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Abstract. Let f be a Hecke–Maass cusp form of eigenvalue λ and square-free level N . Normalize
the hyperbolic measure so that vol(Y0(N)) = 1 and the form f such that ‖f ‖2 = 1. It is shown that
‖f ‖∞ �ε λ

5/24+εN1/3+ε for all ε > 0. This generalizes simultaneously the current best bounds
in the eigenvalue and level aspects.
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1. Introduction

It is a classical problem to bound the L∞-norm (or sup-norm) of Laplace eigenfunc-
tions on manifolds. We shall establish new bounds for the well-studied modular surface
Y0(N) = 00(N)\H with its hyperbolic metric.

The total volume for the hyperbolic measure is asymptotically equal to N1+o(1). We
work with a rescaled probability measure µ such that µ(Y0(N)) = 1. A Hecke–Maass
cuspidal newform f is a joint eigenfunction of the Laplacian and Hecke operators. It will
be assumed to be L2-normalized, that is,∫

00(N)\H
|f (z)|2 µ(dz) = 1.

It is interesting to bound the sup-norm ‖f ‖∞ in terms of the two basic parameters: the
Laplacian eigenvalue λ and the level N .

In the λ-aspect the first nontrivial bound is due to Iwaniec–Sarnak [9] who establish

‖f ‖∞ �N,ε λ
5/24+ε (1.1)

for any ε > 0. They find how to make use of the Hecke operators, through the method
of amplification, in order to go beyond ‖f ‖∞ �N λ1/4 which is valid on any compact
Riemannian surface.

In theN -aspect the first nontrivial bound is due to Blomer–Holowinsky [2] who prove
‖f ‖∞ �λ,ε N

216/457+ε for square-free N . In [14] we revisit the proof by introducing
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geometric arguments, and derive a stronger exponent ‖f ‖∞ �λ,ε N
5/11+ε . Helfgott–

Ricotta (unpublished) improve some of the estimates in [14] and obtain ‖f ‖∞ �λ,ε

N9/20+ε . In [6] we introduce with Harcos a more efficient treatment of the counting prob-
lem and derive the estimate ‖f ‖∞ �λ,ε N

5/12+ε . Optimizing the argument further we
shall obtain:

Theorem 1.1 (see also [7]). Let f be a normalized Hecke–Maass cusp form of square-
free level N . Then for any ε > 0,

‖f ‖∞ �λ,ε N
1/3+ε . (1.2)

We continue with uniform bounds in both λ and N . It is possible to establish the general
bound ‖f ‖∞ �ε λ

1/4+εN1/2+ε . The details can essentially be found in Donnelly [3],
Abbes–Ullmo [1] and Jorgenson–Kramer [10].

Hybrid bounds save a power simultaneously in the λ- and N -aspects. The following
hybrid bound is established by Blomer–Holowinsky [2, Theorem 2]:

‖f ‖∞ � (λ1/2N)1/2−1/2300. (1.3)

It interpolates1 between the following bound in the λ-aspect [2, §10] obtained by modi-
fying the method of proof in [9]:

‖f ‖∞ �ε λ
5/24+εN1/2+ε, (1.4)

and the following bound in the N -aspect [2, p. 673]:

‖f ‖∞ �ε λ
9979/3658+εN216/457+ε . (1.5)

The bound (1.3) is not satisfactory for two reasons. First the quality of the exponents
is not optimal. Second the method of proof is complicated because the proof of (1.5) is
very different from the proof of (1.4), which explains the large value of the exponent of λ
in (1.5). These issues will be resolved in the present paper.

We establish the following hybrid bound that generalizes the best known bounds in
the λ-aspect and in the N -aspect simultaneously.

Theorem 1.2. Let f be a normalized Hecke–Maass cusp form of eigenvalue λ and
square-free level N . Then for any ε > 0,

‖f ‖∞ �ε λ
5/24+εN1/3+ε . (1.6)

Remarks. (i) In the context of L-functions, obtaining hybrid bounds that perfectly com-
bine the two aspects is also a difficult problem. There are few known cases, such as Jutila–
Motohashi [11] who establish L(1/2+ it, f )�ε (λ

1/2
+ t)1/3+ε .

