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Abstract. We consider the mass critical (gKdV) equation ut + (uxx + u5)x = 0 for initial data
in H 1. We first prove the existence and uniqueness in the energy space of a minimal mass blow
up solution and give a sharp description of the corresponding blow up soliton-like bubble. We then
show that this solution is the universal attractor of all solutions near the ground state which have a
defocusing behavior. This allows us to sharpen the description of near soliton dynamics obtained
in [29].

Keywords. Generalized Korteweg–de Vries equation, blow up, minimal mass solution, uniqueness
of threshold solution

1. Introduction

1.1. Setting of the problem. We continue the study of the mass critical generalized
Korteweg–de Vries equation

(gKdV)
{
ut + (uxx + u

5)x = 0, (t, x) ∈ [0, T )× R,
u(0, x) = u0(x), x ∈ R, (1.1)

initiated in Part I [29]. The Cauchy problem is locally well posed in the energy space H 1

from Kenig, Ponce and Vega [15], [16], and given u0 ∈ H
1, there exists a unique (in a

certain sense) maximal solution u(t) of (1.1) in C([0, T ),H 1) and

T <∞ implies lim
t→T
‖ux(t)‖L2 = ∞. (1.2)
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The Cauchy problem for (1.1) is also locally well-posed in L2, and given u0 ∈ L
2, there

exists a unique maximal solution u(t) of (1.1) in C([0, T ), L2) with either T = ∞ or

T <∞ and then ‖u‖L5
xL

10
(0,T )
= ∞.

Moreover, H 1 solutions satisfy the conservation of mass and energy:

M(u(t)) =

∫
u2(t) = M0, E(u(t)) =

1
2

∫
u2
x(t)−

1
6

∫
u6(t) = E0.

The symmetry group of (1.1) is continuous in H 1 and given by

ε0λ
1/2
0 u(λ3

0(t − t0), λ0(x − x0)), (ε0, λ0, x0, t0) ∈ {−1, 1} × R∗+ × R× R.

In particular the scaling symmetry leaves the L2 norm invariant and hence the problem is
mass or L2 critical.

Traveling wave solutions play a distinguished role in the analysis:

u(t, x) = Q(x − t)

where Q is the ground state solitary wave

Q(x) =

(
3

cosh2(2x)

)1/4

which satisfies the sharp Gagliardo–Nirenberg inequality, [50]:

∀v ∈ H 1,

∫
|v|6 ≤

∫
v2
x

( ∫
v2∫
Q2

)2

. (1.3)

The conservation of mass and energy and the blow up criterion (1.2) ensure thatH 1 initial
data with subcritical mass ‖u0‖L2 < ‖Q‖L2 generate global in time solutions.

1.2. The flow near the ground state. In the series of works [23]–[26], [34], Martel and
Merle obtain the first qualitative information on the flow for small supercritical mass
initial data ‖Q‖L2 < ‖u0‖L2 < ‖Q‖L2 + α∗, 0 < α∗ � 1, in particular the existence of
finite time blow up solutions for E0 < 0 and the classification of Q as the unique global
attractor of all H 1 blow up solutions.

In Part I [29], we have revisited the blow up analysis in light of recent developments
related to blow up for the mass critical Schrödinger equation [35]–[40] and energy critical
geometrical equations [41], [46], [47].

More precisely, define the set of initial data

A =
{
u0 = Q+ ε0 : ‖ε0‖H 1 < α0 and

∫
y>0

y10ε2
0 < 1

}
,

and consider the L2 tube around the family of solitary waves,

Tα∗ =
{
u ∈ H 1

: inf
λ0>0, x0∈R

∥∥∥∥u− 1

λ
1/2
0

Q

(
· − x0

λ0

)∥∥∥∥
L2
< α∗

}
.
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In [29], we have proved the following (see [29, Theorems 1.1 and 1.2] for more de-
tails).

Theorem 1.1 (Rigidity of the flow in A, [29]). Let 0 < α0 � α∗ � 1 and u0 ∈ A. Let
u ∈ C([0, T ),H 1) be the corresponding solution to (1.1). Then one of the following three
scenarios occurs:

(Blow up) The solution blows up in finite time 0 < T <∞ in the universal regime

‖u(t)‖H 1 =
`(u0)+ o(1)

T − t
as t → T , `(u0) > 0. (1.4)

(Soliton) The solution is global: T = ∞, and converges asymptotically to a solitary
wave.

(Exit) The solution leaves the tube Tα∗ at some time 0 < t∗ <∞.

Moreover, the (Blow up) and (Exit) scenarios are stable under small perturbation of the
data in A.

Our aim in this paper is first to classify the minimal mass dynamics ‖u0‖L2 = ‖Q‖L2 ,
and then, from this classification, to complete the description obtained in Theorem 1.1
in the (Exit) regime. Indeed, we will show that for α0 small enough, the (Exit) case is
directly connected to the understanding of minimal mass dynamics.

1.3. Minimal mass dynamics. The question of existence and possibly uniqueness of
minimal blow up dynamics for dispersive and parabolic PDE’s has motivated several
works since the pioneering result by Merle [32] for the mass critical nonlinear Schrödin-
ger equation:

(NLS) i∂tu+1u+ |u|4/Nu = 0, (t, x) ∈ R× RN . (1.5)

Let us recall that for (NLS), the pseudo conformal symmetry generates an explicit mini-
mal mass blow up solution

SNLS(t, x) =
1
tN/2

e−i
|x|2
4t −

i
tQNLS

(
x

t

)
(1.6)

where QNLS is the ground state solution to

1QNLS −QNLS +Q
1+4/N
NLS = 0, Q > 0, Q ∈ H 1.

Merle [32] proved that SNLS is the unique (up to the symmetries of the equation)
minimal mass blow up element in the energy space. The proof heavily relies on the pseudo
conformal symmetry. Such minimal blow up dynamics has also been exhibited for the
energy critical NLS and wave problems [11], [10], using the virial algebra and a fixed
point argument. For the inhomogeneous mass critical (NLS) in dimension 2,

i∂tu+1u+ k(x)|u|2u = 0,
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while Merle [33] derived sufficient conditions on k(x) to ensure the nonexistence of min-
imal elements, Raphaël and Szeftel [48] introduced a more dynamical approach to exis-
tence and uniqueness under a necessary and sufficient condition on k(x). A robust energy
method is implemented to completely classify the minimal mass blow up, in regimes such
that the inhomogeneity k influences dramatically the bubble of concentration (1.6)—in
contrast with direct perturbative methods developed in [1], [3], [4]; see also [18] for exis-
tence in the one-dimensional half wave problem.

Recall that for the mass critical (gKdV) problem (1.1), Martel and Merle [27] obtained
the following global existence result for minimal mass solutions with decay on the right.

Theorem 1.2 (Global existence at minimal mass, [27]). Let u0 ∈ H
1 with ‖u0‖L2 =

‖Q‖L2 and

sup
x0>0

x3
0

∫
x>x0

u2
0(x) dx <∞. (1.7)

Then the corresponding solution u(t) of (1.1) is global for t > 0.

In other words, minimal mass blow up is not compatible with the decay (1.7). This is
in agreement with the analysis in [29] where the threshold dynamics for data in A be-
tween the stable (Blow up) and (Exit) regimes is proved to correspond to a solitary wave
behavior—and not to a minimal blow up. We refer to [40] for a further discussion of
threshold dynamics.

1.4. Statement of the result. The first main result of this paper is the existence and
uniqueness in the energy space of a minimal mass blow up element:

Theorem 1.3 (Existence and uniqueness of the minimal mass blow up element).

(i) (Existence) There exists a solution S(t) ∈ C((0,∞),H 1) to (1.1) with minimal mass
‖S(t)‖L2 = ‖Q‖L2 which blows up backwards at the origin:

S(t, x)−
1
t1/2

Q

(
x + 1/t + ct

t

)
→ 0 in L2 as t ↓ 0

with speed

‖S(t)‖H 1 ∼ C
∗/t as t ↓ 0 (1.8)

for some universal constants c, C∗. Moreover, S is smooth and well-localized to the
right in space:

∀x ≥ 1, |S(1, x)| ≤ e−Cx . (1.9)

(ii) (Uniqueness) Let u0 ∈ H
1 with ‖u0‖L2 = ‖Q‖L2 and assume that the correspond-

ing solution u(t) to (1.1) blows up in finite time. Then u ≡ S up to the symmetries of
the flow.
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Observe that the minimal element blows up with speed (1.8), which is the same as in
the (Blow up) regime obtained in Theorem 1.1. However, the case of (Blow up) in The-
orem 1.1 is shown to be stable under small perturbation in A, while minimal mass blow
up is unstable under perturbation of the data S(0) → (1 − ε)S(0), ε > 0, since the cor-
responding solution has subcritical mass and is thus global in time. This shows that the
decay assumption to the right in Theorem 1.1 is essential and that the minimal blow up
solution has slow decay to the left.1 The nature of the minimal blow up is different from
that of the stable blow up. We also refer to Part III [30] for examples of exotic blow up
rates for initial data with slow decay.

We now relate the (Exit) case in Theorem 1.1 to the minimal mass blow up dynamics.
We claim that at the (Exit) time, the solution is L2 close up to renormalization to the
unique minimal solution S(t).

Theorem 1.4 (Description of the (Exit) scenario). Let u(t, x) be a solution of (1.1) cor-
responding to the (Exit) scenario in Theorem 1.1 and let t∗u � 1 be the corresponding
exit time. Then there exist σ ∗ = σ ∗(α∗) (independent of u) and (λ∗u, x

∗
u) such that

‖(λ∗u)
1/2u(t∗u , λ

∗
ux + x

∗
u)− S(σ

∗, x)‖L2 ≤ δI (α0),

where δI (α0)→ 0 as α0 → 0.

Note that uniqueness in Theorem 1.3 is an essential ingredient of the proof. In view of
the universality of S as attractor to all defocusing solutions, and in continuation of Theo-
rem 1.3, it is an important open problem to understand the behavior of S(t) as t →∞. For
the mass critical (NLS), the explicit formula (1.6) ensures that SNLS scatters as t → ∞,
and hence it is a connection from∞ to 0. For (gKdV), the decay in space (1.9) of S(t, x)
on the left, combined with Theorem 1.2, ensures that S(t) is globally defined for t > 0,
but scattering as t → ∞ is an open problem.2 We conjecture that S(t) actually scatters,
and because scattering is a property open in L2 [16], we obtain the corollary:

Corollary 1.5. Assume that S(t) scatters as t → ∞. Then any solution in the (Exit)
scenario is global for positive time and scatters as t →∞.

Related rigidity theorems near the solitary wave were recently obtained by Nakanishi and
Schlag [42], [43] for supercritical wave and Schrödinger equations using the invariant set
methods of Berestycki and Cazenave [2], the Kenig–Merle concentration-compactness
approach [14], the classification of minimal dynamics [10]–[12] and a further “no return”
lemma in the (Exit) regime. This approach relies on the virial algebra which is not known
for (gKdV).

We expect the strategy of the proof of Theorem 1.4, reducing the dynamics of defo-
cusing solutions to the sole description of the minimal mass solution, to be quite general.

1 Remember that it blows up backwards in time.
2 By scattering for (gKdV), we mean that there exists a solution v(t, x) to the Airy equation
∂tv + vxxx = 0 such that limt→∞ ‖S(t)− v(t)‖L2 = 0.
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Notation. We introduce the generator of L2 scaling:

3f = 1
2f + yf

′.

We use the L2 scalar product

(f, g) =

∫
R
f (x)g(x) dx.

Let the linearized operator close to Q be

Lf = −f ′′ + f − 5Q4f. (1.10)

For a given generic small constant 0 < α∗ � 1, δ(α∗) denotes a generic positive small
constant with

δ(α∗)→ 0 as α∗→ 0.

Given an interval I of R, we let 1I denote the characteristic function of I .

1.5. Strategy of the proof. Let us give a brief insight into the strategy of the proof of
Theorems 1.3 and 1.4.

Step 1. Modified blow up profiles. We construct the minimal element using a variation
of the compactness argument used for the construction of nondispersive objects in [31],
[22], [6], [48]. Near blow up time, this solution will admit a decomposition

u(t, x) =
1

λ1/2(t)
(Qb(t) + ε)(s, y) with

ds

dt
=

1
λ3 , y =

x − x(t)

λ(t)
,

ε(t)→ 0 in H 1 as t ↓ 0.

HereQb is the slow modulated deformation of the ground state constructed in [29] which
formally leads to the dynamical system{

bs + 2b2
= 0,

−λs/λ = b,
i.e.

{
λ(t) = `∗t,

b(t) = −`∗λ2(t),

and hence the blow up speed (1.8).

Step 2. The formal argument. Following [31], [48], we could build the minimal element
by considering the solution un(t) to (gKdV) with data

u(tn) =
1

λ1/2(tn)
Qb(tn)

(
x − x(tn)

λ(tn)

)
with λ(tn) = `

∗tn, b(tn) = −`
∗λ2(tn)

and show that there exists a time t0 > 0 independent of n such that

‖un(t0)‖H 1 . 1 as tn ↓ 0.

Such an estimate is at the heart of the proof and would be a consequence of the fine
monotonicity properties exhibited in [29]. Passing to the limit tn → 0 automatically
produces the expected blow up element.
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We will argue slightly differently and propose a scheme adapted to the proof of both
Theorems 1.3 and 1.4 and which as in [40] illustrates the fact that the minimal element
can be obtained as the limit of a sequence of defocusing solutions. Indeed, we pick a
sequence of well-prepared initial data

un(0) = Qbn(0), bn(0) = −1/n,

which by construction have subcritical mass

‖un(0)‖L2 = ‖Q‖L2 − c/n+ o(1/n).

Such solutions are automatically in the (Exit) regime of Theorem 1.1. Moreover, we have
from [29] a complete description of the flow for t ∈ [0, t∗n ]: the solution admits a decom-
position

un(t, x) =
1

λ
1/2
n (t)

(Qbn(t) + εn)

(
t,
x − xn(t)

λn(t)

)
(1.11)

where to leading order the modulation equations for (bn, λn) are given by

bn(t)/λ
2
n(t) ∼ bn(0) = −1/n, (λn)t ∼ −bn(0),

i.e.
λn(t) ∼ 1− bn(0)t, bn(t) ∼ bn(0)λ2

n(t). (1.12)

The (Exit) time t∗n is the one at which the solution moves strictly away from the solitary
wave, which in our setting is equivalent to

bn(t
∗
n ) = −α

∗

independent of n. This in particular allows us to compute t∗n and show using (1.12) that
the solution defocuses:

λ2
n(t
∗
n ) ∼ bn(t

∗
n )/bn(0) ∼ nα

∗ as n→∞.

We therefore renormalize the flow at t∗n and consider the solution to (gKdV) with data at
t∗n given by the renormalized un at t∗n , explicitly

vn(τ, x) = λ
1/2
n (t∗n )un(tτ , λn(t

∗
n )x + xn(t

∗
n )), tτ = t

∗
n + τλ

3
n(t
∗
n ).

Then by a direct check, vn admits a decomposition

vn(τ, x) =
1

λ
1/2
vn (τ )

(Qbvn
+ εvn)

(
τ,
x − xvn(τ )

λvn(τ )

)
with, from the symmetries of the flow,

λvn(τ ) =
λn(tτ )

λn(t∗n )
, xvn(τ ) =

xn(tτ )− xn(tn)

λn(t∗n )
,

bvn(τ ) = bn(tτ ), εvn(τ ) = εn(tτ ).
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The renormalized parameters can be computed approximately using (1.12):

λvn(τ ) ∼
λn(t

∗
n + τλ

3
n(t
∗
n ))

λn(t∗n )
∼

1
λn(t∗n )

[1− bn(0)(t∗n + τλ
3
n(t
∗
n ))]

∼
1

λn(t∗n )
[λn(t

∗
n )− τbn(0)λ

3
n(t
∗
n )] = 1− τbn(0)λ2

n(t
∗
n )

= 1− τbn(t∗n ) = 1+ τα∗.

Letting n→ ∞, we therefore expect to extract a weak limit vn(0) ⇀ v(0) such that the
corresponding solution v(τ) to (gKdV) has minimal mass ‖v(0)‖L2 = ‖Q‖L2 and blows
up backwards at some finite time τ ∗ ∼ −1/α∗ with blow up speed λv(τ ) ∼ τ − τ ∗,
i.e. (1.8).

The extraction of the weak limit now requires sharp control on the remaining radia-
tion εvn . Here an essential use is made of the fact that the set of data un(0) is well-prepared
as this induces uniform bounds for εvn(0) = εun(t

∗
n ) in H 1 and allows us to use the H 1

weak continuity of the flow in the limiting process.

Step 3. Solutions in the (Exit) regime. Theorem 1.4 follows similarly by considering
sequences (u0)n of data with ‖(u0)n‖L2 → ‖Q‖L2 such that the corresponding solution
to (gKdV) is in the (Exit) regime. We write explicitly the solution at the (Exit) time in
the form (1.11), renormalize the flow and now aim at extracting a weak limit as n→∞.
The architecture of the proof is similar, except that we have lost the fact that the data is
well-prepared, which destroys the uniformH 1 bound on vn(0). We therefore use two new
tools: a concentration-compactness argument on sequences of solutions in the critical L2

space in the spirit of [14] using the tools developed in [17], which allows us to extract a
nontrivial weak limit with suitable dynamical controls; and refined local H 1 bounds on
vn(τ ) in order to ensure that the L2 limit is in fact also in H 1. Hence the weak limit is a
minimal mass H 1 blow up element.

Step 4. Uniqueness. It remains to prove the uniqueness in H 1 of the minimal element.
This is a delicate problem and here we adapt the direct dynamical approach developed
in [48]. The first step is to show that any H 1 minimal blow up element blows up with
the blow up speed (1.8). Here the proof relies first on exponential decay estimates of
minimal elements proved in [25], which allow us once again to apply the monotonicity
machinery developed in [29]. Once the blow up speed is known, one may integrate the
flow backwards from the singularity and show that the blow up element is close in a
strong sense to the S(t) minimal element previously constructed. It remains to show that
the difference is exactly zero. This requires revisiting the monotonicity properties for
the difference of two such solutions, and showing that the previously obtained a priori
bound on the solution implies that the difference is exactly zero.3 Let us emphasize that
as in [48], [40], we are forced to work with a finite order approximation of the solution,4

and therefore this step is always delicate.

3 This equivalently means that the integration of the flow from blow up time defining the minimal
blow up element is a contraction mapping in a suitable function space.

4 And not arbitrarily degenerate as in [3] for example.
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2. Nonlinear profiles and decomposition close to the soliton

In this section we collect a number of tools which can be explicitly found in the literature
and which we will use in the proof of the main results. We start by recalling the status
of scattering theory and profile decomposition in the critical L2 space for (gKdV). We
then recall the nonlinear decomposition of the flow for data near the ground state, and the
main monotonicity formula at the heart of the analysis in [29], which will again play a
distinguished role in our analysis.

2.1. Cauchy problem and scattering from [15]. We use the notion of strong solution
in the sense of Kenig, Ponce and Vega [15]. For u0 ∈ L

2, we denote by v(t) = W(t)u0
the solution of the Airy equation vt + vxxx = 0 with v(0) = v0. The following space-
time Strichartz type estimate proved in [15] is essential in the resolution of the Cauchy
problem for (1.1) in L2 and H 1:

‖W(t)v0‖L5
xL

10
t
. ‖v0‖L2 . (2.1)

We recall the following classical results.

Theorem 2.1 (Kenig, Ponce, Vega [15]).

(i) (L2 theory) The Cauchy problem (1.1) is locally well-posed in L2: for all u0 ∈ L
2,

there exists a unique L2 solution of (1.1) defined on a maximal interval of existence
[0, T ). There is continuous dependence on the data in L2, and the blow up alterna-
tive holds:

T <∞ implies ‖u‖L5
xL

10
T
= ∞.

Moroever, there exists δ > 0 such that ‖u0‖L2 < δ implies that the solution is global
with ‖u‖L5

xL
10
∞
<∞.

(ii) (H 1 theory) The Cauchy problem (1.1) is locally well-posed inH 1: for all u0 ∈ H
1,

there exists a unique H 1 solution of (1.1) defined on a maximal interval of existence
[0, T ). There is continuous dependence on the data in H 1, and the blow up alterna-
tive holds:

T <∞ implies lim
t↑T
‖∂xu‖L2 = ∞.

(iii) (Scattering and stability of scattering) Let u(t) be a global L2 solution of (1.1). If
‖u‖L5

xL
10
∞
< ∞, then the solution u(t) scatters at∞, i.e. there exists v+0 ∈ L

2 such
that

lim
t→∞
‖u(t)−W(t)v+0 ‖L2 = 0.

The set S = {u0 ∈ L
2
: u(t) is global and scatters at∞} is open in L2.

Point (iii) of Theorem 2.1 follows from [15] and standard arguments (see e.g. [14] for sim-
ilar arguments in the case of nonlinear Schrödinger equation), and means that scattering
is a stable regime without any assumption on the size of the solution.
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We now recall the known results from [49] on profile decomposition in the critical
space of sequences of solutions to the Airy equation which describes the lack of com-
pactness of the Strichartz estimate (2.1). For any x0 ∈ R and λ > 0, define an operator
gx0,λ : L

2(R)→ L2(R) by

[gx0,λf ](x) := λ
−1/2f (λ−1(x − x0)).

Definition 2.2. For j 6= k, 0jn = (λ
j
n, ξ

j
n , x

j
n , t

j
n )n≥1 and 0kn = (λkn, ξ

k
n , x

k
n, t

k
n)n≥1 in

(0,∞)× R3 are orthogonal if one of the following holds:

• lim
n→∞

(
λ
j
n

λkn
+
λkn

λ
j
n

+ λ
j
n|ξ

j
n − ξ

k
n |

)
= ∞;

• (λ
j
n, ξ

j
n ) = (λ

k
n, ξ

k
n ) and

lim
n→∞

(
|tkn − t

j
n |

(λ
j
n)

3
+

3|(tkn − t
j
n )ξ

j
n |

(λ
j
n)

2
+
|x
j
n − x

k
n + 3(tjn − tkn)(ξ

j
n )

2
|

λ
j
n

)
= ∞.

