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Abstract. This paper begins the classification of topological actions on manifolds by compact,
connected, Lie groups beyond the circle group. It treats multiaxial topological actions of unitary
and symplectic groups without the dimension restrictions used in earlier works by M. Davis and
W. C. Hsiang on differentiable actions. The general results are applied to give detailed calculations
for topological actions homotopically modeled on standard multiaxial representation spheres. In the
present topological setting, Schubert calculus of complex Grassmannians surprisingly enters in the
calculations, yielding a profusion of “fake” representation spheres compared with the paucity in the
previously studied smooth setting.

Keywords. Transformation group, topological manifold, stratified space, multiaxial, surgery, as-
sembly map

1. Introduction

In the last half century great progress has been made on both the differentiable and topo-
logical classification of finite group actions on spheres and more general manifolds. Deep,
albeit indirect, connections of transformation groups to representation theory were dis-
covered. For positive-dimensional groups beyond the case of the circle, essentially the
only classification results obtained for differentiable actions are the classical results of M.
Davis and W. C. Hsiang [D, DH] and their further development with J. Morgan [DHM]
on concordance classes of multiaxial actions on homotopy spheres, in certain dimension
ranges. On the other hand, certain topological phenomena, such as periodicity [WY] and
the replacement of fixed points [CW2, CWY] showed that the topological classification
of actions of positive-dimensional groups must be very different from the smooth case.

The present paper begins the classification of topological actions on manifolds by
positive-dimensional groups beyond the case of the circle, by obtaining general results
on multiaxial actions on topological manifolds. Here we will work with a more flexible
notion of multiaxial (and without the dimension conditions) than had been considered for
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smooth actions. An action of a unitary group U(n) on a manifold will be called multiaxial
if all of its isotropy subgroups are unitary subgroups, the fixed sets are ANR homology
manifolds, and embeddings of the strata in the orbit space are 1-LC (a standard weak
kind of homotopy local flatness condition as regards fundamental groups, see Section 2).
Our results will show that topological multiaxial actions are far more profuse and their
classification is quite different from the smooth case, even when restricted to spheres.
For example, the homology of complex Grassmannians enters into the classification of
topological actions homotopically modeled on multiaxial representation spheres.

The connection of the theory of topological actions to representation theory is less
direct than for smooth actions. This reflects the failure in the topological setting of some
of the basic building blocks of the analogous smooth or PL theory of finite group ac-
tions. Whitehead torsion, a cornerstone of the classical theory of lens spaces (via Rei-
demeister torsion), plays in the general topological category a diminished role because
of the absence of (canonical) tubular neighborhoods around fixed points [Q2, St] and
more generally around subsets of given orbit types. Indeed, Milnor’s counterexamples
to the Hauptvermutung [Mi] showed that classical Whitehead torsion is not even always
definable in the topological category for non-free actions. The divergence for actions of
finite groups of the topological classification from the smooth or PL ones was strikingly
reflected in the existence of non-linear similarities between some linearly inequivalent
representations [CS].

On the other hand, key invariants defined in smooth or PL settings using the equiv-
ariant signature operator do remain well defined in topological settings [CSW, HP, MR]
and play a major role there.

In this introduction, for simplicity and ease of exposition, we make the stronger as-
sumption that G = U(n) acts locally smoothly. In other words, every orbit has a neigh-
borhood equivariantly homeomorphic to an open subset of an orthogonal representation
of G. Moreover, we concentrate on the classical and more restrictive notion of multiaxial
actions, for which the orthogonal representations are of the form kρn ⊕ jε, where ρn is
the defining representation of U(n) on Cn and ε is the trivial representation. While this
allows for different choices of k and j at different locations in a manifold, the results
presented in the introduction will assume the same k and the same j everywhere. In such
a setting, we say the manifold is modeled on kρn ⊕ jε. Examples are the representation
space kρn ⊕ jε and the associated representation sphere.

The isotropy subgroups of a multiaxial U(n)-manifold M are conjugate to the spe-
cific unitary subgroups U(i) of U(n) that fix the subspaces 0 ⊕ Cn−i of Cn. Then M
is stratified by M−i = U(n)MU(i), the set of points fixed by some conjugate of U(i).
Correspondingly, the orbit space X = M/U(n) is stratified by X−i = MU(i)/U(n − i)

(see Lemma 2.1).
Our goal is to study the isovariant structure set SU(n)(M). Classically, the structure

set S(X) of a compact topological manifold X is the homeomorphism classes of topo-
logical manifolds equipped with a simple homotopy equivalence to X (with homotopy
and homeomorphism defining the equivalence relation). The notion can be extended to
the setting of a G-manifold M by letting SG(M) denote the equivariant homeomorphism
classes of G-manifolds each equipped with an isovariant simple homotopy equivalence
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to M . It can also be extended to S(X) for stratified spaces X and stratified simple homo-
topy equivalences.

For Y ⊂ X, we use S(X, rel Y ) to denote the homeomorphism classes of simple ho-
motopy equivalences that are already homeomorphisms on Y . On the other hand, S(X, Y )
denotes the homeomorphism classes of simple homotopy equivalences to the pair (X, Y ).

We make use of some aspects of the theory of homotopically stratified spaces, as
developed in [Q5, We], to which we refer. The strata in such spaces have “homotopy
links”: rather than having the local structure determined by fiber bundles, as in the theory
of Whitney stratified spaces, the local structure is a fibration, and the homotopy links
describe the homotopy fibers. We further allow the strata to be ANR homology manifolds
that satisfy the DDP (Disjoint Disk Property) [BFMW]. The reader unfamiliar with these
may imagine that all the strata are manifolds, but should note that these “manifolds” may
have non-trivial 0-th Pontryagin class. If one wants to restrict attention just to genuine
manifolds, then the calculated answers will be somewhat smaller: one has to compute at
the end a set of “local signatures” [Q3, Q4] to see which structures have manifold strata.
Likewise even if G acts locally smoothly on M , the structure set SG(M) may contain
many multiaxial G-manifolds which are not locally smoothable.

When the orbit space M/G is homotopically stratified, we have SG(M) = S(M/G).
The map SG(M) → S(M/G) takes an isovariant homotopy equivalence N 'G M to a
stratified homotopy equivalence N/G ' M/G. The inverse map S(M/G) → SG(M)

takes a stratified homotopy equivalence X ' M/G and then constructs N as the pullback
of X→ M/G← M .

Classical surgery theory formulates S(X) initially in terms of s-cobordism classes
and then employs the s-cobordism theorem to reformulate this in terms of the more geo-
metrically meaningful homeomorphism classification. The topological isovariant surgery
theory of [We] similarly employs the stratified (and thus the equivariant) s-cobordism
theorem of Quinn [Q2] and of Steinberger [St], which identifies stratified s-cobordisms
with homeomorphisms when the strata are manifolds and no dimension 4 strata occur
with “large fundamental groups” in the sense of [F, FQ].

Let Xα be the strata of a homotopically stratified space X. The pure strata

Xα = Xα −X<α, X<α =
⋃

Xβ(Xα
Xβ ,

are generally non-compact manifolds, and we have natural restriction maps

S(X)→
⊕

Sproper(Xα).

Here Sproper denotes the proper homotopy equivalence version of the structure set. If we
further know that all pure strata of links between strata of X are connected and simply
connected (or more generally, the fundamental groups of these strata have trivialK-theory
in low dimensions, according to Quinn [Q2]), then the complement X̄α of (the interior of)
a regular neighborhood of X<α in Xα is a topological manifold with boundary ∂X̄α and
interior Xα , and the restriction maps natually factor through the structures of (X̄α, ∂X̄α)

S(X)→
⊕

S(X̄α, ∂X̄α)→
⊕

Sproper(Xα).
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The difference between the simple homotopy structure of (X̄α, ∂X̄α) and the proper ho-
motopy structure of Xα is captured by the finiteness obstruction at infinity and related
Whitehead torsion considerations.

By the 1-LC assumption, the pure strata of links in our multiaxial U(n)-manifolds are
indeed connected and simply connected. Our main result states that the stratified simple
homotopy structure set of X = M/U(n) is almost always determined by the restrictions
to S(X̄−i, ∂X̄−i) using a particular half of the set of strata X−i . More general versions
are given by Theorems 5.1, 5.2, 5.3.

Theorem 1.1. SupposeM is a multiaxial U(n)-manifold modeled on kρn⊕ jε, andX =
M/U(n) is the orbit space.

1. If k ≥ n and k − n is even, then we have a natural splitting

SU(n)(M) =
⊕
i≥0

S(X̄−2i, ∂X̄−2i) =
⊕
i≥0

Salg(X−2i, X−2i−1).

2. If k ≥ n, k−n is odd andM = WU(1) for a multiaxial U(n+1)-manifold W modeled
on kρn+1 ⊕ jε, then we have a natural splitting

SU(n)(M) = S
alg(X)⊕

⊕
i≥1

S(X̄−2i+1, ∂X̄−2i+1)

= Salg(X)⊕
⊕
i≥1

Salg(X−2i+1, X−2i).

3. If k ≤ n, then SU(n)(M) = SU(k)(M
U(n−k)). Since MU(n−k) is a multiaxial U(k)-

manifold modeled on kρk ⊕ jε, this case is reduced to k = n treated in part 1.

The reduction in the third case is due to M/U(n) = MU(n−k)/U(k) by Lemma 2.1, and
SG(M) = S(M/G). More specifically, the map SU(n)(M) → SU(k)(M

U(n−k)) simply
takes the fixed parts by the subgroup U(n − k). The inverse map SU(k)(MU(n−k)) →

SU(n)(M) takes the stratified homotopy equivalence of the orbit spaces and then takes the
pullback construction.

The restriction to k ≤ n was critical in the works [D, DH, DHM] on differentiable
multiaxial actions.

The algebraic structure set Salg in the theorem denotes the following familiar homo-
topy functor [R].

Definition. For any (reasonable) topological space X, let Salg(X) be the homotopy fiber
of the surgery assembly map H∗(X;L)→ L(π1X). Then Salg(X) = πdimXSalg(X).

In this definition, L(π) is the (simple) surgery obstruction spectrum for the fundamental
group π , and H∗(X;L) is the homology theory associated to the spectrum L = L(e). If
X is a topological manifold of dimension ≥ 5 (or dimension 4 in case π1X is not too
intractable [F, FQ]), then Salg(X) is the usual structure set that classifies topological (in
fact, homology) manifolds simple homotopy equivalent to X. For a general topological
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space X, however, Salg(X) no longer carries that geometrical meaning and is for the
present purpose the result of some algebraic computation.