(ii) Inspecting the details of the proof below shows that the terms (λN)ε

come from divisor bounds. Thus it could be slightly improved, for example into
exp(log(λN)/log log(λN)).

1 To be precise, 1/2300 in (1.3) could be replaced by 0.00044987... > 1/2223 > 1/2300.
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The amplification method as used in [9] relates the sup-norm problem to an interesting
lattice point counting. Our strategy is to produce a unified proof of both the λ and N -
aspects: this seems to be the only way for establishing a hybrid bound that generalizes the
best bounds in the two aspects. Our method is geometric, with refinements of the ideas
from [6, 14]. In particular we shall provide a new treatment of the λ-aspect.

In the remarks following [14, Theorem 1] and [6, Theorem 1] we mention the pos-
sibility of studying hybrid bounds. The details of this project are achieved in the present
paper to the point of obtaining uniform hybrid bounds. We continue this introduction with
a discussion of the solution to the lattice point counting problem.

1.1. A lattice point counting problem

For z ∈ H, δ > 0 and two integers `,N ≥ 1, let M(z, `, δ,N) be the finite set of matrices
γ =

(
a b
c d

)
in M2(Z) such that

det(γ ) = `, c ≡ 0 (N), u(γ z, z) ≤ δ. (C)

Denote by M(z, `, δ,N) its cardinality. Here u(γ z, z) is the hyperbolic distance.
We want a uniform upper bound forM(z, `, δ,N) in all parameters. The typical range

that is of interest in the context of sup-norms is: ` is moderately large, 0 < δ < 1 and
N → ∞. The quality of the upper bound for M(z, `, δ,N) is directly related to that of
the hybrid bound (1.6).

Previous results on the counting problem involve only one of the two parameters δ
and N . We shall assume in this subsection that γ is generic in the sense that c 6= 0 and
(a + d)2 6= 4`, and denote the associated count by M∗(z, `, δ,N).

If N is fixed and δ > 0 is arbitrary, the original work of Iwaniec–Sarnak gives the
bound M∗(z, `, δ, 1) 4 1+ `δ1/4. In fact one can verify [2, §10] that the same argument
produces a bound uniform in N of the same quality:2

M∗(z, `, δ,N) 4 1+ `δ1/4. (1.7)

Of course this is not good enough in the N -aspect since we expect fewer solutions of (C)
from the condition c ≡ 0 (N) when N grows.

In this paper we establish an improved estimate on average over `. A typical upper
bound will be of the form∑

1≤`≤L

M∗(z, `, δ, 1) 4 L/y + L3/2δ1/2
+ L2δ. (1.8)

In fact we can reprove the Iwaniec–Sarnak bound (1.1) from this idea.
Section 4 produces the bounds for the counting problem (C) that are uniform in δ

and N . A typical estimate which generalizes (1.8) takes the form:

2 Here the notation F 4 G stands for F �ε G · (`N)ε for any ε > 0 (see §2.1).
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Lemma 1.3. For any z = x+iy ∈ F(N), and any two integersL,N ≥ 1 and 0 < δ < 1,

∑
1≤`≤L

M∗(z, `, δ,N) 4
L

Ny
+
L3/2δ1/2

N1/2 +
L2δ

N
. (1.9)

The progression from (1.7) to (1.9) via the estimate (1.8) is one key in obtaining a unified
approach in all parameters.

1.2. Proof of Lemma 1.3

Without loss of generality we have assumed that z = x + iy ∈ F(N), the set of z ∈ H
such that =m(z) ≥ =m(ηz) for all Atkin–Lehner operators η of level N . Indeed, the total
count M(z, `, δ,N) is invariant under the Atkin–Lehner operators, while the right-hand
side of (1.9) is minimal if z ∈ F(N).