Lemma 2.3 (Profile decomposition, [49]). Let {un}n≥1 be a sequence of real-valued
functions bounded in L2. Then, after passing to a subsequence if necessary, there
exist (complex) L2 functions {φj }j≥1 and a family of orthogonal sequences 0jn =
(λ
j
n, ξ

j
n , x

j
n , t

j
n ) ∈ (0,∞)× R3 such that for all J ≥ 1,

un =
∑

1≤j≤J

e−t
j
n ∂

3
x
(
g
x
j
n ,λ

j
n
[Re(eixξ

j
n λ

j
nφj )]

)
+ wJn , (2.2)

where the ξ jn satisfy the following property: for any 1 ≤ j ≤ J , either ξ jn = 0 for all
n ≥ 1, or ξ jnλ

j
n→∞ as n→∞. Here, wJn ∈ L

2(R) is real-valued and

lim
J→∞

lim sup
n→∞

{∥∥|∂x |1/6e−t∂3
xwJn

∥∥
L6
t,x (R×R)

+ ‖e−t∂
3
xwJn ‖L5

xL
10
t (R×R)

}
= 0. (2.3)

Moreover, for any J ≥ 1,

lim
n→∞

{
‖un‖

2
L2 −

∑
1≤j≤J

‖Re[eixξ
j
n λ

j
nφj ]‖2

L2 − ‖w
J
n ‖

2
L2

}
= 0. (2.4)

Using this lemma for the study of the nonlinear flow (1.1) requires a suitable perturbation
theory:

Lemma 2.4 (L2 perturbation theory, [17]). Let I be an interval of R with 0 ∈ I , and let
ũ be an L2 solution of

ut + (uxx + u
5)x = ex

on I × R for some function e. Assume that

‖ũ‖L∞t L2
x (I×R) + ‖ũ‖L5

xL
10
t (I×R) ≤ M
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for some M > 0. Let u(0) ∈ L2 be such that

‖u(0)− ũ(0)‖L2 ≤ M
′,

‖e−t∂
3
(u(0)− ũ(0))‖L5

xL
10
t (I×R) + ‖e‖L1

xL
2
t (I×R) ≤ ε,

for M ′ > 0 and for some small 0 < ε < ε0(M,M
′). Then the solution u(t) of (1.1)

corresponding to u(t0) is defined on I and we have the bound

‖u− ũ‖L5
xL

10
t (I×R) + ‖u− ũ‖L

∞
t L

2
x (I×R) ≤ C(M,M

′)ε. (2.5)

2.2. Approximate self-similar profiles. We recall the existence of suitable approximate
self-similar solutions which give the leading order profile of solutions with data near Q.
The specific sutrcture of these profiles drives both the blow speed in the (Blow up) regime
and the speed of defocusing in the (Exit) regime. Let Y be the set of functions f ∈
C∞(R,R) such that

∀k = 0, 1, 2 . . . , ∃Ck, rk > 0, ∀y ∈ R, |f (k)(y)| ≤ Ck(1+ |y|)rke−|y|. (2.6)

Let χ ∈ C∞(R) be such that 0 ≤ χ ≤ 1, χ ′ ≥ 0 on R, χ ≡ 1 on [−1,∞), χ ≡ 0 on
(−∞,−2]. Define

χb(y) = χ(|b|
γ y), γ = 3/4. (2.7)

Lemma 2.5 (Approximate self-similar profiles Qb, [29]). There exists a unique smooth
function P such that P ′ ∈ Y and

(LP )′ = 3Q, lim
y→−∞

P(y) =
1
2

∫
Q, lim

y→∞
P(y) = 0, (2.8)

(P,Q) =
1

16

(∫
Q

)2

> 0, (P,Q′) = 0. (2.9)

Moreover, the localized approximate profile

Qb(y) = Q(y)+ bχb(y)P (y) (2.10)

satisfies:

(i) (Estimates on Qb) For all y ∈ R,

|Qb(y)| . e−|y| + |b|(1[−2,0](|b|
γ y)+ e−|y|/2), (2.11)

|Q
(k)
b (y)| . e−|y| + |b|e−|y|/2 + |b|1+kγ 1[−2,−1](|b|

γ y) for k ≥ 1. (2.12)

(ii) (Equation of Qb) Let

−9b = (Q
′′

b −Qb +Q
5
b)
′
+ b3Qb. (2.13)

Then, for all y ∈ R,

|9b(y)| . |b|
1+γ 1[−2,−1](|b|

γ y)+ b2(e−|y|/2 + 1[−2,0](|b|
γ y)), (2.14)

|9
(k)
b (y)| . |b|1+(k+1)γ 1[−2,−1](|b|

γ y)+ b2e−|y|/2 for k ≥ 1. (2.15)
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(iii) (Mass and energy properties of Qb)∣∣∣∣∫ Q2
b −

(∫
Q2
+ 2b

∫
PQ

)∣∣∣∣ . |b|2−γ , (2.16)∣∣∣∣E(Qb)+ b

∫
PQ

∣∣∣∣ . b2. (2.17)

2.3. Geometrical decomposition of the flow. Let u ∈ C([0, t0], H 1) be a solution
of (1.1) close in L2 to the manifold of solitary waves, i.e. we assume that there exist
(λ1(t), x1(t)) ∈ R∗+ × R and ε1(t) such that

∀t ∈ [0, t0], u(t, x) =
1

λ
1/2
1 (t)

(Q+ ε1)

(
t,
x − x1(t)

λ1(t)

)
, (2.18)

∀t ∈ [0, t0], ‖ε1(t)‖L2 +

(∫
(∂yε1)

2e−|y|/2dy

)1/2

≤ κ0, (2.19)

for some small enough universal constant κ0 > 0. This decomposition is refined using the
Qb profiles and a standard modulation argument.

Lemma 2.6 (Decomposition and H 1 properties, [29]). Assume (2.19).

(i) (Decomposition) There exist C1 functions (λ, x, b) : [0, t0] → (0,∞) × R2 such
that

∀t ∈ [0, t0], ε(t, y) = λ1/2(t)u(t, λ(t)y + x(t))−Qb(t)(y) (2.20)

satisfies the orthogonality conditions

(ε(t), y3Q) = (ε(t),3Q) = (ε(t),Q) = 0, (2.21)

and
‖ε(t)‖L2 + |b(t)| . δ(κ0), ‖ε(t)‖H 1 . δ(‖ε1(t)‖H 1). (2.22)

(ii) (Equation of ε) Let

s =

∫ t

0

dt ′

λ3(t ′)
and s0 = s(t0). (2.23)

For all s ∈ [0, s0],

εs − (Lε)y + b3ε =

(
λs

λ
+ b

)
(3Qb +3ε)+

(
xs

λ
− 1

)
(Qb + ε)y

+8b +9b − (Rb(ε))y − (RNL(ε))y, (2.24)

where 9b is defined in (2.13) and

8b = −bs(χb + γy(χb)y)P, (2.25)

Rb(ε) = 5(Q4
b −Q

4)ε, RNL(ε) = (ε +Qb)
5
− 5Q4

bε −Q
5
b. (2.26)
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(iii) (Estimates induced by the conservation laws) On [0, s0],

‖ε(s)‖2
L2 . |b(s)| +

∣∣∣∣∫ u2
0 −

∫
Q2
∣∣∣∣, (2.27)∣∣2λ2(s)E0 +

1
8b(s)‖Q‖

2
L1 − ‖εy(s)‖

2
L2

∣∣ . b2(s)+ ‖ε(s)‖2
L2 + δ(‖ε‖L2)‖εy(s)‖

2
L2 .

(2.28)

(iv) (Rough modulation equations) On [0, s0],∣∣∣∣λsλ + b
∣∣∣∣+ ∣∣∣∣xsλ − 1

∣∣∣∣ . (∫
ε2e−|y|/10

)1/2

+ b2, (2.29)

|bs + 2b2
| . |b|

(∫
ε2e−|y|/10

)1/2

+ |b|3 +

∫
ε2e−|y|/10. (2.30)

(v) (Minimal mass) If in addition ‖u(t)‖L2 = ‖Q‖L2 then E0 = E(u0) ≥ 0 and on
[0, s0],

b(s) ≤ 0, E0λ
2(s) . |b(s)| + ‖ε(s)‖2

H 1 . E0λ
2(s). (2.31)

The proof of Lemma 2.6 is given in [29], except (2.31) which we prove now.

Proof of (2.31). Using the decomposition (2.20), one has∫
u2
=

∫
Q2
b +

∫
ε2
+ 2

∫
εQb.

Since (ε,Q) = 0 and χb(y) = χ(|b|3/4y),

|(ε,Qb)| = |b| |(ε, Pχb)| . |b|
5/8
(∫

ε2
)1/2

. |b|1/8
∫
ε2
+ |b|9/8. (2.32)

Moreover, by (2.16), ∫
Q2
b =

∫
Q2
+ 2b

∫
PQ+O(|b|5/4).

Thus, we obtain in general∫
u2
=

∫
Q2
+ 2b

∫
PQ+

∫
ε2
+O(|b|1/8)

(
|b| +

∫
ε2
)
. (2.33)

In particular, using the minimal mass assumption
∫
u2
=
∫
Q2, we obtain

2b(P,Q)+
∫
ε2
= δ(κ0)

(
|b| +

∫
ε2
)
, (2.34)
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which implies b ≤ 0. Now we write the conservation of energy using (ε,Q) = 0 and
(2.17):

2λ2E0 = 2E(Qb)− 2
∫
ε(Qb)yy +

∫
ε2
y −

1
3

∫
[(Qb + ε)

6
−Q6

b]

= −2b
∫
PQ+O(b2)+

∫
ε2
y − 5

∫
Q4ε2

−
1
3

∫
ε6

− 2
∫
ε[(Qb −Q)yy + (Q

5
b −Q

5)] + 5
∫
(Q4
−Q4

b)ε
2

−
1
3

∫
[(Qb + ε)

6
−Q6

b − 6Q5
bε − 15Q4

bε
2
− ε6
].

We estimate the nonlinear terms using the Sobolev bound ‖ε‖L∞ . ‖εy‖
1/2
L2 ‖ε‖

1/2
L2 , and

thus

2λ2E0 = −2b
∫
PQ+

∫
ε2
y − 5

∫
Q4ε2

+O(|b|1/8+‖ε‖H 1)

(
|b|+

∫
ε2
)
. (2.35)

Combining with (2.34), we obtain

2λ2E0 = (Lε, ε)+ δ(κ0)(|b| + ‖ε‖
2
H 1).

The choice of orthogonality conditions on ε ensures (see [29, Lemma 2.1]) the coercivity
of the linearized energy, i.e. (Lε, ε) & ‖ε‖2

H 1 , and thus ‖ε‖2
H 1 . λ2E0+ δ(κ0)|b|, which

combined with (2.34) implies (2.31). ut

The modulation equations can be sharpened under an additional L1 control of the solu-
tion.

Lemma 2.7 (Refined laws for H 1 solution with decay, [29]). Under the assumptions of
Lemma 2.6, assume moreover the uniform L1 control on the right:

∀t ∈ [0, t0],
∫
y>0
|ε(t)| . δ(κ0). (2.36)

Then the quantities J1 and J2 below are well-defined and satisfy on [0, t0]:

• (Law of λ) Let

ρ1(y) =
4

(
∫
Q)2

∫ y

−∞

3Q, J1(s) = (ε(s), ρ1). (2.37)

Then for some universal constant c1,∣∣∣∣λsλ +b+c1b
2
−2
(
(J1)s+

1
2
λs

λ
J1

)∣∣∣∣.∫ ε2e−|y|/10
+|b|

(∫
ε2e−|y|/10

)1/2

. (2.38)
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• (Law of b) Let

ρ2 =
16

(
∫
Q)2

(
(3P,Q)

‖3Q‖2
L2

3Q+P −
1
2

∫
Q

)
−8ρ1, J2(s) = (ε(s), ρ2). (2.39)

Then for some universal constant c2,∣∣∣∣bs + 2b2
+ c2b

3
+ b

(
(J2)s +

1
2
λs

λ
J2

)∣∣∣∣ . ∫
ε2e−|y|/10

+ |b|4. (2.40)

• (Law of b/λ2) Let
ρ = 4ρ1 + ρ2, J = (ε, ρ).

Then ρ ∈ Y so that |J | . (
∫
ε2e−|y|/10)1/2 and for c0 = c2 − 2c1,∣∣∣∣ dds

(
b

λ2

)
+
b

λ2

(
Js +

1
2
λs

λ
J

)
+ c0

b3

λ2

∣∣∣∣ . 1
λ2

(∫
ε2e−|y|/10

+ |b|4
)
. (2.41)

2.4. WeakH 1 stability of the decomposition. The geometrical decomposition of Lem-
ma 2.6 is stable under weak H 1 limits.

Lemma 2.8 (Weak H 1 stability and convergence of the parameters, [23]). Let un(0) be
a sequence of H 1 initial data such that

un(0) ⇀ u(0) ∈ H 1 as n→∞.

Assume that for some T1 > 0, for all n, the corresponding solution un of (1.1) exists and
satisfies (2.19) on [0, T1]. Assume further that the decomposition (λn, xn, bn) of un given
by Lemma 2.6 satisfies

∀t ∈ [0, T1], 0 < c ≤ λn(t) < C, λn(0) = 1, xn(0) = 0. (2.42)

Then theH 1 solution u(t) of (1.1) corresponding to u(0) exists on [0, T1], satisfies (2.19)
and its decomposition satisfies

∀t ∈ [0, T1], εn(t) ⇀ ε(t), λn(t)→ λ(t), xn(t)→ x(t), bn(t)→ b(t).

(2.43)

This lemma is similar to a result proved in [23, Lemma 17 and Appendix D], and therefore
we omit its proof.

2.5. Main monotonicity functionals from [29]. We now recall the monotonicity for-
mula at the heart of the analysis in [29] and on which we shall heavily rely again. We
refer to [29] for a further introduction to the nature of these functionals and the associated
rigidity of the flow implied by (2.57).
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Let ϕ,ψ ∈ C∞(R) be such that

ϕ(y) =


ey for y < −1,
1+ y for − 1/2 < y < 1/2,
y2 for y > 2,

ϕ′(y) > 0, ∀y ∈ R, (2.44)

ψ(y) =

{
e2y for y < −1,
1 for y > −1/2,

ψ ′(y) ≥ 0, ∀y ∈ R. (2.45)

For B ≥ 100 to be fixed, let

ψB(y) = ψ(y/B), ϕB = ϕ(y/B),

and define

N (s) =
∫
ε2
y(s, y)ψB(y) dy +

∫
ε2(s, y)ϕB(y) dy. (2.46)

Proposition 2.9 (Monotonicity formula, [29]). There exist µ > 0 and 0 < κ∗ < κ0 such
that the following holds for B > 100 large enough. Assume that u(t) is a solution of (1.1)
which satisfies (2.19) on [0, t0] and thus admits on [0, t0] a decomposition (2.20) as in
Lemma 2.6. Let s0 = s(t0), and assume the following a priori bounds, for all s ∈ [0, s0]:

(H1) (Smallness)
‖ε(s)‖L2 + |b(s)| +N (s) ≤ κ∗. (2.47)

(H2) (Comparison between b and λ)

|b(s)| +N (s)
λ2(s)

≤ κ∗. (2.48)

(H3) (L2 weighted bound on the right)∫
y>0

y10ε2(s, x) dx ≤ 10
(

1+
1

λ10(s)

)
. (2.49)

For j ∈ {1, 2} let

Fj =
∫ [
ε2
yψB + ε

2(1+ Jj )ϕB − 1
3 ((ε +Qb)

6
−Q6

b − 6εQ5
b)ψB

]
(2.50)

with
Jj = (1− J1)

−4j
− 1. (2.51)

Then the following bounds hold on [0, s0]:

(i) (Scaling invariant Lyapunov control)

dF1

ds
+ µ

∫
(ε2
y + ε

2)ϕ′B . |b|4. (2.52)
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(ii) (Scaling weighted H 1 Lyapunov control)

d

ds

{
F2

λ2

}
+
µ

λ2

∫
(ε2
y + ε

2)ϕ′B .
|b|4

λ2 . (2.53)

(iii) (Pointwise bounds)

|J1| + |J2| . N 1/2, (2.54)
N . Fj . N , j = 1, 2. (2.55)

The integration of the modulation equations of Lemma 2.7 with the dispersive bounds of
Proposition 2.9 implies the control of the flow by the sole parameter b:

Lemma 2.10 (Control of the flow by b, [29]). Under the assumptions of Proposition 2.9,
the following hold:

(i) (Control of the dynamics for b) For all 0 ≤ s1 ≤ s2 < s0,∫ s2

s1

b2(s) ds .
∫
(ε2
y(s1)ψB + ε

2(s1)ϕ
′

B)+ |b(s2)| + |b(s1)|, (2.56)∣∣∣∣ b(s2)λ2(s2)
−
b(s1)

λ2(s1)

∣∣∣∣ ≤ C∗10

[
b2(s1)

λ2(s1)
+
b2(s2)

λ2(s2)
+

1
λ2(s1)

∫
(ε2
y(s1)ψB + ε

2(s1)ϕ
′

B)

]
,

(2.57)

for some universal constant C∗ > 0.
(ii) (Control of the scaling dynamics) Let λ0(s) = λ(s)(1− J1(s))

2. Then on [0, s0),∣∣∣∣ (λ0)s

λ0
+ b + c1b

2
∣∣∣∣ . ∫

ε2e−|y|/10
+ |b|N 1/2

+ |b|3. (2.58)

(iii) (Dispersive bounds) For all 0 ≤ s1 ≤ s2 < s0,

N (s2)+
∫ s2

s1

[∫
(ε2
y + ε

2)(s)ϕ′B + |b|
4(s)

]
ds . N (s1)+ (|b3(s2)| + |b

3(s1)|).

(2.59)

N (s2)
λ2(s2)

+

∫ s2

s1

[∫
(ε2
y+ε

2)(s)ϕ′B+|b|
4(s)

]
ds

λ2(s)
.

N (s1)
λ2(s1)

+

[
|b3(s1)|

λ2(s1)
+
|b3(s2)|

λ2(s2)

]
.

(2.60)

2.6. Localization in space and decay properties of minimal mass solutions. Minimal
mass blow up solutions have been studied in some detail in [27] using tools developed
in [25] and [26]. Recall that the main result of [27] is the nonexistence of minimal mass
blow up solutions, assuming initial decay in space. In proving this result, several general
properties of minimal mass blow up solutions were derived. In the next lemma we gather
all useful information which can be deduced from [27] on general minimal mass blow
up solutions. Note that at this stage, we do not know whether a minimal mass blow up
solution should blow up in finite or infinite time. See Proposition 4.1 in Section 4 for
refined information.
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Lemma 2.11 (First properties of minimal mass blow up solutions, [27]). Let u(t) be a
solution of (1.1) defined on (T , 0], which blows up backwards in finite or infinite time
−∞ ≤ T < 0. Assume ∫

u2(0) =
∫
Q2. (2.61)

There exists t1 > T close to T such that for all t ∈ (T , t1], u(t) or −u(t) admits a
decomposition (λ(t), x(t), b(t), ε(t)) as in Lemma 2.6, with

lim
t→T

λ(t) = 0, (2.62)

and for all t ∈ (T , t1),∫ t

T

b2(t ′)+
∫
ε2(t ′, y)e−|y|/10dy

λ3(t ′)
dt ′ +N (t)+ ‖ε(t)‖2

H 1 + |b(t)| . λ2(t)E0. (2.63)

Moreover,

for all t, t ′ ∈ (T , t1), t < t ′ implies λ(t ′) ≥ 1
24λ(t), (2.64)

for all t ∈ (T , t1) and y > 0, |ε(t, y)| . e−y/2000. (2.65)

Proof. Let u(t) ∈ C((T , 0], H 1) be a general backward minimal mass blow up solution
defined on (T , 0] and blowing up in finite or infinite time5

−∞ ≤ T < 0:

lim
t→T
‖ux(t)‖L2 = ∞. (2.66)

From standard concentration-compactness arguments6 and using the mass and energy
conservations, either u(t) or −u(t) satisfies (2.18) and (2.19) for t close to T , with in
addition

‖ε1(t)‖H 1 → 0 as t → T

thanks to the minimal mass assumption. Therefore, possibly considering −u(t) instead
of u(t), there exists t0 > T such that the solution u(t) admits on (T , t0] a decomposition
given by Lemma 2.6:

u(t, x) =
1

λ1/2(t)
(Qb(t) + ε)

(
t,
x − x(t)

λ(t)

)
(2.67)

with
∀t ∈ (T , t0], |b(t)| + ‖ε(t)‖H 1 ≤ α

∗, (2.68)

5 Note that the uniqueness statement in Theorem 1.3(ii) concerns only finite time blow up solu-
tions. Actually, in this paper we also prove the nonexistence of minimal mass solutions blowing up
at infinity (see Proposition 4.1 and Section 5). However, we do not treat the case of global minimal
mass solutions blowing up only on a subsequence of time.

6 See for example the lecture notes [45].
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where α∗ > 0 is any given small constant. With this decomposition, the (finite or infinite
time) blow up assumption (2.66) is equivalent to: limt→T λ(t) = 0, and by (2.31),

b(t) < 0, E0 > 0, |b(t)| + ‖ε(t)‖2
H 1 . λ2(t)E0. (2.69)

Now, we recall results from [27]. First, recall that the solution u(t, x) is decomposed
in a different way in [27, Lemma 1]. Indeed, there exist C1 functions λ̃ and x̃ such that

ε̃(t, y) = λ̃1/2(t)u(t, λ̃(t)y + x̃(t))−Q(y)

satisfies the orthogonality conditions∫
3Q(y)ε̃(t, y) dy =

∫
y3Q(y)ε̃(t, y) dy = 0.