Notice that the expression in terms of Salg(X−i, X−i−1) involves only objects that
are a priori associated to the group action. However, the map from the left hand side to
the right hand side, while related to the forgetful map to S(X̄−i, ∂X̄−i−1), is not quite
obvious to define.

For a taste of what to expect when k and j are not assumed constant, the following is
the simplest case of Theorem 5.2. The proof is given at the end of Section 5.

Theorem 1.2. Suppose the circle S1 acts semifreely and locally linearly on a topological
manifoldM . LetMS1

0 andMS1

2 be the unions of those connected components ofMS1
that

are, respectively, of codimensions 0 mod 4 and 2 mod 4. Let N be the complement of (the
interior of ) an equivariant tube neighborhood of MS1

, with boundaries ∂0N and ∂2N

corresponding to the two parts of the fixed points. Then

SS1(M) = S(M
S1

0 )⊕ S(N/S1, ∂2N/S
1, rel ∂0N/S

1).

We note that N/S1 is a manifold with boundary divided into two parts ∂0 and ∂2. The
second summand means the homeomorphism classes of (homology) manifolds equipped
with a simple homotopy equivalence toN/S1 which restricts to a simple homotopy equiv-
alence on ∂2 and a homeomorphism on ∂0.

We also note that it is a special feature of circle actions that the condition in Theo-
rem 1.1 of the extendability of the S1

= U(1)-action on M to a multiaxial U(2)-action
on a manifold is never needed. It is an open question whether or not, in general, one can
dispense with the extendability condition in part 2 of Theorem 1.1.

For k ≥ n, the terms S(X̄−i, ∂X̄−i) in the decompositions of Theorem 1.1 could be
reformulated in terms of the isovariant structure set

S(X̄−i, ∂X̄−i) = SU(n−i)(M
U(i), relU(n− i)MU(i+2)).

Here MU(i) is actually a multiaxial U(n − i)-manifold modeled on kρn−i ⊕ jε, and
U(n − i)MU(i+2) is the stratum of the multiaxial U(n − i)-manifold two levels down.
The right side classifies those U(n− i)-manifolds isovariantly simple homotopy equiva-
lent to MU(i), such that the restrictions to the stratum two levels down are already equiv-
ariantly homeomorphic. The decomposition in Theorem 1.1 is then equivalent to the de-
composition

SU(n)(M) = SU(n)(M, relU(n)MU(i))⊕ SU(n−i)(M
U(i)) for k − n+ i even.

The map to the second summand is the obvious restriction. The fact that this restriction is
onto has the following interpretation.

Theorem 1.3. Suppose M is a multiaxial U(n)-manifold modeled on kρn ⊕ jε. Suppose
k ≥ n > i, k−n+i is even, and additionally, when k−n is odd, we haveM = WU(1) for a
multiaxialU(n+1)-manifoldW modeled on kρn+1⊕jε. Then for anyU(n−i)-isovariant
simple homotopy equivalence φ : F → MU(i), there is a U(n)-isovariant simple homo-
topy equivalence f : N → M such that φ = f U(i) is the restriction of f .
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The theorem means that half of the fixed point subsets can be homotopically replaced.
The problem of homotopy replacement of the fixed point subset of a whole group was
studied in [CW2, CWY]. Here equivariant replacement is achieved for the fixed point
subsets of certain proper subgroups (and not others); this is the first appearance of such a
phenomenon.

For k ≤ n, by SU(n)(M) = SU(k)(M
U(n−k)), we may apply Theorem 1.3 to

the k-axial U(k)-manifold MU(n−k) and get the following homotopy replacement re-
sult: For any even i with i ≤ k and U(k − i)-isovariant simple homotopy equiva-
lence φ : F → MU(n−k+i), there is a U(n)-isovariant simple homotopy equivalence
f : N → M such that φ = f U(n−k+i) is the restriction of f .

Algebraically, the terms Salg(X−i, X−i−1) and Salg(X) in the decompositions of The-
orem 1.1 can be explicitly computed for the special case that M is the unit sphere of
the representation kρn ⊕ jε. For k ≥ n, let An,k be the number of Schubert cells of di-
mensions 0 mod 4 in the complex Grassmannian G(n, k), and let Bn,k be the number of
cells of dimensions 2 mod 4. Specifically, An,k is the number of n-tuples (µ1, . . . , µn)

satisfying
0 ≤ µ1 ≤ · · · ≤ µn ≤ k − n,

∑
µi is even,

and Bn,k is the similar number for the case
∑
µi is odd. Then the following computation

is carried out in Section 6.

Theorem 1.4. Suppose S(kρn ⊕ jε) is the unit sphere of the representation kρn ⊕ jε,
k ≥ n.

1. If k − n is even, then

SU(n)(S(kρn ⊕ jε)) = Z
∑

0≤2i<n An−2i,k ⊕ Z
∑

0≤2i<n Bn−2i,k
2 ,

with the only exception that there is one less copy of Z in case n is odd and j = 0.
2. If k − n is odd, then

SU(n)(S(kρn ⊕ jε)) = ZAn,k−1+
∑

0<2i−1<n An−2i+1,k ⊕ ZBn,k−1+
∑

0<2i−1<n Bn−2i+1,k
2 ,

with the exceptions that there is one less copy of Z in case n is even and j = 0, and
there is one more copy of Z2 in case n is odd and j > 0.

The computation generalizes the classical computation of the fake complex projective
spaces [Su, Theorem 9], [Wa, Section 14C]. We also note that J. Levine [L] proved that
smooth biaxial U(1)-actions on homotopy spheres with homotopy spheres as fixed sets
could be identified with the set of diffeomorphism classes of codimension 3 knots. Since
such codimension 3 knots are topologically unknotted, all such actions are topologi-
cally standard, which suggests SU(1)(2ρ1 ⊕ jε) = 0. However, our computation gives
SU(1)(2ρ1 ⊕ jε) = ZA1,1 = Z. The extra Z takes into account the existence of semifree
U(1)-actions on the sphere such that the fixed set is non-resolvable, i.e., has non-trivial
“local signature” [Q3, Q4]. In fact, even for fake complex projective spaces, our compu-
tation contains an extra copy of Z for the same reason.
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If N is isovariant simple homotopy equivalent to the representation sphere
S(kρn⊕jε), then joining with the representation sphere S(ρn) yields a manifoldN∗S(ρn)
isovariant simple homotopy equivalent to the representation sphere S((k + 1)ρn ⊕ jε).
This gives the suspension map

∗S(ρn) : SU(n)(S(kρn ⊕ jε))→ SU(n)(S((k + 1)ρn ⊕ jε)).

A consequence of the calculation in Theorem 1.4 is the following, proved in Section 7.

Theorem 1.5. The suspension map is injective.

For S1
= U(1), this followed from the classical computation for fake complex projective

spaces.
Finally, in Section 8, we extend all the results to the similarly defined multiaxial

Sp(n)-manifolds.
For k− n odd, the proofs of both Theorems 1.4 and 1.5 depend on ingenious detailed

calculations by Jared Bass, presented in an appendix written by him, of the homology of
certain orbit spaces. In contrast, the other cases depend on the classical calculations of the
cohomology of Grassmannians in terms of Schubert cells.

Some of the developments in this paper are applicable to the study of general stratified
spaces and equivariant manifolds, e.g., the discussion in Section 3 of the fundamental
groups of links and strata. Likewise, the stratified surgery results of Section 4 can be
more naturally viewed outside of the specifically group action setting.

The paper is organized as follows.

2. Strata of multiaxial U(n)-manifolds.
3. Homotopy properties of multiaxial U(n)-manifolds.
4. General decomposition theorems.
5. Structure sets of multiaxial actions.
6. Structure sets of multiaxial representation spheres.
7. Suspensions of multiaxial representation spheres.
8. Multiaxial Sp(n)-manifolds.
9. Appendix (by Jared Bass): Homology of quotients of multiaxial representation

spheres.

2. Strata of multiaxial U(n)-manifolds

Smooth multiaxial manifolds were introduced and studied in [D, DH, DHM], following
earlier works on biaxial actions [Br1, Br2, Br3, HH, J], and multiaxial manifolds with
three orbit types [EH]. As noted in the introduction, our definition of multiaxial actions in
the topological category is more flexible, the actions are not assumed to be locally linear,
and the local model may vary at different parts of the manifold.

Let U(n) be the unitary group of linear transformations of Cn preserving the Eu-
clidean norm. By a unitary subgroup, we mean the subgroup of unitary transformations
fixing a linear subspace of Cn. If the fixed subspace has complex dimension n − i, then



2182 Sylvain Cappell et al.

the unitary subgroup is conjugate to the specific unitary subgroup U(i) of U(n) that fixes
the last n− i coordinates.

The normalizer of the specific unitary subgroup is NU(i) = U(i)×U(n− i), where
by an abuse of notation, U(n− i) is the unitary subgroup that fixes the first i coordinates.
Then the quotient group NU(i)/U(i) may be naturally identified with U(n − i). It is
usually clear from the context when U(k) is the specific unitary subgroup (fixing the last
n− k coordinates) and when it is the quotient group (fixing the first n− k coordinates).

A U(n)-manifold is multiaxial if any isotropy group is a unitary subgroup, and some
additional topological conditions are satisfied. The manifold M is stratified by M−i =
U(n)MU(i), the set of points fixed by some conjugate of U(i). Correspondingly, the orbit
space X = M/U(n) is stratified by X−i = M−i/U(n). In Lemma 2.1, we will show that
X−i = M

U(i)/U(n− i), a special feature of multiaxial manifolds.

Definition. A topological U(n)-manifold M is multiaxial if any isotropy group is a uni-
tary subgroup, the fixed sets MU(i) are ANR homology submanifolds, the orbit space
M/U(n) is homotopically stratified, and the strata of M/U(n) are 1-LC embedded.

A group action is 1-LC if the fundamental group of the homotopy link between any two
strata is isomorphic to the group of components of the isotropy group (of the smaller
stratum). For the action by the connected group U(n), the 1-LC condition means that
the homotopy links of lower strata in higher strata are all simply connected. By Proposi-
tion 3.4, we only need the simple connectedness for the links of the lower pure strata in
higher pure strata. For U(n)-manifolds locally modeled on kρn ⊕ jε, the pure strata of
the links are actually homotopy equivalent to complex Grassmannians and are therefore
simply connected. Such actions are thus multiaxial.

When the fixed sets are submanifolds, the 1-LC condition is slightly stronger than the
local flatness of the fixed sets. For example, the biaxialO(2)-action on the join of a circle
and a homology sphere, with the action all taking place on the circle, has the fixed set of
O(1) = Z2 being locally flat, but the corresponding orbit may not be 1-LC.