Let γ =
(
a b
c d

)
and ` = ad − bc with c 6= 0, (a + d)2 6= 4` and 1 ≤ ` ≤ L. The

condition u(γ z, z) ≤ δ yields in coordinates

| − cz2
+ (a − d)z+ b|2 ≤ 4Lδy2. (1.10)

The left-hand side of (1.9) counts such matrices γ =
(
a b
c d

)
satisfying (1.10).

There are� L1/2/(Ny) possible values of c because we can verify that

cy � L1/2. (1.11)

Here is a proof of this inequality. The imaginary part of −cz2
+ (a − d)z + b equals

(a − d − 2cx)y, hence
|a − d − 2cx| ≤ 2(Lδ)1/2.

We can rewrite (1.10) as∣∣`− |cz+ d|2 − (cz+ d)(a − d − 2cx)
∣∣2 ≤ δLc2y2,

to which we apply the triangle inequality and obtain∣∣`− |cz+ d|2∣∣� (Lδ)1/2(cy + |cz+ d|)� (Lδ)1/2|cz+ d|.

It follows that |cz+ d| � L1/2, which implies (1.11).
For each possible value of c we count the pairs of integers (a−d, b) satisfying (1.10).

This is equivalent to counting the number of lattice points in Z + zZ that lie in the Eu-
clidean ball of radius (Lδ)1/2y centered at cz2. The lattice Z + zZ has covolume y and
shortest length at least N−1/2 [6, Lemma 2.2]. Hence there are� 1+ (LNδ)1/2y +Lδy
lattice points (a − d, b) inside the ball [13, Lemma 2].

The trace of γ satisfies a+d � L1/2. Since γ is determined by c, a+d and (a−d, b),
and we have cy � L1/2, we conclude that the total number of matrices satisfying (1.10)
is

�
L1/2

Ny
· L1/2

· (1+ (LNδ)1/2y + Lδy). ut
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Remark 1.4. It is important that we have applied a 3-term estimate for the number of
bounded lattice points in Z + zZ. A simpler 2-term estimate� 1 + LδNy2 would lead
to a weaker version of Lemma 1.3. One would not recover from a 2-term estimate the
exponent 5/24 in the λ-aspect, even for N = 1.

1.3. Structure of the paper

Section 2 provides some background on automorphic forms and the Selberg transform.
Section 3 gives a bound for f (x + iy) via the Fourier expansion, which is good enough
to cover the cuspidal region y � T 1/6N−2/3. The complementary region is handled in
Section 6 which gathers all previous estimates to conclude the proof of Theorem 1.2. In
Section 7 we review the proof of the Iwaniec–Sarnak bound and provide the treatment
of the λ-aspect based on (1.8). Throughout the text we also introduce a number of im-
provements on existing techniques, which added together make the whole paper into a
well-oiled machine for establishing sup-norm bounds of Hecke–Maass forms.

2. Preliminaries

2.1. Notation

Without loss of generality, when establishing Theorem 1.2 we may assume that λ and N
are comparable in a logarithmic scale, namely that for a given A > 1,

N1/A
≤ λ ≤ NA. (2.1)

This is because the estimates in each of the λ- and N -aspects can be established with
polynomial dependence on the other parameter. Similarly the amplifier will satisfy 1 ≤
` ≤ L ≤ NO(1).

The value of ε > 0 may vary from line to line. For two functions F(λ,N) and
G(λ,N) depending on the eigenvalue λ and the level N we adopt the notation

F 4 G meaning that |F(λ,N)| �ε G(λ,N)(λN)
ε

for all ε > 0 (the multiplicative constant depends only on ε and is independent of λ
and N ). With (2.1) there is no loss of generality in replacing (λN)ε by N ε or λε .

