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Abstract. We consider generalized Wigner ensembles and general β-ensembles with analytic po-
tentials for any β ≥ 1. The recent universality results in particular assert that the local averages
of consecutive eigenvalue gaps in the bulk of the spectrum are universal in the sense that they co-
incide with those of the corresponding Gaussian β-ensembles. In this article, we show that local
averaging is not necessary for this result, i.e. we prove that the single gap distributions in the bulk
are universal. In fact, with an additional step, our result can be extended to any C4(R) potential.
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1. Introduction

The fundamental vision that random matrices can be used as basic models for large quan-
tum systems was due to E. Wigner [60]. He conjectured that the eigenvalue gap distribu-
tions of large random matrices were universal (“Wigner surmise”) in the sense that large
quantum systems and random matrices share the same gap distribution functions. The
subsequent work of Dyson, Gaudin and Mehta clarified many related issues regarding this
assertion and a thorough understanding of the Gaussian ensembles has thus emerged (see
the classical book of Mehta [46] for a summary). There are two main categories of ran-
dom matrices: the invariant and the noninvariant ensembles. The universality conjecture,
which is also known as the Wigner–Dyson–Gaudin–Mehta (WDGM) conjecture, asserts
that for both ensembles the eigenvalue gap distributions are universal up to symmetry
classes. For invariant ensembles, the joint distribution function of the eigenvalues can be
expressed explicitly in terms of one-dimensional particle systems with logarithmic inter-
actions (i.e., log-gases) at an inverse temperature β. The values β = 1, 2, 4 correspond to
the classical orthogonal, unitary and symplectic ensembles, respectively. Under various
conditions on the external potential, the universality for the classical values β = 1, 2, 4
was proved, via analysis on the corresponding orthogonal polynomials, by Fokas–Its–
Kitaev [37], Deift et al. [16, 19, 20], Bleher–Its [7], Pastur–Shcherbina [49, 50] and in
many consecutive works (see e.g. [17, 18, 45, 51, 59]). For nonclassical values of β there
is no matrix ensemble behind the model, except for the Gaussian cases [23] via tridiago-
nal matrices. One may still be interested in the local correlation functions of the log-gas
as an interacting particle system. The orthogonal polynomial method is not applicable for
nonclassical values of β even for the Gaussian case. For certain special potentials and
even integer β, however, there are still explicit formulas for correlation functions [38].
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Furthermore, for general β in the Gaussian case the local statistics were described very
precisely with a different method by Valkó–Virág [57, 58]. The universality for general
β-ensembles for any β > 0 was established only very recently [8, 9] by a new method
based on dynamical methods using Dirichlet form estimates from [29, 30]. This method is
important for this article and we will discuss it in more detail later on. All previous results
achieved by this method, however, required in their statement to consider a local average
of consecutive gaps. In the current paper we will prove universality of each single gap in
the bulk.

Turning to the noninvariant ensembles, the most important class is the N ×N Wigner
matrices characterized by the independence of their entries. In general, there is no longer
an explicit expression for the joint distribution function for the eigenvalues. However,
there is a special class of ensembles, the Gaussian divisible ensembles, that interpolate
between the general Wigner ensembles and the Gaussian ones. For these ensembles, at
least in the special Hermitian case, there is still an explicit formula for the joint distri-
bution of the eigenvalues based upon the Harish-Chandra–Itzykson–Zuber integral. This
formula was first put into a mathematically useful form by Johansson [43] (see also the
later work of Ben Arous–Péché [6]) to prove the universality of Gaussian divisible en-
sembles with a Gaussian component of size order one. In [26], the size of the Gaussian
component needed for proving the universality was greatly reduced to N−1/2+ε. More
importantly, the idea of approximating Wigner ensembles by Gaussian divisible ones was
first introduced and, after a perturbation argument, this resulted in the first proof of uni-
versality for Hermitian ensembles with general smooth distributions for matrix elements.
The smoothness condition was later removed in [54, 27].

In his seminal paper [24], Dyson observed that the eigenvalue distribution of Gaus-
sian divisible ensembles is the same as the solution of a special system of stochastic
differential equations, commonly known now as the Dyson Brownian motion, at a fixed
time t . For short times, t is comparable with the variance of the Gaussian component.
He also conjectured that the time to “local equilibrium” of Dyson Brownian motion is of
order 1/N , which is then equivalent to the universality of Gaussian divisible ensembles
with a Gaussian component of order slightly larger than N−1/2. Thus the work [26] can
be viewed as proving Dyson’s conjecture for the Hermitian case. This method, however,
completely tied with an explicit formula that is so far restricted to the Hermitian case.

A completely analytic approach to estimate the time to local equilibrium of Dyson’s
Brownian motion was initiated in [29] and further developed in [30, 35, 34] (see [32]
for a detailed account). In these papers, Dyson’s conjecture in full generality was proved
[35] and universality was established for generalized Wigner ensembles for all symmetric
classes. The idea of a dynamical approach in proving universality turns out to be a very
powerful one. Dyson’s Brownian motion can be viewed as the natural gradient flow for
Gaussian β log-gases (we will often use the term β log-gases for β-ensembles to empha-
size the logarithmic interaction). The gradient flow can be defined with respect to all β
log-gases, not just the Gaussian ones. Furthermore, one can consider gradient flows of
local log-gases with fixed “good boundary conditions”. Here “local” refers to Gibbs mea-
sures on Na , 0 < a < 1, consecutive points of a log-gas with the locations of all other
points fixed. By “good boundary conditions” we mean that these external points are rigid,
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i.e. their locations are close to their classical locations given by the limiting density of the
original log-gas. Using this idea, we have proved the universality of general β-ensembles
in [8, 9] for analytic potentials.

The main conclusion of these works is that the local gap distributions of either the
generalized Wigner ensembles (in all symmetry classes) or the general β-ensembles are
universal in the bulk of the spectrum (see [31] for a recent review). The dynamical ap-
proach based on Dyson’s Brownian motion and related flows also provides a conceptual
understanding for the origin of the universality. For technical reasons, however, these
proofs apply to averages of consecutive gaps, i.e. cumulative statistics of Nε consecu-
tive gaps were proven to be universal. Averaging the statistics of the consecutive gaps
is equivalent to averaging the energy parameter in the correlation functions. Thus, math-
ematically, the results were also formulated in terms of universality of the correlation
functions with averaging in an energy window of size N−1+ε.

The main goal of this paper is to remove the local averaging in the statistics of con-
secutive gaps in our general approach using Dyson’s Brownian motion for both invariant
and noninvariant ensembles. We will show that the distribution of each single gap in the
bulk is universal, which we will refer to as the single gap universality or simply the gap
universality whenever there is no confusion. The single gap universality was proved for a
special class of Hermitian Wigner matrices with the property that the first four moments
of the matrix elements match those of the standard Gaussian random variable [53] and no
other results have been known before. In particular, the single gap universality has not
been proved even for the Gaussian orthogonal ensemble (GOE).

The gap distributions are closely related to the correlation functions which were often
used to state the universality of random matrices. These two concepts are equivalent in
a certain average sense. However, there is no rigorous relation between correlation func-
tions at a fixed energy and single gap distributions. Thus our results on single gap statistics
do not automatically imply the universality of the correlation functions at a fixed energy,
which up to very recently was rigorously proved only for Hermitian Wigner matrices [26,
54, 27, 32]; the real symmetry case was proven with a different method in [11].

The removal of a local average in the universality results proved in [29, 33, 34] is a
technical improvement in itself and its physical meaning is not especially profound. Our
motivation for taking seriously this endeavor is that the single gap distribution may be
closely related to the distribution of a single eigenvalue in the bulk of the spectrum [40]
or at the edge [55, 56]. Since our approach does not rely on any explicit formula involving
Gaussian matrices, some extension of this method may provide a way to understand the
distribution of an individual eigenvalue of Wigner matrices. In fact, partly based on the
method in this paper, the edge universality for the β-ensembles and generalized Wigner
ensembles was established in [10].

The main new idea in this paper is an analysis of the Dyson Brownian motion via
parabolic regularity using the De Giorgi–Nash–Moser idea. Since the Hamiltonians of
the local log-gases are convex, the correlation functions can be re-expressed in terms of
a time average of certain random walks in random environments. The connection be-
tween correlation functions of general log-concave measures and random walks in ran-
dom environments was already pointed out by Helffer and Sjöstrand [42] and Naddaf and
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Spencer [47]. This connection was used as an effective way to estimate correlation func-
tions for several models in statistical physics (see e.g. [3, 22, 39, 41, 21]), as well as to
remove convexity assumptions in gradient interface models [14, 15].

In this paper we observe that the single gap universality is a consequence of the Hölder
regularity of the solutions to these random walk problems. Due to the logarithmic inter-
action, the random walks are long ranged and their rates may be singular. Furthermore,
the random environments themselves depend on the gap distributions, which were exactly
the problems we want to analyze! If we view these random walks as (discrete) parabolic
equations with random coefficients, we find that they are of divergence form and are
in the form of the equations studied in the fundamental paper by Caffarelli, Chan and
Vasseur [13]. The main difficulty in applying [13] to gain regularity is that the jump rates
in our settings are random and they do not satisfy the uniform upper and lower bounds
required in [13]. In fact, in some space-time regime the jump rates can be much more
singular than allowed in [13]. To control the singularities of these coefficients, we prove
an optimal level repulsion estimate for local log-gases. With these estimates, we are able
to extend the method of [13] to prove Hölder regularity for the solution to these ran-
dom walks problems. This shows that the single gap distributions are universal for local
log-gases with good boundary conditions, which is the key result of this paper.

For β-ensembles, it is known that the rigidity of the eigenvalues ensures that boundary
conditions are good with high probability. Thus we can apply the local universality of
single gap distribution to get the single gap universality of the β-ensembles. We remark,
however, that the current result holds only for β ≥ 1 in contrast to β > 0 in [8, 9], since
the current proof heavily relies on the dynamics of the gradient flow of local log-gases.1

For noninvariant ensembles, a slightly longer argument using the local relaxation flow is
needed to connect the local universality result with that for the original Wigner ensemble.
This will be explained in Section 6.

In summary, we have recast the question of the single gap universality for random
matrices, envisioned by Wigner in the sixties, into a problem concerning the regularity
of a parabolic equation in divergence form studied by De Giorgi–Nash–Moser. Thanks
to the insight of Dyson and the important progress by Caffarelli–Chan–Vasseur [13], we
are able to establish the WDGM universality conjecture for each individual gap via De
Giorgi–Nash–Moser’s idea. We now introduce our models rigorously and state the main
results.

2. Main results

We will have two related results, one concerns the generalized Wigner ensembles, the
other one the general β-ensembles. We first define the generalized Wigner ensembles. Let
H = (hij )

N
i,j=1 be an N × N Hermitian or symmetric matrix where the matrix elements

hij = h̄ji , i ≤ j , are independent random variables given by a probability measure νij

1 During the revision of this manuscript in the refereeing process, gap universality was proved
for β-ensembles with β > 0 under slightly stronger restrictions on the potential in [4, 52].
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with mean zero and variance σ 2
ij ≥ 0,

Ehij = 0, σ 2
ij := E|hij |2. (2.1)

The distribution νij and its variance σ 2
ij may depend on N , but we omit this fact in the

notation. We also assume that the normalized matrix elements have a uniform subexpo-
nential decay,

P(|hij | > xσij ) ≤ θ1 exp(−xθ2), x > 0, (2.2)

with some fixed constants θ1, θ2 > 0, uniformly in N, i, j . In fact, with minor modifica-
tions of the proof, an algebraic decay

P(|hij | > xσij ) ≤ CMx
−M

with a large enough M is also sufficient.

Definition 2.1 ([33]). The matrix ensemble H defined above is called a generalized
Wigner matrix if the following assumptions hold on the variances of the matrix elements
(2.1):

(A) For any fixed j ,
N∑
i=1

σ 2
ij = 1.

(B) There exist two positive constants, Cinf and Csup, independent of N such that

Cinf/N ≤ σ
2
ij ≤ Csup/N. (2.3)

Let P and E denote the probability and the expectation with respect to this ensemble.
We will denote by λ1 ≤ · · · ≤ λN the eigenvalues of H . In the special case when

σ 2
ij = 1/N and hij is Gaussian, the joint probability distribution of the eigenvalues is

given:

µ = µ
(N)
G (dλ) =

e−NβH(λ)

Zβ
dλ, H(λ) =

N∑
i=1

λ2
i

4
−

1
N

∑
i<j

log |λj − λi |. (2.4)

The value of β depends on the symmetry class of the matrix; β = 1 for GOE, β = 2 for
GUE and β = 4 for GSE. Here Zβ is the normalization factor so that µ is a probability
measure.

It is well known that the density (or one-point correlation function) of µ converges,
as N →∞, to the Wigner semicircle law

%(x) :=
1

2π

√
(4− x2)+. (2.5)

We use γj for the j -th quantile of this density, i.e. γj is defined by

j

N
=

∫ γj

−2
%G(x) dx. (2.6)
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We now define a class of test functions. Fix an integer n. We say thatO = ON : Rn→ R,
a possibly N -dependent sequence of differentiable functions, is an n-particle observable
if

O∞ := sup
N

‖ON‖∞ <∞, suppON ⊂ [−Osupp,Osupp]
n, (2.7)

with some finiteOsupp, independent of N , but we allow ‖O ′N‖∞ to grow with N . For any
integers A < B we also introduce the notation JA,BK := {A,A+ 1, . . . , B}.

Our main result on generalized Wigner matrices asserts that the local gap statistics in
the bulk of the spectrum are universal for any generalized Wigner matrix, in particular
they coincide with those of the Gaussian case.

Theorem 2.2 (Gap universality for Wigner matrices). Let H be a generalized Wigner
ensemble with subexponentially decaying matrix elements (see (2.2)). Fix positive num-
bers α,O∞,Osupp and an integer n ∈ N. There exist ε, C > 0, depending only on α, O∞
and Osupp, such that for any n-particle observable O = ON satisfying (2.7) we have

|[E− Eµ]O(N(λj − λj+1), N(λj − λj+2), . . . , N(λj − λj+n))| ≤ CN
−ε
‖O ′‖∞ (2.8)

for any j ∈ JαN, (1 − α)NK and for any sufficiently large N ≥ N0, where N0 depends
on all parameters of the model, as well as on n, α, O∞ and Osupp.

More generally, for any k,m ∈ JαN, (1− α)NK we have∣∣EO((N%k)(λk − λk+1), (N%k)(λk − λk+2), . . . , (N%k)(λk − λk+n)
)

− EµO
(
(N%m)(λm − λm+1), (N%m)(λm − λm+2), . . . , (N%m)(λm − λm+n)

)∣∣
≤ CN−ε‖O ′‖∞, (2.9)

where the local density %k is defined by %k := %(γk).

It is well known that the gap distribution of Gaussian random matrices for all symmetry
classes can be explicitly expressed via a Fredholm determinant provided that a certain
local average is taken [16, 17, 18]. The result for a single gap, i.e. without local averaging,
was only achieved recently in the special case of the Gaussian unitary ensemble (GUE)
by Tao [53] (which then easily implies the same results for Hermitian Wigner matrices
satisfying the four moment matching condition). It is not clear if a similar argument can
be applied to the GOE case.

We now define β-ensembles with a general external potential. Let β > 0 be a fixed
parameter. Let V (x) be a real analytic2 potential on R that grows faster than (2+ε) log |x|
at infinity and satisfies

inf
R
V ′′ > −∞. (2.10)

Consider the measure

µ = µ
(N)
β,V (dλ) =

e−NβH(λ)

Zβ
dλ, H(λ) =

1
2

N∑
i=1

V (λi)−
1
N

∑
i<j

log |λj−λi |. (2.11)

2 In fact, V ∈ C4(R) is sufficient: see Remark 5.1.
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Since µ is symmetric in all its variables, we will mostly view it as a measure restricted to
the cone

4(N) := {λ : λ1 < · · · < λN } ⊂ RN . (2.12)

Note that the Gaussian measure (2.4) is a special case of (2.11) with V (λ) = λ2/2. In this
case we use the notation µG for µ.

Let

%
(N)
1 (λ) := Eµ

1
N

N∑
j=1

δ(λ− λj )

denote the density, or the one-point correlation function, of µ. It is well known [1, 12] that
%
(N)
1 converges weakly to the equilibrium density % = %V as N → ∞. The equilibrium

density can be characterized as the unique minimizer (in the set of probability measures
on R endowed with the weak topology) of the functional

I (ν) :=

∫
V (t) dν(t)−

∫∫
log |t − s| dν(t) dν(s). (2.13)

In the case V (x) = x2/2, the minimizer is the Wigner semicircle law % = %G, defined in
(2.5), where the subscript G refers to the Gaussian case. In the general case we assume
that % = %V is supported on a single compact interval, [A,B], and % ∈ C2(A,B).
Moreover, we assume that V is regular in the sense that % is strictly positive on (A,B)
and vanishes as a square root at the endpoints [9, (1.4)]. It is known that these conditions
are satisfied if, for example, V is strictly convex.

For any j ≤ N define the classical location of the j -th particle, γj,V , by

j

N
=

∫ γj,V

A

%V (x) dx; (2.14)

for the Gaussian case we have [A,B] = [−2, 2] and we use the notation γj,G = γj for
the corresponding classical location, defined in (2.6). We set

%Vj := %V (γj,V ) and %Gj := %G(γj,G) (2.15)

to be the limiting density at the classical location of the j -th particle. Our main theorem
on β-ensembles is the following:3

Theorem 2.3 (Gap universality for β-ensembles). Let β ≥ 1 and V be a real analytic4

potential with (2.10) such that %V is supported on a single compact interval, [A,B],
%V ∈ C

2(A,B), and V is regular. Fix positive numbers α,O∞,Osupp, an integer n ∈ N
and an n-particle observable O = ON satisfying (2.7). Let µ = µV = µ

(N)
β,V be given

by (2.11) and let µG denote the same measure for the Gaussian case. Then there exist an

3 During the revision of this manuscript in the refereeing process, gap universality was proved for
β-ensembles with β > 0 under slightly stronger restrictions on the potential in [4, 52]. Furthermore,
the fixed energy universality for the β-ensemble was also proved in [52].

4 In fact, V ∈ C4(R) is sufficient: see Remark 5.1.
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ε > 0, depending only on α, β and the potential V , and a constant C depending on O∞
and Osupp such that∣∣EµVO((N%Vk )(λk − λk+1), (N%

V
k )(λk − λk+2), . . . , (N%

V
k )(λk − λk+n)

)
− EµGO

(
(N%Gm)(λm − λm+1), (N%

G
m)(λm − λm+2), . . . , (N%

G
m)(λm − λm+n)

)∣∣
≤ CN−ε‖O ′‖∞ (2.16)

for any k,m ∈ JαN, (1−α)NK and for any sufficiently largeN ≥ N0, whereN0 depends
on V , β, as well as on n, α, O∞ and Osupp. In particular, the distribution of the rescaled
gaps with respect to µV does not depend on the index k in the bulk.

Theorem 2.3, in particular, asserts that the single gap distribution in the bulk is indepen-
dent of the index k. The special GUE case of this assertion is the content of [53] where
the proof uses some special structures of GUE.

The proofs of both Theorems 2.2 and 2.3 rely on the uniqueness of the gap distribution
for a localized version of the equilibrium measure (2.4) with a certain class of boundary
conditions. This main technical result will be formulated in Theorem 4.1 in the next sec-
tion after we introduce the necessary notation. A sketch of the content of the paper will
be given at the end of Section 4.1.

We remark that Theorem 2.3 is stated only for β ≥ 1; on the contrary, the universality
with local averaging in [8, 9] was proved for β > 0. The main reason is that the current
proof relies heavily on the dynamics of the gradient flow of local log-gases. Hence the
well-posedness of the dynamics is crucial, and it is available only for β ≥ 1. On the other
hand, in [8, 9] we use only certain Dirichlet form inequalities (see e.g. [8, Lemma 5.9]),
which we could prove with an effective regularization scheme for all β > 0. For β < 1
it is not clear if such a regularization can also be applied to the new inequalities we will
prove here.

3. Outline of the main ideas in the proof

For the orientation of the reader we briefly outline the three main concepts in the proof
without any technicalities.

1. Local Gibbs measures and their comparison

The first observation is that the macroscopic structure of the Gibbs measure µ(N)β,V (see
(2.11)) heavily depends on V via the density %V . The microscopic structure, however, is
essentially determined by the logarithmic interaction alone—the local density plays only
the role of a scaling factor. Once the measure is localized, its dependence on V is re-
duced to a simple linear rescaling. This gives rise to the idea to consider the local Gibbs
measures, defined on K consecutive particles (indexed by a set I ) by conditioning on all
other N − K particles. The frozen particles, denoted collectively by y = {yj }j 6∈I , play
the role of the boundary conditions. The potential of the local Gibbs measure µy is given
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by 1
2Vy(x) =

1
2V (x) −

1
N

∑
j 6∈I log |x − yj |. From the rigidity property of the measure

µ (see [8]), the frozen particles are typically very close to their classical locations de-
termined by the appropriate quantiles of the equilibrium density %V . Moreover, from the
Euler–Lagrange equation of (2.13) we have V (x) = 2

∫
log |x−y|%V (y) dy. These prop-

erties together with the choice K � N ensure that Vy is small away from the boundary.
Thus, apart from boundary effects, the local Gibbs measure is independent of the original
potential V . In particular, its gap statistics can be compared with that of the Gaussian
ensemble after an appropriate rescaling. For convenience, we scale all local measures so
that the typical size of their gaps is one.

2. Random walk representation of covariance

The key technical difficulty is to estimate the boundary effects, which is given by the
correlation between the external potential

∑
i Vy(xi) and the gap observableO(xj−xj+1)

(for simplicity we look at one gap only). We introduce the notation 〈X;Y 〉 := EXY −
EXEY to denote the covariance of two random variables X and Y . Following the more
customary statistical physics terminology, we will refer to 〈X;Y 〉 as correlation. Due to
the long range of the logarithmic interaction, the two-point correlation function 〈λi; λj 〉
of a log-gas decays only logarithmically in |i−j |, i.e. very slowly. What we really need is
the correlation between a particle λi and a gap λj−λj+1 which decays faster, as |i−j |−1,
but we need quite precise estimates to exploit the gap structure.

For any Gibbs measure ω(dx) = e−βH(x)dx with strictly convex Hamiltonian, H′′ ≥
c > 0, the correlation of any two observables F and G can be expressed as

〈F(x);G(x)〉ω =
1
2

∫
∞

0
ds

∫
dω(x)Ex[∇G(x(s))U(s, x(·))∇F(x)]. (3.1)

Here Ex is the expectation for the (random) paths x(·) starting from x(0) = x and solving
the canonical SDE for the measure ω,

dx(s) = dB(s)− β∇H(x(s))ds,

and U(s) = U(s, x(·)) is the fundamental solution to the linear system of equations

∂sU(s) = −U(s)A(s), A(s) := βH′′(x(s)), (3.2)

with U(0) = I . Notice that the coefficient matrix A(s), and thus the fundamental solution,
depend on the random path x(s).

If G is a function of the gap, G(x) = O(xj − xj+1), then (3.1) becomes

〈F(x);O(xj − xj+1)〉ω

=
1
2

∫
∞

0
ds

∫
dω(x)

∑
i∈I

Ex[O
′(xj − xj+1)(Ui,j (s)− Ui,j+1(s))∂iF(x)]. (3.3)

We will estimate the correlation (3.3) by showing that for a typical path x(·) the solution
U(s) is Hölder regular in the sense that Ui,j (s)− Ui,j+1(s) is small if j is away from the
boundary and s is not too small. The exceptional cases require various technical cutoff
estimates.
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3. Hölder regularity of the solution to (3.2)

We will apply (3.3) with the choice ω = µy and with a function F representing the effects
of the boundary conditions. For any fixed realization of the path x(·), we will view (3.2) as
a finite-dimensional version of a parabolic equation. The coefficient matrix, the Hessian
of the local Gibbs measure, is computed explicitly. It can be written as A = B +W ,
where W ≥ 0 is diagonal and B is symmetric with quadratic form

〈u,B(s)u〉 =
1
2

∑
i,j∈I

Bij (s)(ui − uj )
2, Bij (s) :=

β

(xi(s)− xj (s))2
.

After rescaling the problem and writing it in microscopic coordinates where the gap size
is of order one, for a typical path and large i − j we have

Bij (s) ∼ 1/(i − j)2 (3.4)

by rigidity. We also have a lower bound for any i 6= j ,

Bij (s) & 1/(i − j)2, (3.5)

at least with a very high probability. If a matching upper bound were true for any i 6= j ,
then (3.2) would be the discrete analogue of the general equation

∂tu(t, x) =

∫
K(t, x, y)[u(t, y)− u(t, x)] dy, t > 0, x, y ∈ Rd , (3.6)

considered by Caffarelli–Chan–Vasseur [13]. It is assumed that the kernelK is symmetric
and there is a constant 0 < s < 2 such that the short distance singularity can be bounded
by

C1|x − y|
−d−s

≤ K(t, x, y) ≤ C2|x − y|
−d−s (3.7)

for some positive constants C1, C2. Roughly speaking, the integral operator corresponds
to the behavior of the operator |p|s , where p = −i∇. The main result of [13] asserts
that for any t0 > 0, the solution u(t, x) is ε-Hölder continuous, u ∈ Cε((t0,∞),Rd),
for some positive exponent ε that depends only on t0, C1, C2. Further generalizations and
related local regularity results such as weak Harnack inequality can be found in [36].

Our equation (3.2) is of this type with d = s = 1, but it is discrete and in a finite
interval I with a potential term. The key difference, however, is that the coefficient Bij (t)
in the elliptic part of (3.2) can be singular in the sense that Bij (t)|i− j |2 is not uniformly
bounded when i, j are close to each other. In fact, by extending the reasoning of Ben
Arous and Bourgade [5], the minimal gap mini(xi+1 − xi) for GOE is typically of order
N−1/2 in the microscopic coordinates we are using now. Thus the analogue of the uniform
upper bound (3.7) does not even hold for a fixed t . The only control we can guarantee for
the singular behavior of Bij with a large probability is the estimate

sup
0≤s≤σ

sup
0≤M≤CK logK

1
1+ s

∫ s

0

1
M

∑
i∈I : |i−Z|≤M

Bi,i+1(s
′) ds′ ≤ CKρ (3.8)
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with some small exponent ρ and for any Z ∈ I far away from the boundary of I . This
estimate essentially says that the space-time maximal function of Bi,i+1(t) at a fixed
space-time point (Z, 0) is bounded by Kρ . Our main generalization of the result in [13]
is to show that the weak upper bound (3.8), together with (3.4) and (3.5) (holding up to a
factor Kξ ), is sufficient for proving a discrete version of the Hölder continuity at (Z, 0).
More precisely, in Theorem 9.8 we essentially show that there exists a q > 0 such that for
any fixed σ ∈ [Kc,K1−c

], the solution to (3.2) satisfies

sup
|j−Z|+|j ′−Z|≤σ 1−α

|Ui,j (σ )− Ui,j ′(σ )| ≤ CKξσ−1− 1
2qα, (3.9)

with any α ∈ [0, 1/3] if we can guarantee that ρ and ξ are sufficiently small. The exponent
q is a universal positive number and it plays the role of the Hölder regularity exponent. In
fact, to obtain Hölder regularity around one space-time point (Z, σ ) as in (3.9), we need
to assume the bound (3.8) around several (but not more than (logK)C) space-time points,
which in our applications can be guaranteed with high probability.

Notice that Ui,j (σ ) decays as σ−1, hence (3.9) provides an additional decay for the
discrete derivative. In particular, this guarantees that the ds integration in (3.3) is finite in
the most critical intermediate regime s ∈ [Kc, CK logK].

The proof of Theorem 9.8 is given in Section 10. In that section we also formulate
a Hölder regularity result for initial data in L∞ (Theorem 10.1), which is the basis of
all other results. Readers interested in the pure PDE aspect of our work are referred to
Section 10 which can be read independently of the other sections of the paper.

4. Local equilibrium measures

4.1. Basic properties of local equilibrium measures

Fix two small positive numbers, α, δ > 0. Choose two positive integer parameters L,K
such that

L ∈ JαN, (1− α)NK, N δ
≤ K ≤ N1/4. (4.1)

We consider the parameters L and K to be fixed and often we will not indicate them in
the notation. All results will hold for any sufficiently small α, δ and for any sufficiently
large N ≥ N0, where the threshold N0 depends on α, δ and maybe on other parameters of
the model. Throughout the paper we will use C and c to denote positive constants which,
among others, may depend on α, δ and on the constants in (2.2) and (2.3), but we will not
emphasize this dependence. Typically C denotes a large generic constant, while c denotes
a small one; their values may change from line to line. These constants are independent
ofK and N , which are the limiting large parameters of the problem, but they may depend
on each other. In most cases this interdependence is harmless since it only requires that
a fresh constant C be sufficiently large or c be sufficiently small, depending on the size
of the previously established generic constants. In some cases, however, the constants are
related in a more subtle manner. In this case we will use C0, C1, . . . and c0, c1, . . . etc. to
denote specific constants in order to be able to refer to them along the proof.
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For convenience, we set
K := 2K + 1.

Denote by I = IL,K := JL−K,L+KK the set of K consecutive indices in the bulk. We
will distinguish the inside and outside particles by renaming them as

(λ1, . . . , λN ) := (y1, . . . , yL−K−1, xL−K , . . . , xL+K , yL+K+1, . . . , yN ) ∈ 4
(N). (4.2)

Note that the particles keep their original indices. The notation 4(N) refers to the simplex
(2.12). For short we will write

x = (xL−K , . . . , xL+K) and y = (y1, . . . , yL−K−1, yL+K+1, . . . , yN ).

These points are always listed in increasing order, i.e. x ∈ 4(K) and y ∈ 4(N−K). We
will refer to the y’s as the external points and to the x’s as internal points.

We will fix the external points (often called boundary conditions) and study the con-
ditional measures on the internal points. We first define the local equilibrium measure (or
local measure for short) on x with boundary condition y by

µy(dx) := µy(x)dx, µy(x) := µ(y, x)
[∫

µ(y, x) dx
]−1

, (4.3)

where µ = µ(y, x) is the (global) equilibrium measure (2.11) (we do not distinguish
between the measure µ and its density function µ(y, x) in the notation). Note that for any
fixed y ∈ 4(N−K), all xj lie in the open configuration interval, denoted by

J = Jy := (yL−K−1, yL+K+1).

Denote by
ȳ := 1

2 (yL−K−1 + yL+K+1)

the midpoint of the configuration interval. We also introduce

αj := ȳ +
j − L

K + 1
|J |, j ∈ IL,K , (4.4)

the K equidistant points within the interval J .
For any fixedL,K, y, the equilibrium measure can also be written as a Gibbs measure,

µy = µ
(N)
y,β,V = Z

−1
y e−NβHy , (4.5)

with Hamiltonian

Hy(x) :=
∑
i∈I

1
2
Vy(xi)−

1
N

∑
i,j∈I
i<j

log |xj − xi |,

Vy(x) := V (x)−
2
N

∑
j 6∈I

log |x − yj |.

(4.6)
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Here Vy(x) can be viewed as the external potential of a β-log-gas of the points {xi : i ∈ I }
in the configuration interval J .

Our main technical result, Theorem 4.1 below, asserts that, forK,L chosen according
to (4.1), the local gap statistics are essentially independent of V and y as long as the
boundary conditions y are regular. This property is expressed by defining the following
set of “good” boundary conditions with some given positive parameters ν, α:

RL,K = RL,K(ν, α) := {y : |yk − γk| ≤ N−1+ν, ∀k ∈ JαN, (1− α)NK \ IL,K}

∩ {y : |yk − γk| ≤ N−4/15+ν, ∀k ∈ JN3/5+ν, N −N3/5+νK}
∩ {y : |yk − γk| ≤ 1, k ∈ J1, NK \ IL,K}. (4.7)

In Section 5 we will see that this definition is tailored to the previously proven rigidity
bounds for the β-ensemble (see (5.4)). The rigidity bounds for the generalized Wigner
matrices are stronger (see (6.1)), so this definition will suit the needs of both proofs.

Theorem 4.1 (Gap universality for local measures). Fix L, L̃ and K = 2K + 1 satisfy-
ing (4.1) with an exponent δ > 0. Consider two boundary conditions y, ỹ such that the
configuration intervals coincide,

J = (yL−K−1, yL+K+1) = (ỹL̃−K−1, ỹL̃+K+1). (4.8)

Consider the measures µ = µy,β,V and µ̃ = µỹ,β,Ṽ defined as in (4.5), with possibly two
different external potentials V and Ṽ . Let ξ > 0 be a small constant. Assume that

|J | =
K

N%(ȳ)
+O

(
Kξ

N

)
. (4.9)

Suppose that y, ỹ ∈ RL,K(ξ
2δ/2, α/2) and

max
j∈IL,K

|Eµyxj − αj | + max
j∈IL̃,K

|Eµ̃ỹxj − αj | ≤ CN
−1Kξ . (4.10)

Let the integer p satisfy |p| ≤ K − K1−ξ∗ for some small ξ∗ > 0. Then there exists
ξ0 > 0, depending on δ, such that if ξ, ξ∗ ≤ ξ0 then for any n fixed and any n-particle
observable O = ON satisfying (2.7) with fixed control parameters O∞ and Osupp, we
have∣∣EµyO

(
N(xL+p − xL+p+1), . . . , N(xL+p − xL+p+n)

)
− Eµ̃ỹO

(
N(xL̃+p − xL̃+p+1), . . . , N(xL̃+p − xL̃+p+n)

)∣∣ ≤ CK−ε‖O ′‖∞ (4.11)

for some ε > 0 depending on δ, α and for some C depending on O∞ and Osupp. This
holds for any N ≥ N0 sufficiently large, where N0 depends on the parameters ξ, ξ∗, α,
and C in (4.10).
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In the following two theorems we establish rigidity and level repulsion estimates for the
local log-gas µy with good boundary conditions y. While both rigidity and level repulsion
are basic questions for log-gases, our main motivation to prove these theorems is to use
them in the proof of Theorem 4.1. The current form of the level repulsion estimate is new;
a weaker form was proved in [8, (4.11)]. The rigidity estimate was proved for the global
equilibrium measure µ in [8]. From this estimate, one can conclude that µy has a good
rigidity bound for a set of boundary conditions with high probability with respect to the
global measure µ. However, we will need a rigidity estimate for µy for a set of y’s with
high probability with respect to some different measure, which may be asymptotically
singular to µ for large N . For example, in the proof for the gap universality of Wigner
matrices such a measure is given by the time evolved measure ftµ (see Section 6). The
following result asserts that a rigidity estimate holds for µy provided that y itself satisfies
a rigidity bound and an extra condition, (4.12), holds. This provides explicit criteria to
describe the set of “good” y’s, whose measure with respect to ftµ can then be estimated
with different methods.

Theorem 4.2 (Rigidity estimate for local measures). Let L and K satisfy (4.1) with δ
the exponent appearing in (4.1). Let ξ, α be any fixed positive constants. For y in
RL,K(ξδ/2, α) consider the local equilibrium measure µy defined in (4.5) and assume
that

|Eµyxj − αj | ≤ CN
−1Kξ , j ∈ I = IL,K . (4.12)

Then there are positive constantsC, c, depending on ξ , such that for any k ∈ I and u > 0,

Pµy(|xk − αk| ≥ uK
ξN−1) ≤ Ce−cu

2
. (4.13)

Now we state the level repulsion estimates which will be proven in Section 7.2.