We shall see in Section 3 that this definition of multiaxial U(n)-manifolds implies
strong local homotopical information: The (homotopy) links between adjacent fixed sets
in M are homotopy spheres, and the pure strata of the links of MU(i) in M are connected
and simply connected (with the exception that the link of MU(1) in M can be the circle
in the 1-axial case). Quinn [Q2] showed that such homotopy properties imply that the
pure stratum M−i = M−i − M−i−1 is an open manifold that can be completed into
a manifold with boundary U(n) ×U(n−i) (M̄U(i), ∂M̄U(i)), by deleting (the interior of)
regular neighborhoods of lower strata. The theory of [BFMW] shows that the same is
true in the setting of homology manifolds, up to s-cobordism. Moreover, by the 1-LC
condition, the pure stratum X−i = X−i − X−i−1 is a homology manifold, and can also
be completed into a homology manifold with boundary (X̄−i, ∂X̄−i).

For a multiaxial U(n)-manifold M , the fixed set MU(i) is a multiaxial U(n − i)-
manifold, where U(n− i) = NU(i)/U(i) is the quotient group. The following is a kind
of “hereditary property” for multiaxial manifolds.

Lemma 2.1. If M is a multiaxial U(n)-manifold, then M−i/U(n) = MU(i)/U(n− i).
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The lemma shows that, as far as the orbit space is concerned, the study of a stratum of
a multiaxial manifold is the same as the study of a “smaller” multiaxial manifold. In
particular, if a multiaxial U(n)-manifold M does not have free points, then the minimal
isotropy groups are conjugate to U(m) for some m > 0, and the study of the U(n)-
manifold M is the same as the study of the multiaxial U(n−m)-manifold MU(m). Since
the U(n−m)-action onMU(m) has free points, we may thus always assume the existence
of free points without loss of generality. For multiaxial manifolds modeled on kρn ⊕ jε,
this means that we may always assume k ≥ n. We remark that k ≤ n was always assumed
in the study of differentiable multiaxial actions [D, DH, DHM].

Lemma 2.1 is a consequence of the following two propositions.

Proposition 2.2. If H ⊂ K ⊂ G = U(n) are unitary subgroups, then the NH -action on
(G/K)H is transitive. In other words, if H ⊂ K and g−1Hg ⊂ K , then g = νk for some
ν ∈ NH and k ∈ K .

Proof. The subgroups K and H consist of the unitary transformations of Cn that respec-
tively fix some subspaces VK and VH . Then H ⊂ K means VK ⊂ VH , and g−1Hg ⊂ K

means gVK ⊂ VH . Therefore there is a unitary transformation ν that preserves VH and
restricts to g on VK . Then ν−1g fixes VK , whence ν−1g ∈ K . Moreover, the fact that ν
preserves VH means that ν ∈ NH .

The transitivity of the NH -action on (G/K)H means that if gK ∈ (G/K)H , then
gK = νK for some ν ∈ NH . Since gK ∈ (G/K)H means g−1Hg ⊂ K , and gK = νK
means g = νk for some k ∈ K , we see that the transitivity is the same as the group-
theoretic property above. ut

Proposition 2.3. If G acts on a set M so that every pair of isotropy groups satisfy the
property in Proposition 2.2, then GMH /G = MH /NH for any isotropy group H .

Proof. We always have the natural surjective map MH /NH → GMH /G. Over a point
in GMH /G represented by x ∈ MH , the fiber of the map is (Gx)H /NH . Therefore the
natural map is injective if and only if the fiber is a single point, which means that the
action of NH on (Gx)H = (G/Gx)H is transitive. ut

3. Homotopy properties of multiaxial U(n)-manifolds

Although our definition of multiaxial U(n)-manifold is more general than those in [D,
DH, DHM] that are modeled on linear representations, many homotopy properties of the
linear model are still preserved.

First we consider the (homotopy) link between adjacent strata of the orbit space X =
M/U(n) of a multiaxial U(n)-manifold M . By the link of X−j in X−j+1, we really
mean the link of the pure stratum X−j = X−j − X−j−1 in X−j+1 (same for the strata
of M), and this link may be different along different connected components of X−j . So
for any x ∈ X−j , we denote by Xx

−j the connected component of X−j containing x.
By the link of Xx

−j in X−j+1, we really mean the link of Xx
−j − X−j−1 in X−j+1. We

also denote by MU(j),x the corresponding connected component of MU(j), and hence
Xx
−j = M

U(j),x/U(n− j).
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Lemma 3.1. Suppose X is the orbit space of a multiaxial U(n)-manifold. Then for any
x ∈ X−i and 1 ≤ j ≤ i, the link of Xx

−j in X−j+1 is homotopy equivalent to CP r
x
j , and

rxj = r
x
j−1 + 1.

The lemma paints the following picture of the strata of the links in a (connected) multi-
axial U(n)-manifold. For any x ∈ X−i , the stratification near x is given by

Xx0 ⊃ X
x
−1 ⊃ · · · ⊃ X

x
−i, Xx0 is a component of X.

The first gap rx1 of x depends only on the connected component Xx
−1 and determines the

homotopy type CP r
x
1+j−1 of the link of Xx

−j in X−j+1. Moreover, we have

dimMU(j−1),x
− dimMU(j),x

= dimXx
−j+1 + dimU(n− j + 1)− dimXx

−j − dimU(n− j)

= dimCP r
x
1+j−1

+ 1+ (n− j + 1)2 − (n− j)2 = 2(rx1 + n).

The picture also shows that, near a point ofM with isotropy group gU(i)g−1, gU(j)g−1

is the isotropy group of some nearby point for any j , 1 ≤ j ≤ i.
If the multiaxial manifold is modeled on kρn ⊕ jε, then the first gap is independent

of the connected component, and r1 = k− n in case k ≥ n. On the other hand, multiaxial
U(1)-manifolds are just semifree S1-manifolds, for which any fixed point component has
even codimension 2c, and the first (and the only) gap of the component is c − 1.

Proof of Lemma 3.1. The link of Xx
−j in X−j+1 is the orbit space of the link of MU(j)

in MU(j−1) by the free action of the quotient group NU(j)U(j − 1)/U(j − 1) = S1.
The 1-LC condition implies that the link of MU(j) in MU(j−1) is homotopy equivalent to
a sphere, and the orbit space of this homotopy sphere by the free S1-action is simply
connected. Therefore the orbit space is homotopy equivalent to a complex projective
space CP rj , where the superscript x is omitted from rj .

Letmj = dimMU(j),x and xj = dimXx
−j . FromXx

−j = M
U(j),x/U(n−j), we have

xj = dimMU(j),x
− dimU(n− j) = mj − (n− j)

2.

Since the link of Xx
−j in X−j+1 is homotopy equivalent to CP rj , we also have

xj−1 − xj = 2rj + 1.

Since all the isotropy groups are unitary subgroups, we know MU(j)
= MT j for the

maximal torus T j of U(j). Here T j is the specific torus group acting by scalar multipli-
cations on the first j coordinates of Cn. Now we fix j and consider M as a T j -manifold.
By the multiaxial assumption, the isotropy groups of the T j -manifold M are the tori that
are in one-to-one correspondence with the choices of some coordinates from the first
j coordinates of Cn. The number j ′ of chosen coordinates is the rank of the isotropy
torus. Since all the tori of the same rank j ′ are conjugate in U(n) to the specific torus
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group T j
′

, their fixed point components containing MU(j),x have the same dimension,
which is dimMU(j ′),x

= mj ′ .
For the case j ′ = j − 1 (corank 1 in T j ), there are j such isotropy tori. By a formula

of Borel [Bo, Theorem XIII.4.3], we have

m0 −mj = j (mj−1 −mj ).

In terms of xj , we have

x0 + n
2
= j (xj−1 + (n− j + 1)2)− (j − 1)(xj + (n− j)2),

or
(j − 1)−1(xj−1 − x0)− j

−1(xj − x0) = 1.

This gives xj − x0 = j (a − j) and

xj−1 − xj = 2j − 1− a.

Combined with xj−1 − xj = 2rj + 1, this yields rj = rj−1 + 1. ut

Next consider the links between any two (not necessarily adjacent) strata of a multiaxial
manifold. The 1-LC assumption on the strata of M/U(n) means (the connectedness and)
the simple connectedness of the pure strata of the links in M/U(n). We will need the
following consequence of this 1-LC assumption.

Lemma 3.2. Suppose X is a homotopically stratified space. If all pure strata of the links
in X are connected and simply connected, then all strata of the links in X are also con-
nected and simply connected. Moreover,

π1(X−i −X−j ) = π1(X−i), j > i,

and π1X
−i
= π1X−i in particular.

Lemma 3.2 follows from Proposition 3.5 below. The proposition immediately implies the
conclusion π1(X−i − X−j ) = π1(X−i). Then we note that the strata Lα of links in X
are themselves homotopically stratified spaces, and the links in Lα are also links in X.
Therefore we may apply the conclusion π1X

−i
= π1X−i to Lα to prove the claim on the

strata of links in the lemma.
The proof of Proposition 3.5 will be based on some well known general observations

on the fundamental groups associated to homotopically stratified spaces. In a homotopi-
cally stratified space, the neighborhoods of strata are stratified systems of fibrations over
the strata. The fundamental groups are related as follows.

Proposition 3.3. Suppose E → X is a stratified system of fibrations over a homotopi-
cally stratified space X. If the fibers are non-empty and connected, then π1E → π1X

is surjective. If the fibers are (non-empty and) connected and simply connected, then
π1E→ π1X is an isomorphism.
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Proof. If E → X is a genuine fibration, then the two claims follow from the exact se-
quence of homotopy groups associated to the fibration.

Inductively, we only need to consider X = Z ∪∂Z Y , where Y is the union of lower
strata, Z is the complement of a regular neighborhood of Y , and ∂Z is the boundary of
a regular neighborhood of Y as well as the boundary of Z. Correspondingly, we have
E = EZ ∪E∂Z EY where EZ → Z is a fibration that restricts to the fibration E∂Z → ∂Z,
and EY → Y is a stratified system of fibrations. Then we consider the map

π1E = π1EZ ∗π1E∂Z π1EY → π1X = π1Z ∗π1∂Z π1Y.

If the fibers of E → X are connected, then π1EZ → π1Z and π1E∂Z → π1∂Z are
surjective by the genuine fibration case, and π1EY → π1Y is surjective by induction.
Therefore the map π1E → π1X is surjective. If the fibers of E → Z are connected
and simply connected, then all the maps are isomorphisms. Hence π1E → π1X is an
isomorphism.