2.2. Hecke–Maass forms

We let SL2(R) and GL2(R)+ act on the upper half-plane H = {x + iy : y > 0} by frac-
tional linear transformations. Denote by u(w, z) = |w−z|2

4=m(w)=m(z) the hyperbolic distance.
Let 00(N) be the Hecke congruence subgroup of matrices

(
a b
c d

)
∈ SL(2,Z) such that

c ≡ 0 (N).
A cuspidal Hecke–Maass newform f of level N has a Nebentypus character χ of

modulus N . It satisfies the automorphy condition

f (γ z) = χ(d)f (z), γ =

(
a b

c d

)
∈ 00(N), z ∈ H,
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and is an eigenfunction of the Laplace operator: 1f = λf , and of the Hecke operators. It
is also an eigenfunction of the Atkin–Lehner operators. Denote by λf (n) the n-th Hecke
eigenvalue, n ≥ 1. We recall the Hecke relations:

λf (m)λf (n) =
∑
d|(m,n)

χ(d)λf

(
mn

d2

)
for (mn,N) = 1.

2.3. Selberg transform

The book [8] is a classical reference on the Selberg transform. We identify the double
quotient SO(2)\SL(2,R)/SO(2) with the interval [0,∞) using the hyperbolic distance.
To a Paley–Wiener function h one associates a smooth function k ∈ C∞([0,∞)) with
rapid decay as follows:

g(ξ) :=
1

2π

∫
∞

−∞

e−irξh(r) dr,

2q(v) := g(2 log(
√
v + 1+

√
v)),

k(u) := −
1
π

∫
∞

u

(v − u)−1/2 dq(v).

A more direct construction is given by the spherical transform,

k(u) =
1

4π

∫
∞

−∞

F1/2+ir(u)h(r) tanh(πr)r dr,

where Fs is the spherical function:

Fs(u) =
1
π

∫ π

0
(2u+ 1+ 2

√
u(u+ 1) cos θ)−s dθ.

In particular we have the Plancherel formula

k(0) =
1

4π

∫
∞

−∞

h(r)r tanh(πr) dr. (2.2)

2.4. Choice of point-pair kernel

As a preliminary step to establishing bounds in the eigenvalue aspect one needs to choose
a suitable point-pair kernel.

Lemma 2.1. For all T ≥ 1 there is a point-pair kernel kT ∈ C∞c ([0,∞)), supported on
[0, 1], which satisfies the following properties:

(i) The spherical transform hT (r) is positive for all r ∈ R ∪ iR.
(ii) For all T ≤ r ≤ T + 1, hT (r)� 1.

(iii) For all u ≥ 0, |kT (u)| ≤ T .
(iv) For all T −2

≤ u ≤ 1, |kT (u)| ≤ T 1/2/u1/4.

Remark. These conditions imply kT (0) � T , because of the Plancherel formula (2.2).
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Proof of Lemma 2.1. Let φ be a fixed positive Paley–Wiener function whose Fourier
transform is supported on (−1/2, 1/2). Adapting the method of Duistermaat–Kolk–Vara-
darajan [4] to the present setting we let

hT (r) := |φ(T − r)+ φ(T + r)|
2.

Clearly properties (i) and (ii) are satisfied. Property (iii) follows from the positivity of hT
and the fact that |F1/2+ir(u)| ≤ 1 for all r ∈ R and u ≥ 0. Property (iv) follows by a
direct computation. The fact that kT is supported on [0, 1] follows from the compatibility
of the Selberg transform with convolution. ut

Example 2.2. We review the explicit choice by Iwaniec–Sarnak of point-pair kernel [9,
Lemma 1.1] which has similar properties except for the condition on the support. The
spectral function is

h(r) :=
4π2 cosh(πr/2) cosh(πT /2)

cosh(πr)+ cosh(πT )
, r ∈ R ∪ iR.

Clearly h is positive, h(r) ≥ 1 for all T ≤ r ≤ T + 1 and h(r) decays rapidly when r is
far from T . Then the Harish-Chandra transform is

g(ξ) =
2π cos(ξT )

cosh(ξ)
,

and furthermore
q(v) = π(2v + 1)−1

<e[(
√
v + 1+

√
v)2iT ],

from which it follows that for u > 0,

|k(u)| ≤ 4T 1/2u−1/4(u+ 1)−5/4.

and for 0 ≤ u ≤ 1,
k(u) = T +O(1+ u1/2T 2).