Theorem 4.3 (Level repulsion estimate for local measures). Let L and K satisfy (4.1)
and let ξ, α be any fixed positive constants. Then for y ∈ RL,K = RL,K(ξ

2δ/2, α) we
have the following estimates:

(i) [Weak form of level repulsion] For any s > 0,

Pµy [xi+1 − xi ≤ s/N ] ≤ C(Ns)
β+1, i ∈ JL−K − 1, L+KK, (4.14)

Pµy [xi+2 − xi ≤ s/N ] ≤ C(Ns)
2β+1 i ∈ JL−K − 1, L+K − 1K. (4.15)

(Here we use the convention that xL−K−1 := yL−K−1, xL+K+1 := yL+K+1.)

(ii) [Strong form of level repulsion] Suppose that there exist positive constants C, c such
that the following rigidity estimate holds for any k ∈ I :

Pµy(|xk − αk| ≥ CK
ξ2
N−1) ≤ C exp(−Kc). (4.16)

Then there exists a small constant θ , depending on C, c in (4.16), such that for any
s ≥ exp(−Kθ ),

Pµy [xi+1 − xi ≤ s/N ] ≤ C(K
ξ s logN)β+1, i ∈ JL−K − 1, L+KK, (4.17)

Pµy [xi+2 − xi ≤ s/N ] ≤ C(K
ξ s logN)2β+1, i ∈ JL−K − 1, L+K − 1K.

(4.18)
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We remark that the estimates (4.18) and (4.15) on the second gap are not needed for the
main proof; we listed them only for possible reference. The exponents are not optimal;
one would expect them to be 3β + 3. With some extra work, it should not be difficult to
get the optimal exponents. Moreover, our results can be extended to xi+k − xi for any k
finite. We also mention that the assumption (4.16) required in part (ii) is weaker than
what we prove in (4.13). In fact, the weaker form (4.16) of the rigidity would be enough
throughout the paper except at one place, at the end of the proof of Lemma 8.4.

Theorem 4.1 is our key result. In Sections 5 and 6 we will show how to use The-
orem 4.1 to prove the main Theorems 2.2 and 2.3. Although the basic structure of the
proof of Theorem 2.3 is similar to the one given in [8] where a locally averaged version
of this theorem was proved under a locally averaged version of Theorem 4.1, here we
have to verify the assumption (4.10), which will be done in Lemma 5.2. The proof of
Theorem 2.2, on the other hand, is very different from the recent proof of universality in
[33, 34]. This will be explained in Section 6.

The proofs of the auxiliary Theorems 4.2 and 4.3 will be given in Section 7. The proof
of Theorem 4.1 will start from Section 8.1 and will continue until the end of the paper.
At the beginning of Section 8.1 we will explain the main ideas of the proof. The readers
interested in the proof of Theorem 4.1 can skip Sections 5 and 6.

4.2. Extensions and further results

We formulated Theorems 4.1–4.3 with assumptions requiring that the boundary condi-
tions y are “good”. In fact, all these results hold in a more general setting.

Definition 4.4. An external potential U of a β-log-gas of K points in a configuration
interval J = (a, b) is called Kξ -regular if the following bounds hold:

|J | =
K

N%(ȳ)
+O

(
Kξ

N

)
, (4.19)

U ′(x) = %(ȳ) log
d+(x)

d−(x)
+O

(
Kξ

Nd(x)

)
, x ∈ J, (4.20)

U ′′(x) ≥ infV ′′ +
c

d(x)
, x ∈ J, (4.21)

with some positive c > 0 and for some small ξ > 0, where

d(x) := min{|x − a|, |x − b|}

is the distance to the boundary of J and

d−(x) := d(x)+ %(ȳ)N
−1Kξ , d+(x) := max{|x − a|, |x − b|} + %(ȳ)N−1Kξ .

The following lemma, proven in Appendix A, asserts that “good” boundary conditions y
give rise to a regular external potential Vy.
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Lemma 4.5. Let L and K satisfy (4.1) and let δ be the exponent appearing in (4.1).
Then for any y ∈ RL,K(ξδ/2, α/2) the external potential Vy (4.6) on the configuration
interval Jy is Kξ -regular:

|Jy| =
K

N%(ȳ)
+O

(
Kξ

N

)
, (4.22)

V ′y(x) = %(ȳ) log
d+(x)

d−(x)
+O

(
Kξ

Nd(x)

)
, x ∈ Jy, (4.23)

V ′′y (x) ≥ infV ′′ +
c

d(x)
, x ∈ Jy. (4.24)

Remark. The proofs of Theorems 4.1–4.3 and 7.3 do not use the explicit form of Vy
and Jy; they only depend on the property that Vy on Jy is regular.

5. Gap universality for β-ensembles: proof of Theorem 2.3

5.1. Rigidity bounds and its consequences

The aim of this section is to use Theorem 4.1 to prove Theorem 2.3. In order to verify
the assumptions of Theorem 4.1, we first recall the rigidity estimate with respect to µ
defined in (2.11). Recall that γk = γk,V denotes the classical location of the k-th point
(see (2.14)). For the case of convex potential, in [8, Theorem 3.1] it was proved that for
any fixed α, ν > 0, there are constants C0, c1, c2 > 0 such that for any N ≥ 1 and
k ∈ JαN, (1− α)NK,

Pµ(|λk − γk| > N−1+ν) ≤ C0 exp(−c1N
c2). (5.1)

The same estimate holds for the nonconvex case (see [9, Theorem 1.1]) by using a con-
vexification argument.

Near the spectral edges, a somewhat weaker control was proven for the convex case:
Lemma 3.6 of [8] states that for any ν > 0 there are C0, c1, c2 > 0 such that

Pµ(|λk − γk| > N−4/15+ν) ≤ C0 exp(−c1N
c2) (5.2)

for any N3/5+ν
≤ k ≤ N − N3/5+ν , if N ≥ N0(ν) is sufficiently large. We can choose

C0, c1, c2 to be the same in (5.1) and (5.2). Combining this result with the convexification
argument in [9], one can show that the estimate (5.2) also holds for the nonconvex case.

Finally, we have a very weak control that holds for all points (see [9, (1.7)]): for any
C > 0 there are positive constants C0, c1 and c2 such that

Pµ(|λk − γk| > C) ≤ C0 exp(−c1N
c2). (5.3)

Given C, we can choose C0, c1, c2 to be the same in (5.1)–(5.3).
The set RL,K in (4.7) was exactly defined as the set of events that these three rigidity

estimates hold. From (5.1)–(5.3) we have

Pµ(RL,K(ν, α)) ≥ 1− C0 exp(−c1N
c2) (5.4)

for any ν, α > 0 with some positive constants C0, c1, c2 that depend on ν and α.
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Remark 5.1. The real analyticity of V in this paper is used only to obtain the rigidity
results (5.1)–(5.3) by applying earlier results from [8, 9]. After the first version of the
current work appeared in the arXiv, jointly with P. Bourgade we proved the following
stronger rigidity result [10, Theorem 2.4]). For any β, ξ > 0 and V ∈ C4(R), regular
with equilibrium density supported on a single interval [A,B], there are c > 0 and N0
such that

Pµ(|λk − γk| > N−2/3+ξ (k̂)−1/3) ≤ e−N
c

, ∀k ∈ J1, NK,

for any N ≥ N0, where k̂ = min{k,N + 1− k}. This result allows us to relax the original
real analyticity condition on V ∈ C4(R). It would also allow us to redefine the set RL,K

in (4.7) to the more transparent set appearing in (4.13), but this generalization does not
affect the rest of the proof.

Lemma 5.2. Let L and K satisfy (4.1) and let δ be the exponent in (4.1). Then for any
small ξ and α there exists a set R∗ = R∗L,K,µ(ξ

2δ/2, α/2) ⊂ RL,K(ξ
2δ/2, α/2) such

that
Pµ(R∗) ≥ 1− C0 exp

(
−

1
2c1N

c2
)

(5.5)

with the constants C0, c1, c2 from (5.1). Moreover, for any y ∈ R∗ we have

|Eµyxk − αk| ≤ CN
−1Kξ , k ∈ IL,K , (5.6)

where αk was defined in (4.4).

Proof. For any ν > 0 define

R∗L,K,µ(ν, α) :=
{
y ∈ R(ν, α) : Pµy(|xk−γk| > N−1+ν) ≤ exp

(
−

1
2c1N

c2
)
, ∀k ∈ IL,K

}
(5.7)

with the ν-dependent constants c1, c2 > 0 from (5.4). Note that R∗, unlike R, depends
on the underlying measure µ through the family of its conditional measures µy. Applying
(5.4) for ν = ξ2δ/2 and setting R = RL,K(ξ

2δ/2, α/2), R∗ = R∗L,K,µ(ξ
2δ/2, α/2), we

have
Pµ(R∗) ≥ 1− C0 exp

(
−

1
2c1N

c2
)

with some C0, c1, c2. Now if y ∈ R∗, then

|Eµyxk − γk| ≤ C0e
−c1N

c2/3
+ CN−1Kξ2

, k ∈ IL,K . (5.8)

In order to prove (5.6), it remains to show that |αk − γk| is bounded by CN−1Kξ for
any k ∈ IL,K . To see this, we can use the fact that % ∈ C1 away from the edge, thus
%(x) = %(ȳ)+O(x − ȳ) (recall that ȳ is the midpoint of J ). By Taylor expansion,

k − (L−K − 1) = N
∫ γk

γL−K−1

% = N

∫ γk

yL−K−1

% +O(N ξδ/2)

= N |γk − yL−K−1|%(ȳ)+O(N |J |
2
+N ξδ/2),
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i.e.

γk = yL−K−1 +
k − L+K + 1

N%(ȳ)
+O(N−1Kξ ). (5.9)

Here we have used the fact that J = Jy satisfies (4.22), since y ∈ RL,K(ξ
2δ/2, α/2) ⊂

RL,K(ξδ/2, α). Comparing (5.9) with the definition (4.4) of αk , and using (4.22) and the
fact that ȳ − yL−K−1 =

1
2 |J |, we have

|αk − γk| ≤ CN
−1Kξ . (5.10)

Together with (5.8) this implies (5.6). ut

5.2. Completing the proof of Theorem 2.3

We first notice that it is sufficient to prove Theorem 2.3 for the special case m = N/2,
i.e. when the local statistics for the Gaussian measure is considered at the central point
of the spectrum. Indeed, once Theorem 2.3 is proved for any V , k and m = N/2, then
with the choice V (x) = x2/2 we can use it to establish that the local statistics for the
Gaussian measure around any fixed index k in the bulk coincide with the local statistics
in the middle. So from now on we assume m = N/2, but we keep the notation m for
simplicity.

Given k and m = N/2 as in (2.16), we first choose L, L̃,K , satisfying (4.1) (maybe
with a smaller α than given in Theorem 2.3), so that k = L + p, m = L̃ + p for some
|p| ≤ K/2. In particular

|L̃−N/2| ≤ K. (5.11)

For brevity, we use µ = µV and µ̃ = µG in accordance with Theorem 4.1.
We consider y ∈ R∗L,K,µ(ξ

2δ/2, α) and ỹ ∈ R∗
L̃,K,µ̃

(ξ2δ/2, α), where δ is the expo-
nent in (4.1). We omit the arguments and recall that

µ(R∗L,K,µ) ≥ 1− C0 exp
(
−

1
2c1N

c2
)
, µ̃(R∗

L̃,K,µ̃
) ≥ 1− C0 exp

(
−

1
2c1N

c2
)

(5.12)

with some positive constants.

Proposition 5.3. With the above choice of the parameters, for any y ∈ R∗L,K,µ(ξ
2δ/2, α)

and ỹ ∈ R∗
L̃,K,µ̃

(ξ2δ/2, α), we have

∣∣EµyO
(
(N%VL+p)(xL+p − xL+p+1), . . . , (N%

V
L+p)(xL+p − xL+p+n)

)
− Eµ̃ỹO

(
(N%G

L̃+p
)(xL̃+p − xL̃+p+1), . . . , (N%

G

L̃+p
)(xL̃+p − xL̃+p+n)

)∣∣
≤ CK−ε‖O ′‖∞, (5.13)

where ε is from Theorem 4.1.

Theorem 2.3 follows immediately from (5.12) and this proposition. ut
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Proof of Proposition 5.3. We will apply Theorem 4.1, but first we have to bring the two
measures to the same configuration interval J in order to satisfy (4.8). This will be done
in three steps. First, using the scale invariance of the Gaussian log-gas we rescale it so
that the local density approximately matches that of µV . This will guarantee that the two
configuration intervals have almost the same length. In the second step we adjust the local
Gaussian log-gas µ̃ỹ so that J̃y has exactly the correct length. Finally, we shift the two
intervals so that they coincide. This allows us to apply Theorem 4.1 to conclude that the
local statistics are identical.

The local densities %V around γL+p,V and %G around γL̃+p,G may differ considerably.
So in the first step we rescale the Gaussian log-gas so that

%V (γL+p,V ) = %G(γL̃+p,G). (5.14)

To do so, recall that we defined the Gaussian log-gas with the standard V (x) = x2/2
external potential, but we could choose Vs(x) = s2x2/2 with any fixed s > 0 and consider
the Gaussian log-gas

µsG(λ) ∼ exp(−NβHs(λ)), Hs(λ) :=
1
2

N∑
i=1

Vs(λi)−
1
N

∑
i<j

log |λj − λi |.

This results in rescaling the semicircle density %G to %sG(x) := s%G(sx) and γi,G to
γ si,G := s

−1γi,G for any i, so %G(γi,G) gets rescaled to %sG(γ
s
i,G) = s%G(γi,G). In partic-

ular, %G(γL̃+p,G) is rescaled to s%G(γL̃+p,G), and thus choosing s appropriately, we can
achieve that (5.14) holds (keeping the left hand side fixed). Set

Os(x) := O
(
(N%sG(γ

s
m,G))(xm−xm+1), . . . , (N%

s
G(γ

s
m,G))(xm−xm+n)

)
, m = L̃+p,

and notice that Os(x) = O(sx). This means that the local gap statistics Eµ
s
GOs is indepen-

dent of the scaling parameter s, since the product (N%Gm)(xm − xm+a) (notation defined
in (2.15)) is unchanged under the scaling. So we can work with the rescaled Gaussian
measure. For notational simplicity we will not carry the s parameter further and we just
assume that (5.14) holds with the original Gaussian V (x) = x2/2.

We have now achieved that the two densities coincide at some points of the configura-
tion intervals, but the lengths of these two intervals still slightly differ. In the second step
we match them exactly. Since y ∈ RL,K(ξδ/2, α) and ỹ ∈ RL̃,K(ξδ/2, α), from (4.22)
we see that

|Jy| = |yL+K+1 − yL−K−1| =
K

N%V (ȳ)
+O(N−1Kξ ), (5.15)

|J̃y| = |̃yL+K+1 − ỹL−K−1| =
K

N%G(ỹ)
+O(N−1Kξ ). (5.16)

Since %V is C1, for any |j | ≤ K we have

|%V (ȳ)− %V (γL+j,V )| ≤ C|ȳ − γL+j,V |

≤ C|ȳ − yL,V | + C|γL+j,V − γL,V | +O(N
−1Kξ ) ≤ CKN−1,

and similarly for %G(ỹ).
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Using (5.15), (5.14) and the fact that the densities are separated away from zero, we
easily see that

s := |Jy|/|J̃y| satisfies s = sy,̃y = 1+O(K−1+ξ ). (5.17)

Note that this s is different from the scaling parameter in the first step, but it will play
a similar role so we use the same notation. For each fixed y, ỹ we can now scale the
conditional Gaussian log-gas µỹ by a factor of s, i.e. change ỹ to s̃y, so that after rescaling
|Jy| = |Js̃y|.

We will now show that this rescaling does not alter the gap statistics:

Lemma 5.4. Suppose that s satisfies (5.17) and let µ = µG be the Gaussian log-gas.
Then

|[Eµỹ − Eµs̃y ]O(x)| ≤ CK−1+ξ (5.18)

with
O(x) := O

(
(N%Gm)(xm − xm+1), . . . , (N%

G
m)(xm − xm+n)

)
for any L̃−K ≤ m ≤ L̃+K − n (note that the observable is not rescaled).

Proof. Define the Gaussian log-gas µsỹ ∼ e
−NβHs

ỹ with Hs
ỹ defined exactly as in (4.6)

but Vy(x) replaced with

V sỹ (x) = Vs(x)−
2
N

∑
j 6∈Ĩ

log |x − ỹj |, Vs(x) =
1
2 s

2x2, Ĩ := JL̃−K, L̃+KK.

Then by scaling

Eµs̃yO(x) = Eµ
s
ỹO(x/s) = Eµ

s
ỹO(x)+O(‖O ′‖∞|s − 1|), (5.19)

where in the last step we have used the fact that the observable O is a differentiable
function with compact support. The error term is negligible by (5.17) and (4.1).

In order to control [Eµ
s
ỹ − Eµỹ ]O(x), it is sufficient to bound the relative entropy

S(µsỹ|µỹ). However, for any y ∈ RL,K we have

H′′y ≥ min
x∈Jy

1
N

∑
j 6∈I

1
|x − yj |2

≥
cN

K
(5.20)

with a positive constant. Applying this for ỹ, we see that µỹ satisfies the logarithmic
Sobolev inequality (LSI)

S(µsỹ|µỹ) ≤
CK

N
D(µsỹ|µỹ),

where

S(µ|ω) :=

∫ (
dµ

dω
log

dµ

dω

)
dω, D(µ|ω) :=

1
2N

∫ ∣∣∣∣∇
√
dµ

dω

∣∣∣∣2 dω
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is the relative entropy and the relative Dirichlet form of two probability measures. There-
fore

S(µsỹ|µỹ) ≤
CK

N2 Eµỹ
∑
i∈Ĩ

|NV ′s (xi)−NV
′(xi)|

2
= CK(s2

− 1)2Eµỹ
∑
i∈Ĩ

x2
i

≤ CK4N−2(s − 1)2.

In the last step we have used (5.11), which, by rigidity for the Gaussian log-gas, guaran-
tees that |xi | ≤ CK/N with very high probability for any i ∈ Ĩ . Together with (5.19) and
(5.17) we obtain (5.18). ut

Summarizing, we can from now on assume that (5.14) holds and |Jy| = |J̃y|. By a
straightforward shift we can also assume that Jy = J̃y so that condition (4.8) is satis-
fied. Condition (4.9) has already been proved in Lemma 4.5. Condition (4.10) follows
from the definition of R∗L,K,µ and R∗

L̃,K,µ̃
(see Lemma 5.2). Thus all conditions of Theo-

rem 4.1 are verified. Finally, the multiplicative factors %VL+p and %G
L̃+p

in (5.13) coincide
by (5.14) and (2.15). Then Theorem 4.1 (with an observable O rescaled by the common
factor %VL+p = %

G

L̃+p
) implies Proposition 5.3. ut

6. Gap universality for Wigner matrices: proof of Theorem 2.2

In our recent results on the universality of Wigner matrices [29, 33, 34], we established
the universality for Gaussian divisible matrices by establishing the local ergodicity of
the Dyson Brownian motion (DBM). By local ergodicity we meant an effective estimate
on the time to equilibrium for a local average of observables depending on the gap. In
fact, we gave an almost optimal estimate on this time. Then we used the Green function
comparison theorem to connect Gaussian divisible matrices to general Wigner matrices.
The local ergodicity of DBM was shown by studying the flow of the global Dirichlet
form. The estimate on the global Dirichlet form in all these works was sufficiently strong
to imply “ergodicity for locally averaged observables” without having to go through local
equilibrium measures. In an earlier work [28], however, we used an approach common
in the hydrodynamical limits by studying the properties of local equilibrium measures.
Since by Theorem 4.1 we know the local equilibrium measures very well, we will now
combine the virtues of both methods to prove Theorem 2.2. To explain the new method
we will be using, we first recall the standard approach to universality from [29, 33, 34],
which consists of the following three steps:

(i) Rigidity estimates on the precise location of eigenvalues.
(ii) Dirichlet form estimates and local ergodicity of DBM.

(iii) Green function comparison theorem to remove the small Gaussian convolution.

In order to prove single gap universality, we will need to apply a similar strategy for
the local equilibrium measure µy. However, apart from establishing rigidity for µy, we
will need to strengthen Step (ii). The idea is to use Dirichlet form estimates as in the



Gap universality of generalized Wigner and β-ensembles 1949

previous approach, but then apply these estimates to show that the “local structure” after
the evolution of the DBM for a short time is characterized by the local equilibrium µy in
a strong sense, i.e. without averaging. Since Theorem 4.1 provides single gap universality
for the local equilibrium µy, this proves single gap universality after a short time DBM
evolution, and thus yields the strong form of Step (ii) without averaging the observables.
Notice that the key input here is Theorem 4.1 which contains an effective estimate on
the time to equilibrium for each single gap. We will call this property the strong local
ergodicity of DBM. In particular, our result shows that the local averaging taken in our
previous works is not essential.

We now recall the rigidity estimate which asserts that the eigenvalues λ1, . . . , λN of a
generalized Wigner matrix follow the Wigner semicircle law %G(x) (2.5) in a very strong
local sense. More precisely, Theorem 2.2 of [35] states that the eigenvalues are near their
classical locations, {γj }Nj=1, (2.6), in the sense that

P{∃j : |λj−γj | ≥ (logN)ζ [min(j,N−j+1)]−1/3N−2/3
} ≤ C exp[−c(logN)φζ ] (6.1)

for any exponent ζ satisfying

A0 log logN ≤ ζ ≤
log(10N)

10 log logN
,

where the positive constants C, φ,A0 depend only on Cinf, Csup, θ1, θ2 (see (2.2), (2.3)).
In particular, for any fixed α, ν > 0, there are constants C0, c1, c2 > 0 such that for any
N ≥ 1 and k ∈ JαN, (1− α)NK we have

P(|λk − γk| > N−1+ν) ≤ C0 exp(−c1N
c2), (6.2)

and (6.1) also implies

E
N∑
k=1

(λk − γk)
2
≤ N−1+2ν (6.3)

for any ν > 0. The constants C0, c1, c2 may be different from the ones in (5.1) but they
play a similar role so we keep their notation. With a slight abuse of notation, we introduce
the set RL,K = RL,K(ξ, α) from (4.7) in the generalized Wigner setup as well, just γk
denote the classical locations with respect to the semicircle law (see (2.6)). In particular
(6.1) implies that for any ξ, α > 0,

P(RL,K(ξ, α)) ≥ 1− C0 exp(−c1N
c2) (6.4)

with some positive constants C0, c1, c2, analogously to (5.4). We remark that the rigidity
bound (6.1) for the generalized Wigner matrices is optimal (up to logarithmic factors)
throughout the spectrum and it gives a stronger control than the estimate used in the in-
termediate regime in the second line of the definition (4.7). For the forthcoming argument
the weaker estimates are sufficient, so for notational simplicity we will not modify the
definition of R.

The Dyson Brownian motion (DBM) describes the evolution of the eigenvalues of
a flow of Wigner matrices, H = Ht , if each matrix element hij evolves according to
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independent (up to symmetry restriction) Brownian motions. The dynamics of the matrix
elements are given by an Ornstein–Uhlenbeck (OU) process which leaves the standard
Gaussian distribution invariant. In the Hermitian case, the OU process for the rescaled
matrix elements vij := N1/2hij is given by the stochastic differential equation

dvij = dβij −
1
2vijdt, i, j = 1, . . . , N,

where βij , i < j , are independent complex Brownian motions with variance one, and βii
are real Brownian motions of the same variance. The real symmetric case is analogous,
just βij are real Brownian motions.

Denote the distribution of the eigenvalues λ = (λ1, . . . , λN ) of Ht at time t by
ft (λ)µ(dλ) where the Gaussian measure µ is given by (2.4). The density ft = ft,N
satisfies the forward equation

∂tft = Lft , (6.5)

where

L = LN :=
N∑
i=1

1
2N

∂2
i +

N∑
i=1

(
−
β

4
λi +

β

2N

∑
j 6=i

1
λi − λj

)
∂i, ∂i =

∂

∂λi
,

with β = 1 for the real symmetric case and β = 2 in the complex Hermitian case. The
initial data f0 is given by the original generalized Wigner matrix.

Now we define a useful technical tool that was first introduced in [29]. For any τ > 0
denote by W = W τ an auxiliary potential defined by

W τ (λ) :=

N∑
j=1

W τ
j (λj ), W τ

j (λ) :=
1

2τ
(λj − γj )

2,

i.e. it is a quadratic confinement on scale
√
τ for each eigenvalue near its classical loca-

tion, where the parameter τ > 0 will be chosen later.

Definition 6.1. We define the probability measure dµτ := Z−1
τ e−NβH

τ
, where the total

Hamiltonian is given by
Hτ
:= H+W τ .

Here H is the Gaussian Hamiltonian given by (2.4) and Zτ = Zµτ is the partition func-
tion. The measure µτ will be referred to as the relaxation measure with relaxation time τ .

Denote

Q := sup
0≤t≤1

1
N

∫ N∑
j=1

(λj − γj )
2ft (λ) µ(dλ).

Since Ht is a generalized Wigner matrix for all t , (6.3) implies that

Q ≤ N−2+2ν (6.6)

for any ν > 0 if N ≥ N0(ν) is large enough.
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Recall the definition of the Dirichlet form with respect to a probability measure ω:

Dω(
√
g) :=

N∑
i=1

Dωi (
√
g), Dωi (

√
g) :=

1
2N

∫
|∂i
√
g|2 dω =

1
8N

∫
|∂i log g|2g dω,

and the definition of the relative entropy of two probability measures gω and ω:

S(gω|ω) :=

∫
g log g dω.

Now we recall Theorem 2.5 from [31]:

Theorem 6.2. For any τ > 0 and for the local relaxation measure µτ , set ψ := dµτ /dµ
and let gt := ft/ψ . Suppose there is a constant m such that

S(fτµ
τ
|µτ ) ≤ CNm.

Then for any t ≥ τNε′ the entropy and the Dirichlet form satisfy the estimates

S(gtµ
τ
|µτ ) ≤ CN2Qτ−1, Dµ

τ

(
√
gt ) ≤ CN

2Qτ−2,

where the constants depend on ε′ and m.

Corollary 6.3. Fix a > 0 and let τ ≥ N−a. Under the assumptions of Theorem 6.2, for
any t ≥ τNε′ the entropy and the Dirichlet form satisfy

Dµ(
√
ft ) ≤ CN

2Qτ−2. (6.7)

Furthermore, if the initial data of the DBM, f0, is given by a generalized Wigner en-
semble, then

Dµ(
√
ft ) ≤ CN

2a+2ν (6.8)

for any ν > 0.

Proof. Since gt = ft/ψ , we have

Dµ(
√
ft ) =

N∑
i=1

1
8N

∫
|∂i log gt + ∂i logψ |2ft dµ

≤
1

4N

N∑
i=1

∫
|∂i log gt |2ft dµ+

1
4N

N∑
i=1

∫
|∂i logψ |2ft dµ ≤ 2Dµ

τ

(
√
gt )+2N2Qτ−2.

Thus (6.7) follows from Theorem 6.2. Finally, (6.8) follows from (6.7) and (6.6). ut

Define fy to be the conditional density of fµ given y with respect to µy, i.e. fyµy =
(fµ)y. For any y ∈ RL,K we have the convexity bound (5.20). Thus we have the loga-
rithmic Sobolev inequality

S(fyµy|µy) ≤ C
K

N

∑
i∈I

D
µy
i (
√
fy) (6.9)
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and the bound ∫
dµy |fy − 1| ≤

√
S(fyµy|µy) ≤ C

√
K

N

∑
i∈I

D
µy
i (
√
fy). (6.10)

To control the Dirichlet forms Di for most external configurations y, we need the follow-
ing lemma.

Lemma 6.4. Fix a, ν > 0, and τ ≥ N−a. Suppose the initial data f0 of the DBM is given
by a generalized Wigner ensemble. Then, with some small ε′ > 0, for any t ≥ τNε′ there
exists a set GL,K ⊂ RL,K of good boundary conditions y with

Pftµ(GL,K) ≥ 1− CN−ε
′

(6.11)

such that for any y ∈ GL,K we have∑
i∈I

D
µy
i (
√
ft,y) ≤ CN

3ε′+2a+2ν, ft,y = (ft )y, I = IL,K , (6.12)

and for any bounded observable O,

|[Eft,yµy − Eµy ]O(x)| ≤ CK1/2N2ε′+a+ν−1/2. (6.13)

Furthermore, for any k ∈ I we also have

|Eft,yµyxk − γk| ≤ CN
−1+ν . (6.14)

Proof. In this proof, we omit the subscript t , i.e. we write f = ft . By definition of the
conditional measure and by (6.8), we have

Efµ
∑
i∈I

D
µy
i (
√
fy) =

∑
i∈I

D
µ
i (
√
f ) ≤ Dµ(

√
f ) ≤ CN2a+2ν .

By the Markov inequality, (6.12) holds for all y in a set G1
L,K with Pfµ(G1

L,K) ≥ 1 −
CN−3ε′ . Without loss of generality, by (6.4) we can assume that G1

L,K ⊂ RL,K . The
estimate (6.13) now follows from (6.12) and (6.10).

Similarly, the rigidity bound (6.2) with respect to fµ can be translated to the measure
fyµy, i.e. there exists a set G2

L,K with

Pfµ(G2
L,K) ≥ 1− C0 exp

(
−

1
2c1N

c2
)

such that for any y ∈ G2
L,K and for any k ∈ I ,

Pfyµy(|xk − γk| ≥ N
−1+ν) ≤ exp

(
−

1
2c1N

c2
)
.

In particular, we deduce (6.14) for any y ∈ G2
L,K . Setting GL,K := G1

L,K∩G
2
L,K concludes

the proof. ut
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Lemma 6.5. Fix a, ν > 0 and τ ≥ N−a. Suppose the initial data f0 of the DBM is given
by a generalized Wigner ensemble. Then, with some small ε′ > 0, for any t ≥ τNε′ , k ∈ I
and y ∈ GL,K , we have

|Eµyxk − Eft,yµyxk| ≤ KN
−3/2+ν+a+2ε′ . (6.15)

In particular, if the parameters are such that

KN−3/2+ν+a+2ε′
≤ N−1Kξ and N−1+ν

≤ N−1Kξ

with some small ξ > 0, then

|Eµyxk − αk| ≤ CN
−1Kξ , k ∈ I, (6.16)

where αk is defined in (4.4). In other words, the analogue of (4.10) is satisfied.

Notice that if we apply (6.13) with the special choice O(x) = xk then the error estimate
will be much worse than (6.15). We wish to emphasize that (6.16) is not an obvious fact
although we know that it holds for y with high probability with respect to the equilibrium
measure µ. The key point of (6.16) is that it holds for any y ∈ GL,K and thus with “high
probability” with respect to ftµ.

Proof of Lemma 6.5. Once again, we omit the subscript t . The estimate (6.16) is a simple
consequence of (6.15), (6.14) and (5.10). To prove (6.15), we run the reversible dynamics

∂sqs = Lyqs

starting from initial data q0 = fy, where the generator Ly is the unique reversible gener-
ator with the Dirichlet form Dµy , i.e.,

−

∫
fLyg dµy =

∑
i∈I

1
2N

∫
∇if · ∇ig dµy.

Recall that from the convexity bound (5.20), τK = K/N is the time to equilibrium of
this dynamics. After differentiation and integration we get

|Eµyxk − Efyµyxk| =

∣∣∣∣∫ Kε
′
τK

0
du

1
2N

∫
(∂kqu) dµy

∣∣∣∣+O(exp(−cKε′)).

From the Schwarz inequality with a free parameter R, we can bound the last line by

1
N

∫ Kε
′
τK

0
du

∫
(R(∂k

√
qu)

2
+ R−1) dµy +O(exp(−cKε′)).

Dropping the trivial subexponential error term and using the fact that the time integral of
the Dirichlet form is bounded by the initial entropy, we can bound the last line by

RS(fyµy|µy)+
Kε′τK

NR
.
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Using the logarithmic Sobolev inequality for µy and optimizing the parameter R, we can
bound

|Eµyxk − Efyµyxk| ≤ τKR
∑
i∈I

D
µy
i (
√
fy)+

Kε′τK

NR
+O(exp(−cKε′))

≤
Kε′τK

N1/2

(∑
i∈I

D
µy
i (
√
fy)
)1/2
+O(exp(−cKε′)).

Combining this with (6.12), we obtain (6.15). ut

We now prove the following comparison for the local statistics of µ and ftµ, where µ is
the Gaussian β-ensemble, (2.11), with quadratic V , and ft is the solution of (6.5) with
initial data f0 given by the original generalized Wigner matrix.

Lemma 6.6. Fix n, a > 0 and τ ≥ N−a. Then for a sufficiently small there exist ε, ε′ > 0
such that for any t ≥ τNε′ , any n and any n-particle observable O we have∣∣[Eftµ − Eµ]O

(
N(xj − xj+1), N(xj − xj+2), . . . , N(xj − xj+n)

)∣∣
≤ CN−ε‖O ′‖∞ (6.17)

for any j ∈ JαN, (1− α)NK and any sufficiently large N .

Proof. We will apply Lemma 6.4, and we choose L = j . SinceK ≤ N1/4, the right hand
side of (6.13) is smaller than N−ε. Thus∣∣[Eft,yµy −Eµy ]O

(
N(xj − xj+1), N(xj − xj+2), . . . , N(xj − xj+n)

)∣∣ ≤ CN−ε (6.18)

for all y ∈ GL,K with the probability of GL,K satisfying (6.11). Choose any ỹ ∈ R∗
defined in Lemma 5.2. We now apply Theorem 4.1 with both µy and µỹ given by the
local Gaussian β-ensemble. Thus (4.10) is guaranteed by (5.6) and (6.16). Since y, ỹ ∈
R = RL,K(ξ

2δ/2, α) and Lemma 4.5 guarantees (4.9), we can apply Theorem 4.1 so
that∣∣[Eµy − Eµỹ ]O

(
N(xj − xj+1), N(xj − xj+2), . . . , N(xj − xj+n)

)∣∣ ≤ CN−ε‖O ′‖∞
for all y ∈ GL,K and ỹ ∈ R∗. Since Pµ(R∗) ≥ 1−N−ε (see (5.5)), we thus have∣∣[Eµy−Eµ]O

(
N(xj−xj+1), N(xj−xj+2), . . . , N(xj−xj+n)

)∣∣ ≤ CN−ε‖O ′‖∞, (6.19)

for all y ∈ GL,K . From (6.18), (6.19) and the probability estimate (6.11) for GL,K , possi-
bly reducing ε so that ε ≤ ε′, we obtain (6.17). ut

Recall that Ht is the generalized Wigner matrix whose matrix elements evolve by inde-
pendent OU processes. Thus in Lemma 6.6 we have proved that the local statistics of Ht ,
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for t ≥ N−2a+ε′ , is the same as the corresponding Gaussian one for any initial general-
ized matrix H0. Finally, we need to approximate the generalized Wigner ensembles by
Gaussian divisible ones. The idea of approximation first appeared in [26] via a “reverse
heat flow” argument and was also used in [54] via a four moment theorem. We will follow
the Green function comparison theorem of [33, 34], and in particular the result in [44],
since these results were formulated and proved for generalized Wigner matrices.