Note that one easily compares this decomposition with (2.67), in particular, combining
the orthogonality conditions of ε and ε̃, one obtains∣∣∣∣1− λ(t)

λ̃(t)

∣∣∣∣+ |b(t)| . (∫
ε̃2(t)e−|y|/10 dy

)1/2

. (2.70)

Under the general assumptions of Lemma 2.11, we now claim that for some T < t1 < t0,

for all t ′, t ∈ (T , t1), if t ≤ t ′ then λ̃(t) ≤ 4λ̃(t ′), (2.71)

and
for all t ∈ (T , t1) and y > 0, |ε̃(t, y)| . e−y/1000. (2.72)

To prove (2.71) and (2.72), we invoke the arguments of [27, Section 4]. Recall that
the main result of [27], stated in Theorem 1.2 of the present paper, asserts forward global
existence for minimal mass solutions under the decay assumption (1.7). Unlike Section 3,
based on the decay assumption on the initial data, Section 4 of [27] does not make use of
this assumption, except when asserting that blow up occurs in finite time. At this point,
it is important to note that here time is reversed with respect to [27], thus the left and
right in space are also reversed (recall that if u(t, x) is a solution of (1.1), then u(−t,−x)
is also a solution of (1.1)). First, using [27, Lemma 4], one obtains uniform exponential
decay on the right in space, on a special sequence of times tn→ T ,

for all y > 0, |ε̃(tn, y)| . e−y/1000. (2.73)

Then, invoking Step 2 of the proof of [27, Proposition 2, p. 401], we obtain (2.71), i.e.
the almost monotonicity of λ̃ and in return, using Lemma 4 again, the decay on the right
(2.72) for all time.

Note that from (2.69) and (2.72), we have∫
y>0

y10ε̃2(t, y) dy → 0 as t → T . (2.74)
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Now, using further [27, p. 405], we claim that, for all T < t2 < t1,∫ t1

t2

∫
ε̃2e−|y|/104

dy

λ̃3
dt . λ̃2(t1)E0. (2.75)

Indeed, it is proved there that for all T < t2 < t1,∫ t1

t2

∫
ε̃2e−|y|/104

dy

λ̃3
dt .

∫
ε2(t1)+

∫
ε2(t2)+

∫ t1

t2

(
∫
ε̃Q)2

λ̃3
dt, (2.76)

and that there exists λ(t) (related to yet another decomposition of u(t, x) which requires
the decay (2.72)) with λ(t) ≈ λ̃(t) such that, for a universal constant c0 > 0,

−E0λ
2 .

∫
ε̃Q < 0,

∣∣∣∣2 ∫ ε̃Q+ c0λ
2
λt

∣∣∣∣ . (∫
ε̃2e−|y|/4

)3/4

. (2.77)

Since
∫ t1
t2
λλt dt . λ

2
(t1) . λ̃2(t1), we obtain (2.75) by integration.

Passing to the limit as t2 → T in (2.75), we obtain∫ t1

T

∫
ε̃2e−|y|/104

dy

λ̃3
dt . λ̃2(t1)E0 . λ2(t1)E0, (2.78)

and thus, using (2.70), ∫ t1

T

∫
ε2e−2|y|/104

dy

λ3 dt . λ2(t1)E0. (2.79)

By (2.30), we have b2

λ3 ≤ −bt +
C

λ3

∫
ε2e−|y|/10 dy and thus∫ t1

T

b2(t)

λ3(t)
dt . λ2(t1)E0 + C

∫ t1

T

∫
ε2e−|y|/10 dy

λ3(t)
dt . λ2(t1)E0.

Now, we claim ∫
y>1

y10ε2(t, y) dy . λ2(t)E0. (2.80)

Indeed, consider a smooth function

ϕ10(y) =

{
0 for y ≤ 0,
y10 for y ≥ 1,

with ϕ′10 ≥ 0.

Using the computations of [29, proof of Lemma 3.7] on ε̃ (the computations for the de-
composition (ε̃, λ̃, x̃) are actually simpler, since they correspond to the choice b = 0), we
obtain

1

λ̃10

d

dt

(
λ̃10

∫
ϕ10ε̃

2
)
.

∫
ε̃2e−|y|/10 dy

λ̃3
,
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and thus, using (2.64), (2.78),∫
ϕ10ε̃

2(t1, y) dy .
∫
ϕ10ε̃

2(t2, y) dy + λ
2(t1)E0.

Passing to the limit as t2 → T and using (2.74) we obtain, for all T < t < t0,∫
y>1

y10ε̃2(t, y) dy . λ2(t)E0.

Finally, by (2.70) and (2.69), we obtain (2.80). ut

3. Construction of a minimal element

This section is devoted to the proof of the existence of a minimal blow up element. We
propose a strategy of proof slightly different from the recent approach developed for the
construction of nondispersive solutions in [5]–[7], [18], [19], [22], [28], [31], [48], mainly
to prepare the analysis of the (Exit) regime in Theorem 1.4; see also Section A.2 and
Remark 3.2 below.

The strategy of the proof is as follows. We consider a well-prepared sequence of initial
data (un) with

‖un‖L2 < ‖Q‖L2 and un(0)→ Q in H 1.

By Theorem 1.1, such solutions are in the (Exit) scenario and we denote by t∗n > 0 the cor-
responding exit time. The estimates extracted from [29] allow for a complete dynamical
description of the (Exit) regime and in particular of the defocusing structure of the solu-
tion at t∗n . This explicit detailed knowledge allows us to renormalize the flow and extract
in the limit n→∞ a solution v ∈ C((t∗, 0], H 1) which blows up at time t∗ < 0 and has
subcritical mass ‖v‖L2 ≤ ‖Q‖L2 . But then the global well-posedness below the ground
state mass implies ‖v‖L2 = ‖Q‖L2 and v is an H 1 minimal mass blow up element.

Step 1. Well-prepared data. Let un(0) = Qbn(0), where bn(0) = −1/n so that

un(0) ∈ A ⊂ H 1, un(0)→ Q in H 1 as n→∞.

By (2.16), we have
∫
u2
n(0) <

∫
Q2. In particular, from energy and mass conservation,

and the Gagliardo–Nirenberg inequality (1.3), the solution un(t) is global. We take n > 0
large enough and we apply Theorem 1.1. The solution un being global, the (Blow up)
scenario is ruled out. The solution cannot converge locally to a solitary wave because of
mass conservation and the strictly subcritical mass assumption, hence (Soliton) is also
ruled out. Hence (Exit) holds and we define the exit time (related to the constant α∗ of
Theorem 1.1) by

t∗n = sup{t > 0 : ∀t ′ ∈ [0, t], un(t ′) ∈ Tα∗}.

Note that t∗n → ∞ as n → ∞ from the continuous dependence of the solution of (1.1)
on the initial data, and the fact that Q(x − t) is a solution of (1.1).
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Now, we use refined information given in the (Exit) case by [29, Proposition 4.1]. In
particular, un(t) satisfies (2.19) and has a decomposition (λn, xn, bn, εn) as in Lemma 2.6
on [0, t∗n ]. Moreover, (H1)–(H3) are satisfied on [0, t∗n ], and by definition of un(0),

λn(0) = 1, xn(0) = 0, bn(0) = −1/n, εn(0) = 0. (3.1)

In addition, from [29, proof of Proposition 4.1, (4.41)], we also have

for all 0 ≤ t1 ≤ t2 ≤ t∗n , λn(t2) ≥
1
2λn(t1). (3.2)

Note also that by continuity in time and the definition of t∗n ,

inf
λ0>0, x0∈R

‖un(t
∗
n )− λ

−1/2
0 Q(λ−1

0 (· + x0))‖L2 = α
∗, (3.3)

α∗ ≤ ‖un(t
∗
n )− λ

−1/2
n (t∗n )Q(λ

−1
n (t∗n )(· + xn(t

∗
n ))‖L2 ≤ δ(α

∗). (3.4)

Step 2. Structure of the defocusing bubble. From Lemma 2.10, (3.1) and (3.4), we will
deduce:

Lemma 3.1.

(i) (Estimates on [0, t∗n ])

∀t ∈ [0, t∗n ],
1− δ(α∗)

n
≤ −

bn(t)

λ2
n(t)
≤

1+ δ(α∗)
n

, (3.5)

‖εn(t)‖
2
H 1 . λ2

n(t)/n . δ(α∗). (3.6)

(ii) (Estimates at t∗n ) For all n,

(α∗)2 . −bn(t
∗
n ) . δ(α∗), (3.7)

(α∗)2 .
∫
ε2
n(t
∗
n ) . δ(α∗), (α∗)2 .

λ2
n(t
∗
n )

n
. δ(α∗), (3.8)

0 < c(α∗) ≤
t∗n

λ3
n(t
∗
n )
≤ C(α∗). (3.9)

(iii) (Control of the dynamics on [0, t∗n ])

−(1− δ(α∗))
bn(t

∗
n )

λ2
n(t
∗
n )
≤ (λ0n)t (t) ≤ −(1+ δ(α∗))

bn(t
∗
n )

λ2
n(t
∗
n )
. (3.10)

Proof. Using (2.33) and (2.35) at t = 0, we obtain∫
u2
n(0) =

∫
Q2
−

2
n

∫
PQ+O(n−9/8), 2E(un(0)) =

2
n

∫
PQ+O(n−9/8).

Combining the conservation of theL2 norm, the conservation of energy and (2.33), (2.35),
we obtain, at any t ∈ (0, t∗n ),

|bn| .
∫
ε2
+ 1/n, (3.11)
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and

(Lεn(t), εn(t)) = 2λ2
nE(un(0))+

∫
u2
n(0)−

∫
Q2
+O(n−9/8

+ ‖εn(t)‖
9/4
H 1 ).

Thus, from ‖εn(t)‖2H 1 . (Lεn(t), εn(t)), we obtain

‖εn(t)‖
2
H 1 . λ2

n(t)/n. (3.12)

Next, recall that by (3.4),

α∗ ≤ ‖bn(t
∗
n )χbn(t∗n )P + εn(t

∗
n )‖L2 ≤ δ(α

∗),

and use (2.32) and (3.11) to obtain

(α∗)2 .
∫
ε2
n(t
∗
n ) . δ(α∗), (α∗)2 . −bn(t

∗
n ) . δ(α∗). (3.13)

Now, we use the dynamical information given by the rigidity property (2.57) and the
initialization (3.1): for all t ∈ [0, t∗n ],

(1+ δ(α∗))bn(0) ≤ bn(t)/λ2
n(t) ≤ (1− δ(α

∗))bn(0), (3.14)

and thus by (3.13),
(α∗)2 . λ2

n(t
∗
n )/n . δ(α∗). (3.15)

Finally, let us prove (3.10) and (3.9). By (2.58), we have∣∣∣∣(λ0n)t
λn

λ0n
+
bn

λ2
n

∣∣∣∣ .
∫
ε2
ne
−|y|/10

λ2
n

+
|bn|

λ2
n

(N 1/2
n + |bn|) .

1
λ2
n

(Nn + |bn|
2).

By (2.60), (3.1), and then (3.14), we have

Nn(t)

λ2
n(t)

.
|bn(t)|

3

λ2
n(t)

+
|bn(0)|3

λ2
n(0)

. δ(α∗)
|bn(t

∗
n )|

λ2
n(t
∗
n )
.

Thus, again by (3.14),

−(1− δ(α∗))
bn(t

∗
n )

λ2
n(t
∗
n )
≤ (λ0n)t (t) ≤ −(1+ δ(α∗))

bn(t
∗
n )

λ2
n(t
∗
n )
,

which is (3.10). We integrate on [0, t∗n ] and then divide by λ0,n(t
∗
n ) to obtain

−t∗n
bn(t

∗
n )

λ3
n(t
∗
n )
(1− δ(α∗)) ≤ 1−

1
λ0,n(t∗n )

≤ −t∗n
bn(t

∗
n )

λ3
n(t
∗
n )
(1+ δ(α∗)). (3.16)

Hence using (3.15) and λn/λ0,n . N 1/2
n . δ(α∗), we get

−
1− δ(α∗)
bn(t∗n )

≤
t∗n

λ3
n(t
∗
n )
≤ −

1+ δ(α∗)
bn(t∗n )

, (3.17)

which together with (3.13) implies (3.9). ut
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Step 3. Renormalization and extraction of the limit. Let

∀τ ∈ [−t∗n/λ
3
n(t
∗
n ), 0], tτ = t

∗
n + τλ

3
n(t
∗
n ),

vn(τ, x) = λ
1/2
n (t∗n )un(tτ , λn(t

∗
n )x + x(t

∗
n )) (3.18)

=
λ

1/2
n (t∗n )

λ
1/2
n (tτ )

(Qbn(tτ ) + εn)

(
tτ ,
λn(t

∗
n )

λn(tτ )
x +

x(t∗n )− x(tτ )

λn(tτ )

)
, (3.19)

so that vn is a solution of (1.1) and belongs to the tube Tα∗ for τ ∈ [−t∗n/λ
3
n(t
∗
n ), 0].

Moreover, its decomposition (λvn , xvn , εvn) satisfies, on [−t∗n/λ
3
n(t
∗
n ), 0],

λvn(τ ) =
λn(tτ )

λn(t∗n )
, xvn(τ ) =

xn(tτ )− xn(t
∗
n )

λn(t∗n )
, bvn(τ ) = bn(tτ ), εvn(τ ) = εn(tτ ).

(3.20)

By (3.7), (3.8) and (3.5), we have

∀τ ∈ [−t∗n/λ
3
n(t
∗
n ), 0], ‖εvn(τ )‖

2
H 1 . δ(α∗).

λvn(0) = 1, xvn(0) = 0, (α∗)2 . −bvn(0) ≤ δ(α
∗).

Therefore, there exists a subsequence of (vn), which we will still denote by (vn), and
v(0) ∈ H 1 such that

vn(0) ⇀ v(0) weakly in H 1, and ‖v(0)−Q‖H 1 . δ(α∗),

and, by (3.8) and (3.9),

τ ∗n = −t
∗
n/λ

3
n(t
∗
n )→−τ

∗, τ ∗ > 0, −bn(t
∗
n )→ b∗ > 0.

Moreover, by (3.17),
1− δ(α∗)

b∗
≤ τ ∗ ≤

1+ δ(α∗)
b∗

. (3.21)

We let v(τ) be the backward H 1 solution of (1.1) with initial data v(0) at τ = 0.

Step 4. Minimal mass blow up. We claim that v is a minimal mass blow up element,
‖v‖L2 = ‖Q‖L2 which blows up at finite negative time −τ ∗ with, for τ close enough
to −τ ∗,

1− δ(α∗)
1+ τ/τ ∗

≤ ‖vx(τ )‖L2 ≤
1+ δ(α∗)
1+ τ/τ ∗

. (3.22)

Indeed, we integrate (3.10) and obtain for t ∈ [0, t∗n ], n large enough,

b∗t

λ2
n(t
∗
n )
(1− δ(α∗)) ≤ λ0,n(t)− λ0,n(0) ≤

b∗t

λ2
n(t
∗
n )
(1+ δ(α∗)).

We conclude from (3.20) and the definition of τ ∗n that for all τ ∈ [τ ∗n , 0],

b∗(τ ∗n + τ)(1− δ(α
∗)) ≤ λ0,vn(τ )− λ0,vn(τ

∗
n ) ≤ b

∗(τ ∗n + τ)(1+ δ(α
∗)). (3.23)
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Let τ0 ∈ (−τ
∗, 0). From (3.8), (3.20) and εvn(τ

∗
n ) = εn(0), we have

λ0,vn(τ
∗
n ) = λn(0)/λn(t

∗
n )→ 0 as n→∞,

and 1− δ(α∗) ≤ λ0,vn/λvn ≤ 1+ δ(α∗). Thus, we conclude from (3.23) that for n large
enough depending on τ0,

∀τ ∈ [τ0, 0], b∗(τ ∗ + τ)(1− δ(α∗)) ≤ λvn(τ ) ≤ b
∗(τ ∗ + τ)(1+ δ(α∗)),

and 1
2b
∗(τ ∗ + τ0) ≤ λvn(τ ). It follows from Lemma 2.8 that v(τ) is well-defined and

λvn(τ )→ λv(τ ) on [τ0, 0]. In particular, v exists on (−τ ∗, 0], and for all τ ∈ (−τ ∗, 0],

b∗(τ ∗ + τ)(1− δ(α∗)) ≤ λv(τ ) ≤ b∗(τ ∗ + τ)(1+ δ(α∗)),

which together with (3.21) implies (3.22). Finally, by weak H 1 convergence we have∫
v2(0) ≤ limn→∞

∫
v2
n(0) =

∫
Q2, and since v blows up in finite time,

∫
v2(0) =

∫
Q2.

This concludes the proof of the existence of the minimal element.

Remark 3.2. We may rewrite this proof by saying that understanding the minimal mass
blow up scenario is in some sense equivalent to understanding how subcritical solutions
initially near the ground state move away from the ground state and start defocusing,
and here the sharp knowledge of the speed of defocusing is fundamental for the proof.
Another approach for the construction of the minimal blow up element in the continuation
of [5]–[7], [19], [22], [28], [31], [48] would be to take the initial data Qb(tn) at some time
tn ↓ 0 with b(tn) = tn and to obtain uniform H 1 bounds on the corresponding forward
solution un(t) to (1.1) at a time t0 > 0 independent of n using the monotonicity machinery
of Proposition 2.9 and Lemma 2.10. It is not clear to us whether a direct fixed point
approach as in ?, [3], [10], [11], [21] is applicable here due to the poor localization in
space of the minimal element.

4. Sharp description of minimal mass blow up

We now turn to the proof of uniqueness in H 1 of the minimal element. Let us stress that
uniqueness is always a delicate problem, in particular in the absence of suitable symme-
tries as in [28]. As in [48], the first crucial information is to derive the blow up speed for
all minimal elements, and here we shall use the a priori localization in space of minimal
elements given by Lemma 2.11 which allows us to use the monotonicity tools, Propo-
sition 2.9 and Lemma 2.10. Once the minimal mass blow up regime is sufficiently well
described, we may rerun the analysis of Proposition 2.9 for the difference of two such
bubbles and conclude that they are equal; this is done in Section 5.

4.1. Finite time blow up and blow up speed for minimal mass blow up solutions.
Our aim in this section is to derive sharp qualitative bounds on minimal mass blow up
solutions, improving general results stated in Lemma 2.11. In particular, we prove that
the blow up time is finite, T > −∞, and we specify the blow up speed and the behavior
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of the concentration point, which are essential preliminary pieces of information on the
singularity formation. Note that the additional information below requires the sharper
analysis of [29] and cannot be derived from [27]. We consider a minimal mass blow up
solution u(t), and in the setting of Lemma 2.11, we introduce the rescaled time

s(t) = −

∫ t0

t

ds

λ3 . (4.1)

Recall that s(T ) = −∞ by a standard argument (see e.g. [25]).

Proposition 4.1 (Sharp bounds). Let u(t) be a solution of (1.1) defined on (T , 0], which
blows up backwards in finite or infinite time −∞ ≤ T < 0. Assume∫

u2(0) =
∫
Q2.

(i) (Finite time blow up) We have
T > −∞.

(ii) (Sharp controls near blow up time) There exist universal constants cλ, cx , cb and
`∗ = `∗(u) < 0, x∗ = x∗(u) ∈ R such that, for t close to T ,

λ(t) = |`∗|(t − T )+ cλ|`
∗
|
4(t − T )3 +O[(t − T )4], (4.2)

x(t) = −
1

(`∗)2(t − T )
+ x∗ + cx`

∗(t − T )+O[(t − T )2], (4.3)

b(t)

λ2(t)
= `∗ + cb(`

∗)4(t − T )2 +O[(t − T )3], (4.4)

N (t) . (t − T )6. (4.5)

(iii) (Estimates in rescaled time) For −s large,

‖ε(s)‖2L∞ . ‖ε(s)‖2
H 1 . λ2(s) .

1
|s|
, (4.6)

N (s)+
∫ s

−∞

∫
(ε2
y + ε

2)(s′)ϕ′B ds
′ .

1
|s|3

, (4.7)∣∣∣∣λsλ + b
∣∣∣∣+ ∣∣∣∣xsλ − 1

∣∣∣∣ . 1
|s|3/2

, |bs | .
1
|s|2

, (4.8)

b(s) =
1
2s
+
c∗1 log |s|
s2 +

c∗2
s2 + o

(
1
s2

)
as s →−∞, (4.9)

for some universal constants (c∗1, c
∗

2) ∈ R× R.
(iv) (Global forward behavior) The solution is globally defined for t > T , u ∈

C((0,∞)× R) and for some C(t), γ (t) > 0,

∀t > T , ∀x > 0, |u(t, x)| ≤ C(t)e−γ (t)x . (4.10)
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(v) (Time decay of weighted Sobolev norms) For |s| large,∫
ε2(s, y)eλ(s)y dy .

1
|s|2

. (4.11)

For all 9/B ≤ ω ≤ 1/10, for |s| large,

3∑
k=0

∫
(∂kyε)

2(s, y)eωy dy +

∫ s

−∞

4∑
k=0

∫
(∂kyε)

2(s′, y)eωy dy ds′ .
1
|s|
, (4.12)

‖((εi)
2
yy + (εi)

2
y)(s)e

ωy
‖L∞ .

1
|s|
. (4.13)

Remark 4.2. The constant `∗ in (4.2) depends on the solution, and the scaling u(t, x) 7→
uλ0(t, x) = λ

1/2
0 u(λ3

0t, λ0x) leads to

`∗(uλ0) = λ
2
0`
∗(u). (4.14)

Proof of Proposition 4.1. From Lemma 2.11, E(u(t)) > 0. Using the scaling invariance
of the (gKdV) equation, we consider the solution

uλ0(t, x) = λ
1/2
0 u(λ3

0t, λ0x),

where λ0 > 0 is chosen so that E(uλ0(t)) � κ∗, κ∗ being the small constant in Proposi-
tion 2.9. We work on uλ0 instead of working on u, all statements being scaling invariant.
Hereafter, we denote uλ0 simply by u(t).

Step 1. Entering the monotonicity regime. Note first that from Lemma 2.11 and
E0 � κ∗, (H1)–(H3) hold on (−∞, s0] for −s0 large enough. The solution is therefore
in the monotonicity regime of Proposition 2.9 and Lemma 2.10 on (−∞, s0].