2.5. A weighted count

The following estimate will be used repeatedly.

Lemma 2.3. Let kT be as in Lemma 2.1. Let M : [0, 1] → R+ be a nondecreasing
function with finitely many discontinuities such that M(δ) � δα for some α > 0, and let
β := max(1/2, 1− 2α). Then ∫ 1

0
|kT (δ)| dM(δ)� T β .

Proof. This follows from inequalities (iii) and (iv) of Lemma 2.1. Note that T β is essen-
tially an estimate for

max
(
kT (0) ·M(T −2), |kT (1)| ·M(1)

)
,

which can be interpreted as a trivial bound for the contributions near the two endpoints 0
and 1 respectively. ut
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3. Bound via Fourier expansion

Proposition 3.1. Let f be a Hecke–Maass cusp form of level N and eigenvalue λ > 0.
Then for all x + iy ∈ H,

f (x + iy) 4 λ1/4/y1/2
+ λ1/12.

Remarks. (i) When N = 1 is fixed, there was a mistake in the corresponding statement
in [9, Lemma A.1]; a corrigendum is given in [12], see also [5, Eq. (41)].

(ii) When y is moderately large or bounded, the first term dominates. The secondary
term λ1/12 occurs because of the transition range of K-Bessel functions (it is sharp be-
cause this is the true size of f (x + iy) when y ≈ λ1/2).

(iii) Interestingly, this type of estimate can be generalized to automorphic cusp forms
on more general groups and to number fields. We shall return to this in a subsequent work.

Proof of Proposition 3.1. For bounded λ, the estimate may be found in [2, §10] and [14,
Lemma 3.1] (strictly speaking, [2, §10] justifies the estimate when y > λ1/6). Without
loss of generality we may assume λ = 1/4+ r2 with r ≥ 1. The Fourier expansion reads

f (x + iy) = y1/2
∑
n 6=0

n1/2ρf (n)Kir(2π |n|y)e(nx)

where ρf (n) = ρf (1)λf (n)/
√
n. The estimate by Hoffstein–Lockhart yields |ρf (1)|

4 eπr/2.
We fix ε > 0 arbitrarily small. If 2π |n|y ≥ r + r1/3+ε , then the exponential decay of

the K-Bessel function shows that the contribution is negligible.
In the range 2πy ≤ r + r1/3+ε prior to the exponential decay, we shall use the fol-

lowing uniform estimate for the K-Bessel function:

r1/2eπr/2Kir(y)� min(r1/6, |y/r − 1|−1/4), r ≥ 1, y > 0. (3.1)

This can be obtained from reference books on special functions, e.g. [15]. 3

Taking absolute values we infer that

|f (x + iy)| 4

(
y

r

)1/2∑
n6=0

|λ(n)|r1/2eπr/2|Kir(2π |n|y)|. (3.2)

From the Cauchy–Schwarz inequality and Rankin–Selberg bounds for the mean square
of λf (n) we deduce

|f (x + iy)|2 4
∑
n6=0

reπr |Kir(2π |n|y)|2.

3 Such estimates are usually stated in a different way in the literature, but we have found the
expression (3.1) simple and practical for our purposes.
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It remains to plug in the bound (3.1) and compare the sum over n to an integral. The
maximum value is r1/3, while the integral is∫ r+r1/3+ε/y

0

∣∣∣∣uyr − 1
∣∣∣∣−1/2

du�
r

y
.

This concludes the proof of the proposition. ut

In certain ranges one can do slightly better using a bound 0 ≤ θ < 1/2 towards Rama-
nujan–Petersson, for which the current record by Kim–Sarnak–Shahidi reads θ = 7/64.