Theorem 1.10 from [44] implies that if the first four moments of two generalized
Wigner ensembles H v and Hw are the same then

lim
N→∞

[Ev
− Ew

]O
(
N(xj − xj+1), N(xj − xj+2), . . . , N(xj − xj+n)

)
= 0, (6.20)

provided that one of the ensembles, say Hw, satisfies the following level repulsion esti-
mate: For any κ > 0, there is an α0 > 0 such that for any α satisfying 0 < α ≤ α0 there
exists a ν > 0 such that

Pw(N (E −N−1−α, E +N−1−α) ≥ 2
)
≤ N−α−ν (6.21)

for all E ∈ [−2+ κ, 2− κ], where N (a, b) denotes the number of eigenvalues in the in-
terval (a, b). Although this theorem was stated with the assumption that all four moments
of the matrix elements of the two ensembles match exactly, it in fact only requires that
the first three moments match exactly and the differences of the fourth moments are less
than N−c

′′

for some small c′′ > 0. The relaxation of the fourth moment assumption was
carried out in detail in [33, 25] and we will not repeat it here.

We now apply (6.20) with H v being the generalized Wigner ensemble for which we
wish to prove the universality and Hw

= Ht with t = N−c
′

for some small c′. The
necessary estimate (6.21) on the level repulsion follows from the gap universality and the
rigidity estimate for Ht . More precisely, for any energy E in the bulk, choose k such that
|γk − E| ≤ C/N . Then from the rigidity estimate (6.1), for any c > 0 we have

Pw(N (E −N−1−α, E +N−1−α) ≥ 2
)

≤

∑
j : |j−k|≤Nc0

Pw(λj+1 − λj ≤ N
−1−α)+ e−N

c

≤

∑
j : |j−k|≤Nc

[Pµ(λj+1 − λj ≤ N
−1−α)+ CN−ε] + e−N

c

≤ CN ξN−(β+1)α+c
+ CNα−ε.

Here in the first inequality we have used the rigidity (6.1) and in the second inequality
we have used (6.17) with an observableO that is a smoothed version of the characteristic
function on scale N−α , i.e. ‖O ′‖∞ ≤ CNα . In the last step we have used the level
repulsion bound for GOE/GUE for β = 1 or 2, respectively. The level repulsion bound
for GOE/GUE is well known; it also follows from of Theorem 4.3(ii) and the fact that
(4.18) holds for all y ∈ RL,K , i.e. with a very high probability (see (5.4)). Finally, we
choose α0 ≤ ε/4. Then for any α < α0, there exist small exponents ν, c, ξ such that
ν + c + ξ < α. This proves (6.21) for the ensemble Ht .
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Following [34], we construct an auxiliary Wigner matrix H0 such that the first three
moments of Ht and of the original matrix H v are identical while the differences of the
fourth moments are less than N−c

′′

for some small c′′ > 0 depending on c′ (see Lemma
3.4 of [34]). The gap statistics of H v and Hw

= Ht coincide by (6.20) and the gap
statistics of Ht coincides with those of GUE/GOE by Lemma 6.6. This completes the
proof of (2.8) showing that the local gap statistics with the same gap-label j is identical
for the generalized Wigner matrix and the Gaussian case. Now (2.9) follows directly from
Theorem 2.3, which, in particular, compares the local gap statistics for different gap labels
(k and m) in the Gaussian case. This completes the proof of Theorem 2.2. ut

7. Rigidity and level repulsion of local measures

7.1. Rigidity of µy: proof of Theorem 4.2

We will prove Theorem 4.2 using a method similar to the proof of [8, Theorem 3.1]. The-
orem 3.1 of [8] was proved by a quite complicated argument involving induction on scales
and the loop equation. The loop equation, however, requires analyticity of the potential
and it cannot be applied to prove Theorem 4.2 for a local measure whose potential Vy is
not analytic. We note, however, that in [8] the loop equation was used only to estimate
the expected locations of the particles. Now this estimate is given as a condition by (4.12)
and thus we can adapt the proof in [8] to the current setting. For later application, how-
ever, we will need a stronger form of the rigidity bound, namely we will establish that the
tail of the gap distribution has a Gaussian decay. This stronger statement requires some
modifications to the argument from [8] which therefore we partially repeat here. We now
introduce the notation needed to prove Theorem 4.2.

Let θ be a continuously differentiable nonnegative function with θ = 0 on [−1, 1]
and θ ′′ ≥ 1 for |x| > 1. We can take for example θ(x) = (x − 1)21(x > 1) +
(x + 1)21(x < −1).

For any m ∈ JαN, (1 − α)NK and any integer 1 ≤ M ≤ αN , we denote I (m,M) :=
Jm − M,m + MK and M := |I (m,M)| = 2M + 1. Let η := ξ/3. For any k,M with
|k − L| ≤ K −M , define

φ(k,M)(x) :=
∑

i<j, i,j∈I (k,M)

θ

(
N(xi − xj )

MK2η

)
. (7.1)

Let
ω(k,M)y := Zy,φµye

−φ(k,M) ,

where Zy,φ is a normalization constant. Choose an increasing sequence of integers,M1 <

· · · < MA, such that M1 = K
ξ , MA = CK

1−2η with a large constant C, and Mγ /Mγ−1
∼ Kη (meaning that cKη

≤ Mγ /Mγ−1 ≤ CK
η). We can choose the sequence so that

A ≤ Cη−1. We set ωγ := ω
(k,Mγ )
y and we study the rigidity properties of the measures

ωA, ωA−1, . . . , ω1 in this order. Note that µy = ωA since y ∈ RL,K = RL,K(ξδ/2, α)
guarantees that |xi − xj | ≤ |Jy| ≤ CK/N (see (4.22)), thus for M = MA = CK1−2η
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the argument of θ in (7.1) is smaller than 1, so φ ≡ 0 in this case. We also introduce the
notation

x
[M]
k :=

1
2M + 1

k+M∑
j=k−M

xj .

Definition 7.1. We say that µy has exponential rigidity on scale ` if there are constants
C, c such that for any k ∈ I ,

Pµy(|xk − αk| ≥ `+ uK
ξN−1) ≤ Ce−cu

2
, u > 0.

First we prove that µy has exponential rigidity on scaleMAN
−1. Starting from γ = A, by

the Herbst bound and the logarithmic Sobolev inequality (6.9) for µy with LSI constant
of order K/N , for any k ∈ JL−K +MA, L+K −MAK we have

Pµy(|x
[MA]

k − Eµyx
[MA]

k | ≥ b/
√
MA) ≤ e

−c(N/K)Nb2
, b ≥ 0,

i.e.
Pµy(|x

[MA]

k − Eµyx
[MA]

k | ≥ uKη/N) ≤ Ce−cu
2
.

Using the estimate (6.16) we see that

|Eµyx
[MA]

k − α
[MA]

k | ≤ CN−1Kξ .

Thus we obtain

Pµy(|x
[MA]

k − α
[MA]

k | ≥ CN−1Kξ
+ uKη/N) ≤ Ce−cu

2
. (7.2)

Since x[M]k−M ≤ xk ≤ x
[M]
k+M and the αk’s are regular with spacing of order 1/N , we get

xk − αk ≤ x
[M]
k+M − α

[M]
k−M ≤ x

[M]
k+M − α

[M]
k+M + CMN

−1,

and we also have a similar lower bound. Thus

Pµy(|xk − αk| ≥ CMAN
−1
+ uKη/N) ≤ Ce−cu

2
(7.3)

for any k ∈ JL − K + 2MA, L + K − 2MAK, where we have used MA ≥ Kξ . If k ∈
JL−K,L−K + 2MAK, then

xk − αk ≤ xL−K+2MA
− αL−K+2MA

+ CMAN
−1,

xk − αk ≥ yL−K−1 − αk ≥ −CMAN
−1.

Thus
|xk − αk| ≤ |xL−K+2MA

− αL−K+2MA
| + CMAN

−1.

Since (7.3) holds for the difference xL−K+2MA
− αL−K+2MA

, it holds for xk − αk as
well (with at most an adjustment of C) for any k ∈ JL − K,L − K + 2MAK. A similar
argument holds for k ∈ JL + K − 2MA, L + KK. Thus we have proved (7.3) for all
k ∈ JL−K,L+KK, i.e. we have shown exponential rigidity on scale MAN

−1.
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Now we use an induction on scales to show that if

(i) for any k ∈ JL−K +Mγ , L+K −Mγ K we have

Pµy(|x
[Mγ ]

k − α
[Mγ ]

k | ≥ uKξN−1) ≤ Ce−cu
2
, u ≥ 0; (7.4)

(ii) exponential rigidity holds on some scale MγN
−1,

Pµy(|xk − αk| ≥ CMγN
−1
+ uKξN−1) ≤ Ce−cu

2
, k ∈ I, u ≥ 0; (7.5)

(iii) we have the entropy bound

S(µy|ωγ ) ≤ Ce
−cM2

γK
−5η
, (7.6)

then (i)–(iii) also hold with γ replaced by γ − 1 as long as Mγ−1 ≥ K
ξ . The iteration

can be started from γ = A, since (7.4) and (7.5) were proven in (7.2) and in (7.3) (even
with a better bound), and (7.6) is trivial for γ = A since ωA = µy.

We first notice that on any scale Mγ , the bound (7.4) implies (7.5) by the same argu-
ment used to deduce (7.3) for any k ∈ I from (7.2). So we can focus on proving (7.4) and
(7.6) on scale Mγ−1.

To prove (7.6) on scale Mγ−1, notice that (7.5) with u = MγK
−ξ implies

Pµy(|xk − αk| ≥ CMγN
−1) ≤ Ce−cM

2
γK
−2ξ
, k ∈ I. (7.7)

Since

θ

(
N(xi − xj )

Mγ−1K2η

)
= 0

unless |xi − xj | ≥ CMγ−1N
−1K2η

≥ CMγN
−1Kη, the scale CMγN

−1 is by a factor
of Kη smaller than the scale of xi − xj built into the definition of φ(k,Mγ−1) (see (7.1)).
But for i, j ∈ I (k,Mγ−1) we have |xi − xj | ≤ |xi − αi | + |xj − αj | + CMγ−1N

−1. Thus
φ(k,Mγ−1) = 0 unless we are on the event described in (7.7) at least for one k. Moreover,
|∇φ(k,Mγ−1)(x)| ≤ NC for any configuration x in J . Thus, following the argument in [8,
Lemma 3.15], via the logarithmic Sobolev inequality for µy, we get

S(µy|ωγ−1) ≤ CKN
−1Eµy |∇φ(k,Mγ−1)|

2
≤ CNCe−cM

2
γK
−2ξ
≤ Ce

−cM2
γ−1K

−5η
.

Here we have used the fact that the prefactor NC can be absorbed in the exponent by
using M2

γK
−2ξ
−M2

γ−1K
−5η
≥ K2ξ−5η

= Kη
≥ Nηδ with ξ = 3η, since Mγ−1 ≥ K

ξ .
We will not need it here, but we note that the same bound on the opposite relative entropy,

S(ωγ−1|µy) ≤ Ce
−cM2

γ−1K
−5η
,

is also correct. Thus (7.6) for γ − 1 is proved.
Now we focus on proving (7.4) on scale Mγ−1. Set 1 ≤ M ′ ≤ M ≤ K and fix k ∈ I

such that |k − L| ≤ K −M . We state the following slightly generalized version of [8,
Lemma 3.14].
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Lemma 7.2. For any integers 1 ≤ M ′ ≤ M ≤ K , k ∈ JL −K +M,L +K −MK and
k′ ∈ Jk −M +M ′, k +M −M ′K, we have

Pω
(k,M)

(
|λ
[M ′]
k′
− λ
[M]
k − Eω

(k,M)

(λ
[M ′]
k′
− λ
[M]
k )| >

uK2η

N

√
M

M ′

)
≤ Ce−cu

2
.

Compared with [8, Lemma 3.14], we first note that Nε in [8] is changed to K2η be-
cause φ(k,M)(x) in (7.1) is defined with a K2η factor instead of Nε. Furthermore, here
we have allowed the center at scale M ′ to be different from k. The only condition is that
Jk′ −M ′, k′ +M ′K ⊂ Jk−M, k+MK. The proof of this lemma is identical to that of [8,
Lemma 3.14].

In particular, for any γ = 2, 3, . . . , A, and with M ′ = Mγ−1 and M = Mγ ≤

KηMγ−1 and with any choice of kγ ∈ JL − K + Mγ , L + K − Mγ K and kγ−1 ∈

JL − K + Mγ−1, L + K − Mγ−1K such that Jkγ−1 − Mγ−1, kγ−1 + Mγ−1K ⊂
Jkγ −Mγ , kγ +Mγ K, we get

Pωγ
(
|x
[Mγ−1]

kγ−1
− x
[Mγ ]

kγ
− Eωγ (x[Mγ−1]

kγ−1
− x
[Mγ ]

kγ
)| > uK5η/2/N

)
≤ Ce−cu

2
. (7.8)

The entropy bound (7.6) and the boundedness of xk imply that

|Eωγ xk − Eµyxk| ≤ C

√
S(µy|ωγ ) ≤ Ce

−cM2
γK
−5η
;

where M2
γK
−5η
≥ K2ξ−5η

≥ Kη (η = ξ/3). We can combine it with (4.12) to have

|Eωγ xk − αk| ≤ CKξ/N.

The measure ωγ in (7.8) can also be changed to µy at the expense of an entropy term
S(µy|ωγ ). Using (7.6), we thus have

Pµy
(
|x
[Mγ−1]

kγ−1
− x
[Mγ ]

kγ
− (α

[Mγ−1]

kγ−1
− α
[Mγ ]

kγ
)| ≥ CKξN−1

+ uK5η/2/N
)

≤ Ce−cu
2
+ Ce−cM

2
γK
−5η
.

Combining it with (7.4) and recalling ξ = 3η, we get

Pµy(|x
[Mγ−1]

kγ−1
− α
[Mγ−1]

kγ−1
| ≥ CKξN−1

+ uKξ/N) ≤ Ce−cu
2
+ Ce−cM

2
γK
−5η
.

This gives (7.4) on scale Mγ−1 if u ≤ cMγK
−5η/2 with a small constant c. Suppose now

that u ≥ cMγK
−5η/2, which in particular means that u ≥ cK−η/2. Then, by (7.5),

Pµy(|x
[Mγ−1]

kγ−1
− α
[Mγ−1]

kγ−1
| ≥ CKξN−1

+ uKξ/N)

≤ Pµy
(
|x
[Mγ−1]

kγ−1
− α
[Mγ−1]

kγ−1
| ≥ CMγN

−1
+ (1− CK−η/2)uKξ/N

)
≤

∑
k∈I

Pµy
(
|xk − αk| ≥ CMγN

−1
+ (1− CK−η/2)uKξ/N

)
≤ CKe−c(1−CK

−η/2)2u2
≤ Ce−c

′u2
.
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This proves (7.4) for γ − 1. Note that the constants slightly deterioriate at each iteration
step, but the number of iterations is finite (of order 1/η = 3/ξ ), so eventually the con-
stants C, c in (4.13) may depend on ξ . In fact, since the deterioriation is minor, one can
also prove (4.13) with ξ -independent constants, but for simplicity of presentation we did
not follow the change of these constants at each step.

After completing the iteration, from (7.5) for γ = 1, M1 = K
ξ we have

Pµy(|xk − αk| ≥ CK
ξN−1

+ uKξN−1) ≤ Ce−cu
2
, k ∈ I.

This yields (4.13) for u ≥ 1. Finally, (4.13) is trivial for u ≤ 1 if the constant C is
sufficiently large. This completes the proof of Theorem 4.2. ut

7.2. Level repulsion estimates of µy: proof of Theorem 4.3

We now prove the level repulsion estimate, Theorem 4.3, for the local log-gas µy with
good boundary conditions y. There are two key ideas in the following argument. We first
recall the weak level repulsion estimate [8, (4.11)], which in the current notation asserts

Pµy(xL−K − yL−K−1 ≤ s/N) ≤ CNs

for any s > 0, and similar estimates may be deduced for internal gaps. Compared with
(4.14), this estimate does not contain any β exponent; moreover, in order to obtain (4.17),
the N factor has to be reduced to Kξ (neglecting the irrelevant logN factor). Our first
idea is to run this proof for a local measure with only Kξ particles to reduce the N factor
to Kξ . The second idea involves introducing some auxiliary measures to catch some of
the β-related factors. We first introduce these two auxiliary measures which are slightly
modified versions of the local equilibrium measures:

µ0 := µy,0 = Z0(xL−K − yL−K−1)
−βµy, µ1 := µy,1 = Z1W

−βµy,

W := (xL−K − yL−K−1)(xL−K+1 − yL−K−1),

where Z0, Z1 are chosen for normalization. In other words, we drop the term
(xL−K − yL−K−1)

β from the measure µy in µ0 and we drop Wβ in µ1. To estimate
the upper gap, yL+K+1 − xL+K , similar results will be needed when we drop the term
(yL+K+1−xL+K)

β , and the analogous version ofW , but we will not state them explicitly.
We first prove the following results which are weaker than Theorem 4.3.

Lemma 7.3. Let L and K satisfy (4.1) and consider the local equilibrium measure µy
defined in (4.5).

(i) Let ξ, α be any fixed positive constants and let y ∈ RL,K(ξδ/2, α). Then for any
s > 0 we have

Pµy(xL−K − yL−K−1 ≤ s/N) ≤ C(Ks logN)β+1, (7.9)

Pµy(xL−K+1 − yL−K−1 ≤ s/N) ≤ C(Ks logN)2β+1. (7.10)
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(ii) Let y be arbitrary with the only condition that |yi | ≤ C for all i. Then for any s > 0
we have the weaker estimates

Pµy(xL−K − yL−K−1 ≤ s/N) ≤ (CsK/|Jy|)
β+1, (7.11)

Pµy,j (xL−K+1 − yL−K−1 ≤ s/N) ≤ (CsK/|Jy|)
2β+1, j = 0, 1. (7.12)

To prove Lemma 7.3, we first prove estimates even weaker than (7.9)–(7.12) for µy
and µy,j .

Lemma 7.4. Let L and K satisfy (4.1).

(i) Let ξ, α be any fixed positive constants and let y ∈ RL.K = RL,K(ξδ/2, α). Then
for any s > 0,

Pµy(xL−K − yL−K−1 ≤ s/N) ≤ CKs logN, (7.13)
Pµy,j (xL−K − yL−K−1 ≤ s/N) ≤ CKs logN, j = 0, 1. (7.14)

(ii) Let y be arbitrary with the only condition that |yi | ≤ C for all i. Then for any s > 0
we have the weaker estimates

Pµy(xL−K − yL−K−1 ≤ s/N) ≤ CsK/|Jy|, (7.15)
Pµy,j (xL−K − yL−K−1 ≤ s/N) ≤ CsK/|Jy|, j = 0, 1. (7.16)

Proof. We will prove (7.13); the same proof with only change of notation works for (7.14)
as well. We will comment on this at the end of the proof.

For notational simplicity, we first shift the coordinates by S so that in the new co-
ordinates ȳ = 0, i.e. yL−K−1 = −yL+K+1 and J is symmetric about the origin. With
the notation a := −yL−K−1 and I := JL − K,L + KK, we first estimate the following
quantity, for any 0 ≤ ϕ ≤ c (with a small constant):

Zϕ :=

∫
. . .

∫ a−aϕ

−a+aϕ

dx
∏
i,j∈I
i<j

(xi − xj )
βe
−N

β
2
∑
j Vy(S+xj )

= (1− ϕ)K+βK(K−1)/2
∫
. . .

∫ a

−a

dw
∏
i<j

(wi − wj )
βe
−N

β
2
∑
j Vy(S+(1−ϕ)wj ),

where we have set

wj := (1− ϕ)−1xL+j , dx =
∏
|j |≤K

dxL+j , dw =
∏
|j |≤K

dwj . (7.17)

By definition,

e−N
β
2 Vy(S+(1−ϕ)wj )

= e−N
β
2 V (S+(1−ϕ)wj )

∏
k≤L−K−1

((1− ϕ)wj − yk)β
∏

k≥L+K+1

(yk − (1− ϕ)wj )β . (7.18)
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For the smooth potential V , we have

|V (S + (1− ϕ)wj ))− V (S + wj )| ≤ C|ϕwj | ≤ CKϕ/N (7.19)

with a constant depending on V , where we have used |wj | ≤ a ≤ CK/N , which follows
from |Jy| ≤ CK/N since y ∈ RL,K (see (4.22)).

Using (1 − ϕ)wj − yk ≥ (1 − ϕ)(wj − yk) for L − 2K ≤ k ≤ L − K − 1 and the
identity

(1− ϕ)wj − yk = (wj − yk)
[

1−
ϕwj

wj − yk

]
for any k, we have∏
k≤L−K−1

((1− ϕ)wj − yk)β ≥ (1− ϕ)βK
∏

k≤L−K−1

(wj − yk)
β

∏
n<L−2K

[
1−

ϕwj

wj − yn

]β
,

(7.20)

and a similar estimate holds for k ≥ L+K + 1. After multiplying these estimates for all
j = 1, . . . , K , we thus have the bound

Zϕ

Z0
≥

[
e−CβKϕ(1− ϕ)βK min

|w|≤a

( ∏
k<L−2K

[
1−

ϕw

w − yk

]β ∏
k>L+2K

[
1−

ϕw

yk − w

]β)]K
.

Recall that y ∈ RL,K , i.e. we have the rigidity bound for y with accuracy N−1Kξ
�

K/N ∼ a (see (4.7)), i.e. yk’s are regularly spaced on scale a or larger. Combining this
with |w| ≤ a ≤ CK/N , we have∑

k≤L−2K

ϕw

w − yk
≤ CϕK logN. (7.21)

Hence ∏
k<L−2K

[
1−

ϕw

w − yk

]β
≥ 1− CϕK logN, (7.22)

and similar bounds hold for the k ≥ L+ 2K factors. Thus for any ϕ ≤ c we get

Zϕ/Z0 ≥ 1− C(βK2
+K2 logN)ϕ ≥ 1− CK2ϕ(logN).

Now we choose ϕ := s/(aN) and recall a ∼ K/N . Therefore the µy-probability of
xL+1 − yL ≥ aϕ = s/N can be estimated by

Pµy(xL−K − yL−K−1 ≥ s/N) ≥ Zϕ/Z0 ≥ 1− CKs(logN).

for all sK logN sufficiently small. If sK logN is large, then (7.13) is automatically sat-
isfied. This proves (7.13).

In order to prove (7.15), we now replace the assumption y ∈ RL,K with |yi | ≤ C.
Instead of (7.20), we now have∏

k≤L−K−1

((1− ϕ)wj − yk)β ≥ (1− ϕ)βN
∏

k≤L−K−1

(wj − yk)
β ,
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and a similar estimate holds for k ≥ L+K + 1. We thus have the bound

Pµy(xL−K − yL−K−1 ≥ s/N) ≥ Zϕ/Z0 ≥ [e
−CβKϕ(1− ϕ)βN ]K ≥ 1− CϕNK.

With the choice ϕ := s/(|Jy|N) this proves (7.15).
The proof of (7.14) and (7.16) for µy,0 is very similar, just the k = L−K − 1 factor

is missing from (7.18) in the case of j = −K . For µy,1, two factors are missing. These
modifications do not alter the basic estimates. ut

Proof of Lemma 7.3. Recalling the definition of µ0 and setting X := xL−K − yL−K−1
for brevity, we have

Pµy(X ≤ s/N) =
Eµ0 [1(X ≤ s/N)Xβ ]

Eµ0 [Xβ ]
.

From (7.14) we have

Eµ0 [1(X ≤ s/N)Xβ ] ≤ C(s/N)βKs logN

and with the choice s = cK−1(logN)−1 in (7.14) we also have

Pµ0

(
X ≥

c

NK logN

)
≥ 1/2

with some positive constant c. This implies that

Eµ0 [Xβ ] ≥
1
2

(
c

NK logN

)β
.

We have thus proved that

Pµy(X ≤ s/N) ≤ C(s/N)βKs logN(NK logN)β = C(Ks logN)β+1,

i.e. we have obtained (7.9).
For the proof of (7.10), we similarly use

Pµy(xL−K+1 − yL−K−1 ≤ s/N) =
Eµ1 [1(xL−K+1 − yL−K−1 ≤ s/N)W

β
]

Eµ1 [Wβ ]
.

From (7.14) we have

Eµ1 [1(xL−K+1 − yL−K−1 ≤ s/N)W
β
] ≤ (s/N)2βPµ1(xL−K − yL−K−1 ≤ s/N)

≤ C(s/N)2βKs logN.

By the same inequality and with the choice s = cK−1(logN)−1, we have

Pµ1

(
W ≥

c

(NK logN)2

)
≥ 1/2
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with some positive constant c. This implies that

Eµ1 [Wβ
] ≥

1
2

(
c

(NK logN)2

)β
.

We have thus proved that

Pµy(xL−K+1 − yL−K−1 ≤ s/N) ≤ C(s/N)
2βKs logN((NK logN)2)β

= C(Ks logN)2β+1,

which proves (7.10). Finally, (7.11) and (7.12) can be proved using (7.15) and (7.16). ut

Proof of Theorem 4.3. For a given i, define

Ĩ := Jmax(i −Kξ , L−K − 1),min(i +Kξ , L+K + 1)K

to be the indices in a Kξ neighborhood of i. We further condition µy on the points

zj := xj , j ∈ Ĩ c := IL,K \ Ĩ ,

and we let µy,z denote the conditional measure on the remaining x variables {xj : j ∈ Ĩ }.
Setting L′ := i, K ′ := Kξ , from the rigidity estimate (4.16) we have (y, z) ∈ R =
RL′,K ′(ξ

2δ/2, α) with a very high probability with respect to µy.
We will now apply (7.9) to the measure µy,z with a new δ′ = δξ and K ′ = Kξ . This

ensures that the condition N δ′
≤ K ′ is satisfied and by the remark after (4.1), the change

of δ affects only the threshold N0. We obtain

Pµy,z(xi − xi+1 ≤ s/N) ≤ C(K
ξ s logN)β+1

with high probability in z with respect to µy. The subexponential lower bound on s,
assumed in Theorem 4.3(ii), allows us to include the probability of the complement of R
in the estimate, proving (4.17). A similar argument with (7.9) replaced by (7.10) yields
(4.18).

To prove the weaker bounds (4.14), (4.15) for any s > 0, we may assume that the cases
L−K ≤ i ≤ L and i > L are treated similarly. Since y ∈ RL,K , we have |Jy| ≥ cK/N .
We consider two cases, either xi − yL−K−1 ≤ c

′K/N or xi − yL−K−1 ≥ c
′K/N, with

c′ < c/2. In the first case, we condition on xL−K , . . . , xi and we apply (7.15) to the
measure ν1 = µy,xL−K ,...,xi . The configuration interval of this measure has length at least
cK/(2N), so we have

Pν1(xi+1 − xi ≤ s/N) ≤
CKs

cK/(2N)
≤ CNs. (7.23)

In the second case, xi − yL−K−1 ≥ c
′K/N , we condition on xi+1, xi+2, . . . , xL+K . The

corresponding measure, denoted by ν2 = µy,xi+1,...,xL+K , has a configuration interval of
length at least c′K/N . We can now have the estimate (7.23) for ν2. Putting these two
estimates together proves (4.14). Finally, (4.15) can be proved in a similar way. ut
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8. Proof of Theorem 4.1

8.1. Comparison of the local statistics of two local measures

In this section, we start to compare the gap distributions of two local log-gases on the
same configuration interval but with different external potential and boundary condi-
tions. We will express the differences of the gap distributions between two measures
in terms of random walks in time dependent random environments. From now on, we
use microscopic coordinates and we relabel the indices so that the coordinates of xj are
j ∈ I = {−K, . . . , 0, 1, . . . , K}, i.e. we set L = L̃ = 0 in the earlier notation. This will
have the effect that the labeling of the external points y will not run from 1 to N , but from
some L− < 0 to L+ > 0 with L+ − L− = N . The important input is that the index set I
of the internal points is macroscopically separated away from the edges, i.e. |L±| ≥ αN .

The local equilibrium measures and their Hamiltonians will be denoted by the same
symbols, µy and Hy, as before, but with a slight abuse of notation we redefine them now
to the microscopic scaling. Hence we have two measures µy = e−βHy/Zy and µ̃ỹ =

e−βH̃ỹ/Zỹ, defined on the same configuration interval J = Jy = J̃y with center ȳ, which,
for simplicity, we assume to be ȳ = 0. The local density at the center is %(0) > 0. The
Hamiltonian is given by

Hy(x) :=
∑
i∈I

1
2
Vy(xi)−

∑
i,j∈I
i<j

log |xj − xi |,

Vy(x) := NV (x/N)− 2
∑
j 6∈I

log |x − yj |,
(8.1)

and H̃ỹ is defined in a similar way with V in (8.1) replaced with another external po-
tential Ṽ . Recall also the assumption that V ′′, Ṽ ′′ ≥ −C (see (2.10)). We will need the
rescaled version of the bounds (4.22)–(4.24), i.e.

|Jy| =
K
%(0)
+O(Kξ ), (8.2)

V ′y(x) = %(0) log
d+(x)

d−(x)
+O

(
Kξ

d(x)

)
, x ∈ J, (8.3)

V ′′y (x) ≥
infV ′′

N
+

c

d(x)
, x ∈ J, (8.4)

where
d(x) := min{|x − y−K−1|, |x − yK+1|} (8.5)

is the distance to the boundary and we redefine d±(x) as

d−(x) := d(x)+ %(0)Kξ , d+(x) := max{|x − y−K−1|, |x − yK+1|} + %(0)Kξ .

The rescaled version of Lemma 4.5 states that (8.2)–(8.4) hold for any y in
RL,K(ξδ/2, α/2), where the set RL,K , originally defined in (4.7), is expressed in mi-
croscopic coordinates.
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We also rewrite (4.10) in microscopic coordinates as

|Eµyxj − αj | + |Eµ̃ỹxj − αj | ≤ CK
ξ , (8.6)

where
αj :=

j

K + 1
|J | (8.7)

is the rescaled version of the definition given in (4.4), but we keep the same notation.
The Dirichlet form is also redefined; in microscopic coordinates it is now given by

Dµy(
√
g) =

∑
i∈I

D
µy
i (
√
g) =

1
2

∑
i∈I

∫
|∂i
√
g|2 dµy. (8.8)

Due to the rescaling, the LSI (6.9) now takes the form, for y ∈ RL,K ,

S(gµy|µy) ≤ CKD
µy(
√
g).

Define the interpolating measures

ωry,̃y = Zre
−βr(Ṽ̃y(x)−Vy(x))µy, r ∈ [0, 1], (8.9)

so that ω1
y,̃y = µ̃ỹ and ω0

y,̃y = µy (Zr is a normalization constant). This is again a local
log-gas with Hamiltonian

Hr
y,̃y(x) =

1
2

∑
i∈I

V ry,̃y(xi)−
∑
i<j

log |xi − xj | (8.10)

and external potential

V ry,̃y(x) := (1− r)Vy(x)+ rṼ̃y(x),

Vy(x) := NV (x/N)− 2
∑
j 6∈I

log(x − yi),

Ṽ̃y(x) := NṼ (x/N)− 2
∑
j 6∈I

log(x − ỹi).

The Dirichlet formDω with respect to the measure ω = ωry,̃y is defined similarly to (8.8).
For any bounded smooth function Q(x) with compact support we can express the

difference of the expectations with respect to two different measures µy and µ̃ỹ as

Eµ̃ỹQ(x)− EµyQ(x) =
∫ 1

0

d

dr
Eω

r
y,̃yQ(x) dr =

∫ 1

0
β〈h0(x);Q(x)〉ωry,̃y dr, (8.11)

where
h0 = h0(x) :=

∑
i∈I

(Vy(xi)− Ṽ̃y(xi)) (8.12)

and 〈f ; g〉ω := Eωfg−(Eωf )(Eωg) denotes the correlation. From now on, we will fix r .
Our main result is the following estimate on the gap correlation function.
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Theorem 8.1. Consider two smooth potentials V, Ṽ with V ′′, Ṽ ′′ ≥ −C and two bound-
ary conditions y, ỹ ∈ RL=0,K(ξ

2δ/2, α), with some sufficiently small ξ , such that J =
Jy = J̃y. Assume that (8.6) holds for both boundary conditions y, ỹ. Then, in particular,
the rescaled version of the rigidity bound (4.13) and the level repulsion bounds (4.17),
(4.18) hold for both µy and µ̃ỹ by Theorems 4.2 and 4.3.

Fix ξ∗ > 0. Then there exist ε, C > 0, depending on ξ∗, such that for any sufficiently
small ξ , any 0 ≤ r ≤ 1 and |p| ≤ K1−ξ∗ we have

|〈h0;O(xp − xp+1, . . . , xp − xp+n)〉ωry,̃y | ≤ K
CξK−ε‖O ′‖∞ (8.13)

for any n-particle observable O, provided that K ≥ K0(ξ, ξ
∗, n) is large enough.

Notice that this theorem is formulated in terms of K being the only large parameter; N
disappeared. We also remark that the restriction |p| ≤ K1−ξ∗ can be easily relaxed to
|p| ≤ K − K1−ξ∗ with an additional argument conditioning on the set {xi : i ∈ I \ Ĩ }
to ensure that p is near the middle of the new index set Ĩ . We will not need this more
general form in this paper.

First we complete the proof of Theorem 4.1 assuming Theorem 8.1.

Proof of Theorem 4.1. The family of measures ωry,̃y, 0 ≤ r ≤ 1, interpolate between µy
and µ̃ỹ. So we can express the right hand side of (4.11), in the rescaled coordinates and
with L = L̃ = 0, as

|[Eµy − Eµ̃ỹ ]O(xp − xp+1, . . . , xp − xp+n)|

≤

∫ 1

0
dr

d

dr
Eω

r
y,̃yO(xp − xp+1, . . . , xp − xp+n).

Using (8.11) and (8.13) we find that this difference is bounded by KCξK−ε. Choosing ξ

sufficiently small so thatKCξK−ε ≤ K−ε/2, we obtain (4.11) (with ε/2 instead of ε). ut

In the rest of the paper we will prove Theorem 8.1. The main difficulty is due to the fact
that the correlation function of the points, 〈xi; xj 〉ω, decays only logarithmically. In fact,
for the GUE, Gustavsson [40, Theorem 1.3] proved that

〈xi; xj 〉GUE ∼ log
N

|i − j | + 1
,

and a similar formula is expected for ω. Therefore, it is very difficult to prove Theorem 8.1
based on this slow logarithmic decay. We notice that, however, the correlation function of
the type

〈g1(xi); g2(xj − xj+1)〉ω

decays much faster in |i − j | since the second factor g2(xj − xj+1) depends only on the
difference. Correlations of the form 〈g1(xi−xi+1); g2(xj−xj+1)〉ω decay even faster. The
fact that observables of differences of particles behave much nicer was a basic observation
in our previous approach [29, 33, 34] to universality.



1968 László Erdős, Horng-Tzer Yau

The measure ω = ωry,̃y is closely related to µy and µ̃ỹ. Our first task in Section 8.2
is to show that both the rigidity and level repulsion estimates hold with respect to ω.
Then we will rewrite the correlation functions in terms of a random walk representation
in Proposition 9.1. The decay of correlation functions will be translated into a regularity
property of the corresponding parabolic equation, whose proof will be the main content
of Section 10. Section 9 consists of various cutoff estimates to remove the singularity of
the diffusion coefficients in the random walk representations. We emphasize that these
cutoffs are critical at β = 1; we do not know if our argument can be extended to β < 1.