The proof makes use of van Kampen’s theorem, which requires Y to be connected
(which further implies that ∂Z is connected). In general, the argument can be carried out
by successively adding connected components of Y to Z. ut

Proposition 3.4. If X is a homotopically stratified space such that all pure strata are
connected, and all links are not empty, thenX is connected. Moreover, if all pure strata are
connected and simply connected, and all links are connected, thenX is simply connected.

We remark that the link L of a stratum Xβ in another stratum Xα is stratified, with
strata Lγ corresponding to the strata Xγ satisfying Xβ ( Xγ ⊂ Xα . Moreover, the
link of Lγ in Lγ ′ is the same as the link of Xγ in Xγ ′ . The proposition implies that if
the pure strata of the link between any two strata sandwiched between Xβ and Xα are
(non-empty and) connected and simply connected, then the link of Xβ in Xα is simply
connected.

Proof of Proposition 3.4. If the links are not empty, then any pure stratum is glued to
higher pure strata. Therefore the connectedness of all pure strata implies the connected-
ness of the union, which is the whole space X.

Now assume that all pure strata are connected and simply connected, and all links are
connected. Let Y be a minimum stratum. Then we have a decomposition X = Z ∪∂Z Y
similar to the one in the proof of Proposition 3.3. The complement Z of a regular neigh-
borhood of Y is a stratified space, with the pure strata the same as the pure strata of X,
except for the stratum Y . Moreover, the links in Z are the same as links in X. By induc-
tion, we may assume that Z (which has one less stratum than X) is simply connected.
Moreover, Y is a pure stratum and is already assumed to be simply connected. If we
know that ∂Z is connected, then we can apply van Kampen’s theorem and conclude that
π1X = π1Z ∗π1∂Z π1Y is trivial.

To see that ∂Z is connected, we note that the base of the fibration ∂Z → Y is con-
nected. So it is sufficient to show that the fiber L of the fibration is also connected. The
fiber is the link L of Y in X, and is a stratified space with one less stratum than X.
Moreover, the strata and links in L are links in X. Since all pure strata of links in X are
connected, by the first part of the proposition, L is connected. ut
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Proposition 3.5. Suppose X is a homotopically stratified space, and Y is a closed union
of strata of X. If for any link between strata of X, those pure strata of the link that are not
contained in Y are connected and simply connected, then π1(X − Y ) = π1X.

Proof. We have a decomposition X = Z ∪∂Z Y similar to that in the proof of Proposi-
tion 3.3. The fiber of the stratified system of fibrations ∂Z → Y is a stratified space Ly
depending on the location of the point y ∈ Y . If Y y is the pure stratum containing y,
then the pure strata of Ly are the pure strata of the link of Y y in X that are not con-
tained in Y . By Proposition 3.4 and the remark afterwards, the assumption of the propo-
sition implies that Ly is connected and simply connected. Then we may apply Proposi-
tion 3.3 to get π1∂Z = π1Y . Further application of van Kampen’s theorem then yields
π1X = π1Z ∗π1∂Z π1Y = π1Z = π1(X − Y ). ut

4. General decomposition theorems

The homotopy properties of the last section will be used in producing a decomposition
theorem for the structure sets of certain stratified spaces. We will use the spectra version
of the surgery obstruction, homology and structure set. The equality of spectra really
means homotopy equivalence.

Theorem 4.1. Suppose X = X0 ⊃ X−1 ⊃ X−2 ⊃ · · · is a homotopically stratified
space satisfying the following properties:

1. The homotopy link of X−1 in X is homotopy equivalent to CP r with r even.
2. The link fibration ofX−1 inX is orientable, in the sense that the monodromy preserves

the fundamental class of the fiber.
3. For any i, the top two pure strata of the link of X−i in X are connected and simply

connected.

Then there is a natural homotopy equivalence of surgery obstructions

L(X) = L(X, relX−2)⊕ L(X−2).

Moreover,
L(X, relX−2) = L(π1X,π1X−1),

and
π1X = π1(X −X−1) = π1X̄

0, π1X−1 = π1X
−1
= π1∂X̄

0.

The surgery obstruction spectrum L for homotopically stratified space X is of the
Browder–Quinn type [Q1]. Strictly speaking, the surgery obstruction of Browder–
Quinn type is only defined for stratified spaces where the neighborhoods of strata have
bundle structure. In the settings of this paper, the 1-LC assumption and the topological
h-cobordism theory [Q2, St] implies that the neighborhoods of strata have block bundle
structure. Thus the surgery obstruction is defined. In Theorem 4.1, the third condition
is the 1-LC assumption on the top two pure strata, from which the surgery obstruction
spectra in the theorem is also defined.



2188 Sylvain Cappell et al.

To prove the theorem, we first establish the following result, which is essentially a
reformulation of the periodicity for the classical surgery obstruction [Wa, Theorem 9.9]
(geometrically reformulated in a relevant bundle setting in [CW1]).

Proposition 4.2. Suppose X is a two-strata space such that the link fibration of X−1 in
X is an orientable fibration with fiber homotopy equivalent to CP r with even r . Then

L(X) = L(π1X,π1X−1), π1X = π1(X −X−1).

Proof. Let Z be the complement of a regular neighborhood of X−1 in X. Let E be the
boundary of Z as well as the boundary of the regular neighborhood. Then X = Z ∪ E ×
[0, 1] ∪ X−1, and E → X−1 is an orientable fibration with fiber homotopy equivalent
to CP r .

The surgery obstruction L(X) of the two-strata space X fits into a fibration

L(E × [0, 1] ∪X−1)→ L(X)→ L(Z,E),

where the mapping cylinder E × [0, 1] ∪ X−1 is a regular neighborhood of X−1 in X
and is a two-strata space with X−1 as the lower stratum. The surgery obstruction of the
mapping cylinder further fits into a fibration

L(E × [0, 1] ∪X−1)
res
−→ L(X−1)

trf
−→ L(E),

given by the restriction and the transfer.
Since the fibration E → X−1 is orientable, and the fiber CP r is simply connected,

the surgery obstruction groups π∗L(X−1) and π∗L(E) are described in terms of the same
quadratic forms (and formations). Moreover, the effect of the transfer map on surgery
obstructions can be computed by the up-down formula of [LR, Theorem 2.1]. Specifi-
cally, the transfer of surgery obstructions is obtained by tensoring with the usual π1X−1-
equivariant intersection form on the middle homology HrCP r = Z, where the π1X−1-
module structure on Z comes from the monodromy. Since this tensoring operation induces
an isomorphism on the surgery obstruction groups, we conclude that the transfer map is
a homotopy equivalence.

We remark that our notion of orientability, as given by the second condition in The-
orem 4.1, is weaker than the one in [LR]. Therefore Corollary 2.2 of [LR] cannot be
directly applied.

Since the transfer map is a homotopy equivalence, the second fibration implies that
L(E×[0, 1] ∪X−1) is contractible. Then the first fibration further implies that L(X) and
L(Z,E) are homotopy equivalent.

It remains to compute L(Z,E). The fibration CP r → E → X−1 implies that
π1E = π1X−1. By van Kampen’s theorem, π1X = π1Z ∗π1E π1X−1 = π1Z =

π1(X −X−1). ut

Proof of Theorem 4.1. Let Z be the complement of a regular neighborhood of X−2 in X.
Let E be the boundary of the regular neighborhood. Then Z and E are two-strata spaces
with lower strata Z−1 = Z ∩ X−1 and E−1 = E ∩ X−1. Moreover, E is the boundary
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Fig. 1. Regular neighborhood of X−2 in X.

of Z in the sense that E has a collar neighborhood in Z. We will use Z and E to denote
the two-strata spaces, and use (Z,E) to denote the space Z considered as a four-strata
space, in which the two-strata of E are also counted.

Consider the commutative diagram of natural maps of surgery obstructions

L(Z) '
−−−−→ L(Z,E) −−−−→ L(E)y' x

L(X, relX−2) −−−−→ L(X) −−−−→ L(X−2)

Both horizontal lines are fibrations of spectra. The vertical homotopy equivalence' is due
to the fact that the inclusion Z→ X −X−2 of two-strata spaces is a stratified homotopy
equivalence. The horizontal homotopy equivalence ' will be a consequence of the fact
that L(E) is homotopically trivial. The two equivalences together give natural splitting
to the map L(X, relX−2)→ L(X). Then the bottom fibration implies L(X) is naturally
homotopy equivalent to L(X, relX−2)⊕ L(X−2).

To see the triviality of L(E), we note that the link of E−1 in E is the same as the
link CP r of X−1 in X. Therefore we may apply Proposition 4.2 to E and get

L(E) = L(π1(E − E−1), π1E−1).

Let L be the link of X−i in X. Then we have stratified systems of fibrations

L0
= L− L−1 → E − E−1 → X−2, L−1

= L−1 − L−2 → E−1 → X−2.

By the third condition, the fibers are always connected and simply connected, and we
may apply Proposition 3.3 to get π1(E−E−1) = π1E−1 = π1X−2. By the π -π theorem
of classical surgery theory [Wa, Theorem 3.3], we conclude that L(E) is homotopically
trivial.

Like E, the link of Z−1 in Z is also the same as the link CP r of X−1 in X. Then
Proposition 4.2 tells us

L(X, relX−2) = L(Z) = L(π1Z, π1Z−1).
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From Z ' X −X−2, Z−1 ' X−1 −X−2 = X
−1 and Lemma 3.2, we have

π1Z = π1(X −X−2) = π1(X −X−1) = π1X, π1Z−1 = π1X
−1
= π1X−1.

From X −X−1 ' X̄
0 and applying Proposition 3.3 to ∂X̄0

→ X−1, which is a stratified
system of fibrations with the top strata of the link of X−i in X as fibers, we get

π1Z = π1X̄
0, π1Z−1 = π1∂X̄

0. ut

The natural splitting for the surgery obstruction in Theorem 4.1 induces a similar natural
splitting for the structure set.

Theorem 4.3. Suppose X = X0 ⊃ X−1 ⊃ X−2 ⊃ · · · is a homotopically stratified
space satisfying the following properties:

1. The homotopy link of X−1 in X is homotopy equivalent to CP r with even r .
2. The link fibration of X−1 in X is orientable as in Theorem 4.1.
3. The pure strata of all links are connected and simply connected.

Then there is a natural homotopy equivalence of structure sets

S(X) = S(X, relX−2)⊕ S(X−2).

Moreover,
S(X, relX−2) = S(X̄0, ∂X̄0) = Salg(X,X−1).