Proposition 3.2. Let f be a Hecke–Maass cusp form of level N and eigenvalue λ > 0.
Then for all x + iy ∈ H,

f (x + iy) 4
λ1/4

y1/2 +
λ1/12−θ/2

yθ
·

{
λ−1/4y1/2 if λ1/6

� y � λ1/2,
λ−1/6 if y � λ1/6.

Furthermore if y � λ1/2 then f (x + iy) is exponentially small.

Proof. One can check that for n prior to the transition range of the K-Bessel function,
the application of the Cauchy–Schwarz inequality is already optimal. But in the transition
range we rather apply pointwise bounds towards Ramanujan–Petersson.

The term λ1/12 when bounding (3.2) gets replaced by(
y

r

)1/2

r1/6
(

1+
r1/3

y

)
·

(
r

y

)θ
.

The estimate follows. ut

4. Counting lattice points

Our goal in this section is to achieve upper bounds for M(z, `, δ,N) that are uniform in
all parameters z ∈ H, ` ≥ 1, 0 < δ < 1 and N ≥ 1 (see §1.1 for notation). We split the
count M = M(z, `, δ,N) of matrices γ =

(
a b
c d

)
as

M = M∗ +Mu +Mp

according to whether c 6= 0 and (a + d)2 6= 4` (generic), or c = 0 and a 6= d (upper-
triangular), or (a + d)2 = 4` (parabolic). Recall that F(N) is the set of z ∈ H such that
=m(z) ≥ =m(ηz) for all Atkin–Lehner operators η of level N .

Since we have given a detailed proof of Lemma 1.3 concerning M∗ in §1.2 and the
case δ = 1 may be found in [7, §2], it seems appropriate to omit the proofs here.4

Lemma 4.1. For any z = x + iy ∈ F(N) and L ≥ 1,∑
1≤`≤L,
` square

M∗(z, `, δ,N) 4
L1/2

Ny
+
Lδ1/2

N1/2 +
L3/2δ

N
.

4 The present article precedes [7] in time, but it appears that [7] is already printed.
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Lemma 4.2. For any z = x + iy ∈ F(N) and 1 ≤ `1 ≤ 3 ≤ N
O(1),∑

1≤`2≤3

M∗(z, `1`
2
2, δ,N) 4

33/2

Ny
+
33δ1/2

N1/2 +
39/2δ

N
.

Lemma 4.3. For any z = x+iy ∈ F(N) and 1 ≤ L,3 ≤ NO(1), the following estimates
hold where `, `1, `2 run over primes:∑

1≤`≤L

Mu(z, `, δ,N) 4 1+ L1/2N1/2δ1/2y +
Lδ1/2

N
,∑

1≤`1,`2≤3

Mu(z, `1`2, δ,N) 4 3+3
2N1/2δ1/2y +33δ1/2y,∑

1≤`1,`2≤3

Mu(z, `1`
2
2, δ,N) 4 3+3

5/2N1/2δ1/2y +34δ1/2y,∑
1≤`1,`2≤3

Mu(z, `
2
1`

2
2, δ,N) 4 1+32N1/2δ1/2y +34δ1/2y.

Lemma 4.4 ([6, Lemma 4.1]). For any z = x + iy ∈ F(N),
Mp(z, `, δ,N)� (1+ `1/2δ1/2y)δ�(`),

where δ�(`) = 1, 0 depending on whether ` is a perfect square or not.

5. Amplifier

It is known that one can choose an amplifier sequence y` ∈ R which satisfies

|y`| �


3, ` = 1,
1, ` = `1 or `1`2 or `1`

2
2 or `2

1`
2
2 with 3 < `1, `2 < 23 primes,

0, otherwise.

This section briefly recalls the details of the construction.
Let (x`) be a sequence supported on a finite set of prime powers. We define

y` =
∑

d|(`1,`2)

`=`1`2/d
2

χ(d)x`1x`2 =

∑
d≥1
`=`1`2

χ(d)xd`1xd`2 .