8.2. Rigidity and level repulsion of the interpolating measure ωry,̃y

In this section we establish rigidity and level repulsion results for the interpolating mea-
sure ωry,̃y, similar to the ones established for µy in Section 7 and stated in Theorems 4.2
and 4.3.

Lemma 8.2. Let L and K satisfy (4.1) and y, ỹ ∈ RL,K(ξ
2δ/2, α). With the notation

ω = ωry,̃y there exist constants C, θ3, C2 and C3 such that the following estimates hold:

(i) [Rigidity bound]

Pω(|xi − αi | ≥ CKC2ξ
2
) ≤ Ce−K

θ3
, i ∈ I. (8.14)

(ii) [Weak form of level repulsion] For any s > 0 we have

Pω(xi+1 − xi ≤ s) ≤ C(Ns)
β+1, i ∈ JL−K − 1, L+KK, s > 0, (8.15)

Pω(xi+2 − xi ≤ s) ≤ C(Ns)
2β+1, i ∈ JL−K − 1, L+K − 1K, s > 0, (8.16)

(iii) [Strong form of level repulsion] With some small θ > 0, for any s ≥ exp(−Kθ ) we
have

Pω(xi+1 − xi ≤ s) ≤ C(K
C3ξ s)β+1, i ∈ JL−K − 1, L+KK, (8.17)

Pω(xi+2 − xi ≤ s) ≤ C(K
C3ξ s)2β+1, i ∈ JL−K − 1, L+K − 1K. (8.18)

(iv) [Logarithmic Sobolev inequality]

S(gω|ω) ≤ CKDω(
√
g). (8.19)

Note that in (8.14) we state only the weaker form of the rigidity bound, similar to (4.16).
It is possible to prove the strong form of rigidity with Gaussian tail (4.13) for ω, but we
will not need it in this paper.

The level repulsion bounds will mostly be used in the following estimates which triv-
ially follow from (8.15)–(8.18):
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Corollary 8.3. Under the assumptions of Lemma 8.2, for any p < β + 1 we have

Eω
1

|xi − xi+1|p
≤ CpK

C3ξ , i ∈ JL−K − 1, L+KK, (8.20)

and for any p < 2β + 1,

Eω
1

|xi − xi+2|p
≤ CpK

C3ξ , i ∈ JL−K − 1, L+K − 1K. ut

The key to translate the rigidity estimate of the measures µy and µ̃ỹ to the measure
ω = ωry,̃y is to show that the analogue of (8.6) holds for ω.

Lemma 8.4. Let L and K satisfy (4.1) and y, ỹ ∈ RL,K(ξδ/2, α). Consider the local
equilibrium measure µy defined in (4.6) and assume that (4.10) is satisfied. Let ωry,̃y be
the measure defined in (8.9). Recall that αk denote the equidistant points in J (see (8.7)).
Then there exists a constant C, independent of ξ , such that

Eω
r
y,̃y |xj − αj | ≤ CK

Cξ . (8.21)

Proof of Lemma 8.4. We first prove the following estimate on the entropy.

Lemma 8.5. Suppose µ1 is a probability measure and ω = Z−1egdµ1 for some function
g and normalization Z. Then

S := S(ω|µ1) = Eωg − logEµ1eg ≤ Eωg − Eµ1g. (8.22)

Consider two probability measures dµi = Z−1
i e−Hidx, i = 1, 2. Denote

g = r(H1 −H2), 0 < r < 1,

and set ω = Z−1egdµ1 as above. Then

min(S(ω|µ1), S(ω|µ2)) ≤ [Eµ2 − Eµ1 ](H1 −H2). (8.23)

Proof. The first inequality is a trivial consequence of the Jensen inequality

S = Eωg − logEµ1eg ≤ Eωg − Eµ1g.

The entropy inequality yields

Eωg ≤ r logEµ1eg/r + rS. (8.24)

By the definition of g, we have

logEµ1eg/r = − log
∫
e−g/r dµ2 ≤ Eµ2g/r.

Using this inequality and (8.24) in (8.22), we obtain

S ≤
r

1− r
[Eµ2 − Eµ1 ](H1 −H2).



1970 László Erdős, Horng-Tzer Yau

We can assume that r ≤ 1/2 ≤ 1 − r since otherwise we can switch the roles of H1
and H2. Hence (8.23) holds, and this concludes the proof of Lemma 8.5. ut

We now apply this lemma with µ2 = µ̃ỹ and µ1 = µy to prove that

min[S(ωry,̃y|µy), S(ω
r
y,̃y|µ̃ỹ)] ≤ K

Cξ . (8.25)

To see this, by definition of g and the rigidity estimate (4.13), we have

Eµ2g − Eµ1g =
r

2
[Eµ2 − Eµ1 ]

∑
i∈I

[Vy(xi)− Ṽ̃y(xi)]

=
r

2
[Eµ2 − Eµ1 ]

∑
i∈I

∫ 1

0
ds [V ′y(sαi + (1− s)xi)− Ṽ

′

ỹ(sαi + (1− s)xi)](xi − αi)

= [Eµ2 + Eµ1 ]O

(∑
i∈I

sup
s∈[0,1]

Kξ

d(sαi + (1− s)xi)
|xi − αi |

)
≤ KCξ .

In the first step we have used the fact that the leading term Vy(αi)− Ṽ̃y(αi) in the Taylor
expansion is deterministic, so it vanishes after taking the difference of two expectations.
In the last step we have used the fact that with a very high µ1- or µ2-probability d(sαi +
(1 − s)xi) ∼ d(αi) are equidistant up to an additive error Kξ if i is away from the
boundary, i.e., −K + KCξ

≤ i ≤ K − KCξ (see (4.13)). For indices near the boundary,
say −K ≤ i ≤ −K + KCξ , we have used d(sαi + (1 − s)xi) ≥ cmin{1, d(x−K)}.
Noticing that d(x−K) = x−K − y−K−1, the level repulsion bound (4.17) (complemented
with the weaker bound (7.9) that is valid for all s > 0) guarantees that the short distance
singularity [d(x−K)]−1 has an Eµ1,2 expectation bounded by CKCξ .

We now assume that (8.25) holds with the choice of S(ωry,̃y|µy) for simplicity of
notation. By the entropy inequality, we have

Eω
r
y,̃y |xi − αi | ≤ logEµye|xi−αi | +KCξ . (8.26)

From the Gaussian tail of the rigidity estimate (4.13), we have

logEµye|xi−αi | ≤ KCξ .

Using this bound in (8.26) we have proved (8.21) and this concludes the proof of Lem-
ma 8.4. ut

Proof of Lemma 8.2. Given (8.21), the proof of (8.14) follows the argument in the proof
of Theorem 4.2, applied to ξ2 instead of ξ . Once the rigidity bound (8.14) is proved, we
can follow the proof of Theorem 4.3 to obtain all four level repulsion estimates, (8.15)–
(8.18), analogously to the proofs of (4.14), (4.15), (4.17) and (4.18), respectively. The
logN factor can be incorporated into KC3ξ .

Finally, to prove (8.19), let Lω be the reversible generator given by the Dirichlet form

−

∫
fLωf dωry,̃y =

1
2

∑
|j |≤K

∫
(∂jf )

2 dωry,̃y. (8.27)
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Thus for the Hamiltonian H = Hr
y,̃y of the measure ω = ωry,̃y (see (8.10)), we have

〈v,∇2H(x)v〉 =
1
2

∑
i

[(1− r)V ′′y (xi)+ rṼ
′′

ỹ (xi)]v
2
i +

∑
i<j

(vi − vj )
2

(xi − xj )2
≥
c

K

∑
i

v2
i ,

(8.28)

by using (8.4) and d(x) ≤ CK for good boundary conditions. Thus LSI takes the form

S(gω|ω) ≤ CKDω(
√
g).

This completes the proof of Lemma 8.2. ut

The dynamics given by the generator Lω with respect to the interpolating measure ω =
ωry,̃y can also be characterized by the following SDE:

dxi = dBi + β

[
−

1
2
(V ry,̃y)

′(xi)+
1
2

∑
j 6=i

1
(xi − xj )

]
dt, (8.29)

where (B−K , B−K+1, . . . , BK) is a family of independent standard Brownian motions.
With a slight abuse of notation, when we talk about the DBM process, we will use Pω
and Eω to denote the probability and expectation with respect to this dynamics with initial
data ω, i.e., in equilibrium. This dynamical point of view gives rise to a representation for
the correlation (8.13) in terms of random walks in random environment.

Starting from Section 9 we will focus on proving Theorem 8.1. The proof is based on
a dynamical idea and it will be completed in Section 9.7.

9. Local statistics of interpolating measures: Proof of Theorem 8.1

9.1. Outline of the proof of Theorem 8.1

Theorem 8.1 will be proved by the following main steps. We remind the readers that the
boundary conditions y, ỹ are in the good sets and we have chosen L = 0 for conve-
nience. For simplicity, we assume that n = 1, i.e. we consider a single gap observable
O(xp − xp+1).

Step 1. Random walk representation. The starting point is a representation formula for
the correlation 〈h0,O(xp − xp+1)〉ω. For any smooth observables F(x) and Q(x) and
any time T > 0 we have the following representation formula for the time dependent
correlation function (see (9.14) for the precise statement):

EωQ(x)F (x)− EωQ(x(0))F (x(T ))

=
1
2

∫ T

0
dS Eω

∑
b∈I

∂bQ(x(0))〈∇F(x(S)), vb(S, x(·))〉.

Here the path x(·) is the solution of the reversible stochastic dynamics (8.29) with equilib-
rium measure ω. We use the notation Eω also for the expectation with respect to the path
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measure starting from the initial distribution ω, and 〈·, ·〉 denotes the inner product in RK,
recalling that |I | = 2K + 1 = K. Furthermore, for any b ∈ I and any fixed path x(·), the
vector vb(t) = vb(t, x(·)) ∈ RK is the solution to the equation

∂tvb(t) = −A(t)vb(t), t ≥ 0, vbj (0) = δbj . (9.1)

The matrix A(t) depends on time through the path x(t) and it is given by

A(t) := β∇2Hr
y,̃y(x(t)).

From (8.10), it is of the form A(t) = Ã(x(t)) = B̃(x(t)) + W̃(x(t)) with W̃(x(t)) ≥ 0.
The matrix elements of B̃ are given by

[B̃(x)v]j = −
∑
k 6=j

B̃jk(x)(vk − vj ), B̃jk(x) = β/(xj − xk)2, j 6= k.

Furthermore, A(t) ≥ CK−1 (see (8.28)), and the time to equilibrium for the x(t) process
is of order K (Corollary 9.2). Applying this representation to O(xp − xp+1) and cutting
off the time integration at C1K logK with some large constant C1, we will have (see
(9.25))

〈h0;O(xp − xp+1)〉ω

=
1
2

∫ C1K logK

0
dσ

∑
b

Eω[∂bh0(x)O ′(xp−xp+1)(v
b
p(σ )−v

b
p+1(σ ))]+O(‖O

′
‖∞K

−2),

(9.2)

It is easy to check that ∂bh0 satisfies, with some small ξ ′, the estimate (see (9.39))

|∂bh0(x)| ≤
Kξ ′

min(|xb −K|, |xb +K|)+ 1
. (9.3)

Step 2. Cutoff of bad sets. Setting T := [0, C1K logK], we define the “good set” of
paths (see (9.26)) for which the rigidity estimate holds uniformly in time:

G :=
{

sup
s∈T

sup
|j |≤K

|xj (s)− αj | ≤ K
ξ ′
}
,

where ξ ′ is s small parameter to be specified later and αj is the classical location given
by (8.7). For any Z ∈ I and σ ∈ T we also define the following event that the gaps
between particles near Z are not too small in an appropriate average sense:

Qσ,Z :=

{
sup
s∈T

sup
1≤M≤K

1
1+ |s − σ |

∣∣∣∣∫ σ

s

da
1
M

∑
i∈I : |i−Z|≤M

1
|xi(a)− xi+1(a)|2

∣∣∣∣ ≤ Kρ

}
,

(9.4)
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where ρ > 0 is a small parameter to be specified later. By convention we set xi(a) = yi
whenever |i| > K . We will need that the gaps are not too small not only near Z but also
near the boundary, so we define the new good set

Q̂σ,Z := Qσ,Z ∩Qσ,−K ∩Qσ,K .

Finally, we need to control the gaps not just around one time σ but around a sequence of
times that dyadically accumulate at σ . The significance of this stronger condition will only
be clear in the proof of our version of the De Giorgi–Nash–Moser bound in Section 10.
We define

Q̃σ,Z :=

⋂
τ∈4

Q̂σ+τ,Z, (9.5)

where
4 := {−K · 2−m(1+ 2−k) : 0 ≤ k,m ≤ C logK}. (9.6)

We will choose Z near the center of the interval I and show in (9.27) and (9.28) that
the bad events are small in the sense that

Pω(Gc) ≤ Ce−K
θ

(9.7)

with some θ > 0, and
Pω(Q̃c

σ,Z) ≤ CK
C4ξ−ρ (9.8)

for each fixed Z ∈ I and fixed σ ∈ T , where ξ is introduced in Theorem 8.1. Notice
that while the rigidity bound (9.7) holds with a very high probability, the control on small
gaps (9.8) is much weaker due to the power-law behavior of the level repulsion estimates.

Our goal is to insert the characteristic functions of the good sets into the expectation
in (9.2). More precisely, we will prove in (9.41) that

|〈h0;O(xp − xp+1)〉ω|

≤
1
2
‖O ′‖∞

∫ C1K logK

0

∑
b∈I

Eω[Q̃σ,ZG|∂bh0(x)| |vbp(σ )− v
b
p+1(σ )|] dσ

+O(‖O ′‖∞K
−ρ/6). (9.9)

(With a slight abuse of notation we use G and Q̃σ,Z also to denote the characteristic
function of these sets.) To prove this inequality, we note that the contribution of the bad
set Gc can be estimated by (9.7). To bound the contribution of the bad set Q̃c

σ,Z , the
estimate (9.8) alone is not strong enough due to the time integration in (9.9). We will need
a time-decay estimate for the solution vb(σ ). On the good set G, the matrix element Bjk
satisfies

Bjk(s) = β/(xj (s)− xk(s))
2
≥ b/(j − k)2, 0 ≤ s ≤ σ, j 6= k,

with b = βK−2ξ ′ . With this estimate, we will show in (9.36) that, for any 1 ≤ p ≤

q ≤ ∞, the following decay estimate for the solution to (9.1) holds:

‖v(s)‖q ≤ (sb)−(1/p−1/q)
‖v(0)‖p, 0 < s ≤ σ. (9.10)

This allows us to prove (9.9).



1974 László Erdős, Horng-Tzer Yau

Step 3. Cutoff of the contribution from near the center. From (9.3), ∂bh0(x) decays as a
power law when xb moves away from the boundary of J , i.e., when the index b moves
away from ±K . With the decay estimate (9.10), it is not difficult to show that the con-
tribution of b in the interior, i.e., the terms with |b| ≤ K1−c for some c > 0 in the sum
in (9.9), is negligible.

Step 4. Finite speed of propagation. We will prove that in the good set G ∩ Q̃σ,Z the
dynamics (9.1) satisfies the finite speed of propagation estimate

|vbp(s)| ≤
CKc+1/2√s + 1
|p − b|

for some small constant c (see (9.47)). This estimate is not optimal, but it allows us to
cut off the contribution in (9.9) for time σ ≤ K1/4 for b away from the center, i.e.,
K ≥ |b| ≥ K1−c. In this step we use |p| ≤ K1−ξ∗ (ξ∗ is some small constant) and the
exponents are chosen such that |p − b| ≥ cK1−c.

Step 5. Parabolic regularity with singular coefficients. Finally, we have to estimate the
r.h.s. of (9.9) in the regime K1/4

≤ σ ≤ C1K logK and for |p| ≤ K1−ξ∗ with the
choice Z = p. This estimate will work uniformly in b. We will show that for all paths in
G ∩ Q̃σ,p, any solution to (9.1) satisfies the Hölder regularity estimate in the interior, i.e.,
for some constants α, q > 0,

sup
|j−p|+|j ′−p|≤σ 1−α

|vj (σ )− vj ′(σ )| ≤ CK
ξσ−1− 1

2qα. (9.11)

Notice that the regularity depends on the time σ and that is why we need the short
time cutoff in the previous step. The estimate (9.11) allows us to complete the proof that
〈h0;O(xp−xp+1)〉ω → 0 asK →∞. The Hölder estimate will be stated as Theorem 9.8,
and the entire Section 10 will be devoted to its proof.

9.2. Random walk representation

First we will recall a general formula for the correlation functions of the process (8.29)
through a random walk representation (see (9.16) below). This equation in a lattice setting
was given in [22, Proposition 2.2] (see also [39, Proposition 3.1]). The random walk
representation already appeared in the earlier paper of Naddaf and Spencer [47], which
was a probabilistic formulation of the idea of Helffer and Sjöstrand [42].

In this section we will work in a general setup. Let J ⊂ R be an interval and I an
index set with cardinality |I | = K. Consider a convex Hamilton function H(x) on JK

and let x(s) be the solution to

dxi = dBi + β∂iH(x)dt, i ∈ I, (9.12)

with initial condition x(0) = x ∈ J Iy , where {Bi : i ∈ I } is a family of independent stan-
dard Brownian motions. The parameter β > 0 is introduced only for consistency with
our applications. Let Ex denote the expectation with respect to this path measure. With
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a slight abuse of notation, we will use Pω and Eω to denote the probability and expec-
tation with respect to the path measure of the solution to (9.12) with initial condition x
distributed according to ω. We assume that Pω(x(t) ∈ JK) = 1, i.e. the Hamiltonian
confines the process to remain in the interval J . The corresponding invariant measure is
dω = Z−1

ω e−βH(x)dx with generator Lω = − 1
21+

β
2∇H · ∇ and Dirichlet form

Dω(f ) :=
1
2

∫
|∇f |2 dω = −

∫
fLωf dω.

For any fixed path x(·) := {x(s) : s ≥ 0} we define the operator (K ×K matrix)

A(s) := Ã(x(s)),

where Ã := βH′′ and we assume that the Hessian matrix is positive definite, H′′(x) ≥
c > 0.

Proposition 9.1. Assume that the Hessian matrix is positive definite,

inf
x
H′′(x) ≥ τ−1 (9.13)

with some constant τ > 0. Then for any functions F,G ∈ C1(JK) ∩ L2(dω) and any
time T > 0 we have

Eω[F(x)G(x)] − Eω[F(x(0))G(x(T ))]

=
1
2

∫ T

0
dS

∫
ω(dx)

K∑
a,b=1

∂bF(x)Ex[∂aG(x(S))vba(S, x(·))]. (9.14)

Here for any S > 0 and for any path {x(s) ∈ JK : s ∈ [0, S]}, we define vb(t) =
vb(t, x(·)) as the solution to the equation

∂tvb(t) = −A(t)vb(t), t ∈ [0, S], vba(0) = δba . (9.15)

The dependence of vb on the path x(·) is via the dependence A(t) = Ã(x(t)). In other
words, vba(t) is the fundamental solution of the heat semigroup ∂s +A(s).

Furthermore, for the correlation function we have

〈F ;G〉ω =
1
2

∫
∞

0
dS

∫
ω(dx)

K∑
a,b=1

∂bF(x)Ex[∂aG(x(S))vba(S, x(·))] (9.16)

=
1
2

∫ Aτ logK

0
dS

∫
ω(dx)

K∑
a,b=1

∂bF(x)Ex[∂aG(x(S))vba(S, x(·))]+O(K−cA)

(9.17)

for any constant A > 0.
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Proof. This proposition in the lattice setting was already proved in [22, 39, 47]; we give
here a proof in the continuous setting. Let G(t, x) be the solution to the equation ∂tG =
LωG with initial condition G(0, x) := G(x). By integrating the time derivative, we have

Eω[F(x)G(x)] − Eω[F(x(0))G(x(T ))] = −
∫ T

0
dS

d

dS
Eω[FeSL

ω

G]

= −

∫ T

0
dS Eω[FLωeSL

ω

G] =
1
2

∫ T

0
dS Eω〈∇F(x),∇G(S, x)〉, (9.18)

where 〈 , 〉 denotes the scalar product in RK.
Taking the gradient of the equation ∂tG = LωG and computing the commutator

[∇,Lω] yields the equation

∂t∇G(t, x) = Lω[∇G(t, x)] − Ã(x)[∇G(t, x)]

for the x-gradient of G. Setting u(t, x) := ∇G(t, x) for brevity, we have the equation

∂tu(t, x) = Lωu(t, x)− Ã(x)u(t, x) (9.19)

with initial condition u(0, x) = u0(x) := ∇G(x).
Notice that Ã is a matrix and Lω acts on the vector u as a diagonal operator in the in-

dex space, i.e., [Lωu(t, x)]i = Lω[u(t, x)i]. The equation (9.19) can be solved by solving
an equation (9.22) over the indices with coefficients that depend on the path generated by
the operator Lω and then by taking expectation over the paths starting at x. To obtain such
a representation, we start with the time-dependent Feynman–Kac formula:

u(σ, x) = Ex
[

Ẽxp
(
−

∫ σ

0
Ã(x(s)) ds

)
u0(x(σ ))

]
, σ > 0, (9.20)

where

Ẽxp
(
−

∫ σ

0
Ã(x(s)) ds

)
:= 1−

∫ σ

0
Ã(x(s1)) ds1 +

∫
0≤s1<s2≤σ

Ã(x(s1))Ã(x(s2)) ds1 ds2 + · · · (9.21)

is the time-ordered exponential. To prove that (9.20) indeed satisfies (9.19), we notice
from the definition (9.21) that

u(σ, x) = ExẼxp
(
−

∫ σ

0
Ã(x(s)) ds

)
u0(x(σ ))

= Exu0(x(σ ))−
∫ σ

0
ExÃ(x(s1))Ex(s1)Ẽxp

(∫ σ

s1

Ã(x(s)) ds
)

u0(x(σ )) ds1.

Since the process is stationary in time, we have

u(σ, x) = Exu0(x(σ ))−
∫ σ

0
ExÃ(x(s1))u(σ − s1, x(s1)) ds1
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= Exu0(x(σ ))−
∫ σ

0
ExÃ(x(σ − s1))u(s1, x(σ − s1)) ds1

= eσLu0(x)−
∫ σ

0
[e(σ−s1)LÃ(·)u(s1, ·)](x) ds1.

Differentiating this equation in σ we find that u defined in (9.20) indeed satisfies (9.19).
For any fixed path {x(s) : s > 0}, the time-ordered exponential in (9.20),

U(t) = U(t; x(·)) := Ẽxp
(
−

∫ t

0
Ã(x(s)) ds

)
,

satisfies the matrix evolution equation

∂tU(t) = −U(t)A(t), U(0) = I,

which can be seen directly from (9.21). Let vb(t) be the transpose of the b-th row of the
matrix U(t). Then the equation for the column vector vb(t) reads

∂tvb(t) = −A(t)vb(t), vba(0) = δab. (9.22)

Thus taking the b-th component of (9.20) we have

ub(σ, x) = ∂bG(σ, x) = Ex
[U(σ )∇G(x(σ ))]b =

∑
a

Ex[∂aG(x(σ ))vba(σ )],

and plugging this into (9.18), we obtain (9.14) by using Eω[·] =
∫
Ex[·]ω(dx).

Formula (9.17) follows directly from (9.14) and from the fact that H′′ ≥ τ−1 implies
a spectral gap of order τ , in particular,

|Eω[F(x(0))G(x(T ))] − Eω[F ]Eω[G]| ≤ e−cT /τ‖F‖L2(ω)‖G‖L2(ω).

Finally, (9.16) directly follows from this, by taking the T →∞ limit. ut

Now we apply our general formula to the gap correlation function on the left hand side
of (8.13). To shorten formulas, we consider only the single gap case, n = 1; the general
case is a straightforward extension. The gap index p ∈ I , p 6= K , is fixed; later we
will impose further conditions on p to separate it from the boundary. The index set is
I = J−K,KK, the Hamiltonian in (9.12) is given by Hr

y,̃y, and (9.12) takes the form of
(8.29). It is well known [2] that due to the logarithmic interaction in the Hamiltonian,
β ≥ 1 implies that the process x(t) = (x−K(t), . . . , xK(t)) preserves the initial ordering,
i.e., x−K(t) ≤ · · · ≤ xK(t) and xi(t) ∈ J for every i ∈ I . The matrix Ã is given by
Ã := B̃ + W̃ where B̃ and W̃ are the following x-dependent matrices acting on vectors
v ∈ RK:

[B̃(x)v]j = −
∑
k

B̃jk(x)(vk − vj ), B̃jk(x) =
β

(xj − xk)2
≥ 0

[W̃(x)v]j := W̃j (x)vj
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with

W̃j (x) :=
β

2

{ ∑
|k|≥K+1

[
1− r

(xj − yk)2
+

r

(xj − ỹk)2

]
+

1− r
N

V ′′
(
xj

N

)
+
r

N
Ṽ ′′
(
xj

N

)}
.

Here r ∈ [0, 1] is a fixed parameter which we will omit from the notation of W̃ .
For any fixed path x(·), define the following time-dependent operators (matrices)

on RK:
A(s) := Ã(x(s)), B(s) := B̃(x(s)), W(s) := W̃(x(s)), (9.23)

where W is a multiplication operator with the j -th diagonal Wj (s) = W̃j (xj (s)) depend-
ing only the j -th component of the process x(s). Clearly A(s) = B(s) +W(s). We also
define the associated (time dependent) quadratic forms which we denote by the corre-
sponding lower case letters, in particular

b(s)[u, v] :=
∑
i∈I

ui[B(s)v]i =
1
2

∑
k,j∈I

Bjk(s)(uk − uj )(vk − vj ),

w(s)[u, v] :=
∑
i∈I

ui[W(s)v]i =
∑
i

uiWi(s)vi,

a(s)[u, v] := b(s)[u, v] +w(s)[u, v].

(9.24)

With this notation we can apply Proposition 9.1 to our case and get

Corollary 9.2. Let h0 be given by (8.12), let O = ON : R → R be an observable for
n = 1 (see (2.7)), and assume that y, ỹ ∈ RL=0,K(ξ

2δ/2, α), in particular A(s) given in
(9.23) satisfies A(s) ≥ τ−1 with τ = CK by (8.28). Then with a large constant C1 and
for any p ∈ I , −K ≤ p ≤ K − 1, we have

〈h0;O(xp − xp+1)〉ω

=
1
2

∫ C1K logK

0
dσ

∫ ∑
b∈I

∂bh0(x)Ex[O
′(xp − xp+1)(v

b
p(σ )− v

b
p+1(σ ))]ω(dx)

+O(‖O ′‖∞K
−2), (9.25)

where vb(s) = vb(s, x(·)) solves (9.15) with A(s) given in (9.23).

Proof. If h0 were a smooth function, then (9.25) would directly follow from (9.17). The
general case is a simple cutoff argument using the fact that h0 ∈ L

2(dω) and

Eω|∂bh0| ≤ Eω[|(Vy)
′(xp)| + |(Ṽy)

′(xp)|]

≤

∑
j 6∈I

Eω
[

1
|yj − xp|

+
1

|̃yj − xp|

]
+ C ≤ CK(C3+1)ξ .

Here we have used (8.20) and the fact that y, ỹ ∈ RL=0,K = RL=0,K(ξ
2δ/2, α) are

regular on scale Kξ2
≤ Kξ , so the summation is effectively restricted to Kξ terms. ut
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The representation (9.25) expresses the correlation function in terms of the discrete spatial
derivative of the solution to (9.15). To estimate vbp(σ, x(·)) − vbp+1(σ, x(·)) in (9.25), we
will now study the Hölder continuity of the solution vb(s, x(·)) to (9.15) at time s = σ

and at the spatial point p. For any fixed σ we will do so for each fixed path x(·), with the
exception of a set of “bad” paths that will have a small probability.

Notice that if all points xi are approximately regularly spaced in the interval J , then
the operator B has a kernel Bij ∼ (i − j)−2, i.e. it is essentially a discrete version of the
operator |p| =

√
−1. Hölder continuity will thus be a consequence of the De Giorgi–

Nash–Moser bound for the parabolic equation (9.15). However, we need to control the
coefficients in this equation, which depend on the random walk x(·).

For De Giorgi–Nash–Moser theory we need both upper and lower bounds on the
kernel Bij . The rigidity bound (8.14) guarantees a lower bound on Bij , up to a factor
K−C2ξ

2
≥ K−ξ . The level repulsion estimate implies certain upper bounds on Bij , but

only in an average sense. In the next section we define a good set of paths that satisfy both
requirements.

9.3. Sets of good paths

From now on we assume the conditions of Theorem 8.1. In particular we are given
some ξ > 0 and we assume that the boundary conditions satisfy y, ỹ ∈ RL=0,K =

RL=0,K(ξ
2δ/2, α) and (8.6) with this ξ . We define the following “good sets”:

G :=
{

sup
0≤s≤C1K logK

sup
|j |≤K

|xj (s)− αj | ≤ K
ξ ′
}
, (9.26)

where
ξ ′ := (C2 + 1)ξ2,

with C2 being the constant in (8.14) and αj given by (8.7). We recall the definition of the
event Q̃σ,Z for any Z ∈ I and σ ∈ T = [0, C1K logK] from (9.5).

Lemma 9.3. There exists a positive constant θ , depending on ξ ′ = (C2+ 1)ξ2, such that

Pω(Gc) ≤ Ce−K
θ

. (9.27)

Moreover, there is a constant C4, depending on the constant C2 in (8.14) and on C3 in
(8.17), (8.18) such that for any ξ and ρ small enough, we have

Pω(Q̃c
σ,Z) ≤ CK

C4ξ−ρ (9.28)

for each fixed Z ∈ I and fixed σ ∈ T .

Proof. From the stochastic differential equation (8.29) of the dynamics we have

|xi(t)− xi(s)| ≤ C|t − s| +

∫ t

s

[∑
j∈I
j 6=i

1
|xj (a)− xi(a)|

+

∑
j∈I c

1
|yj − xi(a)|

]
da

+ |Bi(t)− Bi(s)|. (9.29)
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Using (8.20) and the invariance of x(·) under ω, we have the bound

Eω
[∫ t

s

∑
j 6=i

1
|xj (a)− xi(a)|

]3/2

≤ CK3
|t − s|3/2 max

i∈I
Eω

1
|xi − xi+1|3/2

≤ CK3+C3ξ |t − s|3/2.

This implies for any fixed s < t ≤ C1K logK and for any R > 0 that

Pω
[∫ t

s

∑
j 6=i

1
|xj (a)− xi(a)|

≥ R

]
≤ CK3+C3ξ |t − s|3/2R−3/2.

A similar bound holds for the second summation in (9.29); the summation over large j
can be performed by using the regularity of y ∈ RL=0,K .

Set a parameter q ≤ cR and choose a discrete set of increasing times {sk : k ≤
(C1K logK)/q} such that

0 = s0 < s1 ≤ s2 ≤ · · · ≤ C1K logK and |sk − sk+1| ≤ q.

From standard large deviation bounds on the Brownian motion increment Bi(t) − Bi(s)
and from (9.29), we have the stochastic continuity estimate

Pω
(

sup
s,t∈[sk,sk+1],|i|≤K

|xi(s)− xi(t)| ≥ R
)
≤ Ke−CR

2/q
+ CK4q3/2R−3/2

for any fixed k. Taking sup over k, and overestimating C1K logK ≤ K2, we have

Pω
(

sup
0≤s,t≤C1K logK,|t−s|≤q,|i|≤K

|xi(s)−xi(t)| ≥ R
)
≤ K3q−1e−CR

2/q
+CK6q1/2R−3/2

for any positive q and R with q ≤ cR.
From the rigidity bound (8.14) we know that for some θ3 > 0 and for any fixed k

Pω{|xj (sk)− αj | ≥ CKC2ξ
2
} ≤ Ce−K

θ3
, j ∈ I.

ChoosingR = Kξ ′/2 and q = exp(−Kθ3/2), and usingCKC2ξ
2
≤ Kξ ′/2 with the choice

of ξ ′, we have

Pω(Gc) ≤ Ce−K
θ3
K3q−1

+K3q−1e−CR
2/q
+ CK6q1/2R−3/2

≤ C exp(−Kθ3/3)

for sufficiently large K , and this proves (9.27) with θ = θ3/3.
We will now prove (9.28). The number of intersections in the definition of Q̃σ,Z is

only a (logK)-power, so it will be sufficient to prove (9.28) for one set Qc. We will
consider only the set Qc

σ,Z and only for Z = 0 and σ = 0. The modification needed for
the general case is only notational. We start the proof by noting that for s > 0,

1
1+s′

∫ s′

0
da

1
M ′

M ′∑
i=−M ′

1
|xi(a)−xi+1(a)|2

≤ C
1

1+s

∫ s

0
da

1
M

M∑
i=−M

1
|xi(a)−xi+1(a)|2
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holds for any s′ ∈ [s/2, s] and M ′ ∈ [M/2,M]. Hence it is enough to estimate

Pω
{

1
1+ s

∫ s

0
da

1
M

M∑
i=−M

1
|xi(a)− xi+1(a)|2

≥ Kρ

}
(9.30)

for fixed dyadic points (s,M) = {(2−p1K2, 2−p2K)} in space-time for any integers
p1, p2 ≤ C logK . Since the cardinality of the set of these dyadic points is justC(logK)2,
it suffices to estimate (9.30) only for a fixed s,M .

The proof is different for β = 1 and β > 1. In the latter case, from (8.20) we see that
the random variable in (9.30) has expectation CKC3ξ . Thus the probability in (9.30) is
bounded by CKC3ξ−%, so (9.28) holds in this case with C4 slightly larger than C3 + 1 to
accommodate the logK factors.

In the case β = 1 the random variable in (9.30) has a logarithmically divergent ex-
pectation. To prove (9.28) for β = 1, we need to regularize the interaction on a very small
scale of orderK−C with a large constant C. This regularization is a minor technical detail
which does not affect other parts of this paper. We now explain how it is introduced, but
for simplicity we will not indicate it in the notation in the subsequent sections.

For any y, ỹ ∈ RL,K satisfying (4.8) and for ε > 0, we define the extension ωε :=
ω
r,ε
y,̃y of the measure ω = ωry,̃y (see (8.9)) from the simplex JK ∩4(K) to RK by replacing

the singular logarithm with a C2-function. For x ∈ RK and a := |J | ∼ K we set

Hε(x) :=
1
2

∑
i∈I

U ε(xi)−
∑
i<j

logaε(xj − xi),

U ε(x) := U
r,ε
y,̃y(x) = (1− r)V

ε
y (x)+ rṼ

ε
ỹ (x),

V εy (x) := NV (x/N)− 2
∑
k<−K

logaε(x − yk)− 2
∑
k>K

logaε(yk − x),

where we define

logε(x) := 1(x ≥ ε) log x + 1(x < ε)

{
log ε +

x − ε

ε
−

1
2ε2 (x − ε)

2
}
.

We remark that the same regularization for a different purpose was introduced in [25,
Appendix A]. It is easy to check that logε is in C2(R), is concave, and satisfies

lim
ε→0

logε(x) =

{
log x if x > 0,
−∞ if x ≤ 0.