As explained after Theorem 4.1, the third condition implies that the neighborhoods of
strata have block bundle structure. The main result of [We] is a surgery theory for such
homotopically stratified spaces (and the extension to the case when the pure strata of
links may not be simply connected, where the topological K-theory of Quinn [Q2, Q5]
and Steinberger [St] enters). The structure set S(X) is the set of homotopically stratified
spaces stratified simple homotopy equivalent to X up to s-cobordism, and fits into an
exact sequence of abelian groups

· · · → L(X × [0, 1], relX × {0, 1})→ S(X)→ H(X;L(locX))→ L(X).

The notation here differs slightly from that of [We], but we think the above is clearer. The
homology group is a cosheaf homology group: The coefficient associates the surgery ob-
struction spectrum L(U, rel∞) = limcompact K⊂U L(U, relU−K) to each open subsetU .
Thus for an n-dimensional orientable manifoldX, the homology term isHn(X;L(e)) be-
cause L(Rn) is just an L(e) with a dimension shift. For not necessarily orientable X,
the homology should be twisted in exactly the same way that the local identifications of
L(locX) with L(e) are. This twisted homology is isomorphic to [X,Z×G/Top].

We will also use the modification of the above sequence when we work relative to a
union Y of closed strata. We have an exact sequence

· · · → L(X × [0, 1], relY × [0, 1] ∪X × {0, 1})
→ S(X, relY )→ H(X;L(locX, relY ))→ L(X, relY ).
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The cosheaf L(locX, relY ) assigns the surgery obstruction spectrum L(U, relU ∩ Y
and∞) to each open subset U . As a special case, when X− Y is a manifold (i.e., Y con-
tains all the singularities) and Y is 1-LC (i.e., has simply connected homotopy link), then
we obtain the identification of the relative stratified structure set with the fiber of the
assembly map

S(X, relY ) ∼= Salg(X).

It is interesting to note in this formula that the left hand side is a geometrically defined
object that has very few a priori defined functorialities, but the right hand side naturally
has a rich algebraic and functorial nature. Such serendipities underlie the calculations in
this paper.
Proof of Theorem 4.3. We will use the spectrum version of the stratified surgery theory
outlined above. In other words, we have a surgery fibration

S(X)→ H(X;L(locX))→ L(X).

By Theorem 4.1, we have a natural splitting of the surgery spectra

L(X) = L(X, relX−2)⊕ L(X−2) = L(π1X,π1X−1)⊕ L(X−2).

Since the splitting is natural, it can be applied to the coefficient L(locX) in the homology
and induces compatible assembly maps

H(X;L(loc(X, relX−2)))→ L(X, relX−2), H(X;L(locX−2))→ L(X−2).

The stratified surgery theory tells us that the homotopy fiber of the first assem-
bly map is the structure set S(X, relX−2). Moreover, we have H(X;L(locX−2)) =

H(X−2;L(locX−2)) because the coefficient spectrum L(locX−2) is concentrated
on X−2. Therefore the homotopy fiber of the second assembly map is the structure
set S(X−2). Then we have the decomposition of S(X) as stated in the theorem.

It remains to compute S(X, relX−2). The coefficient L(loc(X, relX−2)) of the ho-
mology depends on the location.
1. At x ∈ X0

= X − X−1, the coefficient is L(Dp) = L(e), where Dp is a ball neigh-
borhood of x in the manifold pure stratum X0.

2. At x ∈ X−1, the coefficient is L(cCP r ×Dp), where cCP r is the cone on the link of
X−1 inX, andDp is a ball neighborhood of x in the manifold pure stratumX−1. Since
r is even, the surgery obstruction L(cCP r ×Dp) is contractible by Proposition 4.2.

3. At x ∈ X−2, we have x ∈ X−i for some i ≥ 2. Let L be the link of X−i in X, and let
Dp be a ball neighborhood of x in the manifold pure stratumX−i . Then the coefficient
is

L(cL×Dp, rel cL−2 ×D
p) = L(cL×Dp − c ×Dp, rel cL−2 ×D

p
− c ×Dp)

= L(L× [0, 1] ×Dp, relL−2 × [0, 1] ×Dp)

= �p+1L(L, relL−2).

We may apply Theorem 4.1 to get L(L, relL−2) = L(π1L
0, π1L

−1). By the third
condition, the pure strata L0 and L−1 are connected and simply connected. Therefore
the surgery obstruction spectrum is contractible.
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Thus the coefficient is the surgery obstruction spectrum L = L(e) on the top pure stratum
X0
= X −X−1 and is trivial on X−1. Therefore the homology is

H(X;L(loc(X, relX−2))) = H(X,X−1;L).

Moreover, Theorem 4.1 tells us

L(X, relX−2) = L(π1X,π1X−1).

Therefore the homotopy fiber of the assembly map is Salg(X,X−1).
By excision, we have H(X,X−1;L) = H(X̄0, ∂X̄0

;L). By Theorem 4.1, we also
know L(π1X,π1X−1) = L(π1X̄

0, π1∂X̄
0). Therefore the homotopy fiber of the assem-

bly map is also the structure spectrum S(X̄0, ∂X̄0) of the manifold (X̄0, ∂X̄0). ut

We note that, in the setup of Theorem 4.3, the restriction to X−2 factors through X−1.
Then the fact that the restriction S(X)→ S(X−2) is naturally split surjective implies that
the restriction S(X−1)→ S(X−2) is also naturally split surjective, and we get

S(X−1) = S(X−1, relX−2)⊕ S(X−2).

Another way of looking at this is that if a stratified space X is the singular part of a
stratified space Y satisfying the conditions of Theorem 4.3, i.e., X = Y−1, then we have
the natural splitting

S(X) = S(X, relX−1)⊕ S(X−1).

The following computes S(X, relX−1) for the case relevant to multiaxial manifolds.

Theorem 4.4. Suppose X = X0 ⊃ X−1 ⊃ X−2 ⊃ · · · is a homotopically stratified
space such that for any i, the top pure stratum of the link of X−i in X is connected and
simply connected. Then

S(X, relX−1) = Salg(X).

Proof. Similar to the proof of Theorem 4.3, the simple connectedness assumption implies
that the structure set S(X, relX−1) is the homotopy fiber of the assembly map

H(X;L(loc(X, relX−1)))→ L(X, relX−1),

and the coefficient L(loc(X, relX−1)) = L. We also get π1(X − X−1) = π1X from
Proposition 3.5. Therefore the assembly map is H(X;L) → L(π1X), and its homotopy
fiber is Salg(X). ut

5. Structure sets of nultiaxial actions

Let M be a multiaxial U(n)-manifold. By Lemma 3.2, the pure strata of links in the orbit
space X = M/U(n) are all connected and simply connected. To apply the theorems
of Section 4 to X, we also need to know the orientability of the link fibration. Since
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the monodromy map on the fiber CP r comes from the S1-equivariant monodromy map
on the homotopy link sphere between the adjacent strata, the monodromy map must be
homotopic to the identity. Therefore the link fibration has trivial monodromy and is, in
particular, orientable.

Recall the concept of the first gap defined after the statement of Lemma 3.1. The
number r = rx1 depends only on the connected component of the singular part X−1.
For any connected component Xx

−1, the number is characterized as the link of Xx
−1 in

X being homotopy equivalent to CP r . This number is also characterized by the equality
dimMU(j−1),x

− dimMU(j),x
= 2(r + n).

It is easy to see that Theorem 4.3 remains true in case X−1 has several connected
components, and perhaps with different CP r for different components, as long as all r
are even. Therefore if all the first gaps of a multiaxial U(n)-manifold M are even, then
we have a natural splitting

SU(n)(M) = SU(n)(M, relM−2)⊕ SU(n)(M−2).

By the computation in Theorem 4.3, we have

SU(n)(M, relM−2) = S(X̄0, ∂X̄0) = Salg(X,X−1).

By deleting an equivariant regular neighborhood of M−1 = U(n)M
U(1) from M , we get

a free U(n)-manifold with boundary (M̄0, ∂M̄0), and

S(X̄0, ∂X̄0) = SU(n)(M̄0, ∂M̄0).

On the other hand, by Lemma 2.1, we have SU(n)(M−2) = SU(n−2)(M
U(2)), where

MU(2) is a multiaxial U(n− 2)-manifold. Moreover, Lemma 3.1 further tells us that, for
x ∈ MU(i), i > 2, the first gap of x inMU(2) is rx3 = r

x
1 + 2, where rx1 is the first gap of x

in M . This can also be seen from

dim (MU(2))U(j−1),x
− dim (MU(2))U(j),x = dimMU(j+1),x

− dimMU(j+2),x

= 2(rx1 + n) = 2(rx3 + (n− 2)),

where we use n − 2 on the right because MU(2) is a multiaxial U(n − 2)-manifold. The
upshot of this is that all the first gaps ofMU(2) remain even, and we have a further natural
splitting

SU(n)(M−2) = SU(n−2)(M
U(2)) = SU(n−2)(M

U(2), relMU(2)
−2 )⊕ SU(n−2)(M

U(2)
−2 ).

Moreover, we have

SU(n−2)(M
U(2), relMU(2)

−2 ) = SU(n−2)(M̄
U(2), ∂M̄U(2)) = Salg(X−2, X−3),

and
SU(n−2)(M

U(2)
−2 ) = SU(n−4)(M

U(4)).

The splitting continues and gives us the general version of part 1 of Theorem 1.1 in
the introduction. The mod 4 condition on the codimensions is a rephrasing of the even
first gap.
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Theorem 5.1. Suppose M is a multiaxial U(n)-manifold such that the connected com-
ponents of MU(1) have codimensions 2n mod 4. Then we have a natural splitting

SU(n)(M) =
⊕
i≥0

SU(n−2i)(M̄
U(2i), ∂M̄U(2i)) =

⊕
i≥0

Salg(X−2i, X−2i−1).

In general, a multiaxial manifold may have even as well as odd first gaps. Denote by
M
U(1)
even the union of the connected components ofMU(1) of dimension dimM−2nmod 4.

Denote byMU(1)
odd the union of the connected components ofMU(1) of dimension dimM−

2(n+ 1) mod 4. Then we have

MU(i)
= MU(i)

even ∪M
U(i)
odd , MU(i)

even = M
U(i)
∩MU(1)

even , M
U(i)
odd = M

U(i)
∩M

U(1)
odd ,

so that the components in MU(i)
even have even first gaps, and the components in MU(i)

odd have
odd first gaps. This leads to

M−i,even = U(n)M
U(i)
even , M−i,odd = U(n)M

U(i)
odd .

We also have the corresponding decompositions

X−i = X−i,even ∪X−i,odd, M̄U(i)
= M̄U(i)

even ∪ M̄
U(i)
odd .

