘;536(‘)”. Next, for terms containing

F(§) — &, we argue as follows. A first observation is (using (A.1))

I(FE) =8, SUEI+1EDQ,  [(FGE) — &)yl S Byl + 18,12 + 18] + 8] Q.
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Thus,

‘ / (F(8) — &%)y (yye™),| < C / (Byyl + 18y 1> + 18y + [ED (B yyy| + 1Byy]) Qe

1 [ N , P
< % /(siyy +85,)e” +C/(s§y +E+E+E)0

IA

1 ~2 ~2 \ _wy ~2 ~2 | =2\ oy C
ﬁ/(gyyy-FEyy)e +C | &y, +E5+E)e +S—2.

The term | [ (F (&) — &)y (8,y8* + 25553 + w&y&)e® | is treated similarly and easier.
Finally, terms containing A;/A and x;/A — 1 are treated as in Steps 1 and 2. For
example, let us consider the term (Ag/A) f(A O + A&)yyEyye®”. We first have

<L
~ 2

N

As - w Ag w ~
2 [ | = |3 [(a0ne,

= 3 (- -
/(Ag)yygyyewy - E/gf'yewy _w/%yyewy’

we get, for some 1/100 < 0’ < w < o' < 1/10,

)‘*S ~ ~ ] 1 ~2 /v /!
- /(Ae)yysyye‘”‘ S s—zfsyy(e“” +e” ).
Gathering all the previous estimates, we obtain

d

d—st - /(g;yy + &y +E +EDe dy

Since

~ ~ ~ 7 1
+ /(siy +E 4B ) + o

Integrating on [s,, s] and letting n — oo using (A.8), (A.15) and (A.14), we get (A.16).

For some sequence s,’l — —00, this implies

lim [ (&, +&, +& +&)(s,, y)e” dy =0. (A.17)

1 00 yyy
Note also that by standard arguments, (A.16) implies directly that
le3e® [l S 1/1sl. (A.18)
Step 4. Forall9/B < w < 1/10, for |s| large,

s

: 1

/ 55),),(s,y)e‘°y dy + / / (a;‘é)%/, e dyds’ < ik (A.19)
—0oQ

Define
Hy(s) = = [,
3 =5 [ &yl
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Then
d o= L0y z z z wy
£H3 EyyysEyyye™ = [ (=&yy +& = F(8))yyyyeyyye
As = = wy Xs ! = = wy
+ N (AQ + A&)yyyEyyye™ + 3 L) [ (O + &y)yyyEyyye
_ 3 ~2 wy w 1 2 ~2 wy ~ wy
=50 [ Eyyyye™ — E( — %) | &+ [ (F(&)yyy(eyyye™)y
As = = wy Xs ! = = wy
+ N (AQ + A&)yyyEyyye™ + 3 1 (Q" + &y)yyyEyyye

The last two terms (As/A) [(AQ + A&)yyyEyyye® and (xg/A — 1) [(Q' +&y)yyyEyyye™”
are treated exactly as in the previous steps, and thus we omit the estimates.

We focus on the nonlinear term [ (F(8))yyy(eyyye®)y. Expanding F(8) = 5Q%¢ +
100382 + 10028 +50&* 4+ & and integrating by parts, we obtain many different terms.
We check the worst ones; the others can be handled similarly. See also [22, Section 3.4]
for similar arguments.

First, we remark that the following term, which is only quadratic in &, is easily con-

trolled:
4/ ~2 )
‘/ vyy(Q )'e” / Eyyye™.

Second, we treat some terms coming from 2.

~ ~3 wy
'/8yy gye’e

~3 2wy
‘/syyeys e

1
<13 1z L0y/2 =2 wy/2 g2 Loy/2.
S lEN7lIEye ||L°°/8yyye S Is]2 /Syyye ’
/8 e
1/4 5/4
4+ 82 )ev/2 z2 ,0y/2
|s|3/2 (/ ot Eny)e ) </ e )

=2  wy/2
|S|11/% +/‘9uye ’

5 ~2 2 5
< Bl N5y e e ‘/ o/

2 = 4
SN o0 l1Eye™ 4| oo

1

< —.
™ lsP

‘/ ~3~ wy

Thus, we get
S s [@ferer + o+ [@hy + 8, + G+ +e),

Integrating on [s),, s] and letting n — 00, using (A.17) and (A.16), we obtain (A.19) for
15/(2B) < w < 1/10.
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Appendix B. Proof of Lemma 6.3

For simplicity of notation, we denote &, Ay,, by, and x,,, simply by €, A, b and x.

Step 1. Algebraic computations. We follow closely the computations in [29, proof of
Proposition 3.1]. First,

dry=L 1/ 39 +l282¢/ — L+ 00 - 0 — 6039,
as” P T2\ J [T 2R TR TS ’ b e

- A2 -
+2 / dp(ey)sey + 2es[k—28¢3 — ¢p((e + Qp)° — QZ)]
0

-2 / G5(0p)s((e + 0p)° — Q3 — 58Q§)>

X i ] .
Y [85¢B—%(<8+Qb>6—Qg_68QZ)¢B]_2<Aog> [

1
= ﬁ(fl + 2+ f3+ fa),
where

1 ~ ~
fi=3 / (6305 + %05 — (e + Q»)° — OF — 66 0}) )]