Furthermore, we have the lower bound

∂2
x logε(x) ≥

{
−1/x2 if x > ε,

−1/ε2 if x ≤ ε.
(9.31)

We then define

ωε(dx) := Z−1
ε e−βHε(x)dx on RK, where Zε :=

∫
e−βHε(x)dx.
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Notice that on the support of ωε the particles do not necessarily keep their natural order
and they are not confined to the interval J . We recall that ωr=0

y,̃y = µy and ωr=1
y,̃y = µ̃ỹ, so

these definitions also regularize the initial local measures in Theorem 4.1.
In order to apply the proof of Theorem 4.1 to ωε, we need two facts. First, ω and ωε

are close in the entropy sense, i.e.

S(ω|ωε) ≤ CKCε2,

Using this entropy bound with ε = K−C
′

for a sufficiently large C′, we see that the
measures µy and µ̃ỹ can be replaced with their regularized versions µεy, µ̃εỹ both in the
condition (4.10) and in the statement (4.11). We can now use the argument of Section 8
with the regularized measures.

The second fact is that the rigidity and level repulsion estimates given in Lemma 8.2
also hold for the regularized measure ωε. In fact, apart from the rigidity in the form of
(8.14), we also need the following weaker level repulsion bound:

Pω
ε

(xi+1 − xi ≤ s) ≤ CK
Cξ s2, i ∈ JL−K − 1, L+KK, s ≥ Kξε.

Using (9.31), this bound easily implies

Eω
ε

log′′ε (xi+1 − xi) ≤ CK
Cξ
|log ε|.

Thus the regularized version of the random variable in (9.30) has a finite expectation and
we obtain (9.28) also for β = 1.

With these comments in mind, these two facts can be proved following the same path
as the corresponding results in Section 7. The only slight complication is that the particles
are not ordered, but for ε = K−C

′

the regularized potential strongly suppresses switching
order. More precisely, we have

Pω
ε

(xi+1 − xi ≤ −Maε) ≤ e
−cM2

(9.32)

for any M ≥ K3. This inequality follows from the estimate∫
−Maε

−∞

elogaε vdv ≤ (aε)2
∫
−M

−∞

e−cu
2
du ≤ e−cM

2
,

since for M ≥ K3 all other integrands in the measure ωε can be estimated trivially at
the expense of a multiplicative error KCK2

that is still negligible when compared with
the factor exp(−cM2). The estimate (9.32) allows us to restrict the analysis to xi+1 ≥

xi −K
−C′′ with some large C′′. This condition replaces the strict ordering xi+1 ≥ xi that

is present in Section 7. This replacement introduces irrelevant error factors that can be
easily estimated. This completes the proof of Lemma 9.3. ut

In the rest of the paper we will work with the regularized measure ωε but for simplicity
we will not indicate this regularization in the notation.
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9.4. Restrictions to the good paths

9.4.1. Restriction to the set G. Now we show that the expectation (9.25) can be restricted
to the good set G with a small error. We just estimate the complement as∫ ∑

b∈I

|∂bh0(x)|ExGc[|O ′(xp − xp+1)| |v
b
p(σ )− v

b
p+1(σ )|]ω(dx)

≤ C‖O ′‖∞

∫
Eω

∑
b

|∂bh0(x)|Gc[|vbp(σ )| + |vbp+1(σ )|].

Since A ≥ 0 as a K×K matrix, the equation (9.15) is a contraction in L2. Clearly A is a
contraction in L1 as well, hence it is a contraction in any Lq , 1 ≤ q ≤ 2, by interpolation.
By the Hölder inequality and the Lq -contraction for some 1 < q < 2, we see that for
each fixed b ∈ I ,

Eω|∂bh0(x)|Gc|vbp(σ )| ≤ [EωGc]q/(q−1)
[Eω|∂bh0(x)|q |vbp(σ )|

q
]
1/q

≤ [PωGc]q/(q−1)
[
Eω|∂bh0(x)|q

∑
i∈I

|v
p
i (0)|

q
]1/q
≤ CKC3ξ e−cK

θ4
≤ e−cK

θ4

with some θ4 > 0. Here we have used (9.27) for the first factor. The second factor was
estimated by (8.20) (recall the definition of h0 from (8.12)). After summing over b, we
get

Eω
∑
b

|∂bh0(x)|Gc[|O ′(xp − xp+1)| |v
b
p(σ )− v

b
p+1(σ )|] ≤ Ce

−cKθ4
‖O ′‖∞.

Therefore, under the conditions of Corollary 9.2, and using the notation Eω for the pro-
cess, we have

|〈h0;O(xp − xp+1)〉ω|

≤
1
2
‖O ′‖∞

∫ C1K logK

0

∑
b∈I

Eω[G|∂bh0(x)| |(vbp(σ )− v
b
p+1(σ ))|] dσ

+O(‖O ′‖∞K
−2), (9.33)

where vb is the solution to (9.15), assuming that the constant C1 in the upper limit of the
integration is large enough.

9.4.2. Restriction to the set Q̃ and the decay estimates. The complement of the set Q̃σ,Z

includes the “bad” paths for which the level repulsion estimate in an average sense does
not hold. However, the probability of Q̃c

σ,Z is not very small, it is only a small negative
power ofK (see (9.28)). This estimate would not be sufficient against the time integration
of order C1K logK in (9.33); we will have to use an L1-L∞ decay property of (9.15)
which we now derive. Denote the Lp-norm of a vector u = {uj : j ∈ I } by

‖u‖p =
(∑
j∈I

|uj |
p
)1/p

.
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Proposition 9.4. Consider the evolution equation

∂su(s) = −A(s)u(s), u(s) ∈ RI = RK,

and fix σ > 0. Suppose that for some constant b we have

Bjk(s) ≥ b/(j − k)
2, 0 ≤ s ≤ σ, j 6= k, (9.34)

and
Wj (s) ≥ b/dj , dj :=

∣∣|j | −K∣∣+ 1, 0 ≤ s ≤ σ. (9.35)

Then for any 1 ≤ p ≤ q ≤ ∞ we have the decay estimate

‖u(s)‖q ≤ (sb)−(1/p−1/q)
‖u(0)‖p, 0 < s ≤ σ. (9.36)

Proof. We consider only the case b = 1; the general case follows by scaling. We follow
the idea of Nash and start from the L2-identity

∂s‖u(s)‖22 = −2a(s)[u(s),u(s)].

For each s we can extend u(s) : I → RK to a function ũ(s) on Z by defining ũj (s) =
uj (s) for |j | ≤ K and ũj (s) = 0 for j > |K|. Dropping the time argument, we have, by
the estimates (9.34) and (9.35) with b = 1,

2a(u,u) ≥
∑
i,j∈Z

(̃ui − ũj )
2

(i − j)2
≥ c‖̃u‖44‖̃u‖

−2
2 ,

with some positive constant, where, in the second step, we used the Gagliardo–Nirenberg
inequality for the discrete operator

√
−1 (see (B.4) in Appendix B) with p = 4, s = 1.

Thus we have
a[u,u] ≥ c‖u‖44‖u‖

−2
2 ,

and the energy inequality

∂s‖u‖22 ≤ −c‖u‖
4
4‖u‖

−2
2 ≤ −c‖u‖

4
2‖u‖

−2
1 ,

using the Hölder estimate ‖u‖2 ≤ ‖u‖
1/3
1 ‖u‖

2/3
4 . Integrating this inequality from 0 to s

we get
‖u(s)‖2 ≤ Cs−1/2

‖u(0)‖1, (9.37)

and similarly ‖u(2s)‖2 ≤ Cs−1/2
‖u(s)‖1. Since the previous proof uses only the time

independent lower bounds (9.34), (9.35), we can use duality in the time interval [s, 2s] to
obtain

‖u(2s)‖∞ ≤ Cs−1/2
‖u(s)‖2.

Together with (9.37) we have

‖u(2s)‖∞ ≤ Cs−1
‖u(0)‖1.

By interpolation, we have thus proved (9.36). ut
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In the good set G (see (9.26)), the bounds (9.34) and (9.35) hold with b = cK−ξ
′

. Hence
from the decay estimate (9.36), for any fixed σ,Z, we can insert the other good set Q̃σ,Z

into the expectation in (9.33). This is obvious since the contribution of its complement is
bounded by∫ C1K logK

0
dσ

∑
b

EωQ̃c
σ,ZG|∂bh0(x)|(vbp(σ )+ v

b
p+1(σ ))

≤ CKξ ′
∫ C1K logK

0
dσ σ

−
1

1+ξ Eω
[
G
(∑
b∈I

|∂bh0(x)|1+ξ
) 1

1+ξ Q̃c
σ,Z

]
≤ CK2ξ ′

∫ C1K logK

0
dσ σ

−
1

1+ξ Eω
[
[1+d(xK(σ ))−1

+d(x−K(σ ))
−1
]Q̃c

σ,Z

]
≤ CK2ξ ′

×

∫ C1K logK

0
dσ σ

−
1

1+ξ
[
Eω[1+d(xK(σ ))−1

+d(x−K(σ ))
−1
]
3/2]2/3

[Pω(Q̃c
σ,Z)]

1/3

≤ CK2ξ ′(C1K logK)ξKC3ξK(C4ξ−ρ)/3, (9.38)

where in the first line we have used a Hölder inequality with exponents 1 + ξ and its
dual, and in the second line the decay estimate (9.36) with q = ∞, p = 1 + ξ . The
purpose of taking a Hölder inequality with a power slightly larger than one was to avoid
the logarithmic singularity in the dσ integration at σ ∼ 0. In the third line we have split
the sum into two parts and used the bound

|∂bh0(x)| ≤ |(Vy)
′(xj )− (Ṽ̃y)

′(xj )| ≤ K
ξ ′/d(xb), (9.39)

which follows from (8.3) (with ξ replaced by ξ2 since y, ỹ ∈ RL,K(ξ
2δ/2, α/2)). Recall

that d(x) is the distance to the boundary (see (8.5)). For indices away from the boundary,
|b| ≤ K − CKξ ′ , we have |d(xb)| ≥ K−ξ

′

min{|b − K|, |b + K|} on the set G that
guarantees the finiteness of the sum. For indices near the boundary we have just estimated
every term with the worst one, i.e. b = ±K . We have used a Hölder inequality in the fifth
line of (9.38) and computed the expectation by using (8.20) in the last line. Hence we
have proved the following proposition:

Proposition 9.5. Suppose that

ρ ≥ 12ξ ′ + 6(C4 + C3 + 1)ξ (9.40)

with C3 and C4 defined in (8.17) and (9.28), respectively. Then for any fixed Z,p ∈ I
with p 6= K , we have

|〈h0;O(xp − xp+1)〉ω|

≤
1
2
‖O ′‖∞

∫ C1K logK

0

∑
b∈I

Eω[Q̃σ,ZG|∂bh0(x)| |vbp(σ )− v
b
p+1(σ )|] dσ

+O(‖O ′‖∞K
−ρ/6). (9.41)
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9.5. Short time cutoff and finite speed of propagation

The Hölder continuity of the parabolic equation (9.15) emerges only after a certain time,
thus for the small σ regime in the integral (9.41) we need a different argument. Since
we are interested in the Hölder continuity around the middle of the interval I (note that
|p| ≤ K1−ξ∗ in Theorem 8.1), and the initial condition ∂bh0 is small if b is in this region,
a finite speed of propagation estimate for (9.15) will guarantee that vbp(σ ) is small if σ is
not too large.

From now on, we fix σ ≤ C1K logK , |Z| ≤ K/2 and a path x(·), and assume
that x(·) ∈ G ∩ Q̃σ,Z . In particular, thanks to the definition of G and the regularity of
the locations αj , the time dependent coefficients Bij (s) and Wi(s) of the equation (9.15)
satisfy (9.34) and (9.35) with b = K−ξ

′

.
We split the summation in (9.41). Fix a positive constant θ5 > 0. The contribution of

the indices |b| ≤ K1−θ5 to (9.41) is bounded by∫ C1K logK

0
EωQ̃σ,ZG

∑
|b|≤K1−θ5

|∂bh0(x)|[vbp(σ )+ v
b
p+1(σ )] dσ

≤ C

∫ C1K logK

0
Eω
[
Q̃σ,ZG

[ ∑
|b|≤K1−θ5

|∂bh0(x)|
]
× max
|b|≤K1−θ5

|vbp(σ )|
]
dσ

≤ CKξ ′−θ5

∫ C1K logK

0
Eω
[
Q̃σ,ZG max

|b|≤K1−θ5
|vbp(σ )|

]
dσ

≤ Kξ ′−θ5

∫ C1K logK

0
σ−1 dσ ≤ K2ξ ′−θ5 , (9.42)

where we neglected the vbp+1 term for simplicity since it can be estimated exactly in the
same way. From the second to the third line we have used the fact that

|∂bh0(x)| ≤
Kξ ′

min{|b −K|, |b +K|} + 1
≤ CKξ ′−1, |b| ≤ K1−θ5 ,

holds on the set G, from (9.39) and from the rigidity bound provided by G. To arrive at the
last line of (9.42) we have used the L1

→ L∞ decay estimate (9.36) and we recall that the
singularity σ ∼ 0 can be cut off exactly as in (9.38), i.e. by considering a power slightly
larger than 1 in the first line. Note that the set Q̃σ,Z played no role in this argument.

Together with (9.41) and with the choice

θ5 > ρ (9.43)

and recalling ρ ≥ 4ξ ′ from (9.40), we have

|〈h0;O(xp − xp+1)〉ω|

≤
1
2
‖O ′‖∞

∫ C1K logK

0

∑
|b|>K1−θ5

Eω[Q̃σ,ZG|∂bh0(x)| |vbp(σ )− v
b
p+1(σ )|] dσ

+O(‖O ′‖∞K
−ρ/6). (9.44)
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The following lemma provides a finite speed of propagation estimate for the equation
(9.15), which will be used to control the short time regime in (9.44). This estimate is not
optimal, but it is sufficient for our purpose. The proof will be given in the next section.

Lemma 9.6 (Finite speed of propagation estimate). Fix b ∈ I and σ ≤ C1K logK .
Consider vb(s), the solution to (9.15), and assume that the coefficients of A satisfy

Wi(s) ≥ K
−ξ ′/di, Bij (s) ≥ K

−ξ ′/|i − j |2, 0 ≤ s ≤ σ, (9.45)

where di := min{|i +K|, |i −K|} + 1. Assume that

sup
0≤s≤σ

sup
0≤M≤K

1
1+ s

∫ s

0

1
M

∑
i∈I : |i−Z|≤M

∑
j∈I : |j−Z|≤M

Bij (s) ds ≤ CK
ρ1 (9.46)

for some fixed Z with |Z| ≤ K/2. Then for any s > 0,

|vbp(s)| ≤
CKρ1+2ξ ′+1/2√s + 1

|p − b|
. (9.47)

9.6. Proof of the finite speed of propagation estimate, Lemma 9.6

Let 1 � ` � K be a parameter to be specified later. Split the time dependent operator
A = A(s) defined in (9.23) into a short range and a long range part, A = S +R, with

(Su)j := −
∑

k: |j−k|≤`

Bjk(uk − uj )+Wjuj ,

(Ru)j := −
∑

k: |j−k|>`

Bjk(uk − uj ).

Note that S and R are time dependent. Denote by US(s1, s2) the semigroup associated
with S from time s1 to time s2, i.e.

∂s2US(s1, s2) = −S(s2)US(s1, s2)

for any s1 ≤ s2, and US(s1, s1) = I ; the notation UA(s1, s2) is analogous. Then by the
Duhamel formula,

v(s) = US(0, s)v0 +

∫ s

0
UA(s

′, s)R(s′)US(0, s′)v0 ds
′.

Notice that for `� Kξ ′ and for x(·) in the good set G (see (9.26)), we have

‖Ru‖1 =
∑
|j |≤K

∣∣∣∣ ∑
k: |j−k|≥`

1
(xj − xk)2

uk

∣∣∣∣ ≤ C`−1
‖u‖1,

or more generally,
‖Ru‖p ≤ C`−1

‖u‖p, 1 ≤ p ≤ ∞. (9.48)
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Recall the decay estimate (9.36) for the semigroup UA that is applicable by (9.45). Hence
we have, for s ≥ 2,∫ s

0
‖UA(s

′, s)R(s′)US(0, s′)v0‖∞ ds
′

≤ Kξ ′
∫ s

0
(s − s′)−1

‖R(s′)US(0, s′)v0‖1 ds
′
≤ Kξ ′`−1(log s)‖v0‖1,

where we have used that US is a contraction on L1. The nonintegrable short time singu-
larity for s′ very close to s, |s − s′| ≤ K−C , can be removed by using the Lp → L∞

bound (9.36) with some p > 1, invoking a similar argument in (9.38). In this short time
cutoff argument we use the fact that US is an Lp-contraction for any 1 ≤ p ≤ 2 by inter-
polation, and that the rate of the Lp → L∞ decay of UA is given in (9.36). Consequently,

‖v(s)− US(0, s)v0‖∞ ≤ `
−1(log s)Kξ ′

≤ C`−1(logK)Kξ ′ , (9.49)

where we have used that x(·) is in the good set G and that s ≤ C1K logK .
We now prove a cutoff estimate for the short range dynamics. Let r(s) := US(0, s)v0

and define
f (s) =

∑
j

φj r
2
j (s), φj = e

|j−b|/θ ,

with some parameter θ ≥ ` to be specified later. Recall that b is the location of the initial
condition, v0 = δb. In particular, f (0) = 1.

Differentiating f and using Wj ≥ 0, we have

f ′(s) = ∂s
∑
j

φj r
2
j (s) ≤ 2

∑
j

φj
∑

k: |j−k|≤`

rj (s)Bkj (s)(rk − rj )(s)

=

∑
|j−k|≤`

Bkj (s)(rk − rj )(s)[rj (s)φj − rk(s)φk]

=

∑
|j−k|≤`

Bkj (s)(rk − rj )(s)φj [rj − rk](s)

+

∑
|j−k|≤`

Bkj (s)(rk − rj )(s)[φj − φk]rk(s).

In the second term we use the Schwarz inequality and absorb the quadratic term in rk− rj
into the first term that is negative. Assuming ` ≤ θ , we have φ−2

k [φj − φk]
2
≤ C`2/θ2

for |j − k| ≤ `. Thus

f ′(s) ≤ C
∑
|j−k|≤`

Bkj (s)φ
−1
k [φj − φk]

2r2
k (s)

≤ Cθ−2`2
( ∑
k′,j : |j−k′|≤`

Bk′j (s)
)∑

k

φkr
2
k (s).
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From a Gronwall argument we have

f (s) ≤ exp
[
Cθ−2`2

∫ s

0

∑
k,j : |j−k|≤`

Bkj (s
′) ds′

]
f (0).

From the assumption (9.46) with M = K and any Z, we can bound the integration in the
exponent by ∫ s

0

∑
k,j : |j−k|≤K

Bkj (s
′) ds′ ≤ K1+ρ1(s + 1).

Thus we have∑
j

e|j−b|/θ r2
j (s) = f (s) ≤ exp[θ−2`2K1+ρ1(s + 1)]f (0) ≤ C, (9.50)

provided that we choose
θ = `K(ρ1+1)/2√s + 1.

In particular, this shows the following exponential finite speed of propagation estimate
for the short range dynamics:

rj (s) ≤ C exp
(
−

|j − b|

`K(ρ1+1)/2
√
s + 1

)
.

Now we choose ` = |p−b|K−ξ
′
−(ρ1+1)/2(s+1)−1/2 so that e|p−b|/θ ≥ exp(Kξ ′). Using

this choice in (9.50) and (9.49) to estimate vbp(s), we have thus proved that

|vbp(s)| ≤ `
−1(logK)Kξ ′

+ Ce−K
−ξ ′

≤
K2ξ ′+(ρ1+1)/2√s + 1

|p − b|
.

This concludes the proof of Lemma 9.6.

9.7. Completing the proof of Theorem 8.1

In this section we complete the proof of Theorem 8.1 assuming a discrete version of the
De Giorgi–Nash–Moser Hölder regularity estimate for the solution (9.1) (Theorem 9.8
below).

Notice that on the set G ∩ Q̃σ,Z the conditions of Lemma 9.6 are satisfied, especially
(9.46) with the choice

ρ1 := ρ + ξ
′ (9.51)

follows from the definition (9.4) since for the summands with |i − j | ≥ Kξ ′ in (9.56) we
can use Bij ≤ C|αi − αj |−2

≤ C|i − j |−2. Thus we can use (9.47) to estimate the short
time integration regime in (9.44). Setting

θ5 := min{ξ∗/2, 1/100}, (9.52)
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we obtain, for any |Z| ≤ 2K1−ξ∗ and |p| ≤ K1−ξ∗ ,∫ K1/4

0

∑
|b|>K1−θ5

Eω[Q̃σ,ZG|∂bh0(x)| |vbp(σ )− v
b
p+1(σ )|] dσ

≤ C

∫ K1/4

0
Eω
[
Q̃σ,ZG

∑
|b|>K1−θ5

|∂bh0(x)|vbp(σ )
]
dσ

≤ CK2ξ ′+ρ1+1/2+1/4+1/8−(1−θ5)Eω
[
Q̃σ,ZG

∑
|b|>K1−θ5

|∂bh0(x)|
]

≤ CK4ξ ′+ρ1+θ5−1/8Eω
[
Q̃σ,ZG

(
1

d(xK)
+

1
d(x−K)

)]
≤ CK4ξ ′+ρ1+C3ξ+θ5−1/8

≤ K−1/10 (9.53)

provided that
4ξ ′ + ρ1 + C3ξ ≤ 1/100. (9.54)

In the third line above we have used (9.47) together with |p − b| ≥ 1
2K

1−θ5 . This latter
bound follows from |b| > K1−θ5 and |p| ≤ K1−ξ∗ and from the choice θ5 < ξ∗. In the
fourth line we have used (9.39) and that on the set G we have∑

j

1
d(xj )

≤ (logK)Kξ ′
[

1
d(xK)

+
1

d(x−K)

]
.

Moreover, in the last step we have used (8.20). This completes the estimate for the small σ
regime. Notice that the set Q̃σ,Z did not play a role in this argument.

After the short time cutoff (9.53), we finally have to control the regime of large time
and large b-indices, i.e.∫ C1K logK

K1/4

∑
|b|>K1−θ5

Eω[Q̃σ,ZG|∂bh0(x)| |vbp(σ )− v
b
p+1(σ )|] dσ

from (9.44). We will exploit the Hölder regularity of the solution vb to (9.15). We will
assume that the coefficients of A in (9.15) satisfy a certain regularity condition.

Definition 9.7. The equation

∂tv(t) = −A(t)v(t), A(t) = B(t)+W(t), t ∈ T , (9.55)

is called regular at the space-time point (Z, σ ) ∈ I × T with exponent ρ if

sup
s∈T

sup
1≤M≤K

1
1+ |s − σ |

∣∣∣∣∫ σ

s

1
M

∑
i∈I : |i−Z|≤M

∑
j∈I : |j−Z|≤M

Bij (u) du

∣∣∣∣ ≤ Kρ . (9.56)

Furthermore, the equation is called strongly regular at the space-time point (Z, σ ) ∈ I×T
with exponent ρ if it is regular at all points {Z} × {4+ σ }, where we recall the definition
of 4 from (9.6):

4 = {−K · 2−m(1+ 2−k) : 0 ≤ k,m ≤ C logK}.
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Fix a Z ∈ I with |Z| ≤ K/2 and a σ ∈ T . Recall that on G∩Qσ,Z the regularity at (p, σ )
with exponent ρ1 from (9.51) follows from (9.4). Analogously, on the event G ∩ Q̃σ,Z ,
the strong regularity at (Z, σ ) with a slightly increased exponent ρ1 holds.

We formulate the partial Hölder regularity result for the equation (9.55). We collect
the following facts on the coefficients Bij (s) and Wi(s) that follow from x(·) ∈ G:

Bij (s) ≥ K
−ξ ′/|i − j |2, Wi(s) ≥ K

−ξ ′/di for any s ∈ T , i, j ∈ I, (9.57)

Wi(s) ≤ K
ξ ′/di for any s ∈ T , di ≥ KCξ ′ , (9.58)

and

1
C(i − j)2

≤ Bij (s) ≤
C

(i − j)2
for any s ∈ T , |i − j | ≥ ĈKξ ′ . (9.59)

Theorem 9.8. There exists a universal constant q > 0 with the following properties.
Let v(t) = vb(t) be a solution to (9.55) for any choice of b ∈ I , with initial condition
vbj (0) = δjb. Let Z ∈ I with |Z| ≤ K/2 and σ ∈ [Kc3 , C1K logK] be fixed, where
c3 > 0 is an arbitrary positive constant. There exist positive constants ξ0, ρ0 (depending
only on c3) such that if the coefficients of A satisfy (9.57)–(9.59) with some ξ ′ ≤ ξ0 and
the equation is strongly regular at the point (Z, σ ) with an exponent ρ1 ≤ ρ0 then for any
α ∈ [0, 1/3] we have

sup
|j−Z|+|j ′−Z|≤σ 1−α

1

|vj (σ )−vj ′(σ )| ≤ CK
ξ ′σ−1− 1

2qα, σ1 := min{σ,K1−c3}, (9.60)

where v = vb for any choice of b. The constant C in (9.60) depends only on c3.

Theorem 9.8 follows directly from the slightly more general Theorem 10.2 presented in
Section 10 and it will be proved there.

Armed with Theorem 9.8, we now complete the proof of Theorem 8.1. As we already
remarked, the conditions of Theorem 9.8 are satisfied on the set Q̃σ,Z ∩ G with some
small universal constants ρ0, ξ0. For any |p| ≤ K1−ξ∗ fixed, we choose Z = p (in fact,
we could choose any Z with |Z − p| ≤ C). Using (9.39), we have, for the large time
integration regime in (9.44),∫ C1K logK

K1/4

∑
|b|>K1−θ5

Eω[Q̃σ,pG|∂bh0(x)| |vbp(σ )− v
b
p+1(σ )|] dσ

≤ CKξ ′
∫ C1K logK

K1/4
Eω
[
Q̃σ,pG

∑
|b|>K1−θ5

1
d(xb)

|vbp(σ )− v
b
p+1(σ )|

]
dσ

≤ CK2ξ ′
∫ C1K logK

K1/4
σ−1−1/6qEω

[
Q̃σ,pG

∑
|b|>K1−θ5

1
d(xb)

]
dσ

≤ CK3ξ ′+ρ1+C3ξ−q/24. (9.61)
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In the third line we have used Theorem 9.8 with c3 = 1/4 and α = 1/3; and in the last
line we have used a similar argument to the last step of (9.53).

Finally, from (9.44), (9.53) and (9.61) and ρ1 = ρ + ξ
′ we have

|〈h0;O(xp − xp+1)〉ω|

≤ C‖O ′‖∞
(
K4ξ ′+ρ+C3ξ−q/24

+O(K−1/10)+O(K−ρ/6)
)
. (9.62)

For a given ξ∗ > 0, recall that we defined θ5 := min{ξ∗/2, 1/100} and we now
choose

ρ := min{q/100, θ5/2} = min{q/100, ξ∗/4, 1/200}, (9.63)

in particular (9.43) is satisfied. Since q > 0 is a universal constant, it is then clear that
for any sufficiently small ξ all conditions in (9.54) and (9.40) on the exponents ξ , ξ ′ =
(C2 + 1)ξ2 and ρ1 = ρ + ξ

′ can be simultaneously satisfied. Therefore we can make the
error term in (9.62) smaller than KCξK−ρ/6. With the choice of ε = ρ/6, where ρ is
from (9.63), we have thus proved Theorem 8.1. ut

Although the choices of parameters seem to be complicated, the underlying mechanism
is that there is a universal positive exponent q in (9.60). This exponent provides an extra
smallness factor in addition to the natural size of vj (σ ), which is σ−1 from the L1

→ L∞

decay. As (9.60) indicates, this gain comes from a Hölder regularity on the relevant scale.
The parameters ξ , ξ ′ and ξ∗ can be chosen arbitrarily small (without affecting the value
of q). These parameters govern the cutoff levels in the regularization of the coefficients
of A. There are other minor considerations due to an additional cutoff for small time
where we have to use a finite speed estimate. But the arguments for this part are of tech-
nical nature and most estimates are not optimized. We have just worked out estimates
sufficient to prove Theorem 8.1. The choices of exponents related to the various cutoffs
do not have intrinsic meanings.

As a guide to the reader, our choices of parameters, roughly speaking, are given by the
following rule: We first fix a small parameter ξ∗. Then we choose the cutoff parameter θ5
to be slightly smaller than ξ∗, (9.52). The exponent ρ in (9.4) has a lower bound by ξ
and ξ ′ in (9.40). On the other hand, ρ will affect the cutoff bound and so we have the
condition ρ < θ5 (i.e., (9.43)). So we choose ρ . ξ∗ and make ξ, ξ ′ very small so that
the lower bound requirement on ρ is satisfied. Finally, if ξ∗ ≤ q/100, we can use the gain
from the Hölder continuity to compensate all the errors which depend only on ξ, ξ ′, ξ∗.

10. A discrete De Giorgi–Nash–Moser estimate

In this section we prove Theorem 9.8, which is a Hölder regularity estimate for the
parabolic evolution equation

∂su(s) = −A(s)u(s), (10.1)

where A(s) = B(s)+W(s) are symmetric matrices defined by

[B(s)u]j = −
∑
k 6=j∈I

Bjk(s)(uk − uj ), [W(s)u]i = Wi(s)ui (10.2)
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and Bij (s) ≥ 0. Here I = {−K,−K + 1, . . . , K} and u ∈ CI . We will study this
equation in a time interval T ⊂ R of length |T | = σ and we will assume that σ ∈
[Kc3 , CK logK]. The reader can safely think of σ = CK logK . In the applications we
set T = [0, σ ], but we give some definitions more generally. The reason is that tradition-
ally in the regularity theory for parabolic equations one sets the initial condition u(−σ)
at some negative time −σ < 0 and one is interested in the regularity of the solution u(s)
around s = 0. In this case T starts at −σ , so in this section T = [−σ, 0]. This con-
vention is widely used for parabolic equations and in particular in [13]. Later on in our
application, we will need to make an obvious shift in time.

We will now state a general Hölder continuity result, Theorem 10.1, concerning the
deterministic equation (10.1) over the finite set I and on the time interval T = [−σ, 0].
Theorem 10.1 will be a local Hölder continuity result around an interior point Z ∈ I
separated away from the boundary. We recall the definition of strong regularity from
Definition 9.7. The following conditions on A will be needed that are characterized by
two parameters ξ, ρ > 0.

(C1)ρ The equation (10.1) is strongly regular with exponent ρ at the space-time point
(Z, 0).

(C2)ξ Denote by di = dIi := min{|i + K + 1|, |1 + K − i|} the distance of i to the
boundary of I . For some large constants C, Ĉ ≥ 10 , the following conditions are
satisfied:

Bij (s) ≥ K
−ξ/|i − j |2 for any s ∈ T , di ≥ K/C, dj ≥ K/C, (10.3)

Wi(s) ≤ K
ξ/di if di ≥ KCξ , s ∈ T , (10.4)

1(min{di, dj } ≥ K/C)
C(i − j)2

≤ Bij (s) ≤
C

(i − j)2
if |i − j | ≥ ĈKξ and s ∈ T .

(10.5)

Theorem 10.1 (Parabolic regularity with singular coefficients). There exists a universal
constant q > 0 such that the following holds. Consider the equation (10.1) on the time
interval T = [−σ, 0] with some σ ∈ [Kc3 ,K1−c3 ], where c3 > 0 is a positive con-
stant. Fix |Z| ≤ K/2 and α ∈ [0, 1/3]. Suppose that (C1)ρ and (C2)ξ hold with some
exponents ξ, ρ small enough depending on c3. Then for the solution u to (10.1) we have

sup
|j−Z|+|j ′−Z|≤σ 1−α

|uj (0)− uj ′(0)| ≤ Cσ−qα‖u(−σ)‖∞. (10.6)

The constant C in (10.6) depends only on c3 and is uniform inK . The result holds for any
K ≥ K0, where K0 depends on c3.

We remark that the upper bound σ ≤ K1−c3 is not an important condition, it is imposed
only for convenience to state (10.6) with a single scaling parameter. More generally, for
any σ ≥ Kc3 we have

sup
|j−Z|+|j ′−Z|≤σ 1−α

1

|uj (0)− uj ′(0)| ≤ Cσ
−qα
1 ‖u(−σ)‖∞. (10.7)
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where σ1 := min{σ,K1−c3}. If σ ≥ K1−c3 , then (10.7) immediately follows by noticing
that ‖u(−σ1)‖∞ ≤ ‖u(−σ)‖∞ and applying (10.6) with σ1 = K

1−c3 instead of σ .
To understand why Theorem 10.1 is a Hölder regularity result, we rescale the solution

so that the equation runs up to a time of order one. That is, for a given σ � 1 we define
the rescaled solution

U(T ,X) := u[σX]+Z(T σ), σ � 1

(where [·] denotes the integer part). Then the bound (10.6) says that

sup
|X|+|Y |≤ε

|U(0, X)− U(0, Y )| ≤ Cεq‖U(−1, ·)‖∞, ε ∈ [σ−1/3, 1].

Thus, in the macroscopic coordinates (T ,X) the Hölder regularity for U holds around
(0, 0) from order one scales down to order σ−1/3 scales. Note that Hölder regularity holds
only at one space-time point, since the strong regularity condition (C1)ρ was centered
around a given space-time point (Z, 0) in miscroscopic coordinates.

Notice that by imposing the regularity condition we only require the time integra-
tion of the singularity of Bij to be bounded. Thus we substantially weaken the standard
assumption in parabolic regularity theory on the supremum bound on the ellipticity.

Theorem 10.1 is a Hölder regularity result with L∞ initial data. Combining it with the
decay estimate of Proposition 9.4, we get a Hölder regularity result with L1 initial data.
However, for the application of the decay estimate, we need to strengthen (10.3) to

Bij (s) ≥ K
−ξ/|i − j |2, Wi(s) ≥ K

−ξ/di for any s ∈ T , i, j ∈ I. (10.8)

Let (C2)∗ξ be the condition identical to (C2)ξ except that (10.3) is replaced with (10.8).

Theorem 10.2. There exists a universal constant q > 0 such that the following holds.
Consider the equation (10.1) on the time interval T = [−τ − σ, 0] with some τ > 0 and
σ ∈ [Kc3 ,K1−c3 ], where c3 > 0 is a positive constant. Fix |Z| ≤ K/2 and α ∈ [0, 1/3].
Suppose that (C1)ρ and (C2)∗ξ hold with some small exponents ξ, ρ depending on c3.
Then for the solution u to (10.1) we have

sup
|j−Z|+|j ′−Z|≤σ 1−α

|uj (0)− uj ′(0)| ≤ CKξσ−qατ−1
‖u(−τ − σ)‖1. (10.9)

The constant C in (10.6) depends only on c3 and is uniform inK . The result holds for any
K ≥ K0, where K0 depends on c3.