Step 2. Rigidity and blow up speed. We state the key nondegeneracy relation:

N . O(λ6),

∣∣∣∣ bλ2 − `
∗
−
c0

2
b2

λ2

∣∣∣∣ . O(λ3) (4.15)

for some constant `∗ > 0.
Let C∗ > 0 be the universal constant in (2.57). Let us first remark that there exists a

sequence sn→−∞ such that

∀n ≥ 1, b(sn) ≤ −C
∗

∫
(ε2
y + ε

2)(sn)ϕ
′

B . (4.16)

Indeed, assume for contradiction that there exists a time s∗ ≤ s0 such that (recall that
b < 0)

∀s < s∗, |b(s)| ≤ C∗
∫
(ε2
y + ε

2)(s)ϕ′B . (4.17)
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Thus, (2.58) implies∣∣∣∣ (λ0)s

λ0

∣∣∣∣ . ∫
ε2e−|y|/10

+ |b| .
∫
(ε2
y + ε

2)(s)ϕ′B ,

where λ0(s) = λ(s)(1− J1(s))
2. Using (2.59) we obtain

∀s < s∗2 ,

∣∣∣∣log
(
λ0(s)

λ0(s
∗

2 )

)∣∣∣∣ . ∫ s∗

s

∫
(ε2
y + ε

2)(s′)ϕ′B ds
′ . 1;

but together with
|λ/λ0 − 1| . |J1| . N 1/2 (4.18)

and (2.63), this contradicts the blow up assumption: λ(s)→ 0 as s →−∞. Since b < 0,
this concludes the proof of (4.16).

Inserting (4.16) in (2.57) yields the rigidity: for all n ≥ 1 and all s such that sn ≤
s ≤ s0,

2
b(sn)

λ2(sn)
≤
b(s)

λ2(s)
≤

b(sn)

2λ2(sn)
.

We conclude using b < 0 and λ(s0) = 1 that for all s < s0,

4b(s0) ≤
b(s)

λ2(s)
≤
b(s0)

4
< 0. (4.19)

By (2.62) and (2.63) we have lims→−∞N (s) = 0. Using (2.59), we obtain, for s1 < s2,

N (s2)+
∫ s2

s1

∫
(ε2
y + ε

2)ϕ′B ds . N (s1)+ |b3(s1)| + |b
3(s2)|.

Thus, passing to the limit s1 →−∞, and using (2.69),

N (s2)+
∫ s2

−∞

∫
(ε2
y + ε

2)ϕ′B ds . |b
3(s2)| . λ6(s2). (4.20)

From (2.41), we have∣∣∣∣ dds
(
b

λ2 e
J

)
+ c0

b3

λ2

∣∣∣∣ ≤ 1
λ2

(∫
ε2e−|y|/10

+ |b|4
)
. (4.21)

Letting s1 →−∞ in (2.60) yields∫ s2

−∞

1
λ2

(∫
ε2e−|y|/10

+ |b|4
)
ds .

b3

λ2 . λ4. (4.22)

Next, by (2.30), (4.22),

b3

λ2 = −
1
2
bsb

λ2 +O

(
1
λ2

(∫
ε2e−|y|/10

+ |b|4
))
,
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so that by integration by parts and (2.29),∫ s

−∞

b3

λ2 = −
1
4
b2(s)

λ2(s)
−

1
2

∫ s

−∞

b2λs

λ3 +O(λ
4) = −

1
4
b2(s)

λ2(s)
+

1
2

∫ s

−∞

b3

λ2 +O(λ
4),

and thus ∫ s

−∞

b3

λ2 = −
1
2
b2(s)

λ2(s)
+O(λ4).

It follows by integrating (4.21) and using (4.19) that

lim
s→−∞

b

λ2 (s) = `
∗ < 0, (4.23)

and more precisely, using |J | . N 1/2 . λ3,∣∣∣∣ bλ2 − `
∗
−
c0

2
b2

λ2

∣∣∣∣ . O(λ4)+
|b|

λ2 (1− e
J ) . O(λ3). (4.24)

Step 3. Finite time blow up. From (4.20) and (2.54), we have

λ0 = λ+O(λJ1) = λ+O(λN 1/2) = λ+O(λ4), (4.25)

and then by (2.58), (4.24),

−λ3 (λ0)t

λ0
= −

(λ0)s

λ0
= b + c1b

2
+O(N + |b|N 1/2

+ |b|3)

= `∗λ2
+ c(`∗)2λ4

+O(λ5);

here and below c denotes various universal constants. Hence

−(λ0)t = `
∗
+ c(`∗)2λ2

0 +O(λ
3
0). (4.26)

For t close to T , we obtain (λ0)t > `∗/2 > 0, and thus λ0 vanishes backwards at some
finite time T > −∞; in particular, the solution blows up in finite time. Moreover, inte-
grating (4.26) on (T , t] for t > T close to T , using (4.25), yields

λ(t) = λ0(t)+O[(t − T )
4
] = |`∗|(t − T )+ c|`∗|4(t − T )3 +O[(t − T )4].

Together with (4.20), (4.15), this concludes the proof of (4.4), (4.2), (4.5).
We now integrate the modulation equation (2.29) for the blow up point:

xt =
1
λ2
xs

λ
=

1
λ2 [1+O(b

2
+N 1/2)] =

1
λ2 [1+O(λ

3)],

and thus, using (4.2), we obtain

xt (t) =
1

(`∗)2(T − t)2
− 2c`∗ +O(t − T ),

which implies (4.3) by integration in time.
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Step 4. Sharp estimates in rescaled time. From (4.2),

s(t) = −

∫ t0

t

dt ′

|`∗|3(t ′ − T )3(1+O((T − t ′)2))
= −

1
2|`∗|3(t − T )2

(1+O(t − T )).

From Step 3 and (2.29)–(2.30), we thus get, in terms of the variable s,

λ(s) =
1+ o(1)
√

2|`∗s|
, N (s)+

∫ s

−∞

∫
(ε2
y + ε

2)ϕ′B ds
′ .

1
|s|3

, b(s) =
1+ o(1)

2s
,

(4.27)∣∣∣∣λsλ (s)
∣∣∣∣ . |b(s)| +N 1/2(s) .

1
s
,

∣∣∣∣λsλ + b
∣∣∣∣+ ∣∣∣∣xsλ − 1

∣∣∣∣ . 1
|s|3/2

, (4.28)

and |bs | . 1/|s|2, so that (4.6) and (4.8) are proved.
Now, we prove (4.9). We rewrite the sharp modulation equation (2.40) for b as

|(b(1+J2))s +2b2
+ c2b

3
| .

∫
(ε2
y + ε

2)ϕ′B +
1
s4 +

1
s2N

1/2 .
∫
(ε2
y + ε

2)ϕ′B +
1
|s|7/2

.

Let
b̃ = b(1+ J2) = b +O(1/|s|5/2). (4.29)

Then equivalently

|b̃s + 2b̃2
+ c2b̃

3
| .

∫
(ε2
y + ε

2)ϕ′B +
1
|s|7/2

.

If c2 ≤ 1, let b0 = −1, otherwise let b0 = −1/c2. In order to integrate this differential
inequality, we let

F(b) =

∫ b

b0

dβ

2β2 + c2β3 = −
1

2b
−
c2 log |b|

4
+ c0 +O(b) as b→ 0, (4.30)

for some universal constant c0 ∈ R. Then

d

ds
F (b̃) = −1+O

(
s2
∫
(ε2
y + ε

2)ϕ′B +
1
|s|3/2

)
. (4.31)

By (2.60) with s1 →−∞, we have

s2N (s)+
∫ s

−∞

(s′)2
∫
(ε2
y + ε

2)(s′)ϕ′B ds
′ .

1
|s|
.

Therefore, integrating (4.31) on [s, s0] and using (4.30) yields

F(b̃(s)) = −
1

2b̃(s)
−
c2 log |b̃(s)|

4
+ c′0 +O

(
1
s

)
= −s +O

(
1
√
|s|

)
,

which is easily inverted to give

b̃(s) =
1
2s
+
c∗1 log |s|
s2 +

c∗2
s2 +O

(
1
|s|5/2

)
for some universal constants c∗1, c

∗

2 . The estimate (4.29) now implies (4.9).
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Step 5. Global existence for t > t0. Recall that |ε(s0, y)| . e−y/20 for all y > 0. Thus,
u(t) has exponential decay in space on the right (x>0), in particular,

∫
x>0 x

10u2(t0)<∞.

From this fact and since u(t) has critical mass, we conclude from Theorem 1.2 that u is
globally defined for t > t0. Since Q has exponential decay at∞, the exponential decay
(2.65) of ε translates into exponential decay (4.10) of u. Finally, it is proved in [13] that a
solution of the (gKdV) equation with such exponential decay on the right is smooth, i.e.
u ∈ C∞((0,∞)× R).

The proofs of (4.11) and (4.12)–(4.13) are given in Appendix A. ut

4.2. Sharp description of S(t). We conclude from Proposition 4.1 that the minimal
element constructed in Section 3 satisfies the following sharp bounds which conclude the
proof of statements (i) and (iii) of Theorem 1.3.

Corollary 4.3. There exists a solution S ∈ C((0,∞),H 1) ∩ C∞((0,∞) × R) to (1.1)
with critical mass ‖S(t)‖L2 = ‖Q‖L2 such that

‖∂xS(t)‖L2 ∼ ‖∂xQ‖L2/t as t ↓ 0, (4.32)

S(t, x)−
1
t1/2

Q

(
x + 1/t + ct

t

)
→ 0 in L2 as t ↓ 0, (4.33)

∀x > 0, |S(1, x)| . e−γ x, (4.34)

for some universal constants (c, γ ) ∈ R× R∗+. Moreover,

d

dt

(
inf

λ1>0, x1∈R
‖S(t)−Qλ1(· − x1)‖

2
L2

)
= 4t (P ,Q)+O(t2). (4.35)

Proof. Let v(t, x) be the minimal mass blow up solution constructed in Section 3 with
finite backward blow up time T < 0. Let `∗ = `∗(v) and x∗ = x∗(v) be the constants cor-
responding to v in Proposition 4.1. From the invariances of the equation and Remark 4.2,
S(t) defined by

S(t, x) = (`∗)−1/4v((`∗)−3/2t + T , (`∗)−1/2x + x∗)

satisfies equation (1.1), and the estimates of Proposition 4.1 with `∗(S) = 1, x∗(S) = 0
and S blows up backwards in time at the origin. In particular, there exist ε(t), b(t), λ(t)
and x(t) such that

S(t, x) =
1

λ1/2(t)
(Qb(t) + ε)

(
t,
x − x(t)

λ(t)

)
, (4.36)

b(t) = −t2 +O(t4), λ(t) = t +O(t3), x(t) = −1/t + ct +O(t2), (4.37)

‖ε(t)‖L2 . t,

∫
(e−|y|/10

+ 1y>0(y))(ε
2
y + ε

2)(t, y) dy . t6. (4.38)

We now prove (4.33). Since∥∥∥∥ 1
λ1/2(t)

ε

(
t,
· − x(t)

λ(t)

)∥∥∥∥
L2
= ‖ε(t)‖L2 . t,
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we are reduced to estimating∥∥∥∥ 1
λ1/2(t)

Qb(t)

(
· − x(t)

λ(t)

)
−

1
t1/2

Q

(
· + 1/t + ct

t

)∥∥∥∥
L2

=

∥∥∥∥Qb(t) −
λ1/2(t)

t1/2
Q

(
λ(t)

t
x +

1
t

(
1
t
+ ct + x(t)

))∥∥∥∥
L2

. |b(t)|5/8 +

∣∣∣∣1− λ(t)t
∣∣∣∣+ ∣∣∣∣1t

(
1
t
+ ct + x(t)

)∣∣∣∣ . t,

and (4.33) is proved.
Let (see (4.36))

A(t) = inf
λ0>0,x0∈R

‖S(t)−Qλ0(· − x0)‖
2
L2 = inf

λ1>0,x1∈R

∥∥Qb(t) + ε(t)−Qλ1(· − x1)
∥∥2
L2 .

Let λ1(t) and x1(t) realize the infimum in the definition of A(t). (The existence, unique-
ness and regularity of λ1(t) and x1(t) follow by standard arguments.)

Note that by extremality of λ1 and x1,∫
(Qb+ε−Qλ1(·− x1))

∂Qλ1

∂λ1
(·− x1) = 0,

∫
(Qb+ε−Qλ1(·− x1))

∂Qλ1

∂x1
(·− x1) = 0,

(4.39)
and from ‖S(t)‖L2 = ‖Qb + ε‖L2 = ‖Q‖L2 ,∫

(Qb + ε)
∂

∂t
(Qb + ε) = 0,

so that

1
2
d

dt
A(t)

=

∫
(Qb + ε −Qλ1(· − x1))

(
∂

∂t
(Qb + ε)− λ

′

1
∂Qλ1

∂λ1
(· − x1)+ x

′

1
∂Qλ1

∂x1
(· − x1)

)
= −

∫
Qλ1(· − x1)

∂

∂t
(Qb + ε) = −

∫
Qλ1(· − x1)

(
bt
∂Qb

∂b
+ εt

)
= −bt

∫
Qλ1(· − x1)

∂Qb

∂b
−

∫
εt

(
Qλ1(· − x1)−Q− (λ1 − 1)3Q

)
,

where we have used
∫
εQ =

∫
ε3Q = 0.

To estimate this term, we now claim that from (4.39) and (4.37), (4.38),

|λ1 − 1| .
∣∣∣∣∫ (Qb + ε −Q)3Q

∣∣∣∣ . t2, |x1| .

∣∣∣∣∫ (Qb + ε −Q)Q
′

∣∣∣∣ . t3

(the extra smallness of |x1| is due to (P,Q′) = 0). Using bt ∼ −2t and the equation of εt
(after integration by parts, and using (4.37) and (4.38)), we obtain

1
2
d

dt
A(t) = 2t

∫
PQ+O(t2). ut
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5. Uniqueness

In this section we prove the uniqueness statement, i.e. part (ii) of Theorem 1.3. The stat-
egy is to rerun the monotonicity machinery of Proposition 2.9 for the difference of two
solutions. The reintegration of the Lyapunov functional backwards from blow up time us-
ing the sharp a priori bounds of Proposition 4.1 will show that this difference is zero. The
proof is delicate because as in [48], we only have a finite order expansion of the approx-
imate solution and of the error. Therefore, reintegrating the difference of the modulation
equations requires sharp dispersive controls on the difference of two solutions to close
the estimates.

5.1. Reduction of the proof. We consider the minimal mass blow up solution con-
structed in Corollary 4.3. Let u2(t) be another minimal mass solution S(t, x) = u1(t, x)

of (1.1) which blows up in finite time. From Proposition 4.1, u2(t) is defined on a maxi-
mal time interval of the form (−∞, T ) or (T ,∞) for a finite time T . By time translation
invariance, we may assume that u2(t) is defined on (0,∞) and blows backwards as t ↓ 0.
Let t0 > 0 be small such that u1 and u2 admit the decomposition of Lemma 2.6 on (0, t0]
(see also Lemma 2.11)

εi(s, y) = λ
1/2
i (s)ui(ti(s), λi(s)y + xi(s))−Qbi (s)(y),

where ti(s) satisfies dti/ds = λ3
i , ti(−1) = t0. Applying Proposition 4.1 to u2 shows that

estimates (4.2)–(4.12) hold for u2(t), for some `∗(u2) and x∗(u2).
Using scaling and translation invariance (see Remark 4.2), we assume further that the

limits as defined in Proposition 4.1 are equal:

`∗(u2) = `
∗(S) = 1, x∗(u2) = x

∗(S) = 0.

The uniqueness statement reduces to proving that

u1 ≡ u2. (5.1)

Note that for i = 1, 2, εi satisfies, on (−∞,−1] × R,

(εi)s − (Lεi)y + bi3εi = 0i(3Qbi +3εi)+Xi(Qbi + εi)y +9i − (Ri(εi))y

with

0i = (λi)s/λi + bi, Xi = (xi)s/λi − 1,
9i = 9bi − (bi)s(χbi + γy(χbi )y)P, 9b being defined in (2.13),

Ri(εi) = 5(Q4
bi
−Q4)εi + (εi +Qbi )

5
− 5Q4

bi
εi −Q

5
bi
.

We form the difference

ε(s, y) = ε2(s, y)− ε1(s, y),

which satisfies the orthogonality conditions (2.21) and the equation

εs − (Lε)y = 03Qb2 +X(Qb2)y +
(λ2)s

λ2
3ε + E + Fy (5.2)
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with

0 = 02 − 01, b = b2 − b1, X = X2 −X1,

E = (0 − b)3ε1 + 013(Qb2 −Qb1)+ (92 −91), (5.3)
F = X1(Qb2 −Qb1)+X2ε +Xε1 − R2(ε2)+ R1(ε1). (5.4)

For B as in Proposition 2.9, we consider 100 < B < 1
50B, large enough (in the next

lemma, we need B large, so we take a possibly larger universal B in Proposition 2.9). We
define the norms

N (s) =
∫
ε2
y(s, y)ψB(y) dy +

∫
ε2(s, y)ϕB(y) dy, N loc(s) =

∫
ε2(s, y)ϕ′

B
(y) dy.

The key to the proof of uniqueness is the following proposition which revisits Propo-
sition 2.9 for ε:

Proposition 5.1 (Bounds on the difference). For |s| large, we have:

(i) (Refined control of b) Let J2 = (ε, ρ2) with ρ2 given by (2.39). Then

|J2| . N 1/2
,

∣∣∣∣ dds
{
s2
(
b +

J2

2s

)}∣∣∣∣ . s2
∫
ε2e−|y|/10

+ |s|1/2|b| + |s|1/2N 1/2
.

(5.5)
(ii) (Refined bounds) Let

F(s) =
∫
[ψB(ε

2
y − 5Q4ε2

− ε6/3)+ ϕBε
2
](s, y) dy

+
1
√
|s|

∫
eλ2(s)yε2(s, y) dy. (5.6)

Then

N +
1
√
|s|

∫
eλ2yε2 . F . N +

1
√
|s|

∫
eλ2yε2. (5.7)

Moreover, there exists µ > 0 such that, for |s| large,

d

ds
(s2F)+ µs2

∫
(ε2
y + ε

2)ϕ′
B
. |s|11/10b2. (5.8)

Remark 5.2. The first term in the definition of F in (5.6) corresponds to a refined com-
bination of virial estimates and monotonicity properties, which was used in [29] (see also
Proposition 2.9 of the present paper). Unfortunately, the scaling term of the equation of ε,
i.e. the term ((λ2)s/λ2)3ε, produces bad a priori lower order terms which prevent us from
closing the estimates as in [29]. To control these terms we have to add to the definition of
F the second term |s|−1/2 ∫ eλ2yε2, which is a lower order corrective term. Note that this
term is scaling invariant and thus it does not produce such bad terms.

The next two sections are devoted to the proof of Proposition 5.1.
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5.2. Proof of (i). We start with the control of the modulation parameters and the proof
of the improved bound (5.5).

Step 1. Modulation equations. We start by computing the modulation equations and
state the following bounds:

|0| + |X| .

(∫
ε2e−|y|/10

)1/2

+
|b|

|s|
, (5.9)∣∣∣∣0 − (ε, L(3Q)′)

‖3Q‖2
L2

∣∣∣∣ . ∫
ε2e−|y|/10

+
1
|s|

(∫
ε2e−|y|/10

)1/2

+
|b|

|s|
, (5.10)

|bs | .
∫
ε2e−|y|/10

+
1
|s|

(∫
ε2e−|y|/10

)1/2

+
|b|

|s|
. (5.11)

Indeed, we compute the modulation parameters 0,X using (5.2) and the orthogonality
conditions (2.21). We argue as for the proof of (2.29), (2.30) (see [29]), taking the scalar
product of the equation of ε by 3Q, y3Q and then by Q. We obtain

|0| + |X| .

(∫
ε2e−|y|/10

)1/2

+ |b|

(
|b1| + |b| + |01| + |X1| +

(∫
ε2

1e
−|y|/10

)1/2)
+ |bs |,

|bs | .
∫
ε2e−|y|/10

+
(
∫
ε2e−|y|/10)1/2

|s|

+ |b|

(
|b1| + |b| + |01| + |X1| +

(∫
ε2

1e
−|y|/10

)1/2)
+ |b1|(|0| + |X|).

Next, using estimates (4.6)–(4.9) for ε1, we find (5.9) and (5.11).
Note that estimate (5.9) can be improved to∣∣∣∣0 − (ε, L(3Q)′)

‖3Q‖2
L2

∣∣∣∣ . ∫
ε2e−|y|/10

+

(
|b| +

1
|s|

)(∫
ε2e−|y|/10

)1/2

+
|b|

|s|

.
∫
ε2e−|y|/10

+
1
|s|

(∫
ε2e−|y|/10

)1/2

+
|b|

|s|
,

which is (5.10).

Step 2. Proof of (i). The estimate |J2| . N 1/2
follows from the properties of ρ2:

|ρ2| . 1y>0 + e
−|y|/101y<0.

We now turn to the proof of the refined equation of b. We claim that

|bs + 4b2b + b2(J2)s | .
∫
ε2e−|y|/10

+
N 1/2

|s|3/2
+
|b|

|s|3/2
, (5.12)
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which follows by combining the following two estimates:

|bs + 4b2b − b2(ε, L(ρ
′

2))| .
∫
ε2e−|y|/10

+
(
∫
ε2e−|y|/10)1/2

|s|3/2
+
|b|

|s|3/2
, (5.13)

|(J2)s + (ε, L(ρ
′

2))| .
∫
ε2e−|y|/10

+
N 1/2

|s|
+
|b|

|s|
. (5.14)

Assume (5.13), (5.14). From (5.14),

|(J2)s | .
∫
ε2e−|y|/10

+N 1/2
+
|b|

|s|
,

and expanding b2 in (5.12) according to (4.9) yields (5.5).