By the same proof as Theorem 5.1, we get the same natural splitting for those with
even first gaps

SU(n)(M) = Salg(X, relX−2,even)⊕ Salg(X−2,even).

Here the multiaxial U(n − 2)-manifold MU(2)
even satisfies the condition of Theorem 5.1.

Hence the second summand can be further split,

Salg(X−2,even) =
⊕
i≥1

Salg(X−2i,even, X−2i−1,even).

In terms of the multiaxial manifold, this splitting is

SU(n−2)(M
U(2)
even ) =

⊕
i≥1

SU(n−2i)(M̄
U(2i)
even , ∂M̄U(2i)

even ).

On the other hand, the first summand is

Salg(X, relX−2,even) = SU(n)(M, relM−2,even).

Let Neven and Nodd be equivariant neighborhoods of M−1,even and M−1,odd. Then by the
same proof as Theorem 5.1, we have

SU(n)(M, relM−2,even) = SU(n)(M −Neven, ∂Neven).

Combining everything, we get the following decomposition.
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Theorem 5.2. Suppose M is a multiaxial U(n)-manifold. Then we have a natural split-
ting

SU(n)(M) = Salg(X, relX−2,even)⊕
⊕
i≥1

Salg(X−2i,even, X−2i−1,even).

Moreover,

Salg(X, relX−2,even) = SU(n)(M −Neven, ∂Neven),

Salg(X−2i,even, X−2i−1,even) = SU(n−2i)(M̄
U(2i)
even , ∂M̄U(2i)

even ).

In the theorem above, U(n− 2i) acts freely on M̄U(2i)
even , and the structure set is about the

ordinary manifold M̄U(2i)
even /U(n− 2i).

In the first summand SU(n)(M −Neven, ∂Neven), all the gaps in the multiaxial U(n)-
manifold M −Neven are odd. This leads to the study of multiaxial U(n)-manifolds M
such that all first gaps are odd. We may use the idea presented before Theorem 4.4. Sup-
pose M = WU(1) for a multiaxial U(n + 1)-manifold W . Let Y = W/U(n + 1) be the
orbit space of W . Then X−i = Y−i−1. By Lemma 3.1, for any x ∈ X−1 = Y−2, the first
gap of x in Y is one less than the first gap of x in X. Therefore the first gap of x in Y is
even, and the natural splitting of S(Y ) induces the natural splitting

S(X) = S(X, relX−1)⊕ S(X−1).

Since the first gap in the U(n − 1)-manifold MU(1) is one more than the first gap in M
and is therefore also even, we may apply Theorem 5.1 to get a further natural splitting

S(X−1) =
⊕
i≥1

Salg(X−2i+1, X−2i).

On the other hand, by the computation in Theorem 4.4, the first summand is

S(X, relX−1) = Salg(X).

Then we get the general version of part 2 of Theorem 1.1 in the introduction.

Theorem 5.3. Suppose M is a multiaxial U(n)-manifold such that the connected com-
ponents of MU(1) have codimensions 2(n + 1) mod 4. If M = WU(1) for a multiaxial
U(n+ 1)-manifold W , then we have a natural splitting

SU(n)(M) = Salg(X)⊕
⊕
i≥1

Salg(X−2i+1, X−2i).

Moreover,
Salg(X−2i+1, X−2i) = SU(n−2i+1)(M̄

U(2i−1), ∂M̄U(2i−1)).

We remark that ifM = WU(1) andM is connected, then there is only one first gap r inM ,
uniquely determined by

dimW − dimM = 2(r + n+ 1).

In case r is odd, there is actually no MU(1)
even .
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Theorem 1.2 in the introduction gives another case where S(X−1) splits off from
S(X) under the assumption that all the first gaps are odd (but not necessarily equal).
The theorem deals with semifree S1-manifolds, which are the same as multiaxial U(1)-
manifolds.

Proof of Theorem 1.2. The codimensions of MS1

0 and MS1

2 mean that their first gaps are
respectively odd and even. Let N0 and N2 be their respective equivariant neighborhoods.
Then Theorem 5.2 implies

SS1(M) = SS1(M −N2, ∂N2).

Next we want to split off the structure set of the fixed point set, M −N2
S1
= MS1

0 .

As argued at the beginning of this section, the link fibration of MS1

0 /S1
= MS1

0
in M/S1 has trivial monodromy. Moreover, the fiber of this link fibration is homotopy
equivalent to CP r for odd (first gap) r . By [LR, Mo], crossing with CP r kills the surgery
obstruction. Then the homotopy replacement argument in [CW2, CWY] can be applied
to show that the natural map

SS1(M −N2, ∂N2)→ SS1(M −N2
S1
) = SS1(M

S1

0 )

is split surjective. Since SS1(M −N2, ∂N2, rel ∂N0) is the kernel of the natural map, the
theorem is proved. ut

6. Structure sets of multiaxial representation spheres

Let ρn be the defining representation of U(n). Let ε be the real 1-dimensional trivial
representation. Then for any integers k > 0 and j ≥ 0, the unit sphere

M = S(kρn ⊕ jε) = S(kρn) ∗ S
j−1

of the representation kρn⊕ jε is a multiaxial U(n)-manifold. In this section, we compute
the structure set of this representation sphere.

If k < n, then M = U(n)S(kρk ⊕ jε), and the problem is reduced to the U(k)-
representation sphere S(kρk ⊕ jε). Without loss of generality, therefore, we will always
assume k ≥ n in the subsequent discussion.

The fixed point subsets are

MU(i)
= S(kρU(i)n ⊕ jε) = S(kρn−i ⊕ jε) = S(kρn−i) ∗ S

j−1.

We have

dimMU(i)
= 2k(n− i)− 1+ j, dimMU(i−1)

− dimMU(i)
= 2k.

Therefore the first gap is k− n. If k− n is even, then we can use Theorem 5.1 to compute
the structure set. If k − n is odd, then we may use M = S(kρn+1 ⊕ jε)

U(1), where
k − (n+ 1) is even, whence Theorem 5.3 can be applied.
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We first assume k − n is even and compute the top summand Salg(X,X−1) in the
decomposition for S(X) = SU(n)(S(kρn ⊕ jε)) in Theorem 5.1. Since the representation
sphere is the link of the origin in the representation space kρn ⊕ jε = Ckn ⊕ Rj , by
Lemma 3.2, both X and X−1 are connected and simply connected. If the action is neither
trivial nor free, then X−1 6= ∅, and the surgery obstruction L(π1X,π1X−1) = L(e, e) is
trivial. Therefore the top summand is the same as the homology

Salg(X,X−1) = H(X,X−1;L).

Let
Z = S(kρn)/U(n), d = dimZ = 2kn− 1− n2.

Then
(X,X−1) = (Z,Z−1) ∗ S

j−1, dimX = d + j,

and

Salg(X,X−1) = πd+jSalg(X,X−1) = πd+jH(X,X−1;L) = Hd(Z,Z−1;L).

Proposition 6.1. If k ≥ n, then for Z = S(kρn)/U(n), we have

HdimZ(Z,Z−1;L) = ZAn,k ⊕ ZBn,k2 ,

where An,k is the number of n-tuples (µ1, . . . , µn) satisfying

0 ≤ µ1 ≤ · · · ≤ µn ≤ k − n,
∑

µi is even,

and Bn,k is the number of n-tuples satisfying

0 ≤ µ1 ≤ · · · ≤ µn ≤ k − n,
∑

µi is odd.

Proof. The homology can be computed by a spectral sequence

E2
p,q = Hp(Z,Z−1;πqL(e)) =


Hp(Z,Z−1;Z) if q = 0 mod 4,
Hp(Z,Z−1;Z2) if q = 2 mod 4,
0 if q is odd.

Since the top pure stratum Z − Z−1 is a manifold, by the Poincaré duality we have
Hp(Z,Z−1;R) = H

d−p(Z − Z−1;R). The homotopy type of Z − Z−1 is well known
to be the complex Grassmannian G(n, k). Therefore

E2
p,q =


H d−p(G(n, k);Z) if q = 0 mod 4,
H d−p(G(n, k);Z2) if q = 2 mod 4,
0 if q is odd.

Using the CW structure of G(n, k) given by the Schubert cells, which are all even-
dimensional, we see that E2

p,q vanishes when either q or d − p is odd. This implies
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that all the differentials in E2
p,q vanish. Therefore the spectral sequence collapses, and we

get

Hd(Z,Z−1;L) =
( ⊕
q≤d, q=0 (4)

H q(G(n, k);Z)
)
⊕

( ⊕
q≤d, q=2 (4)

H q(G(n, k);Z2)
)
.

Since G(n, k) is a closed manifold, we always have q ≤ dimG(n, k) ≤ dimZ = d. Of
course this is nothing but q ≤ 2n(k− n) ≤ 2kn− 1− n2

= d . Therefore the requirement
q ≤ d is automatically satisfied in the summation above, and we have

Hd(Z,Z−1;L) = ZAn,k ⊕ ZBn,k2 ,

where An,k is the number of Schubert cells in G(n, k) of dimension 0 mod 4, and Bn,k is
the number of Schubert cells of dimension 2 mod 4. The description of An,k and Bn,k in
the proposition is the well known number of such Schubert cells. ut

The unitary group U(n) acts trivially on S(kρn⊕ jε) only when n = 0 and j > 0. In this
case, we have Salg(X,X−1) = S

alg(X) = S(Sj−1). (Here the first S in S(Sj−1) denotes
the structure set, and the second the sphere.) By the Poincaré conjecture, the structure
set of the sphere is trivial. This means that we should require n > 0 in the notation
ZAn,k ⊕ ZBn,k2 .

The action is free only when n = 1 and j = 0. In this case, we have Salg(X,X−1) =

Salg(X) = S(CP k−1). The homology is still ZA1,k ⊕ZB1,k
2 . But the surgery obstruction is

L2(k−1)(π1X,π1X−1) = L2(k−1)(π1X) = L2(k−1)(e) = Z. Here we recall that k − 1 =
k− n is assumed even. Since this piece of the surgery obstruction is simply the summand
H 0(G(1, k);Z) in the computation of the homology, this reduces the number of copies
of Z by 1. The computation is exactly that of fake complex projective spaces studied in
[Su, Theorem 9], [Wa, Section 14C].