Proof. We can apply Proposition 9.4 with b = K−ξ , p = 1, q = ∞ on the time interval
[−τ − σ,−σ ]. Then (9.36) asserts that

‖u(−σ)‖∞ ≤ Kξ τ−1
‖u(−τ − σ)‖1,

and (10.9) follows from (10.6). ut

Proof of Theorem 9.8. To avoid confusion between the roles of σ , in this proof we denote
the σ in the statement of Theorem 9.8 by σ ′. We will apply Theorem 10.2 and we choose
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σ and τ such that σ ′ = σ + τ . We also shift the time by σ ′ so that the initial time is
zero and the final time σ + τ = σ ′. Conditions (C1)ρ and (C2)∗ξ follow directly from
(9.57)–(9.59) and from strong regularity at (Z, σ ′) but %1 and ξ ′ are replaced by % and
ξ for simplicity of notation. Given σ ′ ∈ [Kc3 , C1K logK], we consider two cases. If
σ ′ ≤ K1−c3 , we apply Theorem 10.2 with σ = τ = σ ′/2. Then ‖u(−τ − σ)‖1 becomes
‖vb‖1 = 1 on the right hand side of (10.9), and (9.60) follows. If σ ′ ≥ K1−c3 , then we
apply Theorem 10.2 with σ = 1

2K
1−c3 and τ := σ ′ − σ . In this case τ is comparable

with σ ′ and σ ′ ≤ σ 3/2, and (9.60) again follows. ut

The rest of this section is devoted to the proof of Theorem 10.1. Our strategy follows
the approach of [13]; the multiscale iteration scheme and the key cutoff functions (10.20,
10.21) are also the same as in [13]. The main new feature of our argument is the deriva-
tion of the local energy estimate, Lemma 10.6, for a parabolic equation with singular
coefficients satisfying (C1)ρ and (C2)ξ . The proof of Lemma 10.6 will proceed in two
steps. We first use condition (C1)ρ and the argument of the energy estimate in [13] to
provide a bound in L∞t (L

2(Z)) on the solution to (10.1) (part (i) of Lemma 10.6). Along
this proof we also prove an energy dissipation estimate which can be translated into the
statement that the energy is small for most of the time. Using a new Sobolev type in-
equality (Proposition B.4) designed to deal with weak ellipticity we can improve the
bound in L∞t (L

2(Z)) to an L∞ estimate in space for most of the time to obtain part (ii) of
Lemma 10.6. Finally, we run the argument again to improve the L∞t (L

2(Z)) estimate for
short times (part (iii) of Lemma 10.6) that is needed to close the iteration scheme. Besides
this proof, the derivation of the second De Giorgi estimate (Lemma 10.7) is also adjusted
to the weaker condition (C1)ρ .

We warn the reader that the notation for various constants in this section will follow
[13] as much as possible for the sake of easy comparison. The conventions for these
constants will differ from the ones in the previous sections, and, in particular, we will
restate all conditions.

10.1. Hölder regularity

For any set S and any real function f define the oscillation OscS f := supS f − infS f .

Theorem 10.3. There exists a universal positive constant q with the following property.
For any two thresholds 1 < ϑ1 < ϑ0 there exist two positive constants ξ, ρ, depending
only on ϑ1 and ϑ0, such that the following hold:

Set M := 2−τ0K where τ0 ∈ N is chosen such that ϑ := logK/logM ∈ [ϑ1, ϑ0].
Suppose that (10.1) satisfies (C1)ρ and (C2)ξ with some Z ∈ J−K/2,K/2K. Suppose u
is a solution to (10.1) in the time interval T = [−3M, 0]. Assume that

sup
t∈[−3M,0]

max
i
|ui(t)| ≤ ` (10.10)

for some `. Then for any α ∈ [0, 1/3] there is a set G ⊂ [−M1−α, 0] such that

OscQ(α)∗(u) ≤ 4`M−qα, Q(α)∗
:= G × JZ − 3M1−α, Z + 3M1−αK, (10.11)
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with
|[−M1−α, 0] \ G| ≤M1/4,

i.e. the oscillation of the solution on scale M1−α (and away from the edges of the config-
uration space) is smaller than 4`M−qα for most of the time. Moreover,

OscQ̄(α)(u) ≤ C`M
−qα, Q̄(α)

:= [−M1/2, 0]×JZ−3M1−α, Z+3M1−αK, (10.12)

i.e. the oscillation is controlled for all times near 0.
These results hold for any K ≥ K0 sufficiently large, where the threshold K0 as well

as the constant C in (10.12) depend only on the parameters ϑ0, ϑ1.

We remark that the constant q plays the role of the Hölder exponent and it depends only
on ε0 from Lemma 10.6. This will be explained after Lemma 10.8 below.

Proof of Theorem 10.1. With Theorem 10.3, we now complete the proof of Theorem 10.1.
Given σ ∈ [Kc3 ,K1−c3 ], define M := 2−τ0K with some τ0 ∈ N such that σ/6 ≤M ≤

σ/3. Choosing ϑ1 := 1+ 1
2c3, ϑ0 := 2/c3, we clearly have ϑ = logK/logM ∈ [ϑ1, ϑ0].

Then (10.6) follows from (10.12) at time t = 0 using σ 1−α
≤ 3M1−α . ut

The proof of Theorem 10.3 will be a multiscale argument. On each scale n =

0, 1, . . . , nmax we define a space-time scale Mn := νnM and a size-scale `n := ζ n`

with some scaling parameters ν, ζ < 1 to be chosen later. The initial scales are M0 =M
and `0 = `. For notational convenience we assume that ν is of the form ν = 2−j0 for
some integer j0 > 0. We assume that ν ≤ ζ 10/10, and eventually ζ will be very close
to 1, while ν will be very close to 0. The corresponding space-time box on scale n is given
by

Qn := [−Mn, 0] × [Z −Mn, Z +Mn].

We will sometimes use an enlarged box

Q̂n := [−3Mn, 0] × [Z − M̂n, Z + M̂n], M̂n := LMn,

with some large parameter L that will always be chosen such that ν ≤ 1/(2L) and thus
Q̂n ⊂ Qn−1. We stress that the scaling parameters ν, ζ, L will be absolute constants,
independent of any parameters in the setup of Theorem 10.3.

The smallest scale is given by the relation Mnmax ∼ M1−α , i.e. nmax = α
logM
|log ν| . In

particular, since α ≤ 1/3, all scales arising in the proofs will be between M2/3 and M:

M2/3
≤ Mn ≤M = M0, ∀n = 0, 1, . . . , nmax. (10.13)

The following statement is the main technical result that will immediately imply Theo-
rem 10.3. In the application we will need only the second part of this technical theorem,
but its formulation is tailored to its proof that will be an iterative argument from larger to
smaller scales.

There will be several exponents in this theorem, but the really important one is χ : see
explanation around (10.18) later. The exponents ξ and ρ can be chosen arbitrarily small
and the reader can safely neglect them on a first reading.
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Theorem 10.4 (Staircase estimate). There exist positive parameters ν, ζ, L, satisfying

ν < min{ζ 10/10, 1/(2L)}

with the following property. For any two thresholds 1 < ϑ1 < ϑ0 there exist positive
constants χ , ξ , and ρ depending only on ϑ1 and ϑ0 (given explicitly in (10.75) and
(10.76) later) such that under the setup and conditions of Theorem 10.3, for any scale
n = 0, 1, . . . , nmax there exists a descreasing sequence of sets Gn ⊂ [−3Mn, 0] of
“good” times, Gn ⊂ Gn−1 ⊂ . . . , with

|Gcn| ≤ C
n−1∑
m=0

M
1/4
m , Gcn := [−3Mn, 0] \ Gn, (10.14)

such that we have the following two estimates:
(i) [Staircase estimate] Define the constant ūn by

sup
Q̂∗n

|u− ūn| =
1
2 OscQ̂∗n(u),

where
Q̂∗n := ([−3Mn, 0] ∩ Gn)× [Z − M̂n, Z + M̂n]

and for any m < n define

Sm,n :=

n−1∑
j=m

|ūj − ūj+1|.

Then

(ST)n |ui(t)− ūn| ≤ 9
(n)
i (t) ∀t ∈ [−3Mn, 0], ∀i, (10.15)

where 9(n) is a function on [−3Mn, 0] × I defined by

9
(n)
i (t) := 3

(n)
i · 1(t ∈ Gn)+8(n)i (t) · 1(t ∈ Gcn)

with

3
(n)
i := 1(M̂0 ≤ |i − Z|) · `0 +

n−1∑
m=0

1(M̂m+1 ≤ |i − Z| ≤ M̂m) · [`m + Sm,n]

+ 1(|i − Z| ≤ M̂n) · `n

and

8
(n)
i (t) := C8 · 1(M̂0 ≤ |i − Z|) · `0

+ C8

n−1∑
m=0

1(M̂m+1 ≤ |i − Z| ≤ M̂m) ·

[
`m

(
1+

√
|t | +M1/2

Mm

M
χ/2
m

)
+ Sm,n

]

+ C8 · 1(|i − Z| ≤ M̂n) · `n

(
1+

√
|t | +M1/2

Mn

M
χ/2
n

)
(10.16)

with some fixed constant C8. The subscript 8 in C8 indicates that this specific con-
stant controls the functions 8(n).
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(ii) [Oscillation estimate] For the good times we have

(OSC)n 1
2 OscQ̂∗

n+1
(u) ≤ ζ`n = `n+1, (10.17)

i.e. in the smaller box Q̂∗n+1 ⊂ Q̂
∗
n the oscillation is reduced from `n to `n+1.

All statements hold for any K ≥ K0 sufficiently large, where the threshold K0 as well as
the constant C8 depend only on the universal constants ν, ζ , L and on the parameters
ϑ0, ϑ1, ξ , ρ.

Here the time independent profile 3(n) is the “good” staircase function, representing the
control for most of the time (“good times”). The function i 7→ 3

(n)
i is a stepfunction that

increases in |i − Z| at a rate of approximately

3
(n)
i ∼ `n(|i − Z|/Mn)

q, |i − Z| � Mn,

where
q = |log ζ |/|log ν| (10.18)

is a small positive exponent. Note that this exponent is the same as the final Hölder expo-
nent in Theorems 10.3 and 10.1.

For the “bad times” (the complement of the good times), a larger control described
by 8(n)(t) holds. This weaker control is time dependent and deteriorates with larger |t |.
The exponent χ in the definition of8 (see (10.16)), will be essentially equal to q (modulo
some upper cutoff, see (10.75) later). The factor Mχ/2

n on scale n expresses how much
the estimate deteriorates for “bad times” compared with the estimate at “good times”.

The bound (10.15) for good times t ∈ Gn with the control function 3(n) directly
follows from (10.17) and (10.10). The new information in (10.15) is the weaker estimate
expressed by 8(n) that holds for all times. Note that 3(n)i ≤ 8

(n)
i (t), i.e. the bound

|ui(t)− ūn| ≤ 8
(n)
i (t), ∀t ∈ [−Mn, 0], ∀i,

follows from (10.15). We also remark that (10.17) implies |ūn − ūn+1| ≤ `n, and thus

Sm,n =

n−1∑
j=m

|ūj − ūj+1| ≤

n−1∑
j=m

j̀ ≤
`m

1− ζ
(10.19)

gives an estimate for the effect Sm,n of the shifts in the definition of3(n) and8(n). More-
over, the uniform bound (10.10) shows that for any n,

|ūn| ≤ `0 = `.

Proof of Theorem 10.3. Without loss of generality we can assume that M−α
≤ ν2, other-

wise M−qα
≥ ζ 2

≥ 2/3, so (10.11) immediately follows from (10.10). For M−α
≤ ν2,

the estimate (10.11) follow directlys from (10.17), by choosing n ≥ 1 such that Mn+2 ≤

3M1−α
≤ Mn+1, i.e. νn+2

≤ 3M−α
≤ νn+1. Then `n+1 = `ζ n+1

≤ 2M−qα with q
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defined in (10.18). The set G in Theorem 10.3 will be just Gn+1 ∩ [−M1−α, 0]. The es-
timate (10.12) follows from (10.15) by noting that for |t | ≤M1/2

≤ M
3/4
n (see (10.13))

the terms √
|t | +M1/2

Mm

M
χ/2
m � 1, m = 0, 1, . . . , n,

are all negligible and we simply have

8
(n)
i (t) ≤ C83

(n)
i , |t | ≤M1/2.

Thus (10.12) follows exactly as (10.11). This completes the proof. ut

In the rest of the section we will prove Theorem 10.4. We will iteratively check the main
estimates, (ST)n and (OSC)n, from scale to scale. For n = 0, the bound (ST)0 is given by
(10.10). In Section 10.2 we prove for any n that (ST)n implies (OSC)n. In Section 10.3
we prove that (ST)n and (OSC)n imply (ST)n+1. From these two statements it will fol-
low that (ST)n and (OSC)n hold for any n. Sections 10.4 and 10.5 contain the proof
of two independent results (Lemmas 10.6 and 10.7) formulated on a fixed scale, which
are used in Section 10.2. These are the generalizations of the first and second De Giorgi
lemmas of [13], adjusted to our situation where no supremum bound is available on the
coefficients Bij (s), and we have control only in a certain average sense.

10.2. Proof of (ST)n⇒(OSC)n

For any real number a, we write a+ = max(a, 0) ≥ 0 and a− = min(a, 0) ≤ 0, in
particular a = a+ + a−. Fix a large integer M and a center Z ∈ I with dZ ≥ K/2 (recall
that di was defined above (10.3); it is the distance of i to the boundary). For any ` > 0
and λ ∈ (0, 1/10) define

ψi = ψ
(M,Z,`)
i := `

(∣∣∣∣ i − ZM ∣∣∣1/2 − 1
)
+

, (10.20)

ψ̃i = ψ̃
(M,Z,`,λ)
i := `

[(∣∣∣∣ i − ZM
∣∣∣∣− λ−4

)1/4

+

− 1
]
+

. (10.21)

Notice that ψi = 0 if |i − Z| ≤ M and ψ̃i = 0 if |i − Z| ≤ Mλ−4. Here ` will play the
role of the typical size of u− ψ . One could scale out ` completely, but we keep it in. We
also define the scaled versions of these functions for any n ≥ 0:

ψ
(n)
i := ψ

(Mn,Z,`n)
i , ψ̃

(n)
i := ψ̃

(Mn,Z,`n,λ)
i .

Proposition 10.5. Suppose that for some n ≥ 0 we know (ST)j for any j = 0, 1, . . . , n.
Then (OSC)n holds. Furthermore,∑

i

(ui(t)− ūn − `n − ψ
(n)
i )2+ ≤ C

(
|t | +M1/2

Mn

)
Mχ
n `

2
n, t ∈ [−Mn, 0]. (10.22)
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Proof of Proposition 10.5. With a small constant λ ∈ (10L−1/4, 1) and a large integer k0,
to be specified later, define the rescaled and shifted functions

v
(n,k)
i (t) := `n + λ

−2k([ui(t)− ūn] − `n), k = 0, 1, . . . , k0. (10.23)

In particular, from (ST)n we have

v
(n,k)
i (t) ≤ `n + λ

−2k(9
(n)
i (t)− `n), t ∈ [−3Mn, 0]. (10.24)

We will show that with an appropriate choice k = k(n), v = v(n,k+1) satisfies a better
upper bound than (10.24), which then translates into a decrease in the oscillation of u on
scale n. The improved upper bound on v will follow from applying two basic lemmas from
parabolic regularity theory, traditionally called the first and second De Giorgi lemmas.
The second De Giorgi lemma asserts that going from a larger to a smaller space-time
regime, the maximum of vi(t) decreases in an average sense. The first De Giorgi lemma
enhances this statement to a supremum bound for vi(t) that is strictly below the maximum
of vi(t) on a larger space-time regime. This is equivalent to the reduction of the oscillation
of v.

In the next section we first state these two basic lemmas, then we continue the proof
of Proposition 10.5. The proofs of the De Giorgi lemmas are deferred to Sections 10.4
and 10.5.

10.2.1. Statement of the generalized De Giorgi lemmas. Both results will be formulated
on a fixed space-time scale M and with a fixed size-scale `. We fix a center Z ∈ I with
|Z| ≤ K/2. Recall the definition of ψ = ψ (M,Z,`) from (10.20). The first De Giorgi
lemma is a local dissipation estimate:

Lemma 10.6. There exists a small positive universal constant ε0 with the following prop-
erties. Consider the parabolic equation (10.1) on the time interval T = [−σ, 0]with some
σ ∈ [Kc3 ,K1−c3 ] and let u be a solution. Define v := u − ū with some constant shift
ū ∈ R. Fix small positive constants κ, ξ, ρ, χ and a large constant ϑ0 such that

10ϑ0(ξ + ρ) ≤ κ ≤ 1/1000, κ + 10ϑ0(ξ + ρ) ≤ χ ≤ 1/1000. (10.25)

Let M := K1/ϑ with some ϑ ∈ [1 + 2κ, ϑ0]. Assume that the matrix elements of A =
B +W satisfy (10.3)–(10.5) with exponent ξ and that (10.1) is regular with exponent ρ
at the space-time points (Z, t), t ∈ 40, where

40 := {−M · 2−m(1+ 2−k) : 0 ≤ m, k ≤ C logM}. (10.26)

Assume

|ū| ≤ C`K1−ξM−1, (10.27)[
1
M2

∫ 0

−2M
dt
∑
i

(vi(t)− ψi)
2
+

]1/2

≤ ε0`, ψi = ψ
(M,Z,`)
i , (10.28)

sup
t∈[−2M,0]

sup{|i − Z| : vi(t) > ψi} ≤ M
1+κ , (10.29)

sup
t∈[−2M,0]

max{vi(t) : |i − Z| ≤ M1+κ
} ≤ C`Mχ/2, (10.30)
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and there exists a set G∗ ⊂ [−2M, 0] with |[−2M, 0] \ G∗| ≤ CM1/4 such that

sup
t∈[−2M,0]∩G∗

max{vi(t) : |i − Z| ≤ M1+κ
} ≤ C`Mχ/10. (10.31)

Then, for any sufficiently large K ≥ K0(ϑ0), we have the following statements:

(i) We have
sup

t∈[−M,0]

∑
i

(vi(t)− ψi − `/3)2+ ≤ CM
χ`2. (10.32)

(ii) There exists a set G ⊂ [−M, 0] of “good” times such that

sup
t∈G

vi(t) ≤ `/2+ ψi, ∀i, |[−M, 0] \ G| ≤ CM1/4. (10.33)

(iii) For any M̃ with M2χ
� M̃ ≤ 1

2M we have

sup
t∈[−M̃,0]

∑
i

(vi(t)− ψi − 2`/5)2+ ≤ C(M̃/M)M
χ`2. (10.34)

These results hold for anyK ≥ K0, where the thresholdK0 and the constants in (10.32)–
(10.34) may depend on χ, κ, ξ, ρ, ϑ0 and on the constants C and Ĉ in (10.3)–(10.5).

For the orientation of the reader we mention how the various exponents will be chosen in
the application. The important exponents are κ and χ ; they will be related by κ = 3χ/4,
in (10.69) later (actually, the really important relation is that κ < χ). The exponents ξ, ρ
will be chosen much smaller; the reader may neglect them on a first reading.

Notice that (10.32) is off from the optimal bound by a factor ofMχ . However, (10.33)
shows that for most of the time, this factor is not present, while (10.34) shows that this
factor is reduced if the time interval is shorter. We remark that precise coefficients of `
in the additive shifts appearing in (10.32)–(10.34) are not important; instead of 1/2 >

2/5 > 1/3 essentially any three numbers between 0 and 1 with the same ordering could
have been chosen.

The second De Giorgi lemma is a local descrease of oscillation on a single scale. As
before, we are given three parameters, M,Z, `. Define a new function F by

Fi = F
(M,Z,`)
i := ` ·max

{
−1,min

(
0,
∣∣∣∣ i − ZM

∣∣∣∣2 − 81
)}

(10.35)

for any M,Z, `. Notice that −` ≤ F ≤ 0, furthermore Fi = 0 if |i − Z| ≥ 9M and
Fi = −` if |i − Z| ≤ 8M . We also introduce a new parameter λ ∈ (0, 1/10). Recalling
the definition of ψ̃ from (10.21), we also define three cutoffs, all depending on all four
parameters, M,Z, `, λ:

ϕ
(0)
i := `+ ψ̃i + Fi,

ϕ
(1)
i := `+ ψ̃i + λFi,

ϕ
(2)
i := `+ ψ̃i + λ

2Fi .
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Notice that
ϕ
(0)
i ≤ ϕ

(1)
i ≤ ϕ

(2)
i ≤ `+ ψ̃i, (10.36)

and when |i − Z| ≥ 9M all inequalities become equalities. Notice that ϕ(0)i = 0 if
|i − Z| ≤ 8M .

Lemma 10.7. Consider the parabolic equation (10.1) on the time interval T = [−σ, 0]
with some σ ∈ [Kc3 ,K1−c3 ] and let u be a solution. Define v := u−ū with some constant
shift ū ∈ R. Fix small positive constants κ1, κ2, ξ, ρ and a large constant ϑ0 such that

κ1 + κ2 + 10ϑ0(ξ + ρ) ≤ 1/1000, (10.37)

Let M := K1/ϑ with some ϑ ∈ [1 + 2κ1, ϑ0]. Assume that the matrix elements of A =
B +W satisfy (10.3)–(10.5) with exponent ξ and that (10.1) is regular with exponent ρ
at (Z, t), t ∈ 40, where 40 was given in (10.26).

For any δ, µ > 0 there exist γ > 0 and λ ∈ (0, 1/8) such that whenever

|ū| ≤ Cλ`K1−ξM−1, (10.38)

and the shifted solution v(t) = u(t)− ū satisfies the following five properties;

∃G ⊂ [−3M, 0], |[−3M, 0] \ G| ≤ CM1/4, ∀t ∈ G, ∀i, vi(t) ≤ `+ ψ̃i, (10.39)

sup
t∈[−3M,0]

max{|i − Z| : vi(t) > `+ ψ̃i} ≤ M
1+κ1 ,

sup
t∈[−3M,0]

sup{vi(t) : |i − Z| ≤ M1+κ1} ≤ `Mκ2 , (10.40)

1
M2

∫
−2M

−3M
1(t ∈ G) · #{|i − Z| ≤ M : vi(t) < ϕ

(0)
i } dt ≥ µ, (10.41)

1
M2

∫ 0

−2M
1(t ∈ G) · #{i : vi(t) > ϕ

(2)
i } dt ≥ δ, (10.42)

then
1
M2

∫ 0

−3M
1(t ∈ G) · #{i : ϕ(0)i < vi(t) < ϕ

(2)
i } dt ≥ γ. (10.43)

This conclusion holds for anyK ≥ K0 where the thresholdK0 depends on all parameters
ϑ0, κ1, κ2, ξ , ρ, δ, µ and the constants in (10.3)–(10.5).

We remark that the choices of γ and λ are explicit: one may choose

γ := cδ3, λ := cδ6µ (10.44)

with a small absolute constant c.

This lemma asserts that whenever a substantial part of the function v increases from ϕ(0)

to ϕ(2) in time of order M , then there is a time interval of order M such that a substantial
part of v lies between ϕ(0) and ϕ(2).
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10.2.2. Verifying the assumptions of Lemma 10.7. We will apply Lemma 10.7 to the
function v = v(n,k) given in (10.23) with the choice M = Mn, ` = `n. The follow-
ing lemma collects the necessary information on v = v(n,k) to verify the assumptions
in Lemma 10.7. The complicated relations among the parameters, listed in (10.45) and
(10.46) below, can be simultaneously satisfied; their appropriate choice will be given in
Section 10.2.4.

Lemma 10.8. Assume that (ST)n holds (see (10.15)). Suppose that in addition to the
previous relations ν < min{ζ 10/10, 1/(2L)} and λ ≥ 10L−1/4 among the parameters,
the following further relations also hold:

10 ≤ (1− ζ )λ2k0ζL1/4, χ + 10ϑ0(ξ + ρ) ≤
1

1000
, 100ϑ0(ξ + ρ) ≤ χ ≤

|log ζ |
|log ν|

,

(10.45)

ϑ ∈ [1+ 2χ, ϑ0], 1− 1
2λ

2(k0+1)
≤ ζ < 1. (10.46)

Then for any v(n,k)i (t) with k ≤ k0, defined in (10.23) and satisfying (10.24), we have

sup
t∈Gn

sup
k≤k0

v
(n,k)
i (t) ≤ `n + ψ̃

(n)
i , (10.47)

sup
k≤k0

sup
t∈[−3Mn,0]

max{|i − Z| : v(n,k)i (t) > `n + ψ̃
(n)
i } ≤ M

1+3χ/4
n , (10.48)

sup
k≤k0

sup
t∈[−3Mn,0]

sup{v(n,k)i (t) : |i − Z| ≤ M
1+3χ/4
n } ≤ C`nM

χ/2
n . (10.49)

For the shift in (10.23) we have

|`n − λ
−2k(ūn + `n)| ≤ Cλ`nK

1−ξM−1
n . (10.50)

The constants C may depend on all parameters in (10.45), (10.46).

We remark that the factor 3/4 in the exponent in (10.48) can be improved to 2/3+ ε′ for
any ε′ > 0, but what is really important for the proof is that it is strictly smaller than 1,
since this will translate into the crucial κ < χ condition in (10.30).

Proof of Lemma 10.8. All four estimates follow by direct calculations from the definition
of 9(n)(t) and from the relations (10.45), (10.46) among the parameters. Based upon
(10.24), the estimate (10.47) amounts to checking

3
(n)
i ≤ `n + λ

2k0`n

[(∣∣∣∣ i − ZMn

∣∣∣∣− λ−4
)1/4

+

− 1
]
+

. (10.51)

For |i − Z| ≤ M̂n we immediately have 3(n)i = `n and thus (10.51) holds. For M̂m+1 ≤

|i−Z| ≤ M̂m (with somem ≤ n−1) we can use (10.19) to find that3(n)i ≤ 2(1−ζ )−1`m.
The right hand side of (10.51) is larger than

`n + λ
2k0`n

[(∣∣∣∣M̂m+1

Mn

∣∣∣∣− λ−4
)1/4

+

− 1
]
+

.
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which is larger than `n(1 + 1
2λ

2k0L1/4ν(m−n)/4). Now (10.51) follows from the first in-
equality in (10.45) and from ν ≤ ζ 10/10.

For the proof of (10.48), starting from (10.24), it is sufficient to check that

8
(n)
i (t) ≤ `n + λ

2k0`n

[(∣∣∣∣ i − ZMn

∣∣∣∣− λ−4
)1/4

+

− 1
]
+

(10.52)

for any |i − Z| ≥ 1
2M

1+3χ/4
n and t ∈ [−3Mn, 0]. On the left hand side we can use the

largest time |t | = 3Mn ≥M1/2. Considering the regime M̂m ≤ |i − Z| ≤ M̂m−1 with
Mm = M

1+β
n for some 0 < β < 1/2, we see that

l.h.s. of (10.52) ≤ 2`m

(
Mn

Mm

)1/2

M
χ/2
m , r.h.s. of (10.52) ≥

1
2
λ2k0`n

(
Mm

Mn

)1/4

,

Using χ ≤ |log ζ |/|log ν| from (10.45), we have

`m/`n ≤ (Mm/Mn)
χ ,

so (10.52) holds if

(Mn/Mm)
1/2−χM

χ/2
m ≤

1
4λ

2k0(Mm/Mn)
1/4. (10.53)

Recalling thatMm=M
1+β
n , we see that for smallχ , (10.53) is satisfied if β>2χ/(3− 6χ)

(and Mn is sufficiently large depending on all constants λ, ν, L, k0, ν, ζ ). This is guaran-
teed if β ≥ 3χ/4 since we have assumed χ ≤ 1/1000. This proves (10.48).

For the proof of (10.49) we notice that

max{8(n)i (t) : |i − Z| ≤ M
1+3χ/4
n } ≤ C8(`m +M

χ/2
n `n) ≤ CM

χ/2
n `n (10.54)

for any t ∈ [−3Mn, 0], where m < n is defined by M̂m+1 ≤ M
1+3χ/4
n ≤ M̂m. The first

inequality in (10.54) follows from (10.16); the second one is a consequence of

`m/`n = (Mm/Mn)
|log ζ |/|log ν|

≤ (Mm/Mn)
1/10
≤ M

χ/10
n (10.55)

since |log ζ | ≤ 1
10 |log ν|. Then (10.49) directly follows from (10.24) and (10.54).

Finally, (10.50) follows from |ūn| ≤ ` = `0, K1−ξ
≥M = M0 (using ϑ ≥ 1 + 2ξ )

and `0/`n ≤ M0/Mn. This completes the proof of Lemma 10.8. ut

10.2.3. Completing the proof of Proposition 10.5. We now continue the proof of Propo-
sition 10.5. Set

F
(n)
i := F

(Mn,Z,`n)
i ,
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where F is given in (10.35), and define further cutoff functions:

ϕ
(0),(n)
i := `n + ψ̃

(n)
i + F

(n)
i ,

ϕ
(1),(n)
i := `n + ψ̃

(n)
i + λF

(n)
i ,

ϕ
(2),(n)
i := `n + ψ̃

(n)
i + λ

2F
(n)
i .

Throughout this section, n is fixed, so we will often omit it from the notation. In particular
` = `n, M = Mn, ū = ū(n), v(k) = v(n,k), F = F (n), ψ̃ = ψ̃ (n), ϕ(a)i = ϕ

(a),(n)
i for

a = 0, 1, 2, G = Gn etc. At the end of the proof we will add back the superscripts.
From the definitions of these cutoff functions, we have

ϕ
(0)
i ≤ ϕ

(1)
i ≤ ϕ

(2)
i ≤ `+ ψ̃i, (10.56)

and when |i − Z| ≥ 9M all inequalities become equalities. Notice that ϕ(0)i = 0 if
|i − Z| ≤ 8M .

Choose a small constant µ ∈ (0, 1/10), say

µ := 1/100. (10.57)

Without loss of generality, we can assume

1
M2

∫
−2M

−3M
#{i : |i − Z| ≤ M, ui(t)− ū < ϕ

(0)
i } dt ≥ µ (10.58)

(otherwise we can take −u; note that the condition in Proposition 10.5 is invariant under
the u→−u sign flip).

Notice that for any |i − Z| ≤ M and t ∈ G the sequence v(k)i (t) is decreasing in k, in
particular v(k)i (t) ≤ `. This follows from (10.24) and 9(n)i (t) ≤ `n in this regime. From
(10.58) we therefore have

1
M2

∫
−2M

−3M
1(t ∈ G) · #{i : |i − Z| ≤ M, v(k)i (t) < ϕ

(0)
i } dt ≥ µ, (10.59)

since the set of i indices in (10.59) is increasing in k for any t ∈ G and v(0) = u− ū.
Assuming that the parameters satisfy (10.45) and (10.46), we can now use the con-

clusions (10.47)–(10.50) of Lemma 10.8. These bounds together with (10.59) allow us to
apply Lemma 10.7 to v(k) = v(n,k) with the choice

κ1 := 3χ/4, κ2 := χ/2, δ := ε2
0/100, (10.60)

where ε0 > 0 is a universal constant which was determined in Lemma 10.6. Notice that
with these choices (10.37) follows from (10.45) and ϑ ∈ [1+ 2κ1, ϑ0] follows from ϑ ∈

[1+ 2χ, ϑ0]. Thus the application of Lemma 10.7 shows that there exist a λ (introduced
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explicitly in the construction of the cutoffs ϕ(a) and used also in (10.21) and (10.24)) and
a γ > 0 (see (10.44) for their explicit values) such that if

1
M2

∫ 0

−2M
1(t ∈ G) · #{i : v(k)i (t) > ϕ

(2)
i } dt > δ (10.61)

then
1
M2

∫ 0

−3M
1(t ∈ G) · #{i : ϕ(0)i < v

(k)
i (t) < ϕ

(2)
i } dt ≥ γ.

Therefore

1
M2

∫ 0

−3M
1(t ∈ G) · #{i : v(k)i (t) > ϕ

(2)
i } dt

≤
1
M2

∫ 0

−3M
1(t ∈ G) · #{i : v(k)i (t) > ϕ

(0)
i } dt − γ. (10.62)

Notice that, by (10.47) and Fi = 0 if |i − Z| ≥ 9M , for any k ≤ k0 the inequality
v
(k)
i (t) > ϕ

(0)
i (for t ∈ G) can hold only if |i−Z| ≤ 9M . Assuming |i−Z| ≤ 9M , t ∈ G

and v(k)i (t) > ϕ
(0)
i , we have

1
λ2 (v

(k−1)
i (t)− `)+ ` = v

(k)
i (t) > ϕ

(0)
i .

Since |i − Z| ≤ 9M ≤ λ−4M , we have, together with (10.56) and ψ̃i = 0 in this regime,

v
(k−1)
i (t) ≥ λ2(ψ̃i + Fi)+ ` ≥ ϕ

(2)
i .

Therefore, we can bound the last integral in (10.62) by

1
M2

∫ 0

−3M
1(t ∈ G) · #{i : v(k)i (t) > ϕ

(0)
i } dt

≤
1
M2

∫ 0

−3M
1(t ∈ G) · #{i : |i − Z| ≤ 9M, v(k−1)

i (t) > ϕ
(2)
i } dt. (10.63)

We have thus proved that

1
M2

∫ 0

−3M
1(t ∈ G) · #{i : v(k)i (t) > ϕ

(2)
i } dt

≤
1
M2

∫ 0

−3M
1(t ∈ G) · #{i : |i − Z| ≤ 9M, v(k−1)

i (t) > ϕ
(2)
i } dt − γ. (10.64)

Iterating this estimate k times, we get

1
M2

∫ 0

−3M
1(t ∈ G) · #{i : v(k)i (t) > ϕ

(2)
i } dt

≤
1
M2

∫ 0

−3M
1(t ∈ G) · #{i : |i − Z| ≤ 9M, v(0)i (t) > ϕ

(2)
i } dt − kγ,
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which becomes negative if kγ ≥ 100. If we set

k0 := 100/γ , (10.65)

then there is a k < k0 such that (10.61) is violated, i.e.,

1
M2

∫ 0

−2M
1(t ∈ G) · #{i : v(k)i (t) > ϕ

(2)
i } dt ≤ δ. (10.66)

From now on let k = k(n) denote the smallest index such that (10.66) holds (recall
that the underlying n dependence was omitted from the notation in most of this section).
Furthermore, since ϕ(0)i = 0 for |i − Z| ≤ 8M , we have

1
M2

∫ 0

−2M
1(t ∈ G) · #{i : |i − Z| ≤ 8M, v(k+1)

i (t) > 0} dt

=
1
M2

∫ 0

−2M
1(t ∈ G) · #{i : |i − Z| ≤ 8M, v(k+1)

i (t) > ϕ
(0)
i } dt

≤
1
M2

∫ 0

−2M
1(t ∈ G) · #{i : v(k)i (t) > ϕ

(2)
i } dt ≤ δ = ε

2
0/100, (10.67)

where we have used (10.63) in the last inequality.
Armed with (10.67), our goal is to apply Lemma 10.6 withM = Mn to v = v(n,k(n)+1)

with the value k = k(n) determined after (10.66). Clearly v is of the form

v = λ−2k−2u+ [`n − λ
−2k−2(ūn + `n)], (10.68)

i.e. it is a solution to (10.1) (namely λ−2k−2u) shifted by [λn − λ−2k−2(ūn + `n)]. The
value κ in Lemma 10.6 will be set to

κ := 3χ/4 (10.69)

and the set G∗ in Lemma 10.6 will be chosen as G∗ := Gn (for n = 0 we set G∗ =
[−3M0, 0], i.e. at the zeroth step of the iteration every time is “good”; see (10.10)). The
choice κ = 3χ/4 together with the constraints on χ in (10.45) guarantee that the relations
in (10.25) hold. We need to check the five conditions (10.27)–(10.31). The sixth condition,
the regularity at (Z, t) for t ∈ 40, follows automatically from (C1)ρ since M = Mn =

Mνn = 2−τ0νnK with an integer τ0, and ν itself is a negative power of 2, thus 40 ⊂ 4

(see (9.6)). The first condition (10.27) for the shift in (10.68) was verified in (10.50).
For the second condition (10.28), with the notation Gc := [−3M, 0] \ G we write

1
M2

∫ 0

−2M

∑
i

(v
(k+1)
i (t)− ψi)

2
+ dt

≤
1
M2

∫ 0

−2M
1(t ∈ G)·

∑
i

(v
(k+1)
i (t)−ψi)

2
+ dt+

|Gc|
M2 sup

t∈[−2M,0]

∑
i

(v
(k+1)
i (t)−ψi)

2
+.