Proof of (5.13). Taking the scalar product of the equation of ε by Q, we obtain (using
LQ′ = 0)

0 =
d

ds
(ε,Q) = 0(3Qb2 ,Q)+X((Qb2)y,Q)+

(λ2)s

λ2
(3ε,Q)

+ (E,Q)− (F − ε5,Q′). (5.15)

Using the definition of Qb in (2.10), we have |(3Qb2 ,Q) − (3P,Q)b2| . |s|−10,
and thus using (5.10), we obtain∣∣∣∣0(3Qb2 ,Q)− b2(3P,Q)

(ε, L(3Q)′)

‖3Q‖2
L2

∣∣∣∣ .
∫
ε2e−|y|/10

|s|
+
|b|

|s|2
+
(
∫
ε2e−|y|/10)1/2

s2 .

Similarly, since |((Qb2)y,Q)| . |s|
−10, using (5.9), we get

|X((Qb2)y,Q)| ≤
(
∫
ε2e−|y|/10)1/2 + |b|

|s|10 .

Now, we compute (E,Q). By the expression of9b (see [29, (2.17)]), and the formula
((10P 2Q3)′ +3P,Q) = 1

8‖Q‖
2
L1 , we have

(9b2 −9b1 ,Q) = −
1
4b2b‖Q‖

2
L1 +O(b/s

2).

Next, using the expression of 8b and (P,Q) = 1
16‖Q‖

2
L1 ,

(8b2 −8b1 ,Q) = −
1

16bs‖Q‖
2
L1 +O(b/s

10).

Thus,
(92 −91,Q) = −

1
16‖Q‖

2
L1(bs + 4b2b)+O(b/s

2). (5.16)

Since (3ε1,Q) = −(ε1,3Q) = 0 and (using (4.8) on ε1)

|01(3(Qb2 −Qb1),Q)| . |s|
−3/2
|b|,
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we obtain
(E,Q) = − 1

16‖Q‖
2
L1(bs + 4b2b)+O(b/|s|

3/2).

Now, we compute (F − ε5,Q′). First, since |X1| + |X2| +
∫
|ε1|e

−|y|/10 . |s|−3/2,
we have

|X1(Qb2 −Qb1 ,Q
′)| + |X2(ε,Q

′)| + |X(ε1,Q
′)| .

(
∫
ε2e−|y|/10)1/2

|s|3/2
+
|b|

|s|3/2
.

Second, we estimate (R2(ε2) − R1(ε1),Q
′). From the expression of Ri(εi), we observe

that

|R2(ε2)−R1(ε1)− 20b2PQ
3ε| ≤ |R2(ε2)−R2(ε1)− 20b2PQ

3ε| + |R2(ε1)−R1(ε1)|

. |ε|(|s|−2
+ |ε1| + |ε2|)+ |b| |ε1|,

and so by (4.7),

|(R2(ε2)− R1(ε1),Q
′)− 20b2(ε, PQ

3Q′)| .
(
∫
ε2e−|y|/10)1/2

|s|3/2
+
|b|

|s|3/2
.

We have thus obtained, for this term,

|((F − ε5)y,Q)+ 20b2(ε, PQ
3Q′)| .

(
∫
ε2e−|y|/10)1/2

|s|3/2
+
|b|

|s|3/2
.

Inserting the above computations into (5.15), we obtain∣∣∣∣bs + 4b2b −
16
‖Q‖2

L1

b2

[
(3P,Q)

‖3Q‖2
L2

(ε, L(3Q)′)+ 20(ε, PQ3Q′)

]∣∣∣∣
.
∫
ε2e−|y|/10

+
(
∫
ε2e−|y|/10)1/2

|s|3/2
+
|b|

|s|3/2
.

Using the formula7 from [29, proof of Lemma 2.7],

(ε, L(ρ′2)) =
16
‖Q‖2

L1

[
(3P,Q)

‖3Q‖2
L2

(ε, L(3Q)′)+ 20(ε, PQ3Q′)

]
,

we obtain (5.13).

Proof of (5.14). To complete the proof of (5.12), we take the scalar product of the equa-
tion of ε by ρ2. We obtain first

d

ds
J2 +

(λ2)s

λ2
(ε,3ρ2) = −(ε, (Lρ2)

′)+ 0(3Qb2 , ρ2)+X((Qb2)y, ρ2)

+ (E, ρ2)+ (−F + ε
5, ρ′2).

7 Which of course motivates the definition of ρ2 in (2.39).
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Note that ∣∣∣∣ (λ2)s

λ2
(ε,3ρ2)

∣∣∣∣ ≤ ∣∣∣∣ (λ2)s

λ2

∣∣∣∣(|J2| + |(ε, yρ
′

2)|) .
N 1/2

|s|
.

Using the orthogonality (3Q, ρ2) = 0 (see [29]), and (5.9), we have

|0(3Qb2 , ρ2)| = |0b2(3Pχb2 , ρ2)| .

[(∫
ε2e−|y|/10

)1/2

+
|b|

|s|

]
1
|s|
,

and similarly, using (Q, ρ′2) = 0,

|X((Qb2)y, ρ2)| + |(E, ρ2)| + |(−F + ε
5, ρ′2)|

.
(
∫
ε2e−|y|/10)1/2 + |b| +N 1/2

|s|
+

∫
ε2e−|y|/10,

and (5.14) is proved.

5.3. Proof of (ii). The functional F in (5.6) is defined similarly to Proposition 2.9 for a
parameter B large enough but smaller than B/10 where B is used in Proposition 2.9.

Step 1. Coercivity of F . The upper and lower bounds (5.7) on F follow from the coer-
civity of the linearized energy

∫
(ε2
y + ε

2
− 5Q4ε2) under the orthogonality conditions

(2.21) together with standard localization arguments. We refer to [29, proof of Proposi-
tion 3.1(iii)], for example, for more details.

Step 2. Proof of (5.8). We now turn to the proof of the monotonicity (5.8). We decom-
pose F = F1 + |s|

−1/2F2 with

F1 =

∫
[ψB(ε

2
y − 5Q4ε2)+ ϕBε

2
], F2 =

∫
eλ2yε2,

and state the following monotonicity formulas for |s| large enough:

dF1

ds
+ µ1

∫
(ε2
y + ε

2)ϕ′
B
.
b2

|s|
+

1
|s|

∫
y<0
|y|e−|y|/Bε2, (5.17)

dF2

ds
+

µ2
√
|s|

∫
eλ2y(ε2

y + ε
2) .

∫
ε2e−|y|/10

+
|b|2

|s|2/5
. (5.18)

Assume (5.17), (5.18); then for |s| large,

d

ds
(s2F1 + |s|

3/2F2) = 2sF1 −
3
2
|s|1/2F2 + s

2 d

ds
F1 + |s|

3/2 d

ds
F2

≤ −µ1s
2
∫
(ε2
y + ε

2)ϕ′
B
− µ2|s|

∫
eλ2yε2

+ C|s|11/10b2
+ C|s|

∫
y<0
|y|e−|y|/Bε2

+ C|s|3/2
∫
ε2e−|y|/10

≤ −
µ1

2
s2
∫
(ε2
y + ε

2)ϕ′
B
− µ2|s|

∫
eλ2yε2

+ C|s|11/10b2
+ C1|s|

∫
y<0
|y|e−|y|/Bε2.
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Then, for 0 < κ < µ1/(4BC1) and |s| large enough (depending on B),

C1|s|

∫
y<0
|y|e−|y|/Bε2

= C1|s|

∫
κs<y<0

|y|e−|y|/Bε2
+ C1|s|

∫
y<κs

|y|e−|y|/Bε2

≤ C1Bκs
2N loc + C1|s| sup

y<κs
(|y|e−|y|/(2B))

∫
e−|y|/(2B)ε2

≤
µ1

4
s2N loc +

µ2

2
|s|

∫
eλ2yε2,

and thus

d

ds
(s2F1 + |s|

3/2F2)+
µ1

4
s2
∫
(ε2
y + ε

2)ϕ′
B
+
µ2

2
|s|

∫
eλ2yε2 . |s|11/10b2,

which implies (5.8).

Step 3. Proof of (5.17). We compute the time derivative of F1 using (5.2):

1
2
dF1

ds
=

∫
∂sε[−ψ

′

B
εy + ψB(Lε)+ (ϕB − ψB)ε]

=

∫ [
(Lε)y + 03Qb2 +X(Qb2)y +

(λ2)s

λ2
3ε + E + Fy

]
×[−ψ ′

B
εy + ψB(Lε)+ (ϕB − ψB)ε].

We now estimate all these terms as in [29, proof of Proposition 3.1(i)].

• First, we claim that for B large enough, for some µ1 > 0,∫
(Lε)y[−ψ

′

B
εy + ψB(Lε)+ (ϕB − ψB)ε] ≤ −µ1

∫
ϕ′
B
(ε2
y + ε

2). (5.19)

The proof is mainly based on local virial estimates for ε and explicit computations similar
to the ones for the term f

(i)
1,1 in [29, proof of Proposition 3.1]. Here, computations are eas-

ier than in [29]. We sketch these computations and estimates for the sake of completeness.
By explicit computations (mainly integrations by parts, see [29] for details), one gets

2
∫
(Lε)y[−ψ

′

B
εy + ψB(Lε)+ (ϕB − ψB)ε]

= −

∫
[3ψ ′

B
ε2
yy + (3ϕ

′

B
+ ψ ′

B
− ψ ′′′

B
)ε2
y + (ϕ

′

B
− ϕ′′′

B
)ε2
]

+

∫
5Q4ε2(ϕ′

B
− ψ ′

B
)+

∫
20Q3Q′ε2(ψB − ϕB)+ 10

∫
ψ ′
B
εy{4Q′Q3ε +Q4εy}

−

∫
ψ ′
B
{(5Q4ε)2 − 10Q4ε(−εyy + ε)}

= I< + I∼ + I>

where I<,∼,> respectively correspond to integration on y<−B/2, |y|≤B/2, y>B/2.
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In the region y > B/2, we have ψ ′
B
(y) = 0, and thus

I> = −

∫
y>B/2

[3ϕ′
B
ε2
y + (ϕ

′

B
− ϕ′′′

B
)ε2
] +

∫
y>B/2

5Q4ε2ϕ′
B

+

∫
y>B/2

20Q3Q′ε2(1− ϕB).

Using ϕ′′′
B
. B

−2
ϕ′
B

and the exponential decay of Q we obtain, for B large enough,

I> ≤ −

∫
y>B/2

ϕ′
B
(ε2
y + ε

2)+
C

B
2

∫
y>B/2

ϕ′
B
ε2
≤ −

1
2

∫
y>B/2

ϕ′
B
(ε2
y + ε

2).

In the region |y| < B/2, we have ϕB(y) = 1+ y/B, ψB(y) = 1 and ψ ′′′
B
= ψ ′

B
= 0.

Thus,

I∼ = −
1

B

∫
|y|<B/2

[3ε2
y + ε

2
− 5Q4ε2

+ 20yQ3Q′ε2
] +

1

B

5
3

∫
|y|<B/2

ε6.

From [29, Lemma 3.4] (local virial estimate), for some µ > 0 and for B large,∫
|y|<B/2

[3ε2
y + ε

2
+ 15Q4ε2

− 20yQ3Q′ε2
] ≥ µ

∫
|y|<B/2

(ε2
y + ε

2)−
1

B

∫
ε2e−|y|/2,

and since ‖ε‖4L∞ . |s|−2, we have
∫
|y|<B/2 ε

6 . |s|−2 ∫
|y|<B/2 ε

2, so that for B large and
|s| large,

I∼ ≤ −
µ

2
1

B

∫
|y|<B/2

(ε2
y + ε

2)+
1

B
2

∫
ε2e−|y|/2.

In the region y < −B/2, we use ψ ′′′
B

. B
−2
ψ ′
B

, ψ ′
B
. ϕ′

B
, ϕ′′′

B
. B

−2
ϕ′
B

, and the
exponential decay of Q to obtain as before, for B large enough,

I< ≤ −
1
2

∫
y<−B/2

ϕ′
B
(ε2
y + ε

2).

Gathering the estimates for I>, I∼ and I<, we get (5.19).

• Next, arguing as for estimating f (i)1,2 and f (i)1,3 in [29, proof of Proposition 3.1], we find∣∣∣∣0 ∫ 3Qb2 [−ψ
′

B
εy + ψB(Lε)+ (ϕB − ψB)ε]

∣∣∣∣ ≤ µ1

100
N loc + C

b2

s2 , (5.20)∣∣∣∣X ∫ (Qb2)y[−ψ
′

B
εy + ψB(Lε)+ (ϕB − ψB)ε]

∣∣∣∣ ≤ µ1

100
N loc + C

b2

s2 . (5.21)

Indeed, using the algebraic facts

(3Q,Lε) = −2(Q, ε) = 0, (ε, y3Q) = (ε,3Q) = (ε, yQ′) = 0, LQ′ = 0,
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the exponential decay of Q, |b2| ≤ 1/
√
|s|, and integrating by parts to remove all deriva-

tive from ε, we obtain∣∣∣∣∫ 3Qb2 [−ψ
′

B
εy + ψB(Lε)+ (ϕB − ψB)ε]

∣∣∣∣ . (
1

B
+

√
B
√
|s|

)
N 1/2

loc ,∣∣∣∣∫ (Qb2)y[−ψ
′

B
εy + ψB(Lε)+ (ϕB − ψB)ε]

∣∣∣∣ . (
1

B
+

√
B
√
|s|

)
N 1/2

loc .

Thus, using (5.9), the estimates (5.20) and (5.21) follow for B large and |s| large.
At this point, B is fixed and thus B in Proposition 2.9 is also fixed. B and B are

universal constants.

• The next term is similar to f (i,j)3 in [29]. Using the properties of ψB and ϕB and (2.29)
we have

(λ2)s

λ2

∫
3ε[−(ψBεy)y + ϕBε − ψB(5Q

4ε + ε5)]

= −
1
2
(λ2)s

λ2

∫
yϕ′

B
ε2
+O

(
1
|s|

∫
(ε2
y + ε

2)ϕ′
B

)
.

From (4.5), (4.8) and (4.9), we have, for s large,

1
s
≤ −

(λ2)s

λ2
≤

1
4s
< 0,

and thus

−
1
2
(λ2)s

λ2

∫
yϕ′

B
ε2 .

1
|s|

∫
y<0
|y|e−|y|/Bε2.

Eventually, we have proved that for s large.

(λ2)s

λ2

∫
3ε[−(ψBεy)y + ϕBε − ψB(5Q

4ε + ε5)]

≤
µ1

100

∫
(ε2
y + ε

2)ϕ′
B
+
C

|s|

∫
y<0
|y|e−|y|/Bε2.

We now estimate terms coming from E and F . For this, we will need higher order
Sobolev estimates on ε1 and ε2 coming from Proposition 4.1. Since B < B/50, from
(4.12) and (4.13) we have, for all 9

50
1
B
< ω < 1

10 and i = 1, 2,

3∑
k=0

∫
(∂kyεi)

2(s, y)eωy dy +

∫ s

−∞

4∑
k=0

∫
(∂kyεi)

2(s′, y)eωy dy ds′ .
1
|s|
, (5.22)

‖((εi)
2
yy + (εi)

2
y)(s)e

ωy
‖L∞ .

1
|s|
. (5.23)
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• Estimate for E. In view of the expression of E in (5.3), the first term to estimate is∣∣∣∣(0 − b) ∫ 3ε1[−ψ
′

B
εy + ψB(Lε)+ (ϕB − ψB)ε]

∣∣∣∣
.

(
|b| +

(∫
ε2e−|y|/10

)1/2)(∫
(ε2
y + ε

2)ϕ′
B

)1/2

×

(∫
((ε1)

2
yy + (ε1)

2
y + ε

2
1)(1+ |y|

3)ϕB

)1/2

≤
µ1

100

∫
(ε2
y + ε

2)ϕ′
B
+ Cb2

∫
((ε1)

2
yy + (ε1)

2
y + ε

2
1)e

2/By dy

≤
µ1

100

∫
(ε2
y + ε

2)ϕ′
B
+ C

b2

|s|
,

using (5.9), integration by parts, and then (5.22). For the next term, we need to estimate
3(Qb2 −Qb1). From Lemma 2.5, we have

Qb2 −Qb1 = bPχb2 + b1P(χb2 − χb1),

and using (4.9),

|χb2 − χb1 | =

∣∣∣∣∫ b2

b1

∂χb

∂b
db

∣∣∣∣ . sup |yχ ′|
|b1 − b2|

|b1|
.

Thus, |Qb2 −Qb1 | . |b| |P |. Arguing similarly, we obtain

|(Qb2−Qb1)y |+|(3Qb2−3Qb1)y |+|3(Qb2−Qb1)| . |b|(1y<0+e
−|y|/10). (5.24)

Using (5.24) and the estimates for 01 from Proposition 4.1 yields∣∣∣∣∫ 013(Qb2 −Qb1)[−ψ
′

B
εy + ψB(Lε − ε

5)+ (ϕB − ψB)ε]

∣∣∣∣ . |b|

|s|3/2
N 1/2

loc

≤
µ1

100
N loc + C

b2

s2 .

Next, from the definition of 9bi and8bi (see [29, Lemma 2.5 and (2.17)]), (5.11), (2.30),
(4.7), we have

|9b2 −9b1 | .
|b|
√
|s|
(1y<0 + e

−|y|/10),

|8b2 −8b1 | .

(
|bs | +

|(b1)s ||b|

|b1|

)
(1y<0 + e

−|y|/10)

.

(∫
ε2e−|y|/10

+
(
∫
ε2e−|y|/10)1/2

|s|
+
|b|

|s|

)
(1y<0 + e

−|y|/10),
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and similar estimates for the derivatives of these terms. In particular, we obtain

|92 −91| + |(92 −91)y | + |(92 −91)yy |

.

(∫
ε2e−|y|/10

+
(
∫
ε2e−|y|/10)1/2

|s|
+
|b|
√
|s|

)
(1y<0 + e

−|y|/10)

.

(
N loc +

N 1/2
loc
|s|
+
|b|
√
|s|

)
(1y<0 + e

−|y|/10). (5.25)

Thus,∣∣∣∣∫ (92 −91)[−ψ
′

B
εy + ψB(Lε)+ (ϕB − ψB)ε]

∣∣∣∣
.

(
N loc +

N 1/2
loc
|s|
+
|b|
√
|s|

)
N 1/2

loc ≤
µ1

100
N loc + C

b2

|s|
.

In conclusion, for E we have obtained∣∣∣∣∫ E[−ψ ′
B
εy + ψB(Lε)+ (ϕB − ψB)ε]

∣∣∣∣ ≤ 3µ1

100

∫
(ε2
y + ε

2)ϕ′
B
+ C

b2

|s|
.

• Estimate for F . Similarly, we easily get the following three estimates:∣∣∣∣X1

∫
(Qb2 −Qb1)y[−ψ

′

B
εy + ψB(Lε)+ (ϕB − ψB)ε]

∣∣∣∣
.
|b|

|s|3/2
N 1/2

loc .
µ1

100
N loc + C

b2

s2 ,∣∣∣∣X2

∫
εy[−ψ

′

B
εy + ψB(Lε)+ (ϕB − ψB)ε]

∣∣∣∣
.

1
|s|3/2

∫
(ε2
y + ε

2)ϕ′
B
≤
µ1

100

∫
(ε2
y + ε

2)ϕ′
B
,∣∣∣∣X ∫ (ε1)y[−ψ

′

B
εy + ψB(Lε)+ (ϕB − ψB)ε]

∣∣∣∣
.

(
|b|

|s|
+

(∫
ε2e−|y|/10

)1/2)(∫
(ε2
y + ε

2)ϕ′
B

)1/2

×

(∫
((ε1)

2
yy + (ε1)

2
y + ε

2
1)e

2/By dy

)1/2

≤
µ1

100

∫
(ε2
y + ε

2)ϕ′
B
+ C

b2

|s|
.

The remaining nonlinear term for F is estimated using the Sobolev bound (5.22). We
decompose the nonlinear term as follows:

R2(ε2)− R1(ε1) = F1 + F2
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where
F1 = R2(ε1)− R1(ε1), F2 = R2(ε2)− R2(ε1).

Using the expression for Ri and ‖ε1‖L∞ . |s|−1/2, we obtain

|(F1)y | + |(F1)yy | . |b|(|ε1| + |(ε1)y | + |(ε1)
2
y | + |(ε1)yy |),

and then by (5.23),

(|(F1)y | + |(F1)yy |)e
y

4B . |b|(|ε1| + |(ε1)y | + |(ε1)yy |)e
y

4B +
|b|
√
|s|
|(ε1)y |.

Thus, integrating by parts, and using the Cauchy–Schwarz inequality and (5.22), we get∣∣∣∣∫ (F1)y[−ψ
′

B
εy + ψB(Lε)+ (ϕB − ψB)ε]

∣∣∣∣
.
∫
(|(F1)y | + |(F1)yy |)e

y

2B (|ε| + |εy |)
√
ϕ′
B

. |b|
∫
[(|ε1| + |(ε1)y | + |(ε1)yy |)e

y
4B + |(ε1)y |]e

y

4B (|ε| + |εy |)
√
ϕ′
B

.
|b|
√
|s|

(∫
(ε2
y + ε

2)ϕ′
B

)1/2

≤
µ1

100

∫
(ε2
y + ε

2)ϕ′
B
+ C

b2

s
.

We decompose F2 as follows:

F2 = 5(Q4
b2
−Q4)ε + 10Q3

b2
(ε2

2 − ε
2
1)+ 10Q2

b2
(ε3

2 − ε
3
1)+ 5Qb2(ε

4
2 − ε

4
1)

+ ε5
2 − ε

5
1

= ε[5(Q4
b2
−Q4)+ 10Q3

b2
(ε2 + ε1)+ 10Q2

b2
(ε2

2 + ε1ε2 + ε
2
1)

+ 5Qb2(ε
3
2 + ε

2
2ε1 + ε2ε

2
1 + ε

3
1)+ (ε

4
2 + ε

3
2ε1 + ε

2
2ε

2
1 + ε2ε

3
1 + ε

4
1)].