If k − n is even, then Proposition 6.1 and the subsequent discussion about the ex-
ceptions can be applied to the summands Salg(X−2i, X−2i−1) in the decomposition for
S(X) = SU(n)(S(kρn ⊕ jε)) in Theorem 5.1, simply by replacing n with n − 2i. The
exception is that, in case n is odd and j = 0, the U(1)-action on MU(n−1) is free, which
implies X−n = ∅. The exception happens to the last summand Salg(X−n+1, X−n) =

Salg(X−n+1) = S
alg(CP k−1), and the number of copies of Z is reduced by 1. This con-

cludes the proof of part 1 of Theorem 1.4.
If k − n is odd, then Proposition 6.1 can be applied to all summands except the top

one in the decomposition for S(X) in Theorem 5.3, simply by replacing n with n−2i+1.
The exception is that, in case n is even and j = 0, the last summand is Salg(X−n+1) =

Salg(CP k−1), and the number of copies of Z should be reduced by 1. The top summand
Salg(X) may be computed by the surgery fibration

Salg(X)→ H(X;L)→ L(π1X).

Since X is simply connected, L(π1X) is the usual surgery spectrum L, and the assembly
map is induced by the map from X to a single point. Therefore

Salg(X) = H̃d+j (X;L) =

{
Hd(Z;L) if j > 0,
H̃d(Z;L) if j = 0.
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The reduced homology is given by Proposition 9.1 of the appendix by Jared Bass. Since
k − n is odd, we have

H̃d(Z;L) = ZAn,k−1 ⊕ ZBn,k−1
2 .

The unreduced homology is modified from the reduced one according to Corollary 9.2 of
the appendix. This yields part 2 of Theorem 1.4.

7. Suspensions of multiaxial representation spheres

The suspension map is natural with respect to the restrictions to fixed points of unitary
subgroups. In other words, the following diagram is commutative:

SU(n)(S(kρn ⊕ jε))
∗S(ρn)
−−−−→ SU(n)(S((k + 1)ρn ⊕ jε))yres

yres

SU(n−i)(S(kρn−i ⊕ jε))
∗S(ρn−i )
−−−−−→ SU(n−i)(S((k + 1)ρn−i ⊕ jε))

Since the decomposition of the structure sets of multiaxial manifolds in Section 5 is ob-
tained from such restrictions, it is tempting to break the suspension map into a direct sum
of suspension maps between direct summands. However, such a decomposition is not im-
mediately clear because the parity requirements on k − n + i for the split surjectivity of
the restriction maps on the left and right sides are different.

So instead of the (single) suspension, we consider the commutative diagram of the
double suspension map:

SU(n)(S(kρn ⊕ jε))
∗S(2ρn)
−−−−→ SU(n)(S((k + 2)ρn ⊕ jε))yres

yres

SU(n−i)(S(kρn−i ⊕ jε))
∗S(2ρn−i )
−−−−−−→ SU(n−i)(S((k + 2)ρn−i ⊕ jε))

Since the parity requirements for the split surjectivity are the same on both sides, the
double suspension map is indeed a direct sum of double suspension maps between direct
summands of the respective decompositions of the structure sets.

We will argue that the double suspension maps between direct summands are injec-
tive. This implies that the whole double suspension map is also injective. Since the double
suspension map is the composition of two (single) suspension maps, the suspension map
is also injective.

To simplify the notation in the discussion, we assume j = 0. Let

X = S(kρn)/U(n), Y = S((k + 2)ρn)/U(n).

We have

S((k + 2)ρn) = S(kρn)×D(2ρn) ∪ S(2ρn), Y = (S(kρn)×D(2ρn))/U(n) ∪D3,

and a stratified system of fibrations

p : (S(kρn)×D(2ρn))/U(n)→ X = S(kρn)/U(n).
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An element of SU(n)(S(kρn)) may be interpreted as a stratified simple homotopy equiva-
lence f : X′→ X. The pullback of p along f gives a stratified simple homotopy equiva-
lence Y ′→ Y , which after adding the extraD3 further gives the suspension element of f
in SU(n)(S((k + 2)ρn)).

Suppose k − n is even. Then the double suspension map ∗S(2ρn) decomposes into
suspension maps between the direct summands

σi : S
alg(X−2i, X−2i−1)→ Salg(Y−2i, Y−2i−1).

By the computation in Section 6, with one exception, the direct summands are the same
as the corresponding normal invariants. Therefore we consider the suspension maps on
the normal invariants

σi : HdimX−2i (X−2i, X−2i−1;L)→ HdimY−2i (Y−2i, Y−2i−1;L).

The interpretation of the suspension as the pullback of p implies that the suspension of the
normal invariants is simply given by the transfer along p. On the strata we are interested
in, the projection

Y−2i ⊃ (S(kρn−2i)×D(2ρn−2i))/U(n− 2i)
p
−→ X−2i = S(kρn−2i)/U(n− 2i)

takes (the orbit of) a (k + 2)-tuple ξ = (v1, . . . , vk, vk+1, vk+2) of vectors in ρn−2i and
drops the last two vectors vk+1 and vk+2. Note that ξ is mapped into the pure stratumX−2i

if and only if the k-tuple p(ξ) = (v1, . . . , vk) already spans the whole vector space ρn−2i .
This implies that p−1X−2i

→ X−2i is a trivial bundle with fiber D4(n−i) (given by the
choices (vk+1, vk+2) ∈ D(2ρn−2i)). Since

p−1X−2i
= p−1X−2i − p

−1X−2i−1 = Y−2i − p
−1X−2i−1 ∪D

3,

Y−2i−1 ⊂ p
−1X−2i−1 ∪D

3,

up to excision, the pair (Y−2i, p
−1X−2i−1∪D

3) is the same as the Thom space of the triv-
ial disk bundle p−1X−2i

→ X−2i . The transfer of the normal invariants along this bundle
may be identified with the homological Thom isomorphism, and we have a commutative
diagram

HdimX−2i (X−2i, X−2i−1;L)
σi

−−−−→ HdimY−2i (Y−2i, Y−2i−1;L)∥∥∥ yincl

HdimX−2i (X−2i, X−2i−1;L)
Thom ∼=
−−−−→ HdimY−2i (Y−2i, p

−1X−2i−1 ∪D
3
;L)

The commutative diagram shows that the suspension map σi is injective.
There is only one exception to the discussion above. In case n is odd (so k is also odd)

and j = 0, the last summand in the decomposition of SU(n)(S(kρn)) is S(CP k−1). The
double suspension is the usual double suspension map S(CP k−1) → S(CP k+1), which
is well known to be injective. In fact, the structure sets also embed into the correspond-
ing normal invariants, and the injectivity still follows from the Thom isomorphism. This
completes the proof of the injectivity of the suspension for the case of k − n even.
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Now we turn to the case of k − n odd. The double suspension map ∗S(2ρn) decom-
poses into suspension maps

σi : S
alg(X−2i+1, X−2i)→ Salg(Y−2i+1, Y−2i), i ≥ 1,

and
σ0 : S

alg(X)→ Salg(Y ).

The argument for the injectivity of σi for i ≥ 1 is the same as in the case of k−n even. By
the computation in Section 6, the top summands are the same as the reduced homologies

σ0 : H̃dimX(X;L)→ H̃dimY (Y ;L).

Let X′0 ⊂ X0
⊂ X be those points represented by k-tuples of vectors in ρn such that the

first k−1 vectors already span the whole vector space ρn. (This means r = n andmn > 1
in Bass’ terminology.) Then by the computation of Jared Bass, the map H̃dimX(X;L)→
H̃dimX(X,X − X

′0
;L) is injective. On the other hand, the preimage Y ′0 = p−1(X′0) ⊂

Y 0
⊂ Y consists of those (k+2)-tuples in ρn such that the first k−1 vectors already span

the whole vector space ρn. (This means r = n and mn > 3 in Bass’ terminology.) Since
Y ′0 is obtained by adding two vectors (vk+1, vk+2) ∈ D(2ρn) to the representatives of
points in X′0, the projection Y ′0 → X′0 is a trivial bundle with D4n as fiber. The transfer
of the normal invariants along this bundle may be identified with the homological Thom
isomorphism, and we have a commutative diagram

H̃dimX(X;L)
σ0

−−−−→ H̃dimY (Y ;L)yinj
yincl

HdimX(X,X −X
′0
;L) Thom ∼=
−−−−→ HdimY (Y, Y − Y

′0
;L)

The diagram shows that the suspension map σ0 is injective.
Again there is only one exception to the discussion. In case n is even (so k is odd),

and j = 0, the last summand in the decomposition of SU(n)(S(kρn)) is S(CP k−1). The
double suspension on this summand is injective, just like the exceptional case when k−n
is even. This completes the proof of the injectivity of the suspension for the case of k− n
odd.

8. Multiaxial Sp(n)-manifolds

The symplectic group Sp(n) consists of n × n quaternionic matrices that preserve the
standard hermitian form on Hn,

〈x, y〉 = x̄1y1 + x̄2y2 + · · · + x̄nyn.

A symplectic subgroup associated to a quaternionic subspace of Hn consists of the quater-
nionic matrices that preserve the standard hermitian form and fix the quaternionic sub-
space. Any symplectic subgroup is conjugate to a specific symplectic subgroup Sp(i)
associated to the specific subspace 0⊕Hn−i .
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We call an Sp(n)-manifold multiaxial if any isotropy group is a symplectic subgroup,
MSp(i) is an ANR homology manifold, the orbit space M/Sp(n) is homotopically strati-
fied, and the strata of M/Sp(n) are 1-LC embedded. All our discussion about multiaxial
U(n)-manifolds can be extended to multiaxial Sp(n)-manifolds.

The role played by U(1) = S1 is replaced by Sp(1) = S3, the group of quaternions
of unit length. If S3 acts freely on a sphere, then the dimension of the sphere is 3 mod 4,
and the quotient is homotopy equivalent to HP r . In analogy to the unitary case, we have
MSp(j)

= MT j for the maximal torus T j of Sp(j), and all such maximal tori for the
given j are conjugate in Sp(n). Hence the proof of Lemma 3.1 using the Borel formula
remains valid, and we get a quaternionic version of the formula for the first gap,

dimMSp(j−1),x
− dimMSp(j),x

= 4(rx1 + n).

Since HP r is always connected and simply connected, Lemma 3.2 can also be applied to
multiaxial Sp(n)-manifolds.

The key reasons behind the results in Section 4 is that for even r , CP r is a manifold of
signature one, which makes the surgery transfer an equivalence, even after taking account
of the monodromy. This remains valid with HP r in place of CP r , so that all the results
in Section 4 still hold.

The key reason that we can apply the results in Section 4 to multiaxialU(n)-manifolds
is that the fibers of the link fibration between adjacent strata are homotopy equivalent
to CP r , and the link fibration has trivial monodromy and is therefore orientable. Since
the same reasoning remains valid for multiaxial Sp(n)-manifolds, the splitting theorems
in Section 5 can be extended.