(10.70)
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In the first term we use

v
(n,k+1)
i (t) ≤ `n + ψ̃

(n)
i , t ∈ Gn,

from (10.47) (we reintroduced the superscript n). Since `n+ψ̃
(n)
i ≤ ψ

(n)
i if |i−Z| ≥ 8M ,

we see that the summation in the first term on the right hand side of (10.70) is restricted
to |i − Z| ≤ 8M , and for these i’s we have v(n,k+1)

i (t) ≤ `n since ψ̃ (n)i = 0. We can
therefore apply (10.67) to get

1
M2
n

∫ 0

−2Mn

∑
i

(v
(n,k+1)
i (t)−ψ

(n)
i )2+ dt ≤ 4δ`2

n+
|Gcn|
M2
n

sup
t∈[−2Mn,0]

∑
i

(v
(n,k+1)
i (t)−ψ

(n)
i )2+.

(10.71)
To estimate the second term, we use (10.24) and 9(n) ≤ 8(n) to note that

ψ
(n)
i ≤ v

(n,k+1)
i (t) ⇒ ψ

(n)
i ≤ `n+λ

−2k−2(8
(n)
i (t)−`n), t ∈ [−3Mn, 0]. (10.72)

Suppose first that |i−Z| ≥ M1+3χ/4
n . In this case (10.52) holds, thus (10.72) would imply

ψ (n)n = `n

(∣∣∣∣ i − ZMn

∣∣∣∣1/2−1
)
+

≤ λ−2k0`n + `n

[(∣∣∣∣ i − ZMn

∣∣∣∣− λ−4
)1/4

+

− 1
]
+

;

but this is impossible for |i − Z| ≥ M
1+3χ/4
n if Mn is large enough. In particular, this

verifies (10.29). We therefore conclude that the summation in the second term on the
right hand side of (10.71) is restricted to |i − Z| ≤ M1+3χ/4. For these values we have

v
(n,k+1)
i (t) ≤ `n + λ

−2k(8
(n)
i (t)− `n) ≤ Cλ

−2k`nM
χ/2
n

(the first inequality is from (10.24), the second from (10.54)). This verifies (10.30), re-
calling the choice of κ = 3χ/4.

Inserting this information into (10.71), we have

4δ`2
n +
|Gcn|
M2
n

sup
t∈[−2Mn,0]

∑
i

(v
(n,k+1)
i (t)− ψ

(n)
i )2+ ≤ 4δ`2

n + Cλ
−2kM

−1/2+2χ
n `2

n ≤ ε
2
0`

2
n,

where we have used |Gcn| ≤ CM
1/4
0 ≤ M

1/2
n from (10.14) and (10.13). In the last step we

have used the choice δ = ε2
0/100. This verifies (10.28).

Finally, we verify (10.31) with the previously mentioned choice G∗ := Gn. Let i be
such that |i − Z| ≤ M1+3χ/4

n and t ∈ Gn. Then from (10.24) we have

v
(n,k+1)
i (t) = λ−2k−23

(n)
i + `n(1− λ

−2k−2) ≤ C`m ≤ CM
χ/10
n `n

where m is chosen such that M̂m+1 ≤ M
1+3χ/4
n ≤ M̂m and in the last step we have used

(10.55).
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Thus we can apply Lemma 10.6 to v = v(n,k+1) and from (10.33) we get the existence
of a set of times, denoted by G′n ⊂ [−Mn, 0], such that

sup
t∈G′n

v
(n,k+1)
i (t) ≤ `n/2, |i − Z| ≤ Mn, |[−Mn, 0] \ G′n]| ≤ CM

1/4
n .

Defining Gn+1 := Gn ∩ G′n ∩ [−3Mn+1, 0] and using M̂n+1 ≤ Mn, we obtain

sup
t∈Gn+1

v
(n,k+1)
i (t) ≤ `n/2, |i − Z| ≤ M̂n+1, (10.73)

and ∣∣Gcn+1

∣∣ ≤ CM1/4
n + |Gcn| ≤ C

n∑
m=0

M
1/4
m ,

where we have used the measure of Gcn from (10.14).
Recalling the definition (10.23), from (10.73) we have

ui(t)− ūn ≤ `n
(
1− 1

2λ
2(k+1))

≤ `n
(
1− 1

2λ
2(k0+1))

≤ `nζ = `n+1,

|i − Z| ≤ M̂n+1 and t ∈ Gn+1,

where we recall that k ≤ k0 and (10.46). Repeating the argument for −u instead of u, we
obtain a similar lower bound on ui(t)− ūn. This proves (10.17) for n, i.e. (OSC)n.

The application of Lemma 10.6 also shows (see (10.34)) that for t ∈ [−Mn, 0] we
have ∑

i

(
v
(n,k+1)
i (t)−

( 2
5`n + ψ

(n)
i

))2
+
≤ C

(
|t | +M1/2

Mn

)
Mχ
n `

2
n, (10.74)

which implies, by (10.23) and elementary algebra, the second statement in Proposi-
tion 10.5 (the constant C in (10.22) includes a factor of λ−2k

≤ λ−2k0 ).

10.2.4. Summary of the choice of the parameters. Finally, we present a possible choice
of the parameters that were used in the proof of Proposition 10.5. Especially, we need to
satisfy the complicated relations (10.45), (10.46).

Lemma 10.6 gives an absolute constant ε0. Then we choose δ = ε2
0/100, γ = cδ3,

λ = cδ6µ (with a small constant c), k0 = 100/γ and µ = 1/100. These choices can be
found in (10.60), (10.44), (10.65) and (10.57), respectively.

Having λ, k0 determined, we define

ζ := 1− 1
2λ

2(k0+1), L := λ−16(k0+1), ν := 2λ16(k0+1).

If needed, reduce λ so that |log ζ |/|log ν| ≤ 1/10. Note that the five numbers λ, k0, ζ, ν, L
are absolute positive constants (meaning that they do not depend on any input parameters
in Theorem 10.3). In particular, they determine the absolute constant q in (10.18), which
is the final Hölder exponent.
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Next we set

χ := min
{
|log ζ |
|log ν|

,
ϑ1 − 1

2
,

1
2000

}
(10.75)

and then choose the exponents ξ, ρ as

ξ := ρ :=
χ

200ϑ0
. (10.76)

Finally, M = M0 (or, equivalently K0) has to be sufficiently large depending on all these
exponents.

It is easy to check that this choice of the parameters satisfies all the relations that were
used in the proof of Proposition 10.5. This completes the proof of that proposition. ut

10.3. Proof of (ST)n + (OSC)n ⇒ (ST)n+1

Proposition 10.9. Suppose that (ST)n and (OSC)n hold for some n. Then (ST)n+1 also
holds.

Proof. For t ∈ Gn+1 ⊂ Gn we have

|ui(t)− ūn+1| ≤ `n+1, |i − Z| ≤ M̂n+1,

by (OSC)n. Thus we immediately get |ui(t)− ūn+1| ≤ 3
(n+1)
i for |i −Z| ≤ M̂n+1. For

M̂n+1 ≤ |i − Z| ≤ M̂1 we just use

|ui(t)− ūn+1| ≤ |ui(t)− ūn| + |ūn+1 − ūn| ≤ 3
(n)
i + |ūn+1 − ūn| ≤ 3

(n+1)
i ,

where the last estimate is from the definition of 3. For |i − Z| ≥ M̂1 we have the trivial
bound `0.

Now we need to check the case t ∈ [−3Mn+1, 0] \ Gn+1. For M̂n+1 ≤ |i −Z| ≤ M̂1,
from (ST)n we have

|ui(t)− ūn+1| ≤ |ui(t)− ūn| + |ūn+1 − ūn| ≤ 8
(n)
i (t)+ |ūn+1 − ūn| ≤ 8

(n+1)
i (t),

where the last inequality is just from the definition of 8. Finally, if |i − Z| ≤ M̂n+1
(≤ Mn), we use (10.22),

|ui(t)− ūn+1| ≤ |ui(t)− ūn| + |ūn − ūn+1| ≤ 2`n + `n

√
C
|t | +M1/2

Mn

M
χ/2
n ,

since in this regime ψ (n)i = 0. The constant C is from (10.22). The right hand side is
bounded by

C8`n+1

(
1+

√
|t | +M1/2

Mn+1
M
χ/2
n+1

)
,

by using `n/`n+1 = ζ−1
≤ ν−1/10

= (Mn/Mn+1)
1/10 and choosing C8 large enough.

This completes the proof of Proposition 10.9. ut
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10.4. Proof of Lemma 10.6 (first De Giorgi lemma)

Assume for notational simplicity that Z = 0 and set

ψ`i := ψi + `.

Since v solves the equation

∂svi(s) = −[A(s)v(s)]i −Wi(s)ū, (10.77)

by direct computation we have

∂t
1
2

∑
i

[vi−ψ
`
i ]

2
+ = −

∑
ij

(vi−ψ
`
i )+Bij (vi−vj )−

∑
i

(vi−ψ
`
i )+Wi(vi+ū). (10.78)

Recall that Bij depends on time, but we will omit this from the notation. Since Wi ≥ 0,
the last term can be bounded by

−

∑
i

(vi − ψ
`
i )+Wi(vi + ū) ≤ −

∑
i

(vi − ψ
`
i )+Wi(vi − ψ

`
i )+ − ū

∑
i

(vi − ψ
`
i )+Wi

≤ −w[(v − ψ`)+, (v − ψ
`)+] + |ū|

∑
i

(vi − ψ
`
i )+Wi .

In the first term on the right hand side of (10.78) we can symmetrize and then add and
subtract ψ` to get

−

∑
ij

(vi − ψ
`
i )+Bij (vi − vj ) = −b[(v − ψ

`)+, v]

= −b[(v − ψ`)+, (v − ψ
`)+] − b[(v − ψ`)+, (v − ψ

`)−] − b[(v − ψ`)+, ψ
`
].

Since Bij ≥ 0 and [a+ − b+][a− − b−] ≥ 0 for any real numbers a, b, for the cross-term
we have b[(v − ψ`)+, (v − ψ

`)−] ≥ 0. Thus the last equation is

≤ −b[(v − ψ`)+, (v − ψ
`)+] − b[(v − ψ`)+, ψ

`
]. (10.79)

Using the definition of a in (9.24), we have thus proved that

∂t
1
2

∑
i

[vi−ψ
`
i ]

2
+ ≤ −a[(v−ψ

`)+, (v−ψ
`)+]−b[(v−ψ

`)+, ψ
`
]+|ū|

∑
i

(vi−ψ
`
i )+Wi .

(10.80)
Decompose the first error term as b[(v − ψ`)+, ψ`] = �1 +�2 +�3, where

�1 :=
1
2

∑
|i−j |≥M

Bij [ψ
`
i − ψ

`
j ]((vi − ψ

`
i )+ − (vj − ψ

`
j )+) · 1(max{dIi , d

I
j } ≥ K/3)

and �2 and �3 are defined in the same way except that the summation is restricted to
ĈKξ

≤ |i − j | ≤ M for �2 and |i − j | ≤ ĈKξ for �3, where Ĉ is the constant from
(10.5). Notice that we have inserted the characteristic function 1(max{dIi , d

I
j } ≥ K/3)
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for free, since (10.29) together with |Z| ≤ K/2 and M1+κ
� K (from ϑ ≥ 1 + 2κ)

guarantees that (vi − ψ`i )+ = 0 unless dIi ≥ K/3. Thus the summation over i, j can be
restricted to index pairs where at least one index is far away from the boundary. Recall
from (10.5) that in the regime |i − j | ≥ M we have Bij ≤ C|i − j |−2 since M ≥ ĈKξ .
Moreover,

|ψ`i − ψ
`
j | ≤ `M

−1/2
|i − j |1/2. (10.81)

Altogether we have

|�1| ≤ `M
−1/2

∑
|i−j |≥M

1
|i − j |3/2

[(vi − ψ
`
i )+ + (vj − ψ

`
j )+] ≤

`

M

∑
i

(vi − ψ
`
i )+.

For �2, by symmetry of Bij , we can write

−�2 := −
∑

ĈKξ≤|i−j |≤M,ψ`i ≤ψ
`
j

Bij [ψ
`
i −ψ

`
j ]((vi−ψ

`
i )+− (vj −ψ

`
j )+)

≤ −

∑
ĈKξ≤|i−j |≤M,ψ`i ≤ψ

`
j

Bij [ψ
`
i −ψ

`
j ][(vi−ψ

`
i )+− (vj −ψ

`
j )+] ·1(vi−ψ

`
i > 0)

≤
1
4

∑
ĈKξ≤|i−j |≤M

Bij [(vi−ψ
`
i )+− (vj −ψ

`
j )+]

2

+4
∑

ĈKξ≤|i−j |≤M

Bij |ψ
`
i −ψ

`
j |

2
·1(vi−ψ`i > 0).

The first term is bounded by 1
2b[(v − ψ

`)+, (v − ψ
`)+] and can be absorbed in the first

term on the r.h.s. of (10.79). By the simple estimate |ψ`i −ψ
`
j | ≤ C`|i−j |/M and (10.5),

the second term is bounded by

4
∑

ĈKξ≤|i−j |≤M

Bij |ψ
`
i −ψ

`
j |

2
·1(vi−ψ`i > 0) ≤ C`2M−1

∑
i

1(vi−ψ`i > 0), (10.82)

where we have again used that the summation over i is restricted to dIi ≥ K/3. Thus

−�2 ≤
1
2
b[(v − ψ`)+, (v − ψ

`)+] + C`
2M−1

∑
i

1(vi − ψ`i > 0)

≤
1
2
a[(v − ψ`)+, (v − ψ

`)+] + C`
2M−1

∑
i

1(vi − ψ`i > 0)

using b ≤ a.
A similar estimate is performed for �3, but in the corresponding last term we use

|ψ`i − ψ
`
j | ≤ CK

ξ (`/M)
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for |i − j | ≤ ĈKξ . Thus we have

−�3 ≤
∑

|i−j |≤ĈKξ

Bij |ψ
`
i − ψ

`
j |

2
· 1(vi − ψ`i > 0)

≤ CK2ξ (`/M)2
∑

|i−j |≤ĈKξ

1(vi − ψ`i > 0)Bij

≤ C
K3ξ`2

M2

∑
i

1(vi − ψ`i > 0)[Bi,i+1 + Bi,i−1].

Here we have just overestimated sums by ĈKξ . The conclusion of the energy estimate is

∂t
1
2

∑
i

[vi − ψ
`
i ]

2
+ ≤ −

1
2
a[(v − ψ`)+, (v − ψ

`)+] + |ū|
∑
i

(vi − ψ
`
i )+Wi

+
C`

M

∑
i

(vi − ψ
`
i )+ +

C`2

M

∑
i

1(vi − ψ`i > 0)+�4, (10.83)

�4 :=
CK3ξ`2

M2

∑
i

1(vi − ψ`i > 0)[Bi,i+1 + Bi,i−1].

Due to (10.29), we can assume that the summations in (10.83) over i are restricted to |i| ≤
M1+κ . In this regime we have di ≥ cK thanks toM1+κ

≤ K/2, thereforeWi ≤ CK
−1+ξ

by (10.4). Using the bound (10.27), we see that the error term |ū|
∑
i(vi − ψ

`
i )+Wi can

be absorbed into the first error term in line (10.83).
Let Tk := −M(1+2−k) and `k := (`/3)(1−2−k)↗ `/3 where k = 1, . . . , C logM .

We claim that∫ t

τ

�4 ds ≤
CK3ξ`2

M1−κ

∫ t

τ

ds
1

M1+κ

∑
|i|≤M1+κ

[Bi,i+1 + Bi,i−1](s)

≤ C[(t − τ)+ 1]K3ξ+ρ`2Mκ−1 (10.84)

for any integer k ≤ C logM and for any pairs (t, τ ) ∈ [Tk, 0] × [Tk−1, Tk−1 + 2−k−1M].
The estimate (10.84) holds because∫ t

τ

[. . .] ds ≤

∫ t

Tk−1

[. . .] ds ≤ 8
∣∣t − τ ∣∣+ 1,

where we have used the fact that the point (Tk−1, Z = 0) is regular (see (10.26)).
Define

Uk = sup
t∈[Tk,0]

1
M`2

k

∑
i

(vi − ψ
`k
i )

2
+(t)+

1
M`2

k

∫ 0

Tk

a[(v − ψ`k )+, (v − ψ
`k )+](s) ds.

(10.85)
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Integrating (10.83) from τ to t with τ ∈ [Tk−1, Tk−1+2−k−1M] = [Tk−1, Tk−2−k−1M]

and t ∈ [Tk, 0], we deduce from (10.84) that

∑
i

[vi − ψ
`k
i ]

2
+(t)+

∫ t

τ

a[(v − ψ`k )+, (v − ψ
`k )+](s) ds

≤

∑
i

[vi −ψ
`k
i ]

2
+(τ )+C

∫ t

τ

[
`k

M

∑
i

(vi −ψ
`k
i )+(s)+

`2
k

M

∑
i

1(vi −ψ`ki > 0)(s)
]
ds

+C[(t − τ)+ 1]K3ξ+ρ`2Mκ−1. (10.86)

Taking the average over τ ∈ [Tk−1, Tk−1+2−k−1M] and using the fact that in this regime
2−k−1M ≤ t − τ ≤ M , we obtain

∑
i

[vi − ψ
`k
i ]

2
+(t)+

∫ t

Tk

a[(v − ψ`k )+, (v − ψ
`k )+](s) ds

≤ C
2k+1

M

∫ Tk−2−k−1M

Tk−1

∑
i

[vi−ψ
`k
i ]

2
+(s) ds

+C

∫ t

Tk−1

[
`k

M

∑
i

(vi−ψ
`k
i )+(s)+

`2
k

M

∑
i

1(vi−ψ`ki > 0)(s)
]
ds+CK3ξ+ρ`2Mκ .

Dividing through by M`2
k and taking the supremum over t ∈ [Tk, 0], for k ≥ 1 we get

Uk ≤ C
2k+1

M2

∫ 0

Tk−1

∑
i

[
1
`2
k

[vi − ψ
`k
i ]

2
+ +

1
`k
(vi − ψ

`k
i )+ + 1(vi − ψ`ki > 0)

]
(s) ds

+Mκ CK
3ξ+ρ

M
. (10.87)

The first three integrands have the same scaling dimensions as v2/`2. One key idea is
to estimate them in terms of the L4-norm of v and then use the Sobolev inequality. It is
elementary to check these three integrands can be bounded by the L4-norm of (v−ψ`k )+,
by using the fact that if vi ≥ ψ

`k
i , then vi − ψ

`k−1
i ≥ `k − `k−1 = 2−k `3 ≥ 2−(k+2)`:∑

i

(vi − ψ
`k
i )+ ≤

∑
i

(vi − ψ
`k
i )+ · 1(vi − ψ

`k−1
i > 2−(k+2)`)

≤ (2k+1)3`−3
k

∑
i

(vi − ψ
`k−1
i )4+,∑

i

1(vi − ψ`ki > 0) ≤ (2k+2)4`−4
k

∑
i

(vi − ψ
`k−1
i )4+,∑

i

[vi − ψ
`k
i ]

2
+ ≤ (2

k+2)2`−2
k

∑
i

(vi − ψ
`k−1
i )4+.

(10.88)
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We now use the local version of Proposition B.4 from Appendix B; we first verify its
conditions. Set

I := J−2K/3, 2K/3K, Î := J−3K/4, 3K/4K. (10.89)

Clearly fi := (vi − ψ
`k−1
i )+ is supported in I; this follows from |Z| ≤ K/2, (10.29)

and M1+κ
≤ M(ϑ+1)/2

� Mϑ
= K . By the lower bounds on Bij (s) in (10.3) and (10.5)

(with C ≥ 4 in (10.5) to guarantee that the lower bound holds for any i, j ∈ Î) conditions
(B.17), (B.18) hold with the choice b = K−ξ , a = Ĉ−1K−ξ and r = C, where C and Ĉ
are the constants from (10.5).

From (B.19) we then have∑
i

(vi − ψ
`k−1
i )4+

≤ C
[∑
i

(vi − ψ
`k−1
i )2+

][
a[(v − ψ`k−1)+, (v − ψ

`k−1)+] +
1
K

∑
i

(vi − ψ
`k−1
i )2+

]
+ CK4ξ max

i
(vi − ψ

`k−1
i )4+ (10.90)

(we have omitted the time variable s ∈ T ). The last term can be estimated by using
(10.29) and (10.30) as

max
i
(vi(t)− ψ

`k−1
i )+ ≤ max{vi(t) : |i − Z| ≤ M1+κ

} ≤ C`Mχ/2

for any t ∈ [−2M, 0]. For t ∈ G∗ we have the stronger bound from (10.31),

max
i
(vi(t)− ψ

`k−1
i )+ ≤ max{vi(t) : |i − Z| ≤ M1+κ

} ≤ C`Mχ/8, t ∈ G∗.

Inserting these estimates, (10.88) and (10.4) into (10.87), and splitting the time integration
into G∗ and its complement, we conclude that for k ≥ 2,

Uk ≤ C(2k+2)5
1

M2`4
k

∫ 0

Tk−1

ds
[∑
i

(vi − ψ
`k−1
i )2+(s)

]
×

[
a[(v − ψ`k−1)+, (v − ψ

`k−1)+](s)+
1
K

∑
i

(vi − ψ
`k−1
i )2+(s)

]
+

1
M
[CMκK3ξ+ρ

+ 32kMχ/2K4ξ
+ 32kM2χ−1K4ξ

|[−Tk−1, 0] \ G∗|]

≤ 32k[C1U
2
k−1 +M

−1+χK−ρ], (10.91)

recalling that |[−Tk−1, 0] \ G∗| ≤ CM1/4, K = Mϑ
≤ Mϑ0 and χ ≥ κ + 10(ξ + ρ)ϑ0.

We have also used |Tk| ≤ K .
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For k = 1, we estimate the integrands in (10.87) by L2-norms. We have the following
general estimates for any `′ < `′′:∑

i

(vi − ψ
`′′

i )+ ≤
∑
i

(vi − ψ
`′

i )+ · 1(vi − ψ
`′

i > `′′ − `′)

≤
1

`′′ − `′

∑
i

(vi − ψ
`′

i )
2
+, (10.92)

∑
i

1(vi − ψ`
′′

i > 0) ≤
1

(`′′ − `′)2

∑
i

(vi − ψ
`′

i )
2
+.

We use (10.92) with `′′ = `1 and `′ = 0 in (10.87); this implies that

U1 ≤
C

`2
1M

2

∫ 0

−2M

∑
i

ds (vi − ψi)
2
+(s)+ CM

−1+χ .

Without loss of generality, we assume that C1 ≥ 2, where C1 is the constant in (10.91).
Now choose the universal constant ε0 in (10.28) so small andM large enough so that this
last inequality implies

U1 ≤
1

326C1
. (10.93)

Choose k∗ such that 32k∗+2C1 = K
ρ , i.e. k∗ is of order ρ logK ≥ ρ logM . Then from

(10.91) for any k ≤ k∗ we have the recursive inequality

Bk ≤ B
2
k−1 +M

−1+χ with Bk := 32k+2C1Uk.

By a simple induction, this recursion implies

Bk+1 ≤ (2B1)
2k−1
+ 2M−1+χ .

Together with the initial estimate (10.93) we obtain Bk+1 ≤ 4M−1+χ for any integer k
with 100 log logM ≤ k ≤ k∗, in particular we can apply it to k′ = 100 log logM and
obtain Uk′ ≤ CM−1+χ . Notice that Uk is decreasing in k, as can be seen from the mono-
tonicity in the definition (10.85) of Uk and from the fact that Tk and `k increase. Thus

Uk ≤ CM
−1+χ (10.94)

for any k ≥ 100 log logM . Taking k → ∞, we find from the L2-norm term in Uk that
(10.32) in Lemma 10.6 holds.

For the proof of (10.33), we notice that the estimate (10.94) together with the mono-
tonicity also implies that

1
M`2

∫ 0

−M

a[(v − ψ`/3)+, (v − ψ
`/3)+](s) ds ≤ CM

−1+χ

from the dissipation term in the definition of Uk .
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Set

G := {t ∈ [−M, 0] : a[(v − ψ`/3)+, (v − ψ`/3)+](t) ≤ Mχ−1/4`2
}.

Then clearly
|[−M, 0] \ G| ≤ CM1/4.

We now use a Sobolev inequality (B.4) from Appendix B, with the choice of p = 4,
s = 1 and fi := (vi −ψ`/3)+. We recall the definitions of I and Î from (10.89) and that
fi = (vi − ψ

`/3)+ is supported in I by (10.29). Thus

∑
i

f 4
i ≤ C

∑
i

f 2
i

[ ∑
i 6=j∈Î

|fi − fj |
2

|i − j |2
+ 2

∑
i∈I
|fi |

2
∑
j 6∈Î

1
|i − j |2

]

≤ CK2ξ
‖f ‖2a[f, f ] +

C

K
‖f ‖42,

where we have used the lower bound (10.3) on Bij . Thus∑
i

(vi − ψ
`/3)4+ ≤ CK

2ξ
∑
i

(vi − ψ
`/3
i )2+a[(v − ψ

`/3)+, (v − ψ
`/3)+]

+
C

K

[∑
i

(vi − ψ
`/3
i )2+

]2
. (10.95)

This implies that for any t ∈ G and any i,

(vi(t)− ψ
`/3
i )+ ≤ ‖(v(t)− ψ

`/3)+‖4

≤ CKξ/2
(∑

i

(vi(t)− ψ
`/3
i )2+

)1/4(
Mχ−1/4`2)1/4

+
C

K1/4

[∑
i

(vi(t)− ψ
`/3
i )2+

]1/2

≤ CM−1/20`, (10.96)

where we have used (10.32) in the last step and the fact that χ ≥ 10ξϑ0 together with
(10.25). This proves (10.33).

For the proof of (10.34), we first notice that it is sufficient to consider the case when
M̃ is of the form M̃ = 2−mM , m = 1, . . . , C logM . We now repeat the proof of (10.32)
but with `k , k ≥ 1, replaced by

̂̀
k = 2`(1− 2−k−2)/5 (10.97)

in the definition of ψ`k and working in the time interval of scale M̃ .
Set T̂k := −M̃(1+ 2−k). Define

Ûk = sup
t∈[T̂k,0]

1
M̂̀2

k

∑
i

(vi − ψ
̂̀
k

i )
2
+(t)+

1
M̂̀2

k

∫ 0

T̂k

a[(v − ψ
̂̀
k )+, (v − ψ

̂̀
k )+](s) ds.
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The previous proof is unchanged up to (10.84), and the integral of

�̂4(s) :=
CK3ξ̂̀2

M2

∑
i

1(vi(s)− ψ
̂̀
i > 0)[Bi,i+1(s)+ Bi,i−1(s)]

is still estimated by (cf. (10.84))

∫ t

τ

�̂4(s) ds ≤ C[(t − τ)+ 1]K3ξ+ρ̂̀2M−1+κ
≤ C[(t − τ)+ 1]̂̀2K3ξ+ρM−1+κ

for τ ∈ [T̂k−1, T̂k−1 + 2−k−1M̃] = [T̂k−1, T̂k − 2−k−1M̃] and t ∈ [T̂k, 0]. Here we have
used (10.25).

Similarly to (10.4), we integrate (10.83) (with ̂̀replacing `) from τ to t ,

∑
i

[vi − ψ
̂̀
k

i ]
2
+(t)+

∫ t

τ

a[(v − ψ
̂̀
k )+, (v − ψ

̂̀
k )+](s) ds

≤

∑
i

[vi−ψ
̂̀
k

i ]
2
+(τ )+C

∫ t

τ

[
`k

M

∑
i

(vi−ψ
̂̀
k

i )+(s)+
̂̀2
k

M

∑
i

1(vi−ψ
̂̀
k

i > 0)(s)
]
ds

+C[(t−τ)+1]`2K3ξ+ρM−1+κ . (10.97)

Taking the average over τ ∈ [T̂k−1, T̂k−1 + 2−k−1M̃] = [T̂k−1, T̂k − 2−k−1M̃] and using
the fact that in this regime 2−k−1M̃ ≤ t − τ ≤ M̃ , we obtain

∑
i

[vi − ψ
̂̀
k

i ]
2
+(t)+

∫ t

T̂k

a[(v − ψ
̂̀
k )+, (v − ψ

̂̀
k )+](s) ds

≤ C
2k+1

M̃

∫ T̂k−2−k−1M̃

T̂k−1

∑
i

[vi − ψ
̂̀
k

i ]
2
+(s) ds

+C

∫ t

T̂k−1

[̂̀
k

M

∑
i

(vi−ψ
̂̀
k

i )+(s)+
̂̀2
k

M

∑
i

1(vi−ψ
̂̀
k

i > 0)(s)
]
ds+C`2M̃K3ξ+ρM−1+κ .

Dividing through by M̂̀2
k and taking the supremum over t ∈ [T̂k, 0], for k ≥ 1 and using

M̃ ≤ M , we have, as in (10.87),

Ûk ≤ C
2k+1

MM̃

∫ 0

T̂k−1

∑
i

[
1̂̀2
k

[vi − ψ
̂̀
k

i ]
2
+ +

1̂̀
k

(vi − ψ
̂̀
k

i )+ + 1(vi − ψ
̂̀
k

i > 0)
]
(s) ds

+ CM̃K3ξ+ρM−2+κ . (10.98)
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Using the bounds (10.88) and Proposition B.4 as in (10.4)–(10.91), instead of (10.91)
we get

Ûk ≤
(2k+2)5

MM̃̂̀4
k

∫ 0

T̂k−1

ds
[∑
i

(vi − ψ
̂̀
k−1
i )2+(s)

]
a[(v − ψ

̂̀
k−1)+, (v − ψ

̂̀
k−1)+](s)

+ CM̃M−2+χK−ρ

≤ 32k
[
C1
M

M̃
Û2
k−1 + C

M̃

M
M−1+χK−ρ

]
, k ≥ 2.

Similarly to the proof of (10.94), this new recurrence inequality has the solution

Ûk ≤ CM̃M
−2+χ (10.99)

for any sufficiently large k, as long as the recursion can be started, i.e. if we knew

Û1 � M̃/M. (10.100)

For k = 1 the estimate (10.98) together with (10.92) (with ̂̀1 replacing `1) becomes

Û1 ≤
C

MM̃

∫ 0

−2M̃

∑
i

[
1̂̀2
1
[vi − ψ

̂̀1
i ]

2
+ +

1̂̀1
(vi − ψ

̂̀1
i )+ + 1(vi − ψ

̂̀1
i > 0)

]
(s) ds

+ CM̃M−2+χ

≤
C

MM̃

∫ 0

−2M̃

∑
i

1
`2 [vi(s)− ψ

`/3
i ]

2
+ ds + CM̃M

−2+χ
≤
CMχ

M
+ CM̃M−2+χ .

In the second step we have used (10.92) with `′′ = ̂̀1 and `′ = `/3 noting that ̂̀1 =
7
20` >

1
3`. In the last step we have used (10.32) and 2M̃ ≤ M . Thus (10.100) is satisfied

if M̃ � Mχ .
Finally, taking k → ∞ in (10.99) implies (10.34). This completes the proof of

Lemma 10.6.

10.5. Proof of Lemma 10.7 (second De Giorgi lemma)

Set Z = 0 for simplicity. Since the statement is stronger if µ and δ are reduced, we
can assume that they are small positive numbers, e.g. we can assume µ, δ < 1/8. We
are looking for a sufficiently small λ so that there will be a positive γ with the stated
properties. The key ingredient of the proof is an energy inequality (10.106) including
a new dissipation term which was dropped in the proof of Lemma 10.6. Most of this
section closely follows the argument in [13]; the main change is that we need to split time
integrations into “good” and “bad” times. The argument [13] applies to the good times.
The bad times have a small measure, so their contribution is negligible.
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10.5.1. Dissipation with the good term. Let −3M ≤ T1 < T2 < 0. For any t ∈
[−3M, 0], define

θi(t) := 1(|i| ≤ 9M) · 1(t ∈ G)+ 1(|i| ≤ M1+κ1) · 1(t 6∈ G).

We use the calculation (10.79)–(10.80) (with cutoff ϕ(1) instead of ψ`) but we keep the
“good” b[(v − ϕ(1))+, (v − ϕ

(1))−] ≥ 0 term that was estimated trivially in (10.79) and
we drop the (positive) potential term in a. We have

1
2

∑
i

[vi(t)− ϕ
(1)
i ]

2
+

∣∣∣T2

t=T1
+

∫ T2

T1

b[(v(t)− ϕ(1))+, (v(t)− ϕ
(1))+] dt

≤ −

∫ T2

T1

b[(v(t)− ϕ(1))+, (v(t)− ϕ
(1))−] dt −

∫ T2

T1

b[(v(t)− ϕ(1))+θ, ϕ
(1)
] dt

+ |ū|

∫ T2

T1

∑
i

(vi(t)− ϕ
(1)
i )+Wiθi dt. (10.101)

Notice that we have inserted the characteristic function θi(t) using the fact that (10.39)
and (10.36) imply vi(t) ≤ ϕ

(1)
i for |i| ≥ 9M , t ∈ G, and vi(t) ≤ ϕ

(1)
i = ψ̃i for |i| ≥

M1+κ1 and t ∈ [−3M, 0], i.e. vi − ϕ(1) = (vi − ϕ(1))θi for any time. Moreover, vi(t)−
ϕ
(1)
i ≤ λ` for t ∈ G and |i| ≤ 9M .

The last error term in (10.101) is estimated trivially; in the regime |i| ≤ M1+κ1 we
have Wi ≤ CK

−1+ξ and then from (10.40), |G| ≤ CM1/4 and (10.38) we have

|ū|

∫ T2

T1

∑
i

(vi(t)− ϕ
(1)
i )+Wiθi dt ≤ λ

2`2(T2 − T1)+ Cλ`
2Mκ1+κ2 |Gc|

≤ Cλ2`2
[(T2 − T1)+ λ

−1M1/2
] (10.102)

after splitting the integration regime into “good” times G and “bad” times Gc :=
[−3M, 0] \ G. We have also used (10.37).