Therefore, by suitable integration by parts, we have∣∣∣∣∫ (F2)y[−ψ
′

B
εy + ψB(Lε − ε

5)+ (ϕB − ψB)ε]

∣∣∣∣
. |b2|

∫
(ε2
y + ε

2)ϕ′
B
+

∫
(ε2
y + ε

2)ϕB(|ε1| + |ε2|)

+

∫
(ε2
y + ε

2)ψB

∑
i=1,2

(|εi | + |(εi)y | + |(εi)
2
y | + |(εi)yy |).

These terms are next treated as follows:

C|b2|

∫
(ε2
y + ε

2)ϕ′
B
≤
µ1

100

∫
(ε2
y + ε

2)ϕ′
B
,
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and using (5.23), ‖εi‖L∞ . 1/
√
|s| and the notation y+ = max(0, y),∫

(ε2
y + ε

2)ϕB(|ε1| + |ε2|) .
(
‖ε1(1+ |y+|)‖L∞ + ‖ε2(1+ |y+|)‖L∞

) ∫
(ε2
y + ε

2)ϕ′
B

≤
µ1

100

∫
(ε2
y + ε

2)ϕ′
B
.

Finally, using ψB . ϕ′
B
ey/B and (5.23), we get

C

∫
(ε2
y + ε

2)ψB

∑
i=1,2

(|εi | + |(εi)y | + |(εi)
2
y | + |(εi)yy |)

. ‖(|εi | + |(εi)y | + |(εi)
2
y | + |(εi)yy |)e

y/B
‖L∞

∫
(ε2
y + ε

2)ϕ′
B
≤
µ1

100

∫
(ε2
y + ε

2)ϕ′
B
.

Combining the above estimates yields the bound∣∣∣∣∫ Fy[−ψ
′

B
εy + ψB(Lε − ε

5)+ (ϕB − ψB)ε]

∣∣∣∣ ≤ 7µ1

100

∫
(ε2
y + ε

2)ϕ′B + C
b2

|s|
.

Step 4. Proof of (5.18). We compute the time derivative of F2 using (5.2):

1
2
dF2

ds
=
(λ2)s

2

∫
yeλ2yε2

+

∫
eλ2y(∂sε)ε

=
(λ2)s

2

∫
yeλ2yε2

+

∫ [
(Lε)y + 03Qb2 +X(Qb2)y +

(λ2)s

λ2
3ε + E + Fy

]
eλ2yε.

Since
∫
3εeλ2yε = − 1

2λ2
∫
ε2yeλ2y , the scaling term cancels. By usual integrations by

parts, we get

1
2
dF2

ds
= −

3
2
λ2

∫
ε2
ye
λ2y −

1
2
λ2(1− λ2

2)

∫
ε2eλ2y

+

∫
(−10Q3Qy +

5
2λ2Q

4)ε2eλ2y +

∫
[03Qb2 +X(Qb2)y + E + Fy]e

λ2yε.

Using λ2 ∼ 1/
√

2|s| and the decay properties of Q we get, for |s| large,

1
2
dF2

ds
≤ −

1
4
√
|s|

∫
(ε2
y + ε

2)eλ2y +

∫
ε2e−|y|/10

+

∣∣∣∣∫ [03Qb2 +X(Qb2)y + E + Fy]e
λ2yε

∣∣∣∣.
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Now, we estimate the remaining terms. First, from (5.9) and the definition of Qb,∣∣∣∣0 ∫ 3Qb2e
λ2yε

∣∣∣∣+ ∣∣∣∣X ∫ (Qb2)ye
λ2yε

∣∣∣∣
≤ C

((∫
ε2e−|y|/10

)1/2

+
|b|

|s|

)((∫
ε2e−|y|/10

)1/2

+
|b2|
√
λ2

(∫
ε2eλ2y

)1/2)
≤

λ2

100

∫
ε2eλ2y + C

∫
ε2e−|y|/10

+ C
b2

s2 .

Second, we estimate the terms coming from E. Since∫
3ε1εe

λ2y = −

∫
ε13εe

λ2y − λ2

∫
yε1εe

λ2y,

we get∣∣∣∣(0 − b) ∫ 3ε1e
λ2yε

∣∣∣∣
.

((∫
ε2e−|y|/10

)1/2

+ |b|

)(∫
(ε2
y + ε

2)eλ2y

)1/2(∫
(1+ y2)ε2

1e
λ2y

)1/2

.

We estimate the term involving ε1 using Proposition 4.1: for some 0 < ω < ω′ < 1/10,
using λ2 ≥

19
20λ1 for |s| large, we get∫

y2ε2
1e
λ2y ≤

∫
y<0

y2ε2
1e
λ2y +

∫
y>0

y2ε2
1e
ωy

. sup
y<0
[y2eλ1y/20

]

∫
y<0

ε2
1e

9λ1y/10
+

∫
y>0

ε2
1e
ω′y

. λ−2
1

(∫
y<0

ε2
1

)1/10(∫
y<0

ε2
1e
λ1y

)9/10

+

∫
y>0

ε2
1e
ω′y . |s|−9/10.

Hence we obtain∣∣∣∣(0 − b) ∫ 3ε1e
λ2yε

∣∣∣∣ . |s|−9/20
((∫

ε2e−|y|/10
)1/2

+ |b|

)(∫
(ε2
y + ε

2)eλ2y

)1/2

≤ C

∫
ε2e−|y|/10

+ C
|b|2

|s|2/5
+
λ2

100

∫
(ε2
y + ε

2)eλ2y .

For the second term coming from E, we use (5.24) and |01| . 1/|s|, so that∣∣∣∣01

∫
3(Qb2 −Qb1)εe

λ2y

∣∣∣∣ . |b||s|
(∫

y<0
|ε|eλ2y +

(∫
ε2e−|y|/10

)1/2)
.
|b|

|s|

(
|s|1/4

(∫
y<0

ε2eλ2y

)1/2

+

(∫
ε2e−|y|/10

)1/2)
≤

λ2

100

∫
ε2eλ2y + C

∫
ε2e−|y|/10

+ C
|b|2

|s|
.
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For the last term in E, we use (5.25) and argue similarly:∣∣∣∣∫ (92 −91)εe
λ2y

∣∣∣∣
.

(∫
ε2e−|y|/10

+
(
∫
ε2e−|y|/10)1/2

|s|
+
|b|
√
|s|

)(∫
y<0
|ε|eλ2y +

(∫
ε2e−|y|/10

)1/2)
≤

λ2

100

∫
ε2eλ2y + C

∫
ε2e−|y|/10

+ C
|b|2

|s|
.

Now, we estimate the terms coming from F . Arguing as before, since |X1| . |s|−3/2

and using (5.24), we obtain∣∣∣∣X1

∫
(Qb2 −Qb1)yεe

λ2y

∣∣∣∣ . λ2

100

∫
ε2eλ2y +

∫
ε2e−|y|/10

+
|b|2

|s|
.

Next, since |X2| . |s|−3/2, λ2 . |s|−1/2, by integration by parts∣∣∣∣X2

∫
εyεe

λ2y

∣∣∣∣ . 1
s2

∫
ε2eλ2y ≤

λ2

100

∫
ε2eλ2y .

Then, by integration by parts, (5.9) and (4.11),∣∣∣∣X ∫ (∂yε1)εe
λ2y

∣∣∣∣ . ((∫
ε2e−|y|/10

)1/2

+
|b|

|s|

)(∫
ε2

1e
λ2y

)1/2(∫
(ε2
y + ε

2)eλ2y

)1/2

.
λ2

100

∫
(ε2
y + ε

2)eλ2y +

∫
ε2e−|y|/10

+
|b|2

|s|
.

Finally, we decompose R2(ε2) − R1(ε1) as follows, using ‖εi‖L∞ . |s|−1/2 and |bi | ∼
|s|−1:

|R2(ε2)− R1(ε1)| ≤ |R2(ε2)− R2(ε1)| + |R2(ε1)− R1(ε1)|

. |ε|(|b2| + e
−|y|/10)+ |b| |ε1| . |s|

−1
|ε| + |ε|e−|y|/10

+ |b| |ε1|,

and thus, using also (4.11), we estimate the last term coming from F as follows:∣∣∣∣∫ (R2(ε2)− R1(ε1))(εy + λ2ε)e
λ2y

∣∣∣∣
.

1
|s|

∫
(ε2
y + ε

2)eλ2y +

∫
ε2e−|y|/10

+ |b|

(∫
ε2

1e
λ2y

)1/2(∫
ε2eλ2y

)1/2

.
λ2

100

∫
(ε2
y + ε

2)eλ2y +

∫
ε2e−|y|/10

+
|b|2

|s|
.

Combining the above bounds yields (5.18).
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5.4. Conclusion. We are now in a position to conclude the proof of uniqueness (5.1).
First, recall the following estimates from Proposition 4.1 as s →−∞:

N . 1/|s|3, |J2| . N 1/2
. 1/|s|3/2, b = o(1/|s|2). (5.26)

Moreover, from (4.11), (4.12) we estimate∫
eλ2yε2 .

∫
eλ2yε2

1+

∫
eλ2yε2

2 .
∫
eλ2yε2

1+
1
s2 .

∫
y<0

e−λ2|y|ε2
1+

∫
y>0

eλ2yε2
1+

1
s2

.
∫
y<0

e−9/10λ1|y|ε2
1+

∫
y>0

ey/10ε2
1+

1
s2 .

(∫
e−λ1|y|ε2

1

)9/10

+
1
s2 .

1
s9/5 .

This yields in particular from (5.7) the bound

F . 1/s2+3/10. (5.27)

Recall from (5.5) and (5.8) (using
∫
ε2e−|y|/10 . N loc) that

d

ds

{
s2
(
b +

J2

2s

)}
. s2N loc + |s|

1/2
|b| + |s|1/2N 1/2

,

d

ds
(s2F)+ µs2N loc . |s|

11/10b2. (5.28)

Using also (5.26), it follows that for K0 > 0 large enough,

d

ds

{
s2
(
b+

J2

2s
+K0F

)}
. |s|1/2|b| + |s|1/2N 1/2

+ s11/10b2 . |s|1/2|b| + |s|1/2N 1/2
.

(5.29)
We now deduce from (5.26), (5.27) the a priori bound

s2(|b| + |J2|/|s| + F)→ 0 as s →−∞.

We then integrate (5.28) on (−∞, s]:

s2F(s) .
∫ s

−∞

|s′|11/10b2(s′) ds′ .
∫ s

−∞

(s′)4b2(s′)
ds′

|s′|2+9/10

.
1

|s|19/10

(
sup

s′∈(−∞,s]

(s′)2|b(s′)|
)2
,

so that

|s|F1/2(s) .
1

|s|19/20 sup
s′∈(−∞,s]

(s′)2|b(s′)|. (5.30)
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Next, by integration of (5.29) on (−∞, s] and (5.7) and (5.26),

s2
|b(s)| . |s| |J2| + s

2F +
∫ s

−∞

(|s′|1/2|b| + |s′|1/2N 1/2
) ds′

. |s|N 1/2
+ s2F +

∫ s

−∞

|b| |s′|2
ds′

|s′|3/2
+

∫ s

−∞

|s′|7/4N 1/2 ds′

|s′|5/4

.
1
|s|1/4

sup
s′∈(−∞,s]

{(s′)2|b(s′)| + |s′|7/4F1/2(s′)}. (5.31)

Putting together (5.30) and (5.31), we get

s2
|b(s)| + |s|7/4F1/2(s) .

1
|s|1/5

sup
s′∈(−∞,s]

{(s′)2|b(s′)| + (s′)7/4F1/2(s′)}. (5.32)

This gives immediately for |s| large, by (5.7), |b(s)| + N (s) = and thus ε(s, y) ≡ 0.
Therefore, for some t > 0, u2(t) is a rescaling and translation of S(t), and thus it is so for
all time by uniqueness of the Cauchy problem in H 1. This concludes the proof of (5.1)
and Theorem 1.3.

6. Description of the (Exit) scenario

This section is devoted to the proof of Theorem 1.4. The argument relies first on an ex-
tension of the compactness argument of Section 3 and second on the uniqueness up to
symmetries of the minimal mass blow up solution.

6.1. Reduction of the proof. Theorem 1.4 is a direct consequence of the following
proposition which describes the defocusing bubble in the (Exit) regime at the exit time.

Proposition 6.1 (Compactness of sequences of solutions at the (Exit) time). There ex-
ists a small universal constant α∗ > 0 such that the following holds. Let (un(0)) be a
sequence in H 1 satisfying:

(1) un(0) ∈ A;
(2) ‖un(0)−Q‖H 1 ≤ 1/n;
(3) the solution un ∈ C([0, Tn),H 1) of (1.1) corresponding to (un(0))n≥1 satisfies the

(Exit) scenario, i.e. for all n large enough,

t∗n = sup{t > 0 : ∀t ′ ∈ [0, t], un(t ′) ∈ Tα∗} < Tn. (6.1)

Then there exists σ ∗ = σ ∗(α∗) (independent of the sequence un) such that

λ
1/2
n (t∗n )un(t

∗
n , λn(t

∗
n ) · + xn(t

∗
n ))→ λ

1/2
S (σ ∗)S(σ ∗, λS(σ

∗) · + xS(σ
∗)) in L2 (6.2)

as n→∞.
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6.2. Proof of Proposition 6.1. The strategy of the proof is similar to the proof of exis-
tence of Theorem 1.3 in Section 3. However, the initial data in Section 3 are well-prepared
and in particular generate H 1 bounded sequences after renormalization (see (3.6)). Here
the H 1 bound is lost, and one needs to invoke a concentration-compactness argument in
the critical L2 space for sequences of solutions to (1.1) and uniform local estimates to
recover a nontrivial weak limit.

Step 1. Renormalization. LetC∗ > 0 be the universal constant in (2.57) of Lemma 2.10.
Let t∗n be the exit time (6.1), and consider the decomposition of un(t) on [0, t∗n ] given by
Lemma 2.6. It follows from [29, proof of Theorem 1.2, Section 4.3] that there exists a
time 0 ≤ t∗1,n < t∗n such that

bn(t
∗

1,n) ≤ −C
∗

∫ (
(∂yεn)

2(t∗1,n)ψB + ε
2
n(t
∗

1,n)ϕ
′

B

)
, (6.3)

λn(t
∗

1,n) ≈ 1, |bn(t
∗

1,n)| +Nn(t
∗

1,n)→ 0 as n→∞, (6.4)

where Nn denotes the quantity N defined in (2.46) for un. This time corresponds to when
the (Exit) regime is decided (bn is negative and becomes predominant in the sense (6.3)),
and it is proved in [29] that such a time t∗1,n can be chosen so that the solution has moved
only δ(‖un(0)−Q‖H 1) away from the initial data (see [29, (4.37)]), which implies (6.4)
in the present situation (since ‖un(0)−Q‖ → 0 as n→∞).

Recall also from [29] that un(t) satisfies (H1)–(H3) on [0, t∗n ].
Define

∀τ ∈ [τ ∗n , 0], tτ = t
∗
n + τλ

3
n(t
∗
n ), τ ∗n = −

t∗n − t
∗

1,n

λ3
n(t
∗
n )

,

and consider on [τ ∗n , 0] the renormalized solution vn(τ ) at the exit time t∗n ,

vn(τ, x) = λ
1/2
n (t∗n )un(tτ , λn(t

∗
n )x + x(t

∗
n ))

=
λ

1/2
n (t∗n )

λ
1/2
n (tτ )

(Qbn(tτ ) + εn)

(
tτ ,
λn(t

∗
n )

λn(tτ )
x +

xn(t
∗
n )− xn(tτ )

λn(tτ )

)
. (6.5)

Then vn is solution of (1.1) and belongs to the L2 tube Tα∗ for τ ∈ [τ ∗n , 0]. Moreover, its
decomposition (λvn , xvn , εvn) satisfies on [τ ∗n , 0]:

λvn(τ ) =
λn(tτ )

λn(t∗n )
, xvn(τ ) =

xn(tτ )− xn(t
∗
n )

λn(t∗n )
, bvn(τ ) = bn(tτ ), εvn(τ ) = εn(tτ ). (6.6)

Step 2. Preliminary estimates on the renormalized sequence. We claim:

Lemma 6.2. There exist b∗, τ ∗ such that, possibly after extracting a subsequence,

bn(t
∗
n )→−b

∗, (α∗)2 . b∗ ≤ δ(α∗), (6.7)

τ ∗n = −
t∗n

λ3
n(t
∗
n )
→−τ ∗, τ ∗b∗ ≈ 1. (6.8)
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Moreover, for all n large and τ ∈ [τ ∗n , 0],

λvn(0) = 1, xvn(0) = 0, (6.9)
|bvn(τ )| +Nvn(τ )+ ‖εvn(τ )‖L2 . δ(α∗), (6.10)∫ τ∗n

τ∗1,n

[∫
((∂yεvn)

2
+ ε2

vn
)
ϕB

1+ y2
+

+ |bvn |
4
]

dτ

λ5
vn
(τ )

. δ(α∗), (6.11)

|bvn(τ
∗
n )|/λ

2
vn
(τ ∗n ) . δ(α∗), λvn(τ

∗
n ) = 1/λn(t∗n )→ 0 as n→∞, (6.12)

(λ0,vn)τ (τ ) ≈ b
∗, (6.13)

xvn(τ
∗
n ) . −1/(b∗λvn(τ

∗
n ))→−∞ as n→∞. (6.14)

(Recall that λ0 is defined in Lemma 2.10. Here, λ0,vn denotes this quantity for vn. Simi-
larly, Nvn denotes the quantity N for vn. As usual y+ = max(0, y).)

Proof of Lemma 6.2. Arguing as in the proof of Lemma 3.1, using conservation of mass
and energy of un(t), we first obtain

(α∗)2 . −bn(t
∗
n ) . δ(α∗). (6.15)

Next, using (2.57) on [t∗1,n, t
∗
n ], and (6.3), (6.4), one obtains

−bn(t)/λ
2
n(t) ≈ −bn(t

∗

1,n), (6.16)

and thus, by (6.15),

(α∗)2/|bn(t
∗

1,n)| . λ2
n(t
∗
n ) . δ(α∗)/|bn(t

∗

1,n)|, (6.17)

which implies |bvn(τ
∗
n )|/λ

2
vn
(τ ∗n ) . δ(α∗). Next, by definition of t∗n , ‖εvn(τ )‖L2 =

‖εn(tτ )‖L2 ≤ δ(α∗). By (2.59) and (6.4), for n large,

Nn(t)+

∫ t∗n

t∗1,n

[∫
((∂yεn)

2
+ ε2

n)ϕ
′

B

]
dt

λ3
n

. Nn(t
∗

1,n)+ |bn(t)|
3
+ |bn(t

∗

1,n)|
3
≤ δ(α∗). (6.18)

Now, we use [29, Lemma 4.3] to obtain a slightly different estimate. From [29, (4.12)]
with i = 1, using the definition of ϕi,B in [29, p. 84], and then using (6.3), we obtain

∫ t∗n

t∗1,n

[∫
((∂yεn)

2
+ ε2

n)
ϕB

1+ y2
+

+ |bn|
4
]
dt

λ5
n

.

∫
((∂yεn)

2(t∗1,n)ψB + ε
2
n(t
∗

1,n)ϕ
′

B)

λ2
n(t
∗

1,n)
+
|bn(t

∗
n )|

3

λ2
n(t
∗
n )
+
|bn(t

∗

1,n)|
3

λ2
n(t
∗

1,n)
.
|bn(t

∗

1,n)|

λ2
n(t
∗

1,n)

. δ(α∗). (6.19)
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Moreover, by (2.58) and (6.16),

(λ0n)t (t) ≈ |bn(t
∗
n )|/λ

2
n(t
∗
n ). (6.20)

By definition of vn, we obtain (6.9)–(6.13) from the above estimates.
Now, we prove (6.14). Integrating the estimate of (λ0,vn)τ , we obtain

λ0,vn(τ )− λ0,vn(τ
∗
n ) ≈ b

∗(τ − τ ∗n ).

Finally, since (xvn)τ ≈ 1/λ2
0,vn , we obtain by integration on [τ ∗n , 0] and xvn(0) = 0, for n

large,

−xvn(τ
∗
n ) = xvn(0)− xvn(τ

∗
n ) ≈

1
b∗

1
λvn(τ

∗
n )
,

and (6.14) is proved. ut

Step 3. Monotonicity estimates. We now state the following bound on vn which will
allow us to recover H 1 bounds in the limit:∫

x>−λ2
n(t
∗
n )

(∂xvn)
2(0, x) dx . 1. (6.21)

In fact, we prove the following estimate on εvn(0), which together with Lemma 6.2 and
λvn(0) = 1 implies (6.21):∫

y>−2λ2
n(t
∗
n )

(∂yεvn)
2(0, y) dy . δ(α∗). (6.22)

Proof of (6.22). For τ ∈ [τ ∗n , 0], let s = −
∫ 0
τ
dτ/λ3

vn
(τ ) be the rescaled time for vn,

and s∗n = −
∫ 0
τ∗n
dτ/λ3

vn
(τ ). We perform monotonicity estimates on εvn to complement

the ones obtained in (2.59). We define φ ∈ C∞(R) such that

φ(y) =

{
ey for y < −1,
1− 1

10e
−y for y > −1/2,

φ′(y) > 0, ∀y ∈ R, (6.23)

and we consider ψ defined as in (2.45). Let

φB(s, y) = φ

(
y + 1

2 (s − s
∗
n)

B

)
, φ̃B(s, y) = ψ

(
y + 1

2 (s − s
∗
n)

B

)
,

and

FB(s) =
1

λ2
vn
(s)

∫ [
(∂yεvn)

2φ̃B +
λ2
vn
(s)

λ2
0,vn(s)

ε2
vn
φB

−
1
3 ((εvn +Qb)

6
−Q6

b − 6εvnQ
5
b)φ̃B

]
(s, y) dy.