Then we have the inequalities∑
`≥1

`−1/2
|y`| 4

∑
`≥1

|x`|
2, (5.1)

∑
`≥1

`1/2
|y`| 4 3

2
(∑
`≥1

|x`|
)2
. (5.2)

We set L := {` prime : ` - N and 3 ≤ ` ≤ 23} and

x` :=

{
sgn(λf (`)) if ` ∈ L ∪ L2,

0 otherwise.
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The main property of this sequence is that∣∣∣∑
`≥1

x`λf (`)

∣∣∣�ε 3
1−ε for any ε > 0,

which follows from the Hecke relation λf (`)2 − λf (`2) = χ(`).
Bounds for Rankin–Selberg L-functions imply that

∑
|x`|

2
≈ 3 and

∑
|x`| ≈ 3,

while
∑
|y`| ≈ 32,

∑
`−1/2

|y`| ≈ 3 and
∑
`1/2
|y`| ≈ 34. Thus the above inequal-

ities (5.1) and (5.2) are sharp for this choice of amplifier (also the main contribution
to (5.1) comes from ` = 1 and the main contribution to (5.2) comes from ` � 34).

6. Conclusion of the proof

Applying the amplification method of Friedlander–Iwaniec as in [9], [2, §10] and [6, §3]
we have

32

N
|f (z)|2 4

∑
`≥1

|y`|
√
`
KT (z, `,N) (6.1)

where the amplifier y` is chosen an in Section 5 and

KT (z, `,N) :=
∑

γ∈M2(Z)
det(γ )=`, c≡0 (N)

|kT (z, γ z)| =

∫ 1

0
|kT (δ)| dM(z, `, δ,N).

Here the kernel kT is chosen as in Lemma 2.1.

6.1. Gathering estimates

We begin with executing the sum over ` ≥ 1. Thus we first estimate the quantity

A(z, δ,N) :=
∑
`≥1

|y`|
√
`
M(z, `, δ,N).

SinceM = M∗+Mu+Mp in Section 4, we decompose A = A∗+Au+Ap accordingly.

Proposition 6.1. Let N ≥ 1, z = x + iy ∈ F(N), 0 < δ < 1. Then

A∗(z, δ,N) 4
3

Ny
+
35/2δ1/2

N1/2 +
34δ

N
,

Au(z, δ,N) 4 3(1+N1/2δ1/2y)+35/2δ1/2y,

Ap(z, δ,N)� 3+32δ1/2y.

Proof. This follows from Lemmas 1.3 and 4.1–4.4, and the properties of the amplifier
sequence (y`) in Section 5. ut

6.2. Integration over δ

We now execute the integration over δ in the Stieltjes integral∑
`≥1

|y`|
√
`
KT (z, `,N) =

∫ 1

0
|kT (δ)| dA(z, δ,N).
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From Lemma 2.3 we see that we can make the substitutions δ  T 1/2, δ1/2  T 1/2 and
1  T starting from the upper bound for A(z, δ,N) to obtain the bound for the Stieltjes
integral. More precisely, a monomial δα occurring in the upper bound for A(z, δ,N) will
become T β upon integrating against |kT (δ)| where β = max(1/2, 1− 2α).

Altogether we obtain from Proposition 6.1, after some simplifications using the fact
that Ny � 1 and T ≥ 1,∑
`≥1

|y`|
√
`
KT (z, `,N) 4 3T +3N

1/2T 1/2y+35/2T 1/2(N−1/2
+y)+

34T 1/2

N
. (6.2)

6.3. Conclusion

From the bound via Fourier expansion in Proposition 3.1, we can assume without loss of
generality when establishing Theorem 1.2 that

y � T 1/6N−2/3.

Combining (6.1) with the estimate (6.2) we deduce
32

N
|f (z)|2 4 3T +35/2T 1/2y +

35/2T 1/2

N1/2 +
34T 1/2

N
.