The other error term in (10.101) will be estimated by a Schwarz inequality; here we
use the identity

b(f θ, g) =
∑
ij

(fiθi − fj θj )Bij (gi − gj ) =
∑
ij

(fiθi − fj θj )(θi + θj − θiθj )Bij (gi − gj )

for any functions f and g, so

|b(f θ, g)| ≤
1
2

∑
ij

(fiθi − fj θj )
2Bij + 2

∑
ij

θiBij (gi − gj )
2,

i.e.

|b[(v(t)− ϕ(1))+θ, ϕ
(1)
]|

≤
1
2
b[(v(t)− ϕ(1))+θ, (v(t)− ϕ

(1))+θ ] + 2
∑
ij

θiBij (ϕ
(1)
i − ϕ

(1)
j )2.
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The first term will be absorbed in the quadratic term on the left of (10.101). By definition
of ϕ(1), for the second term we have to control

∫ T2

T1

[
λ2
∑
i,j

(Fi − Fj )
2Bij +

∑
i,j

(ψ̃i − ψ̃j )
2Bij θi

]
(t) dt. (10.103)

Since |Fi − Fj | ≤ C`M−1
|i − j | and Fi − Fj is supported on |i|, |j | ≤ 9M , by splitting

the summation into |i − j | ≤ Kξ and its complement, we can bound the first term by

∫ T2

T1

λ2
∑
i,j

(Fi − Fj )
2Bij (t) dt ≤ λ

2`2M−2
∫ T2

T1

∑
|i|,|j |≤9M

|i − j |2Bij (t)

≤ λ2`2M−2K3ξ
∫ T2

T1

∑
|i|≤9M

Bi,i+1(t) dt + Cλ
2`2M−2

∫ T2

T1

∑
|i|,|j |≤9M
|i−j |≥Kξ

|i − j |2

|i − j |2

≤ λ2`2M−2K3ξ
∫ 0

−3M

∑
|i|≤9M

Bi,i+1(t) dt + Cλ
2`2(T2 − T1),

where we have used Bi,j ≤ Bi,i+1 in the first regime and the upper bound in (10.5) in the
other regime. By the regularity at (Z, 0) = (0, 0) we can bound the last line by

Cλ2`2K3ξ+ρ
+ Cλ2`2(T2 − T1) ≤ Cλ

2`2
[(T2 − T1)+M

1/2
]

(we have also used (10.37) and K ≤ Mϑ0 ).
For the second term in (10.103) and for t ∈ G we use the fact that ψ̃iθi(t) = 0 and

that the supports of θi and ψ̃j are separated by a distance of orderM � Kξ . Thus we can
use the upper bound in (10.5) to estimate the kernel:

∫ T2

T1

1(t ∈ G)
∑
i,j

(ψ̃i − ψ̃j )
2Bij (t)θi(t) dt ≤ C

∫ T2

T1

∑
|i|≤9M

∑
|j |≥Mλ−4

ψ̃2
j

|i − j |2
dt

≤ CM(T2 − T1)
∑

|j |≥Mλ−4

ψ̃2
j

|j |2
≤ C`2λ2(T2 − T1), (10.104)

where we have used ψ̃j ∼ `(j/M)1/4 for large j . For times t 6∈ G, we use

(ψ̃i − ψ̃j )
2
≤
C`2

M1/2
(i − j)2

|i|3/2 + |j |3/2
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to get∫ T2

T1

1(t 6∈ G)
∑
i,j

(ψ̃i − ψ̃j )
2Bij (t)θi(t) dt

≤

∫ T2

T1

1(t 6∈ G)
C`2

M1/2

∑
|i|≤M1+κ1

∑
|j |≥Mλ−4

1
|i|3/2 + |j |3/2

dt

+

∫ T2

T1

1(t 6∈ G)
C`2

M1/2

∑
|i|≤M1+κ1

∑
|j |≥Mλ−4

Bij (t)
|i − j |2 · 1(|i − j | ≤ Kξ )

|i|3/2 + |j |3/2
dt

≤ CM1+κ1 |Gc|
`2

M1/2 λ
2M−1/2

+ CK2ξ `2

M1/2

∫ 0

−3M

∑
|i|≤M1+κ1

∑
|j |≥Mλ−4

Bij (t)
1(|i − j | ≤ Kξ )

|i|3/2 + |j |3/2
dt

≤ Cλ2`2Mκ1+1/4
+ CK3ξ `2

M1/2
1

(Mλ−4)3/2

∫ 0

−3M

∑
|i|≤M1+κ1

Bi,i+1(t) dt

≤ Cλ2`2M1/2. (10.105)

Here we have first separated the summations over i, j into |i − j | ≥ Kξ and its com-
plement. Then in the first regime we have used the upper bound in (10.5) and that the
measure of the bad times is small, i.e., (10.39), to estimate the time integral; in the second
regime we used regularity at (Z, 0) and the fact that Kξ

� M1/10 by (10.37). Inserting
the error estimates (10.102), (10.104) and (10.105) into (10.101), we obtain

1
2

∑
i

[vi(t)− ϕ
(1)
i ]

2
+

∣∣∣∣T2

t=T1

+
1
2

∫ T2

T1

b[(v(t)− ϕ(1))+, (v(t)− ϕ
(1))+] dt

≤ −

∫ T2

T1

b[(v(t)− ϕ(1))+, (v(t)− ϕ
(1))−] dt + C`

2λ2
[(T2 − T1)+M

1/2
].

Define H(t) =
∑
i(vi(t)− ϕ

(1)
i )2+. We have

H(T2)+

∫ T2

T1

b[(v(t)−ϕ(1))+, (v(t)−ϕ
(1))−] dt ≤ H(T1)+C`

2λ2
[(T2−T1)+M

1/2
]

(10.106)

for any −3M ≤ T1 < T2 < 0. Notice that b(f+, f−) ≥ 0 for any function f . Since
|vi(t)− ϕ

(1)
i | ≤ λ`θi for all t ∈ G, we also have

H(t) ≤ Cλ2`2M, t ∈ G. (10.107)

10.5.2. Time slices when the good term helps. Let 6 ⊂ G be the set of times that v(T )
is substantially below ϕ(0), i.e.,

6 :=
{
T ∈ (−3M,−2M) ∩ G : #{|i| ≤ M : vi(T ) ≤ ϕ(0)i } ≥

1
4µM

}
.
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We see from (10.39) and (10.41) that

|6| ≥ 1
4Mµ− CM

1/4
≥

1
5Mµ. (10.108)

By (10.106) (applied to T1 = min6, T2 = −2M) and (10.107) (applied to t = T1),

Cλ2`2M ≥

∫
6

b[(v(t)− ϕ(1))+, (v(t)− ϕ
(1))−] dt

≥ −

∫
6

∑
ij

(vi(t)− ϕ
(1)
i )+Bij (t)(vj (t)− ϕ

(1)
j )− dt

≥ −cM−2
∫
6

∑
ij

(vi(t)− ϕ
(1)
i )+(vj (t)− ϕ

(1)
j )− dt, (10.109)

where we have used the fact that vi(t)− ϕ
(1)
i is supported on |i| ≤ 9M (for t ∈ G) and

Bij (t) ≥ c̄M
−2, |i|, |j | ≤ 9M, (10.110)

with some positive constant c̄ (this follows from the lower bound in (10.5), where
|i| ≤ 9M and M ≤ K/10 guarantee that di ≥ K/C holds, and Kξ

� M guarantees
that (10.5) can be used for the extreme points i = −9M , j = 9M , and finally we have
used monotonicity Bij ≥ B−9M,9M for any |i|, |j | ≤ 9M). For t ∈ 6 the number of j ’s
with |j | ≤ M such that vj (t) ≤ ϕ

(0)
j is at least 1

5µM; for such j ’s we have

−(vj (t)− ϕ
(1)
j )− ≥ ϕ

(1)
j − ϕ

(0)
j ≥ (1− λ)` ≥ `/2.

Thus we can bound (10.109) by

≥ c`M−1 µ

10

∫
6

∑
i

(vi(t)− ϕ
(1)
i )+ dt ≥ cM

−1 µ

10λ

∫
6

∑
i

(vi(t)− ϕ
(1)
i )2+ dt,

where we have used (vi(t)− ϕ
(1)
i )+ ≤ λ` for t ∈ G.

Altogether we have proved∫
6

∑
i

(vi(t)− ϕ
(1)
i )2+ dt ≤ Cλ

3µ−1`2M2
≤ λ3−1/8`2M2

if λ is sufficiently small (depending on µ). Thus there exists a subset 2 ⊂ 6 such that
|2| ≤ λ1/8M, and we have∑

i

(vi(t)− ϕ
(1)
i )2+ ≤ λ

3−1/4`2M, ∀t ∈ 6 \2.

Choosing λ small and recalling (10.108) we see that∑
i

(vi(t)− ϕ
(1)
i )2+ ≤ λ

3−1/4`2M (10.111)

on a set of times t in 6 ⊂ [−3M,−2M] ∩G of measure at leastMµ/8. In particular this
set of times is nonempty.
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10.5.3. Finding the intermediate set. Since (10.42) is satisfied, there is a T0 ∈ (−2M, 0)
∩ G such that

#{i : (vi(T0)− ϕ
(2)
i )+ > 0} ≥ 1

2Mδ − CM
1/4, (10.112)

and we can choose a T1 ∈ 6 (then T1 < T0) such that

H(T1) =
∑
i

(vi(T1)− ϕ
(1)
i )2+ ≤ λ

3−1/4`2M

(such a T1 exists by the conclusion of the previous section, (10.111)).
We also have

H(T0) =
∑
i

(vi(T0)− ϕ
(1)
i )2+ ≥

∑
i

(ϕ
(2)
i (T0)− ϕ

(1)
i )2+ · 1

(
(vi(T0)− ϕ

(2)
i )+ > 0

)
≥

∑
i

`2(λ− λ2)2F 2
i · 1

(
(vi(T0)− ϕ

(2)
i )+ > 0

)
≥ CF

λ2

4
`2δ3M (10.113)

with some positive constant CF . This follows from (10.112); notice first that the set in
(10.112) must lie in [−9M, 9M] (see (10.36) and (10.39)), and even if the whole set
(10.112) is near the “corner” (i.e. close to i ∼ ±9M), still the sum of these Fi’s is of
order δ3M since Fi is linear near the endpoints i = ±9M .

Choose now λ small enough (depending on the fixed δ) such that

λ3−1/4`2M ≤ 1
16CFλ

2`2δ3M.

Since H(T ) is continuous and goes from a small value H(T1) ≤
1

16CFλ
2`2δ3M to a

large value H(T0) ≥
1
4CFλ

2`2δ3M , the set of intermediate times

D :=
{
t ∈ (T1, T0) :

1
16CFλ

2`2δ3M < H(t) < 1
4CFλ

2`2δ3M
}

is nonempty.

Lemma 10.10. The set D contains an interval of size at least cδ3M with some positive
constant c > 0. Moreover, for any t ∈ D ∩ G, we have

#{i : ϕ(2)i ≤ vi(t)} ≤
1
2δM. (10.114)

Proof. By continuity, there is an intermediate time T ′ ∈ D ⊂ [T1, T0] such thatH(T ′) =
1
8CFλ

2`2δ3M . We can assume that T ′ is the largest such time, i.e.

H(t) > 1
8CFλ

2`2δ3M for any t ∈ [T ′, T0] ∩D. (10.115)

Let T ′′ = T ′ + cδ3M with a small c > 0. We claim that [T ′, T ′′] ⊂ D. For any
t ∈ [T ′, T ′′] we can use (10.106):

H(t) ≤ H(T ′)+ C`2λ2
[(t − T ′)+M1/2

] ≤
1
8CFλ

2`2δ3M + Cc`2λ2δ3M

< 1
4CFλ

2`2δ3M (10.116)
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if c is sufficiently small. This means that as t runs through [T ′, T ′′], H(t) does not reach
1
4CFλ

2`2δ3M , in particular [T ′, T ′′] ⊂ (T1, T0) sinceH(T0) is already above this thresh-
old. Combining then (10.116) with (10.115), we get [T ′, T ′′] ⊂ D. This proves the first
statement of the lemma.

For the second statement, suppose for contradiction that #{i : ϕ(2)i ≤ vi(τ )} >
1
2δM

for some τ ∈ D ∩ G. Going through the estimate (10.113) but with T0 replaced with τ ,
we would get H(τ) ≥ CF λ

2

4 `
2δ3M , which contradicts τ ∈ D. ut

Define the exceptional set F ⊂ D ∩ G of times where v is below ϕ(0), i.e.

F :=
{
t ∈ D ∩ G : #{|j | ≤ 8M : vj (t)− ϕ

(0)
j ≤ 0} ≥ µM

}
.

This set is very small, since from (10.107) (applied to tmax := supF ∈ Ḡ) we have

Cλ2`2M ≥ −

∫ tmax

−3M

∑
ij

(vi(t)− ϕ
(1)
i )+Bij (t)(vj (t)− ϕ

(1)
j )− dt

≥ −

∫
F

∑
|i|,|j |≤9M

(vi(t)− ϕ
(1)
i )+Bij (t)(vj (t)− ϕ

(1)
j )− dt

≥ −c̄M−2
∫
F

∑
|i|,|j |≤9M

(vi(t)− ϕ
(1)
i )+(vj (t)− ϕ

(1)
j )− dt

≥
c̄

2M
`µ

∫
F

∑
|i|≤9M

(vi(t)− ϕ
(1)
i )+ dt,

where we have restricted the time integration to F in the first step, and then used (10.110)
in the second step. In the third step we have used the fact that whenever vj (t)− ϕ

(0)
j ≤ 0

(see the definition of F), then −(vj (t)− ϕ
(1)
j )− ≥ `(1− λ) ≥ `/2.

By (10.39), (vi(t) − ϕ
(1)
i )+ ≤ `λ and (vi(t) − ϕ

(1)
i )+ = 0 if |i| ≥ 9M and t ∈ G.

Hence we can continue the above estimate:

Cλ2`2M ≥
c̄µ

2Mλ

∫
F

∑
i

(vi(t)− ϕ
(1)
i )2+ dt =

c̄µ

2Mλ

∫
F
H(t)dt ≥

c̄CF

32
λ`2δ3µ|F |.

Here we have used F ⊂ D and the fact that in D we have a lower bound on H(t). The
conclusion is that

|F | ≤
Cλ

δ3µ
M

with some fixed constant C > 0. Using |D| ≥ cδ3M from Lemma 10.10 and the small-
ness of |Gc|, we thus have

|F | ≤ |D ∩ G|/2, |D ∩ G| ≥ 1
2cδ

3M

if λ is sufficiently small, like λ ≤ cδ6µ.
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This means that |D \ F | ≥ c
2δ

3M . Now we claim that for t ∈ (D ∩ G) \ F we have

A(t) := #{i : ϕ(0)i < vi(t) < ϕ
(2)
i } ≥ M/2. (10.117)

This is because t 6∈ F guarantees that the lower bound ϕ(0)i ≤ vi(t) is violated not more
than µM ≤ M/4 times among the indices |i| ≤ 8M . By (10.114), the upper bound
vi(t) ≤ ϕ

(2)
i is violated not more than 1

2δM ≤ M/4 times.
Finally, integrating (10.117) gives∫ 0

−3M
#{i : ϕ(0)i < vi(t) < ϕ

(2)
i } dt =

∫ 0

−3M
A(t) dt ≥

M

2
|(D ∩ G) \ F | ≥ cδ3M2

with some small c > 0, which implies (10.43) with γ := cδ3. This proves Lemma 10.7.
ut

Appendix A. Proof of Lemma 4.5

First we show that on the setRL,K , the length of the interval J = Jy=(yL−K−1, yL+K+1)

satisfies (4.22). We first write

|J | = |yL+K+1 − yL−K−1| = |γL+K+1 − γL−K−1| +O(N
−1+ξδ/2).

Then we use the Taylor expansion %(x) = %(ȳ)+O(x − ȳ) around the midpoint ȳ of J .
Here we have used the fact that % ∈ C1 away from the edge. Thus from (2.14),

K+1=N
∫ γL+K+1

γL−K−1

% =N

∫ yL+K+1

yL−K−1

%+O(N ξδ/2)=N |J |%(ȳ)+O(N |J |2)+O(N ξδ/2),

since the contribution of the second order term in the Taylor expansion is of order N |J |2.
Expressing |J | from this equation and using (4.1), we arrive at (4.22).

Now we prove (4.23). We set

U(x) := V (x)−
2
N

∑
j : |j−L|≥K+Kξ

log |x − γj |.

The potential U is similar to Vy, but the interactions with the external points near the
edges of J (yj ’s with |j − L| < K +Kξ ) have been removed and the external points yj
away from the edges have been replaced by their classical value γj . In proving (4.23), we
will first compare Vy with an auxiliary potential U and then we compute U ′.

First we estimate the difference V ′y(x) − U
′(x). We fix x ∈ J , and for definiteness,

we assume that d(x) = x − yL−K−1, i.e. x is closer to the lower endpoint of J ; the other
case is analogous. We get (explanations will be given after the equation)
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|V ′y(x)− U
′(x)| ≤

1
N

∑
K<|j−L|<K+Kξ

1
|x − yj |

+
1
N

∑
|j−L|≥K+Kξ

|yj − γj |

|x − yj | |x − γj |

≤
CKξ

Nd(x)
+
N−1+δξ/2

d(x)

1
N

[L−K−Kξ∑
j=αN/2

+

N(1−α/2)∑
j=L+K+Kξ

] 1
|x − γj |

+
CN−4/15+ε

N

[ αN/2∑
j=N3/5+ε

1+
N−N3/5+ε∑
j=N(1−α/2)

1
]
+
C

N

[N3/5+ε∑
j=1

1+
N∑

j=N−N3/5+ε

1
]

≤
CKξ

Nd(x)
+
CN−1+δξ/2 logN

d(x)
+ CN−4/15+ε

≤
CKξ

Nd(x)
. (A.1)

Here for the first bulk sum, j ∈ JNα/2, L−K−Kξ K, we have used |yj−γj | ≤ N−1+ξδ/2

from the definition of RL,K and the fact that for j ≤ L−K −Kξ we have

x − γj ≥ yL−K−1 − γj ≥ γL−K−1 − γj − |yL−K−1 − γL−K−1|

≥ cN−1(L−K − 1− j)− CN−1+ξδ/2
≥ c′N−1(L−K − 1− j)

with some positive constants c, c′. This estimate allows one to sum up |x − γj |−1 at
the expense of a logN factor. A similar estimate holds for j ≥ L + K + Kξ . In the
intermediate sum, j ∈ JN3/5+ε, Nα/2K, we have used |yj − γj | ≤ CN−4/15+ε and the
fact that |x − yj | and |x − γj | are bounded from below by a positive constant since

x − yj ≥ yL−K−1 − yj ≥ yαN − yj ≥ γNα − γNα/2 +O(N
−1+ξδ/2) ≥ c,

and similarly for x − γj . Finally, very near the edge, e.g. for j ≤ N3/5+ε, we have just
estimated |yj − γj | by a constant. This explains (A.1).

Now we estimateU ′(x). We use the fact that the equilibrium measure % = %V satisfies
the identity

1
2
V ′(x) =

∫
%(y)

x − y
dy

from the Euler–Lagrange equation for (2.13) (see [1, 12]). Thus 1
2 |U
′(x)| ≤ |�1| + |�2|

+ |�3| with

�1 :=

∫ γ
L+K+Kξ

γ
L−K−Kξ

%(y)

x − y
dy,

�2 :=

∫ γ
L−K−Kξ

A

%(y)

x − y
dy −

1
N

L−K−Kξ∑
j=1

1
x − γj

,

�3 :=

∫ B

γ
L+K+Kξ

%(y)

x − y
dy −

1
N

N∑
j=L+K+Kξ

1
x − γj

,

where [A,B] is the support of the density ρ.
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To estimate �1, we use the Taylor expansion %(y) = %(x) + O(|x − y|). For defi-
niteness we again assume that d(x) = x − yL−K−1, and use the fact that on RL,K we
have

γL−K−Kξ ≤ yL−K−1 ≤ x ≤ yL+K+1 ≤ γL+K+Kξ .

We thus obtain

�1 =

∫ γ
L+K+Kξ

γ
L−K−Kξ

%(x)+O(|x − y|)

x − y
dy = %(x) log

γL+K+Kξ − x

x − γL−K−Kξ
+O(K/N)

= %(ȳ) log
d+(x)

d−(x)
+O(KN−1+ξ ). (A.2)

In the first step above we have computed the leading term of the integral, while the
other term was estimated trivially using the fact that the integration length is γL+K+Kξ −
γL−K−Kξ = O(K/N). In the second step we have used the fact that % ∈ C1 away the
edge, i.e. %(x) = %(ȳ)+O(K/N). To estimate the logarithm, we have used

γL+K+Kξ −x = (γL+K+Kξ −γL+K+1)+(γL+K+1−yL+K+1)+(yL+K+1−x)

= %(ȳ)N−1Kξ
+O(N−1+ξδ/2)+(yL+K+1−x) = d+(x)+O(N

−1+ξδ/2)

and the similar relation

x − γL−K−Kξ = d−(x)+O(N
−1+ξδ/2).

Notice that the error term in (A.2) is smaller than the target estimate Kξ/(Nd(x)) since
d(x) ≤ K/N � K−1+ξN−ξ .

Now we estimate the �2 term; �3 can be treated analogously. We can write (with the
convention γ0 = A)

|�2| =

∣∣∣∣L−K−Kξ∑
j=1

∫ γj

γj−1

%(y)

[
1

x − y
−

1
x − γj

]
dy

∣∣∣∣
≤ C

L−K−Kξ∑
j=1

(γj − γj−1)

∫ γj

γj−1

%(y)

(x − y)2
dy

≤ CN−1
∫ γ

L−K−Kξ

A+κ

dy

(x − y)2
+ CN−2/3

∫ A+κ

A

dy

(x − y)2
≤
CN−1

d(x)
.

In the first step we have used ∫ γj

γj−1

%(y) =
1
N

from (2.14). In the second step we have used the fact that γj − γj−1 = Oκ(N
−1) in the

bulk, i.e. for γj ≥ A + κ , and maxj (γj − γj−1) = O(N−2/3) (the order N−2/3 comes
from the fact that the density ρ vanishes as a square root at the endpoints). The parameter
κ = κ(α) is chosen such that A + 2κ ≤ yL−K−1, which can be achieved since L ≥ αN
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and yL−K−1 is close to γL−K−1. In the very last step we have absorbed the N−2/3 error
term into (Nd(x))−1

≥ K−1
� N−2/3.

Finally, we prove (4.24). Since |yj − γj | ≤ Kξ/N , it follows that |x − yj | ∼ |x − γj |
for |x − γj | ≥ Kξ/N . Thus we have

V ′′y (x) = V
′′(x)+

2
N

∑
j 6∈I

1
(x − yj )2

≥ infV ′′ +
c

N

∑
j 6∈I

1
(x − γj )2

≥ infV ′′ +
c

d(x)

with some positive constant c (depending only on α). In estimating the summation, we
have used the fact that the sequence γk is regularly spaced with gaps of order 1/N . This
completes the proof of Lemma 4.5. ut

Appendix B. Discrete Gagliardo–Nirenberg inequalities

Recall the integral formula for the quadratic form of the operator (−1)s/2 in R for any
s ∈ (0, 2): ∫

R
φ(x)((−1)s/2 φ)(x) dx = C(s)

∫
R

∫
R

|φ(x)− φ(y)|2

|x − y|1+s
dx dy,

where C(s) is an explicit positive constant, C(1) = (2π)−1 and φ ∈ H s/4(R). We have
the following Gagliardo–Nirenberg type inequality in the critical case (see [48, (1.4)] with
n = 1, p = 4)

‖φ‖44 ≤ C‖φ‖
2
2

∫
R
φ(x)(

√
−1φ)(x) dx, φ : R→ R. (B.1)

We first give a slight generalization of this inequality:

Proposition B.1. Let p ∈ (2,∞) and s ∈ (1− 2/p, 2). Then

‖φ‖p ≤ Cp,s‖φ‖
1− p−2

sp

2

[∫
R
φ(x)((−1)s/2φ)(x) dx

] p−2
2sp

(B.2)

with some constant Cp,s with ‖ · ‖p = ‖ · ‖Lp(R).

Proof. We follow the proof of [48, Theorem 2]. Setting q = p/(p − 1) and using the
Hausdorff–Young and Hölder inequalities, for any λ > 0 and α > 1− q/2 we obtain

‖φ‖p ≤ Cp‖φ̂‖q ≤ Cp‖φ̂(ξ)(λ+ |ξ |)
α/q
‖2‖(λ+ |ξ |)

−α/q
‖2q/(2−q)

≤ Cp,α(λ
α/q
‖φ‖2 + 〈φ, (−1)

α/qφ)1/2〉λ(1−α)/q−1/2

≤ Cp,α‖φ‖
1− 2−q

2α
2 〈φ, (−1)α/qφ)

2−q
4α , (B.3)

where in the last step we have chosen λ = (φ, |p|2α/q〉q/(2α)‖φ‖−q/α . We use 〈·, ·〉 to
denote the inner product in L2(R). Setting s = 2α/q, we obtain (B.2). ut

Now we derive the discrete version of this inequality.
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Proposition B.2. Let p ∈ (2,∞) and s ∈ (1 − 2/p, 2). Then there exists a positive
constant Cp,s such that

‖f ‖p ≤ Cp,s‖f ‖
1− p−2

sp

2

[ ∑
i 6=j∈Z

|fi − fj |
2

|i − j |1+s

] p−2
2sp

(B.4)

for any function f : Z→ R, where ‖f ‖p = ‖f ‖Lp(Z) = (
∑
i |fi |

p)1/p.

Proof. Given f : Z → R, let φ : R → R be its linear interpolation, i.e. φ(i) := fi for
i ∈ Z and

φ(x) = fi+(fi+1−fi)(x−i) = fi+1−(fi+1−fi)(i+1−x), x ∈ [i, i+1]. (B.5)

It is easy to see that

C−1
p ‖φ‖Lp(R) ≤ ‖f ‖Lp(Z) ≤ Cp‖φ‖Lp(R), 2 ≤ p ≤ ∞, (B.6)

with some constant Cp. We claim that∫
R

∫
R

|φ(x)− φ(y)|2

|x − y|1+s
dx dy ≤ Cs

∑
i 6=j∈Z

|fi − fj |
2

|i − j |1+s
(B.7)

with some constant Cs ; then (B.6) and (B.7) will yield (B.4) from (B.1).
To prove (B.7), we can write∫

R

∫
R

|φ(x)− φ(y)|2

|x − y|1+s
dx dy =

∑
i,j

∫ i+1

i

∫ j+1

j

|φ(x)− φ(y)|2

|x − y|1+s
dx dy. (B.8)

Using the explicit formula (B.5), we first compute the i = j terms in (B.8):∑
i

∫ i+1

i

∫ i+1

i

|φ(x)− φ(y)|2

|x − y|1+s
dx dy

=

∑
i

|fi − fi+1|
2
∫ i+1

i

∫ i+1

i

dx dy

|x − y|s
= Cs

∑
i

|fi − fi+1|
2

|i − (i + 1)|1+s
(B.9)

with some explicit Cs . Next we compute the terms |i − j | = 1 in (B.8). We assume
j = i − 1, the terms j = i + 1 being analogous:∑
i

∫ i+1

i

∫ i

i−1

|φ(x)− φ(y)|2

|x − y|1+s
dx dy ≤

∑
i

(fi+1 − fi)
2
∫ i+1

i

∫ i

i−1

(x − i)2

(x − y)1+s
dx dy

+

∑
i

(fi − fi−1)
2
∫ i+1

i

∫ i

i−1

(i − y)2

(x − y)1+s
dx dy, (B.10)

where we have used φ(x) = fi + (fi+1−fi)(x− i) and φ(y) = fi − (fi −fi−1)(i− y).
The above integrals are finite constants Cs , so we get∑

i

∫ i+1

i

∫ i

i−1

|φ(x)− φ(y)|2

|x − y|2
dx dy ≤ Cs

∑
i

(fi+1 − fi)
2

(i + 1− i)1+s
+

(fi − fi−1)
2

(i − (i − 1))1+s
.
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Finally, for the terms |i − j | ≥ 2, we can just replace (x − y)1+s by (i − j)1+s on the
right hand side of (B.8) and use simple Schwarz inequalities to get∫ i+1

i

∫ j+1

j

|φ(x)− φ(y)|2

|x − y|1+s
dx dy ≤ Cs

|fi − fj |
2
+ |fi+1 − fi |

2
+ |fj+1 − fj |

2

|i − j |1+s
.

After summing up we get

∑
|i−j |≥2

∫ i+1

i

∫ j+1

j

|φ(x)− φ(y)|2

|x − y|1+s
dx dy

≤ Cs
∑
|i−j |≥2

|fi − fj |
2

|i − j |1+s
+ Cs

∑
i

|fi+1 − fi |
2

((i + 1)− i)1+s
. (B.11)

The estimates (B.9), (B.10) and (B.11) together yield (B.7). ut

With two fixed parameters a, b > 0, define

m(ξ) := |ξ | · 1(|ξ | ≤ a)+ b|ξ |, ξ ∈ R. (B.12)

We will consider the operator T = m(
√
−1) defined by m being its Fourier multiplier,

i.e.
T̂ φ(ξ) = m(ξ)φ̂(ξ).

Proposition B.3. We have

‖φ‖44 ≤ C‖φ‖
2
2〈φ,m(

√
−1)φ〉 +

C

ab3 ‖φ‖
4
∞. (B.13)

Proof. Let χ ∈ C∞0 (R) be a symmetric cutoff function such that 0 ≤ χ ≤ 1, χ(ξ) = 1
for |ξ | ≤ 1/2 and χ(ξ) = 0 for |ξ | ≥ 1. Set χa(ξ) = χ(ξ/a). Split φ = φ1 + φ2 into low
and high Fourier modes, via the Fourier transforms:

φ = φ1 + φ2, φ̂1(ξ) := φ̂(ξ)χa(ξ), φ̂2(ξ) := φ̂(ξ)(1− χa(ξ)).

First we estimate the contribution from φ1. With p = 4, s = 1 in (B.2) we have

‖φ1‖4 ≤ C‖φ1‖
1/2
2

[∫
R
|φ̂1(ξ)|

2
|ξ | dξ

]1/4

≤ C‖φ1‖
1/2
2 〈φ1, m(

√
−1)φ1〉

1/4

≤ C‖φ‖
1/2
2 〈φ,m(

√
−1)φ〉1/4,

where we have used |ξ | ≤ m(ξ) on the support of φ̂1 and in the last step we have used
|φ̂1| ≤ |φ̂| pointwise.

For the contribution of φ2, with any δ > 0 we have

‖φ2‖4 ≤ ‖φ2‖
1/4
∞ ‖φ2‖

3/4
3 ≤ δ−4

‖φ2‖∞ + δ
4/3
‖φ2‖3.
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In the first term we use the Littlewood–Paley inequality ‖φ2‖∞ ≤ C‖φ‖∞, where C
depends only on the choice of χ but is independent of a. In the second term we use (B.2)
with s = 2/3, p = 3:

‖φ2‖3 ≤ C‖φ2‖
1/2
[∫
|φ̂2(ξ)|

2
|ξ |2/3 dξ

]1/4

≤ Cb−1/4a−1/12
‖φ2‖

1/2
〈φ2, m(

√
−1)φ2〉

1/4,

where in the second step we have used |ξ |2/3 ≤ 2b−1a−1/3m(ξ) for all |ξ | ≥ a/2, i.e. on
the support of φ̂2. Using |φ̂2| ≤ |φ̂|, we thus have

‖φ2‖4 ≤ Cδ
−4
‖φ‖∞ + Cδ

4/3b−1/4a−1/12
‖φ‖1/2〈φ,m(

√
−1)φ〉1/4.

Choosing δ = b3/16a1/16, we obtain (B.13). ut

Finally, we derive a discrete version and a localized discrete version of Proposition B.3.

Proposition B.4. Let {Bij : i 6= j ∈ Z} be a bi-infinite matrix of nonnegative numbers
with Bij = Bji .

(i) [Global version] Assume that for some positive constants a, b, r with b ≤ r ≤ 1, we
have

Bij ≥ b/|i − j |
2, ∀i 6= j ∈ Z, (B.14)

Bij ≥ r/|i − j |
2, ∀i, j ∈ Z with |i − j | ≥ a−1. (B.15)

Then for any function f : Z→ R we have

‖f ‖44 ≤
C

r
‖f ‖22

∑
i 6=j

Bij |fi − fj |
2
+

C

ab3 ‖f ‖
4
∞. (B.16)

(ii) [Local version] Let I = JZ−L,Z+LK ⊂ Z be a subinterval of length |I| = 2L+1
around Z ∈ Z and let Î := JZ − (1 + τ)L,Z + (1 + τ)LK ⊂ Z be a slightly
larger interval, where τ > 0. Assume that for some positive constants a, b, r with
b ≤ r ≤ 1, we have

Bij ≥ b/|i − j |
2, ∀i, j ∈ Î, (B.17)

Bij ≥ r/|i − j |
2, ∀i, j ∈ Î with |i − j | ≥ a−1. (B.18)

Then for any function f : Z→ R with supp(f ) ⊂ I we have

‖f ‖44 ≤ C‖f ‖
2
2

[
1
r

∑
i 6=j∈I

Bij |fi − fj |
2
+

1
Lτ
‖f ‖22

]
+

C

ab3 ‖f ‖
4
∞. (B.19)
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Proof. Following the proof of Proposition B.2, for any f : Z→ R we define its contin-
uous extension φ by (B.5). Then the combination of (B.6) and (B.13) yields

‖f ‖44 ≤ C‖f ‖
2
2〈φ,m(

√
−1)φ〉 +

C

ab3 ‖f ‖
4
∞,

where m is given in (B.12) and a, b will be determined later. We compute

〈φ,m(
√
−1)φ〉 ≤ b〈φ,

√
−1φ〉 + 〈φ,

√
−1χ2

2a(
√
−1)φ〉, (B.20)

where we have used 1(|ξ | ≤ a) ≤ χ2
2a(ξ) by the definition of χ at the beginning of the

proof of Proposition B.3. The first term is bounded by

b〈φ,
√
−1φ〉 = b

∫
R

∫
R

|φ(x)− φ(y)|2

|x − y|2
dx dy ≤ Cb

∑
i<j

|fi − fj |
2

|i − j |2

≤

∑
i<j

Bij |fi − fj |
2 (B.21)

using (B.7) in the first estimate and (B.14) in the second one. For the second term in
(B.20) we use the trivial arithmetic inequality

|ξ |χ2
2a(ξ) ≤ Q(ξ) with Q(ξ) := 100a(1− e−|ξ |/a).

Thus

〈φ,
√
−1χ2

2a(
√
−1)φ〉 ≤

∫
R
|φ̂(ξ)|2Q(ξ) dξ = 50

∫
R

∫
R

|φ(x)− φ(y)|2

(x − y)2 + a−2 dx dy.

Mimicking the argument leading to (B.7), we can continue this estimate as

〈φ,
√
−1χ2

2a(
√
−1)φ〉 ≤ C

∑
i 6=j∈Z

|fi − fj |
2

|i − j |2 + a−2 ≤
C

r

∑
i 6=j∈Z

Bij |fi − fj |
2, (B.22)

where we have used (B.15) in the last step. This completes the proof of (B.16).
The proof of (B.19) is very similar, just in the very last estimates of (B.21) and (B.22)

we use the fact that f is supported in I. For example in (B.21) we have

b
∑
i<j

|fi − fj |
2

|i − j |2
= b

∑
i<j∈Î

|fi − fj |
2

|i − j |2
+ 2b

∑
i∈I
|fi |

2
∑
j 6∈Î

1
|i − j |2

≤

∑
i<j

Bij |fi − fj |
2
+

2
Lτ
‖f ‖22,

and the estimate in (B.22) is analogous. ut
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