We state the following estimates, proved in Appendix B.
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Lemma 6.3. For B large enough,

d

ds
FB ≤ −

1
4

1
λ2
vn

∫
((∂yεvn)

2
+ ε2

vn
)φ′B

+
C

λ2
vn

∫
((∂yεvn)

2
+ ε2

vn
)
ϕB

1+ y2
+

+
C

λ2
vn

|bvn |
4, (6.24)

FB ≈
1
λ2
vn

∫
((∂yεvn)

2φ̃B + ε
2
vn
φB). (6.25)

We now integrate (6.24) on [τ ∗n , 0] and then use (6.19) and Lemma 6.2:

FB(0) ≤ FB(τ ∗n )+ C
∫ 0

τ∗n

(∫
((∂yεvn)

2
+ ε2

vn
)
ϕB

1+ y2
+

+ |bvn |
4
)

dτ

λ5
vn
(τ )

. Nvn(τ
∗
n )+

|bvn(τ
∗
n )|

3

λ2
vn
(τ ∗n )

+ |bvn(0)|
3 . δ(α∗).

And thus, by (6.25), λvn(0) = 1 and the definition of φB , φ̃B , since

s∗n = −

∫ 0

τ∗n

dτ

λ3
vn
(τ )
≈ −

∫ 0

τ∗n

dτ

(λvn(τ
∗
n )+ b

∗(τ − τ ∗n ))
3 ≈ −

1
b∗

1
λ2
vn
(τ ∗n )

,

we finally obtain ∫
y>−2λ−2

vn (τ
∗
n )

(∂yεvn)
2
≤

∫
y> 1

2 s
∗
n

(∂yεvn)
2 . δ(α∗). (6.26)

Step 4. Extraction of the limit. Since ‖vn(0) − Q‖L2 ≤ δ(α∗), there exists v(0) ∈ L2

and a subsequence still denoted (vn(0)) such that vn(0) ⇀ v(0) weakly in L2 as n→∞.
Moreover, by the properties of weak convergence,

‖v(0)‖L2 ≤ ‖Q‖L2 , ‖v(0)−Q‖L2 ≤ δ(α
∗), (6.27)

and since λn(t∗n )→∞, it follows from (6.21) that v(0) ∈ H 1.

Let δ0 > 0 be small enough, δ0 < δ where δ is defined in Theorem 2.1(i). We consider
α∗ small enough, but universal, such that

‖vn(0)− v(0)‖L2 ≤ δ0/2. (6.28)

In order to exhibit a nontrivial weak limit, we decompose the sequence (vn(0) − v(0))
into profiles according to Lemma 2.3: there exist

U
j
n (0) = e−t

j
n ∂

3
x
(
g
j
n[Re(eixξ

j
n λ

j
nφj )]

)
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and wJn (0) ∈ L
2 such that (up to a subsequence)

vn(0)− v(0) =
J∑
j=1

U
j
n (0)+ wJn (0), lim

J→∞
lim sup
n→∞

‖e−t∂
3
xwJn (0)‖L5

xL
10
t (R×R) = 0,

(6.29)

‖vn(0)− v(0)‖2L2 −

J∑
j=1

‖U
j
n (0)‖2L2 − ‖w

J
n (0)‖

2
L2 = on(1). (6.30)

Moreover, by the weak convergence vn(0) ⇀ v(0), we have∫
v(0)(vn(0)− v(0)) = on(1),

and thus

‖vn(0)‖2L2 − ‖v(0)‖2L2 −

J∑
j=1

‖U
j
n (0)‖2L2 − ‖w

J
n (0)‖

2
L2 = on(1). (6.31)

In particular, by (6.29) and (6.31), v(0) is interpreted as the first profile U0 of the de-
composition of vn(0) with g0

n = g1,0, t0n = 0 and λ0
n = 1. By (6.28) and (6.30), for n

large,
J∑
j=1

‖U
j
n (0)‖2L2 + ‖w

J
n (0)‖

2
L2 . δ(α∗) ≤ δ2

0/2.

Define U jn (τ ) and wJn (τ ) to be the (global) solutions of the nonlinear equation (1.1)
corresponding to the initial data U jn (0) and wJn (0). Let τ0 < 0 be such that v(τ) exists on
[τ0, 0]. We claim that, for n large, vn exists on [τ0, 0] and

lim
J→∞

lim sup
n→∞

sup
τ∈[τ0,0]

∥∥∥vn(τ )− v(τ)− J∑
j=1

U
j
n (τ )− w

J
n (τ )

∥∥∥
L2
= 0. (6.32)

Indeed, (6.32) is a by now standard corollary of the perturbation Lemma 2.4 (see e.g. [8,
Proposition 2.8]). In particular, there exist n0 > 1 and J0 ≥ 1 such that for n > n0,∥∥∥vn(τ )− v(τ)− J0∑

j=1

U
j
n (τ )− w

J0
n (τ )

∥∥∥
L2
≤ δ0,

and thus, for all τ ∈ [τ0, 0],

‖vn(τ )− v(τ)‖L2 ≤

∥∥∥ J0∑
j=1

U
j
n (τ )

∥∥∥
L2
+ ‖wJ0

n (τ )‖L2 + δ0 . δ0 <
1

10
‖Q‖L2 , (6.33)

choosing now δ0 small but universal. In particular, let A be such that, for all τ ∈ [τ0, 0],∫
|x|>A

v2(τ, x) dx <
1

100

∫
Q2.
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Then from (6.33), ∫
|x|>A

v2
n(τ, x) dx ≤

1
25

∫
Q2.

Now, recall from (6.14) that xvn(τ
∗
n )→−∞ as n→∞, and in particular, for n large

enough, −xvn(τ
∗
n )� A; thus,∫

x<−A

v2
n(τ
∗
n , x) dx ≥

3
4

∫
Q2.

We conclude that necessarily τ0 > τ ∗n for n large enough, and thus

τ0 ≥ −τ
∗
= lim

n
τ ∗n .

It follows that v(τ) blows up at a finite time τmax(v) ≥ −τ
∗
= limn τ

∗
n . Since ‖v(0)‖L2 ≤

‖Q‖L2 and v(0) ∈ H 1, we have ‖v‖L2 = ‖Q‖L2 . In particular, by weak convergence,
and limn→∞ ‖vn(0)‖L2 = ‖v(0)‖L2 , we obtain limn→∞ ‖vn(0)− v(0)‖L2 = 0.

From the uniqueness statement in Theorem 1.3, there exist λ∗ > 0, x∗ ∈ R and
σ ∗ > 0 such that

v(0, x) = (λ∗)1/2S(σ ∗, λ∗x + x∗).

Moreover, denoting by (bS, λS, xS) the parameters of the decomposition of S, we observe
that

λv(0) = 1 = (λ∗)−1λS(σ
∗), xv(0) = 0 = xS(σ ∗)− x∗,

and thus
v(0, x) = λ1/2

S (σ ∗)S
(
σ ∗, λS(σ

∗)x + xS(σ
∗)
)
.

In particular, by scaling,

v(τ, x) = λ
1/2
S (σ ∗)S

(
σ ∗ + λ3

S(σ
∗)τ, λS(σ

∗)x + xS(σ
∗)
)
.

Since v blows up at τmax(v), and S blows up at time 0 (by convention), we have

σ ∗ = −λ3
S(σ
∗)τmax(v) < λ3

S(σ
∗)τ∗.

From the definition of t∗n and then strong L2 convergence, we have

α∗ = inf
λ1,x1
‖un(t

∗
n )−Qλ1(· − x1)‖L2 = inf

λ1,x1
‖vn(0)−Qλ1(· − x1)‖L2

= inf
λ1,x1
‖S(σ ∗)−Qλ1(· − x1)‖L2 . (6.34)

Moreover, recall that by definition of t∗n and τ ∗n , for all τ ∈ [τ ∗n , 0] we have

inf
λ1,x1
‖vn(τ )−Qλ1(· − x1)‖L2 ≤ α

∗,

and so for all t ∈ (0, σ ∗],

inf
λ1,x1
‖S(t)−Qλ1(· − x1)‖L2 ≤ α

∗. (6.35)
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From (4.35), we fix tS > 0 such that the distance of S(t) to the family of solitons is
increasing on (0, tS). Take α∗ > 0 small enough so that

α∗ ≤ 1
2 inf
λ1,x1
‖S(tS)−Qλ1(· − x1)‖L2 .

By (6.35), it is clear that σ ∗ ∈ (0, tS). Moreover, σ ∗ is uniquely defined by (6.34) (small
for α∗ small) and thus does not depend on the subsequence but only on α∗. In particular,
the whole sequence converges to the same limit, and the proposition is proved.

Appendix A. End of the proof of Proposition 4.1

In this appendix, we finish the proof of Proposition 4.1 by proving (4.11)–(4.13). For the
reader’s convenience, we recall the main estimates already proved on ε and the parameters
b, λ, x: for |s| large,

‖ε(s)‖L∞ . ‖ε(s)‖H 1 .
1
√
|s|
,

c1(u0)
√
|s|
≤ λ(s) ≤

c2(u0)
√
|s|

, b(s) ∼
1
2s
, (A.1)

N (s)+
∫ s

−∞

∫
(ε2
y + ε

2)(s′)ϕ′B ds
′ .

1
|s|3

, (A.2)∣∣∣∣λsλ + b
∣∣∣∣+ ∣∣∣∣xsλ − 1

∣∣∣∣ . 1
|s|3/2

, |bs | .
1
|s|2

. (A.3)

A.1. Proof of (4.11). Since u(t) is a minimal mass blowing up solution and λ(s) is
increasing for |s| large, from Lemma 2.11 and then using the properties ofQb (see Lemma
2.5) we obtain, for |s| large,

∀y > 0, |ε(s, y)| . e−y/20. (A.4)

Thus, by (A.1),

lim
s→−∞

∫
ε2(s, y)eλ(s)y dy = 0. (A.5)

Now, to prove (4.11), we compute the time derivative of
∫
ε2eλy . Using the equation

of ε (see (2.24)), we have

1
2
d

ds

∫
ε2eλy =

λs

2

∫
yeλyε2

+

∫
εsεe

λy

=
λs

2

∫
yeλyε2

+

∫
(Lε)yεe

λy
+

(
λs

λ
+b

)∫
3Qbεe

λy
+
λs

λ

∫
ε3εeλy

+

(
xs

λ
−1

)∫
(Qb+ε)yεe

λy
+

∫
8bεe

λy
+

∫
9bεe

λy

−

∫
(Rb(ε))yεe

λy
−

∫
(RNL(ε))yεe

λy .
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Since
∫
ε3εeλy = − 1

2λ
∫
ε2yeλy , the scaling terms cancel (this is because the quantity

is scaling invariant). Next, using (A.3), we have∫
(Lε)yεe

λy
= −

3
2
λ

∫
ε2
ye
λy
−

1
2
λ(1− λ2)

∫
ε2eλy +

∫
(−10Q3Q′ − 5

2λQ
4)ε2eλy

≤ −
λ

4

∫
(ε2
y + ε

2)eλy + CNloc,∣∣∣∣(λsλ + b
)∫

3Qbεe
λy

∣∣∣∣+ ∣∣∣∣(xsλ − 1
)∫

(Qb)yεe
λy

∣∣∣∣
.

1
|s|3/2

[(∫
ε2e−|y|/10

)1/2

+ |b|

(∫
ε2eλy

)1/2(∫
y<0

eλy
)1/2]

.
1
|s|3/2

[
1
|s|3/2

+
1
√
|s|

(∫
ε2eλy

)1/2]
.

λ

100

∫
ε2eλy +

1
|s|3

,∣∣∣∣(xsλ − 1
)∫

εyεe
λy

∣∣∣∣ = λ

2

∣∣∣∣(xsλ − 1
)∫

ε2eλy
∣∣∣∣ ≤ λ

100

∫
ε2eλy,∣∣∣∣∫ 8bεe

λy

∣∣∣∣ . |bs | ∫ |P | |ε|eλy . 1
|s|2

(∫
P 2eλy

)1/2(∫
ε2eλy

)1/2

.
1
|s|7/4

(∫
ε2eλy

)1/2

≤
λ

100

∫
ε2eλy +

C

|s|3
.

Using (2.14) (recall γ = 3/4), we get∣∣∣∣∫ 9bεe
λy

∣∣∣∣ . |b|7/4 ∫
−2|b|−3/4<y<−|b|−3/4

|ε|eλy + |b|2
∫
y<0
|ε|eλy + |b|2

∫
y>0
|ε|e−y/4

.
1
|s|7/4

(∫
y<−|b|−3/4

eλy
)1/2(∫

ε2eλy
)1/2

+
1
|s|2

(∫
y<0

eλy
)1/2(∫

ε2eλy
)1/2

+
1
|s|3

.

(
1
|s|3/2

e−λ|b|
−3/4
+

1
|s|7/4

)(∫
ε2eλy

)1/2

+
1
|s|3
≤

λ

100

∫
ε2eλy+

C

|s|3
.

Next, since |Rb(ε)| = 5|Q4
b −Q

4
| |ε| . |b| |ε|, we have∣∣∣∣∫ (Rb(ε))yεeλy∣∣∣∣ ≤ ∣∣∣∣∫ Rb(ε)(λ|ε| + |εy |)e

λy

∣∣∣∣
. |b|

∫
(ε2
y + ε

2)eλy ≤
λ

100

∫
(ε2
y + ε

2)eλy .

Finally, since |RNL(ε)| ≤ ‖ε‖L∞(‖ε‖
3
L∞ + |b| + e

−y/10)|ε|, we get∣∣∣∣∫ (RNL(ε))yεe
λy

∣∣∣∣ ≤ ∣∣∣∣∫ RNL(ε)(λ|ε| + |εy |)e
λy

∣∣∣∣
.

1
|s|3/2

∫
(ε2
y + ε

2)eλy ≤
λ

100

∫
(ε2
y + ε

2)eλy .
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Combining the above bounds gives

d

ds

∫
ε2eλy .

1
|s|3

,

and integration on (−∞, s] using (A.5) yields (4.11).

A.2. Proofs of (4.12)–(4.13). Note first that by standard arguments,

‖((∂2
yε)

2
+ (∂yε)

2)(s)eωy‖L∞ .
∫ (
(∂3
yε)

2
+ (∂2

yε)
2
+ (∂yε)

2
+ ε2)(s, y)eωy dy,

and so it is sufficient to prove (4.12).
The proof is similar to [22, Section 3.4] and involves some computations originally

introduced in [13]. To prove (4.12), we need only rough bounds on ε and it is therefore
simpler to decompose

ε +Qb = ε̃ +Q,

which satisfies

∂s ε̃ + ∂y(∂
2
y ε̃ − ε̃ + F(ε̃)) =

λs

λ
(3Q+3ε̃)+

(
xs

λ
− 1

)
(∂yQ+ ∂y ε̃) (A.6)

with
F(ε̃) = (Q+ ε̃)5 −Q5.

From (A.1), (A.2) and Qb − Q = bPχb (see Lemma 2.5) we have the following
estimates on ε̃:

‖ε̃‖L∞ .
1
√
|s|
,

∫
ε̃2e−|y|/10

≤
1
|s|2

. (A.7)

From (A.2), ∫
ε2(s)ϕB +

∫ s

−∞

∫
(ε2
y + ε

2)(s′)ϕB ds
′ .

1
|s|3

,

and thus, since |b(s)| . 1/|s|, for |s| large we have∫
ε̃2(s)ϕB +

∫ s

−∞

∫
(ε̃2
y + ε̃

2)(s′)ϕB ds
′ .

1
|s|
. (A.8)

Moreover, since u(t) is a minimal mass blowing up solution and λ(s) is increasing for |s|
large, from Lemma 2.11 and then using the properties of Qb (see Lemma 2.5) we obtain,
for |s| large,

∀y > 0, |ε(s, y)| . e−y/20 and so ∀y > 0, |ε̃(s, y)| . e−y/20. (A.9)

In particular, it follows that for all 1/B ≤ ω < 1/10,

lim
s→−∞

∫
ε̃2(s, y)eωy dy = 0. (A.10)
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Step 1. For all 1/B < ω < 1/10, for |s| large,∫
ε̃2(s, y)eωy dy +

∫ s

−∞

∫
(ε̃2
y(s
′, y)+ ε̃2(s′, y))eωy dy ds′ .

1
|s|
. (A.11)

Define
H0(s) =

1
2

∫
ε̃2(s, y)eωy dy.

Then

d

ds
H0 =

∫
ε̃s ε̃e

ωy

= −

∫
(−ε̃yy + ε̃−F(ε̃))(ε̃e

ωy)y +
λs

λ

∫
(3Q+3ε̃)ε̃eωy +

(
xs

λ
−1

)∫
(Q′+ ε̃y)ε̃e

ωy

= −
3
2
ω

∫
ε̃2
ye
ωy
−

1
2
ω(1−ω2)

∫
ε̃2eωy +

∫
F(ε̃)(ε̃eωy)y

+
λs

λ

∫
3Qε̃eωy −

ω

2
λs

λ

∫
ε̃2yeωy +

(
xs

λ
−1

)∫
Q′ε̃eωy −

ω

2

(
xs

λ
−1

)∫
ε̃2eωy .

First, by the decay properties of Q and since ‖ε̃‖2L∞ . 1/|s| (by (A.7)), for |s| large we
have ∣∣∣∣∫ F(ε̃)(ε̃eωy)y

∣∣∣∣ . ∫
(|ε̃|Q4

+ |ε̃|5)(|ε̃y | + |ε̃|)e
ωy

.
ω

100

∫
(ε̃2
y + ε̃

2)eωy +

∫
(ε̃2
y + ε̃

2)ϕB .

Second, from |λs/λ| + |xs/λ− 1| . 1/|s|, the decay properties of Q and (A.7),∣∣∣∣λsλ
∫
3Qε̃eωy

∣∣∣∣+ ∣∣∣∣(xsλ − 1
)∫

Q′ε̃eωy
∣∣∣∣ . 1
|s|

(∫
ε̃2e−|y|/10

)1/2

.
1
|s|2

. (A.12)

Finally, for 1/B < ω′′ < ω < ω′ ≤ 1/10, and then using (A.10), we obtain∣∣∣∣λsλ
∫
ε̃2yeωy

∣∣∣∣ . 1
|s|

(∫
ε̃2y2eωy

)1/2(∫
ε̃2eωy

)1/2

.
1
|s|

(∫
ε̃2(eω

′′y
+ eω

′y)

)1/2(∫
ε̃2eωy

)1/2

.
ω

100

∫
ε̃2eωy +

1
s2 .

In conclusion,

d

ds
H0 ≤ −

ω

4

∫
(ε̃2
y + ε̃

2)eωy dy + C

∫
(ε̃2
y + ε̃

2)ϕB +
C

|s|2
.

Integrating on (−∞, s], using (A.8) and lims→−∞H0(s) = 0 by (A.10), we get (A.11).
In particular, for some sequence sn→−∞,

lim
n→∞

∫
ε̃2
y(sn, y)e

ωy dy = 0. (A.13)



1914 Yvan Martel et al.

Step 2. For all 1/B < ω < 1/10, for |s| large,∫
ε̃2
y(s, y)e

ωy dy +

∫ s

−∞

∫
ε̃2
yy(s

′, y)eωy dy ds′ .
1
|s|
. (A.14)

Define

H1(s) =

∫ [
1
2
(ε̃2
y(s, y)+ ε̃

2(s, y))eωy −

(
(Q+ ε̃)6

6
− ε̃Q5

−
Q6

6

)
eωy

]
dy.

Then

d

ds
H1 =

∫
ε̃s(−ε̃yy+ ε̃−F(ε̃))e

ωy
−ω

∫
ε̃s ε̃ye

ωy

= −
ω

2

∫
(−ε̃yy+ ε̃−F(ε̃))

2eωy−ω

∫
(−ε̃yy+ ε̃−F(ε̃))y ε̃ye

ωy

+
λs

λ

∫
(3Q+3ε̃)(−ε̃yy+ ε̃−F(ε̃))e

ωy
+ω

λs

λ

∫
(3Q+3ε̃)ε̃ye

ωy

+

(
xs

λ
−1

)∫
(Q′+ ε̃y)(−ε̃yy+ ε̃−F(ε̃))e

ωy
+ω

(
xs

λ
−1

)∫
(Q′+ ε̃y)ε̃ye

ωy

≤ −ω

∫
ε̃2
yye

ωy
−ω(1− 1

2ω
2)

∫
ε̃2
ye
ωy
−ω

∫
F(ε̃)(ε̃ye

ωy)y

+
λs

λ

∫
(3Q+3ε̃)(−ε̃yy+ ε̃−F(ε̃))e

ωy
+ω

λs

λ

∫
(3Q+3ε̃)ε̃ye

ωy

+

(
xs

λ
−1

)∫
(Q′+ ε̃y)(−ε̃yy+ ε̃−F(ε̃))e

ωy
+ω

(
xs

λ
−1

)∫
(Q′+ ε̃y)ε̃ye

ωy .

First, as in Step 1, for |s| large,∣∣∣∣∫ F(ε̃)(ε̃ye
ωy)y

∣∣∣∣ . ∫
(|ε̃|Q4

+ |ε̃|5)(|ε̃yy | + |ε̃y |)e
ωy

.
ω

100

∫
(ε̃2
yy + ε̃

2
y + ε̃

2)eωy +

∫
(ε̃2
y + ε̃

2)ϕB .

Second, the following estimates are proved as in Step 1, (A.12), after possible integrations
by parts:∣∣∣∣λsλ

∫
3Q(−ε̃yy + ε̃ − F(ε̃))e

ωy

∣∣∣∣+ ∣∣∣∣λsλ
∫
3Qε̃ye

ωy

∣∣∣∣
+

∣∣∣∣(xsλ − 1
)∫

Q′(−ε̃yy + ε̃ − F(ε̃))e
ωy

∣∣∣∣+ ∣∣∣∣(xsλ − 1
)∫

Q′ε̃ye
ωy

∣∣∣∣ . 1
s2 .

For example, by the decay properties of Q and (A.8),∣∣∣∣λsλ
∫
3Qε̃yye

ωy

∣∣∣∣ . 1
|s|

∫
|(3Qeωy)yy | |ε̃| .