As ~ ~
+ 2/<8s - TAS) (—(@Bey)y + 5 — Pp(e + Q) — Q})),

22 20)s
1 =2<1 - p>/858¢3 —2(/\00) /€2¢B
0

_ )"S ot o 5 5
=2 / Ae(—@sey)y + ebn — Pu(e + 0p)° — OD)

- 2% / [e368 — 3((e + Q)° — QF — 607)5]
fi= =2 [ Bu(@uette + 00 - 05 - 50
We use the equation of ¢ in the following form:
&5 — %Ae = (—&yy +&—(e+0p)° + 0)),

+ (’\7 +b>AQ;, + (% - 1>(Qb +&)y+Op+ W, (B.)

where ®j, = —by(xp + ¥y (xp)y) P and =W, = (Q) — Qp + Q}) + bAQp.
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Step 2. Control of fi. We have
fi= % / [e265 + %0 — 3((e + Q»)° — O — 6 07)}]
+2 / (—eyyte—((e + Q0)°—02))y (—(Bpey) y+ed8—bB1(Q +6)° — O3]
+ 2( + b) / AQy(—(PBey)y + £d8 — b5 (e + Q1) — 03))
+2( ) [ @+ e, (= @ne, + e0u— utie + 00)° - 0D)
+2 / Dy (—(Paey)y + 5 — d5((e + 0p)° — O}))

+2 / Wy (= @rey)y + g — Bu((e + Qp)° — OD)

= fi1+ fiz+ fi3+ fia+ fis.
As in [29], after some computations we obtain
fia= = [, + (ol + 4 = 3)e + (05 - 95)]
1 -
- / (e + 0p)° = Q) — 6c0)))

6 ~
—2/[(” Qo) _ & — Qe — (e + Q) — Qi)e}(% — )

6
+ 2/[<e + 0p)° — Q) — 5011(0b)y (b5 — bB)

+ 10 / Bpel(Qp)y[(Qp + &)* — O+ (Qp + &)*ey)

+ / Ppl—2eyy + 26 — (e + 0p)° — ODII(e + Qp)° — O31.

Using the following estimates (see [29] for more details):

YRS —¢>B o5 < —¢>B forally € R, (B.2)
106+ 1(Qp)y (M S e—'y‘ +1b| forally € R, (B.3)
f ¢y S 8@ / (7 + &) (B.4)

/eie‘% < 5(a*)</ e5,0p + /(g% + 82)45}9), (B.5)
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and the bound on the L? norm of ¢ (see Lemma 6.2), we obtain, for B large and «* small,
- 1 1y
fin = —/d)égeiy - Z/(si +eD)) + C/(£§ +eD)e M0yt

~ 1 B
5—/¢>’Ba§y—Z/(a§+sz)¢’3+c/(s§+sz)ljiyz + Clb[*.
+

Next,
fia= 2( + b) / AQ(Le) — 2(% —i—b) /s(l —¢B)AQ
+ 2b<—s +b) f A P)(—(@Bey)y + epp — $pl(Qb + €)° — O}))
+ 2( +b) / AQ(—(p)yey — (1 = Gp)eyy + (1 — $p)(Qp + )° — Q}])
+ 2(7 + b) / AQL(Qp +)° — 0) —50%).

The main term [ AQ(Le) is zero by the orthogonality conditions on &, and the other
terms are controlled as in [29] using (2.29), (B.2), (B.3) and (B.5), to obtain

| fi2l < f(s +s2)¢B+Cf(s +82) 5 ~|—C|b|

= 100

The next term is
fis =z(f - ) [ 310+ - 0§ — 6031
4_2(_A ) /(bXbP + &)y [—Ppey — Ppeyy + edil
n 2(% _ 1) / Q'[Le — ey + (1 — dpp)eyy — e(1 — ¢p)]
+ 10(— - 1) [ conc@iion, - 0*0,).
Using LQ’ = 0 and arguing similarly, we obtain

fil < f(e +s)¢B+Cf<e I el

= 100 2

Step 3. Control of f>. First, by (6.13), we have

(?»o)s/ 245 <0,
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Next, by the definition of Ay in Lemma 2.10, we have

1— </\/1/2<5(a)

)»2

and thus, proceeding for [ e;e¢p as in the previous step, we find

1—’\—2 f@eqbg <L/(82+82)¢/ +C/(8 +82) +C|b|
e s = 100) B —|—y

Step 4. Control of f3. From computations in [29],
A . ~ A ~
=:i/nm—y%k&~ify%¥
-3 2 [126n = by + 00 - 0f ~ 603¢)
+23}/$3AQM@4—Qw5—Qb—5Qw>
Ag - -
—2f/k%3—a@+gwﬂwﬁ—&0bw}
After simplification of the last line with terms in the first and second lines, we obtain
A -
ﬁ=—uf/w%kaw¥—a@+Qw@—Q$4@%ﬂ
As 7 5 5 4
+ 27 dpAQp((e + Qp)” — Qp —5038).
For this term we observe, from the definition of ¢ and q; B,
!/w@y£+w2+wﬁxsf@3+¥w;
and |As /2| < 8(a™). The other terms in the expression of f3 are treated as before, so that

1 f3] < /@ +¥w3+6/@-+£)¢§ +Clp|*.

= 100
Step 5. Control of f4. Arguing exactly as in [29] (using (2.30)), we obtain

[fa] < —/(8 +82)¢B+C/(s +82) L +C|b|
100 y

Gathering these estimates, we get (6.24).

Step 6. Proof of (6.25). This is a standard fact by localization arguments (see e.g. [25
Appendix A]).
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