We choose3 := T 1/6N1/3, in which case the first and fourth terms are equal to T 7/6N1/3,
while the second and third terms are smaller. This yields |f (z)| 4 T 5/12N1/3, as claimed
in Theorem 1.2. ut

7. Eigenvalue aspect

This section is partly expository and could serve as an introduction to the general argu-
ment. We shall review two different proofs of the Iwaniec–Sarnak bound: the first proof is
an exposition of [9] with some simplification; the second proof uses the idea of averaged
bounds on `.

7.1. Overview

We want to establish (1.1), at least for z restricted to a bounded domain. Applying the am-
plification method as before we are reduced to the countM(z, `, δ, 1) of integral matrices
described in §1.1. Precisely,

32
|f (z)| 4

∑
`≥1

|y`|
√
`
KT (z, `),

where 32
≥ 1 is the amplifier length, (y`) is chosen as in Section 5 and we let

KT (z, `) :=
∑

γ∈M2(Z)
det(γ )=`

|kT (z, γ z)| =

∫ 1

0
kT (δ) dM(z, `, δ, 1). (7.1)

Depending on the relative position of the three parameters T , z, ` we need to use
different techniques to obtain uniform upper bounds. The parameter δ > 0 measures a
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distance, the displacement of z under the action of the Hecke operators of determinant `.
To ease the exposition we shall make the following reductions:

(i) By Lemma 2.1 we may assume that 0 < δ < 1. Both endpoints {0, 1} play a key
role in the final bound: in fact kT (0) � T from the Plancherel formula produces the
main contribution and kT (1) � T 1/2 produces the off-diagonal terms.

(ii) Without loss of generality we may assume that z = x + iy lies in the standard
fundamental domain of SL(2,Z). In particular y ≥

√
3/2. The case where y is large

requires a separate treatment with Fourier expansion given in Section 3. Thus we
focus on the case where z lies in �, a fixed compact subset of H.

(iii) The cases where c = 0 (upper-triangular) and where (a + d)2 = 4` (parabolic) do
not play a role once we assume that z ∈ � (see Section 4 for the general case). Thus
we focus on generic matrices: for z ∈ H, 0 < δ < 1 and an integer ` ≥ 1, recall that
M∗(z, `, δ, 1) is the number of matrices γ =

(
a b
c d

)
in M2(Z) such that

det(γ ) = `, u(γ z, z) ≤ δ, c 6= 0, (a + d)2 6= 4`.

Accordingly we denote the corresponding kernel in (7.1) by K∗T (z, `).

7.2. First proof (Iwaniec–Sarnak)

Lemma 7.1 ([9, Eq. (A.9)]). Uniformly in z ∈ H, ` ≥ 1 and 0 ≤ δ < 1,

M∗(z, `, δ, 1) 4 1+ `δ1/4.

One immediately deduces the following bound using Lemma 2.3.

Corollary 7.2. Uniformly in T ≥ 1, z ∈ H and ` ≥ 1,

K∗T (z, `) 4 T + `T
1/2.

Then using (5.1) and (5.2) we obtain∑
`≥1

|y`|
√
`
K∗T (z, `) 4 T

∑
`≥1

`−1/2
|y`| + T

1/2
∑
`≥1

`1/2
|y`|

4 T
∑
`≥1

|x`|
2
+ T 1/232

(∑
`≥1

|x`|
)2
.

Thus for all z ∈ �,
32
|f (z)|2 4 T3+ T 1/234.

The choice 3 = T 1/3 finishes the sketch of the proof of (1.1).

7.3. Second proof (averaged count)

In the second proof we start with an averaged bound for the count from Section 4. The
estimate (1.8) yields, uniformly in z ∈ H, 3 ≥ 1 and 0 < δ < 1,

A∗(z, δ, 1) =
∑
`≥1

|y`|
√
`
M∗(z, `, δ, 1) 4 3+35/2δ1/2

+34δ.
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Corollary 7.3. Uniformly in T ≥ 1, z ∈ H and 3 ≥ 1,∑
`≥1

|y`|
√
`
K∗T (z, `) 4 T3+ T

1/234.
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