1
s2 .
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Finally, we observe that∫
(3ε̃)ε̃yye

ωy
=

∫
(−ε̃2

ye
ωy
+

1
2ω

2ε̃2eωy + ε̃2
y(ye

ωy)y),

and thus for some 1/B < ω′′ < ω < ω′ < 1/10,∣∣∣∣λsλ
∫
(3ε̃)ε̃yye

ωy

∣∣∣∣ . 1
|s|

∫
(ε̃2
y + ε̃

2)(eω
′y
+ eω

′′y).

All the remaining terms are easier and are treated similarly to Step 1.
Combining the above bounds yields

d

ds
H1 . −

∫
(ε̃2
yy + ε̃

2
y + ε̃

2)eωy dy +

∫
(ε̃2
y + ε̃

2)ϕB

+

∫
(ε̃2
y + ε̃

2)(eω
′y
+ eω

′′y)+
1
|s|2

.

Note that limn→∞H1(sn) = 0 by (A.10) and (A.13). Integrating on [sn, s], and then
letting n→∞, using (A.8) and (A.11) for ω′ and ω′′, we find (A.14). In particular, there
exists a subsequence still denoted (sn) such that

lim
n→∞

∫
(ε̃2
yy + ε

2
y + ε̃

2)(sn, y)e
ωy dy = 0. (A.15)

Step 3. For all 3/B < ω < 1/10, for |s| large,∫
ε̃2
yy(s, y)e

ωy dy +

∫ s

−∞

∫
ε̃2
yyy(s

′, y)eωy dy ds′ .
1
|s|
. (A.16)

Define
H2(s) =

1
2

∫
ε̃2
yye

ωy
−

25
6

∫
ε̃2
y ε̃

4eωy .

Then
d

ds
H2 =

∫
ε̃yys ε̃yye

ωy
−

25
3

∫
(ε̃ys ε̃y ε̃

4
+ 2ε̃s ε̃2

y ε̃
3)eωy = H2,1 +H2,2.

First,

H2,1 =

∫
(−ε̃yy + ε̃ − F(ε̃))yyyεyye

ωy

+
λs

λ

∫
(3Q+3ε̃)yy ε̃yye

ωy
+

(
xs

λ
− 1

)∫
(Q′ + ε̃y)yy ε̃yye

ωy

= −
3
2
ω

∫
ε̃2
yyye

ωy
−
ω

2
(1− ω2)

∫
ε̃2
yye

ωy
− 50

∫
ε̃2
yy ε̃y ε̃

3eωy

+

∫
(F (ε̃)− ε̃5)yy(εyye

ωy)y

+
5
2
ω

∫
ε̃2
yy ε̃

4eωy + 30
∫
ε̃5
y ε̃e

ωy
+ 15ω

∫
ε̃4
y ε̃

2eωy

+
λs

λ

∫
(3Q+3ε̃)yy ε̃yye

ωy
+

(
xs

λ
− 1

)∫
(Q′ + ε̃y)yy ε̃yye

ωy .
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Second,

H2,2 =
25
3

∫
ε̃s((ε̃y ε̃

4eωy)y − 2ε̃2
y ε̃

3eωy)

=
25
3

∫
(−ε̃yy + ε̃ − F(ε̃))y(ε̃yy ε̃

4
+ 2ε̃2

y ε̃
3
+ ωε̃y ε̃

4)eωy

+
25
3
λs

λ

∫
(3Q+3ε̃)(ε̃yy ε̃

4
+ 2ε̃2

y ε̃
3
+ ωε̃y ε̃

4)eωy

+
25
3

(
xs

λ
− 1

)∫
(Q′ + ε̃y)(ε̃yy ε̃

4
+ 2ε̃2

y ε̃
3
+ ωε̃y ε̃

4)eωy

= 50
∫
ε̃2
yy ε̃y ε̃

3eωy +
25
3
ω

∫
ε̃2
yy ε̃

4eωy −
25
2

∫
ε̃5
y ε̃e

ωy
−

175
12
ω

∫
ε̃4
y ε̃

2eωy

−
25
9
ω3
∫
ε̃3
y ε̃

3eωy −
25
3

∫
(F (ε̃)− ε̃5)y(ε̃yy ε̃

4
+ 2ε̃2

y ε̃
3
+ ωε̃y ε̃

4)eωy

+
25
3
λs

λ

∫
(3Q+3ε̃)(ε̃yy ε̃

4
+ 2ε̃2

y ε̃
3
+ ωε̃y ε̃

4)eωy

+
25
3

(
xs

λ
− 1

)∫
(Q′ + ε̃y)(ε̃yy ε̃

4
+ 2ε̃2

y ε̃
3
+ ωε̃y ε̃

4)eωy .

The main observation when looking at the above expressions of H2,1 and H2,2 is that
the higher order nonlinear term

∫
ε̃2
yy ε̃y ε̃

3eωy cancels in the expression of d
ds
H2. All other

terms are now controlled as follows.
First, by (A.7), ∣∣∣∣∫ ε̃2

yy ε̃
4eωy

∣∣∣∣ . 1
|s|2

∫
ε̃2
yye

ωy .

Second, by the Hölder inequality, (1.3), and then (A.11), (A.14), for 3/100 < ω < 1/10,

∣∣∣∣∫ ε̃5
y ε̃e

ωy

∣∣∣∣ . (∫
ε̃6
ye
ωy

)5/6(∫
ε̃6eωy

)1/6

.

(∫
(ε̃2
yy + ε̃

2
y + ε̃

2)eωy/3
)5/6(∫

(ε̃2
y + ε̃

2)eωy/3
)13/6

.
∫
(ε̃2
yy + ε̃

2
y + ε̃

2)eωy/3 +
1
|s|13 .

Similar estimates are proved for |
∫
ε̃4
y ε̃

2eωy | and |
∫
ε̃3
y ε̃

3eωy |. Next, for terms containing
F(ε̃)− ε̃5, we argue as follows. A first observation is (using (A.1))

|(F (ε̃)− ε̃5)y | . (|ε̃y | + |ε̃|)Q, |(F (ε̃)− ε̃5)yy | . (|ε̃yy | + |ε̃y |
2
+ |ε̃y | + |ε̃|)Q.
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Thus,∣∣∣∣∫ (F (ε̃)− ε̃5)yy(ε̃yye
ωy)y

∣∣∣∣ ≤ C ∫ (|ε̃yy | + |ε̃y |2+ |ε̃y | + |ε̃|)(|ε̃yyy | + |ε̃yy |)Qeωy
≤

1
100

∫
(ε̃2
yyy + ε̃

2
yy)e

ωy
+C

∫
(ε̃2
yy + ε̃

4
y + ε̃

2
y + ε̃

2)Q

≤
1

100

∫
(ε̃2
yyy + ε̃

2
yy)e

ωy
+C

∫
(ε̃2
yy + ε̃

2
y + ε̃

2)eωy +
C

s2 .

The term |
∫
(F (ε̃)− ε̃5)y(ε̃yy ε̃

4
+ 2ε̃2

y ε̃
3
+ ωε̃y ε̃

4)eωy | is treated similarly and easier.
Finally, terms containing λs/λ and xs/λ − 1 are treated as in Steps 1 and 2. For

example, let us consider the term (λs/λ)
∫
(3Q+3ε̃)yy ε̃yye

ωy . We first have∣∣∣∣λsλ
∫
(3Q)yy ε̃yye

ωy

∣∣∣∣ = ∣∣∣∣λsλ
∫
((3Q)yye

ωy)yy ε̃

∣∣∣∣ . 1
s2 .

Since ∫
(3ε̃)yy ε̃yye

ωy
=

3
2

∫
ε̃2
yye

ωy
− ω

∫
ε̃2
yyye

ωy,

we get, for some 1/100 < ω′′ < ω < ω′ < 1/10,∣∣∣∣λsλ
∫
(3ε̃)yy ε̃yye

ωy

∣∣∣∣ . 1
s2

∫
ε̃2
yy(e

ω′y
+ eω

′′y).

Gathering all the previous estimates, we obtain

d

ds
H2 . −

∫
(ε̃3
yyy + ε̃

2
yy + ε̃

2
y + ε̃

2)eωy dy

+

∫
(ε̃2
yy + ε̃

2
y + ε̃

2)(eωy/3 + eω
′′y)+

1
|s|2

.

Integrating on [sn, s] and letting n→∞ using (A.8), (A.15) and (A.14), we get (A.16).
For some sequence s′n→−∞, this implies

lim
n→∞

∫
(ε̃2
yyy + ε̃

2
yy + ε

2
y + ε̃

2)(s′n, y)e
ωy dy = 0. (A.17)

Note also that by standard arguments, (A.16) implies directly that

‖ε2
ye
ωy
‖L∞ . 1/|s|. (A.18)

Step 4. For all 9/B < ω < 1/10, for |s| large,∫
ε̃2
yyy(s, y)e

ωy dy +

∫ s

−∞

∫
(∂4
y ε̃)

2(s′, y)eωy dy ds′ .
1
|s|
. (A.19)

Define
H3(s) =

1
2

∫
ε̃2
yyye

ωy .
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Then

d

ds
H3 =

∫
ε̃yyys ε̃yyye

ωy
=

∫
(−ε̃yy + ε̃ − F(ε̃))yyyyεyyye

ωy

+
λs

λ

∫
(3Q+3ε̃)yyy ε̃yyye

ωy
+

(
xs

λ
− 1

)∫
(Q′ + ε̃y)yyy ε̃yyye

ωy

= −
3
2
ω

∫
ε̃2
yyyye

ωy
−
ω

2
(1− ω2)

∫
ε̃2
yyye

ωy
+

∫
(F (ε̃))yyy(εyyye

ωy)y

+
λs

λ

∫
(3Q+3ε̃)yyy ε̃yyye

ωy
+

(
xs

λ
− 1

)∫
(Q′ + ε̃y)yyy ε̃yyye

ωy .

The last two terms (λs/λ)
∫
(3Q+3ε̃)yyy ε̃yyye

ωy and (xs/λ− 1)
∫
(Q′+ ε̃y)yyy ε̃yyye

ωy

are treated exactly as in the previous steps, and thus we omit the estimates.
We focus on the nonlinear term

∫
(F (ε̃))yyy(εyyye

ωy)y . Expanding F(ε̃) = 5Q4ε̃ +

10Q3ε̃2
+10Q2ε̃3

+5Qε̃4
+ ε̃5 and integrating by parts, we obtain many different terms.

We check the worst ones; the others can be handled similarly. See also [22, Section 3.4]
for similar arguments.

First, we remark that the following term, which is only quadratic in ε̃, is easily con-
trolled: ∣∣∣∣∫ ε̃2

yyy(Q
4)′eωy

∣∣∣∣ . ∫
ε̃2
yyye

ωy .

Second, we treat some terms coming from ε̃5:∣∣∣∣∫ ε̃2
yyy ε̃y ε̃

3eωy
∣∣∣∣ . ‖ε̃‖3L∞‖ε̃yeωy/2‖L∞ ∫ ε̃2

yyye
ωy/2 .

1
|s|2

∫
ε̃2
yyye

ωy/2
;∣∣∣∣∫ ε̃3

yy ε̃y ε̃
2eωy

∣∣∣∣ . ‖ε̃‖2L∞‖ε̃yeωy/4‖L∞ ∣∣∣∣∫ ε̃3
yye

3ωy/4
∣∣∣∣

.
1
|s|3/2

(∫
(ε̃2
yyy + ε̃

2
yy)e

ωy/2
)1/4(∫

ε̃2
yye

ωy/2
)5/4

.
1
|s|11/3 +

∫
ε̃2
yyye

ωy/2,∣∣∣∣∫ ε̃2
yy ε̃

3
y ε̃e

ωy

∣∣∣∣ . ‖ε̃‖L∞‖ε̃yeωy/5‖3L∞ ∣∣∣∣∫ ε̃2
yye

2ωy/5
∣∣∣∣ . 1
|s|3

.

Thus, we get

d

ds
H3 . −

∫
(∂4
yε)

2eωy +
1
|s|2
+

∫
(ε̃2
yyy + ε̃

2
yy + ε̃

2
y + ε̃

2)(e2ωy/5
+ eωy).

Integrating on [s′n, s] and letting n→∞, using (A.17) and (A.16), we obtain (A.19) for
15/(2B) < ω < 1/10.
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Appendix B. Proof of Lemma 6.3

For simplicity of notation, we denote εvn , λvn , bvn and xvn simply by ε, λ, b and x.

Step 1. Algebraic computations. We follow closely the computations in [29, proof of
Proposition 3.1]. First,

d

ds
FB =

1
λ2

(
1
2

∫ [
ε2
y φ̃
′

B +
λ2

λ2
0
ε2φ′B −

1
3 ((ε +Qb)

6
−Q6

b − 6εQ5
b)φ̃
′

B

]
+ 2

∫
φ̃B(εy)sεy + 2εs

[
λ2

λ2
0
εφB − φ̃B((ε +Qb)

5
−Q5

b)

]
− 2

∫
φ̃B(Qb)s((ε +Qb)

5
−Q5

b − 5εQ4
b)

)
− 2

λs

λ3

∫ [
ε2
y φ̃B −

1
3 ((ε +Qb)

6
−Q6

b − 6εQ5
b)φ̃B

]
− 2

(λ0)s

λ3
0

∫
ε2φB

=
1
λ2 (f1 + f2 + f3 + f4),

where

f1 =
1
2

∫ [
ε2
y φ̃
′

B + ε
2φ′B −

1
3 ((ε +Qb)

6
−Q6

b − 6εQ5
b)φ̃
′

B

]
+ 2

∫ (
εs −

λs

λ
3ε

)(
−(φ̃Bεy)y + εφB − φ̃B((ε +Qb)

5
−Q5

b)
)
,

f2 = 2
(

1−
λ2

λ2
0

)∫
εsεφB − 2

(λ0)s

λ0

∫
ε2φB

f3 = 2
λs

λ

∫
3ε
(
−(φ̃Bεy)y + εφB − φ̃B((ε +Qb)

5
−Q5

b)
)

− 2
λs

λ

∫ [
ε2
y φ̃B −

1
3 ((ε +Qb)

6
−Q6

b − 6εQ5
b)φ̃B

]
f4 = −2

∫
φ̃B(Qb)s((ε +Qb)

5
−Q5

b − 5εQ4
b).

We use the equation of ε in the following form:

εs −
λs

λ
3ε = (−εyy + ε − (ε +Qb)

5
+Q5

b)y

+

(
λs

λ
+ b

)
3Qb +

(
xs

λ
− 1

)
(Qb + ε)y +8b +9b, (B.1)

where 8b = −bs(χb + γy(χb)y)P and −9b = (Q′′b −Qb +Q
5
b)
′
+ b3Qb.
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Step 2. Control of f1. We have

f1 =
1
2

∫ [
ε2
y φ̃
′

B + ε
2φ′B −

1
3 ((ε +Qb)

6
−Q6

b − 6εQ5
b)φ̃
′

B

]
+ 2

∫
(−εyy+ε−((ε +Qb)

5
−Q5

b))y
(
−(φ̃Bεy)y+εφB−φ̃B [(Qb + ε)

5
−Q5

b]
)

+ 2
(
λs

λ
+ b

)∫
3Qb

(
−(φ̃Bεy)y + εφB − φ̃B((ε +Qb)

5
−Q5

b)
)

+ 2
(
xs

λ
− 1

)∫
(Qb + ε)y

(
−(φ̃Bεy)y + εφB − φ̃B((ε +Qb)

5
−Q5

b)
)

+ 2
∫
8b
(
−(φ̃Bεy)y + εφB − φ̃B((ε +Qb)

5
−Q5

b)
)

+ 2
∫
9b
(
−(φ̃Bεy)y + εφB − φ̃B((ε +Qb)

5
−Q5

b)
)

= f1,1 + f1,2 + f1,3 + f1,4 + f1,5.

As in [29], after some computations we obtain

f1,1 = −

∫ [
3φ̃′Bε

2
yy +

(
3φ′B +

1
2 φ̃
′

B − φ̃
′′′

B

)
ε2
y +

( 1
2φ
′

B − φ
′′′

B

)
ε2]

−
1
6

∫
((ε +Qb)

6
−Q6

b − 6εQ5
b)φ̃
′

B

− 2
∫ [

(ε +Qb)
6

6
−
Q6
b

6
−Q5

bε − ((ε +Qb)
5
−Q5

b)ε

]
(φ′B − φ̃

′

B)

+ 2
∫
[(ε +Qb)

5
−Q5

b − 5Q4
bε](Qb)y(φ̃B − φB)

+ 10
∫
φ̃′Bεy{(Qb)y[(Qb + ε)

4
−Q4

b] + (Qb + ε)
4εy}

+

∫
φ̃′B [−2εyy + 2ε − ((ε +Qb)

5
−Q5

b)][(ε +Qb)
5
−Q5

b].

Using the following estimates (see [29] for more details):

φ̃′′′B .
1
B2φ

′

B , φ′′′B .
1
B2φ

′

B for all y ∈ R, (B.2)

|Qb(y)| + |(Qb)y(y)| . e−|y| + |b| for all y ∈ R, (B.3)∫
ε6φ′B . δ(α∗)

∫
(ε2
y + ε

2)φ′B , (B.4)∫
ε2
yε

4φ̃′B ≤ δ(α
∗)

(∫
ε2
yy φ̃
′

B +

∫
(ε2
y + ε

2)φ′B

)
, (B.5)
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and the bound on the L2 norm of ε (see Lemma 6.2), we obtain, for B large and α∗ small,

f1,1 ≤ −

∫
φ̃′Bε

2
yy −

1
4

∫
(ε2
y + ε

2)φ′B + C

∫
(ε2
y + ε

2)e−|y|/10
+ C|b|4

≤ −

∫
φ̃′Bε

2
yy −

1
4

∫
(ε2
y + ε

2)φ′B + C

∫
(ε2
y + ε

2)
ϕB

1+ y2
+

+ C|b|4.

Next,

f1,2 = 2
(
λs

λ
+ b

)∫
3Q(Lε)− 2

(
λs

λ
+ b

)∫
ε(1− φB)3Q

+ 2b
(
λs

λ
+ b

)∫
3(χbP)

(
−(φ̃Bεy)y + εφB − φ̃B [(Qb + ε)

5
−Q5

b]
)

+ 2
(
λs

λ
+ b

)∫
3Q

(
−(φ̃B)yεy − (1− φ̃B)εyy + (1− φ̃B)[(Qb + ε)

5
−Q5

b]
)

+ 2
(
λs

λ
+ b

)∫
3Q[(Qb + ε)

5
−Q5

b − 5Q4ε].

The main term
∫
3Q(Lε) is zero by the orthogonality conditions on ε, and the other

terms are controlled as in [29] using (2.29), (B.2), (B.3) and (B.5), to obtain

|f1,2| ≤
1

100

∫
(ε2
y + ε

2)φ′B + C

∫
(ε2
y + ε

2)
ϕB

1+ y2
+

+ C|b|4.

The next term is

f1,3 = 2
(
xs

λ
− 1

)∫
1
6 φ̃
′

B [(Qb + ε)
6
−Q6

b − 6Q5
bε]

+ 2
(
xs

λ
− 1

)∫
(bχbP + ε)y[−φ̃

′

Bεy − φ̃Bεyy + εφB ]

+ 2
(
xs

λ
− 1

)∫
Q′[Lε − φ̃′Bεy + (1− φ̃B)εyy − ε(1− φB)]

+ 10
(
xs

λ
− 1

)∫
εφ̃B(Q

4
b(Qb)y −Q

4Qy).

Using LQ′ = 0 and arguing similarly, we obtain

|f1,3| ≤
1

100

∫
(ε2
y + ε

2)φ′B + C

∫
(ε2
y + ε

2)
ϕB

1+ y2
+

+ C|b|4.

Step 3. Control of f2. First, by (6.13), we have

−
(λ0)s

λ0

∫
ε2φB < 0.
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Next, by the definition of λ0 in Lemma 2.10, we have∣∣∣∣1− λ2

λ2
0

∣∣∣∣ . N 1/2 . δ(α∗),

and thus, proceeding for
∫
εsεφB as in the previous step, we find∣∣∣∣1− λ2

λ2
0

∣∣∣∣ ∣∣∣∣∫ εsεφB

∣∣∣∣ ≤ 1
100

∫
(ε2
y + ε

2)φ′B + C

∫
(ε2
y + ε

2)
ϕB

1+ y2
+

+ C|b|4.

Step 4. Control of f3. From computations in [29],

f3 =
λs

λ

∫
[2φ̃B − yφ̃′B ]ε

2
y −

λs

λ

∫
yφ̃′Bε

2

−
1
3
λs

λ

∫
[2φ̃B − yφ̃′B ][(ε +Qb)

6
−Q6

b − 6Q5
bε]

+ 2
λs

λ

∫
φ̃B3Qb((ε +Qb)

5
−Q5

b − 5Q4
bε)

− 2
λs

λ

∫ [
ε2
y φ̃B −

1
3 ((ε +Qb)

6
−Q6

b − 6εQ5
b)φ̃B

]
.

After simplification of the last line with terms in the first and second lines, we obtain

f3 = −
λs

λ

∫
yφ̃′B

[
ε2
y + ε

2
−

1
3 ((ε +Qb)

6
−Q6

b − 6Q5
bε)
]

+ 2
λs

λ

∫
φ̃B3Qb((ε +Qb)

5
−Q5

b − 5Q4
bε).

For this term we observe, from the definition of φB and φ̃B ,∫
|y|φ̃′B(ε

2
y + ε

2
+ |ε|6) .

∫
(ε2
y + ε

2)φ′B

and |λs/λ| . δ(α∗). The other terms in the expression of f3 are treated as before, so that

|f3| ≤
1

100

∫
(ε2
y + ε

2)φ′B + C

∫
(ε2
y + ε

2)
ϕB

1+ y2
+

+ C|b|4.

Step 5. Control of f4. Arguing exactly as in [29] (using (2.30)), we obtain

|f4| ≤
1

100

∫
(ε2
y + ε

2)φ′B + C

∫
(ε2
y + ε

2)
ϕB

1+ y2
+

+ C|b|4.

Gathering these estimates, we get (6.24).

Step 6. Proof of (6.25). This is a standard fact by localization arguments (see e.g. [25,
Appendix A]).
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