Theorem 8.1. Suppose M is a multiaxial Sp(n)-manifold such that the connected com-
ponents of MSp(1) have codimensions 4n mod 8. Then we have a natural splitting

SSp(n)(M) =
⊕
i≥0

SSp(n−2i)(M̄
Sp(2i), ∂M̄Sp(2i)) =

⊕
i≥0

Salg(X−2i, X−2i−1).

Theorem 8.2. Suppose M is a multiaxial Sp(n)-manifold such that the connected com-
ponents of MSp(1) have codimensions 4(n + 1) mod 8. If M = W Sp(1) for a multiaxial
Sp(n+ 1)-manifold W , then we have a natural splitting

SSp(n)(M) = Salg(X)⊕
⊕
i≥1

Salg(X−2i+1, X−2i).

Moreover,

Salg(X−2i+1, X−2i) = SSp(n−2i+1)(M̄
Sp(2i−1), ∂M̄Sp(2i−1)).

Theorem 5.2 can be extended. The proof of Theorem 1.2 at the end of Section 5 can also
be extended, in view of the fact that the signature of HP r is zero for odd r . So we have
the quaternonic version of Theorem 1.2.
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Theorem 8.3. Suppose the quaternionic sphere S3 acts semifreely on a topological man-
ifold M . Let MS3

0 and MS3

4 be the unions of those connected components of MS3
that

are, respectively, of codimensions 0 mod 8 and 4 mod 8. Let N be the complement of (the
interior of ) an equivariant tube neighborhood of MS3

, with boundaries ∂0N and ∂4N

corresponding to the two parts of the fixed points. Then

SS3(M) = S(M
S3

0 )⊕ S(N/S3, ∂4N/S
3, rel ∂0N/S

3).

We can also compute the structure sets of multiaxial Sp(n)-representation spheres. The
dimensions of the Schubert cells of quaternionic Grassmannians GH(n, k) are multiples
of 4. Therefore the analogue of Proposition 6.1 gives copies of L4i(e) = Z, regardless of
the parity. Since the total number of Schubert cells in GH(n, k) is An,k + Bn,k =

(
k
n

)
, we

have
Hd(S(kρn)/Sp(n), S(kρn)−1/Sp(n);L) = Z(

k
n), k ≥ n,

where
d = dim S(kρn)/Sp(n) = 4kn− 1− n(2n+ 1).

On the other hand, the CW structure used by Jared Bass can also be applied to the orbit
space S(kρn)/Sp(n). The reason is that for complex matrices, the unique representative
by row echelon form is a consequence of the fact that GL(n,C) = U(n)N , where U(n) is
the maximal compact subgroup of the semisimple Lie group SL(n,C) and N is the group
of upper triangular matrices with positive diagonal entries. This is a special example of
the Iwasawa decomposition. When the decomposition is applied to the semisimple Lie
group SL(n,H), for which Sp(n) is the maximal compact subgroup, we get GL(n,H) =
Sp(n)N . Therefore the orbit space S(kρn)/Sp(n) has cells B(m1, . . . , mr) similar to the
orbit space in the complex case, except that

dimB(m1, . . . , mr) = 4(m1 + · · · +mr)− 3r − 1.

This leads to the analogue of Proposition 9.1,

H̃d(S(kρn)/Sp(n);L) = Z(
k−1
n ), k ≥ n.

For k − n odd, this is the top summand

Salg(S(kρn)/Sp(n)) = H̃d(S(kρn)/Sp(n);L)

in the decomposition of the structure set SSp(n)(S(kρn)). If k − n is odd and j > 0, then
the top summand is

Salg((kρn ⊕ jε)/Sp(n)) = H̃d+j (X;L) = Hd(S(kρn)/Sp(n);L)

= H̃d(S(kρn)/Sp(n);L)⊕H0(Z;πdL).

The extra homology at the base point is

H0(Z;π4kn−1−n(2n+1)L) = L4kn−1−n(2n+1)(e) =


Z if n = 1 mod 4,
Z2 if n = 3 mod 4,
0 if n is even.
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Finally, we need to consider the case in which the last summand in the decomposition
is S(HP k−1), which happens when k, n are odd and j = 0, or k is odd, n even and j = 0.
In this case, the number of copies of Z should be reduced by 1.

In summary, the quaternionic analogue of Theorem 1.4 is the following.

Theorem 8.4. Suppose k ≥ n and ρn is the canonical representation of Sp(n).

1. If k − n is even, then

SSp(n)(S(kρn ⊕ jε)) = Z
∑

0≤2i<n (
k

n−2i),

with the only exception that there is one less Z in case n is odd and j = 0.
2. If k − n is odd, then

SSp(n)(S(kρn ⊕ jε)) = Z(
k−1
n )+

∑
0≤2i−1<n (

k
n−2i+1),

with the following exceptions: (i) there is one less Z in case n is even and j = 0;
(ii) there is one more Z in case n = 1 mod 4 and j > 0; (iii) there is one more Z2 in
case n = 3 mod 4 and j > 0.

Finally, the discussion on the suspension

∗S(ρn) : SSp(n)(S(kρn ⊕ jε))→ SSp(n)(S((k + 1)ρn ⊕ jε))

can be carried out just as in Section 7 and we deduce the injectivity of the suspension in
the symplectic setting as well.

9. Appendix (by Jared Bass): Homology of quotients of multiaxial representation
spheres

Following earlier notation, we write

Z = S(kρn)/U(n), d = dimZ = 2kn− 1− n2.

Through an explicit CW decomposition, we will compute the reduced homology
H̃d(Z;L).

Proposition 9.1. If k ≥ n, then for Z = S(kρn)/U(n), we have

H̃dimZ(Z;L) = Zan,k ⊕ Zbn,k2 ,

where an,k is the number of n-tuples (µ1, . . . , µn) satisfying

0 ≤ µ1 ≤ · · · ≤ µn ≤ k − n− 1,
∑

µi + kn is even,

and bn,k is the number of n-tuples satisfying

0 ≤ µ1 ≤ · · · ≤ µn ≤ k − n− 1,
∑

µi + kn is odd.

In case k−n is odd, which is what we are really interested in, we note that
∑
µi+kn and∑

µi have the same parity. Therefore an,k = An,k−1 and bn,k = Bn,k−1 from Proposition
6.1. In case k − n is even,

∑
µi + kn and

∑
µi + n have the same parity.
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Proof of Proposition 9.1. An element in S(kρn) is a k-tuple ξ = (v1, . . . , vk) of vec-
tors in ρn satisfying ‖ξ‖2 = ‖v1‖

2
+ · · · + ‖vk‖

2
= 1, with the U(n)-action gξ =

(gv1, . . . , gvk). We may regard ξ as a complex n × k matrix. We claim that we can find
a unique representative for the orbit of ξ in the row echelon form

ξ̄ =



λ1 · · · ∗ · · · ∗ · · · ∗ · · ·

λ2 · · · ∗ · · · ∗ · · ·

λ3 · · · ∗ · · ·

. . .
... · · ·

λr · · ·


,

where the empty spaces are occupied by 0, ∗ and vertical and horizontal dots mean com-
plex numbers, λi > 0, and the total length of all the entries is 1, as it was for ξ . To
get ξ̄ , apply the Gram–Schmidt process to the columns of ξ to obtain an orthonormal
basis for Cn (adding extra vectors if necessary). If we then apply to ξ the unitary matrix
taking this new basis to the standard basis, we get ξ̄ as desired. The orbit space Z is the
collection of all matrices ξ̄ of the above form.

If λj is mj places from the right end of the matrix (i.e., λj lies in the k − mj + 1-th
column), then we say that the matrix has shape (m1, . . . , mr). Note that r is the rank of
the matrix ξ . For any r ≤ n, k ≥ m1 > · · · > mr > 0, all ξ̄ of the shape (m1, . . . , mr)

form a cell B(m1, . . . , mr) of dimension

dimB(m1, . . . , mr) = 2(m1 + · · · +mr)− r − 1.

Geometrically, the cell is the subset of a sphere of the above dimension determined by
r coordinates being non-negative. The boundary of this cell consists of those shapes
(m′1, . . . , m

′

r ′
) satisfying r ′ ≤ r and m′i ≤ mi , with at least one inequality being strict.

In homological computation, only those shapes of one dimension less matter. This only
occurs when

mr = 1, r ′ = r − 1, m′i = mi for 1 ≤ i < r.

Therefore, the only non-trivial boundary map of the cellular chain complex is

∂B(m1, . . . , mr−1, 1) = B(m1, . . . , mr−1).

The homology is then freely generated by the shapes that are neither (m1, . . . , mr−1, 1)
nor (m1, . . . , mr−1) in the equality above. These are exactly the shapes satisfying r = n
(meaning ξ has full rank) and mn > 1, and the shape (1) (meaning r = 1 and m1 = 1).
The shape (1) is the base point of Z.

The reduced homology H̃∗(Z;L) is the limit of a spectral sequence with

E
p,q

2 = H̃p(Z;πqL) =


H̃p(Z;Z) if q = 0 mod 4,
H̃p(Z;Z2) if q = 2 mod 4,
0 if q is odd.
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Note that the reduced homology H̃pZ is freely generated by shapes satisfying r = n and
mn > 1. Since the dimensions of such cells have the same parity as n + 1, H̃pZ is non-
trivial only if p has the same parity as n + 1. This implies that Ep,q2 already collapses
and

H̃d(Z;L) =
( ⊕
q=0 (4)

H̃d−q(Z;Z)
)
⊕

( ⊕
q=2 (4)

H̃d−q(Z;Z2)
)
.

We have ⊕
q=0 (4)

H̃d−q(Z;Z) = Zan,k ,

where an,k is the number of shapes (m1, . . . , mn) satisfying

mn > 1, 2(m1 + · · · +mn)− n− 1 = d = 2kn− 1− n2 mod 4.

Let µi = mn−i+1 − (i + 1), so this condition can be interpreted in terms of the non-
decreasing sequence of non-negative integers (µ1, . . . , µn), as in the statement of the
proposition. Through a similar computation we get the description of bn,k for q = 2
mod 4. ut

For the unreduced homology Hd(Z;L), we also need to consider the basepoint. So we
need to further take the direct sum with the homology at the base, H0(Z;πdL) = Ld(e).
In our case of interest, when k − n is odd, we have d = −1 − n2 mod 4. This yields the
following.

Corollary 9.2. For k− n odd, the unreduced homology HdimZ(Z;L) is given by Propo-
sition 9.1 with an additional summand of

H0(Z;πdL) = Ld(e) =

{
Z2 if n is odd,
0 if n is even.
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